HP ASSEMBLER

Programmers Reference
Manual

I

HEWLETT ihp; PACKARD

11000 Wolfe Road
Cupertino, California 95014

HP 02116-9014

June 1971

First Edition, Feb. 1968
Revised, April 1970
Revised, June 1971

Copyrnight, 1971, by
HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

Third Edition

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
be transmitted by any means, electronic, mechanical, photocopy, re-
cording or otherwise, without prior written permission from the
publisher,

Printed in the U.S.A.

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

PREFACE

This publication is the reference manual for the Hewlett-Packard Assembly
Language for the 2100 family of computers. Since Hewlett-Packard provides
assemblers with all of its operating systems, this manual covers only the
specifications of assembly language, not operating procedures for the
assemblers. The user should refer to the appropriate system manual or

operator's guide listed below:

SOFTWARE OPERATING PROCEDURES
DISC OPERATING SYSTEM (02116~-91748)
MOVING-HEAD DISC OPERATING SYSTEM (02116-91779)

MAGNETIC TAPE SYSTEM (02116-91752)

k In addition, the Formatter and other relocatable subroutines that can be called
by relocatable assembly language programs are described in full in the RELOCATABLE
SUBROUTINES manual (02116-91780). Interaction between relocatable programs

and operating systems is described in:

BASIC CONTROL SYSTEM (02116-9017)
MOVING-HEAD DISC OPERATING SYSTEM
DISC OPERATING SYSTEM

MAGNETIC TAPE SYSTEM

Interaction between absolute programs and SIO drivers is described in an

appendix to this book.

iii

NEW AND CHANGED INFORMATION

All known errors in this manual have been corrected.
In addition, operating procedures have been eliminat-
ed and are now contained in the manuals listed on

the previous page.

iv

4-1
4-8
4-11
4-17

CONTENTS

PREFACE

NEW AND CHANGED INFORMATION
CONTENTS

INTRODUCTION

SECTION I

GENERAL DESCRIPTION
Assembly Processing
Symbolic Addressing
Program Relocation
Program Location Counters

Assembly Options

SECTION II

INSTRUCTION FORMAT
Statement Characteristics
Label Field
Opcode Field
Operand Field

Comments Field

SECTION III
MACHINE INSTRUCTIONS
Memory Reference
Register Reference
Input/Output, Overflow, and Halt
Extended Arithmetic Unit

SECTION IV

PSEUDOG INSTRUCTIONS
Assembler Control
Object Program Linkage
Address and Symbol Definition

Constant Definition

CONTENTS

SECTION IV (cont.)
PSEUDO INSTRUCTIONS

4-23 Storage Allocation
4-23 Assembly Listing Control
4-26 Arithmetic Subroutine Calls

5-1 SECTION V
ASSEMBLER INPUT AND OUTPUT

5-1 Control Statement

5-2 Source Program

5-3 Binary Output

5-3 List Output
APPENDICES

A-1 HP Character Set
B-1 Summary of Instructions
C-1 Alphabetical List of Instructions
D-1 Sample Problems
E-1 System Input/Output Subroutines
F-1 Consolidated Coding Sheet

INDEX

vi

INTRODUCTION

The Assembler and the Extended Assembler translate symbolic source language
instructions into an object program for execution on the computer. The source
language provides mnemonic machine operation codes, assembler directing pseudo
codes, and symbolic addressing. The assembled program may be absolute or

relocatable.

The source program may be assembled as a complete entity or it may be subdivided
into several relocatable subprograms (or a main program and several subroutines),
each of which may be assembled separately. The relocating loader loads the

program and Links the subprograms as required. The Basic Binary Loader or Basic

Binary Disc Loader loads absolute programs.

Input for the Assembler is prepared on paper tape or cards; the Assembler

punches the binary program on paper tape in a format acceptable to the loader.

vii

SECTION |
GENERAL DESCRIPTION

ASSEMBLY PROCESSING

The Assembler is a two pass system, or, if both punch and list output are
requested, a three pass system on a minimum configuration. A pass is de-

fined as a processing cycle of the source program input.

In the first pass, the Assembler creates a symbol table from the names used
in the source statements. It also checks for certain possible error condi-

tions and generates diagnostic messages if necessary.

During pass two, the Assembler again examines each statement in the source
program along with the symbol table and produces the binary program and a

program listing. Additional diagnostic messages may also be produced.

If only the output device is available and if both the binary output and the
list output are requested, the listing function is deferred and performed as

pass three.

When using the Assembler with a mass storage device the source program is

written on the device during the first pass; the second pass of the source

is read from the mass storage.

SYMBOLIC ADDRESSING

Symbols may be used for referring to machine instructions, data, constants,
and certain other pseudo operations. A symbol represents the address for a
computer word in memory. A symbol is defined when it is used as a label for
a location in the program, a name of a common storage segment, the label of
a data storage area or constant, the label of an absolute or relocatable

value, or a location external to the program.

ASSEMBLY
LANGUAGE
SOURCE PROGRAM

ASSEMBLY
LANGUAGE
SOURCE PROGRAM

ASSEMBLY
LANGUAGE
SOURCE PROGRAM

GENERAL DESCRIPTION

Figure 1-1.

ASSEMBLER S.F:/IBOL
————— BLE
PASS 1 LISTING
RELOCATABLE
OR ABSOLUTE
OBJECT PROGRAM
ASSEMBLER
PASS 2 ,
! ,
| ADDITIONAL OR
| ALTERNATE
“— OBJECT
PROGRAM LISTIN
ASSEMBLER PROGRAM
PASS 3 LISTING

HP Assembler Processing

GENERAL DESCRIPTION

Through use of simple arithmetic operators, symbols may be combined with
other symbols or numbers to form an expression which may identify a location
other than that specifically named by a symbol. Symbols appearing in oper-
and expressions, but not specifically defined, and symbols that are defined

more than once are considered to be in error by the Assembler.

PROGRAM RELOCATION

Relocatable programs may be relocated in core by the relocating loader; the

location of the program origin and all subsequent instructions is determined

at the time the program is loaded.

A relocatable program is assembled assuming a starting location of zero. All
other instructions and data areas are assembled relative to this zero base.
When the program is loaded, the relocatable operands are adjusted to corre-

spond with the actual locations assigned by the loader.

The starting locations of the common storage area and the base page portion
of the program are always established by the loader. References to the com-
mon area are common relocatable. References to the base page portion of the
program are base page relocatable. If a program refers to the common area
or makes use of the base page via the ORB pseudo instruction, the program

must also be relocatable.

If a program is to be relocatable, all subprograms comprising the program
must be relocatable; all memory reference operands must be relocatable ex-

pressions or literals, or have an absolute value of less than 1008.

PROGRAM LOCATION COUNTERS

The Assembler maintains a counter, called the program location counter, that

assigns consecutive memory addresses to source statements.

GENERAL DESCRIPTION

The initial value of the program location counter is established according
to the use of either the NAM or ORG pseudo operation at the start of the
program. The NAM operation causes the program location counter to be set
to zero for a relocatable program; the ORG operation specifies the absolute

starting location for an absolute program.

Through use of the ORB pseudo operaticn a relocatable program may specify
that certain operations or data areas be allocated to the base page. If so,
a separate counter, called the base page location counter, is used in as-

signing these locations.

ASSEMBLY OPTIONS

Parameters specified with the first statement, the control statement, de-

fine the output to be produced by the Assembler:t

Absolute - The addresses generated by the Assembler are to be in-
terpreted as absolute locations in memory. The program
is a complete entity; external symbols, common storage

references, and entry points are not permitted.

Relocatable - The program may be located anywhere in memory. All
operands which refer to memory locations are adjusted as
the program is locaded. Operands, other than those refer-
ring to the first 64 locations, must be relocatable ex-
pressions. Subprograms may contain external symbols and

entry points, and may refer to common storage.

Binary output - An absolute or relocatable program is to be punched

on paper tape.

List output - A program listing is produced either during pass two

or pass three.

tSee Section V for complete details.

GENERAL DESCRIPTION

Table print - List the symbol table at the end of the first pass.

Selective assembly - Sections of the program may be included or
excluded at assembly time depending on the option

used.

SECTION I
INSTRUCTION FORMAT

A source language statement consists of a label, an operation code, an
operand, and comments. The label is used when needed as a reference by
other statements. The operation code may be a mnemonic machine operation

or an assembly directing pseudo code. An operand may be an expression con-
sisting of an alphanumeric symbol, a number, a special character, or any of
these combined by arithmetic operations. (For the Extended Assembler, an
operand may also be a literal.) Indicators may be appended to the operand
to specify certain functions such as indirect addressing. The comments por-

tion of the statement is optional.

STATEMENT CHARACTERISTICS

The fields of the source statement appear in the following order:

Label
Opcode
Operand

Comments

Field Delimiters

One or more spaces separate the fields of a statement. An end-of-statement
mark terminates the entire statement. On paper tape this mark is a return,
, and line feed, @ .T A single space following the end-of-statement
mark from the previous source statement is the null field indicator of the

label field.

TA circled symbol (e.g.,) represents an ASCII code or Teleprinter key.

INSTRUCTION FORMAT

41/4 0438 1NOYNY A8 0ILIT3A 51 INIT 2 YHAY = % OMi=C
31/ @334 INIT/ N¥N1TH A OILYNIWEIL INIT [vHdlv =1 INO =1 340) O YHeW = O o¥iz =4
08 st 0z 59 5§ o5 14 [st of 24 4 st ol s 1
T T
H
¢
t
i
i
i
|
+
T
i
t
08 sz os 09 5 os ¥ or s of sz oz s1 ol s l
siuawwo) uosad) wotpisd 19901
INIWALY LS
_ 40 19ve WYED0Ud 3lva ,wzz(xoozk_

WHOd DNIA0D B3N 3SSY A VIOVd-LLITMIH

MO255

Sample Coding Form (Actual Size 11 x 13-1/2)

Figure 2-1.

2-2

INSTRUCTION FORMAT

Character Set

The characters that may appear in a statement are as follows:
A through Z
0 through 9
. (period)

* (asterisk)

+ (plus)
- (minus)
, (comma)
= (equals)

() (parentheses)

(space)
Any other ASCII characters may appear in the Remarks field. (See Appendix A.)

The letters A through Z, the numbers 0 through 9, and the period may be used
in an alphanumeric symbol. In the first position in the Label field, an as-
terisk indicates a comment; in the Operand field, it represents the value of
the program location counter for the current instruction. The plus and
minus are used as operators in arithmetic address expressions. The comma
separates several operation codes, or an expression and an indicator in the
Operand field. An equals sign indicates a literal value. The parentheses

are used only in the COM pseudo instruction.

Spaces separate fields of a statement. They may also be used to establish

the format of the output list. Within a field they may be used freely when

following +, -, ,, or (.

STATEMENT LENGTH

A statement may contain up to 80 characters including blanks, but excluding
the end-of-statement mark. Fields beginning in characters 73 - 80 are not

processed by the Assembler.

INSTRUCTION FORMAT

LABEL FIELD

The Label field identifies the statement and may be used as a reference

point by other statements in the program.

The field starts in position one of the statement; the first position fol-
lowing an end-of-statement mark for the preceding statement. It is termin-
ated by a space. A space in position one is the null field indicator for

the label field; the statement is unlabeled.

Label Symbol

A label must be symbolic. It may have one to five characters consisting of

A through Z, 0 through 9, and the period. The first character must be alpha-
betic or a period. A label of more than five characters could be entered on
the source language tape, but the Assembler flags this condition as an error

and truncates the label from the right to five characters.

Examples:
T LOlA] [T] [T T INol IAIBELLL T 1]
.|ABIcp | 7 [viAlLITID| |L|ABE|L
12318 VALITDl [LIABE|L
Al.[1123 viAlLIID| [LIABE|L
VAILT|D| IL/ABE|L
11.]alB IILLEGIAILl [LAIBEIL! [-] [FIT/RS|T] [CIHIAIRIAICITEEIR
NUMER|T[C].
AlBICI112]3 IILILE/GlAILL| [LIABEIL] - [TIRIUN[CIATIEID| IT|O
ABCl12].
Al*|B[C ILLEGIAL! [LIABELl -] [ASTERITISK [NOIT
, ALLILIOWED! IIN] ILABEILL| [1]]!
AABCT No| ILAIBEIL| [-|THE] 'AlS/SEMBIL ER| AT TEMPITIS
70! IN[TERPRIET [ABlC| |Als [AN [OPERIATIION
CODE. %
RN |

TThe caret symbol,. , indicates the presence of a space.

INSTRUCTION FORMAT

Each label must be unique within the program; two or more statements may not
have the same symbolic name. Names which appear in the Operand field of an
EXT or COM pseudo instruction may not also be used as statement labels in

the same subprogram.

Examples:
cloM] |aiciom (2011, B[CI(]3/0])
L|B ElQU| [1/6/0 VIAILLID| |LIABEIL
EXIT[XILIA [, X[L]2
SITAR[T! {LIDIA] LB VIAILITID] |LJABEIL
N|2/5 VIALIID| |LIABIEIL
X|L|2 I|LILIE/GJAlL| [L/AIBIEIL| |-| {USED| |IN| [EX|T
B|C IILILIEIGA|L| |LIAJBIEIL]| |-| JU|SIEID[|IIN] |C|O|M
N|2]5 TILILIEIGIA|L] |LIA[BEIL] |-] PIRIEIV[TIOUISIL]Y]
DIEFII|NIEID|.
Asterisk

An asterisk in position one indicates that the entire statement is a comment.
Positions 2 through 80 are available; however, positions 1 through 68 only
are printed as part of the assembly listing on the 2752A Teleprinter. An

asterisk within the Label field is illegal in any position other than one.

OPCODE FIELD

The operation code defines an operation to be performed by the computer or
the Assembler. The Opcode field follows the Label field and is separated

from it by at least one space. If there is no label, the operation code may

2-5

INSTRUCTION FORMAT

begin anywhere after position one. The Opcode field is terminated by a space
immediately following an operation code. Operation codes are organized in

the following categories:

Machine operation codes
Memory Reference
Register Reference
Input/Output, Overflow, and Halt
Extended Arithmetic Unit
Pseudo operation codes
Assembler control
CObject program linkage
Address and symbol definition
Constant definition
Storage allocation
Arithmetic subroutine calls
Assembly Listing Control (Extended Assembler)

Operation codes are discussed in detail in Sections III and IV.

OPERAND FIELD

The meaning and format of the Operand field depend on the type of operation code
used in the source statement. The field follows the Opcode field and is separated
from it by at least one space. It is terminated by a space except when the space

follows, + - { or, if there are no comments, by an end-of-statement mark.

The Operand field may contain an expression consisting of one of the following:

Single symbolic term

Single numeric term

Asterisk

Combination of symbolic terms, numeric terms, and the asterisk jointed by

the arithmetic operators + and -.

INSTRUCTION FORMAT

An expression may be followed by a comma and an indicator.

Programs being assembled by the Extended Assembler may also contain a

literal value in the Operand field.

Symbolic Terms

A symbolic term may be one to five characters consisting of A through 7,

through 9, and the period. The first character must be alphabetic or a

period.
Examples:
L|DA| [A12]314 VALID| [IIF DIEFTINE]D '
ADA| B|. ! VIALID| [I|F. DIEFINED
JMP| ENTRY VALID| I|F DIEFINED
S[TIA| [1|ABIC ILLEGJAL| OPERAND| FIIRS|TI CHAIRACTER
NJUMER[I.C|.
SiT\B| |ABICDEF IILILEG|AL| OPERIAND| MORE! THAN| FIVE
CHARAICTER|S

A symbol used in the Operand field must be a symbol that is defined else-

where in the program in one of the following ways:
As a label in the Label field of a machine operation

As a label in the Label field of a BSS, ASC, DEC, DEX, OCT, DEF,
ABS, EQU or REP pseudo operation

As a name in the Operand field of a COM or EXT pseudo operation

As a label in the Label field of an arithmetic subroutine pseudo

operation

INSTRUCTION FORMAT

The value of a symbol is absolute or relocatable depending on the assembly
option selected by the user. The Assembler assigns a value to a symbol as
it appears in one of the above fields of a statement. If a program is to be
loaded in absolute form, the values assigned by the assembler remain fixed.
If the program is to be relocated, the actual value of a symbol is estab-
lished on loading. A symbol may also be made absolute through use of the

EQU pseudo instruction.

A symbolic term may be preceded by a plus or minus sign. If preceded by a
plus or no sign, the symbol refers to its associated value. If preceded by
a minus sign, the symbol refers to the two's complement of its associated
value. A single negative symbolic operand may be used only with the ABS

pseudo operation.

Numeric Terms

A numeric term may be decimal or octal. A decimal number is represented by
one to five digits within the range 0 to 32767. An octal number is repre-
sented by one to six octal digits followed by the letter B; (0 to 177777B).

If a numeric term is preceded by a plus or no sign, the binary equivalent of
the number is used in the object code. If preceded by a minus sign, the
two's complement of the binary equivalent is used. A negative numeric oper-

and may be used only with the DEX, DEC, OCT, and ABS pseudo operations.

In an absolute program, the maximum value of a numeric operand depends on
the type of machine or pseudo instruction. 1In a relocatable program, the
value of a numeric operand may not exceed 77B. Numeric operands are abso-

lute. Their value is not altered by the assembler or the loader.

INSTRUCTION FORMAT

Asterisk

An asterisk in the Operand field refers to the value in the program location
counter (or base page location counter) at the time the source program state-
ment is encountered. The asterisk is considered a relocatable term in a re-

locatable program.

Expression Operators

The asterisk, symbols, and numbers may be joined by the arithmetic operators
+ and - to form arithmetic address expressions. The Assembler evaluates an

expression and produces an absolute or relocatable value in the object code.

Examples:
LIDA] [SIYM+]6 ADID, [6] [T0] [TIHEE| [VIAILIUE] [O]F] [STYM B
ADA[[SYM-3 SUBITRIAICIT| 3| [FRIOM| [THE| |VIAILIUE| |OfF| IS|YM:
JMP[[*[+5 ADD. 5| [TO| [TIHE! [COINTENIT|S| OF [THE
PRIO|GIRIAM| [L/OICIAT I 0[N |CIOUN[TIER
SITB| |JAl+C-[4 ADD| -| \VALUIE |OF| |Al,| THE| VIALIE| [OF| [C
AND| S[UBTIRIAICT] [4]-
: |
S[TIA} [XT]A-* SUBTRIACTT, \VIALUE| [OF| [PRlOGRIAM
LIOCAT|I[ON ClOUNTEIR |FIRIOM_VAL|UE| OF
X[T/A.
|

INSTRUCTION FORMAT

Evaluation of Expressions

An expression consisting of a single operand has the value of that operand.
An expression consisting of more than one operand is reduced to a single
value. 1In expressions containing more than one operator, evaluation of the
expression proceeds from left to right. The algebraic expression A-(B-C+5)
must be represented in the Operand field as A-B+C-5. Parentheses are not

permitted in operand expressions for the grouping of operands.

The range of values that may result from an operand expression depends on

the type of operation. The Assembler evaluates expressions as follows:t

Pseudo Operations modulo 215—1

10
Memory Reference modulo 27 -1
Input/Output 26 - 1 (maximum value)

Expression Terms

The terms of an expression are the numbers and the symbols appearing in it.
Decimal and octal integers, and symbols defined as being absolute in an EQU
pseudo operation are absolute terms. The asterisk and all symbols that are
defined in the program are relocatable or absolute depending on the type of
assembly. Symbols that are defined as external may appear only as single

term expressions.

Within a relocatable program, terms may be program relocatable, base page
relocatable, or common relocatable. A symbol that names an area of common
storage is a common relocatable term. A symbol that is allocated to the

base page is a base page relocatable term. A symbol that is defined in any

TThe evaluation of expressions by the Assembler is compatible with the ad-
dressing capability of the hardware instructions (e.g., up to 32K words
through Indirect Addressing). The user must take care not to create ad-
dresses which exceed the memory size of the particular configuration.

INSTRUCTION FORMAT

other statement is a program relocatable term. Within one expression all
relocatable terms must be base page relocatable, program relocatable, or

common relocatable; the three types may not be mixed.

Absolute and Relocatable Expressions

An expression is absolute if its value is unaffected by program relocation.
An expression is relocatable if its value changes according to the location
into which the program is loaded. In an absolute program, all expressions

are absolute. 1In a relocatable program, an expression may be base page re-
locatable, program relocatable, common relocatable, or absolute (if less

than 1008) depending on the definition of the terms composing it.
ABSOLUTE EXPRESSIONS

An absolute expression may be any arithmetic combination of absolute terms.
It may also contain relocatable terms alone, or in combination with abso-
lute terms. If relocatable terms do appear, there must be an even number of
them; they must be of the same type; and they must be paired by sign (a
negative term for each positive term). The paired terms do not have to be
contiguous in the expression. The pairing of terms by type cancels the ef-

fect of relocation; the value represented by the pair remains constant.

An absolute expression reduces to a single absolute value. The value of an
absolute multiterm expression may be negative only for ABS pseudo operations.
A single numeric term also may be negative in an OCT, DEX, or DEC pseudo in-
struction. In a relocatable program the value of an absolute expression
must be less than lOO8 for instructions that reference memory locations

(Memory Reference, DEF, Arithmetic subroutine calls).

INSTRUCTION FORMAT

Examples:

If Pl and P, are program relocatable terms; B. and B,, base page relocatable;

2 1 2
C1 and C2, common relocatable; and A, an absolute term; then the following
are absolute terms:
A—Cl+C2 A-Pl+P2 Cl—C2+A
A+ A Pl—P2 Bl--B2
* - By Bj-B, -2 =C, +C, + A
By - * - P+ P -A -P, +P,

The asterisk is base page relocatable or program relocatable depending on

the location of the instruction.

RELOCATABLE EXPRESSIONS

A relocatable expression is one whose value is changed by the loader. All

relocatable expressions must have a positive value.

A relocatable expression may contain any odd number of relocatable terms,
alone, or in combination with absolute terms. All relocatable terms must
be of the same type. Terms must be paired by sign with the odd term being

positive.

A relocatable expression reduces to a single positive relocatable term,
adjusted by the values represented by the absolute terms and paired re-

locatable terms associated with it.

Examples:
If Pl' P2, and P3 are program relocatable terms; Bl’ B2, and B3 base page
relocatable; C., C. and C_,, common relocatable; and A, an absolute term;

1 2 3
then the following are relocatable terms:

INSTRUCTION FORMAT

Pl—A Cl-A B.+A

P =P +P, €, =C,+C, C *A

*4+A *—P1+P2 *—-n

A+Bl A+Cl —A—P1+P2+P3

B,-B,+B,-A € =C,*Cy-A A+*

TRy BByt AR
Literals

Actual literal values may be specified as operands in relocatable programs
to be assembled by the Extended Assembler. The Extended Assembler converts
the literal to its binary value, assigns an address to it, and substitutes
this address as the operand. Locations assigned to literals are those im-

mediately following the last location used by the program.

A literal is specified by using an equal sign and a one-character identi-
fier defining the type of literal. The actual literal value is specified

immediately following this identifier; no spaces may intervene.

The identifiers are:

=D a decimal integer, in the range -32767 to 32767, including

zero.t

=F a floating point number; any positive or negative real number

in the range 10_38 to 1038, including zero.t

=B an octal integer, one to six digits, blb2b3b4b5b6,

where b, may be 0 or 1, and b2-b may be 0 to 7.%

1
=A two ASCII characters.t

7

=L an expression which, when evaluated, will result in an absolute

value. All symbols appearing in the expression must be pre-

viously defined.

T See CONSTANT DEFINITION, Section 4.

INSTRUCTION FORMAT

If the same literal is used in more than one instruction, only one value is
generated, and all instructions using this literal refer to the same loca-

tion.

Literals may be specified only in the following memory reference instruc-

tions and pseudo instructions:

ADA ADB AND MPY

LDA LDB XOR DIV may use =D, =B, =A, =L

CPA CPB IOR

DLD FAD

FMP FSB may use =F

FDV

Examples:

LDA =D798¢% A-Register is loaded with the binary equivalent of
798 .

IOR =B777 Inclusive OR is performed with contents of A-Register

77_.

and 7 3

Lba =ANO A-Register is loaded with binary representation of

ASCII characters NO.

LDB =LZETZ-ZO0OM+68 B-Register is loaded with the value resulting
from the absolute expression.

FMP =F39.75 Contents of A- and B-Registers multiplied by float-

ing point constant 39.75.

Indirect Addressing

The HP computers provide an indirect addressing capability for memory ref-
erence instructions. The operand portion of an indirect instruction con-

tains an address of another location rather than an actual operand. The

2-14

INSTRUCTION FORMAT

secondary location may be the operand or it may be indirect also and give
yet another location, and so forth. The chaining ceases when a location
is encountered that does not contain an indirect address. Indirect address-
ing provides a simplified method of address modifications as well as allow-

ing access to any location in core.

The Assembler allows specification of indirect addressing by appending a
comma and the letter I to any memory reference operand other than one re-
ferring to an external symbol. The actual operand of the instruction may
be given in a DEF pseudo operation; this pseudo operation may also be used

to indicate further levels of indirect addressing.

Examples:
AB LIDIA] [SIAM] I EIAICH| |TIIME] JTHE] [1|sjz| [1s| [EIX[EICIU[TIED]
AlC A[DIA| [SIAM]]I THE| [E[FFIEICITIIVIE| OIPIEIRJANID| |OF| |AB| |ANID
AlD ISZ| |SAM AC| |CHJANGIE| JAICICIORIDIINGIL|Y|.

A relocatable assembly language program, however, may be designed without
concern for the pages in which it will be stored; indirect addressing is
not required in the source language. When the program is being loaded, the
loader provides indirect addressing whenever it detects an operand which
does not fall in the current page or the base page. The loader substitutes
a reference to the base page and then stores an indirect address in this
referenced location. References to the same operand from other pages will

be linked through the same location in the base page.

2-15

INSTRUCTION FORMAT

Base Page Addressing

The computer provides a capability which allows the memory reference in-
structions to address either the current page or the base page. The Assem-
bler or the loader adjusts all instructions in which the operands refer to
the base page; specific notation defining an operand as a base page reference

is not required in the source program.

Clear Flag Indicator

The majority of the input/output instructions can alter the status of the
input/output interrupt flag after execution or after the particular test is
performed. In source language, this function is selected by appending a

comma and a letter C to the Operand field.

Examples:
S|TIC| |I0[7], CILIEEJAR] |FILIA|G| |I|0/7| IAIFITIEIR] |CIOIN|TIROL
BIT) |I|S| [SEIT
0[TB| {10|5(,/C CILIEAR] [FILIAIG] [T|0/5] |AFITEER MOVE

COMMENTS FIELD

The Comments field allows the user to transcribe notes on the program that
will be listed with source language coding on the output produced by the
Assembler. The field follows the Operand field and is separated from it by
at least one space. The end-of-statement mark, @ , or the 80th char-
acter in the entire statement terminates the field. 1If the listing is to be

produced on the 2752A Teleprinter, the total statement length, excluding

2-16

INSTRUCTION FORMAT

the end-of-statement mark, should not exceed 52 characters, the width of
the source language portion of the listing. Statements consisting solely
of comments may contain up to 68 characters including the asterisk in the
first position. On the list output, statements consisting entirely of com-

ments begin in position 5 rather than 21 as with other source statements.

If there is no operand present, the Comments field should be omitted in the

NAM and END pseudo operations and in the input/output statements, SOC, SOS,
and HLT. If a comment is used, the Assembler attempts to interpret it as

an operand.

SECTION il
MACHINE INSTRUCTIONS

The HP Assenbler language machine instruction codes take the form of three-
letter mnemonics. Each source statement corresponds to a machine operation

in the object program produced by the Assembler.

Notation used in representing source language instruction is as follows:

label Optional statement label

m Memory location -- an expression

I Indirect addressing indicator

sc Select code -- an expression

C Clear interrupt flag indicator

comments Optional comments

[] Brackets defining a field or portion of a field
that is optional

{1 Brackets indicating that one of the set may be
selected.

lit literal

MEMORY REFERENCE

Memory reference instructions perform arithmetic, logical and jump opera-
tions on the contents of the locations in core and the registers. An in-
struction may directly address the 2048 words of the current and base pages.
If required, indirect addressing may be utilized to refer to all 32,768

words of memory. Expressions in the Operand field are evaluated modulo 210.

If the program is to be assembled in relocatable form, the Operand field
may contain relocatable expressions or absolute expressions which are less
than lOO8 in value. If the program is to be absolute, the operands may be
any expressions consistent with the location of the program. Literals may
not be used in an absolute program. Absolute programs must be complete en-

tities; they may not refer to external subroutines or common storage.

MACHINE INSTRUCTIONS

Jump and Increment-Skip

Jump and Increment-Skip instructions may alter the normal sequence of pro-

gram execution.

|] !
label | JMP | m [,I} | comments

Jump to m. Jump indirect inhibits interrupt until the transfer of control

is complete.

| } |
label | JsB | m [,I] | comments

Jump to subroutine. The address for label+l is placed into the location
represented by m and control transfers to m+l. On completion of the sub-
routine, control may be returned to the normal sequence by performing a

JMP m, I.

label | 1Isz m [,I] | comments

Increment, then skip if zero. ISZ adds 1 to the contents of m. If m then

equals zero, the next instruction in memory is bypassed.

Add, Load and Store

Add, Load, and Store instructions transmit and alter the contents of memory
and of the A- and B-Registers. A literal, indicated by "1lit", may be either

=D, =B, =A, or =I type.

l | |

label | ADA ‘ m [,I] I comments
{1 P
it

Add the contents of m to A.

3-2

MACHINE INSTRUCTIONS

| | |
label | ADB | m [,I] | comments

lit

Add the contents of m to B.

label | LDA | m [,I] | comments
{14t
Load A from m.
|]]
label | LB | m [,I] | comments
Tiie
Load B from m.
] !
label [sTa | m [,I] comments

Store contents of A in m.

| | 1
label | ST | m [,I] | comments

Store contents of B in m.

In each instruction, the contents of the sending location is unchanged

after execution.

Logical Operations

The logical instructions allow bit manipulation and the comparison of two

computer words.

1 1 |
label | AND]{m [.H}I
1it

comments

The logical product of the contents of m and the contents of A are placed

in A.

MACHINE INSTRUCTIONS

! ! !
label | XOR | m [,I] ’ commen ts

{lit }

The modulo-two sum (exclusive "or") of the bits in m and the bits in A is

placed in A.

1 . |
label | IOR [m [,I]] comments

{1it }

The logical sum (inclusive "or") of the bits in m and the bits in A is

placed in A.

label cPA | m [,I]. | comments
it)

Compare the contents of m with the contents of A. If they differ, skip the

next instruction; otherwise, continue.

! ! !
label CPB [m [,T] I comments
{1i¢)

Compare the contents of m with the contents of B. If they differ, skip the

next instruction; otherwise, continue.

REGISTER REFERENCE

The register reference instructions include a shift-rotate group, an alter-
skip group, and NOP (no-operation). With the exception of NOP, they have
the capability of causing several actions to take place during one memory

cycle. Multiple operations within a statement are separated by a comma.

3-4

MACHINE INSTRUCTIONS

Shift-Rotate Group

This group contains 19 basic instructions that can be combined to produce

more than 500 different single cycle operations.

CLE

ALS

BLS

ARS
BRS

BLR

ERA
ERB
ELA
ELB
ALF
BLF
SLA

SLB

Clear E to zero

shift A left one bit, zero to least significant bit. Sign
unaltered

Sshift B left one bit, zero to least significant bit. Sign
unaltered

Shift A right one bit, extend sign; sign unaltered.

Shift B right one bit, extend sign; sign unaltered.

Rotate A left one bit

Rotate B left one bit

Rotate A right one bit

Rotate B right one bit

Shift A left one bit, clear sign, zero to least significant
bit

Shift B left one bit, clear sign, zero to least significant
bit

Rotate E and A right one bit

Rotate and B right one bit
Rotate and A left one bit

Rotate and B left one bit

=T 5 B s B o

Rotate left four bits
Rotate B left four bits
Skip next instruction if least significant bit in A is zero

Skip next instruction if least significant bit in B is zero

These instructions may be combined as follows:

label

rALS \ (ALS)
ARS ARS
RAL RAL
RAR RAR
ALR >| [,cLE] [,sLA] ,< ALR f comments
ALF ALF
ERA ERA
\ ELA)_ |\ ELa)]

3-5

MACHINE INSTRUCTIONS

(BLS\ [/BLSY
BRS BRS
RBL RBL
RBR RBR
label g BLR.> [,CLE] [,SLB} |, { BLR ? comments
BLF BLF
ERB L kERB
| \ELB/ | gre/

CLE, SLA, or SLB appearing alone or in any valid combination with each other

are assumed to be a shift-rotate machine instruction.

The shift-rotate instructions must be given in the order shown. At least
one and up to four are included in one statement. Instructions referring
to the A-register may not be combined in the same statement with those re-

ferring to the B-register.

No-Operation Instruction

When a no-operation is encountered in a program, no action takes place; the
computer goes on to the next instruction. A full memory cycle is used in

executing a no-operation instruction.

| |
label | NOP r, comments

A subroutine to be entered by a JSB instruction should have a NOP as the
first statement. The return address can be stored in the location occupied
by the NOP during execution of the program. A NOP statement causes the

Assembler to generate a word of zeros.

Alter-Skip Group

The alter-skip group contains 19 basic instructions that can be combined to

produce more than 700 different single cycle operations.

CLa Clear the A-Register
CLB Clear the B-Register

MACHINE INSTRUCTIONS

CMA Complement the A-Register

CMB Complement the B-Register

CCA Clear, then complement the A-Register (set to ones)

CCB Clear, then complement the B-Register (set to ones)

CLE Clear the E-Register

CME Complement the E-Register

CCE Clear, then complement the E-Register

SEZ Skip next instruction if E is zero

SSA Skip if sign of A is positive (0)

SSB Skip if sign of B is positive (O)

INA Increment A by one

INB Increment B by one

SZA Skip if contents of A equals zero

SZB Skip if contents of B equals zero

SLA Skip if least significant bit of A is zero

SLB Skip if least significant bit of B is zero

RSS Reverse the sense of the skip instructions. If no skip
instructions precede in the statement, skip the next in-
struction

These instructions may be combined as follows:

(CLA | CLE |
label CMA [,SEZ] ,4 CME [,ssal [,sLa] [,INA] [,SZA] [,RSS] comments
cca CCE
- r b
CLB W CLE
label CMB [,SEZ] ; § CME {,ssB] [,siB] [,INB] [,sZB] [,RSS] comments
CCB CCE
L . L .

The alter-skip instructions must be given in the order shown. At least one
and up to eight are included in one statement. Instructions referring to
the A-register may not be combined in the same statement with those refer-
ring to the B-register. When two or more skip functions are combined in a
single operation, a skip occurs if any one of the conditions exists. If a
word with RSS also includes both SSA and SLA (or SSB and SLB), a skip occurs

only when sign and least significant bit are both set (1).

3-7

MACHINE INSTRUCTIONS

INPUT/OUTPUT, OVERFLOW, AND HALT

The input/output instructions allow the user to transfer data to and from
an external device via a buffer, to enable or disable external interrupt,
or to check the status of I/0 devices and operations. A subset of these in-

structions permits checking for an arithmetic overflow condition.

Input/output instructions require the designation of a select code, sc,
which indicates one of 64 input/output channels or functions. Each channel
consists of a connect/disconnect control bit, a flag bit, and a buffer of
up to 16 bits. The setting of the control bit indicates that a device as-
sociated with the channel is operable. The flag bit is set automatically
when transmission between the device and the buffer is completed. Instruc-
tions are also available to test or clear the flag bit for the particular
channel. If the interrupt system is enabled, setting of the flag causes
program interrupt to occur; control transfers to the interrupt location

related to the channel.

Expressions used to represent select codes (channel numbers) must have a

value of less than 26. The value specifieg the device or operation refer-
enced. Instructions which transfer data between the A or B register and a
buffer, access the Switch register when sc = 1. The character C appended
to such an instruction clears the overflow bit after the transfer from the

switch register is complete.

Input/Qutput

Prior to any input/output data transmission, the control bit is set. The
instruction which enables the device may also transfer data between the de-

vice and the buffer.

| | l
label i st¢ | sc [,C] comments

Set I/O control bit for channel specified by sc. STC transfers or enables

transfer of an element of data from an input device to the buffer or to an

MACHINE INSTRUCTIONS

output device from the buffer. The exact function of the STC depends on the
device; for the 2752A Teleprinter, an STC enables transfer or a series of
bits. If sc = 1, this statement is treated as NOP. The C option clears the
flag bit for the channel.

!] |
label | cuc | sc [,C] | comments

Clear I/O control bit for channel specified by sc. When the control bit is
cleared, interrupt on the channel is disabled, aléhough the flag may still

be set by the device. If sc = 0, control bits for all channels are cleared
to zero; all devices are disconnected. If sc =1, this statement is treat-

ed as NOP.

| | |
label | LIA | sc [,C] | comments

Load into A the contents of the I/0O buffer indicated by sc.

| 1 !
label LIB sc [,C] | comments

Load into B the contents of the I/O buffer indicated by sc.

| | |
label | MIA | sc [,C1 | comments

Merge (inclusive "or") the contents of the I/0O buffer indicated by sc into A.

|] !
label | MIB | sc [,c] | comments

Merge (inclusive "or") the contents of the I/0O buffer indicated by sc into B.

|] |
label ota | sc [,C] | comments

Output the contents of A to the I/O buffer indicated by sc.

3-9

MACHINE INSTRUCTIONS

| 1 |
label | OTB | sc[,C] | comments

Output the contents of B to the I/O buffer indicated by sc.

] | !
label | sTF | sc comments

Sets the flag bit of the channel indicated by sc. If sc = 0, STF enables

the interrupt system. A sc code of 1 causes the overflow bit to be set.

! | !
label | CLF I sc [comments

Clear the flag bit to zero for the channel indicated by sc. If sc = 0,
CLF disables the interrupt system. If sc = 1, the overflow bit is cleared

to zero.

| i]
label | SFC | sc 1 comments

Skip the next instruction if the flag bit for channel sc is clear. If

sc = 1, the overflow bit is tested.

| | |
label SFS T7 sc ’ comments

Skip the next instruction if the flag bit for channel sc is set. If

sc = 1, the overflow is tested.

Overflow

In addition to the use of a select code of 1, the overflow bit may be ac-

cessed by the following instructions:

! l
label I CLO I comments

Clear the overflow bit.

3-10

MACHINE INSTRUCTIONS

! !
label | STO comments

Set overflow bit.

| | |
label SoC ’ [C] rﬁ comments

Skip the next instruction if the overflow bit is clear. The C option clears

the bit after the test is performed.

! | !
label | SOS [[c] | comments

Skip the next instruction if the overflow bit is set. The C option clears
the bit after the test is performed.

The C option is identified by the sequence "space C space" following either

"SOC" or "SOS". Anything else is treated as a comment.

I
[o]]

p—
—+

| | |
label HLT | {[sc [,C]]}l comments

[c]

Halt the computer. The machine instruction word is displayed in the T-
Register. TIf the C option is used, the flag bit associated with channel sc

is cleared.

If neither the select code nor the C option is used, the comments portion

must be omitted.

EXTENDED ARITHMETIC UNIT

Ten instructions may be used with the EAU version of the Assembler or Ex-
tended Assembler to increase the computer's overall efficiency. The computer
must include the Extended Arithmetic Unit option to obtain the resulting in-

crease in available core storage and decrease in program run time.

3-11

MACHINE INSTRUCTIONS

! | l
label | MPY l {m[,I]} | comments

lit

The MPY instruction multiplies the contents of the A-Register by the con-
tents of m. The product is stored in registers B and A. B contains the
sign of the product and the 15 most significant bits; A contains the least

significant bits.

|] |
label | DIV | b1y | comments

1lit

The DIV instruction divides the contents of registers B and A by the con-
tents of m. The quotient is stored in A and the remainder in B. Initially
B contains the sign and the 15 most significant bits of the dividend; A con-

tains the least significant bits.

) | !
label | DLD | {m[,I]} | comments

lit

The DLD instruction loads the contents of locations m and m + 1 into regis-

ters A and B, respectively.

-] |
label | DST | m[,Il | comments

The DST instruction stores the contents of registers A and B in locations

m and m + 1, respectively.

MPY, DIV, DLD, DST results in two machine words: a word for the instruction

code and one for the operand.

The above four instructions are available without the Extended Arithmetic
Unit option as software subroutines.t As a part of the Extended Arith-
metic option, they require less core storage and can be executed in less

time.

+ See ARITHMETIC SUBROUTINE CALLS, Section 4.

MACHINE INSTRUCTIONS

The following seven instructions can be used only on machines with the
Extended Arithmetic Unit. These shift-rotate instructions provide the capa-
bility to shift or rotate the B~ and A-Registers n number of bit positions,

where 1 <n < leé.

! i |
label ASR | n l comments

The ASR instruction arithmetically shifts the B- and A-Registers right n

bits. The sign bit (bit 15 of B) is extended.

| | !
label ASL 1 n | comments

The ASL instruction arithmetically shifts the B~ and A-Register left n bits.
Zeroces are placed in the least significant bits. The sign bit (bit 15 of
B) is unaltered. The overflow bit is set if bit 14 differs from bit 15 be-

fore each shift; otherwise, exit with overflow bit cleared.

! 1. |
label RRR | n | comments

The RRR instruction rotates the B- and A-Registers right n bits.

| i !
label | RRL | n | comments

The RRL instruction rotates the B~ and A-Registers left n bits.

] ! !
label | LSR | n | comments

The LSR instruction logically shifts the B- and A-Registers right n bits.

Zeroes are placed in the most significant bits.

| ! |
label | LSL | n , comments

The LSL instruction logically shifts the B- and A-Registers left n bits.

Place zeroes into the least significant bits.

3-13

MACHINE INSTRUCTIONS

! | |
SWP ! '

Exchange the contents of the A- and B-Registers. The contents of the A-
Register are shifted into the B-Register and the contents of the B-Register

are shifted into the A-Register.

3-14

SECTION IV
PSEUDO INSTRUCTIONS

The pseudo instructions control the Assembler, establish program relocatability,
and define program linkage as well as specify various types of constants, blocks
of memory, and labels used in the program. With the Extended Assembler, pseudo

instructions also control listing output.

ASSEMBLER CONTROL

The Assembler control pseudo instructions establish and alter the contents of
the base page and program location counters, and terminate assembly processing.
Labels may be used but they are ignored by the Assembler. NAM records produced

by the Assemblers are accepted by the DOS, DOS-M and BCS loaders.

4 !]
NAM | [name] | comments

NAM defines the name of a relocatable program. A relocatable program must begin
with a NAM statement.? A relocatable program is assembled assuming a starting
location of zero (i.e., zero relative). The name may be a symbol of one to five
alphanumeric characters the first of which must be alphabetic or a period. The
program name is printed on the list output. The name is optional and if omitted,

the comments must be omitted also.

| il]
| ORG m | comments

The ORG statement defines the origin of an absolute program, or the origin of

subsequent sections of absolute or relocatable programs.

I The Control Statement, the HED instruction, and comments may appear prior to
the NAM or ORG statements. If the Control Statement (ASMB,...) does not
appear on tape preceding the program, it must be entered from the teleprinter.

PSEUDO INSTRUCTIONS

An absolute program must begin with an ORG statement.t The operand m, must
be a decimal or octal integer specifying the initial setting of the program

location counter.

ORG statements may be used elsewhere in the program to define starting ad-
dresses for portions of the object code. For absolute programs the Operand
field, m, may be any expression. For relocatable programs, m, must be a
program relocatable expression; it may not be base page or common relocat-
able or absolute. An expression is evaluated modulo 215. Symbols must be
previously defined. All instructions following an ORG are assembled at con-

secutive addresses starting with the value of the operand.

1 |
" ORR T COMMENT

ORR resets the program location counter to the value existing when an ORG

or ORB instruction was encountered.

Example:
IN[aM! [RISIEIT SIE[T] [PILC] [TIo] [VIAILIVIE] [ofF[[zIERIO[,! [AlSISITIGIN
FII|R|S{T| |AIDA RISIE[T| |AIS| [NAME| |OF]| [PRIOGIR/AM
ADAl [CTIRIL AIS|SUMIE! |PILIC| |AIT| |FII|RISIT +2/2/8/0].
OIRIG| [FIT|RIST[+]29/2/6] |S|AVIE| |PILIC| [VIAILIUE] |OIF| [FIIIR|SIT|+|212/8/0
. AND! |SIE[T| |PILIC| [T|O| [FIIIRIST|+2/912/6].
JMP} [EIVIENH/1 A|SIS|UMIE| IPLIC| |ATT| |FII|RIST|+/3/004
ORR RESEE(T] PLIC| |TIO IFITIRIS|T|+2{2:80!

+ The Control Statement, the HED instruction, and comments may appear prior
to the NAM or ORG statements. If the Control Statement (ASMB,...) does

not appear on tape preceding the program, it must be entered from the
teleprinter.

PSEUDO INSTRUCTIONS

More than one ORG or ORB statement may occur before an ORR is used. If so,
when the ORR is encountered, the program location counter is reset to the

value it contained when the first ORG or ORB of the string occurred.

Example:
NAM|_[RISIEIT] SIE|T} |PILIC| |T|O] ZIEIR
FII|R|S|T| |AIDIA

L|DA] |WY(Z ASISUME| |PILIC] |AIT} FITIRISIT|+|212|5/0
oRRl6| [FIT[R|S[TI+|2|5/0/0] ISIE[T] [PILIC| [TIO] [FII|RIS|T+]25/0/0
LD|B| |EIRIA AIS|SIUMIE| |PILIC| |AIT| [FIT|RIS[T{+|2|7/5/0
O[RIG| [FII|RIS|T|+2[9/0/0{ |SIE[T| |PILIC| |T|O] |FIIRIS|T|+]2]9]0/0
CILIE AIS|SIUMIE| IPILIC| (AT| |FIT|R[S|T[H29]2/0
ORR REISIE[T] [PILIC| [TiO] [F|I|R|S|T|+]2|2/5/0

1 T

If a second ORR appears before an intervening ORG or ORB, the second ORR is

ignored.

ORR cannot be used to reset the location counter for locations in the base
page that are governed by the ORB statement.

| |
l ORB | comments

ORB defines the portion of a relocatable program that must be assigned to the
base page by the Assembler. The Label field (if given) is ignored, and the
statement requires no operand. Aall statements that follow the ORB statement
are assigned contiguous locations in the base page. Assignment to the base

page terminates when the Assembler detects an ORG, ORR, or END statement.

PSEUDO INSTRUCTIONS

When more than one ORB is used in a program, each ORB causes the Assembler
to resume assigning base page locations at the address following the last

assigned base page location.

An ORB statement in an absolute program has no significance and is flagged

as an error.

ExampTle:
INAM TPIRI0lG AlSISITGIN] [ZEJR[O] JAS] REILIATITVIE TARTmWG
LioICIATIZ|oN [FloiR| [PRlolGIRIAM| [PIRIOIG
OlRB ASISITIGIN| [AlL OlL|L|oWI NG| [SITIATIEMENTIS

ORRR CIOINTIIINUE| MATIN! PIRIOGRAM
ORRB RIEISUMIE| |A|SIS[IIGNMEINT| AT INEXT

. AVAITILIABLIE| |LO.CAT|I|ON| [IIN| BASIE| [PAGIE
ORIR CONITII[NUE] MAILIN PIRIOGRAM .

The IFN and IFZ pseudo instructions cause the inclusion of instructions in a
program provided that either an "N" or "2Z", respectively, is specified as a
parameter for the ASMB control statement.t The IFN or IFZ instruction pre-
cedes the set of statements that are to be included. The pseudo instruction
XIF serves as a terminator. If XIF is omitted, END acts as a terminator to
both the set of statements and the assembly. IFN and IFZ may be used only
when the source program is translated by the Extended Assembler which is pro-

vided for 8K or larger machines.

TSee CONTROL STATEMENT, Section 5.

PSEUDO INSTRUCTIONS

IFN comments

XIF

All source language statements appearing between the IFN and the XIF pseudo
instructions are included in the program if the character "N" is specified

on the ASMB control statement.

All source language statements appearing between the IFZ and the XIF pseudo
instructions are included in the program if the character "2" is specified

on the ASMB control statement.

IFZz comments

When the particular letter is not included on the control statement, the
related set of statements appears on the Assembler output listing but is

not assembled.

Any number of IFN-XIF and IFZ-XIF sets may appear in a program, however,
they may not overlap. An IFZ or IFN intervening between an IFZ or IFN and
the XIF terminator results in a diagnostic being issued during compilation;

the second pseudo instruction is ignored.

Both IFN-XIF and IFZ-XIF pseudo instructions may be used in the program;
however, only one type will be selected in a single assembly. Therefore, if
both characters "N" and "2" appear in the control statement, the character
which is listed last will determine the set of coding that is to be included

in the program.

PSEUDO INSTRUCTIONS

Example:

Lobel Operation Operand Comments

x

’%DN

mio
Nnio

P |o[RIOIN[>

[E4dEA)
wm

X nO|[ric O] [
n|Pp|<{>|o

p
=
™

[@) k=l P-4[7:]la"]
OH|O|N|r
[2)

o

~AMi>ir|oPr|>|=

Iixx[Olr][O |
ool ==lo[m] .

m
=z
o

Program TRAVL will perform computations involving either or neither CAR or
PLANE considerations depending on the presence or absence of Z or N parame-

ters in the Control Statement.

4-6

PSEUDO INSTRUCTIONS

Example:

1 e 3 Operotien 0 DFI“;‘ 2 23 0 35 Q0 Conmeon 43 0
IN[almM| MA[GIE
JisiB| HOURR
MPIY{ [Tl1[MEN
1F|Z
J|SIB| 10V|IT|TM
MP|Y| |TII|ME2

TIT|ME] [DIE[C] [4l0

TIIIME|2| |BIS[S] |1
EINID!

Program WAGES computes a weekly wage value. Overtime consideration will be

included in the program if "Z" is included in the parameters of the Control

Statement.

The REP pseudo instruction, available in the Extended Assembler only, causes

the repetition of the statement immediately following it a specified number

of times.

1 ! 4
label ! REP l n] comments

The statement following the REP in the source program is repeated n times.
The n may be any absolute expression. Comment lines (indicated by an as-
terisk in character position 1) are not repeated by REP. If a comment fol-

lows a REP instruction, the comment is ignored and the instruction following

the comment is repeated.

A label specified in the REP pseudo instruction is assigned to the first
repetition of the statement. A label cannot be part of the instruction to

be repeated; it would result in a doubly defined symbol error.

4-7

PSEUDO INSTRUCTIONS

Example:
CLA

TRIPL REP 3
ADA DATA

The above source code would generate the following:

CLA Clear the A-Register; the content of DATA is
TRIPL ADA DATA tripled and stored in the A-Register.
ADA DATA
ADA DATA
Example:
FILL REP 100B
NOP

The example above loads 100_ memory locations with the NOP instruction.

8
first location is labeled FILL.

Example:

REP 2
MPY DATA

The above source code would generate the following:

MPY DATA
MPY DATA

i | l
| END [[m] | comments

This statement terminates the program; it marks the physical end of the

The

source language statements. The Operand field, m, may contain a name appear-

ing as a statement label in the current program or it may be blank. If a

name is entered, it identifies the location to which the loader transfers

control after a relocatable program is loaded. A NOP should be stored at

that location; the loader transfers control via a JSB.

PSEUDO INSTRUCTIONS

If the Operand field is blank, the Comments field must be blank also,
otherwise, the Assembler attempts to interpret the first five characters

of the comments as the transfer address symbol.

The Label field of the END statement is ignored.

OBJECT PROGRAM LINKAGE

Linking pseudo instructions provides a means for communication between a
main program and its subroutines or among several subprograms that are to be

run as a single program. These instructions may be used only in a relocat-

able program.

The Label field of this class is ignored in all cases. The Operand field is
usually divided into many subfields, separated by commas. The first space

not preceded by a comma or a left parenthesis terminates the entire field.

|] |
COM | name, [sizel)] [,name2 [sizez)],...,namen[(sizen)]]Tvcomments

COM reserves a block of storage locations that may be used in common by sev-
eral subprograms. Each name identifies a segment of the block for the sub-
program in which the COM statement appears. The sizes are the number of
words allotted to the related segments. The size is specified as an octal

or decimal integer. If the size is omitted, it is assumed to be one.

Any number of COM statements may appear in a subprogram. Storage locations
are assigned contiguously; the length of the block is equal to the sum of

the lengths of all segments named in all COM statements in the subprogram.

To refer to the common block, other subprograms must also include a COM
statement. The segment names and sizes may be the same or they may differ.
Regardless of the names and sizes specified in the separate subprograms, there
is only one common block for the combined set. It has the same relative or-
igin; the content of the nth word of common storage is the same for all

subprograms.

PSEUDO INSTRUCTIONS

&0
[
o0
R
[)
+
—t

LiD(A] |AA|DI+1 PII|CIKI [UIP| [SIEICIONID| WORDD
AAID[+/
Organization of common block:
PROG1 PROG2 Common
name name Block
ADDR1 AAA (location 1)
(location 2)
AAB (location 3)
(location 4)
AAC (location 5)
ADDR2 AAD (location 6)

(location 7)
(location 8)
(location 9)
(location 10)
(location 11)
(location 12)
(location 13)
(location 14)
(location 15)
ADDR3 (location 16)
(location 17)
(location 18)
(location 19)
(location 20)
(location 21)
(location 22)
(location 23)
(location 24)
(location 25)

4-10

PSEUDO INSTRUCTIONS

The LDA instructions in the two subprograms each refer to the same location

in common storage, location 7.

The segment names that appear in the COM statements can be used in the
Operand fields of DEF, ABS, EQU, or any memory reference statement; they may

not be used as labels elsewhere in the program.

The loader establishes the origin of the common block; the origin cannot be
set by the ORG or ORB pseudo instruction. All references to the common area

are relocatable.

Two or more subprograms may declare common blocks that differ in size. The
subprogram that defines the largest block must be the first submitted for

loading.

| | 1
| ENT l name

1 [,namez,...,namen] comments

ENT defines entry points to the program or subprogram. Each name is a symbol
that is assigned as a label for some machine operation in the program. Entry
points allow another subprogram to refer to this subprogram. All entry points

must be defined in the program.

Symbols appearing in an ENT statement may not also appear in EXT or COM state-

ments in the same subprogram.

| | |
’ EXT | name

1 [,namez,...,namen]] comments

This instruction designates labels in other subprograms that are referenced

in this subprogram. The symbols must be defined as entry points by the other

subprograms.

The symbols defined in the EXT statement may appear in memory reference state-

ments, the EQU or DEF pseudo instructions. An external symbol must appear

4-11

PSEUDO INSTRUCTIONS

alone; it may not be in a multiple term expression or be specified as indirect.
References to external locations are processed by the BCS loader as indirect

addresses linked through the base page.

Symbols appearing in EXT statements may not also appear in ENT or COM state-

ments in the same subprogram. The label field is ignored.

Example:

PIRIOGIA INIOIP [| | | L [HEER | |

[L[DIA] [slalMiD sIAMD| [aIN[D] [s[aN[D] JAIRIE] |REEIFIEIRIEINICIEID] [T|N
. P|R|OGA[+} |BU[T| |AIRIE| JAICIT[UAILIL]Y
LIO|CA[TIIION(S| |IIN| |PIRIO|G|B|.

JMP| |SIANID
EIX|T| [S|AM:D|:|SAIND
ENT! {PR[ojcla
EIND

PIR|0|GB| |NIO[P

4
o

PSEUDO INSTRUCTIONS

ADDRESS AND SYMBOL DEFINITION

The pseudo operations in this group assign a value or a word location to a

symbol which is used as an operand elsewhere in the program.

I
label l DEF i m([,I] 4] comments

The address definition statement generates one word of memory as a 15-bit
address which may be used as the object of an indirect address found elsewhere
in the source program. The symbol appearing in the label is that which is

referenced; it appears in the Operand field of a Memory Reference instruction.

The operand field of the DEF statement may be any positive expréssion in an
absolute program; in a relocatable program it may be a relocatable expression
or an absolute expression with a value of less than 1008. Symbols that do
appear in the Operand field may appear as operands of EXT or COM statements,

in the same subprogram and as entry points in other subprograms.

The expression in the Operand field may itself be indirect and make reference

to another DEF statement elsewhere in the source program.

Example:

NAM] TPIRIOIGIN] | T T T IZIEIRIO[-IREE[LIAITITIVIE] ISITIARR[T] JolF] [PIRIOIGIRIAMI.

EIXIT] [S[TINIE],[S|QIR|T]

clom| IsicMal(]2loD)],|SlcM[BI([5]0)

Jis|B| ISIIINIE EIX[ElclulTlE] [SITIN[E] [ROJU[TIIINE

L X|CIMIAT, I PIiclk| [ulPl |ClojMMoON| WoRID| [1|NIDZIRIEICITIL]Y
X[CIMA| | [DIEIF] [s[cimMiA SICMA| [IIS| Al [1]5(-|BiI[T| [AID|DIRIE[S|S

Jislsl Ixislal: |1 GIE[T] [S|QuIARIE] [RlojoiT] [ulSTINl6| ITiwol-ILIEIVIEIL
X|SIQ] | | IDEIF] X[SklRrl, i1 IINDIIRIEICT] |AIDIDIRIEISISIT|NIG
XISIQIR| 1 |plElF] [SlQIRIT SIQRIT! TS| [l t|5/-IBlT|T| [AID|DIRIEIS|S

ND| [PIRIOJGIN]

PSEUDO INSTRUCTIONS

The DEF statement provides the necessary flexibility to perform address arith-

metic in programs which are to be assembled in relocatable form. Relocatable

programs should not modify the operand of a memory reference instruction.

In the example below, if TBL and LDTBL are in different pages, the Loader

processes TBL as an indirect address linked through the base page. The ISZ

erroneously increments the loader-provided reference to the base page rather

than the wvalue of TBL.

Example:

Comments
40 45 50

Assuming the loader might assign absolute locations comparable to the follow-

ing octal values:

Page

Loc

(0)

(1)

(1)

(2)

(700)

{200)

(300)

(0)

Opcode

DEF

LDA

I1S2

4-14

Reference

400

(0) 700(I)

(1) 200

(TBL)

PSEUDO INSTRUCTIONS

It can be seen that the ISZ instruction would increment the quantity 700

rather than the address of the table (40008).

The following assures correct address modification during program execution.

Example:
I|TIBIL| | IDEIF| |TIBIL
L|DT|B|L| |LIDIA[|I|T{BIL|,|I

This sequence might be stored by the loader as:

Page Loc Ogcode Reference
(1) (200) DEF 4000
(1) (201) LDA 200(1)
(1) (300) Isz (1) (200)
(2) (0) (TBL)

4-15

PSEUDO INSTRUCTIONS

The value of 4000 is incremented; each execution of LDA will access sucessive

locations in the table.

! | l
label l ABS l m l comments

ABS defines a 16-bit absolute value to be stored at the location represented
by the label. The Operand field, m, may be any absolute expression; a single

symbol must be defined as absolute elsewhere in the program.

Example:
AlB EQU [3[5 Als[s[1[6IN[s] [TIHIE] VIAILJVE] [OIF T3[5

Tio| [THIE[|s|YmIBlolL| [AlB

3/5 Bis| [-|AB M35 [CloINITIALINS! [-[3]5].

P|3|5 Algs| [AB Pl3/s| |ClON[TIAII[NIS| [3[5!.

P[7l0 AB/s| [AB[+/AB P7lol [CloNITIAIINIS] [7]0].

P{3/0 ABS %5-5 P30 |CIOINITIAIIINIS| [3/0].

|]]

label l EQU | m ‘ comments

The EQU pseudo operation assigns to a symbol a value other than the one nor-
mally assigned by the program location counter. The symbol in the Label field
is assigned the value represented by the Operand field. The Operand field
may contain any expression. The value of the operand may be common, base page
or program relocatable as well as absolute, but it may not be negative.
Symbols appearing in the operand must be previously defined in the source

program.
The EQU instruction may be used to symbolically equate two locations in mem-

ory, or it may be used to give a value to a symbol. The EQU statement does

not result in a machine instruction.

4-16

PSEUDO INSTRUCTIONS

Examples:

Comments

=
o
—
8 -
<t
(&)
o
—J
[72]
f—
x
T
]
Mw o
il -~ — o]
= w4+ [=]
<t M ZMnin w
[T 20| > -
5 = [TH gL [D [=)
”mA. i - [=1[=1=i(=]1K =] -
o |Z [=) <L L) <t
- [+ 4
_ >
i o e =
N w
- J J

50

BOTH

THIE

THHIE| |S[YMBIOLIS| [J|F|OUR| |AND| [V;3/+}4

IIDENT|IFIY, [THE| SAME| LIOICATI|ON.

AND| OPERIAT|IION| |I|S| PEERIFIORME|D| ON

Examples:

<
. o =Z|»n
2 << VY] O=C
e 3 —
m <t | [+ =
<t W Zlwn <t Y
b [e] [=1[TY] Ol - (=
2 x|=|w oo~ (%2
z - | ol o —
! w ~ b I ~—| = [T)
N] <€ >~ |w
[2e] o] IT|—|= RN [+
E <t (L] ~lna —]
— o) ™~ [« [A=YE) m
o (™ <[
[=) o wlxia < |ar [T
[I Ol <<] o -
3 o =] [+ -0 [« 4
= [+ wl - |~ W
[7-)] [g = ola [u —[
=Y m =Z) ow(o Z|»n
-~ wnic wiolD = L | —
8 : =Y =0 >|»n[Z -]
< o =Zl=Z = [2I(=] Zw
oln [« [=) O = ol
[< [E) O [T [&)
(1] | + |- WO |<x <t
a = n[<< N[O <]t 21O [72)
— [V] al=ala T =dl=) [=)[=)
[T =M < =S| 00|W [T -~ <{||—
w <<t oOo[<t|a i [[~ [=)1F-
o = |- O[O [=) =] =
K
=Y
~ [Pe) ~—
. — + +
il <t < m
S =] -]
o o o [ea))
| s <C <T <€ {¥1]
%) [— — [IR m
s (= = > < = =1 <
mA. =1 [«]IK [=1I < - l=]l=11 a
o (2 [[7Y] — = U [l —
o [<a)
i]
3 m
=3
- — <[

4-17

PSEUDO INSTRUCTIONS

CONSTANT DEFINITION

The pseudo instructions in this class enter a string of one or more constant
values into consecutive words of the object program. The statements may be
named by labels so that other program statements can refer to the fields

generated by them.

! | !
label l ASC l n, <2n characters>

comments

ASC generates a string of 2n alphanumeric characters in ASCII code into n
consecutive words.T One character is right justified in each eight bits;
the most significant bit is sero. n may be any expression resulting in an
unsigned decimal value in the range 1 through 28. Symbols used in an expres-
sion must be previously defined. Anything in the Operand field following 2n
characters is treated as comments. If less than 2n characters are detected
before the end-of-statement mark, the remaining characters are assumed to be
and are stored as such.

spaces, The label represents the address of the first

two characters.

Example:

Commenty

-
—)

3

0

>
(711
()

(<)

>

@
Oz
o

m

causes the following:
ALPHABETIC
14 8 7. 6 0
A // B
C

E // A

EQUIVALENT IN OCTAL NOTATION

TTYP

O

g

15 14 8 7 6 0
Trvel/f 1 o a4 U/ o 2
4+ 0 3 1 o 4

A1 o0 5 A O 4 0

+ To enter the code for the ASCII symbols which perform some action (e.g.,

CR and LF), the OCT pseudo instruction must be used.

4-18

PSEUDO INSTRUCTIONS

| | !

label ‘ DEC ‘ a [(.d,,...,d4] comments
1 2 n

DEC records a string of decimal constants into consecutive words. The con-
stants may be either integer or real (floating point), and positive or negative.
If no sign is specified, positive is assumed. The decimal number is converted
to its binary equivalent by the Assembler. The label, if given, serves as

the address of the first word occupied by the constant.

15 , o
A decimal integer must be in the range of 0 to 2 ~1l; it may assume positive,
negative, or zero values. It is converted into one binary word and appears
as follows:
15 14 o}
sisN—>{s| number
Example:
LNT DE/C] |5l0l,[*3|2/8],/-13]0/0 [
i
!
BE
causes the following (octal representation)
15 14 o}
INT (O 0] 0 0 6 2
o] o] 0 5 1 o]
1 7 7 3 2 4

A floating point number has two components, a fraction and an exponent. The
exponent specifies the power of 10 by which the fraction is multiplied. The
fraction is a signed or unsigned number which may be written with or without
a decimal point. The exponent is indicated by the letter E and follows a
signed or unsigned decimal integer. The floating point number may have any

of the following formats:

+n.n +n. i—n.nEje i—.nEi—e i—n.Ei—e i—nEi-e

4-19

PSEUDO INSTRUCTIONS

The number is converted to binary, normalized (leading bits differ), and stored
in two computer words. If either the fraction or the exponent is negative, that

part is stored in two's complement form.

15 14 0
Word 1 [s fraction (most significant bits)]|
|
t‘ binary point
sign of fraction
15 8 7 10
Word 2 | fraction f exponent s]

sign of exponent

The floating point number is made up of a 7-bit exponent with sign and a 23-bit

. . . . -38
fraction with sign. The number must be in the approximate range of 10 and zero.

Examples:
I DIE[C] [.14slEn] T [[[[| REREREN RERNI
T plEic| |45, [0jole/-]1 \ NEREARRENEERD !
D[] |45/0'0E|-]3! | | R L] %
ol Jal.s| [T 111 11 REERERREREE e

are all eguivalent to

.45xlOl

and are stored in normalized form as:

15 14 0
[oJT1 001000000000 00

15 8 7 10
Poooooo0oo0Joooo0o01 19

PSEUDO INSTRUCTIONS

are stored as:

[1jJo100 11100

0010 10|

[bot111011|00

000 0 0o

loj[1to10001 11

10101 1]

1000010111

11100][1]

label ’ DEX l a l,dy ...

;, d] . comments
n

DEX, for the Extended Assembler, records a string of extended precision dec-

imal constants into consecutive words within a program. Each such extended

precision constant occupies three words as shown below:

Word 1 S,| Mantissa 3
15 14 0
Word 2 \
7
15 0
Word 3 > Exponent Se
15 81 1 0

PSEUDO INSTRUCTIONS

"

Legend: Sm Sign of the mantissa (fraction)

n
it

Sign of the Exponent

NOTE: A value is entered only if normalizing of the mantissa is
needed.

An extended precision floating point number is made up of a 39-bit mantissa
(fraction) and sign and a 7-bit exponent and sign. The exponent and sign

will be zero if the mantissa does not have to be normalized.

This is the only form used for DEX. All values, whether they be floating
point, integer, fraction, or integer and fraction, will be stored in three
words as just described. This storage format is basically an extension of

that used for DEC, as previously described:

Examples:
DEX 12,-.45
are stored as:
WORD 1 WORD 2 WORD 3
0110000000000000 0000000000000000 0000000000001000
WORD 1 WORD 2 WORD 3
1000110011001100 1100110011001100 1001101111111111
|] |
label l OCT l o, [,0.see., 0] comments
1 2 n

OCT stores one or more octal constants in consecutive words of the object
program. Each constant consists of one to six octal digits (0 to 177777).

If no sign is given, the sign is assumed to be positive. If the sign is
negative, the two's complement of the binary equivalent is stored. The
constants are separated by commas; the last constant is terminated by a space.
If less than six digits are indicated for a constant, the data is right

justified in the word. A label, if used, acts as the address of the first

4-22

PSEUDO INSTRUCTIONS

constant in the string. The letter B must not be used after the constant
in the Operand field; it is significant only when defining an octal term in

an instruction other than OCT.

Examples:
olclt] [+i@
ocT| |-2 B
N[uM olct! [17]7], 2]@lalals], |-I3]6
ocit| [s|1],l7[7ini7ir), - 11], 11lgl]gs
olct| |1id7lelal2l, 177|877 |
olcT| [197l6 ILILEG[AL :] [CIONTIAITN/S
oct| |-lzlrirlelz DHEHLER
olc/T| 177B ILLEEGIALI:| ClONTAINS
CHARAAICITER| |B
7 m 1 T
The previous statements are stored as follows:
1514 0
ol o o) 0 o) o)
1 7 7 7 7 6
NUM jo| © o) 1 7 7
o| 2 o) 4 o) 5
1 7 7 7 4 2
ol o o) o) 5 1
ol 7 7 7 7 7
1 7 7 7 7 7
ol 1 o) 1 0) 1
1 o) 7 6 4 2
1 7 7
0 Lt 7 THE RESULT OF
Xt X X X X X ATTEMPTING TO
ol o o o 0 1 DEFINE AN ILLEGAL
CONSTANT IS UN-
X] X X X X X PREDICTABLE

4-23

PSEUDO INSTRUCTIONS

STORAGE ALLOCATION

The storage allocation statement reserves a block of memory for data or for

a work area.

| i |
label } BsSS ' m ' comments

The BSS pseudo operation advances the program or base page location counter
according to the value of the operand. The Operand field may contain any
expression that results in a positive integer. Symbols, if used, must be
previously defined in the program. The label, if given, is the name assigned
to the storage area and represents the address of the first word. The initial

content of the area set aside by the statement is unaltered by the loader.

ASSEMBLY LISTING CONTROL

Assembly listing control pseudo instructions allow the user to control the
assembly listing Output during pass 2 or 3 of the assembly process. These
pseudo instructions may be used only when the source program is translated
by the Extended Assembler provided for 8K or larger machines (8,192-word

memory or larger).

UNL comments

Output is suppressed from the assembly listing, beginning with the UNL pseudo
instruction and continuing for all instructions and comments until either an
LST or END pseudo instruction is encountered. Diagnostic messages for errors
encountered by the Assembler will be printed, however. The source statement
sequence numbers (printed in columns 1-4 of the source program listing) are

incremented for the instructions skipped.

PSEUDO INSTRUCTIONS

[LST comments

The LST pseudo instruction causes the source program listing, terminated by

a UNL, to be resumed.

A UNL following a UNL, a LST following a LST, and a LST not preceded by a UNL

are not considered errors by the Assembler.

SuUP comments

The SUP pseudo instruction suppresses the output of additional code lines
from the source program listing. Certain pseudo instructions, because they
result in using subroutines, generate more than one line of coding. These
additional code lines are suppressed by a SUP instruction until a UNS or

the END pseudo instruction is encountered. SUP will suppress additional code

lines in the following pseudo instructions:

ASC DIV FAD FSB
OCT DLD FDV MPY
DEC DST FMP

The SUP pseudo instruction may also be used to suppress the listing of literals

at the end of the source program listing.

] UNS comments

The UNS pseudo instruction causes the printing of additional coding lines,

terminated by a SUP, to be resumed.

PSEUDO INSTRUCTIONS

A SUP preceded by another SUP, UNS preceded by UNS, or UNS not preceded by a

SUP are not considered errors by the Assembler.

SKP | comments

The SKP pseudo instruction causes the source program listing to be skipped
to the top of the next page. The SKP instruction is not listed, but the

source statement sequence number is incremented for the SKP.

SPC n

The SPC pseudo instruction causes the source program listing to be skipped
a specified number of lines. The list output is skipped n lines, or to the
bottom of the page, whichever occurs first. The n may be any absolute ex-
pression. The SPC instruction is not listed but the source statement se-

gquence number is incremented for the SPC.

HED m(heading)

The HED pseudo instruction allows the programmer to specify a heading to be

printed at the top of each page of the source program listing.

The heading, m, a string of up to 56 ASCII characters, is printed at the top
of each page of the source program listing following the occurrence of the
HED pseudo instruction. If HED is encountered before the NAM or ORG at the
beginning of a program, the heading will be used on the first page of the
source program listing. A HED instruction placed elsewhere in the program

causes a skip to the top of the next page.

The heading specified in the HED pseudo instruction will be used on every

page until it is changed by a suceeding HED instruction.

PSEUDO INSTRUCTIONS

The source statement containing the HED will not be listed, but source

statement sequence number will be incremented.

ARITHMETIC SUBROUTINE CALLS

The members of this group of pseudo instructions request the Assembler to
gener te calls to arithmetic subroutines* external to the source program.
These pseudo instructions may be used in relocatable programs only. The
Operand field may contain any relocatable expression or an absolute expres-

sion resulting in a value of less than 1008.

| |]
label MPY m[,I] comments

=Dn or =Bn

Multiply the contents of the A-register by the contents of m or the quantity
defined by the literal and store the product in registers B and A. B contains
the sign of the product and the 15 most significant bits; A contains the least

significant bits.

label DIV m[,I] comments

=Dn or =Bn

Divide the contents of registers B and A by the contents of m or the quanity
defined by the literal. Store the quotient in A and the remainder in B.
Initially B contains the sign and the 15 most significant bits of the dividend;

A contains the least significant bits.

label FMP m[,Il] comments

* Not intended for use with DEX formatted numbers. For such numbers JSB's

to double precision subroutines must be used. See RELOCATABLE SUBROUTINES
Manual.

PSEUDO INSTRUCTIONS

Multiply the two-word floating point quanity in registers A and B by the two-
word floating point quantity in locations m and m+l or the gquantity defined
by the literal. Store the two-word floating point product in registers A

and B.

label FDV m{,I] comments

Divide the two-word floating point quantity in registers A and B by the two-
word floating point quantity in locations m and m+l or the quantity defined by

the literal. Store the two-word floating point quotient in A and B.

label FAD m{,I] comments

Add the two-word floating point quantity in registers A and B to the two-
word floating point quantity in locations m and m+l or the quantity defined

by the literal. Store the two-word floating point sum in A and B.

label FSB m{,I] comments

Subtract the two-word floating point quantity in m and m+l or the quantity
defined by the literal from the two-word floating point quantity in registers

A and B and store the difference in A and B.

| | J

label \ DLD ’ m[,I] comments
=Fn

Load the contents of locations m and m+l or the quantity defined by the

literal into registers A and B respectively.

PSEUDO INSTRUCTIONS

|] |
label l DST l m[,I] comments

Store the contents of registers A and B in locations m and m+l respectively.

Each use of a statement from this group generates two words of instructions.

Symbolically, they could be represented as follows:

JSB <.arithmetic pseudo operation>

DEF m [,I]
An EXT <.arithmetic pseudo operation> is implied preceding the JSB operation.

In the above operations, the overflow bit is set when one of the following

conditions occurs:

Integer overflow
Floating point overflow or underflow

Division by =zero.

Execution of any of the subroutines alters the contents of the E-Register.

SECTION V
ASSEMBLER INPUT AND OUTPUT

The Assembler accepts as input a paper tape containing a control statement
and a source language program. A relocatable source language program may be
divided into several subroutines; the designation of these elements is
optional. The output produced by the Assembler may include a punched paper
tape containing the object program, an object program listing, and diagnos-

tic messages.

CONTROL STATEMENT

The control statement specifies the output to be produced:

ASMB,pl,pz,...,pn
"ASMB," is entered in positions 1-5. Following the comma are one or more
parameters, in any order, which define the output to be produced. The con-

trol statement must be terminated by an end-of-statement mark, CR LF

The parameters may be any legal combination of the following starting in

position 6:

A Absolute: The addresses generated by the Assembler are to
be interpreted as absolute locations in memory. The program
is a complete entity. It may not include NAM, ORB, COM, ENT,
EXT, arithmetic pseudo operation statements or literals. The

binary output format is that specified for the Basic Binary

loader.

ASSEMBLER INPUT AND OUTPUT

R Relocatable: The program may be located anywhere in memory.
Instruction operands are adjusted as necessary. The binary

output format is that specified for the Relocating loader.

B Binary output: A program is to be punched according to one

of the above parameters.

L List output: A program listing is to be produced either during
pass two or pass three (if binary output selected) according

to one of the above parameters.

T Table print: List the symbol table at the end of the first
pass. For the Extended Assembler: List the symbol table in
alphabetic order in three sections: section 1 for one-
character symbols, section 2 for two- and three-character

symbols, and section 3 for four- and five-character symbols.

N Include sets of instructions following the IFN pseudo
instruction.

z Include sets of instructions following the IFZ pseudo
instruction.

Either A or R must be specified in addition to any combination of B, L, or T.

If a programmer wishes to assemble Pass 1 of a source program to check for
errors, he can specify only an A or R to be the sole parameter of the Assem-
bler Control Statement, executing only Pass 1. (This produces Pass 1 error
messages without listing the program or providing an object tape). Extended

Assembler only.

ASSEMBLER INPUT AND OUTPUT

The Assembler control statement must specifically request pass 2 operations
(list or punch) in order for pass 2 to be executed. Lack of pass 2 option
information causes processing only of pass 1 errors. If a C option is also
provided, an automatic cross-reference symbol table is done after pass 1

when operating in the MTS environment.

The control statement may be on the same tape as the source program, or on

a separate tape; or it may be entered via the teleprinter keyboard.

SOURCE PROGRAM

The first statement of the program (other than remarks or a HED statement)
must be a NAM statement for a relocatable program or an ORG statement for
indicating the origin of an absolute program. The last statement must be
an END statement and may contain a transfer address for the start of a
relocatable program. Each statement is followed by an end-of-statement

mark.

BINARY QUTPUT

The punch output is defined by the ASMB control statement. The punch out-
put includes the instructions translated from the source program. It does
not include system subroutines referenced within the source program (arith-

metic subroutine calls, .IOC., .DIO., .ENTR, etc.)

ASSEMBLER INPUT AND QUTPUT

LIST OUTPUT

Fields of the object program are listed in the following print columns.

Columns Content

1-4 Source statement sequence number generated by
the Assembler

5-6 Blank

7-11 Location (octal)

12 Blank

13-18 Object code word in octal

19 Relocation or external symbol indicator

20 Blank

21-72 First 52 characters of source statement.

Lines consisting entirely of comments (i.e., * in column 1) are printed as

follows:
Columns Content
1-4 Source statement sequence number
5-72 Up to 68 characters of comments

A Symbol Table listing has the following format:

Columns Content

1-5 Symbol

) Blank

7 Relocation of external symbol indicator
8 Blank

9-14 Value of the symbol

ASSEMBLER INPUT AND OUTPUT

The characters that designate an external symbol or type of relocation for

the Operand field or the symbol are as follows:

Character Relocation Base
Blank Absolute
R Program relocatable
B Base page relocatable
C Common relocatable
X External symbol

At the end of each pass, the following is printed:

**NO ERRORS¥*
or

**nnnn ERRORS*

The value nnnn indicates the number of errors.

APPENDIX A
HP CHARACTER SET

ASCII CHARACTER FORMAT

by ° o o [| ! ! !
be o 0 | 1] 2] i !

bs ° I 0) o] 1 0 i

by
bs
Ml
by

ojolo|o|NULL|DCo | B [@ L O A
o|o|[0] 1] SOM! DC; ! 1 A Q - _4--1—4
ojo|'|o|EOA|DC2 | ™ 2 8 R L |- J.u_
ojoj |1 |EOM | DCs | W 3 ¢ L N B D,
ol 1 jojolE0T [X&) § 4 D T -u-«-:-
ol Jol [wru]err] % | 5 T E [u NS,
of1[1]o]| RU |SYNC] & 6 F v fé:..-é_
O 1 {v| 1 [BELL|LEM {(aposy| 7 G w S_J. N
1jojo|0]|FEg | So | (8 H X :(l;--——g-q
iloTol 1T | S) 9 I Y N
vjolifjeol LFls, | w : J 2z e B
tjolrfi|viae! 83| + ; K c __D- e]
V[1{0]0] FF | Sa |commay < L \ ACK
1|1]ol1] CR Se - = M 1) (D
v{iti1]o| soO Se > N t Esc
AR EEEREE - / ? o < [4 [om

Standard 7-bit set code positional order and notation are shown below with

b7 the high-order and bl the low-order, bit position.

Example: The code for "R" is: 1 0 1° 0 0 1° o0

HP CHARACTER SET

LEGEND
NULL Null/Idle DCl—DC3 Device Control
SOM Start of messa .
essage DC4(Stop) Device control (stop)
EOA End of address
EOM End of message ERR Error
EOT End of transmission SYNC Synchronous idle
WRU "Whe are you?" LEM Logical end of media
RU "Are you...?" SO—S7 Separator (inform-
BELL Audible signal 5 ation
FE Format effector Word separator (spac?,
0 normally non-printing)
HT Horizontal tabulation
< Less than
SK Skip (punched card) S Greater than
L¥ Line feed 4 Up arrow (Exponentiation)
VTAB Vertical tabulation - Left arrow (Implies/
Replaced b
FF Form feed N P y)
. Reverse slant
CR Crrriage return
ACK Acknowledge
Unassigned control
ST shift in d
ESC Escape
DCo Device control reserved for scap
data link escape DEL Delete/Idle

HP CHARACTER SET

BINARY CODED DECIMAL FORMAT

Kennedy 1406/1506 ASCII-BCD Conversion

BCD ASCII Equivalent BCD ASCII Eguivalent
Symbol (octal code) {octal code) Symbol (octal code) (octal code)
(Space) 29 243 A 6l 121
! 52 241 B 62 1@2
13 243 C 63 193
$ 53 g44 D 64 1g4
% 34 245 E 65 185
& 6 g4e6 F 66 1g6
! 14 247 G 67 187
(34 258 H 79 11¢
) 74 251 I 71 _ 111
* 54 @52 J 41 112
+ 6 @53 K 42 113
P 33 @54 L 43 114
- 49 @55 M 44 115
. 73 256 N 45 116
/ 21 @57 0 46 117
P 47 129
7] 12 269 Q 5¢ 121
1 21 gol R 51 122
2 @2 g2 S 22 123
3 23 A 263 T 23 124
4 24 ge4a U 24 125
5 @5 @65 v 25 126
6 g6 266 W 26 127
7 37 @67 X 27 13¢
8 19 273 Y 3@ 131
9 11 271 Z 31 132
: 15 272 [75 133
i 56 273 \ 36 134
< 76 274] 55 135
= 13 @75
> 16 276
? 72 277
@ 14 1909

Other symbols which may be represented in ASCII are converted to spaces
in BCD (20)

HP CHARACTER SET

HP 2020A/B ASCII-BCD Conversion

ASCII BCD ASCII BCD
Symbol (Octal code) (Octal code) Symbol (Octal code) (Octal code)
(Space) a9 2@ A 141 6l
! 41 52 B 1@2 62
" 42 37 C 143 63
43 13 D 134 64
$ 44 53 E 195 65
% 45 34 F 1g6 66
& 46 60 T G 197 67
' 47 36 H 1192 79
(50 75 I 111 71
) 51 55 J 112 41
* 52 54 K 113 42
+ 53 6y L 114 43
P 54 33 M 115 44
- 55 49 N 116 45
. 56 73 0 117 46
/ 57 21 P 129 47
0 121 5@
R 122 51
.} 6y 12 S 123 22
1 61 71 T 124 23
2 62 @2 U 125 24
3 63 @3 v 126 25
4 64 24 W 127 26
5 65 25 X 139 27
6 66 g6 Y 131 3p
7 67 27 A 132 31
8 78 18
9 71 11 (133 75 ¢
1 135 55 i
4 136 77
. 72 15 « 137 32
; 73 56
< 74 76
= 75 35
> 76 le
? 77 72
@ 1998 14

T BCD code of 60 always converted to ASCII code 53 (+).
i BCD code of 75 always converted to ASCII code 50 (() and
BCD code of 55 always converted to ASCII code 51 ()).

APPENDIX B
ASSEMBLER INSTRUCTIONS

Symbols Meaning

label Symbolic label, 1-5 alphanumeric characters and periods
m Memory location represented by an expression

I Indirect addressing indicator

C Clear flag indicator

(m, m+1) Two-woxd floating point value in m and m+l

comments Optional comments

[] Optional portion of field

} One of set may be selected

g ——

Program Counter
() Contents of location
A Logical product
W Exclusive "or"
\v; Inclusive "or"
A A-register
B B-register
E E-register
An Bit n of A-register
Bn Bit n of B-register
b Bit positions in B- and A-register
73757 Complement of contents of register A or B
(AB) Two-word floating point value in register A and B
scC Channel select code represented by an expression
d Decimal constant
o Octal constant
r Repeat count
n Integer constant
1lit Literal value

INSTRUCTIONS

MACHINE INSTRUCTIONS

MEMORY REFERENCE

Jump and Increment-Skip

ISZ m [,I] (m) + 1 > m: then if (m) = 0, execute P + 2
otherwise execute P + 1

JMP m [,I] Jump to m; m > P

JSB m (,I] Jump subroutine tom: P+ 1 ~>m; m+ 1 ~> P

Add, Load and Store

m [,I] N
ADA { lit} (m) + (B) A
apB ™ [’I]} (m) + (B) ~ B

1lit

m {,I]
LDA { lit } ({m) > A

m [,I]
LDB { lit } (m) - B
STA m [,I] (a) = m
STB m [,I] (B) » m

Logical

AND (m) (a) »~ A

XOR (m) (a) »- A

CPA If (m) # (A), execute P + 2, otherwise execute

P+ 1

CPB If (m) # (B), execute P + 2, otherwise execute

{" i}
{1}
o PETL W s
{" i}
v

INSTRUCTIONS

MACHINE INSTRUCTIONS (cont.)

REGISTER REFERENCE

Shift~Rotate

CLE 0> E

ALS Shift (A) left one bit, 0 - AO, A15 unaltered

BLS shift (B) left one bit, 0 - BO, B15 unaltered
i i i >

ARS Shift (A) right one bit, (AlS) Al4
i i i B..) > B

BRS Shift (B) right one bit, (15) 14

RAL Rotate (A) left one bit

RBL Rotate (B) left one bit

RAR Rotate (A) right one bit

RBR Rotate (B) right one bit

ALR shift (A) left one bit, 0 - A15

BLR Shift (B) left one bit, 0 - B15

ERA Rotate E and A right one bit

ERB Rotate E and B right one bit

ELA Rotate E and A left one bit

ELB Rotate E and B left one bit

ALF Rotate A left four bits

BLF Rotate B left four bits

SLA If (AO) = 0, execute P + 2, otherwise execute P + 1

SLB If (BO) = 0, execute P + 2, otherwise execute P + 1

INSTRUCTIONS

MACHINE INSTRUCTIONS (cont)

Shift-Rotate instructions can be combined as follows:

(ALS)] F(ALSV
ARS ARS
RAL RAL
RAR RAR

{ ain > [,CLE] [,SIA] £ arn P
ALF ALF
ERA ERA

L k ELA 7 L \ELA J

[(BLs \] [(515 \]
BRS BRS
RBL RBL
RBR > < RBR >

aen [,CLE] [,SLB] A nrn
BLF BLF
ERB ERB

|\ ELE)] L \FEE)

No-operation

NOP Execute P + 1
Alter-Skip
CLA O's > A
CLB O's - B
cMA (a) ~ A
CMB (B) + B
CCA 1's >~ A
CCB 1's -+ B
CLE 0 -+ E
CME (E) + E
CCE l->E
SEZ If (E) = 0, execute P + 2, otherwise execute P + 1
SSA If (Als) = 0, execute P + 2, otherwise execute P + 1
SSB If (B15) = 0, execute P + 2, otherwise execute P + 1

INSTRUCTIONS

MACHINE INSTRUCTIONS (cont)

(Alter-sSkip (cont)

INA
INB
SZA
SZB
SLA

SLB

Alter-Skip

CLB
CMB
CCB

-

(a) + 1 > A
(B) + 1 +B
If (A) = 0, execute P + 2, otherwise execute P + 1
If (B) = O, execute P + 2, otherwise execute P + 1

If (AO)

0, execute P + 2, otherwise execute P + 1

If (BO) = 0, execute P + 2, otherwise execute P + 1

Reverse sense of skip instructions. If no skip
instructions precede, execute P + 2

instructions can be combined as follows:

CLE
[,SEZ] CME (,ssA] [,SLA] [,INA] [,SZA] [,RRS]
"{cCE

CLE
[,SEZ] |,{CME (,ssB] [,sLB] [,INB] [,SZB] [,RSS]
CCE

INPUT/OUTPUT, OVERFLOW, and HALT

Input/Output
STC sc
CLC sc
LIA sc
LIB sc
MIA sc
MIB sc
OTA sc
OTB sc

[,C] Set control bits , enable transfer of one
element of data getween devicesc and buffersc

[,C] Clear control bit . 1If sc = 0 clear all
) sc
control bits.
[,C] (buffer) - A
sc
[,C] (buffer) - B
sc
[,C] (buffer) () >~ A
sc
[,C] (buffer) (B) - B
sc
[,Cl (A} - buffer
sc
[,C] (B) -+ buffer
sc

Input/Output (cont)

STF

CLF

SFC

SFS

Overflow

CLO
STO
SOC

SOS

HALT
HLT

EXTENDED

MPY

DIV

DLD

DST
ASR

ASL

sC

sC

sC

sC

[sc

(cl]

[C]

[,C]]

INSTRUCTIONS

MACHINE INSTRUCTIONS (cont)

Set flag bit
system. sc

If sc = 0, enable interrupt

gcl sets overflow bit.

Clear flag bit If sc = 0, disable interrupt

system. If scsg 1, clear overflow bit.

If (flag bit) = 0, execute P + 2, otherwise
execute P + I. If sc = 1, test overflow bit.
If (flag bit) = 1, execute P + 2, otherwise

execute P + i? If sc = 1, test overflow bit.

0 > overflow bit

1 - overflow bit

If (overflow bit) = 0, execute P + 2, otherwise
execute P + 1
If (overflow bit) = 0, execute P + 2, otherwise

execute P + 1

Halt computer

ARITHMETIC UNIT (requires EAU version of Assembler or

m{,I]
1it
m[,I]
1it
m[,I]
1it
m([,I]

1lit
b

Extender Assembler)

(A) x (B

+msb

(m) and A|s)

b

(B

+msb and A‘Sb)/(m) -+ A, remainder =+ B

(m) and (m + 1) > A and B

() and (B) > mand m + 1

Arithmetically shift (BA) right b bits, B

15
extended

Arithmetically shift (BA) left b bits, B

15
unaltered, 0's to A

|sb

INSTRUCTIONS

MACHINE INSTRUCTIONS (cont)

EXTENDED ARITHMETIC UNIT (cont)

RRR
RRL
LSR

LSL

b

ASSEMBLER CONTROL

NAM
ORG

ORR

ORB
END

REP
<statement>

IFN
<statements>
XIF

IFZ
<statements>
XIF

[name]

m

[m]

Rotate (BA) right b bits
Rotate (BA) left b bits
Logically shift (BA) right b bits,
O's to B
msb

Logically shift (BA) left b bits, o's to A sb

PSEUDO INSTRUCTIONS

Specifies relocatable program and its name.

Gives absolute program origin or origin for a
segment of relocatable or absolute program.

Reset main program location counter at value

existing when first ORG or ORB of a string was
encountered.

Defines base page portion of relocatable program.

Terminates source language program. Produces
transfer to program starting location, m, if given.

Repeat immediately following statement r times.

Include statements in program if control state-
ment contains N.

Include statements in program if control state-
ment contains Z.

INSTRUCTIONS

PSEUDO INSTRUCTIONS (cont)

OBJECT PROGRAM LINKAGE

COM namel[(sizel)][,namez[(sizez)],...,namen[(sizen)]]

Reserves a block of common storage locations.
name. identifies segments of block, each of
leng%h size.

ENT name. [,name_, ... ,name]
1 2 n
Defines entry points, namel, that may be referred
to by other programs.
EXT name._ [,name_,...,name]
1 2 n

Defines external locations, name_, which are
labels of other programs, referenced by this
program,

ADDRESS AND SYMBOL DEFINITION
label DEF m{, I} Generates a 15-bit address which may be refer-
enced indirectly through the label.

label ABS m Defines a 16-bit absolute value to be referenced
by the label.

label EQU m Eguates the value, m, to the label.

INSTRUCTIONS

PSEUDO INSTRUCTIONS (cont)

CONSTANT DEFINITION

ASC n, <2n characters> Generates a string of 2n ASCII characters.
DEC dl [,d2,...,dn] Records a string of decimal constants of
the form:

Integer: +n
Floating point: tn.n, +n., +.n, +nEte,

+n.nkE+e, +n.E+e, +.nE+te

DEX dl [,d2,...,dn] Records a string of extended precision
decimals constants of the form

Floating point: +n, +n.m,

+n., +.n,
+nE+e, +n.nE+e,

+n.E+e, +.nE+e

OCT o, [,02,...,On] Records a string of octal constants of
the form: +000000

STORAGE ALLOCATION

BSS m Reserves a storage area of length, m.

INSTRUCTIONS

PSEUDO INSTRUCTIONS (cont)

ARITHMETIC SUBROUTINE CALLS REQUESTS*

m[,I]
MPYt ! A > (B
{ e } (A) x (m) (+msb and A|sb)
DIVH m[,I] (B and A)/(m) > A, remainder - B
lit +msb |sb '

FMP (3B) x (m, m + 1) > AB
FDV
(m, m + 1) + (AB) > AB
FSB

(AB) - (m, m + 1) > AB

DLDY (m) and (m + 1) - A and B

J

st}

{ 1[511} (3B)/(m, m + 1) + AB
FAD {mllfll}

{i'}

(i}

DSTt m(,I] (A) and (B) > mand m + 1

+For configurations including Extended Arithmetic Unit, these mnemonics
generate hardware instructions when the EAU version of the Assembler or
Extended Assembler is used.

*Not intended for use with DEX formatted numbers. For such numbers, JSB
Machine Instructions must be used.

INSTRUCTIONS

PSEUDO INSTRUCTIONS (cont)

ASSEMBLY LISTING CONTROL

UNL Suppress assembly listing output.

LST Resume assembly listing output.

SKP Skip listing to top of next page.

SPC n Skip n lines on listing.

SUP Suppress listing of extended code lines

(e.g., as produced by subroutine calls).
UNS Resume listing of extended code lines.

HED <heading> Print <heading> at top of each page,
where <heading> is up to 56 ASCII characters.

B-11

APPENDIX C
ALPHABETIC LIST OF INSTRUCTIONS

ABS Define absolute value

ADA Add to A

ADB Add to B

ALF Rotate A left 4

ALR shift A left 1, clear sign
ALS shift A left 1

AND "And" to A

ARS Shift A right 1, sign carry
ASC Generate ASCII characters
ASL Arithmetic long shift left
ASR Arithmetic long shift right
BLF Rotate B left 4

BLR Shift B left 1, clear sign
BLS shift B left 1

BRS shift B right 1, carry sign
BSS Reserve block of storage starting at symbol
CCA Clear and complement A (l's)
CCB Clear and complement B (1l's)
CCE Clear and complement E (set E = 1)
CLA Clear A

CLB Clear B

CLC Clear 1I/0 control bit

CLE Clear E

CLF Clear I/0O flag

CLO Clear overflow bit

CcMA Complement A

CMB Complement B

CME Complement E

CoM Reserve block of common storage
CPA Compare to A, skip if unequal
CPB Compare to B, skip if unequal

c-1

DEC
DEF
DEX
DIV
DLD
DST
ELA
ELB
END
ENT
ERA
ERB
EQU
EXT
FAD
FDV
FMP
FSB
HED
HLT

IFN

IFZ

INA
INB
IOR
IsZ
JMP
JSB
LDA
LDB

INSTRUCTIONS

ALPHABETIC LIST OF INSTRUCTIONS (cont)

Defines decimal constants

Defines address

Defines extended precision constants
Divide

Double load

Double store

Rotate E and A left 1

Rotate E and B left 1

Terminate program

Entry point

Rotate E and A right 1

Rotate E and B right 1

Equate symbol

External reference

Floating add

Floating divide

Floating multiply

Floating subtract

Print heading at top of each page
Halt

When N appears in Control Statement, assemble
ensuing instructions

When Z appears in Control Statement, assemble
ensuing instructions

Increment A by 1

Increment B by 1

Inclusive "or" to A
Increment, then skip if zero
Jump

Jump to subroutine

Load into A

Load into B~

INSTRUCTIONS

ALPHABETIC LIST OF INSTRUCTIONS (cont)

LIA Load into A from I/0 channel
LIB Load into B from I/0 channel
LSL Logical long shift left

LSR Logical long shift right

LST Resume list output (follows a UNL)
MIA Merge (or) into A from I/O channel
MIB Merge (or) into B from I/O channel
MPY Multiply

NAM Names relocatable program

NOP No operation

OCT Defines octal constant

ORB Establish origin in base page
ORG Establish program origin

ORR Reset program location counter
OTA Output from A to I/O channel
OTB Output from B to I/O channel
RAL Rotate A left 1

RAR Rotate A right 1

RRL Rotate B left 1

RBR Rotate B right 1

REP Repeat next statement

RRL Rotate A and B left

RRR Rotate A and B right

RSS Reverse skip sense

SEZ Skip if E = 0

SFC Skip if I/0 flag = 0 (clear)

SFS Skip if I/0 flag = 1 (set)

SKP Skip to top of next page

SLA Skip if LSB of A = 0

SLB Skip if LSB of B = 0

soC Skip if overflow bit = 0 (clear)
S0s Skip if overflow bit = 1 (set)

Cc-3

INSTRUCTIONS

ALPHABETIC LIST OF INSTRUCTIONS (cont)

Space n lines

Skip if sign A = 0
Skip if sign B = 0
Store A
Store B

Set I/0 control bit

Set I/0 flag

Set overflow bit

Suppress list output of additional code lines

Switch the (a) and (B)

0]
0]

Skip if A

1]

Skip if B
Suppress list output

Resume list output of additional code lines
Terminate an IFN or IFZ group of instructions

Exclusive "or" to A

APPENDIX D
SAMPLE PROGRAM

Following are two sample problems, the second of which implements several

options of the Extended Assembler.

PARTS FILE UPDATE

A master file of parts is updated by a parts usage list to produce a new
master parts file. A report, consisting of the parts used and their cost,

is also produced.

The master file and the parts usage file contain four word records. Each

record of the cost report is eleven words long.

The organization of the files is as follows:

Parts Master Files (PRTSM)

Cost/

Identification [Quantity item

Identification field of the Parts Master Files exists in ASCII although the

entire record is read and written in binary.

Parts Usage File (PRTSU)

Identification Quantity

The parts usage file has been recorded in ASCII.

Parts Cost Report (PRTSC)

Identification %///// Quantity used 7///////%5 for SOt ity

The Parts Cost Report is recorded in ASCII with spacing and editing for

printing.

SAMPLE PROGRAMS

SAMPLE PROGRAMS (cont)

The sample program reads and writes the files, adjusts the new stock levels,
and calculates the cost. External subprograms perform the binary-to-decimal
and decimal-to-binary conversions and handle unrecoverable input/output
errors, invalid data conditions, and normal program termination. Input/output

operations are performed using the Basic Control System input/output sub-

routine, .IOC.

SAMPLE PROGRAMS

READ
PARTS
MASTER

READ

PARTS
MASTER

WRITE
NEW PARTS
MASTER

WRITE
NEW PARTS
MASTER

SUBTRACT
USAGE QUANTITY
FROM
MASTER QUANTITY

CALCULATE
COST OF PARTS
USED

COoSsT
REPORT

WRITE
NEW PARTS
MASTER

SAMPLE PROGRAM
GENERAL FLOW CHART

D-3

SAMPLE PROGRAMS

SAMPLE ASSEMBLER SYMBOL TABLE OUTPUT
PAGE 2091

Q001 ASMB,RsB-L,» T
START R 090000
PRTSM B 000000
PRTSU B 0220004
PRTSC B 000010
EOTS]1 B 000023
EOTS2 B 000024
MTEMP B 2000825
UTEMP B 800026
SWTMP B 800027
SPACS B 9002031
DLRSG B 900033
A 000000
B 000001
«10C. X 000001
BCONV X 000002
DCONV X 980003
ABORT X 020004
HALT X 900005
DTOBI C 000000
DTOBO C 0000902
BTODI C 280003
BTODO C 002005
OPEN R 000002
SPCFL R 9020203
DLD X 0000026
DST X 000007
READU R 000013
CKSTU R 090029
RJCTU R 008835
EOTU R 000040
MSGU R 020851
READM R 280063
CKSTM R 002079
RJCTM R 2008185
EOTM R 000110
MSGM R 000117
HLTSW R 0080137
COMPR R 000140
PROCM R 800157
PROCC R 800165
MPY X 000010
CONVM R 000213
CONU1 R 0090224
CONU2 R 202235
CONVC R 200246
WRITC R 008261
CKSTC R 000266
RJCTC R 8002276
WRITN R 200301
CKSTN R 09902306
RJCTN R @20316

** NO ERRORSx*

PAGE

#0091
20092
22233
P20 4
2005
2006
22937
0008
2009
0210
2811
8212
2213

9014
2915
2216
2017
P018%
2019
2020%*
2821
2022 *
2923 *
0024
BA25%*
P026%*
2827
2028
2029 *
2030
Q031 *
@a32
2033*
P34
20835

Aa36
8237

2038
2239
20 409
204l
29 42
2043
2044
245
20 46
20 47
20 48
20 49
2250
2051
2952
BB53*

a302

002000

P0000 000000

22001 026002R
00000

00000 0000002

00004 000000

00010 0200000

20023 P26063R
00024 B26301R
22025 000000

20826 000000

P0027 000000

PPB31 020040

20232 0220040

P080833 020044

20000

20001

23022

20002 200000
000033 216006X
20004 P00031B
Q03035 216007X
00006 0DO202212B
00007 216007X
02010 2000168B
#0011 060033B
20012 0700208
002013 016001X
20014 210001
20015 B26035R
00016 000004B
00017 200004
00320 216001X
20021 040901
00022 002020
00023 026020R
02024 001200
202025 002029
202026 026030R
202027 026063R

SAMPLE ASSEMBLER LIST OUTPUT

START

PRTSM
PRTSU
PRTSC
EOTS1
EOTS2
MTEMP
UTEMP
SWTMP
SPACS

DLRSG
A
B

OPEN
SPCFL

READU

CKSTU

NAM
NOP
JMP
ORB
BSS
BSS
BSS
JuP
JMp
BSS
BSS
BSS
ASC

ASC
EQU
EQU
EXT

EXT

EXT

EXT

EXT
coM

ORR

NOP
DLD

DST

DST

LDA
STA
JSB
oCcT
JMP
DEF
DEC
JSB
oCcT
SSA
JMP
RAL
SSA
JMP
JMP

UPDTE

OPEN
ASSIGN STORAGE & CONSTANTS TO BP

4 MASTER PARTS FILE - BINARY.

4 PARTS USAGE LIST - ASCII.

11 PARTS COST REPORT - ASCII.

READM

WRITN

1

1

2

2

1» &

2

1

«I0C. PERFORM 170 OPERATIONS USING BCS
170 CONTROL ROUTINE.

BCONV ENTRY POINT FOR DECIMALCASCII?
TO BINARY CONVERSION SUBPROGRAM.

DCONV ENTRY POINT FOR BINARY TO
DECIMALC(ASCII) CONVERSION SuUB-
PROGRAM.

ABORT ENTRY POINT FOR SUBPROGRAM WHICH

HANDLES UNRECOVERABLE 1/0 ERRORS
OR INVALID DATA.
HALT END OF PROGRAM SUBROUTINE.
DTOBI(2)»DTOB0,BTODI(2),BTODO(2)
COMMON STORAGE LOCATIONS USED TO
PASS DATA BETWEEN MAIN PROGRAM
AND CONVERSION SUBPROGRAMS.
RESETS PLC AFTER USE OF ORB AT
BEGINNING OF PROGRAM.

SPACS STORES EDITING CHARACTERS IN
PRTSC+2 QUTPUT AREA FOR PARTS COST

PRTSC+6 REPORT.

DLRSG

PRTSC+8

+10C. READ ONE RECORD FROM USAGE LIST
10001 LOCATED ON STANDARD UNIT 1

RJCTU (TELEPRINTER INPUT). PRTSU IS
PRTSU ADDRESS OF STORAGE AREA3 AREA IS
4 4 WORDS LONG.

«10C. CHECK STATUS OF UNIT 1.

40001

CKSTU IF BUSY, LOOP UNTIL FREE.

*+2

READM IF COMPLETE, TRANSFER TO SECTION

WHICH READS MASTER FILE RECORD.

PAGE 9003
9054 00030
9255 @0031
PB56 0QPB32
2857 80033
9258 00A34
B059=*

P68 202835
@061 Q0036
P62 00037
PB63 00040
P064 00041
PB65 00042
D066 DOB43
PP67T 0PODAa4
2068 00045
PA69 BBB46
0070 Q0047
2071 Q005D
2272 090051
20052
22053
20054
20055
200856
20057
20060
20061
PA73 00062
PB74 Q0063
AB75 00064
Pd76 BOB6S
PO77 0OPB66
2078 0Q0B67
2079 00070
2080 00071
2881 020072
@982 0202073
2083 0P0B74
P984 00075
2085 00076
9086 00077
2087 00100
2988 00101
2089 022102
2090 00103
2291 020104
2092 x*
P293 002105
2094 0@O106
P09S5S 02107
@096 00110
2097 002111
PA98 @02112
2099 20113
2120 002114
P121 00115
2102 00B116
183 00117

SAMPLE ASSEMBLER LIST QUTPUT

001727
201200
202026
D260 40R
#2600 4X

606020 RJCTU
B26013R
026004X%
@608023B EOTU
@72002R
d60024B

@721 40R
P16001X
a20002
P26044R
@020051R
200011
B42516 MSGU
242040
47506
920125
251501
@43505
p20106
044514

D42 440
B26@63R
P16001X READM
219105
#261085R
@000008B
Q000024
A16801X CKSTM
240005
002020
B26070R
801200
002020
#26100R

0261 40R
#1727
#01200
002020
P26110R
02600 4X

066020 RJCTM
P26063R
026004X
@62137R EOTM
B72315R
B16001X
020002
P26112R
A03117R
Q00017
942516 MSGM

ALF,ALF

RAL
SSA
JMP
JMP

5SB
JMP
JMP
LDA
STA
LDA
STA
JsB
0CT
JMP
DEF
DEC
ASC

JMP
JSB
OCT
JMP
DEF
DEC
JSB
OCT
SSA
JMP
RAL
SSA
JMP
JMP
ALF»
RAL
SSA
JMP
JMP

ssB
JMP
JMP
LDA
STA
JSB
oCcT
JMP
DEF
DEC
ASC

EOTU
ABORT

READU
ABORT
EOTS1
OPEN
EQTS2
COMPR
.IOC.
20002
EOTU+4
MSGU
9

TEST END OF TAPE STATUS BIT
(ORIGINAL BIT 85).

IF SET, GO TO EOT PROCEDURE.

IF NOT SET, SOME ERROR CONDITION
(UNRECOVERABLE) EXISTS.

CHECK CAUSE OF REJECTe IF UNIT
BUSY LOOP UNTIL FREE. ANY OTHER
CAUSE IS UNRECOVERABLE ERROR.
IF END OF USAGE FILE, ALTER
PROGRAM SEQUENCE TO BYPASS
SECTIONS THAT READ AND PROCESS
USAGE FILE. PRINT MESSAGE ON
TELEPRINTER INDICATING EOT.

9, END OF USAGE FILE

READM
.IOC.
10105
RJCTM
PRTSM
4

.IOC.
40005

CKSTM

*+2
COMPR
ALF

EOT™
ABORT

READM
ABORT
HLTSW
CKSTN+7
OIOCO
20002
EOTM+2
MSGM

15

READ A RECORD FROM MASTER PARTS

FILE ON STANDARD UNIT @5(PUNCHED
TAPE READER). PRTSM IS ADDRESS

OF STORAGE AREA3 AREA IS 4 WORDS
LONGs RECORD IS IN BINARY FORMAT
CHECK STATUS OF UNIT 5.

IF BUSY, LOOP UNTIL FREE.

IF COMPLETE, TRANSFER TO EITHER
PROCESSING OR WRITE QUTPUT
DEPENDING ON SETTING OF COMPR.
TEST FOR END OF TAPE.

IF END, GO TO EOT PROCEDURE.

IF NOT, AN UNRECOVERABLE ERROR
EXISTS.

CHECK CONTENTS OF B FOR CAUSE OF
REJECT« IF UNIT BUSY» LOOP UNTIL
FREE, OTHERWISE I/0 ERROR EXISTS
ALTER PROGRAM SEQUENCE TO HALT
EXECUTION AFTER LAST RECORD IS
WRITTEN PRINT MESSAGE
INDICATING END OF MASTER INPUT.

15, END OF MASTER PARTS FILE INPUT

D-6

PAGE

2104
2185
2106
2107
2108
2109
2110
2111

g112
2113
B114
P115
Aat1eé
e117
2118
2119
2120
2121

ar22
@123
Q124
@125
2126
2127

2128
2129
2130

2131
@132

2133
2134
B135
@136

2137
2138

2139
Q140

2004

00120
20121
#0122
#0123
00124
28125
20126
@e127
02130
#0131
20132
#0133
20134
#0135
223136
@d137
201 40
201 4l
20142
20143
001 44
20145
202146
29147
@0150
29151
@21 52
#2153
20154
28155
20156
22157
2ad160
@0161
Pa162
20163
PB164
20165
Po166
@a167
P2170
20171
pe172
20173
20174
@2175
B0176
po177
20200
222081
#0202
20203
00204
20205
20206
20207
20210
Bo21t

0420 40
B47506
820115
B40523
852105
B51040
250101
851124
051440
243111
B46105
820111
047120
B52524
0261 40R
2260808 5X
200000
@1622 4R
@16213R
A600268
@640258
2500801
@261 57R
P07004
@400201
202020
02600 4X
@62156R
B72315R
@26301R
B26B63R
B16235R
26008028
B640278
20700 4
240001
2700028
D16006X
20000 4B
D16007X
2000108
D16006X
20200068
B16007X
2000148
@600038
A16010X
2000278
2700308
8740278
B16246R
A16006X
0200278
D16007X
90200218
@62212R
B72315R
B26261R

SAMPLE ASSEMBLER LIST OUTPUT

HLTSW
COMPR

PROCM

PROCC

JMP
JMP
NOP
JSB
Jss

COMPR
HALT

CONU1
CONVM
LDA UTEMP
LbB MTEMP
CPA B

JMP PROCM
CMB, INB
ADA B

SSA
JMP
LDA
STA
JMP
JMP
JSB

ABORT
*+3
CKSTN+7
WRITN
READM
conu2
LDA PRTSM+2
LDB UTEMP+1
CMB, INB

ADA B

STA PRTSM+2
DLD PRTSU

DST PRTSC

DLD PRTSU+2
DST PRTSC+4

LDA
MPY

PRTSM+3
UTEMP+1

STA
STB
JsB
DLD

SWTMP+1
SWTMP
convce
SWTMP
DST PRTSC+9
LDA
STA
JMP

*+3
CKSTN+7
WRITC

D-7

END OF PROGRAM SUBROUTINE.

CONVERT ID NUMBER FIELDS OF
MASTER AND USAGE FILES TO BIN.
LOAD THESE FIELDS FROM TEMPORARY
STORAGE.

COMPARE

IF EQUAL, JUMP TO PROCESSING

IF 1D NUMBER OF MASTER GREATER
THAN ID NUMBER OF USAGE, DATA IN
USAGE FILE ERRONEOUS. TERMINATE
RUN.

IF ID MASTER LESS THAN ID USAGE,
ALTER SEQUENCE: READ NEXT MASTER
RECORD IMMEDIATELY AFTER WRITING
CURRENT MASTER RECORD.

CONVERT QUANTITY FIELD OF USAGE
FILE TO BINARY AND SUBTRACT FROM
QUANTITY FIELD OF MASTER AND
STORE RESULT.

STORE ID OF PARTS USED IN REPORT
FILE STORAGE AREA.
STORE QUANTITY OF PARTS USED IN

REPORT FILE STORAGE AREA.

COMPUTE COST OF PARTS USED.

CONVERT RESULT TO DECIMAL

STORE IN REPORT FILE AREA.

ALTER SEQUENCE: READ NEXT USAGE
RECORD AFTER WRITING CURRENT
MASTER RECORD.

PAGE

2141
21 42
#1433

B144

A1 45
146
P147
D148
D149
P150

a151

@152
2153
P154
A155
a156
A157

a1s58

A159
2160
Al61
A162
A163
Ple4

#1655

2166
A167

A168

2169
2170
2171

p172
P173
174
A17S
A176
at77
p178
a179
A180
2181

o182
2183
6184
@185
2186
2187
2188

2005

#8212
208213
20214
20215
#d216
ae2117
2322@
pR221
pa222
802223
PB22 4
#0225
20226
98227
20230
P0231
@r232
B2233
00234
#0235
@08236
PB237
00240
PB241
29242
PB243
20244
20245
P02 46
08247
2082509
90251
20252
PP253
28254
#a255
AB256
80257
20260
#0261
208262
20263
PR264
P0B265
@0266
209267
202792
282171
@272
PRP273
002274
#8275
282176
002717
823300
#3301
28302
#0303

#26013R
2000200

016806X
0800008
B16007X
PP0000C
a16a02X
P620062C
#7002 58
126213R
200000

P16006X
2000048
P16007X
@32a00C
216002X
B62002C
P70026B
126224R
P0a0000

216006X
2000268
2160807X
2000080C
216002X
262002C
A700278
126235R
200000

P16006X
2000278
016007X
990003C
P16003X
#16006X
90000 5C
016007X
2000278
126246R
216001X
020102

P26276R
Po00108B
000013

P16001X
249002

002020

#26266R
201200

2020202

02600 4X
P26301R
P06020

P26261R
82608 4X
216301X
020104

@26316R

SAMPLE ASSEMBLER LIST OQUTPUT

CONVM

CONUL

conu2

CONVC

WRITC

CKSTC

RJCTC

WRITN

JMP
NOP
DLD

DST

Js8
LDA
STA
JMP
NOP
DLD

DST

JSB
LDA
STA
JMP
NOP
DLD

DST

JSB
LDA
STA
JMP
NOP
DLD

DST

JSB
DLD

DST

JMP
JSB
oCT
JMP
DEF
DEC
JsB
oCcT
SSA
JMP
RAL
SSA
JMP
JMP
ssB
JMP
JMP
JSB
ocT
JMP

READU
PRTSM
DTOBI

BCONV
DTOBO
MTEMP
CONVM, 1

PRTSU
DTOBI

BCONV
DTOBO
UTEMP
CONUL, I

PRTSU+2
DTOBI

BCONV
DTOBO
UTEMP+1
CONU2,1

SWTMP
BTODI

DCONV
BTODO

SWTMP

CONVC» 1
.IOC.
20102
RJCTC
PRTSC
1
+10C.
40002

CKSTC

ABORT
WRITN

WRITC
ABORT
+10C.
20104
RJCTN

D-8

STORE ID FIELDS IN COMMON
LLOCATIONS TO BE PROCESSED BY

CONVERSION SUBPROGRAM. ON
COMPLETION, STORE RESULTS IN
LLOCATIONS USED BY PROCESSING
SECTIONS. CONVM APPLIES TO ID OF
MASTER PARTS FILE3 CONUl, TO 1D
OF USAGEs CONU2, TO QUANTITY OF

USAGE3 AND CONVC, TO COST OF

PARTSC(THIS IS A BINARY TO
DECIMAL CONVERSION).

WRITE ONE RECORD OF PARTS COST
REPORT ON STANDARD UNIT 2
(TELEPRINTER OUTPUT). PRTSC IS
ADDRESS IN STORAGE AREA3 AREA IS
11 WORDS LONGs. RECORD 1S IN ASCI
CHECK STATUS OF UNIT 2.

IF BUSYs LOOP UNTIL FREE.

TERMINATE IF ANY 1/0 ERROR.

IF COMPLETE, TRANSFER TO WRITN.
IF BUSY, LOOP UNTIL FREE.
TERMINATE ON ANY OTHER REJECT
CONDITION.

WRITE ONE RECORD (BINARY) OF
NEW MASTER PARTS LIST ON UNIT 4
(TAPE PUNCH). PRTSM (INPUT AREA)

PAGE

@189
2190
2191
2192
2193
8194
2195
2196
2197
@198
2199
0200
8201
8282

Po2d6

@0304 0000008
@A305 000004
BB306 B160081X
BO307 040004
92310 002020
P3311 B26306R
28312 0201200
P8313 202020
BB314 0260804X
P0315 P26013R
@A8316 006020
BA317 B26301R
P0320 B26004X

** NO ERRORS*

SAMPLE ASSEMBLER LIST OUTPUT

CKSTN

RJCTN

DEF
DEC
JSB
0CT
SSA
JMP
RAL
SSA
JMP
JMP
SSB
JMP
JMP
END

PRTSM

«I0C.
40004

CKSTN
ABORT
READUY
WRITN

ABORT
START

IS ALSO USED AS OUTPUT AREA.

CHECK STATUS OF UNIT 4.

IF BUSY, LOOP UNTIL FREE.

IF BUSY», LOOP UNTIL FREE, OTHER-
WISE TERMINATE.

CALCULATING DISTANCE

Program "Line" will either calculate the distance between two points or find

the slope of the line connecting the points; then the point equidistant from

SAMPLE PROGRAMS

each point (the mid-point) is calculated.

Data is input using the formatter library routine four n-digit real numbers

at a time.

second quantity is the Y coordinate of the first point; the third and fourth

The first quantity is the X coordinate of the first point; the

quantities are the X and Y coordinates of the second point.

The result is output to the teleprinter by the formatter library routine;

each quantity cannot be more than an eight-digit real number.

1

INPUT
TWO POINT

MIDPOINT=
XX, Y-,
2, 2

Y,-Y,
S*x=x, Do,y -gf [4
| |
|

QUTPUT
THE RESULT
(TELEPRINTER)

GENERAL FLOW CHART

D-10

OUTPUT
THE RESULT
(TELEPRINTER)

SAMPLE PROGRAMS

Below is the source program as it is typed up on the teleprinter. After it

are the assembler listings. The first listing results from including the Z

option in the control statement. In the second listing the N option has been

included in the control statement.

NOTE: When the complete data tape has been read and the tape

E R B B IR SR R R

reader encounters 10 blank feed frames, an EQT message
is typed on the teleprinter and the computer halts.
Thus no halt instruction is needed in the program.

HED LINE FORMULI: DISTANCE, SLOPE, MID-POINT
PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING
THE POINTS; THEN THE POINT EQUIDISTANT FROmM EACH

POINT (THE MID-POINT)> IS CALCULATED.

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY IS THE X COORDINATE OF THE FIRST POINT;3 THE
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT;
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.
THE RESULT IS QUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINE:; EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.
NAM LINE

START NOP

JMP INPUT

EXT .I0C.,FLOAT,IFIX,SQRT
EXT «.DIO.»+I10l.».DTA., . .RAR.
EXT .IOR.,.IAR.

«-DATA DEF DATA

«PR
DAT
FMT
FMT
FMT

*
INP

IN DEF PRINT
A BSS 4

ASC 3,(F8.3)
2 ASC 8,(F8.35"5",FB.3/)
3 ASC 3,041I2)

SKP
INPUT THE FIRST TWO POINTS3 FOUR DATA WORDS
UT NOP

LDA =BS

CLB»INB

JSB .DIO.

DEF FMT3

DEF *+4

LDA =B4

LDB .DATA

JSB .IAR.

SPC 3

D-11

SAMPLE PROGRAMS

* THE DISTANCE BETWEEN THE TWO POINTS:
1IFZ
LDA DATA+2
CMA, INA
ADA DATA
SPC 1
JMP %x+5
PRINT REP 4
NOP
SPC 1
STA PRINT
SuUpP
MPY PRINT
STA PRINT
SPC 1
LDA DATA+3
CMA, INA
ADA DATA+1
STA PRINT+1
MPY PRINT+1
ADA PRINT
SPC 1
JSB FLOAT
JSB S@QRT
DST PRINT
XIF
SPC 3
* FIND THE SLOPE OF THE LINE
IFN
LDA DATA+2
CMA, INA
ADA DATA
JMP *+5
PRINT REP 4
NOP
STA PRINT
SPC 1
LDA DATA+3
CMA, INA
ADA DATA+1
CLB
DIV PRINT
DST PRINT
XIF
SPC 3
* OQOUTPUT THE RESULT
LDA =B2
CLB
JSB .DIO.
DEF FMT
DEF *+4
DLD PRINT
JSB .I0R.
JSB .DTA.
SPC 3

D-12

SAMPLE PROGRAMS

* FIND THE MID-POINT OF THE LINE SEGMENT:
LDA DATA
ADA DATA+2
CLB
JSB FLOAT
FMP =F.5
DST PRINT
SPC 1
LDA DATA+1
ADA DATA+3
CLB
JSB FLOAT
FMP =F.5
DST PRINT+2
SPC 1
UNL
LDA =B2
CLB
JSB .DIOC.
DEF FMT2
DEF *+5
LDA =B2
LDB .PRIN
JSB «RAR.
JSB .DTA.
LST
SPC 3
UNS
JMP INPUT
END START

D-13

PAGE

0001
START
.10C.
FLOAT
IFIX
SQRT
.DIO.
.101.
«.DTA.
-RAR.
«I0R.
-1AR.
-DATA
«PRIN
DATA
FMT
FMT2
FMT3
INPUT
PRINT
«MPY
«DST
.DLD
«FMP

SAMPLE PROGRAMS

P91

XAXXXBDDAODHDODAODOAOXKHXXXXXXXXT

PPo000
00001
PR00B2
600003
No0BB4
200005
PoBRBe6
00000817
000010
poro11
pA0012
p00B02
00003
00004
000010
200013
n00B23
A00B0R26
P0BB43
000013
P01 4
Q00015
600016

**k NO ERRORS*

D-14

ASMB>R,L>T>»Z

PAGE

P002*
PP 3%
200 4%
B0A5*
P00 6*
Q00D T*
P2B8*
2009 *
PB10*
2211=*
B012x*
PB13%*
P31 4%
PB15
2816
2817
2018
2019
2020
2021
Pg22
2823
2024

P25

2826

SAMPLE PROGRAMS

@002 #81 LINE FORMULI: DISTANCE, SLOPE, MID~POINT

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING

THE POINTS3 THEN THE POINT EQUIDISTANT FROM EACH

POINT (THE MID-POINT) IS CALCULATED.

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY IS THE X COORDINATE OF THE FIRST POINT3 THE
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT3
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.

THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINE; EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

PB0BY NAM LINE
PP0V0 P00V START NOP
B0 1 P26026R JMP INPUT

EXT .I0C+,FLOAT,IFIX>SQRT
EXT «DIOe5+¢I0I«s»+«DTA., . RAR.
EXT «IOR.,.I1AR.

00002 P0VBB4R .DATA DEF DATA

P00P3 PBPB43R +PRIN DEF PRINT

PPBV4 200002 DATA BSS 4

00010 P24106 FMT ASC 3,(F8.3)

PBB11 B34856

PBB12 031451

PPB13 B24106 FMT2 ASC 8,(F8.3,",">,F8.3/)

PBB14 D34056

PBB15 B31454

PBB16 021054

PBB17T V21054

00020 B4A3070

PBB21 V27063

PBB22 B27451

P0023 B24064 FMT3 ASC 3,(412)

00024 Q44462

PBB2S V24440

SAMPLE PROGRAMS

PAGE P9P®3 #@1 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

9828* INPUT THE FIRST TWO POINTSs FOUR DATA WORDS
2029 0026 9P00PY INPUT NOP

PR30 @0027 B62131R LDA =BS5S
AB31 POO30 B06404 CLB, INB
P32 008331 016005X JSB .DIO.
PA33 0P0OB32 P0PBGP23R DEF FMT3
334 0PDD33 OBVB3ITR DEF *+4
@35 0@0PB34 @62132R LDA =B4
P036 ©BBB35 P66002R LDB .DATA
P037 ©BPP36 B16012X JSB .IAR.

9839 THE DISTANCE BETWEEN THE TWO POINTS:

D0 40 IFZ

PB41 0@BO37 P62006R LDA DATA+2
P42 Q0P40 003004 CMA, INA
PO43 00041 B42904R ADA DATA
0045 0NOR42 P26047TR JMP *+5

PB 46 PRINT REP 4

2047 00043 POVOBD NOP

2047 00044 000000 NOP

047 0QBR4AS5S 000000 NOP

PB47 0PPA46 DOVVOO NOP

0049 @0B47 @72043R STA PRINT
PB50 SUP

P51 ©@B956 B16013X MPY PRINT
@952 PPP52 V72043R STA PRINT
PBS4 POBBS3 B620A0TR LDA DATA+3
PB55 0PPS4 003004 CMA, INA
P56 QPAPSS B42005R ADA DATA+1
P257 08056 PT2044R STA PRINT+1
PP58 Q0057 P16813X MPY PRINT+1
PB59 0POBP61 P42043R ADA PRINT
P61 PBB62 B160D2X JSB FLOAT
0062 QAB63 B16004X JSB SQRT
PO63 00D064 P16014X DST PRINT
Po6 4 XIF

@R66* FIND THE SLOPE OF THE LINE

va67 IFN

P068 LDA DATA+2
0069 CMA, INA
D70 ADA DATA
2271 JMP *+5
2072 PRINT REP 4

2073 NOP

074 STA PRINT
8075 SPC 1

2076 LDA DATA+3
001717 CMA, INA
2078 ADA DATA+1

D-16

SAMPLE PROGRAMS

PAGE 0004 #0601 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

2079 CLB
28O DIV PRINT
0081 DST PRINT
oa82 XIF

2284% OUTPUT THE RESULT

PB8S 0BP66 B62133R LDA =B2
0086 QOO67T PD6400 CLB

2087 Q0070 016005X JSB .DIO.
2088 00071 000010R DEF FMT
0089 0O072 QVPAT6R DEF *+4
2090 00073 B16015X DLD PRINT
0891 BBOTS B16011X JSB .IOR.
P092 00076 P16007X JSB .DTA.

P394* FIND THE MID-POINT OF THE LINE SEGMENT:

0295 0PB77T 062004R LDA DATA
B096 00100 V42006R ADA DATA+2
P297 00101 006400 CLB

0098 00102 016002X JSB FLOAT
P099 00103 B16016X FMP =F.5S
2100 BB185S B160814X DST PRINT
0102 00107 B62005R LDA DATA+1
2103 02110 B42007R ADA DATA+3
0124 00111 006400 CLB

2105 002112 216002X JSB FLOAT
106 @O113 O16016X FMP =F.5S
2187 00115 016014X DST PRINT+2
2119 LST

121 UNS

0122 ©0B130 @260B26R JMP INPUT

2131 000005
00132 92202004
02133 000002
02134 240000
00135 900000

2123 END START
kx NO ERRORSx

D-17

PAGE

P01
START
«.I0C.
FLOAT
IFIX
SQRT
+DIO.
«I0I.
-DTA.
+RAR.
+I0R.
-I1AR.
«DATA
«PRIN
DATA
FMT
FMT2
FMT3
INPUT
PRINT
DIV
«DST
«DLD
+FMP

SAMPLE PROGRAMS

PoA1

02000
000001
Po0002
000003
000004
P00RAS
PoPo06
200007
PoR0O10
000011
009012
000002
000003
VoBBR A
200210
020013
000023
000026
PP0V43
PoA013
000014
200015
VovB16

HXXXODVDODAODDODAODOXXKXXXXXXXXXA

% NO ERRORS

ASMBJ RJLJ TJN

PAGE

0002%*
POB3*
POB 4*
P00 5S*
Vo0 6*
POBT*
2008x*
POB9*
no10*
2011%*
Pn12x*
2013%*
PO 4%
2815
PB16
o117
Po18
2019
0020
0021
pe22
2023
2024

0825

20e26

SAMPLE PROGRAMS

P802 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING

THE POINTS3 THEN THE POINT EQUIDISTANT FROM EACH

POINT (THE MID-POINT) IS CALCULATED.

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY IS THE X COORDINATE OF THE FIRST POINT3THE
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT;
THE THIRD AND FOURTH GQUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.

THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINE:; EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

020000 NAM LINE
20000 80000 START NOP
00021 P26026R JMP INPUT

EXT «I0C.,FLOAT,IFIX,SQRT
EXT «DIOe»eIO0Il+,+DTA«s«RAR.
EXT .IOR.,.IAR.

20002 B00PA4aR .DATA DEF DATA

P0003 G0PB43R .PRIN DEF PRINT

P0004 @00PB@ DATA BSS 4

90010 024106 FMT ASC 3,(F8.3)

20011 934056

P0P12 931451

P8013 024106 FMT2 ASC 8, (FB8.3,",",F8.3/)

90014 34056

90015 B831454

20816 021054

20017 021054

00020 043070

20021 027063

20822 027451

20023 024064 FMT3 ASC 3,C4l2)

PPB24 Q44462

P0@25 024440

D-19

SAMPLE PROGRAMS

PAGE @003 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

@028* INPUT THE FIRST TWO POINTS3 FOUR DATA WORDS
8029 0PB026 0900B0 INPUT NOP

PA3B 0BP27 B62123R LDA =BS5S
0031 P30 PA64D4 CLB,INB
PA32 00031 P16RAOSX JSB .DIO.
PA33 00032 PAPV23R DEF FMT3
P234 Q0Q33 PARV3TR DEF *+4
0835 0P34 BE2124R LDA =B4
P036 0BPB35 P66VPV2R LDB .DATA
0837 00PB36 B16012X JSB .IAR.

P039* THE DISTANCE BETWEEN THE TWO POINTS:

00 40 IFZ

P41 LDA DATA+2
0042 CMA, INA

P08 43 ADA DATA
BR44 SPC 1

DB 45 JMP *¥+5

A0 46 PRINT REP 4

PR 47 NOP

P48 SPC 1

0049 STA PRINT
2050 SUP

#0951 MPY PRINT
Pa52 STA PRINT
P53 SPC 1

PO5S4 LDA DATA+3
PB 5SS CMA, INA
2056 ADA DATA+1
2057 STA PRINT+1
kes8 MPY PRINT+1
2059 ADA PRINT
0060 SPC 1

k061 JSB FLOAT
k062 JSB SQRT
k063 DST PRINT
PB64 XIF

Pd66* FIND THE SLOPE OF THE LINE

R267 IFN

P068 BBA37T A62006R LDA DATA+2
PB69 0CRO40 003724 CMA, INA
0070 0BB41 B420@4R ADA DATA
B071 0POV42 B26047R JMP x+5
va72 PRINT REP 4

073 09043 200000 NOP

PBT3 00044 000000 NOP

@073 00045 000000 NOP

PB73 00046 900000 NOP

P074 0OB47 @72043R STA PRINT
0076 00050 062007R LDA DATA+3
9877 00051 203004 CMA, INA
078 0VB52 B42005R ADA DATA+1

PAGE

P279
2086

2081

o082

208 4x%
2085
2086
0es7
0088
0089
Po90

0091
pB92

P09 4%
2095
2396
2097
2098
2099

2100
2102
21083
2104
2185
0106

2107

o119

2121
g122

0123

PP04 #01

280853
PBO54
20855
280856
20057

SAMPLE PROGRAMS

206400

P16013X
2204 43R
P16014X
9000 43R

LINE FORMULI:

CLB
DIV

DST

XIF

OUTPUT THE RESULT

20060
0061
0062
00063
20064
20065
P0B66
0067
20070

FIND
20071
oeB72
20073
20074
9875
20076
200717
62108

20101
20102
k2163
00104
90185
PB196
22107
2110

vR122
00123
20124
0125
PB126
ko121

P62125R
06400

216805X
200010R
099D TOR
B16015X
0800 43R
P16011X
A160807X

THE MID-POINT

P62004R
D42006R
036400

2160802X
P16016X
PB0126R
P16814X
PB8B843R

262005R
D429007R
006400
2160082X
P16016X
BBO126R
P16014X
D000 45R

P26026R
200005
000094
2008002
040000
002000

** NO ERRORSx*

LDA
CLB
JSB
DEF
DEF
DLD

JSB
JSB

LDA
ADA
CLB
JSB
FMP

DST
LDA
ADA
CLB
JSB
Fmp

DST

LST

UNS
JMP

END

D-21

DISTANCE.,

PRINT

PRINT

.DIO.
FMT
*+ 4
PRINT

+I0R.
.DTA.

DATA
DATA+2

FLOAT
=F.5

PRINT

DATA+1

DATA+3

FLOAT
=F+.5

PRINT+2

INPUT

START

SLOPE,

OF THE LINE SEGMENT:

MID-POINT

APPENDIX E
SYSTEM INPUT/OUTPUT SUBROUTINES

The System Input/Output (SIC) subroutines may be used to perform basic input/

output operations for programs in absolute form.T

MEMORY ALLOCATION

These drivers are stored in high memory immediately preceding the Basic Binary
Loader. The Teleprinter driver must be loaded first; it is stored in the
highest portion of this area. The drivers for the Punched Tape Reader (or
Marked Card Reader), the Tape Punch, and the Magnetic Tape Unit may then be
loaded. The sequence of loading must fall within this order, depending on
your equipment configuration: Line Printer Driver, Punched Tape Reader

Driver (or Marked Card Reader), Tape Punch Driver, Magnetic Tape Driver, and

if needed, the MTS Boot.

The drivers are accessed through 15-bit absolute addresses which are stored

in the System Linkage area starting at location 101 The allocation of

g
memory is as follows:

07777 OR 17777 BASIC BINARY LOADER
07700 OR 17777 ~.<—TELEPRINTER DRIVER

N~ _PUNCHED TAPE

\\READER DRIVER
///// \,\TAPE PUNCH DRIVER
MAGNETIC TAPE DRIVER

AT/ZCI)EFZSTE INTER -PASS LOADER
MEMORY (MTS)

N\ BASE PAGE \\
\\ AVAILABLE

00107 MEMORY
00100 ey . S SYSTEM LINKAGE
00000——— s WS—RESERVED LOCATIONS

TThe SIO subroutines are designed for use with FORTRAN, Assembler, Symbolic
Editor, etc.; however, they may be used with any absolute object program.

E-1

SYSTEM INPUT/OUTPUT SUBROUTINES

OPERATION AND CALLING SEQUENCE: PAPER TAPE DEVICES

All data transmission is accomplished without interrupt control, and there-
fore, operations are not buffered by the drivers. Control is not returned
to the calling program unitl an operation is completed. Date is transferred

to and from buffer storage areas specified in the user programn.

The general form of the paper tape input/cutput calling sequence is:

LDA <buffer length> (words or characters)
LDB <buffer address>
JSB 10fB,I (f is Input/Output functionj

<normal return>

Register Contents

When the JSB is performed, the A-Register must contain the length of the

buffer storage area and the B-Register, the address of the buffer. Control
returns to the location following the JSB. After an input request is completed,
the A-Register contains a positive integer indicating the number of characters

or words transmitted, or zeros, if an end-of-tape condition occurred.

The digit supplied for f in the JSB instruction determines the paper tape
input/output function to be performed. The value of the operand address is
the location in the system linkage that contains the absolute address of the

driver entry point. The following are available:

101 Input

102 List Output

103 Punch Output

104 Keyboard Input-ASCII data is read from teleprinter and printed

as it is received.

SYSTEM INPUT/OUTPUT SUBROUTINES

If the Teleprinter driver alone is loaded, these locations point to entry
points of this driver. If Punched Tape Reader and Tape Punch drivers are in
memory, location 101 points to the Punched Tape Reader driver and location
103, to the Tape Punch driver. If the latter are to be used, they must be

loaded after the Teleprinter driver.

OPERATION AND CALLING SEQUENCE: MAGNETIC TAPE DRIVER

As with the Paper Tape SIO drivers, all data transmission is accomplished
without interrupt control. Control is not returned to the calling program
until an operation is completed. (Rewind and Rewind/Standby are the only
exceptions to this. 1In these cases return is made as soon as the command is

accepted.)

The general form of the calling sequence is:

LDA <buffer length> or <file count>
ILDB <buffer address> or <record count>
JSB 107B,I

OCT <command code>

<EOF/EQT/SOT return>

<error return>

<normal return>

NOTE: Location 107 _ must contain the address of the magnetic
tape driver.

Register Contents

Before initiating read or write operations, the A-Register must contain the
buffer length. This will be a positive integer if length is defined in

characters and a negative integer if length is defined in words. The

SYSTEM INPUT/OUTPUT SUBROUTINES

B-Register must contain the buffer address.

Before initiating tape positioning operations, the A-Register must contain
the number of files that are to be spaced. A positive integer indicates
forward spacing; a negative integer indicates backward spacing. The B-
Register contains the number of records that are to be spaced. A positive
integer indicates forward spacing; a negative integer indicates backward
spacing. The positioning may be defined in terms of any combination of for-
word or backward spacing of files and records (e.g., space forward two files
then backspace three records). If files only or records only are to be

spaced, the contents of the other register should be zeros.

The registers are not used when entering the subroutine to perform one of

the following operations:

Write end-of-fileé Rewind/Standby
Write file gap Status
Rewind

Linkage Address

1078 is the gystem linkage word that contains the absolute address of the

entry point for the Magnetic Tape driver.

On return from a read operation, the A-Register contains a positive value

indicating the number of words or characters transmitted.

On return from all operations except Rewind and Rewind/Standby, the B-Register

contains status of the operation. (See Status.)

SYSTEM INPUT/OUTPUT SUBROUTINES

MAGNETIC TAPE OPERATIONS

The magnetic tape driver will perform the following operations. The pertinent
operation is specified by the command code which appears after the OCT in

the calling sequence.

Operation Command Code
Read 0
Write 1
Write End-of-File 2
Rewind (Auto mode) 3
Position 4
Rewind/Standby (Local mode) 5
Gap 6
Status 7

Read

One tape record is read into the buffer. The number of characters or words
read is stored in the A-Register. The value will be equal to the buffer
length except when the data on tape is less than the length of the buffer.
One tape record is read to transfer the number of characters specified into
the buffer. The number of characters in that record {(not the number trans-
ferred) will be stored in the A-Register. If the tape record exceeds the
buffer length, the data will be read into the buffer until the buffer is
filled, the remainder of the record will be skipped. If the length of an
input buffer is an odd number of characters, a read operation will result in
the overlaying of the character following the last character of the buffer;

the subroutine actually transmits full words only.

Three attempts are made to read the record before returning control to the

parity error address.

SYSTEM INPUT/OUTPUT SUBROUTINES

If an EOT condition exists at the time of entry, the command will be ignored

and control will be returned to the EOT/EOF address.

If the buffer length specified is 0, contrel will return to the normal

address without any tape movement.

The input buffer storage area can be as large or as small as needed. The

number of characters in the tape record will be stored in the A-Register.

Write

The contents of the buffer is written on tape preceded by the record length.
Since a minimum of 7 tape characters (12 on 3030) may be written, short

records are padded.

If the end-of-tape is detected during the write operation, the normal return
is used. The next write operation, however, results in a return of control of
the EOF/EOT location; no data is written. If an EOT condition exists at the
time of entry, the command will be ignored and control will be returned to the

EOT/EOF address.

Write End-of-File

A standard EOF character (l78 for 2020,238 for 3030) is written on tape.
Control return to the normal location with the EOF status on the B-Register.

No gap is written.

If the end of tape was reached on a previous write command, control returns

to the EOF/EOT location; the character is written.

SYSTEM INPUT/OUTPUT SUBROUTINES

Rewind

This command initiates a rewind operation and then immediately returns con-

trol to the normal location.

The calling sequence for a Rewind operation consists of:

JSB 107B,I
oCT 3

<normal return>
The user need not test status on the rewind operation before issuing the next
call.
Position
This is the general command to move the tape. Both file and record operations
may be defined in the same operation. Either may be specified for forward
or backward spacing. At the completion of the operation the tape will be

positioned ready for reading or writing.

An attempt to space beyond the end-of-tape or start-of-tape will terminate the

positioning operation and return control to the EOF/EOT/SOT location.

Rewind/Standby

This causes the tape to be positioned at load point and switches the device
to local status. Control returns to the normal location immediately after

the operation is initiated.

SYSTEM INPUT/OUTPUT SUBROUTINES

The calling sequence for a Rewind/Standby operation consists of:

JSB 1078B,I
OoCT 5

<normal return>

An attempt to issue another call on this device results in a halt (102044).

The device must be switched to AUTO before the program can continue.

Gap
This command causes a three-inch gap to be written on the tape.

If the end-of-tape was reached on a previous write command, control returns

to the EOF/EOT location; the gap is not written.

Status

This command returns certain status bits in the B-Register. The driver per-
forms a clear command whenever it is entered and as a result the only bits

that are valid indicators are:
Start-of-Tape
End-of-Tape
Write Not Enabled

All other commands (except Rewind and Rewind/Standby) provide valid status

replies on return to the program.

SYSTEM INPUT/OUTPUT SUBROUTINES

The status reply consists only of bits 8-0 and has the following significance:

Bits 8-0

1xxxxXxxxX

X1XXXXXXX

XX1XXXXXX

XXX 1xXXXXX

XxxX1xxXxx

XXXXX1XXx%

XXXXXX1xXxX

XXXXXxX1x

XXXXXXXx1

Condition
Local - The device is in local status

EOF - An End-of-File character (l78 for 7
track, 238 for 9) has been detected while

reading, forward spacing, or backspacing.

SOT - The Start-of-Tape marker is under the

photo sense head.

EOT - The End-of-Tape reflective marker is
sensed while the tape is moving forward.
The bit remains set until a rewind command

is given.
Timing - A character was lost.

Reject - a) Tape motion is required and the
unit is busy. b) Backward tape motion is
required and the tape is at load point.

c) A write command is given and the tape

reel does not have a write enable ring.

Write not enabled - Tape reel does not have

write enable ring or tape unit is rewinding.

Parity error - A vertical or logitudinal
parity error occurred during reading or
writing. (Parity is not checked during

forward or backward spacing operations.)

Busy - The tape is in motion or the device

is in local status.

SYSTEM INPUT/QUTPUT SUBROUTINES

Following is a table summarizing the tape commands:

Command Call Return

Operation Code A B A B
Read /i Buffer Buffer Buffer Status

Length Address or

Record
Length

Write 1 Buffer Buffer Buffer Status

Length Address Length
Write 2 - - - Status
EOF
Rewind 3 - - - -
(Auto mode)
Position 4 Number Number - Status

of Files, of

Direc~ Records,

tion Direction
Rewind/ 5 - - - -
Standby
(Local
mode)
Gap 6 - - - Status
Status 7 - - - Status

Additional Linkage Addresses

Other locations in the system linkage area contain the following:

1008 Used by the standard software system to store a JMP to

the transfer address.

1058 First word address of available memory.

1068 Last word address of available memory.

E-10

SYSTEM INPUT/OUTPUT SUBROUTINES

The latter two locations may be accessed by an absolute program. The user
may store the first word of available memory in 105 by performing the

following:

ORG 105B

ABS <last location of user program +1>
The last word of available memory is established by the drivers; it is the

location immediately preceding the first location used by the last driver

loaded.

BUFFER STORAGE AREA

The Buffer Address is the location of the first word of data to be written on
an output device or the first word of a block reserved for storage of data
read from an input device. The length of the buffer area is specified in the
A-Register in terms of ASCII input or output characters or binary output
words. For binary input, the length of the buffer is the length of the record
which is specified in the first character of the record. ASCII and binary
input record lengths are given as positive integers. The length of a binary
output record is specified as the two's complement of the number of words in

the record.
In addition to describing the buffer area in the calling sequence (for first

word of binary input record), the area must also be specifically defined in

the program, for example with a BSS instruction.

RECORD_FORMATS

ASCII Records (Paper Tape)

An ASCII record is a group of characters terminated by an end-of-record mark

which consists of a carriage return, , and a line feed, @ .

E-11

SYSTEM INPUT/OUTPUT SUBROUTINES

For an input operation, the length of the record transmitted to the buffer is
the number of characters designated in the A-Register, or less if an end-of-
record mark is encountered before the character count is exhausted. The codes
for and @ are not transmitted to the buffer. An end-of-record mark

preceding the first data character is ignored.

For an output operation, the length of the record is determined by the number
of characters designated in the request. An end-of-record mark is supplied

at the end of each output operation by the driver.

If a RUB OUT code followed by a @ is encountered on input from the
teleprinter or punched tape reader, the current record is ignored (deleted)

and the next record transmitted.t

If less than ten feed frames (all zeros) are encountered before the first
data character from the punched tape reader, they are ignored. Ten feed

frames are interpreted as an end-of-tape condition.

Binary Records (Paper Tape)

A binary record is transmitted exactly as it appears in memory or on 8-level
paper tape. Each computer word is translated into two tape "characters"”

(and vice versa) as follows:

15 87 0

\ AN /

Vo NV

15! TAPE CHAR.(15 14]13{12]11|10
2@ TaPpe cHar. | 71615141312

-
Oo|m®

+ RUB OUT which appears on the teleprinter keyboard is synonymous with
the ASCII symbol DEL .

12

3
1

SYSTEM INPUT/OUTPUT SUBROUTINES

For an output operation, the record length is the number of words designated
by the value in the A-Register (the value is the two's complement of the
number of words). For input operations, the first word of the record contains
a positive integer in bits 15-8 specifying the length (in words) of the

record including the first word.

On input operations if less than ten feed frames precede the first data
character, they are ignored; ten feedframes are interpreted as an end-of-tape
condition. On output, the driver writes four feed frames to serve as a phys-

ical record separator.

Binary Records (Magnetic Tape)

The Magnetic Tape subroutine reads and writes binary (odd parity) records
only. A record count is supplied by the driver as the first word of the
record. This allows automatic padding of short records to the minimum record

length with automatic removal of the padded portion of the record on read.

2020 7-LEVEL TAPE

Each computer word is translated into three tape "characters" (and vice versa)

as follows:

15 1 10 6 5 0
computer word [1 O 1 1 OOt 1 ¥ 01 +00OI]
'_'—'V""—‘s p . f_ﬂ____, *Bits 1O and 5 are recorded
rd part o ‘e -/ {wlce, in two tape characters
word 2nd g%’r'dd tst part of as shown. ’

TAPE TRACKS

1st tape character
2nd o "
3rd "

P =0dd parity bit

SYSTEM INPUT/OUTPUT SUBROUTINES

3030 9-LEVEL TAPE

Each computer word is translated into two tape "characters" by repositioning

the bits in the following scheme:

COMPUTER WORD BITS 15 87 0

1st word contents |1 0 0 0 1 100::101 11101

2nd word contents |01 1010011101001 0

TAPE TRACK 7653918211111111
ASSIGNMENTS 76639182 (TRACK4IS THE

ODD PARITY BIT

TAPE TRACKS

1st tape character
2nd tape character
3rd tape character
4th tape character

OPERATION AND CALLING SEQUENCE: MARK SENSE CARD READER

The SIO Mark Sense Card Reader Driver overlays the Punched Tape Reader Driver
exactly, therefore, only one or the other of these two drivers may be used

in any one SIO System configuration. Further, the driver has no binary read

capability; if this ability is needed, the BCS Mark Sense Card Reader Driver

will have to be used.

All data transmission is accomplished without interrupt control. Execution
control is not returned to the calling program until a complete card has been

read.

The general form of the calling sequence is:

LDA <character count> (positive)
LDB <buffer address>
JSB <101B,1I>

<normal return>

SYSTEM INPUT/OUTPUT SUBROUTINES

Register Contents

Before the JSB is executed, the A-Register must contain the character count
(the buffer length) and the B-Register must contain the buffer address. Con-
trol returns to the location following the JSB; then the A-Register will
contain the number of characters transmitted not including trailing blanks,

or, if a transmission error was detected, it will contain all =zeroes.

APPENDIX F
CONSOLIDATED CODING SHEET

15 14 13 12 11 10 9 | 8 7 6 | 5 4 3] 2 1 0
D/1 AND 001 0 Z/C - Memory Address >
D/1 | XOR 010 0 z/C
D/1 | I0R 011 0 Z/C
D/1 | JSB 001 1 Z,/C
D/1 | amp 010 1 Z/C
D/1 | 152 011 1 Z/C
D/1 | AD* 100 A/B Z/C
D/1 | Cp* 101 A/B Z/C
D/1 | LD* 110 A/B Z/C
D/1 | ST* 111 A/B Z/C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 | SrRG 000 A/B 0 DJ/E | *LS 000 CLE D/E SL* | *LS 000
*RS 001 *RS 001
R*L 010 R*L 010
R*R 011 R*R 011
*LR 100 *LR 100
ER* 101 ER* 101
EL* 110 EL* 110
*LF 111 *LF 111
NOP 000 000 000 000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 | ASG 000 A/B 1 |c* o1 |CLE Ol | SEZ SS* SL* | IN* SZ* RSS
CM* 10 | CME 10
cc* 11 |CCE 11
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 10G 000 A/B 1 H/C HLT 000 <+——————Select Code —————»
1 0 STF 001
1 1 CLF 001
1 0 SFC 010
1 0 SFS o011
1 H/C MI* 100
1 H/C LI* 101
1 H/C OT* 110
0 1 H/C STC 111
1 1 H/C CLC 111
1 0 STO 001 000 001
1 1 CLO 001 000 001
1 H/C SOC 010 000 001
1 H/C SOS o011 000 001
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 EAU 000 MPY** 000 010 000 000
DIV ** 000 100 000 000
DLD** 100 010 000 000
DST** 100 100 000 000
ASR 001 000 0 1
ASL 000 000 0 1
LSR 001 000 1 0 ““gber
LSL 000 000 1 0 - bit -
RRR 001 001 0 0 s
RRL 000 001 0 0

Notes: * = AorB.
D/1, A/B, Z/C, D/E, H/C coded: 0/1.
**Second word is Memory Address.

INDEX

A C
ABS. ittt eannnen 2-7,2-8,2-11,4-16 CLA, CCB. .t ieeeeeooooooanancancnsns 3-7
Absolute eXpressiOnsS......c.cee... 2-11 CCE. . veeeeetansnesasscncancnnnasns 3-7
BASCeeeereeeeenensnoeanns 2-7,4-18,4-25 Character set.....cccceeenocens 2-3,A-1
ADA, ADB.¢ccsoosenscccnsnonas 2~14,3-2 CLA, CLB.iu.iveeeseecsoonoasonosasns 3-6
Address definition............... 4-13 CLC. i it tttecesacesoncosoosnncnsnsns 3-9
Address eXpresSSiONS...c.ccecececcans 2-9 Clear flag...eeeeeeceooonssosenne 2-16
AddresSSing.eeeeeceeeeeaecececcoaaas 1-1 O I 3-10
£ 3-5 O 3-5,3-7
Alphabetic list of L 7 3-10
instructions...ceeeeieeenicennns c-1 CMA, OMB. .o oo, 3:6
N 3-5 CME. o oo oo 327
Alter-skip instructions........... 3-6 CPA, CPB. .o, 2-14,3-4
BLS e i it ieeeeeecoensacasoscnoncnsnnns 3-5 COQING FOTM. . vnvsversenneenneennns 222
AND. ittt rnieeneneneanannnnas 2-14,3-3 o 2-5,2-7,4-9,5-1
Arithmetic subroutine calls...... 4-27 COMMENES .« oo oo oo oo 2-16
ARS.etvunnnennnnnneononaannenannns 3-5 Control Statement. 51
P 3-13 Consolidated coding sheet......... Fo1
) 2 3-13 Constant definition. 4-18

Assembler Control.....v.eeeeeueaes 4-1 b
AstericK...eieeerieeeceeonannea 2-5,2-9 DEC. .o, 2-7,2-8,2-11,4-19,4-25
B 10) o1 2-7,2-11,2-15,4-13
Base pPAgee .ttt etetitrrosnncnnnne 2-16 DElimiterso 9-1
BCD/ASCII. e ieivesesnsenasosasannns A-3 o S 2-7,2-8,2-11,4-21
Binary Coded Decimal Format....... A-3 DIV, oo 2-14,3-12,4-25,4-27
Binary OUtpPUt..eeerneetesnsonnasas 5-3 DID. oo, 2-14,3-12,4-25,4-28
BLE . eiereeiineeeereeceannonasonnnas 3-5 DST. o onessee e 3-12,4-25,4-28

BLR. i tieeeaneseeasocecnonenenaanns 3-5 E
BLS e ittt i iieteonanacnacancananns 3-5 T VT 3.5
BRS . ittt ieeenenensnnnsnnannns 3-5 o 35
BSOS it ittt ittt it 2-7,4-24 END. oo oo 9-17,4-3,4-4, 4-8
ENT . ittt iieecenanannas 4-11,5-1
ERA . ittt ittt titennancennnns 3-5

ERBeteeeieieoeeeeiastsonesonnananase 3-5
EQU. e eeteevneennnnnennnes 2-7,2-8,4-16
EXTereerenncnrcaconns 2-5,2-7,4-11,5-1
Extended arithmetic
instructions....ceceicirnrocann 3-11
F
FAD....ceo. ceccecnnnes 2-14,4-25,4-28
FDV. e ineereennaennns 2-14,4-25,4-28
FMPe e iiinnnneeeennenns 2-14,4-25,4-27
FSBeveeeeann ceecseecccns 2-14,4-25,4-28
H
HED. oot eeiereeenennanonsanns 4-2,4-26
1 2-17,3-11
I
0 4-4
0 4-4
INA, INB.....eceteeeneecocccoccnns 3-7
Indirect addressing.....ceeeeeane 2-14
Input/output instructions......... 3-8
INStrUCLioNS. et iencecceonanas 2-1
TOR: ceeeeeeeeonenansacncccas 2-14,3-14
ISZ . it eeeeeaceenasseacssnccsssnsans 3-2
J
JMP .t iiieeeeeecoecaasacancccssnnns 3-2
JSB. it iiiii ittt eecttnccannaans 3-2
L
LabelS.ieeeeaeonneesessossenacannas 2-4
IDA, ILDB....cereineeanccannnn 2-14,3-3
LIA, LIBui:eeeeoeonnesoanccsnsnnnsnse 3-9
Listing control.......viceeeeeeee 4-24
LIST output.. .t rnnccnosanss 5-4
LiteralS.ceieseceecscansascacennas 2-13
Logical operations.......ceceveeses 3-3
7 3-13
LOR e ettt eeeveceosssancncccnccnans 3-13
0 4-25

M
Memory reference instructions..... 3-1
MIA, MIB.iiiiiiinennnnnnnnnnnn 3-9
MPY., . ' ieeenennnn 2-14,3-12,4-25,4~-27
N
NAM,oinenne. 1-4,2-17,4-1,5-1,5-3
No-operation instruction.......... 3-6
) 3-4,3-6,4-8
Numeric terms...........ccevunnn.. 2-8
O
Object program linkage............ 4-9
OCT.,...ivennnn. 2-7,2-8,2-11,4-22,4-25
OpPCOGEeS. . viiiiieeneeceenenscncannn 2-5
Operands......ceeescsccecnaenannan 2-6
Operators.iiiiieenrinnnnrnnas 2-9
Options. iiiniiieiiinnnnanenn 1-4
ORB...veieeecnonacnnaanann 1-4,4-3,5-1
ORG, . iiteteenereacnonaanas 1-4,4-1,5-3
L 4-2
OTA, OIB. ... iiieerinnonancenoannn 3-9
Overflow instructions............ 3-10
P
PaSSeS. . .iiietiiiiiiiiieii e 1-1
Program location counter.......... 1-3
Psuedo-instructions............... 4-1
R
0 3-5
RAR . ittt tiiiettenansccsennannnns 3-5
RBL, i iiieirennocencencenacenananss 3-5
RBR, .ttt einenereennnsananennnnns 3-5
Register reference
instructions..........ccivivin.n. 3-4
Relocatable expressions.......... 2-12
Relocation,........civieiennnnn.. 1-3
REP, i iiiiiiiiereetoneccnnnens 2-7,4-7
RRL, iiieieennsecosnsnsosossannnne 3-13
RRR, ittt iiiitenccecassaannnnnns 3-13
RS, ittt ittt tiiiinnnseeene 3-7

S

Sample pProgram.....cceeeeeesssesas D-1
S 3-7
SFC . et teeeeeeorecesoneseasconcnnans 3-10
S 3-10
Shift-rotate instructions......... 3-5
SIO AriverS...ceeeeesseseonsesncnns E-1
S 0 4-26
SLA, SLB.eteeeeeceaaceascansnnsse 3-5,3-7
SOC e e e tneeesesonnsansansonns 2-17,3-11
SOS et ittt ettt eresaarnons 2-17,3-11
SOUYCE PrOJYaAlM..ceeescssccasacecss 5-3
SPC . ittt eeteeeeeeassassansassnnsse 4-26
SSA, SSB.tiiireriteecatsnnssaannas 3-7
STA, STB.. it iiiieeeeesenneassnnanans 3-3
Statements......cieveiiieniinnenn. 2-1
Statement length.................. 2-3
ST C e e ittt iieeeeeaassncsassscannsas 3-8
ST et ittt ieneteeasesconcnsensoans 3-10
ST0. it ittt eaacececneeassaananes 3-11
Storage allocation......evvvuv... 4-24
SUMMAYY ¢ e e oo soveesoscosascsoscnsas B-1
SUP .t ittt iteeeeoncnnannnanonns 4-25
S ittt st esvesancanssnnnns 3-14
SYMbOLlS. st ittt tnevencncnoanansans 2-7
Symbol definition........ccivee... 4-13
SZA, SZB.e ittt iiretsesnnnnnnanns 3-7

U
UNL.t st esneesanneeesnneannnnnnnnann 4-24
UNS.t s esenevennnevnnnneennnnnennns 4-25
X
KIF e e eeenneeannneasennneeenannnens 4-4
(o) 2-14,3-4

02116 - 9014

