cddEdE OE G eE aaaaooaaaa.

ENTENTENTENTERTEN RN TR TN TN N - =Y ' { ' /|

PR WULWLULWWLUWLILIe) @i

(L) (2 (2) L) (2 D) L) L) L)) LS

)
D) L D LD L)L & \ '\l‘llﬂll'ln

&)

[= YA)

) oo G

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

\

Disk Programming

HP 9825A Calculator and HP 9885M Flexible Disk Drive

Hewlett-Packard Fort Collins Division
P.O. Box 1550, Fort Collins, Colorado 80522
(For World-wide Sales and Service Offices see back of manual.)
Copyright by Hewlett-Packard Company 1877

rev:9/77

Printing History

Each new edition incorporates all material updated since the previous edition. Each
new or revised page is indicated by a revision (rev) date. Manual Change sheets are
issued between editions and contain information to be corrected or inserted in the
manual by the user.

The date on the back cover changes only when each new edition is published. Minor
corrections or additions may be made as the manual is reprinted between editions.

First Edition Dec 1976
Second Edition...... Sept 1977

rev:9/77

1]
Table of Contents
Chapter 1 - General Information

Introduction 1
9825A Calculator 1

9885M Disk Drive 2

98858 Disk Drive 2

The Disk 2
‘Option 025 Interface Kit 3
Requirements 3
Suggested Disk Manufacturers 3
Getting Started 4

Chapter 2 - Disk Structure

Introduction 7
Systems Area 8
P System Table 9
File Directory 9
Availability Table ; 10
Bootstraps Area 10
Backup Track 11
Storage Area 11
File Structure 11
Program Files 11

Data Files 12

Serial File Access 12
Random File Access 13

Serial vs. Random File Access 13

Write Protecting the Disk 14

Chapter 3 - Program File Operations

Introduction
Conventions
Requirements
Program File Statements
Drive Statement
File Names
Save Statement
Catalog Statement
Get Statement
Chain Statement
Kill Statement
Rename Statement
Resave Statement
Save Keys Statement
Get Keys Statement
Program Storage Requirements

Chapter 4 - Data File Operations

Introducton

Overview of Data File Operations

Conventions
Data File Statements
Open Statement
Files Statement
Data File Pointers
Assign Statement
Serial Print Statement
Serial Read Statement
Random Print Statement
Random Read Statement
Positioning the Pointer
On End Statement
Type Function
Data Storage Requirements
Summary of EOR and EOF Marks

15
15
16
17
17
17
18
20
22
25
27
28
28
29
29
30

31
31
32

.33

33
34
35
36
38
41
43
46
47
50
51
53
54

v
Chapter 5 - Other Operations
Additional Statements 57
Save Memory Statement 57
Get Memory Statement 57
Repack Statement 58
| Verify Statements 58
Copy Statements , 59
} Disk Copy 59
| File Copy 60
Partial File Copy 60
Dump Statements ' 62
Disk Dump 62
File Dump ‘ ' 62
Load Statements 63
Disk Load . , 63
File Load ; 63
Get Binary Statement 64
Error Recovery Routines ‘ 64
Record Header Error (d5) 64
Track Not Found Error {(d6) 65
Data Checkword Error (d7) ‘ . 66
Binary Programs 67
Initialization Routine ; 67
Bootstrap Routine ‘ 67
Verify Boots Routine 67
Killall Routine - ‘ 67
Error Messages , 68
Appendix A - Disk Specs and Care
Specifications 69
Disk Capacity - 69
Disk Speed 69
Transfer Times 70
Disk Care ; 72
Guidelines ; 72
System Reliability ; 73

Maintenance A ; 73

Vi

Appendix B - Installation and Set Up

Getting Started
1 Unpacking Your System
Equipment Supplied
Additional Equipment
Option 002 Rack Mount Kit
2 Checking Fuses, Voltage and Power Cords
Fuses
Power Requirements
Option 001 for 50Hz Operation
Power Cords
Connecting Calculators, Drives and Interface Cable Cards
Setting Drive Switches and Select Codes
Installing the ROM Card
Installing the Disk
Turn On
Pattern Test (Verification Routine)
Testing the System

© O N O O A~ W

Disk System Cartridge Programs
Checkread Test
HPL Disk Test
Self Test
10 Initializing Blank Disks

Appendix C - Terms, Statements and Errors

Disk Terms

Disk Statement Summary
ASCII Table

Sales and Service Offices
Index

Error Messages

75
75
76
76
77
78
78
79
79
80
81
82
83
84
85
86
87
87
88
89
89
90

93
96
106
107
109
112

Chapter 1
General Information

Introduction

The HP 9885 Disk Drive is a mass storage device that uses a flexible disk as the storage
medium. Flexible disks can be accessed much faster than tape cartridge and have more than
twice the storage capacity. The amount of available storage space is more than .4 million data
bytes per disk. In addition, short data access time makes the system extremely powerful and
file access by name makes the system easy to use.

The 9825A/9885 Flexible Disk System can accommodate up to a total of 32 HP 9885M (Mas-
ter) Disk Drives and HP 9885S (Slave) Disk Drives in combination. Each component of the
system is discussed briefly in the following pages.

9825A Calculator

The system requires an HP 9825A Calculator with any one of the available memory sizes. The
HP 98032A Option 085 Interface Cable connects the 9825A Calculator to the 9885M Drive.

2 General Information

9885M Disk Drive

The 9885M is the controller drive in single and multiple drive systems. The 9885M can hold
and operate one flexible disk at a time. At least one 9885M is required for the system to
operate, although up to eight* 9885M'’s can be connected to a calculator.

HP 9885M and 9885S Flexible Disk Drives

9885S Disk Drive

The 9885S is the slave drive used in multiple drive systems. Up to three 9885S Drives can be
connected to each 9885M in the system. Each drive can hold and operate one flexible disk at
atime. The 09885-61607 cable connects the drives in a multiple drive system.

The Disk

The flexible disk is the storage medium for the system. Each disk can hold more than .4 million
bytes. Only the lower surface of the disk is used for storage.

Flexible Disk

Each disk must be initialized before using it for the first time. For this procedure, refer to

Initializing New Disks, page 90. (One of the disks supplied with your system is already in-
itialized and ready for use.)

*An HP 9878A 1/0 Expander is required if more than three interface cablés (including those for 9885M Drives)are connected to
the calculator.

General Information 3

Option 025 Interface Kit

The Option 025 Interface Kit consists of an HP 9885 Disk ROM Card, an HP 98032A Option
085 Interface Cable, a Disk System Cartridge, two disks and manuals. When the Disk ROM is

installed in your calculator, it requires 1140 bytes of RWM (read/write memory).

Option 025 Interface Kit

The Disk System Cartridge contains programs to test the system, initialize new disks and load
the disk system's "bootstraps” (system statements needed to operate the disk drive, not
found in the Disk ROM) and Error Recovery Routines.

Requirements

Before using this manual, you should be familiar with the calculator operations and the HPL
programming language described in the HP 9825A Operating and Programming Manual.

Suggested Disk Manufacturers

A list of approved disk manufacturers is available through your HP Sales and Service Office.
Use only those disks with your 9885 Flexible Disk System, or loss of data, damage to the
read/write head and high maintenance costs are likely to result.

IMPORTANT
Do not use disks other than those approved by HP, other-
wise permanent damage to your drive will result.

4 General Information

Getting Started

An initialized disk is supplied with your system. With this disk
installed, you can begin using your system immediately. Fol-
low the steps below (referring to the detailed instructions in the
Appendix, when necessary) to get your system set up and
ready to use.

1 Once your 9825A Calculator and 9885M Drive (or Drives) are unpacked, inspect them
for damage...further instructions are found on page 75.

2 Check for the appropriate fuse, line voltage and power cords... more electrical infor-
mation is found on page 78.

WARNING
ALWAYS DISCONNECT THE DRIVE FROM ANY AC POWER
SOURCE BEFORE CHANGING FUSES OR SETTING VOLTAGE
SELECTOR SWITCHES.

3 Connect the calculator to the drive, or drives, using the 98032A Interface Card cable,
or cables. Then connect the calculator and the drive, or drives, to an ac power

source... for further information about connecting the calculator and drives, see page
81.

4 Set the drive number switch on the back panel of each drive for the appropriate drive
number-0 thru 3. (The drive number selected is the one opposite the dot on the
switch.)Set all select codes-8 thru 15 on all Interface Card cables for the appropriate
select code...drive number 0, select code 8 are most often used...see page 82 for
additional information.

5 Install the HP 98217 Disk ROM in the calculator... instructions to do this are on page 83.

General Information 5

6 Install the HP Disk with the Initialized Disk label if you want to use your system im-
mediately. (The other disk provided is not initialized and should be used only if your
next step is 10-Initializing a Blank Disk.)...maore instructions for installing a disk are on
page 84.

7 Turn on the calculator and drive, or drives, in your system.. see page 85 if you want
further turn on instructions.

8 To be sure your system is installed correctly and functioning properly, perform the
Checkread Test on page 86.
Then if you want to start using your system immediately, skip to Chapter 3 - Program
File Statements. (Chapter 2 covers disk structure, program files, data files and the
difference between random and serial data file access. The next two steps involve
further testing of your system and initializing blank disks.)

9 Testing...the entire system can be tested using the Pattern Test and the HPL Disk Test
by following the steps on page 88.

To test the electrical performance of the drive with a blank disk or with no disk at all,
use the Self Test on page 89.

1 O initializing blank disks...to initialize a blank disk and load bootstraps, follow the proce-
dure on page 90.

IMPORTANT

should not be pressed during any disk operation. Pres-
sing during a write operation (i.e. anything that
changes information on the disk) can leave the disk in an
inconsistent state. For example, if is pressed during
ki 11, the file entry may be removed from the directory but
the available space may not be returned to the availability
L table.

Chapter 2
Disk Structure

Introduction

The disk used in the Flexible Disk System is a circle of plastic 20cm (7 7/8”) in diameter,
enclosed in a sealed black plastic jacket. Bonded onto the surface of the disk is a ferromagne-
tic iron oxide with characteristics similar to magnetic tape. Data is stored in the form of binary
digits (bits) represented by magnetized spots on the disk. Information is stored and retrieved
by means of a read/write head that comes in contact with the lower surface of the disk.

Data is stored in concentric tracks on the disk. Each disk has 67 circular tracks, numbered 0
thru 66. The disk is also subdivided into 30 pie-shaped sectors. Each sector contains 67
records (1 record = 256 bytes).

Disk Structure
Records are not numbered sequentially; instead, they are numbered alternately. This shortens
the time it takes to access successive records, since a compléte revolution of the disk bet-
ween execution of read (or write) statements is avoided.

8 Disk Structure

Shown below is a diagram of disk tracks and records with their alternating numbering system.
The shaded area shows the location of a specific record - Track 1, Record 0.

Flexible Disk Records

In addition to an alternating numbering system, the location of the beginning record (Record
@) of each track is staggered to avoid a revolution when the drive accesses (steps to) a new
track. For example, after Record 29, Track 0 is accessed, Record 0, Track 1 can be accessed

without an extra revolution.

Systems Area

Some of the area on the disk is reserved for use by the system (Tracks O thru 5). The rest of the
disk area (Tracks 6 thru 66) is available for your use. The system area has four tracks contain-
ing bootstraps (1 thru 4) and two tracks (Tracks 0 and 5*) containing—

e A Systems Table.
e A Directory of files, their locations, types and sizes, (once you've defined them).

e An Availability Table that monitors remaining usable disk space.

*The same information found in Track 0 is duplicated in Track 5 as backup.

Disk Structure

Track O
Track 1
Track 2
Track 3
Track 4

Track 5

Systems Area
4 Systems Area Tracks O thru 5

Storage Area
Tracks 6 thru 66

Systems Area of Disk

Systems Table

The systems table in Record 0 indicates the calculator used to initialize the disk, the number of
defective tracks and the beginning location of the user area.

When a disk is initialized, the number of defective tracks is recorded in the systems table. If
. is displayed.” The

more than six tracks are defective, the disk is rejected and # "o ¢
physical location of the defective tracks is not known to you. This means your disk has
effectively, a contiguous set of logical tracks with no intervening defective tracks. For exam-
ple, if there are two defective tracks on a disk, your usable tracks will be numbered 0 to 64.

File Directory

The file directory in Records 1 thru 22 contains entries for 352 possible files, one entry for
every possible file written on the disk. Each entry contains information such as file name,
location, size and type of each file.

If the directory in track O cannot be read, the spare directory from track 5 is automatically read.
When this occurs, the message !

is printed.

*Contact your HP Sales and Service Office for a replacement disk.

10 Disk Structure

Availability Table

The availability table in Records 23 thru 28 monitors the amount and location of remaining disk
space. The availability table is automatically updated* after any file is added to, or removed
from, the disk .

Record 29 of the systems area is unused.

Bootstraps Area

The bootstraps area in tracks 1 thru 4 contains statements and routines used by the system
that are not contained in the Disk ROM. The bootstraps are automatically loaded from the Disk
System Cartridge immediately following initialization.

Each time a disk statement is executed, it becomes part of the calculator's read/write memory

so that if it is executed again, the same statement is not reloaded into the calculator’s read/
write memory. This reduces the time required to execute that same disk statement again (if no
other statements are executed in between*) since the calculator no longer needs to access
the disk bootstraps. (Each new statement overlays its bootstraps on the previous one.) This
increases the speed of repetitive print and read operations.

In addition, during execution of a series of read statements, the calculator checks which
record is in the calculator memory before it reads the next record. If the record in the memory
is the same as the next record number to be read, the calculator does not reread the data in
the record .

y
!
|
1
{
i

Any space on the disk that becomes available (after execution of a i i1 statement) is
automatically combined with other available disk space if the areas are contiguous. This
creates a larger available spaces on the disk instead of numerous shorter spaces.

*And if the drive door is not opened.

Disk Structure 11

Backup Track

Track 5 contains the same system information (systems table, file directory and availability
table) as Track 0. The information on Track 5 is automatically used if Track O should become
defective.

Storage Area

Tracks 6 thru 66 are used for recording your files and programs. With 30 records per track and
256 bytes per record, there are 468,480 bytes of available storage space per disk. Whenever
new information is added to, or deleted from, the storage area of the disk or whenever the disk
is reorganized (repacked) the information in the systems area is also automatically updated.

File Structure

The Flexible Disk System is organized around user defined memory areas called files. Each
disk can have up to 352 files, depending on the size of each file. Files can be used to hold data
(data files), programs (program files), calculator memory (memory files) and special function
keys (key files). Binary programs can be stored in binary files from tape cartridge only.

It is up to you to create these files, name them and — for data files — specify their size. The

HPL Disk programming statements described in the next chapters enable you to store infor-
mation on, and retrieve information from, your disk.

Each file contains one or more records, 256 (8 bit) bytes in size. A record is the smallest
addressable unit of data on the disk which can be accessed directly by the system. A file
cannot be greater than 1830 records (the maximum available storage space on the disk).

The size of a program, memory or key file is automatically determined - it is the number of
records required to store the program. When you create a data file however, you must specify
its size, in records. The differences between program files and data files follow.

Program Files

Programs are stored on a disk using as many complete records as necessary, each record

containing 256 bytes. Therefore, if a program is 257 bytes in length, two records are required
to store it in a program file.)

12 Disk Structure

Data Files

There are two ways to store and access data — serially and randomly. It is up to you to
determine which method of data access best suits your needs for a particular problem. This
decision is based on the nature of the problem you must solve the amount of usable disk
storage space and the time available to solve your problem.

For example, suppose you are working with thousands of customer account numbers and
their balances due and your job is to output a daily list of all customers and their balances. In
this situation, it is best to pack all data items (customer numbers and balances due) together
tightly in a data file to save space on the disk and to save time when accessing the data. This
is the serial access method of data storage.

To update individual customer balances, you'll need another file ‘containing customer num-
bers, names, addresses, items purchased and balances due. The data in this file is arranged
so that each individual item (customer name or number) can be accessed. This method of
storing data usually takes more space on the disk. The advantage to this method is that any
item can be easily updated since individual items can be accessed much faster. This is the
random access method of data storage.

Serial File Access

Data treated as a unit (instead of as individual items) can be handled using serial print
i) statements. When serial print statements are used to store

(=8 %) and serial read (3 s
data on the disk, data lists are stored compactly without identifiable marks between lists.
These data lists make up a file and can use as many records (256 bytes = 1 record) as
necessary. Data lists can contain numerics and strings.

All or part of the information stored originally can be retrieved in one serial read statement. The
list of data elements read does not have to be identical to the list originally printed in the file,
but these data lists must be identical in type and order. (The names you assign to these
elements can vary.)

The beginning of a serial file is the only point where access is normally begun. Storage space

is utilized with maximum efficiency when serial print statements are used, since data is packed
solidly and no unused space is left between items.

Disk Structure 13

Random File Access

When data items are handled individually (instead of as a unit) random print (%) and
random read (i i 11 <i) statements are used. The data is stored starting at the beginning of a
specified record so that every data item is directly accessible. Storing data randomly may not
utilize storage space efficiently, since only a part of a record required for storage is used and

the rest of the record is not.

Each of the data items stored originally can be retrieved using a random read statement. The
list of data items does not have to be identical to the list originally stored in the record, but
these data lists must be identical in type and order. (The names you assign to these elements
can still vary.)

When working with data using random print and read statements, you must specify which
record within a file you want to access. The advantage to this method is that every record is
directly accessible, in any order.

Serial vs. Random File Access

As mentioned before, you must decide which method of data accessing is best fo’r your
particular needs. This decision is usually not made easily, because of the advantages and
disadvantages of both methods. More efficient storage space utilization must be sacrificed for
a shorter access time, and vice versa. Once your decision has been made, it is difficult to
change later, so choose your method carefully.

The advantages and disadvantages of accessing data from a file serially and randomly are
summarized in the following table.

Serial vs. Random File Access

Feature Serial File Access Random File Access
Storage Efficiency | Good-Data is packed solidly Varies-Wasted space for short records
Access Time Varies-Longer for higher numbered records | Good-Direct access to any record

Record Length Can be more than 256 bytes Less than or equal to 256 bytes

14 Disk Structure

Write Protecting the Disk

The data (write) protect feature protects the data and programs on a disk from being written
over. The disk is write-protected by a hole in the sealed protective jacket in the location shown
below. When the write protect hole is open, nothing can be written on the disk.

When the write protect hole is covered, writing is allowed on the disk. HP disks are shipped
with the write protect hole covered as shown below.

Write Protect Hole Tab Fold Over Back of Disk

U
© © ©
N L | |

Covering the Write Protect Hole

Chapter 5
Program File Operations

Introduction

Disk files can be used to hold programs, data, special function keys, binary programs and the
entire calculator memory. This chapter discusses program and key files and the statements
used to catalog, store, retrieve and erase these files from the disk. All disk statements covered
in this chapter can be executed from within a program, from the keyboard or in the live
keyboard mode, except for the - -rand s i (get key) statements which can't
be executed while in the live keyboard mode.

Ly i

A description of each program file statement is shown in this chapter and again in the Appen-
dix.

If the disk and the drive are not properly connected, the message L.
flashed in the display.

Conventions

The following conventions are used in the statement descriptions found in this manual.

-5 — Allitems in dot matrix must appear exactly as shown.

brackets [] — All items enclosed within brackets are optional, unless the brackets are
in dot matrix.

16 Program File Operations

The following definitions are used in the statement descriptions.
These parameters can be numeric expressions —
drive number(exceptinthe + i } = = statement, where it must be a numeric constant)
select code
line number
number of records
position number
file number
record number
tape file number

These parameters can be text (e.g. *

) or string expressions (e.g. ¥ or .

unless otherwise stated —

buffer name
file name (except in the + i i = statement, where it must be text)
label

Data items used in print and read statements can be —

entire arrays (e.g. # L # 1)

entire string variables or arrays (e.g.

substrings (e.g. ¥

r registers (e.g.

In addition, data items in print statements can also be —

..... 1 2

numeric constants (e.g.

numeric expressions (e.g. :
text (e.g. |
string expressions (e.g. w8 & F

To use string variables, the String ROM must be installed. To send a catalog listing to an
output device, the General and Extended /O ROMs must be installed in the calculator.

Program File Operations

Program File Statements

The Drive Statement

The i+ i+ statement specifies the drive being accessed by drive number (0 thru 3) and,
optionally, by select code (8 thru 15) on the interface cable —

s# drive number [= select code]

The default value for the drive number is O and for the select code, 8. The default values are
automatically in effect when the calculator is turned on, is pressed or the calculator
memory is erased. When a i+ i w4 statement is executed, the drive number and select code

indicated are valid until another =i+ i :: statement is encountered, : - {1 is executed,
is pressed or the calculator is turned off.
Executing a i+ i ::5 statement does not affect file pointers (covered in Chapter 4) unless the

optional select code parameter is used.

File Names

Every program or data file on the disk must have a unique name which can contain up to six
characters and can be a string variable. These characters cannot be used in a file name —

e quotation marks()

e commas (=)

e semicolons (#)

e colons (&)

e Dlanks (i.e. spaces)

e special characters with octal codes less than 41 (See the ASCII Character Code Table
in the Appendix.)

17

18 Program File Operations

The Save Statement

The =+

4 statement stores an entire program or part of it in a specified file.

#auis file name [1st line number [: 2nd line number]]

With a program in‘the calculator's memory, execution of the =:it:s statement stores the
program on the disk. The specified program file takes up the number of whole records needed

for the program.

The optional line number parameters enable you to store part of your program rather than all of
it. With one line number specified, the =«

4# statement stores only the lines after (and
including) the specified line. With both parameters, the lines between (including the specified

lines) are stored on the disk. Your whole program is still present in the calculator, whether all
or only a portion of it is saved on the disk.

To illustrate use of the =«

H# statement, key in the following program.

You can store the previous program in a file named Count, for example, by executing this
statement from the keyboard —

fau]
5
[
et

A squaring program is added to the original program just stored on the disk.

B oo Count ing
Fr Tiwnlit
16T

12 = A
Fifigs in
16A 188G

250 e

the = M
b e, "

Program File Operations

t: o=t " =y 1

an lntegser” s,

4 1 f JdxF3%iato 9

St ofor I=J to J+4
14

B oprt I

viomest I

=ioend

4t dEp CSauarins
Program’iuoit
18R

18: gnt "Eesv i
11n1hwr intesey

s K

1i: tor L=KE to
+1i

12 prt LsLTE
137 mest

1d: end

#1168

Lines O thru 8 print ten consecutive numbers from the first number entered. Lines 9 thru 14
print ten consecutive numbers and their squares, from the second number entered.

Once this program has been keyed into the calculator, you can save it in a file named Master,
for example, by executing this statement from the keyboard —

AL

You can also store the second half of the program in a file named Square, for example, by
executing this statement from the keyboard —

zoye TSaygore s 3

Finally, to store the first half of this program in a file named First, for example, execute the
following statement from the keyboard —

You now have four programs stored using different file names. Once a program is stored on
the disk, it can be loaded back into the calculator memory using the =
statements discussed later.

19

20 Program File Operations

The Catalog Statement

The catalog (%) statement prints a list of every file on the disk and specific information
about each file, including its —

Name
Type
P - Program File
K - Key File
D - Data File
M - Memory File
B - Binary Program File
O - Other

Size
Number of Bytes (B) for a Program, Key, Memory or Binary File

Number of Records (R) for a Data File

At the top of the listing the drive being cataloged and the bootstraps revision letter are
listed along with the number of remaining available records.

.1t [select code] or ["buffer name "]

If no select code is used following -+

L,oor ot
the catalog listing. For example, execute a1t —

i1 is executed, the internal printer outputs

0O 00

When 16 follows the catalog statement, complete information about every file on the disk you
are using is output to the calculator printer. Drive number, bootstraps revision letter and
remaining available records are printed, as with other catalog statements.

*See the General and Extended 1/0 Manuals.

Program File Operations 21

Here's the catalog listing that's output when the 2% 1 i statement is executed —

This listing includes the information from the previous catalog statement (Name, Type and
Size) plus —

#Rec Number of Records in the file
Trck Specific file location by Track (T)
Rcrd Specific file location by Record (R)

When a select code between 2 and 15 follows the catalog statement, the complete catalog
listing is output to the HP - IB or specified device or to the 1/O butfer.* For example, to output a
catalog listing to the HP 987 1A Printer, execute 1% & (the factory set select code for the HP
9871A Printer) —

CAL DRIVE 0 /A
AVL RCRUS 1825

WAME TYPE 514EB #REC TKRCK RCRD
Count ¢ 48k | 1'0 KU
Master P 284b 2 6 Kl
Sguare P 100B 1 To6 ®3
rirsc ¢ 1oL i To R4

Whenan|/O buffer nameor text (e.g. " #ki.) follows the catalog statement, complete informa-
tion about all user files is output to the specified 1/0 buffer. See the Extended I/0 Programming
Manual for more information. For example —

*The General and Extended I/0 ROMSs are required to output to the 1/0 buffer.

22 Program File Operations

The Get Statement

The =% statement loads a program from the disk to the calculator. All variables and arrays
are lost.*

=% “file name " [1stline number [: 2nd line number]]

Whenever the

%. statement is executed, all program lines in the specified file are loaded

into memory. All program lines previously in the calculator memory are erased except those
lines preceding the first line number, if one is specified. If the second line number is included,
program execution automatically begins at that line number.

The following statement, executed from the keyboard, loads the program from the file named
Master into the calculator. (This program was stored previously; see page 18.)

]

W

—
¥

1)

*The w:ii i statement, described next, retains the values of variables. *

Program File Operations

The program can be altered once it is in the calculator, but the information on the disk remains
unchanged (unless you change it using a s

A statement).

From within a running program, if the first line number is specified in a = & statement, the
program is loaded beginning with that line number and is renumbered* from that line number.
Program lines with numbers lower than the first line number, are retained in memory; all other
lines previously in memory are erased. If the second line number is not included, the default
value becomes the first line number and program execution automatically begins at the first
line number specified from within a running program only.

The following statement, in addition to loading the program into the calculator, renumbers the
lines, starting with line 15.

ount i

AT

B ;
S ofoar I=d ot 4
s

1T

-]

0

W
R

—
o e
IR

—
"y

P
F L T T

*Any 1.3 statement addresses (line numbers) in the program are not automatically renumbered.

23

24 Program File Operations

150 dzep "Countin
4 Frosram’ swoit

PO
=

15

b= I s I
[

—
1,

L R 1Y I it

-

ho

- 3
U

Aj

a1

(

1
SRENG]

R E

-
o+

[
Y

H
X RN I e T w

TEv 1
RaaS-a-t-3

| o Y
+
— -
T
al

£ ¥ 1o
27 prt LT
,_; E: H &

29 end
FoERAY

As you can see, the program originally loaded has not been erased; the second program has
been loaded after it (beginning at line 15). Had the second program been renumbered from
line 5, only lines 0 thru 4 of the original program would have remained.

When a second line number is included, the =4 i statement causes program execution to
begin immediately at the specified line number. For example -

et "Moster s 1523

By executing the statement above, the program is renumbered from line 15 again, and au-
tomatically executed beginning at line 9.

Program File Operations 25

The Chain Statement

The : 1 17 statement is identical to the s % statement discussed previously, except that
current variables are not lost. When executed from the keyboard, the loaded program will not
be automatically run unless the second line number is specified, as with the = 1. statement.

i1 “file name [= 1stline number [s 2nd number]]

The :
the disk to one currently in the memory.

i r1 statement is most often used in a program to link a program previously stored on

The following three programs are used to illustrate the = i r1 statement and how the values

of variables are retained —

Key in the program shown and then execute —

e PR " LY 3 -
SgreeE Bezin

Key in this program and execute —

zove "Middls" wio@4d
18 =to 3
s g d
3 if J=listo T
45 i J=253to 2
5 "Middle
Ch oo
£ Foea
g
B chain "End”s
Ha i
fioRrt "HMiddle

choined frow
End and
uted from 3

2 chain "ERd”
162

Fioprt “Hidale
chained ¥ romm
Ernd orma &

Wted fram 2"

26 Program File Operations

Then key in the last program and execute -

nop- s

SaE Encd”

2 N
Fromficddls

Tt !
)

ot T4

Lal.
ot
Hia)

:oan we koS3 TR
-

R S

-

£
i

e &
0
fro

5 &

#7254

These programs are now stored on the disk and can be run by executing —

In these programs, the values of variable J are retained when chaining from program to
program, causing selected portions of the last two program segments to be run.

Here's the printout — B

RO LiES

i oo
X

=m

s
b s

*The statement addresses are not automatically renumbered. Therefore, the =% address in line O refers to a line number in
the program after its lines have been renumbered. To avoid this situation, use labels instead of line numbers as =1 < statement
addresses.

Program File Operations

The Kill Statement

The i i i i statement erases from the disk the file named and releases the space it occupied
for further storage.

L1 “file name ”

By executing the following statement, the program stored in Count can be erased from the
disk —

i statement.
This means that the space released is automatically combined with any contiguous space on
the disk to create larger available storage areas. For example, in the diagram below, files 2

An automatic update of the availability table is performed, following the

and 4 have already been killed.

NANNNNN
NONNNNNN

,,,,,,,

NONNNNNN

Creating Contiguous Areas

If file 3 is killed, the contiguous areas held by files 2, 3 and 4 are combined and become one
larger available area instead of three smaller available areas.

27

28 Program File Operations

The Rename Statement

The rename (¢
name specified.

1171) statement changes the name of a file from the original name to the new
17 " old filename ™ ¢ “new file name ”

For example, the data file named i
catalog listing below)by executing —

% &1 can be renamed [= (as shown in the

=y S I
=5TE

When the catalog statement is executed —
AT DOEIVE g4 “A

I I]

The Resave Statement

The =z statement enables you to store all or part of a program, which has been
modified, back in the same file.

+ Tfile name “[¢ 1st line number[, 2nd line number]]

First and second line numbers are used to indicate the portion of the program being resaved
= statement.

This allows you to store a modified program in one step instead of two.

Program File Operations 29

The Save Keys Statement

The save keys (= w45 k) statement stores special function key definitions in a specified file.

¥ “file name

The definitions of all 24 special function keys can be stored in one file at the same time. Since
only key definitions are saved with this statement, two files are required when a program that
uses special function keys is to be stored on the disk.

The Get Keys Statement

The get keys (=4 % i) statement loads special function key definitions from a specified file of
the disk to the calculator special function keys.

i file name ¢

When =% & has been executed, the original information is returned to the special function
keys. All of the special function keys can then perform the same operation they did when their
definitions were saved in the key file.

In addition, when =::
the .

- IS executed, previously defined variable values are not lost, similar to

i 1+ statement.

30 Program File Operations

Program Storage Requirements

When the number of bytes required to store a program is greater than 256, more than one
record is required to store it. If the number of bytes is not a multiple of 256, then the system
rounds the number of records in the file to the next whole number. For example, a program that
takes 255 bytes requires one record, while a program that takes 257 bytes to store it, requires
two records.

Chapter 4
Data File Operations

Introduction

Chapter 3 of this manual describes program and key files; this chapter covers the statements
which are useful when working with data files. All statements used either with program files
only (i.e., - g , £ - i) or those used with both
program and data files (i.e., 7«11) are discussed in Chapters 3
and 5.

The statement description conventions used in the previous chapter still apply.
= — All items in dot matrix must appear exactly as shown.

brackets [] — All items enclosed within brackets are optional, unless the brackets are in
dot matrix.

A description of each data file statement is shown in this chapter and again in the Appendix.

The message ﬁ is flashed in the display if the calculator and drive are not
properly connected.

Overview of Data File Operations

Before you can do any data file operations, you must first find a free area on the disk and give
that area a name. This is done with the = : statement and that area is then called a data
file. The file can be used to contain whatever data you want to put into it, like readings from an
instrument, inventory information, etc.

There can be numerous data files on a disk and different programs (also on the disk) can use
different data files. This means that a program must tell the system which file (s) are to be
used. This is done by including a Eor i 1 statement in the program.

Once the program indicates the data files to be used, it can store information (numbers and
strlngs) in the files using Loor . statements and can read back the information
statements. '

32 Data File Operations

Conventions

The following definitions are used in the statement descriptions.
These parameters can be numeric expressions —

drive number (except in the { i i <% statement, where it must be a numeric constant)
select code

line number

number of records

position number

file number

record number

tape file number

These parameters can be text (e.g. =) or string expressions (e.g. ¥ or ¢ i

unless otherwise stated -

buffer name

file name (except in the ¥ i
label

= statement, where it must be text)

Data items used in print and read statements can be —

array elements (e.g. ¥

entire string variables or arrays (e.g.
substrings (e.g. we)

entire arrays (e.g. M L#

rregisters (e.g.

In addition, data items in print statements can also be —

numeric expressions (e.g. =

string expressions (e.g. < f |

“)

text (e.g.

All data file statements covered in this chapter can be executed from the keyboard, from a
program or from the live keyboard mode.

Data File Operations 33

Data File Statements

The Open Statement

1 statement creates a specified size space for a data file with the indicated number
of records, assigns it a name, and places an end of file (EOF) mark at the beginning of each
record in the file. Any data in the records used by this file is automatically erased when the file
is opened.

++ "'name = number of records

An ey statement indicating file name and size must be executed before data can be
printed in that data file. Each data file must be assigned a unique name.*

The size of a data file is specified in number of records; this parameter can be a numeric
expression. A file can contain a minimum of one record (256 bytes) to a maximum of 1830
records. Opening files larger than the largest number of records (1830) results in & o

Once a file has been opened (i.e., created) and space has been reserved for it, the file can be
used until it is erased with a i i i statement.

The first statement in the example programs that follow (illustrating data storage and retrieval)
is generally an

i+ statement. The :

1+ statement is included only to remind you that
data files must be opened before data can be printed in them. It is best to execute the ::
statement from the keyboard, rather than from a program, since & " " i

7 results when you

run the same program (i.e. try to open the same file) more than once.

*For more information about file names, see page 17.

[T

34 Data File Operations

The Files Statement

The ¥ i 1« = statement indicates which data files are to be used and optionally the number of
the drive accessed (for each file name). The files listed are assigned numbers in the order in
which they appear. File numbers are convenient labels used to reference specific files in print
and read statements (discussed later).

== Name or # [drive number]

[:name or # [¢ drive number]][:...]

- . statement determines the file number. For exam-
- is assigned

The postion of the file name in the ¥ i }

1 is assigned file number 1 and ¢

ple, in the following statement, i
file number 2.

ot
-
1T

Up to ten file names, each with an optional drive number, can beusedina + i = statement.
Quotation marks enclosing file names are allowed in all statements except the ¥ i
statement. String variables cannot be used for file names in the ¥ i 1 &% statement. In addi-

tion, when the optional drive number is used in the i = statement, it can be a numeric

constant, only.

A single asterisk (*) can reserve space for a file in a ¥ : . statement. Then an < & %3

statement is used later to complete the file assignment by specifying the file name.

If a file specified inthe i i & = statement has not been previously opened, =+ ¢ Lishis

displayed when the i 1 = = statement is executed.

When the + i i statement is stored with an error, a flashing cursor is displayed showing
the location of the error when the key is pressed.

The # i i3 statement enables you to access more than one drive simultaneously. This is
useful when your program is on a disk in one drive and data is on disks in other drives. A single
© 1 1# oz statement can access files from different drives when the optional drive number

parameter is used, as long as the select code is the same for all drives being accessed.

However the drive number from the last 44 statement is still in effect; only by executing

anew : = statement can the drive number be thanged.

Data File Operations 35

The following program illustrates how data from a disk in drive 0 can be read and printed on a

disk in drive 1. (Assume the file named give is open and contains data.)

Data File Pointers

A maximum of ten data file numbers can be maintained using the ¥ i i = statement. File
numbers speed up print and read operations since the file directory (containing file locations)
does not have to be accessed each time a print or read statement is executed; instead file
pointers corresponding to file numbers indicate file locations.

After executing a + i 15 (or o3 wri) statement, a file pointer is initialized to point to the
beginning of the first record in the file. A new f i 1 3 statement obsoletes the previous
¢ i 1= statement; it clears all previous pointers and sets up new ones for the drive, or drives,

specified.

Executing a i+ i::s statement without a select code parameter has no effect on the file
pointers. However, when the select code parameter is used in a i+ i .i& statement, all file
pointers are cleared. All file pointers are also cleared for a specific drive when the door to that
drive is opened. Pressing key, turning the calculator off or executing & +
clears all file pointers.

1 also

When an

: statement is executed, only the file pointer specified is affected; none of the
other file pointers are affected.

36 Data File Operations

The Assign Statement

The assign (s =) statement assigns a number (1 thru 10) to a single file name and, option-
ally allows a different drive number for the file specified. A return variable can also be used for

further file information.

v+ "name s file number [: drive number [: return variable]]

The 3
numeric expression for a drive number.

3 1; statement enables you to use a string variable for a file name and a variable or a

The file number specifies the position of the file name in the + i I « = statement to be refer-
enced in later print or read statements. The number must be a positive expression whose

integer valueis between 1 and 10. If it's not an integer , its rounded value is automatically taken.

An optional return variable can be used in an 3 =+ statement to determine a files status.
This parameter can be a simple or an array variable. For example —

In this example, the asterisk in the + = statement (in the second file position) is assigned
the file name, -, (Assume that the data file,
%31 statement was executed.) Additional -+ statements can be placed later in the

- statement

% was opened before the

same program to reassign a different file name to any file position. The :
*+ statement sets the data file pointer

overrides any ¥ i i 5 statement preceding it. An :

to the first item of the first record in the specified file.

A return variable can be used to determine the status or type of the file. In the previous
example, K is the return variable. Its value is determined during execution. of the i %1
statement and can be used anytime in the program. The value of the return variable indicates
these conditions —

Value of Variable Meaning

file is available and assigned
file doesn’t exist

program file

key file

file type not defined

memory file

binary program file

file type not defined

file number out of range

oO~NOO A WN—=O

Data File Operations

By checking the value of the return variable, you can avoid errors like D4, file not found .

The following program shows how the :: # <t statement can be used —

In this example, line 5 instructs the calculator to branch to line 8 (to open the file) if the file

name you enter does not exist.

A string variable cannot be used directly as a file name ina ¥ : . statement, although it

11 statement as shown is the previous program.

can beusedinan s

% statement before using

As shown in the example above, it is not necessary touse a ¥ i
2, The < & =1 statement can be used to set the data pointer to the first item of a specified

file without affecting file pointers for any other files previously specified.

37

38 Data File Operations

The Serial Print Statement

i statement,

The file number refers to the number assigned using the i i &3

The data items in the serial print statement can be constants, variables, arrays, strings,
substrings or text. The length of the list of data items is limited by the length of the HPL line (80
characters) or by the size of the file.

Either * Tor T

=i can be used as the last parameter in a serial print statement.
causes an end of file (EOF) mark to be written after the last data item printed. |f

Using i

“#od Y is not included, an end of record (EOR) mark is printed. This makes it easy to find out
how much data is stored in a file using the % =2 function or 1+ = +:7f statement (explained
later).

When " #1: 7 is used as the last parameter, the data list is printed without printing either an

end of record or end of file mark after it. Because of this, you should use the "=z
parameter with care.

Serial print and read statements can print and read past record boundaries (256 bytes): as
many records as necessary are used to store the data listed.

The data file pointer moves through the file as you store or retrieve data items. Print statements
overwrite EOF or EOR marks. As data is read (or written), the pointer moves to the next data
item.

Here is an example using the serial print statement to record five student’s identification
numbers and test grades.

un

Data File Operations 39

This program can be used to print identification numbers in the file named ! .
corresponding grades in the file named

1., and the

I.D.

Number | Grade
1111 88
2222 67
3333 98
4444 81
5555 99

In the previous program, two separate files are used — one for the students’ identification
numbers and one for their grades. The information can be combined and stored in one file
using the following program —

T

£

Line 4 prints the 1.D. numbers and test scores of the students alternately in the file named
Scores. Line 4 also places an EOF mark* after the five sets of data elements are printed.

*If " is a part of the data being stored, two

§ statements must be included in the program line to place an EQOF mark
where you want it. If "

. is a part of the data being stored, two “=i:= " statements must be included.

40 Data File Operations

A String Variable ROM enables you to enter student’s names, instead of I.D. numbers. The I.D.
variable, X, is replaced by a string variable and the following program prints string names as
data on the file. The data is shown below —

Name Grade
Rob Rood 99
Piper Aune 90
Carol Hafford 88
Andrew Jackson 74
Eric Landry 80

Now key in and run the following program after installing a String Variable ROM in your
calculator.

=" parameter, the grade of 99 is changed to 100 by executing —

Toillustrate use of the *

The random read statement (described later) without a data items list is used to position the
pointer to the beginning of the file where the correction is to be made. Then the data is read
serially to locate the record and data item to be changed by reading and comparing data until

the next item is the one to be changed. (In this case the first item is the one to be corrected.)
The serial print statement then prints over the incorrect data item to change the 99 to 100. The

1= parameter prevents the placing of an EOR or EOF mark after the corrected item.

Data File Operations 41

The Serial Read Statement

The serial read (= ¥ # 1.¢1) statement reads numbers and strings serially from the specified file,
starting after the last item read or printed.

=+ & 1¢4 file number » data variables

Before you can work with data which has been stored in a file, you must first read the data into
the calculator. Remember that you are not erasing the data stored on the disk by reading it.
Instead, data is copied using the variables specified.

The program on a previous page is used to print data on the files, 1.D. and Grades. To read
the data from these files back into the calculator and print the information, use the following
program —

In this program, the + i}
their file numbers in the

i statement serves two purposes — it establishes the files with
-1 statement (lines 2 and 3) and it resets the pointers to the

beginning of both files before the = i+ i statements are executed. Here's the printout that
results when the program is run —

1.0.% A
Grode A3
SO # L HA
Grode an
1.0, # di
Grode B
DL # .
Graode 21,6848
T1.0.4# B5EH. 64
3rane =R I §

42 Data File Operations

When this program is executed, = ¢ <+ & is displayed because an attempt is made to

read data after an EOF mark is reached.

. (see the program on a previous page) can also be

Data printed in the file named .
read back into the calculator. Use the following program to print this data —

Notice that the = oi statement must specify the types of data (data elements or string
variables) in the order in which they were originally stored in the file. Line 3 reads a string
variable and then a score. This program can run only when the order of the data in the file
named Class is known. Here's the printout —

Data File Operations 43

The variables into which you read data items do not necessarily have to be the same variables
from which you printed the data items in the file. Although the variable name changes (from N$
and R when stored, to P$ and Y, when retrieved), the order in which the two data types are
accessed and the types themselves are the same.

When the serial read statement encounters the EOF mark, previously placed by the last print
statement, the program ends and & ¢+ ¢

be written to end without displaying an error when the ¢ -i statement (described later) is

used.

The Random Print Statement

The random print (&+ %) statement is used to store individual data items in
specified records within a file.

for T

=+ % file number : record number [: data items, s

As in serial file access, a pointer keeps track of the data item currently being accessed. Unlike
serial file access, however, in random file access a specific record number within a file must
be included in each random print and random read statement. The pointer is positioned at the
beginning of the specified record before printing or reading occurs. Data is printed or read
consecutively from the beginning of the record and cannot be read past the end of record
mark.

The record number represents the location of a record in a specific file. This number can be
any integer or expression which does not exceed the number of records in the file. The

statement prints data items in the form of variables, numbers, strings or substrings of
characters from the beginning of the specified record. Using the +:::+ % statement, each
record can hold only 256 bytes (1 record) of data.

“or " can be used as the last parameter in an s+ % statement. Using

Either " =
“wod” causes an end of file (EOF) mark to be written after the last item in the statement is

printed. If

" is not included, an end of record (EOR) mark is printed. This makes it easy
to find out how much data is stored in a file using the % =% function explained later.
When "= 7 is used as the last parameter, a list of data items is printed without printing an

EOR or EOF mark. Because of this, you should use the ~ =iz 7 parameter with care. (See the

= example on page 40.)

44 Data File Operations

The program below prints consecutive numbers in each odd numbered record of a 10 record
file named Ten.

e Tl I3 — 50

n

T €

-

In line 4, the record number is specified by the variable R. Line 6 increments this variable by 2
so that only odd numbered records are accessed.

By printing in specific records of file Ten, previous data in those records is erased and
replaced by new data. An EOF marker is automatically placed at the end of each data list (i.e.,
the one data item A) in each odd numbered record.

File Ten now contains the following information.

Record
Number Data

1 EOF
EOF
2 EOF
EOF
3 EOF
EOF
4 EOF
EOF
5 EOF
EOF

OCOWO~NOOOhWN =

—-

The following program erases every third record of file Ten, which was opened and accessed

previously.
B: 1+A
1: files Te&
2: rert 1s:H
a2 R+ZEp
4 if AXléisto &
S5 ato £
B2 end
FIEEHI

Data File Operations 45

The information which is now left in the file is shown below.

Record
Number Data
1 EOR
2 EOF
3 2 EOF
4 EOR
5 3 EOF
6 EOF
7 EOR
8 EOF
9 5 EOF
10 EOR
The " == 7 parameter can be used to write data.in a record without placing any EOR or EOF
marks after the item printed.
When the data list is omitted in an " #: % statement, an EOF mark is stored in the beginning of

the record.

i 4 file number = record number = s

This EOF mark in the beginning word of the specified record is the same as the EOF mark
placed automatically when the file was originally opened. The EOF mark makes the data
contained in the record beyond the EOF mark inaccessible to any serial read or random read
statement.

46 Data File Operations

The Random Read Statement

The random read (+ #
file, starting from the beginning of that record. A variation of this syntax can be used to

i) statement reads numbers and strings from a specified record in a

reposition the file pointer (see page 47).

i file number : record number [: data variables]

As in the case of serial read statements, the variables into which you read data items do not
necessarily have to be the same variables used\to print the data items in the record, but they
must be the same type and in the same order.

The following program reads the data printed in the 5th and 9th records of the file named Ten.

e

n
o] BB . wE g B

X

This data was originally printed in odd numbered records of file Ten (see page 44). The data
in records 1 and 7 was erased. The program above reads the data from records 5 and 9 and
then prints it using the calculator printer. If the calculator were programmed to read data from

each record, & i1 would be displayed, indicating that an EOR mark was detected at

the beginning of record 1.

The printout from this program is shown below.

Data item 1=

]
™,
ol

e H
Oota item 2=

5:

A
1
5

Data File Operations

Positioning the Pointer

As mentioned earlier, pointers are maintained by the disk system to specify where data
storage or data retrieval begins.

The pointer can be positioned at the beginning of a specified record in a file by executing a
random read statement without a data list —

i file number s record number

This positions the pointer at the beginning of the specified record. A serial read statement can
then be executed, to access the beginning of the first data item of that record.

The pointer is automatically positioned at the beginning of the first record in a file after
execution of a + i I or an s+ statement. It is positioned at the next available storage
location in the file after execution of a random or serial print statement.

To see how this works, first use the following program to store consecutive numbers beginning
from the eleventh record of a 15 record file named Data 15.

B orpern "Datoil
LI
1% filss Datoll
2t rread a1}
45 zert 1:1:"end
ar T+ied
2F oato 4
TEoend
BIO2THE
The i 1= statement (line 1) sets the pointer to the beginning of the first record in the file.

The pointer is repositioned to the beginning of the eleventh record of Data15 by executing line
3.

After printing in records 11 thru 15 of Data15, & i i is displayed. This indicates that

the end of the file has been reached and no additional data can be printed in the file.

47

48 Data File Operations

The following program is used to read the data from the beginning of record 14 —

g: fil:
1 rrs
2 =re
C=0E
3F Rrt
EsFalos
4: gFto 2
31 end
¥24282

The ¥
record. The pointer is repositioned to the beginning of the fourteenth record in Data15 by
executing line 1. The serial read statement begins reading data from that point on.

Since each full precision number uses 8 bytes of memory, 32 numbers can be printed in a (256
byte) record. On the file named Data15, the following numbers are stored on these corres-
ponding records.

Record

Number | Numbers

1 thru 10 none
11 1-32
12 33-64
13 65-96
14 97-128
15 129-160

The previous program reads the data on records 14 and 15 (i.e., numbers 97 thru 160) and
lists this information as shown in the printout below.

[y x]
L}
3 Wl
-,
15

u
-
CLIL IS I A8
. '
e l)

s

=3 T L el PO e O D O3
ot 1

«
™ 1
12, !

M
- g
AR

ot I Ay o B IO B A I o |
o o R o Bt By B ot e

A
P
!

u
1

"
]

WA
2, |

)
®
0 I o Sy e |

SRR TP S PSP TP TR VPR T I S S iy Say Wy
[o N e I B

a
—
2

— -

[s B8 I A)

LIV 0

«
A
M

E T R ol e R
)

t
N B
_l-|

-k
[
"

—

=,

[

Data File Operations 49

1 115, @8
1 114,808
117, @6

115, @

119, @9
| 1263, 80
1 121,80

et

a
]

=~
RN

DRI S
[)
Fcn I

"
»

n
1

| I % §
T,

1 A

-
“
i)
—

|"=
-
(=

L
o) i

"
b o]
—
RN

n
1
|

22 Fag

. T -
SR b

ok b feak b bl e ek ped et fois
N RN]
"
(A
+ 6T T

a
WY
by
v
'

ey
a
)
AN
T 1T

E]
o
il 0

SURRERN L I Y

1S, B
Tl

3
T
LI BOY)

L B O

xR
a
-
o
-
=

VO Ve 6t
P

ot L
n
b))

o |

e
=
a
)

R A}
T

I

1
1
i
i
i
i
1

RN RN S
bt

1=

[

—_ et

T S A 0

(e |

Ll o 4o Jo
T

(RN R L

[
g O =) T
» .
L
-
XN

Pode bk poate bk fnls penk e jodd joeds feet ek ot ade b poade et Jouets

» BB

is displayed at this point, indicating that an EOF mark is reached and that there is
no remaining data to be read. This error message can be avoided by using the e &

statement, discussed later.

50 Data File Operations

The On End Statement

The =+ & 110f statement sets up a branching condition in the program. This avoids & ¢ ¢
F &4 file overflow, making it possible to use a file whose exact contents are unknown.

i file number s line number or “label *

The program branches to the line number specified in the previous «: 4 statement if

1 statement, or an attempt

e an EOF mark is encountered during execution of an = &

is made to =1 % past the (physical) end of afile.

-4 statement or an

e an EOR or EOF mark is encountered during execution of an +
attempt is made to 1+ % past the (physical) end of a record,

in the previous program, == i 3+ F & is displayed after the completion of the program, telling
you that an EQOF mark is encountered and no more data can be read. This error message can
i statement in the program.

be avoided by including an 1

When an end of file mark is reached, the program branches to the line number specified in the
s 10l statement. The rest of the current line is not executed. This branching condition
prevails until another ¢t s ici statement, with a different line number parameter for the
same file, is executed. All previous =i il statements are cancelled when a + i 1%
-4 statement only for the

- statement cancels the <
"+ statement.

statement is executed, while an -
individual file specified in the :.:

i statement and is

The program from the previous page is modified to include an i
shown below.

B files Ootais
1t rread 1514

gt on oend 1s6

35 =read 1+FBsEs
CeleEsFaizai

41 pr+t HaBalaDs
EsFaiseH

St oato =

Bi R s TERd
of File"

vioend

¥41748

*If the line number or label to which the it = statement refers does not exist, £ i 1 is displayed.

Data File Operations 51

In this program, when all the data is read, the pointer comes to an EOF mark. The 1

statement (line 2) causes the program to branch to line 6 when the read statement (line 3)
encounters the EOF mark. At this point, lines 6 and 7 are executed, informing you that the EOF
mark is the next item in the file.

For fastest execution, the -t statement need be executed only once before entering the
read/print loop. This is because the program would be slowed considerably and unnecessar-

ily if the #5704 statement were executed each time the loop is executed.

An iy o icd statement sets up a condition to be executed when an EOR or EOF mark is
detected o change the program flow. If you attempt to access a non-existent or invalid record

without a previously executed ¥ i statement, & ¢ is displayed. ifa + i i
i statement has not yet been executed, = 1+ i & results when the ¢ &

= or

ment is executed.

i statement, it is better to use labels since the line number parameters

When using the ot s
are not changed following program editing. Therefore, in the previous example, if line 4 were
deleted, the i1 = statement would still access line 6 instead of line § as it should.

The Type Function

The * w4 function is used to identify the type of the next item in a specified file. 4

towg i ~]file number }

The % ¥4 function indicates what the next data item is by returning a value. It can be used ‘
before a read statement for this purpose. The values returned and their meanings are listed |
below. w‘
j
Value Meaning :;
0 type undefined

1 full precision number
2 string (complete in one record) ‘1
2.1 the first part of a string (which overlaps record boundaries)
2.2 an intermediate part of string (which overlaps record boundaries) \
2.3 the end part of a string (which overlaps record boundaries) |

3 end of file mark “1
4 end of record mark uh

52 Data File Operations

If = LB

executed with a negative parameter, a 4 can be returned in addition to the other values listed.

i)s executed with a postive file number, values 0 thru 3 can be returned; if =

A negative parameter in the % = = function is useful for detecting EOR marks when ¢ ¢
statements are used. When a positive parameter is used with serial reads, EOR marks are
ignored and the type of the first item in the next record is found.

The following programs illustrate the type funtion —

B: cren "tvpselts
=
1
Pofilles tvpe
2t diwm ALLY:Rx(Z
5!
CEEER I I N S
d1 THEREEEEEERE s
BEx
S ozmrt 1sRAL11s
Ef
B e
#EQEAG

[Z
..;_

-y

R oy W
oo

Ty
L

T we 4 an -

o i L3
ata A
d: =read 1:HF:
gt TStrinsts
Hfsato "H"
S mrt "EOF Mart
"Izt E

If the (absolute value of) the % v 7= & function parameter is negative, the type of the item at the

file pointer is returned without moving the file pointer. If the (absolute value of) the * w s
function parameter is positive and the item at the pointer is an EOR mark or the (physical) end
of the record, the file pointer is moved to the beginning of the following record and the type of
that item is returned, (even if it is another EOR mark). The % & function with a positive
parameter (in line 6) is used to step over an EOR mark.

Data File Operations 53

Data Storage Requirements

A tull precision number requires eight bytes of memory for storage; this means that 32 full
precision numbers can be stored in one 256 byte record. An EOR mark requires two bytes of
memory for storage except when the items in the record exactly fill the record (256 bytes).
When the items exactly fill the record, an EOR mark isn’t needed since the actual end of the
record and the end of record mark are not differentiated by the read statements. On the other
hand, an EOF mark is always written, to the next record, if necessary, and requirés two
overhead bytes.

A string requires an extra four bytes of memory, called overhead, when stored, aside from the
normal one byte per character storage requirement (plus one extra byte if the number of
characters is odd). Therefore, up to 252 bytes of a string (plus 4 bytes of overhead) can be
stored in one 256 byte record. '

Strings or string arrays can overlap record boundaries using the serial print statement. Four
extra overhead bytes are required for each extra record used to store the string or each string
of a string array.

For example, to store a string array, A$[30,6], each string of the array requires —

® 4 bytes of overhead (per string)

* 1 byte if the number of characters is odd Record 1

o 4 bytes of overhead whenever the string 25 strings
. (each with
crosses record boundaries overhead)

or

Therefore 30 strings, 6 characters long, each 250 bytes

require 4 bytes of overhead for a total of 300 J
bytes, plus 4 extra bytes where the string cros-

} 26th string overhead

ses record boundaries. (If a string exactly fills a

record, the overhead for crossing record } 1st 2 bytes of 26th string

boundaries is not required.) Record 2 overhead for crossing
record boundaries

} last 4 bytes of 26th string

4 strings
or
40 bytes

54 Data File Operations

Summary of EOR and EOF Marks

1 | EOF
Serial Printing
2 |EOF
When a file is opened, EOF marks are placed
at the beginning of each record. This stops any 3 |EOF
read statements but allows print statements. At
the right a file with four records is opened. 4 [EOF
1|/ /Data’’’
ECF
Using a serial print statement, 20 numbers are > [EOF
stored in the first record of the file. If the
“wcd” parameter is used, an EOF mark is 3 [EOF
printed after all data items have been stored in
the file, as shown.
4 |EOF
1/ Data’’’
EOR
, , , 2 [EOF
If the "= parameter is omitted from a
print statement, an EOR mark is printed after all
items (20 numbers) are stored, as shown. 3 |[EOF
4 |EOF

Data File Operations 55

If the " parameter is used in a print | FTRERR«— Changed item
| statement (to change the first number in the /" Data’’’|
data list from the previous illustration, for , :8?
example), no mark is printed after the data item
(or items) is stored.
3|eoF
The data file pointer is left where it finished
when a serial print or read statement is exe- 4 |EOF
cuted.
1 |EOF
Random Printing
2 |EOF
At the right a file with four records is opened
and EOF marks are automatically placed at the 3 [EOF
beginning of each record.
4 |EOF

EOF
Using a random print statement, numbers are. 210/ pata””’
.) , EOF
stored in the first two records of the file. If the
"ol parameter is used, an EOF mark is 3| EOF

printed after the data items in each record, as
shown. 4| EOF

56 Data File Operations

1 AR
/7777777777
1444472727277

If the o1 parameter is omitted from a EOR
random print statement, an EOR mark is 3 [EOF
printed after the data items in each record, as
shown.

4 [EOF
If the " &= parameter is used in a random 1 .00
print statement (to add to the first data item in EOR
the second record from the previous illustra- 2 BRR5%) -——Changed item
tion, for example) no mark is printed after the ///Data’’’
dataitem is stored. Since all data in the file was 3 ng:
not changed, the EOR mark remains unaf-
fected. If more than 20 numbers were changed
in this example, the EOR mark would be written 4 |EoF
over and not replaced leaving no mark at the

end of all of the data.

Chapter 5
Other Operations

Additional Statements

The Save Memory Statement

The save memory (statement stores the calculator’s entire read/write memory (prog-
ram, data, keys, pointers, etc.) in a disk file. A file large enough to store the memory is
automatically allocated when the save memory statement is executed.

“file name *

To store the calculator’'s memory in a file named Memory, for example, execute -

The Get Memory Statement

The get memory (L. 1) statement loads a previously recorded memory file (read/write
memory) from the disk and returns the calculator to the state when save memory was exe-
cuted.

*file name

The save and get memory statements are extremely useful in areas where frequent power
interruptions occur.

To restore the calculator’'s memory file just saved using the save memory statement, execute -

58 Other Operations

The Repack Statement
The repack (

i) statement moves all user files to the beginning of the user area on a disk
leaving a single continuous available space for more efficient use of disk space .

This statement consolidates all unused space (from files previously killed) into one area,
making future use of the disk more efficient. Once a repack statement is executed and the files
are consolidated, execution of disk statements becomes faster, since the average distance
between user files is decreased.

A minimum number of bytes (1666) in the calculator must be available to execute the repack
statement, or =+ o+ i results. For fastest results, execute & ¢
repack.

- 1 before doing a

Most calculator operations can be executed in seconds except for a long repack (where many
empty spaces between files exist). This is because the directory is updated after each file is
repacked. The amount of available memory also affects the repack statement: the more
available memory there is , the faster repack is executed. (This is because a larger number of
records can be moved at one time requiring fewer move operations.) Repack can take from a
few seconds to about 15 minutes. If a power failure occurs during execution of a repack
statement, one file may be lost.

i encounters a checkword (d7) or header (d5) error during its execution, it will beep
and continue repacking. An unlimited number of checkword errors are allowed. One header
error is allowed; if a second one occurs repacking stops and the error is displayed. Otherwise,
any error(s) that occur will be displayed when &k is done. If more than one checkword
error occurs, the last error is the one displayed.

The Verify Statements
The verify statements enable (-::::) and disable (::::%) the verify mode and affect only the
print and :.:: 52 statements. The verify mode reads user data under stricter specifications (a

shorter amount of time) and then compares the data on the disk to the data in the calculator's
memory. Its purpose is to decrease your error rate and increase your level of confidence about
the accuracy of your data.

The verify mode is disabled when the calculator is turned on.

: enables the verify mode
disables the verify mode

Other Operations 59

Data is stored on the disk in the form of binary digits represented by magnetized spots on the
rotating disk. After the record is read, the checkword written at the end of the record is
compared to a checkword generated by reading the record, as a check for data validity. In the
verify mode, the disk is read under more stringent conditions: the time allowed to read each
magnetized spot (to decode it into a 1 or a 0) is shortened. This is known as reading under a
tight margin.

If your data cannot be verified, cittor sy oy D%
your data cannot be read and must be reprmted on the disk.
as it appears on the disk, is not marginal and has no checkword error, but does not compare
with the data just written on the disk. This may be caused by a bad interface cable connection,
or a problem with the drive or calculator. If your data is marginal, =+ + 2% is displayed. In
this case your data is readable but may not be readable for long and should be copied to a

is d|splayed This means that
“ indicates that data,

new area using the i+ statement.

When the verify mode is disabled, the <. :++ statement (explained next) can be executed in a
shorter amount of time. The same is true of the print statements.

The Copy Statements

The .82 statements enable you to duplicate an entire disk, a specific data file, or part of a
file depending on the parameters used.

The speed of the it statement depends on the amount of available memory (the more
memory, the faster the execution), whether verify is on or off (off is faster) and the type of

=i being done (partial file <&+ with parameters that don’t require writing or checking
for extra EOFs* is fastest). There are no minimum memory requirements. Execute = i

before executing =& (if possible) for fastest results.

Disk Copy

The disk «.«:#: % statement duplicates the entire contents of a source disk onto a destination
disk. The destination disk must have as many, or more, usable tracks as the source disk or the
2+ cannot be executed. The destination disk becomes an exact duplicate of the source

disk.
. o382 source drive number [: source select code] s © % o7
destination drive number([: destination select code]
The " %« " is required to distinguish disk . ::#: 7+ from the other o o:#: statements.

*This is because . 7 statements are
executed without |ntervemng statements which also use bootstraps (I|ke . L vl with string arguments)
the system doesn’t need to fetch bootstraps repeatedly. All other = < stat ments req re more than one bootstrap.

++ with those parameters requires only one bootstrap Therefore if several such

60 Other Operations

File Copy

The file « « statement duplicates the contents of a specified file (program, data, memory
or key) into another file.

- “source file name [= drive number [: select code]]
“destination file name ” [= drive number [: select code]]

The default drive number and select code are the current system values if the optional
i is executed or the calculator is

parameters are omitted until is pressed, & i
turned off. When any of these occur, the default values become drive 0, select code 8.

When the source file is not a data file, the destination file is automatically opened (created) on
- statement. The destination file cannot exist before the

the destination disk by the file .
file .«

= statement is executed.

When the source file is a data file, the destination file may or may not exist before the file
- statement is executed. If it doesn’t exist, it is automatically opened (created) by the file
w statement to be the same size as the source file.

If the destination file is longer than the source file, an EOF mark is printed in the beginning of
each of the extra records in the destination file.

If the source file is longer than the destination file, then all extra source file records must begin
with EOF marks, otherwise i v ¢+ F & is displayed and none of the file is copied. If all extra

source file records begin with EOF marks, the file is copied. EOF marks found in the source file
records which are not extra do not affect copying.

Partial File Copy

The partial file < statement duplicates portions of a specified source data file (which
} " statement) into a destination file.

have been assigned using a & % &% or 3

o fr v source file number : source beginning record number = destination file number
¢ destination beginning record number [: number of records]

After executing a partial file «.<: 2+ statement, the file pointers for each file involved point to
the beginning of their respective files. Records before the starting points and after the ending
points are ignored and unaffected.

Other Operations 61

For example, to delete a record from a file, say (before) (after)
record 2 from a four record file, the third and] File 1 File 1
fourth records are moved up to replace the second a a
and third records and then an EOF mark is

printed. This can be done by executing - 2 15%52%2

EOF

w
N
NANNN
NNNN
INNNNN
AS A
NN\
INNNNN
INNNNN
INNNANN
\w\ .)
o

This copies records 3 and 4 into records 2 and d

3 and puts an EOF mark in record 4. An op- __J
tional 2 can be added to the statement above

to indicate that two records are to be copied. In

that case, the EOF will not be written in record

4.

fi (before) (after)
To add a record to a file, say a new record 3 to Fio 1 File 1 Eile 2

AR asd
1 [vvrirssrzy
/77 LSl

a ’_‘e

a five record file, you can move records 3and 4. 1
down to the fourth and fifth positions in the file

and add a new record 3. To do this, execute -

SR e s esd
/////e (e

5 EOF

The first .52 statement copies file 1, records 3 and 4 to record 4 and 5 and checks record 5
to make sure it begins with an EOF mark. An optional 2 can be added to this statement to
indicate that two records are to be copied. In that case, record 5 is not checked for an EOF
mark. The second copy statement copies the first record in file 2 to the third record in file 1.
The last parameter, 1, indicates that only one record is copied. The o.<:sxwstatement
can also be used to check for an empty data file (where N = an integer between 1 and 10) by
executing f # The ey
without kullmg the file itself by executing

" statement can be used to erase data in a file

62 Other Operations

The Dump Statements

The «iuis
specified tape files.

i+x statements store the entire disk or indicated data files from the disk to the

If you execute for « = from the keyboard, a beep is used to indicate your response
to the messages displayed when you press . However beeps that occur during the actual
dumping or loading process are similar to the beeps that occur during a repack operation.
(See the Repack Statement.) The only difference is that any number of header errors are
arrand L «i proceed only through disk errors; if a tape error occurs,
i stops immediately and the error is displayed.

allowed However,

Disk Dump

The «ii & i dump statement transfers the entire disk onto two or three tape cartridges starting
with track 0, file O of the first tape cartridge.

: statement indicates whether the tape is to be

The optional argument following the :
marked automatically, or not, and the number of disk records to be dumped per tape file.

e If the argument is positive, the tape is marked automatically.

o If negative, you must have marked the tapes before executing <

e 1 0r 10 determines the number of records to be dumped into a tape file.

= (and
is dis-
17 (and
corresponding i i) statement takes longer to execute and requires more

If 10 is used, 2560 bytes of memory must be available when the <

corresponding i i statement) is executed. (Otherwise, &

played.) If 1 is used, there is no memory requirement, but the «i:

tape.

e The default value is +10.

The size of the tape file is 256 bytes when the parameter 1 is used and 2560 when 10 is used.
To ¢ :
and two cartridges when the parameter is 10.

1 an entire disk, normally three tape cartridges are required when the parameter is 1

File Dump

The file «i.iri5: statement transfers the indicated data file from the disk to the specified tape
file.

"data file name " : tape file number [s [~] [#]]

Other Operations 63

The optional parameter has the same effect here as for the disk i 5 statement.

The «iuimie: statement transfers disk information on the current track (starting at the first file
number given) until the current tape track is filled (or the null file is reached, for premarked

tapes). After the track is filled, if the current track is 0, i+ automatically rewinds and
continues wrth track 1, file 0. If the current track is track 1 displays P 5
= R {LE waits for tapes to be changed and then continues with track 0, fn\e 0 of

the new tape.

If the optional parameter is not given or is positive, and you insert a write protected tape, :
i R LS - is displayed. Pull out the cartridge, slide the Record tab
to the record position and reinsert the cartridge and press -

The Load Statements

The disk I ::ci statement transfers the entire disk from the tape files created by the disk
i statement.

Disk Load

The disk 1 -1 statement transfers the entire disk from the tape files used in the disk i

statement.

The disk is loaded starting from tape track 0, record 0. If the :iii:: 5 used ten records per tape
file, there must be 2560 bytes of available memory to perform the load, or = ey il

results. With one record per tape file, there are no memory requirements.

File Load

Thefile 1 =i statement transfers data starting from a specified tape file on the current track
into the disk data file named. The tape file must have been created by a file

= gtatement.

“disk data file name " : tape file number

The data file is transferred starting at the specified tape file number on the current track. The
tape file number must be the same as for the corresponding i = gtatement. If the file

: is used ten records per tape file, there must be 2560 bytes of available memory to
perform the ool or s+ ¢y <hid results. With one record per tape file, there are no
memory requirements. The size of the disk file must be greater than or equal to the size of the
original file from which the data was dumped, otherwise :
records in the destination file are not affected.

64 Other Operations

The Get Binary Statement

The get binary (=% &) statement loads a binary program from a disk file into the binary
program area of the calculator memory.

 “file name

Error Recovery Routines

A binary program and user language program containing the Error Recovery Routines can be
found on your Disk System Cartridge. Error recovery routines enable you to recover from soft
(non-hardware) and sometimes hardware failure errors. Using these binary routines, you can
sometimes read these records or tracks and recover your d.ata from them.

IMPORTANT
If a recoverable error occurs (& ¢

Routine immediately so that the error information is not lost.
If the calculator is turned off, = i is executed or
 (in the verify mode) is performed,

the error recovery information you need will be lost.

FE, s hoor o

If there is no error, the message # ¥+ Ld o % is printed. If there is an error, the
error number, select code, track number and record number are printed. If the error occurs
during the transfer of a number of records, the error number and approximate location are

printed. For example —

When & ¢ 7
To recover your data, load and run the Error Recovery routine by executing —

¥ occurs, data in a record can't be read because the record header is lost.

Other Operations 65

You can then read and load the contents of the track into tape cartridge files, 1 record per tape
file, by first marking (30 X number of tracks involved) files, each 256 bytes in length and then

executing —
i beginning tape file number

Using the binary program, data can be read because the header errors are ignored. This
track (or tracks) can be reinitialized by executing —

To return your data from the tape files to the reinitialized track, execute —

¢ i beginning tape file number

v e i Error Recovery

When s+ + ¢+ iz occurs, the calculator cannot read the data on the track because it can't
recogmze any of the headers on the track. The data on this track is effectively lost. When
R = occurs, load and run the binary Error Recovery routine by executing —

(If possible, execute =ii i to dump the track, although this may not always work since the
calculator may not be able to locate the track because of the loss of the headers.)

Then reinitialize the track by executing —

If the track lost is track 0, the spare directory can be copied to the disk in the main directory
area without affecting anything else on the disk. This can be done by executing —

The latest drive number and select code are used as the default values for the i i ¢
statement.

*The track initialization statement can be used with an optional track number, but the optional track number parameter should be
used carefully to avoid losing data by reinitializing the wrong track.

% [track number]

% without the optional number automatically initialized the track (s) in which the error occurred,

66 Other Operations

< Error Recovery

When & 1+ ¢47 occurs, data in a record can'’t be read because the checkword for that
record is not identical to the checkword generated when the record was read. To read and
correct the data from the record, load and run the binary and HPL Error Recovery routine by
executing —

The HPL program first asks for the track and record numbers where the error occurred. The
entire contents of the record is then printed out, item by item. For each item, the item number,
type number (see the Type Function table, page 51) and the item itself are printed. Then the
question . w7 is printed. ‘

e Ifthe type and the contents are correct, press . The calculator skips to the next item
in the record, prints it out along with its type number and repeats the question,

o If the type is correct, but not the contents (the item itself) enter the same type number
and press . The item itself (value strlng partlal strlng or EOR/EOF mark) is then
questioned, e.g. Fand sEEorsnt Y or Lenst . The incorrect
number, string or EOR/EOF mark can be corrected by keying the correction and pres-
sing . As a final check, the item is reprinted and * &7 is displayed so that
another correction can be made, if necessary. Then the whole procedure is repeated
for the next item in the record.

o |f neither the type or the contents are correct, the correct type number can be keyed in
and executed. Then the item itself can be corrected. As a final check, the item is
reprinted and % ¥

 is displayed, so that another correction can be made, if neces-
sary. Then the whole procedure is repeated for the next item.

This is repeated for the entire record (32 numbers or the characters of a string, etc.) until the
end of the record is reached. Then the calculator prints o #.1f 0 is pressed,

the entire contents of the record is displayed again, item by item, to verify that all corrections
were made. If 1 is pressed the record is written back to the disk.

There are additional error messages associated with these routines which can be found on
page 68.

Other Operations 67

Binary Programs

Other binary programs stored on the Disk System Cartridge enable you to—

e |Initialize a blank disk

e Load only the bootstraps on a disk (already initialized) without destroying data in the
storage area. ‘

e Verify the boots stored on the cartridge with boots on the disk.

o Kill all user files without destroying initialization and the boots on the disk.

There are additional error messages associated with these routines which can be found

on page 68. The routines can be used once i:

The Initialization Routine

The initialization statement (i i1 i %) enables you to initialize a blank disk as described in the

Appendix, page 90.

The Bootstrap Routine

The bootstrap statement (i:::::%) enables you to load a new set of boots on a previously
initialized disk without destroying data in the storage area. This routine is described in detail in
the Appendix, page 90.

The Verify Boots Routine

The verify boots statement (/¥ i) allows you to verify the boots on your disk against the
boots on the Disk System Cartridge.

The KillAll Routine

The killall statement (&

i) erases all user files from the disk without affecting the
initialization or bootstraps on the disk.

68 Other Operations

Error Messages

These errors may result during the binary Initialization and Error Recovery Routines

Wrong syntax, argument out of range or variable not properly dimensioned.
More than six defective tracks on the disk.

Venfy error. Boots on the dISk not identical to boots on the cartridge.

4tk B imitoor 1iorE not allowed because error information is lost or
error is not d5 d6 d7 or d9

Attempt to access a record for error correction which isn’t part of the data file.
Improper string length (inconsistent with given length in header).

Not enough space in record buffer for data item or item can’t be placed in
this part of buffer.

Missing Disk or String ROM

Track still bad after % i3 %,

Specifications
Disk Capacity

Appendix A

Disk Specs and Care

The following table lists the number of bytes of memory required to store full precision data
elements and string variables. Strings and numerics can be mixed within a record.

468,480 bytes - maximum usable storage per disk
1830 records - maximum usable storage per disk
352 files - maximum number of files per disk
58,560 full precision numbers per disk

461,160 string characters per disk

256 bytes per record

8 bytes per full precision number

1 byte per string character*

Disk Speed

360 revolutions per minute - disk speed
267 ms - average access time

(@.at # of tracks-1 > N revolution time
.a.t. — 3

tep tim
step time 5

66 166
267 > X8+ 12>+8

23,000 bytes per second - transfer rate (for numerics)
46,000 bytes per second - maximum transfer rate
62,000 bytes per second - instantaneous speed

1 byte per 8 microseconds - transfer rate

+ [head settling time

*Plus overhead of four bytes per string and four bytes for each additional record used to record the string (and one extra byte if

the number of characters in the string is odd).

70 Appendix A

Transfer Times

To calculate the approximate time it takes to transfer programs, numerical data and string
data, you must know the transfer rate (23,000 bytes per second), the access time (267ms)
and the number of records per track (30).

Transfer Times

8 b
String Data

» 6
©
c
(o]
Q
3

4 |-

2 -

Programs
: : | | Numerical Data
|
2000 4000 6000 8000
bytes
Bytes
1000 5000 10000

Program Data 58sec. .75sec. .97 sec.

Numerical Data* 31sec. .48sec. .70sec.

String Data 96 sec. 3.75sec. 7.22sec.

*Records with less than 70 string characters.

Appendix A 71

" To transfer a program to the disk, the access time is doubled (because the directory and

N »_ bootstraps must also be accessed) and then added to the number of bytes divided by the
o transfer rate. For example, transferring a 10,000 byte program takes, on the average -

2 x .267 + 10,000 or .97 seconds
23,000

To transfer numerical data and to print and read strings, the access time is added to the
number of bytes divided by the transfer rate. Therefore, transferring 5000 bytes of numerical
data takes, on the average -

.267 + 5,000 or .48 seconds |
23,000

To transfer string data over 70 characters, the access time is added to the number of bytes
multiplied by 16* and is then divided by the transfer rate. Transferring 1000 bytes of string

data takes, on the average -

.267 + 1,000 X 16 or .96 seconds
23,000

*Because an extra revolution is required to access the next record.

72 Appendix A

Disk Care

Guidelines

The Flexible Disk is basically maintenance free, but should be handled with care. Here are
some guidelines to avoid loss of data or damage to your disks. By following these sugges-
tions, you'll greatly improve the reliability of your disks.

CAUTION
Use only HP approved disks since use of others can result
in damage to your drive. (Contact your locai HP Sales and
Service Office for a list of recommended manufacturers.)

e Replace worn disk envelopes and always return disks to their storage envelopes after
removing them from the drive to protect them from damage. A looseleaf notebook is
provided for disk and envelope storage. Envelopes can be ordered from your HP Sales
and Service Office.

e Since fingerprints on the disk can cause loss of data, avoid touching the surface of the
disk showing through the protective sealed jacket.

e Avoid writing on the sealed plastic jacket with lead pencil or ball-point pen. Use a soft
felt tip pen and write on the label only.

e Although the disk is flexible, do not bend or fold it since this, too, can cause damage to
the disk.

e Never subject disks to temperatures below 10°C (50°F) or above 52°C (125°F) or rela-
tive humidity in excess of 20% to 80%.

e Contamination from dust, ashes smoke etc. can damage disks.

e Avoid placing disks in strong magnetic fields like those produced by transformers or
magnets, since this can cause loss of data.

e Never remove disks from their sealed protective jackets.

e The inside surface of the sealed protective jacket is coated with a special material that
cleans the disk as it rotates. Any other method of cleaning may scratch the disk and
cause loss of data.

Appendix A 73

System Reliability

The reliability of your system depends directly on the care you exercise in handling your disks
and in avoiding the situations just described. Disks and drives that are not subjected to these
“extremes”, will perform maintenance free for a longer period of time than those handled
without regard to the disk care guidelines.

A year from original date of delivery you should contact your HP Sales and Service Office fora
preventative maintenance check up. Preventative maintenance should be performed once a
year thereafter by an HP representative.

Maintenance Agreements

Service is an important factor when you buy Hewlett-Packard equipment. If you are to get
maximum use from your equipment, it must be in good working order. An HP Maintenance
Agreement is the best way to keep your equipment in optimum running condition.

Consider these important advantages —

e Fixed Cost — The cost is the same regardiess of the number of calls, so it is a figure that
you can budget.

e Priority Service — Your Maintenance Agreement assures that you receive priority treat-

ment, within an agreed upon response time.

e On-Site Service — There is no need to package your equipment and return it to HP. Fast
and efficient modular replacement at your location saves you both time and money.

o A Complete Package — A single charge covers labor, parts and transportation.

e Regular Maintenance — Periodic visits are included, per factory recommendations, to
keep your equipment in optimum operating condition.

e Individualized Agreements — Each Maintenance Agreement is tailored to support your
equipment configuration and your requirements.

After considering these advantages, we are sure you will see the cost effectiveness of a

Maintenance Agreement. For more information contact your local HP Sales and Service Of-
fice. :

Appendix B
Installation and Service

Getting Started...

1 Unpacking Your System

You should have already carefully removed your 9825A Calculator and 9885M Drive (or
Drives) and 9885S Drive (or Drives) if ordered, from their shipping packages. After unpacking
the drive (or drives), remove the foam shipping piece from the drive door.

The individual parts of your HP 9885 Disk Drive system were thoroughly inspected before they
were shipped to you. All equipment should be in good operating order. Carefully check the
drive (or drives) the ROM and other items for any physical damage sustained in transit. Notify
HP and file a claim with the carrier if there is any such damage.

Please check to ensure that you have received all of the items which you ordered and that any
options specified on your order have been installed in your calculator. Refer to the table on the
next page and check that all accessories are present.

If you have any difficulties with your system, if it is not operating properly, or if any items are
missing, please contact your nearest HP Sales and Service Office; addresses are supplied at
the back of this manual.

76 Appendix B

Equipment Supplied
Check to be sure the following equipment is supplied with your 9885M Flexible Disk System.

Equipment Supplied

Description Nsﬁger 9808255M 98858
Disk Programming Manual 09885-90000 1 0
HP9825A Quick Reference Guide 09825-90011 2 0
Disk Care Note 09885-90020 1 1
Disk ROM 98217A 1 0
Initialized Disk 09885-90045 1 0
Blank Disk * 1 2
Disk System Cartridge 09885-90035 1 0
HP 98032A interface Cable 98032 Opt 085 1 0
Power Cord (seepage 80) 1 1
Spare Fuses (3 amp) 2110-0381 1 1
(2 amp for 220 V Drives) 2110-0303 1 1
Fuse Cap, European 2110-0544 1 1
Drive Number Labels (0 thru 3) 7120-5839 1 Set 1 Set
Select Code Labels (8 thru 15) 7120-5840 1 Set 1 Set
Disk Labels 7120-6049 1 Set 1 Set
Write Protect Tabs 7120-5388 1 Sheet |1 Sheet
Notebook 9282-0580 1 0
98858 Cable 09885-61607 0 1
9885S Operating Note 09885-90006 0 1
9885M Installation Note 09885-90007 1 0

*Blank disks may be ordered in packages of 5 using part number 09885-80004 and
packages of 25 using part number 09885-80005.

Additional Equipment

String, Matrix and Advanced Programming statements can be used with Disk statements for
greater flexibility. String and Advanced Programming operations require the 98210A String/
Advanced Programming ROM Card.

rev:8/77

Appendix B 77

Option 002 Rack Mount Kit

This option allows you to mount your drive or an HP 9878A |/O Expander in a standard 19-inch
rack mount cabinet. This option is installed at the factory although a rack mount field installa-

tion kit is available.

The rack mount brackets are not able to support the entire weight of the equipment. A shelf or
other support should be provided by the equipment rack or cabinet to support the weight.

e Replace the standard side panels with those supplied in the rack mount kit (refer to the
figure below).

e Install the rack mount brackets with the screws provided in the kit.

Rack Mount Bracket

Screws

Side Panel Retaining Screw

Side Panel

Rack Mount Kit Installation

78 Appendix B

2 Checking Fuses, Voltage and Power Cords

Fuses

Always be sure that the correct fuse is installed. Failure to follow this precaution may result in
damage to the drive.

A different fuse is required for each of the two voltage ranges of 100-120 Vac and 220-240
Vac. Be sure that the fuse on the rear panel is the proper type and rating, as shown below.

Voltage Fuse HP Part
Setting Rating ‘ Number
100,120 | 3 Amp (SB) | 2110-0381
220,240 | 2 Amp (SB) | 2110-0303
Fuses
WARNING

ALWAYS DISCONNECT THE DRIVE FROM ANY AC POWER
SOURCE BEFORE CHANGING THE FUSE.

To change a fuse —
e Insert a screwdriver or a coin in the slot of the fuse cap on the rear panel (see page
81).
e Press in slightly on the cap and turn it counterclockwise.
e Pull the fuse cap from the rear panel.

e Remove the original fuse from the fuse cap and install the new fuse (either end) in the
cap.

e Install the fuse cap and fuse on the rear panel. Press in slightly on the cap and turn it
clockwise.

Appendix B 79

Power Requirements

The 9885M or S can operate on line voltages of either 100, 120, 220, or 240 Vac (+5%, —10%).
The line frequency must be within 3.5% of 50 or 60 Hz. The voltage selector switches on the
rear panel must be set to the nominal ac line voltage in your area. The illustration below shows
the correct settings for each nominal line voltage.

WARNING
ALWAYS DISCONNECT THE DRIVE FROM ANY AC POWER
SOURCE BEFORE SETTING THE VOLTAGE SELECTOR
SWITCHES.

100V 100V 100V 100V
. 120V = 120V - 120v - 120v

240V 240V 240V 240V
220V 220V 220V 220V
100 voits 120 volts 220 volts 240 volts

Switch Settings for the Nominal Powerline Voltages

To alter the setting of the selector switches -
e Insert the tip of a small screwdriver (or any small tool) into the slot on the switch.

¢ Slide the switch so that the position of the slot corresponds to the appropriate voltage,
as shown.

Option 001 for 50Hz Operation

This option is installed at the factory. It enables the drive to operate properly on a 50Hz line
frequency.

80 Appendix B

Power Cords

Power cords with different plugs are available for the equipment; the part number of each cord
is shown below. Each plug has a ground connector. The cord packaged with the equipment
depends upon where the equipment is to be delivered. If your equipment has the wrong power
cord for your area, please contact your local HP Sales and Service Office.

Power cords supplied by HP have polarities matched to the power-input socket of the equip-
ment, as shown - '

e L = Line or Active Conductor (also called “live"” or “hot”)
e N = Neutral or Identified Conductor

e E = Earth or Safety Ground

WARNING

IFIT IS NECESSARY TO REPLACE THE POWER CORD, THE
REPLACEMENT CORD MUST HAVE THE SAME POLARITY
AS THE ORIGINAL. OTHERWISE A SAFETY HAZARD FROM
ELECTRICAL SHOCK TO PERSONNEL, WHICH COULD
RESULT IN INJURY OR DEATH, MIGHT EXIST. IN ADDI-
TION, THE EQUIPMENT COULD BE SEVERELY DAMAGED
IF EVEN A RELATIVELY MINOR INTERNAL FAILURE OC-
CURRED.

8120-1381 8120-1369

M CN S

8120-2104

g

8120-1378

Power Cord Options

Appendix B 81

3 Connecting Calculators, Drives and Interface Cable Cards

e For asingle drive system, connect the 9885M to the calculator by inserting the interface
card end of the interface cable into the back of the calculator. Connect the other end of
the interface cable to the top I/O connector on the back of the 9885M.

Line Voltage

Tran:
sformer Fan Selector Switches

Fuse

1/0 Connector

AC Power Input Test Switch* 1ggt Light ~ Drive Select
(9885M Qnly) (9885M Only) Switch

9885M Rear Panel

e For multiple drive systems, connect the 9885M to the calculator as just described.
Then up to three 9885S drives can be connected in series to the 9885M drive using the
09885-61607 cable between drives. (Note: The 9885S Drive cannot be connected
directly to the 9825A Calculator.)

Next 9885 S connects here

988585—

98032 QOption DAS in e

09885-61607 Cable

Connecting the 9885S Drives
e Repeat this procedure for systems with more than one 9885M Drive.

e Connectone end of the ac power cord to the power input connector on the rear panel of
the calculator and the other end to an appropriate ac power source.

e Connectone end of the ac power cord(s) to the input connector on the rear panel of the
drives(s) and the other end(s) to an appropriate ac power source.

*9885S does not have a Self Test Switch.

82 Appendix B

4 Setting Drive Switches and Select Codes (Usually drive 0, select code 8.)

e Once all drives are connected, set the drive select switch on the rear panel of each
drive to the desired number (0 thru 3). The drive number selected is the one opposite
the dot on the switch. Each of the drives connected to the calculator through an inter-
face cable must have a different drive number. A maximum of four drives can be
connected using an 98032A Interface Card Cable.

Drive Select Switch

e Set each HP 98032A Option 085 Interface Cable in your system to a different select
code (8 thru 15). Up to eight* 9885M drives may be connected to one 9825A Calculator
using an interface cable, each having a different select code.

Select Code Switch

*An HP 9878A I/Q Expander is required if more than three interface cables (inciuding those for 9885M Drives) are connected to
the calculator.

Appendix B 83

5 Installing the ROM Card !

Be sure the calculator is off before installing the Disk ROM (Read Only Memory) Card. With the
label right side up, slide the ROM through the ROM slot door. Press it in until the front of the
ROM card is even with the front of the calculator, as shown.

ROM Installation

84 Appendix B

6 Installing the Disk

Follow the steps below to install a disk in your drive -

WARNING
USE ONLY FLEXIBLE DISKS APPROVED BY HP. ANY
OTHER DISK MAY CAUSE PERMANENT DAMAGE TO THE
READ/WRITE HEAD IN THE DRIVE. FOR A LIST OF AP-
PROVED DISKS, CONTACT AN HP SALES AND SERVICE
OFFICE.

e Once all drives are properly connected to the calculator, open the door of the drive by
pushing in on the small bar on the front of the drive, below the door handle.

o Then remove the disk from its protective envelope,* and carefully slide the disk in (label
side up and nearest you) until you hear a click.

Installing a Disk

Appendix B 85

e Close the door by pressing down firmly on the handle until the door locks closed. (The

disk can be installed with power on and the spindle rotating without damage to the
disk.) If a non-initialized disk is inserted in the drive, do not close the door until i1 % is

executed. (See page 91.)

NOTE
Do not execute any disk or mainframe statements with a
blank (non-initialized) disk installed in the drive and the
drive door closed, since errors or temporary loss of calculator
control can result.

e The disk can be removed by pressing the bar below the handie on the front of the drive.
The door springs open and the disk is released. When the disk is removed, it should
always be replaced in its protective envelope.

7 Turn On

Once the calculator is properly connected to the drive (or drives) and the Disk ROM and the
disk are installed, your system is ready to turn on -
e Turn on the 9825A Calculator using the power switch on the right.

e Turn on all 9885M and 98855 power switches located at the right on the front panel of
each drive. All drives in a system must be turned on before the system can be operated.

86 Appendix B

8 Pattern Test

The Pattern Test is performed on initialized disks without useful files to test the disk surface
and the hardware to be sure they are functioning properly. Since this test writes a number
pattern in each record of the area specified and then reads the pattern to verify it, it should not

be performed on disks containing useful data. The Patten Test is programmable once the
binary program is loaded into the calculator. If drive 0, select code 8 is being tested, the Disk

ROM is not required.

NOTE
In the following instructions, do not confuse the number i (1) character with the letter | (l) character.

Insert the Disk System Cartridge and execute % ¢ i &

i The Pattern Test can be run by
executing — '

.z % [number of test cycles| : starting track number[: ending track number]]]

These parameters* can be numeric expressions. If parameters specifying the number of tests
and the test area are omitted, the entire disk is tested once. If the calculator and the drive are

not properly connected, the message i. 4 flashes in the calculator display.

To run the test continuously, use 0 for the number of test cycles; the number of the cycle is
displayed as each test is completed. To stop the test, press.

If the Pattern Test is performed on a disk containing useful data, an error message is printed
and the test halts. For example —

The Pattern Test should not be performed on tracks 0 thru 5 of an initialized disk. If the test is
run on any of the first six tracks, the information in these tracks is replaced by zeros and an
error message is printed. For example —

CAUTION
THIS TEST ERASES ALL DATA AND INITIALIZATION ON THE SPECIFIED AREAS TO BE TESTED.

*If the disk being tested has an defectlve tracks (see page 9), besure louse parameters to limit the test to the existing tracks,
otherwise the message . is repeatedly printed since non-existent (defective tracks) are repeatedly searched
for, for testing.

rev:9/77

Appendix B 87

The disk must be reinitialized. (See page 90.) It is advisable to test only areas outside of the
systems area to avoid reinitialization.

If, during a Pattern Test, the pattern written is not the same as the pattern read, a compare fail

error occurs and an error message is printed indicating track, record and failing pattern. For
example —

These test patterns are used —

143306 (base 8)
066154 (base 8)
155555 (base 8)
133333 (base 8)
000000 (base 8)

If no errors are found, 1

i is printed.

9 Testing the System

Disk System Cartridge Programs

The Disk System Cartridge contains the following programs —
Track 0

File 0 Initialization Routine (binary)

File 1 Error Recovery Routine (binary)

File 2 Error Recovery Routine (HPL language)

File 3 Exerciser — Checkread and Pattern Tests (binary)
File 4 Exerciser — HPL Disk Test (HPL language)

Files 5-9 Unused

Files 10-63 Bootstraps

These programs are repeated on track 0, files 100 thrL_J 169 and track 1, files 0 thru 69 and files
100 thru 169. This gives you a total of four copies of each of these programs.

88 Appendix B

Checkread Test

All components should be connected, installed and switched on before testing. If a =i i s
statement (with drive number other than 0 and select code other than 8) has not been exe-

cuted, the default values (0,8) are assumed. To test other drives, execute the i i w4 state-
ment with the drive number and select code of the drive to be tested. If drive O, select code 8 is

being tested, the Disk ROM is not required.

To load these tests into the calculator —

e |Insert the Disk System Cartridge in the calculator.

e Execute i r kil (Exercisers are duplicated on track O,file 103 and track 1 files 3 and
103, as backup.)

e Execute i :ii

The Checkread Test is normally used to test disks containing useful data. This test sequen-
tially reads each record in the area specified, the number of times indicated and then verifies
the data. The Checkread Test does not destroy the data on your disk.

To run the Checkread Test, execute —

4 [number of test cycles| = starting track number [= ending track number]]1]

These parameters* can all be numeric expressions. If parameters specifying the number of
tests and test area are omitted, the entire disk is tested once. If the calculator and the drive are

ii flashes in the calculator display.

not properly connected, the message L

To run the test continuously, use O for the number of test cycles. The number of the test cycie is
displayed as each test is completed. To stop the test, press.

Error messages indicating error, track and record numbers are printed for any read error
during this test. For example —

If no errors are found, i

The Checkread Test is programmable once the binary program is loaded into the calculator.

*If the disk being tested has any defective tracks (see page 9) , be sure to use parameters to limit the test to the existing tracks,
otherwise the-message srror odf is repeatedly printed since non-existent (defective) tracks are repeatedly searched
for, for testing.

Appendix B 89

HPL Disk Test

The HPL Disk Test should be used on an initialized disk which has no needed information.

Then type in the drive number and press . Type in the select code when requestéd and
press . tis printed when the test is passed and complete. An
error message is displayed if the test fails.

Self Test

You may wish to check the electrical performance of the drive. The drive can be checked with
or without a disk installed. The disk door must be closed before the self test can be performed,
even if a disk is not installed.

NOTE
Performing the self test with a disk installed will erase data
and initialization on the disk. Use a blank (non-initialized)
disk for the self test. (If the disk is to be used later, it must be
completely reinitialized.)

To perform the self test —

e Disconnect the interface cable between the 9885M and the calculator.
e Close the doors on all the drives in the system.
e Insert the blade of a screwdriver into the slot of the test switch on the rear panel of the
9885M and press the switch down; then release it.
Without the disk installed, the self test ~

e Checks the microprocessor and program memory.

e Checks the drive control and drive status circuits.

o Checks the I/O functions.

rev:9/77

90 Appendix B

With the disk installed, the self test —

e Checks the microprocessor and program memory.
e Checks the drive control and drive status circuits.
e Checks the I/O functions.

e Checks the read/write electronics.

e Checks the head positioning circuits.

Although the self test does not check all of the drive functions, it gives a high confidence level
that the drive is functioning properly. The test takes less than one minute to complete. When
the test is complete, the self test light (by the self test switch) will go out.

If the light stays on longer than 1 minute, the test has failed. To repeat the test, be sure all drive
doors are closed properly and then press the self test switch again. If the test fails again,
contact your HP Sales and Service Office for assistance.

10 Initializing Blank Disks

The initialization procedure writes addresses on the disk so that specific locations may be
referenced by the system. During initialization, test patterns are also written on the disk and
then read for verification. This takes about four minutes per disk. Immediately following initiali-
zation, the bootstraps needed to operate the drive are loaded onto the disk. This takes about
one minute. Once initialization starts, all previous information on the disk is lost.

Each blank disk must be initialized and the bootstraps loaded before it can be used with your
system. Once this procedure is complete, the disk remains initialized* and does not have to be
reinitialized each time the system is turned on.

NOTE
One initialized disk is provided with your system and is

ready for use. If the disk you are using is already initialized,
skip this procedure and continue on page 85 with step 7.

*Unless accidently erased, as explained on pages 86 thru 89.

Appendix B 91

Once all components of the system are connected, installed and switched on and the door to

the drive (containing the disk* to be initialized) is open, follow the procedure below to initialize
and load the bootstraps onto your disk -

o Insert the Disk System Cartridge in the calculator.

e Keyinandexecute % + i £ (Initialization and bootstraps procedures are duplicated on
track 0O, file 100 and trk 1 files 0 and 100 as backup.)

e Then key in and execute !

4 will be displayed if all variables are not

erased. If this occurs, execute = .34 .t and then reload the program.)

e When the cartridge file has been loaded into the calculator memory and control returns,
key in and execute i %, (The drive door can now be closed.)

e From this point on, your calculator display will instruct you. The first message is —

L J

e Key in the drive number of the drive you are using to initialize your disk (0, 1, 2 or 3) and
press . (The calculator will continue to display this message if the drive number is
not any of the drives 0 thru 3.)

e The next message displayed is —

[

where ‘N’ is the drive number you specified. If correct, press . If not correct, press

and execute it

At this point, the track-by-track initialization and verification and bootstrap loading routine is
executed. As mentioned previously, this takes approximately 5 minutes. If six or less tracks

are defective, the next message printed and displayed indicates the number of defective

[]

where ‘N’ is the number of defective tracks. If more than six tracks are defective,

.. again.

tracks —

execution stops and # ¢ B is displayed. If more than six of the tracks are
defective, contact your local HP Sales and Service Office for a replacement disk.

“The disk should have a write protect tab on it. (See page 14 for more ir;formation.)

92 Appendix B

If six or less of the tracks are defective, initialization of that disk is complete and the disk is

ready to use.

e If you have another disk to be initialized, place it in the drive and repeat this procedure

starting with execution of i3 4.

e If you want toinitialize a disk in another drive (using a select code other than 8), repeat
the procedure above (starting with execution of i::i %) after executing a i i ui
statement (see page17)indicating appropriate drive number and select code.

Appendix C

Terms, Statements and Errors

Disk Terms

availability table - Table in systems area that monitors the amount and location of remaining
disk space.

backup track - Track 5 of an initialized disk contains the same information as track O: the
systems table, the file directory and the availability table.

bootstraps - Binary programs loaded from the Disk System Cartridge onto the disk during
initialization. These programs are part of the system software and consist of disk
statements and routines.

checkword - A unique 16 bit word written on the disk at the end of each record which is
generated by the controller during a write operation. Also called the CRC - Cyclic
Redundancy Code.

checkword error - When a record is read, a checkword is generated and is compared to the
checkword at the end of the record for data validity. If not identical after nine rereads,
" (Checkword error) is displayed.
controller - A printed circuit assembly in the 9885M drive (not contained in the 9885S) that
monitors and controls all drive functions.

defective track - A track on the disk where the reading and writing of data is not possible,
usually because of a scratch, dirt, or lack of magnetic oxide on the surface of the disk.

The number of defective tracks is identified during initialization and is recorded in the
systems table.

disk - The disk is the storage medium for the 9885M or 9885S drive. Data is written on a thin
magnetic oxide film coated on mylar plastic. The disk is enclosed in a sealed plastic
jacket to protect it.

drive - The 9885M and 9885S are also referred to as drives.

94 Appendix C

drive number - The drive number (O thru 3) is selected by the drive select switch on the rear
panel of the drive.

double density - The type of recording techniques used by the 9885, giving increased storage
capacity and higher transfer rates over tape cartridge.

end of file marV - Mark written in the first word of each record when a file is opened and at the
end of the data in a file when the "2 parameter is used. Data cannot be read
past this mark, although it can be written.

end of record mark - Mark placed after the last data item when the ~ = Tor Y

parameter is omitted.

error recovery routines - Binary or HPL language programs allowing the user to read a file,
ignoring header and checkword errors.

file - A file is one or more user records written on the disk.

file directory - A directory in the systems area containing entries for every file on the disk
indicating file name, size, type and location.

flexible disk - The disk is also referred to as a flexible disk.

head - The read/write head contains the read, write and erase elements (coils) encased in
ceramic. The head is in contact with the lower disk surface of the disk when data is
transferred.

header - A unique bit pattern representing the address of the record, written at the beginning
of each record during initialization.

hard error - Usually the result of a hardware failure. A hard error is usually non-recoverable.
The software error recovery routines, however, can be used to try to recover from the
error.

initialize - When a disk is initialized, addresses are written on it, it is tested by writing and
reading patterns from the disk and the systems area (bootstraps and tables) is set up.

load pad - Pad opposite the head (touching the upper surface of the disk).

random file access - Method of storing and retrieving data items individually.
record - A pattern of bits representing data written on the disk following the header.
seek - Movement of the head from one track to another. (Aiso called stepping.)

soft error - Soft errors are recoverable and are usually caused by dirt in the air or on the disk,
random electrical noise, small defects on the disk or a defective load pad.

select code - In a 9825/9885 system, each 98032A Option 085 Interface Cable must be setto a
different select code (8 thru 15).

Appendix C 95

serial file access - Method of storing and retrieving data items serially instead of individually.
storage area - Tracks 6 thru 66 available for your data storage.

systems area - The systems area consists of disk tracks 0 thru 5 containing the systems table,
file directory, availability table, bootstraps and backup track.

systems table - Table in the systems area indicating the calculator used to initialized the disk,
the number of defective tracks and the beginning of the storage area.

track - Any one of 67 concentric circles on the surface of the disk .012 inches wide and’
numbered 0 thru 66.

transition - A flux reversal caused by writing on the disk which produces an electrical signal
during a read that is decoded into bits (0 or 1).

tight margin - A restriction in the time allowed for a read during which a flux transition can be
interpreted as a bit (a 1 or 0).

user’s area - Tracks O thru 66 available for user data storage.

verify error - &+ i3 generated after reading ten times under a tight margin or during the
Pattern Test indicating that the record was read correctly but flux transitions were

marginal for reading and they might not be read correctly on the next attempt.

write protect tab - Opaque tab which allows writing on the disk. When the write protect hole is

open, writing on the disk is prevented.

96 Appendix C

Disk Statement Summary

All disk statements are programmable. In addition, all disk statements are executable from the
: ivvand =%k which are not

keyboard and the live keyboard mode, except for =

allowed in live keyboard mode.
Conventions

The following conventions are used in the statement descriptions —
brackets [] — All items enclosed within brackets are optional.

: = — All items in dot matrix must appear exactly as shown.

The following definitions are used in the statement descriptions.
These parameters can be numeric expressions —

drive number (exceptinthe ¢ i 1 & = statement, where it must be a numeric constant)

select code

line number ‘
number of records
position number '
file number

record number

tape file number

These parameters can be text (e.g.
unless otherwise stated.
buffer name

file name (except in the # :
label

- statement, where it must be text)

Data items used in print and read statements can be —
simple variables (e.g. ¥

array elements (e.g.
entire arrays (e.g. |
entire string variables or arrays (e.g. i
substrings (e.g. 1)

r registers (e.g. v

)
In addition, data items in print statements can also be —
numeric expressions (e.g. &

string expressions (e.g. -
text (e.g. ")

Appendix C 97

Drive Statement (Page 17)

4+ i ww drive number [« select code]

Specifies the drive (0 thru 3) to be used and, optionally, the select code (8 thru 15) indicating
the 9885M drive being addressed. The drive number default value is O; select code defauit
value is 8. '

Catalog Statement (Page 20)

Outputs information about all user files on the disk, including -

Number of remaining available records and bootstraps revision letter.
File name

File type
P - Program file
K - Key file
D - Data file
M - Memory file
B - Binary Program file
O - Other

File size (in bytes for program, binary, memory or key files and in records for data files.)

Select code 0 outputs to the calculator printer, 2 thru 15 to other output devices. Select code
16 lists previously indicated information plus file size in records and file location (track and
record numbers) on the calculator printer. When a buffer name (string) follows . ix %, complete
information about all user files is output to an I/O buffer.

Save Statement (Page 18)

s file name T [+ 1stline number [= 2nd line number]]

Stores an entire program, or the lines between and including the specitied line numbers, into
the file named.

98 Appendix C

Get Statement (Page 22)

“file name ” [¢ 1stline number [: 2nd line number]]
retained.)

Loads the program specified from the disk into the calculator memory. (Variable values are not

1st line number — If specified, the loaded program lines are renumbered with the beginnirig

line number corresponding to the specified first line number. (Program lines in mem-
ory with line numbers lower than the first line number are retained.)

2nd line number - Execution starts at the second line number. (If executed from within a

program, execution of the program begins automatically.) If the second line number is
omitted, program execution begins at the first line number, the default value.

Chain Statement (Page 25)

+ “"file name “ [¢ 1stline number [: 2nd line number]]

Loads the program specified from the disk into the calculator memory and retains the values of
all variables. (Same line number rules as for the

Resave Statement (Page 28)

“file name " [1st line number [= 2nd line number]]

Stores a new program, or the lines indicated by the line numbers, on the disk using a previous
file name.(Same line number rules apply as for the = ¢:5 statement.)

Savekeys Statement (Page 29)

=k Vfile name

Stores all present special function key definitions in the named file on the disk.

Appendix C 99

Getkeys Statement (Page 29)
=tk file name

Loads all special funtion key definitions from the specified file of the disk to the calculator
special function keys.

Open Statement (Page 33)
sy file name T s number of records

Creates a data file on the disk, with the indicated number of (256 byte) records and assigns it
the name specified. End of file (EOF) marks are written in the beginning of each record.

Kill Statement (Page 27)
i 11 “filename ”
Erases the program, data memory or binary or key file named, from the disk and makes the file

space available. The availability table is automatically updated (repacked) following execu-
tionof a &3 1 I statement.

Files Statement (Page 34)
1 1sa name [idrive number][:...]

Assigns file numbers (1 thru 10) to the files named and optionally the drive number for each file
:+: statement follows.

100 Appendix C

Assign Statement (Page 36)

z =57 file name T ¢ position [= drive number [: return variable]]

Assigns a file number to a single file name and optionally, the drive number for the file
specified. An optional return variable can be used for further file information.

Value of Variable Meaning

file is available and assigned
file doesn't exist

program file

key file

file type not defined

memory file

binary program file

file type not defined

file number out of range

O~NOOUDWN—=O

Serial Print Statement (Page 38)

8% file number = dataitems[:...][=

Prints specified data items in the file number indicated after the last item printed or read.An
end of record (EOR) mark is printed after all items if neither the “ & ™ or "5 " parame-
ter is used. An end of file (EOF) mark is printed if the “ 14 is used. Neither an EOR or EOF
mark is printed it the "« 7 parameter is used.

Serial Read Statement (Page 41)

-4 file number = data variables [= ...]

Reads data from the specified file starting after the last item printed or read.

Appendix C

Random Print Statement (Page 43)

v 1% file number : record number « dataitems [:..][: “&mal’”

Prints specified data items in the file number indicated starting at the beginning of the record
number specified. An EOR mark is printed at the end of all data if neither the ~ =™ or
“wrE T parameter is used. An EOF is printed if the ™ s 1+
or EOF is printed if the " w5 7 parameter is used.

" parameter is used. Neither EOR

1% file number : record number s sl

Erases the specified record by placing an EOF mark in the beginning of it.

Random Read Statement (Page 46)
e & i file number = record number = data variables [5 ...]
Reads data from a specified file starting at a specified record.

-t file number : record number

Repositions the file pointer to the beginning of the specified record in the file indicated.

101

102 Appendix C

Type Function (Page 51)
tweg ([~]file number i

Identifies the type of the next item in a specified file. A negative file number is used to detect
an end of record (EOR) mark.

Type Code Meaning
0 type undefined
full precision number
2 string (complete in one record)
21 the first part of a string (which overlaps record boundaries)
2.2 an intermediate part of a string (which overlaps record bound-
aries)
2.3 the end part of a string (which overlaps record boundaries)
3 end of file (EOF) mark
4 end of record (EOR) mark

Rename Statement (Page 28)

“Old”: “New™

Changes the name of a file from the original name to the new name specified.

On End Statement (Page 50)

74 file number s line number or “label ”

Sets up a branching condition which changes the program flow to a specfied new location (by
line number or label) when an end of file (EOF) mark is encountered using : i «.4i or an end
of file (EOF) or end of record (EOR) mark using & ¢ 24

AppendixC 103

Save Memory Statement (Page 57)

=y file name "

Stores the calculator’s entire read/write memory in the specified file.

Get Memory Statement (Page 57)

= file name

Loads the calculator's entire read/write memory from the specified file and returns the cal-
culator to its state before : 1+ was executed.

Copy Statements (Page 59)
Disk Copy

=+ source drive number [= select code]

+ destination drive number [: select code]

Duplicates the entire contents of a specified source disk to a specified destination disk which
has as many or more usable tracks as the source disk, using optional select codes, if neces-
sary.

File Copy

&2 “source file name © [= drive number [: select code]]:
“destination file name " [= drive number [: select code]]

Duplicates the contents of a specified source file into the specified destination file using
optional drive numbers and select codes, if necessary.

Partial File Copy

o source file number = beginning record number : destination file number »
beginning record number [= number of records]

Duplicates a specified source file beginning at ghe indicated record number into the specified
destination file beginning at the indicated record number, for the number of records specified.

104 Appendix C

Dump Statements (Page 62)

Disk Dump

Stores the entire disk onto up to three cartridges.*

File Dump

& “file name " = tape file number [[~]131[#]]

Stores the named data file from the disk into the specified tape file.*

Load Statements (Page 63)

Disk Load

Loads entire disk from the tape files on the tape cartidges used to dump the disk, starting with
track O, file O of the first tape.

File Load

i “file name " = tape file number

Loads data from a specified tape file to the disk file named.

*The optional extra parameters, if negative, suppress automatic tape marking; 1 or 10 indicates the number of disk records to be
stored per tape file.

Appendix C

Verify Statements (Page 58)
orror i F

Enables (::::::) or disables (::::4) a verify mode which does a read after a write under
stricter than normal specifications and compares the data read to the data in the calculator
memory.

Repack Statement (Page 58)

Rearranges user files on the disk for more efficient use of available (contiguous) space.

Get Binary Statement (Page 64)

i “name "

Loads a binary program from the disk into the binary program area of the memory.

Disk System Cartridge Statements (Page 67)

These statements are available when the binary programs on the Disk System Cartridge are
loaded.

Name Explanation

Writes addresses on the disk, tests the disk by writing and reading patterns
on the disk and loads the systems area on the disk (including the bootstraps).

Loads only the bootstraps onto the disk.

Compares the bootstraps on the disk to the bootstraps on the
Disk System Cartridge.

Erases all user files from the disk without affecting the systems area
or the bootstraps.

i [tape file #] Dumps a badtrack from the disk into the tape cartridge file
specified.

% [track #] Reinitializes one or more bad tracks.

11 vk [tape file #] Returns corrected data from calculator memory to a reinitialized
track on the disk.

Copies the Backup Track (track 5) into the systems area (track 0).

105

106 Appendix C

ASCII Character Codes

ASCHl | EQUIVALENT FORMS AsCll | EQUIVALENT FORMS ASCll | EQUIVALENT FORMS ASCll | EQUIVALENT FORMS
Char. Binary |[Octal | Dec Char. Binary (Octal |Dec Char. Binary |Octal |Dec Char. Binary |Octai | Dec
NULL [00000000 | 000 0 space |00100000 | 040 | 32 @ 01000000 | 100 | 64 * 01100000 | 140 | 96
SOH |oocoooot1 | oot 1 ! 00100001 | D41 33 A 01000001 | 101 65 a 01100001 | 141 97
STX [00000010 | 002 2 " 00100010 | 042 34 B 01000010 | 102 66 b 01100010 | 142 o8
ETX |00000O11 | 003 3 # 00100011 | 043 35 G 01000011 | 103 67 [01100011 | 143 99
EQT | 00000100 | 004 4 $ 00100100 | 044 36 D 01000100 | 104 68 -d 01100100 | 144 | 100
ENQ | 00000101 | 005 5 % 00100101 | 045 a7 E 01000101 | 105 69 e 01100101 | 145 {101
ACK | Q0000110 | 006 6 & 00100110 | 046 38 F £1000110 | 106 70 { 01100110 | 146 102
BELL |ooecot111 | co7 7 . 00100111 | 047 39 G 01000111 | 107 71 g 01100111 | 147 | 103
BS | 00001000 | 010 8 (00101000 | 050 40 H 01001000 | 110 72 h 01101000 { 150 [104
HT |00001001 | O11 9) 00101001 | 051 4 i 01001001 | 111 73 i 01101001 | 151 105
LF] 00001010 | 012 10 - 00101010 | 052 42 J 01001010 | 112 74 i 01101010 | 152 | 106
Vras | 00001011 | 013 1 + 00101011 | 053 43 K 01001011 | 113 75 k 01101011 { 153 | 107
FF | 00001100 | 014 12 s 00101100 | 054 | 44 L 01001100 | 114 76 01101100 | 154 | 108
GCR 00001101 | 015 13 - 00101101 | 055 45 M 01001101 | 115 7 m 01101101 | 155 | 109
SO [60001110 | 016 14 00101110 | 056 46 N 01001110 | 116 78] 01101110 | 156 | 110
SI | 080001111 [017 | 15 / 00101111 | 057 | 47 o |ow001111 | 117 | 79 0 01101111 | 157 | 111
OLE 00010000 | 020 16] 00110000 | 060 48 P 01010000 | 120 80 [} 01110000 | 160 112
DC: | 00010001 | 021 17 1 00110001 | 061 49 Q 01010001 | 121 81 q 01110001 | 161 113
OC: | o0o010010} 022 18 2 00110010 | 062 50 R 01010010 | 122 82 r 01110010 | 162 | 114
OCs | 000100111 023 19 3 00110011 | 063 51 S 01010011 { 123 83 s 01110011 | 163 | 115
DCa } 00010100 | 024 20 4 00110100 | 064 52 T 01010100 | 124 84 t 01110100 | 184 | 116
NAK | 00010101 | 025 21 5 00110101 | 065 53 u 01010101 | 125 85 u 01110101 | 165 | 117
SYNC [00010110 026 22 6 00110110 | 066 54 v 01010110 | 126 86 v 01110110 | 166 | 118
ETB | ooo10111| 027 | 23 7 00110111 | 067 55 W 01010111 | 127 87 w o1110111 | 167 | 119
GAN | ooo11000| 030 24 8 00111000 | 070 56 X 01011000 | 130 a8 X 01111000 | 170 | 120
EM] 00011001| 031 25 9 00111001 | 071 57 Y 01011001 | 131 89 y 01111001 | 171 121
syB | ooo11010| 032 | 26 00111010 | 072 58 z 01011010 | 132 90 z 01111010 | 172 | 122
ESC 60011011 033 27 H 00111011 | 073 59 [01011011 { 133 a1 { 01111011 | 173 123
Fs | ooot1too] o34 2% < 00111100 | 074 60 \ 01011100 | 134 92 ' 01111100 | 174 | 124
Gs | soot1101] o35 29 = 00111101 | 075 61 1 01011101 | 135 93 i 01111101 | 175 | 125
As |.ooo11110] o036 30 > 00111110 | 076 62 - 01011110 | 136 94 - 01111110 | 176 | 126
us | sep11111]{ o037 31 ? oo111111 | 077 63 — 01014111 | 137 95 DEL {ot111111 | 177 | 127

Appendix C

Subject Index

d

additional equipment 76
additional statements 57
approveddisks 3,72,84
ASCIICodeTable.................... 106
assign (3w1) statement ... 36
availability table 5,8,10, 27

backuptrack 9, 11
blnary program statements . 64, 65, 67, 105
Lstatement........... 67, 105
bootstrap routing (:oest) L., 67,105
bootstraps area.............. 9,10, 67, 87
calculator (HP9825A)o 1
catalog (i) statements 20, 97
L statement 25,98
Checkread Test.......... ... L. 88
connecting calculators,
drives,cables 4, 81
contiguous fileareas 27
conventlons manual 15, 32

Y, partial file
wstatements 59, 103

d

datafiles............ 12, 13,17, 31, 53, 96
datafilenumbers 34
datafile operations 33
datafile pointers: .. 35,47
datafile statements 33
data storage requirements 53
default values (0,8) 4,17, 60, 82, 88

Lystatement ... 65, 105
dlrectory 59
disk 1,2,3,7, 72,84
diskcapacity 69
diskcare ool 72
disk . e statement ... 59, 103
disk drives (9885M/9885S) 2

disk dump statement 62, 104
disk installation

disk manufacturers 3,72, 84
disk ROM (HP 98217A) 4,83
disk specifications 69
diskspeedl 69
diskstructure L. 7
Disk System Cartridge 87
disk systemtests............... 87, 88, 89
disk terms (glossary) 93
disktest................... 89
drive number switch 4
drive statement 17,97
dump statements 62, 104

i) statement 65, 105

dump track(:it &

electrical (selfytest 5, 89
P 38, 43, 54
38, 43, 54

EOFmarks 38,43, 54
EOF/EORSummary 54
EORmarks 38, 43, 54
eqmpment supphed 78
vl e 64

error messages 68
error recovery routines (d5, d6, d7) 64
“exercisers 86, 88

109

110 Appendix C

t

file

istatement ... L.

file i

file names (limitations) 17
filenumbers 34, 35, 36
filepointers............. 35
f|Ie structure 11
) sstatement 34
erX|bIe dISk 1,2
fuses 4,78

get binary (= % i3) statement 64, 105
get keys (=) statement 29, 99
get memory (%= %) statement ... 57, 103
wa statement 22,98
getting started with your system 4,75
glossary of diskterms 93
HP approved disks 3,72,84
HPL DiskTest 5, 89
L]

initialization (i 11 %) routine ... 67, 90, 105
initializing adisk 67,90, 105
interface cable

(HP 98032A Opt. 85) 4, 81

llne voltage 4,78
' statements 63, 104
Ioad track(k) statement 65, 105
loading bootstrap (ke t)

routine ...l 67, 105

Ioadmg spare directory

m

manual conventions. 15, 32
manual requirements 3

statement, 33,99

Opt. 001 for 50 Hz Operation........... 79
Opt. 002 Rack Mount Kit 77
Opt. 025 Interface Kit................... 3
otheroperations 57

partial file <o oo o oL 60, 103
Pattern Test 86
positioning the file pointer 47
powercords 4, 80
power requirements 4,79
preventative maintenance 72,73
program file operations 15
programfiles 11,17
program storage requirements 30

protecting the disk from writes

I

rack mount kit installation 77
random fileaccess 13
random print (" #: 1 %) statement 43
random read (¥ <) statement 101
records 8
recoverableerrors 64

rename (¢
repack (& s

replacementdisks 9, 91
repositioning the file pointer............. 47
requirements, manual 3
requrrements ROM 76
i 1 gtatement

Sales and Service Offices 107

i statement oL 18, 97
save keys (&« :) statement 29,98
save memory 1) statement 57, 103
select code settings 4,82
Self Test (electrical) 5, 89
serial file access 12,13

serial print (=
serial read (.:::-

SEIVICE ...

setting drive number switches 4, 82
setting selectcodes 4, 82
SPAREDIR. 9, 11

spare directory ... 9, 11
spare directory (=i ¥ 65, 105
statement summary 96
storagearea.......................... 11
stringoverhead 53, 69
suggested disk manufacturers ... 3, 72, 84
summary of EOR/EQF marks 54
system installation 4,75
systemreliability 73
systemsetup 4,75
systemsarea 8

systemstable 9

Appendix C

+ statement 65, 105
transfer times 70
turn oninstructions 4,75

s function oLl 51,102

unpacking yoursystem.............. 4,75

\Y%

i1) statement
;) statements ... 58, 105

verify (

statement 58
voltage requirements 78,79
wiristatement L.l 59

waranty statement inside front cover
write protecttabs 14, 91
write protecting the disk 14

111

112 Appendix C

9885 Error Messages

Hardware Errors
@ o oii Firmware/driver out of synchronization. More than six defective tracks in a row.

(Press [r==))

All drives in system not powered.

Door opened while disk is being accessed.

Disk not in drive or no such drive number.

Write not allowed to protected disk.

Record header error. (Use Error Recovery Routine)
Track not found. (Use Error Recovery Routine)

Data checkword error. (Use Error Recovery Routine)

¢ Verify error due to drive problem. Marginal data. (Reprint data)

Software Errors
@ oy L1 Improper argument.

Argument out of range.

Improper file size (negative, 0 or >32767).

Invalid file name.

File not found.

Duplicate file name.

Wrong file type.

Directory overflow.

Insufficient storage space on disk.

Verify error due to cable, calculator or drive problem. Bad data (Reprint data.)
File overflow when read or print executed.

Bootstraps not found. (Reload bootstraps)

= String read but wrong data type encountered.

Attempt to read data item but type doesn’t match.
Availability table overflow. (Repack)

Attempt =:¢1 &2 branch from other than running program.

& Unassigned data file pointer.
- Disk is down so line cannot be reconstructed.

Disk is down and pressed.
+ System error. (Save files individually and reinitialize)

These mainframe errors take on additional meaning when the Disk ROM is installed.

* Mnemonic not found because disk may be down.

! Line can't be executed because ROM (usually String) is missing.

. Line not found

i or .k %+ should be last statement in a line.

¢ was executed.

1 was executed.

iz return address so load not executed.

ROM now installed which wasn't when =

- ROM now missing which wasn't when :
¢ Disk Ioad operatlon wouId overlay

Fanirror wst Eonot allowed from live keyboard mode or during an
statement.

These errors may result during the binary Initialization and Error Recovery Routines.

! Wrong syntax, argument out of range or variable not properly dimensioned.
More than six defective tracks on the disk.
! Verlfy error. Boots on the disk not identical to boots on the cartridge.

: 0, b . or 1%+ i not allowed because error information lost or error
not d5 d6 d7 or d9

<4 Attempt to access record for error correction which isn't part of data file.
: Improper string length (inconsistent with length given in header).

: Not enough space in calculator buffer for data item or item can’t be placed in
this part of buffer.

27 Missing disk or String ROM.
i Track still bad after % i1 %,

Warning Messages

is printed when the spare directory in the backup track automatically
replaces the main directory.

is displayed when running a program that uses a drive number of a
drive thatis not connected to the system, not powered or whose door

is open.

