HEWLETT
PACKARD

HP 82441A
FORTH/Assembler ROM
Owner's Manual
For the HP-71
\square

HP 82441A
 FORTH/Assembler ROM
 Owner's Manual

For the HP-71

April 1984

Introducing the FORTH/Assembler ROM

The FORTH/Assembler ROM provides an extended software development environment for the HP-71. It contains the following major features:

- A FORTH operating system. This system allows you to write application programs for the HP-71 in FORTH, with a significant advantage in speed over programs written in BASIC. The FORTH operating system coexists with the native HP-71 BASIC operating system, so you can switch between the BASIC and FORTH environments without program or data loss and without having to reconfigure the HP-71. Programs written in either language can execute routines written in the other language. HP-71 FORTH includes string and floating-point operations.
- An assembler. This assembler, written in FORTH, provides nearly the same command set as the assembler used to develop the HP-71 operating system. You can use it to create HP-71 binary files, LEX files to extend the BASIC language, or FORTH primitives.
- A text editor. The editor enables you to create and edit text files, which can be used as source files for BASIC, FORTH, or assembly language programs, or for many purposes unrelated to programming.
 TYPLY IS provided in the HP 82401A HP-IL Interface), you can use a terminal as an external keyboard and display.

Contents

How To Use This Manual 7
Section 1: Installing and Removing the Module 9
Section 2: The HP-71 FORTH System 11
Introduction 11
References 11
Using FORTH on the HP-71 11
Advanced FORTH and Assembly Language Programming 13
Unique Aspects of HP-71 FORTH 13
Twenty-Bit FORTH 13
Compilation from Files 14
FORTH/BASIC Interaction 16
HP-IL Operations 17
General Purpose Buffers 18
Foreign Language Error Messages 19
FORTH Extensions 19
Floating-Point Operations 19
String Operations 22
Vocabularies 23
Error Trapping 24
FORTH Memory Organization 25
HP-71 Memory 25
The FORTHRAM File 26
The FORTH Dictionary 31
The HP-71 File System 32
File Types 32
Structure of the File Chain 34
Section 3: The Editor 37
Overview of the Editor 37
Editor Commands 39
The Text (T) and Insert (I) Commands 39
The List (L) and Print (F') Commands 40
The Copy (G) and Move (H) Commands 40
The Delete ([I) Command 41
The Search (G) and Replace (F) Commands 42
Editor Files 44
Section 4: The Assembler 45
Using the Assembler 45
Running the Assembler 45
The Listing File 46
Assembler Source Code 46
Line Format 46
Comments 47
Labels 47
Expressions 47
Overview of the CPU 48
Arithmetic Registers 48
Control Registers 50
Loading Data from Memory 51
Types of Assembly 51
FORTH Primitives 51
LEX Files 53
Binary Files 54
Assembler Mnemonics 55
Branching Mnemonics 55
Test Mnemonics 56
P Register Mnemonics 57
Status Mnemonics 58
System-Control and Keyscan Mnemonics 58
Scratch Register Mnemonics 59
Memory-Access Mnemonics 59
Load-Constants Mnemonics 60
Shift Mnemonics 60
Logical Mnemonics 60
Arithmetic Mnemonics 61
No-op Mnemonics 61
Pseudo-ops 62
Control Pseudo-ops 62
Constant-Generating Pseudo-ops 62
Macro-Expansion Pseudo-ops for FORTH Words 62
Macro-Expansion Pseudo-ops for LEX Files 63
Macro-Expansion Pseudo-ops for BIN Files 64
Appendix A: Care, Warranty, and Service Information 65
Care of the Module 65
Limited One-Year Warranty 65
Service 67
When You Need Help 70
Appendix B: Error Messages 71
FORTH Messages 71
Assembler Messages 74
Editor Messages 77
Appendix C: BASIC Keywords 79
Appendix D: FORTH Words 99
Notation 100
Errors 100
FORTH Glossary 101
Subject Index 147
BASIC Keywords by Category 151
FORTH Words by Category Inside Back Cover

How To Use This Manual

This manual assumes that you have some experience with FORTH or with assembly language. It documents all operations in the FORTH/Assembler ROM in a reference-oriented manner-you can read the sections that interest you without reading the entire manual.

- If you plan to use FORTH without writing new primitives, read section 2, "The HP-71 FORTH System" and refer to appendix D, "FORTH Words."
- If you plan to create new FORTH primitives, you will also need to read section 4, "The Assembler."
- For an index to FORTH words grouped by function, refer to the inside back cover.
- If you plan to create BIN or LEX files, read section 4, "The Assembler."
- Because both the FORTH system and the assembler use text files for input, read section 3, "The Editor," to learn how to create and edit text files.
- For reference information about any BASIC keyword in the FORTH/Assembler ROM-whether involving FORTH, the editor, or the assembler-refer to appendix C, "BASIC Keywords."

Installing and Removing the Module

You can plug the module into any of the four ports on the front edge of the HP-71.

CAUTIONS

- Be sure to turn off the HP-71 (press $f[0 \mathrm{~N}$) before you install or remove any module.
- Whenever you remove one module to make a port available for another module, be sure to turn the HP-71 on and off while the port is empty before you install the new module.
- Do not place fingers, tools, or other foreign objects into any port. Such actions can cause minor electrical shocks, interfere with pacemaker devices worn by some persons, and damage port contacts and internal circuitry.

To insert the module, hold the HP-71 with the keyboard facing up and the module with the label facing up, and then push the module into the port until it snaps into place. Be sure to observe the precautions described above.

To remove the module, use your fingernails to grasp the module by the lip on the bottom of its front edge, and then pull the module straight out of the port. Install a blank module in the port to protect its contacts.

The HP-71 FORTH System

Introduction

The FORTH/Assembler ROM contains a FORTH system tailored to the HP-71. The advantages of FORTH over BASIC are speed and complete access to the machine. Programs can be written in FORTH, in BASIC, or in both, making use of the best features of each language/system.

FORTH secondaries (words constructed from existing FORTH words) can be compiled from keyboard input or from text files created by the editor. The editor is discussed in section 3. In addition, FORTH primitives (words written in machine code) can be created by the assembler, which is discussed in section 4.

The word set of the HP-71 FORTH kernel is similar to that defined in the FORTH-83 Standard. This section describes their differences in "Unique Aspects of HP-71 FORTH," which covers enhancements and methods of implementation that are machine-related, and in "FORTH Extentions," which covers enhancements not directly tied to the HP-71. For the complete definition of any FORTH word, standard or nonstandard, refer to appendix D.

References

This section doesn't contain the complete FORTH-83 Standard or tutorial information about FORTH; you can find such material in the following books. You will need to keep in mind the unique aspects of HP-71 FORTH as you read these books.

- Brodie, Leo. Starting FORTH. Englewood Cliffs, N.J.: Prentice-Hall, 1981. An effective and entertaining introduction to FORTH.
- FORTH-83 Standard. Mountain View, Ca.: FORTH Standards Team, 1983.
- Haydon, Glen B. All About FORTH: An Annotated FORTH Glossary. Second edition. Mountain View, Ca.: Mourtain View Press, 1983. Some definitions in this manual are borrowed from Dr. Haydon's book.

Using FORTH on the HP-71

Entering and Exiting FORTH. To enter the FORTH environment from the standard HP-71 BASIC environment, type the BASIC keyword FGETH and press END LINE. The computer then displays the FORTH sign-on message $H F-71$ FGETH and the version. To exit the FORTH environment, type the FORTH word EYE and press ENDLINE.

The RAM-based portion of the FORTH system, including user-added dictionary words, is contained in an HP-71 file named FORTHRAM. When you exit FORTH, either by executing E'G or by pressing the OFF key, the contents of the FORTHRAM file are preserved. Thus the FORTH environment will be in the same state when you reenter as when you exited. If you turn off the HP-71 from the FORTH environment, it will return directly to the FORTH environment when you turn it on. If you purge the FORTHRAM file from the BASIC environment, a new FORTHRAM file will be created when you next execute FIETH.

User Prompts. If you press END LINE while the HF-T1 FOFTH prompt is displayed, FORTH will display OF \& The GE indicates that FORTH is ready to accept input, and the indicates how many items are on the data stack. If you then type $1 \geq$ ENDLINE, the FORTH system will display O\& 3 . You can suppress the Dr message by storing a non-zero value into the user variable OKFLG.

Line-editing Keys. All of the HP-71 line-editing keys are functional while in the FORTH environment. Pressing ATTN while entering a line will clear the display and leave only the blinking cursor.

Key Redefinitions. The FORTH system duplicates the BASIC method of handling redefined keys. You can switch in and out of user mode while in FORTH, but you must be in the BASIC environment (or use EHSIL E) to redefine keys.

The Command Stack. The HP-71 command stack is available in FORTH. It operates just as in BASIC, except that in FORTH you can enter the Command Stack just by pressing any of the up- or down-arrow keys-you don't need to press 9 END LINE first.

Exceptions and the ATTN Key. Because the FORTH system can run a program for an indefinite time, it must occasionally check whether a system exception has occurred. FORTH checks for exceptions when it executes : (semicolon) in a secondary and before it branches in a loop structure. If an exception has occured, FORTH issues the exception poll. An exception can be a service request from the HP-71's internal timers or from other devices, or can result from pressing the ATTN key.

Pressing ATTN stops the execution of any FORTH word (except HP-IL words, which require pressing ATTN twice). Once the FORTH environment recognizes that ATTN has been pressed, it executes the system equivalent of GEDRT to reset the data and return stacks and to restart the FORTH outer loop (the FORTH system user interface).

Errors. If an error occurs in the FORTH system, all files are closed and an error message is displayed. FORTH error messages sound a tone and preface all errors with FTH ERE: . FORTH error numbers and messages are available through the BASIC keywords EEFH and EEFM丰.

If an error occurs in a BASIC O/S subroutine called by the FORTH system, the error message appears as EFF: rather than FTH EFF:.

Advanced FORTH and Assembly Language Programming

This manual contains sufficient information for you to write new FORTH primitives and secondaries. However, if you wish to write FORTH primitives that interact with the native HP-71 operating system, or write HP-71 LEX or binary files, you will need to refer to the HP-71 Software Internal Design Specification (IDS). It comprises three volumes with the following part numbers:

Volume	Description	Part Number
I	Detailed Design Description	$00071-90068$
II	Module Interface Documentation	$00071-90069$
III	Source Code Listing	$00071-90070$

Other detailed documents that you may find useful are:

Description	Part Number
HP-71 Hardware Design Specification	$00071-90071$
HP-71 HP-IL Detailed Design Description	$82401-90023$

Unique Aspects of HP-71 FORTH

Twenty-Bit FORTH

Most FORTH systems are implemented on byte-oriented machines with 16 -bit addresses. The HP-71, in contrast, is a nibble-oriented machine with 20 -bit addresses. To allow access to the entire 1 M -nibble address space and to achieve maximum speed, FORTH on the HP-71 is a 20 -bit implementation. That is, the data and return stacks are 20 bits wide, and the addresses on those stacks are 20 -bit absolute addresses. All quantities on the stacks are 20-bit quantities, regardless of whether a one-byte or 20-bit operation is performed. Unused high-order nibbles are zero or are expected to be zero.

HP-71 FORTH conforms to the FORTH-83 Standard in intent but, because of the nature of the HP-71 CPU, not exactly in effect. The funtionality of the Standard required word set, plus selected words from the extension word sets, are provided in HP-71 FORTH. In most cases, the HP-71 uses the same word names as the Standard. You can determine the behavior of particular HP-71 words compared with their Standard counterparts according to the following general guidelines.

- For operations that deal with bytes (such as CE, CHOE, and FILL), the Standard names are retained for HP-71 FORTH words. Such words will produce the same result as the corresponding Standard words. In several cases analogous words that deal with nibble quantities are also provided; they are listed below in "Nibble and Byte Words."
- For operations that deal with cells (such as +, 百, and COHETANT), the Standard names are retained for HP-71 FORTH words. Such words will produce the same result as the corresponding Standard words, except that the quantities manipulated by the words are 20 bits long instead of 16.
- For operations that don't translate well to the HP-71 (with its continuous memory and multiple-file system), the Standard names are replaced for HP-71 FORTH words. For example, LOAD (load from a numbered screen) is replaced by LGALF (load from a named text file), and ERFECT (read up to a specified number of characters) is replaced by EAFELTEG (read up to 96 characters).

The table below lists those words that HP-71 FORTH adds to the Standard word set to perform nibble operations, together with their byte-oriented counterparts.

Nibble and Byte Words

Nibble Word	Action	Byte Word	Action
HALLIT	Allot n nibbles.	FLLOT	Allot n bytes.
HFILL	Fill n nibbles.	FILL	Fill n bytes.
H6	Fetch one nibble.	Cio	Fetch one byte.
H!	Store one nibble.	E!	Store one byte.
HNOUE	Move n nibbles.	ChIUE	Move n bytes.
HNOUE	Move up n nibbles.	CTDUE	Move up n bytes.
$5+$	Increment address by 5 (one cell).	$2+$	Increment address by 2 (one byte).
$5-$	Decrement address by 5 (one cell).	$\underline{-}$	Decrement address by 2 (one byte).

Compilation from Files

FORTH compiles new words into the dictionary from "screens" as well as from the keyboard. In traditional versions of FORTH, a screen is a 1 K -byte block on a mass storage device (16 lines of 64 bytes each).

Screens. In HP-71 FORTH, a "screen" is a standard HP-71 text file. Each text file consists of a series of text strings of variable length, with each text string preceded by a two-byte length field. The file is terminated by a two-byte marker, FFFF. The editor, described in section 3, can create source screens for FORTH. The name of a screen must be a legal HP-71 file name. The maximum size line that FORTH will process is 96 bytes, which corresponds to the logical display size.

LOADF. The Standard word LQAL is replaced in HP-71 FORTH by LQADF. The inputs to LGADF are two 20 -bit numbers: the length of the character string specifying the file to be loaded and the address of this string. LOADF calls HP-71 routines to open, read, and close the file. These routines, in turn, interface to the HP-IL module if it is present, so that screens can reside on HP-IL mass storage devices as well as in HP-71 memory.

FIB Entries. Executing LOADF opens the screen file and creates a file information block (FIB) entry in a system buffer called the FIB general purpose buffer. The FIB entry identifies the file and indicates whether the file is in RAM or on mass storage. (If the file is on mass storage, the FIB entry is linked to a system buffer called an I/O buffer that identifies the file.) A file-information-block number (FIB\#) identifying the FIB entry is stored into the FORTH user variable SIEFIE (screen FIB\#) to specify the active file.

Mass Memory Buffers. When a file is loaded, its FIB\# and the first line of the file are read into a mass memory buffer. There are three mass memory buffers, used in rotation. The contents of the buffer are interpreted until the null at the end of the line (placed there by the FORTH system) is reached. The FORTH word HORD then determines whether this is the end of the active file and, if not, reads the next line from the file into the same mass memory buffer. Each mass memory buffer has the following format.

Format of a FORTH Mass Memory Buffer

FIB\#	Line\#	Byte count	Data	2 Nulls

LQHOF can save the information necessary to return to the file it is currently interpreting, so LGHGF commands can be nested.

Mass Memory. A user can LDADF a file from cassette or disk directly into the FORTH dictionary without first storing the file in RAM. The file will be interpreted a line at a time by reading the line into a FORTH mass memory buffer. However, a file stored on a magnetic card must be read into RAM before it can be loaded into the FORTH dictionary or edited.

File Words

- LIGDF accepts input from a specified file rather than the keyboard. Words are executed and definitions are compiled into the user dictionary. The file may exist in RAM or on mass storage.
- ELICt reads a specified line of the active file into a mass memory buffer and returns the address of the first data byte in the mass memory buffer.
- UIEEF closes a specified file.
- EOF returns a true flag if the end of the active file has been reached, a false flag if not.
- +EUF returns the address of the next available buffer.
- IFEHF opens a FIB entry for a specified file.
- Clgembl closes all open files.
- FIFET is a user variable containing the address of the first mass memory buffer in memory.
- LITIT is a user variable containing the address of the first byte beyond the mass-memory-buffer area.
- FEE is a user variable containing the address of the mass memory buffer last used.
- USE is a user variable containing the address of the mass memory buffer to use next.
- EEFFIE is a user variable containing the either the FIB\# of the active file being interpreted by LOADF or else 0.
- ELK is a user variable containing either the line number of the file being interpreted by LOADF or else 0 (input from keyboard).
- LIHE\# is a user variable containing the line number being loaded from the file specified by SCRFIB.

FORTH/BASIC Interaction

The FORTH/Assembler ROM enables you to temporarily enter the FORTH environment from within the BASIC environment, and vice versa, to take advantage of features of one system while operating from the other. If you press ATTN while in a temporary environment, you will be returned to the original environment.

BASIC to FORTH. There are four programmable BASIC keywords that access the FORTH environment.

- FIETH\% is a BASIC statement, returning no result.
- FGETHF is a BASIC numeric function that returns the contents of the X-register in the FORTH floating-point stack.
- FGETHI is a BASIC numeric function that returns the number on the top of the FORTH data stack, dropping that value from the stack.
- FGFTH́ is a BASIC string function that returns the string specified by the address and character count on the top of the FORTH data stack, dropping those two values from the stack.

FGETHF, FGFTHI, and FQRTHき read data from the FORTH environment into BASIC variables without executing any portion of the FORTH system (although FOFTHI and FOFTH \ddagger alter the data-stack pointer). FDFTH: however, enables you to transfer BASIC data to the FORTH environment and to execute any FORTH words before automatically returning to BASIC:

To execute FORTH operations from the BASIC environment, you use the keyword FORTH, followed by a command string plus up to 14 additional parameters. The optional parameters can be any combination of strings or numeric quantities. The numeric quantities will be pushed onto the FORTH data stack as single-length numbers; strings will be specified on the stack by their addresses and character counts. FUFTH\% first pushes the optional parameters onto the data stack and then executes the command string. The command string can contain any sequence of FORTH words and parameters, just like input you would enter from the keyboard.

Examples.

```
H# = FGETH#
XZ F FOFTHI
T = TH& &FGFTHF)
```


For additional details, refer to appendix C, "BASIC Keywords."
FORTH to BASIC. There are four FORTH words that pass a string (specified on the data stack) to the BASIC system for execution. The string contains BASIC keywords and parameters. The FORTH words call the appropriate BASIC routines to parse and execute the string, as if it were typed to BASIC from the keyboard.
－EASIC\＆passes a string containing BASIC statements to the BASIC system for parsing and execu－ tion．It returns no value to the FORTH environment．EASIC：can alter the value of BASIC vari－ ables．If the string begins with a line number，it will be added to the current BASIC edit file．The string can also call BASIC programs．When the BASIC interpreter finishes，it issues a poll that allows the FORTH system to regain control．If an error occurs，the BASIC system reports the error to the user，and FORTH runs the system equivalent of the FEORT word．
－EFEICF passes a string containing a numeric expression to the BASIC system for evaluation．It returns the value of the numeric expression to the X－register in the FORTH floating－point stack．
－EAGICI passes a string containing a numeric expression to the BASIC system for evaluation．It returns the value of the numeric expression to the FORTH data stack．
－EASIC passes a string containing a string expression to the BASIC system for evaluation．It re－ turns the resulting string to the PAD area and the address and character count to the data stack．The resulting string is truncated to 255 characters if it exceeds this length．

Examples．

```
" EEEF" ERSIG
" BCD" EASIEI
" GS E&#FI" EHEICF
" A末" EHSIC未
" HE=T&4,$FI" EHEIE%
" EG EISF A,E:" EHSICX
" A4" ERSTEF
* STGTUS" EAEIEI
" TIME" EHEIDF
```

The FORTH／BASIC interface is not reentrant．That is，operations in one environment that are called from the other environment can＇t exercise the original environment，except to return data．In particular：
－The string passed to the BASIC environment by EFSIC k can＇t contain the keyword FORTH：How－ ever，FORTH ${ }^{2}$ ，FGRTHI，FORTHF are allowed．
－The FORTH command string that is the first argument of FORTH\＆can＇t contain the FORTH word EAEICK．However，EHEIC末，EFEICI，and EASICF are allowed．

Applications that respect these two rules will work as long as operations in one environment respect the integrity of the other．For example，don＇t FOEE random data into the FORTHRAM file from BASIC or write over the BASIC environment pointers from FORTH．

HP－IL Operations

To enable controller applications to take advantage of FORTH＇s speed，the FORTH kernel includes FORTH equivalents of the BASIC statements EHTER and DUTPUT．Additional HP－IL functionality in the FORTH environment can be gained by using the FORTH－to－BASIC words．For example， ＂STHTUS＂EASIEI returns to the integer data stack a value describing the loop status．

The FORTH word EHTEF instructs the HP 82401A HP－IL Interface to receive data from an HP－IL device．The HP－IL module puts the bytes received into a temporary location（the HP－71 math stack）．The FORTH system then moves the bytes into an address specified by the user when executing ENTER．The byte count and the address of the data are always returned to the user．

If BASIC system flag - 23 is set, EHTEF terminates when it receives an End of Transmission message. Otherwise, EHTEF continues to request data until its end condition is satisfied. The end condition can be either the reception of a specified number of bytes or of a particular byte value.

The FORTH word UUTFUT instructs the HP 82401A HP-IL Interface to send data to an HP-IL device. The user supplies a byte count and the address of the data to be output.

Two FORTH user variables, FEIAEF' and EECDHDAEY, specify the intended device for DUTPUT and EHTEF. Default contents of the variables are 1 for FEIMAEY and 0 for SEDONDAFT. The user must ensure that these variables are properly set up before executing ENTEF or DUTFUT.

General Purpose Buffers

Large applications may require blocks of temporary storage that are not a part of the FORTH dictionary space. The HP-71 BASIC O/S provides such temporary storage in the form of general purpose buffers. A maximum of 512 buffers can each contain a maximum of 4095 nibbles, provided that there is enough RAM present to allocate to the buffer. The FORTH/Assembler ROM provides five words to make, find, expand, contract and destory these buffers.

General purpose buffers are maintained at the end of the file chain. The last general purpose buffer is followed by two zero bytes, signifying the end of the general purpose buffer chain. A general purpose buffer has a seven-nibble header field followed by the data space.

The update nibble is used by the operating system. Refer to the HP-71 Software IDS for a description.
Temporary buffers are allocated buffer ID's in the range of E00 to FFF. Because memory contents can move, shifting the position of the buffer, you must use the buffer ID to find the current location of the buffer each time you use it.

General purpose buffers are normally purged by the operating system at coldstart, power on, and during execution of FEEE FGET and ELAIM FOFT. However, you can mark one buffer to be retained even during these operations by storing its buffer ID into the FORTH user variable VARID. (The assembler uses this variable to save a buffer.)

The following FORTH words deal with general purpose buffers.

- HAFEEF creates a general purpose buffer of a specified size.
- FIHDEF finds the current address of a specified general purpose buffer.
- KILLEF deletes a specified general purpose buffer.
- E $\because F E F$ expands a specified general purpose buffer by a specified number of nibbles.
- EDHEF contracts a specified general purpose buffer by a specified number of nibbles.

Foreign Language Error Messages

FORTH allows a LEX file to substitute alternative error messages (such as foreign language messages) for its own messages. When a FORTH error occurs, the FORTH system puts together an error number with its LEX ID (47_{10}) and calls the BASIC O/S warning routine. The warning routine allows insertions into the error message. For instance, when FORTH cannot find a word typed in by the user, it gives the message: FTH EFR: WM Hot recogrized. A foreign language LEX file can trap the warning poll and, if the LEX ID of the message is that of the FORTH/Assembler ROM, can substitute its own ID. This causes the message presented to the user to come from the foreign language LEX file rather than from the FORTH/Assembler ROM. Refer to the IDS for more information.

FORTH Extensions

Floating-Point Operations

The HP-71 FORTH system includes an HP-RPN-style floating-point stack (X-, Y-, Z-, T-, and LAST X registers). There are FORTH words to manipulate the stack and to use the HP-71 math routines for floating-point operations. There are also FORTH words to create floating-point variables and constants, to fetch and store floating-point numbers, and to display floating-point numbers.

FORTH stores floating-point numbers in the same format as the BASIC system. Each register contains 16 nibbles, as shown below.

Sign. The sign nibble (labeled " S " above) contains 0 for a positive number and 9 for a negative number.
Mantissa. The 12-digit mantissa has an implied decimal point after the most significant digit. The mantissa is not necessarily normalized-that is, it can contain leading zeros to effectively extend the range of the exponent. This field may contain non-numeric data when the register contains an Inf or NaN .

Exponent. The three-digit exponent E is expressed in tens complement, $-499 \leqslant \mathrm{E} \leqslant 499$, with the most significant digit in nibble 2. The exponent field is also used to indicate an Inf or NaN : F00 indicates Inf (which may be positive or negative), F01 indicates a quiet NaN , and F02 indicates a signaling NaN.

The following diagram shows how the number $-8.23601 \mathrm{E}-312$ is stored in a register.

For more information about the formats for floating-point numbers, refer to the HP-71 IDS.
A floating-point number is identified in HP-71 FORTH input by the presence of a decimal point. When IHTERFRET doesn't identify a character sequence in the input stream as a FORTH word, HUAEEER checks the sequence for a decimal point. If there is no decimal point, HUMEEF treats it as a potential single- or double-length number. (Many FORTH systems identify double-length numbers by the presence of , , , ,, , or a non-leading -. HP-71 FORTH uses only , ;, and to identify double-length numbers.)

If the sequence contains a decimal point, the entire sequence is passed to the BASIC O / S routine corresponding to the keyword UFL for evaluation. If the sequence can be evaluated, the result is pushed onto the floating-point stack. "Can be evaluated" means that the character sequence is any valid BASIC numeric expression, which may include literal numbers and BASIC numeric variables. For example, the sequence 1 G 末 SH HE , entered in the FORTH environment will return the value 5 to the floatingpoint X-register (assuming that the current HP-71 angular mode is degrees). Similarly, 1 : $:$ T 1 will return the current value of the BASIC variable T 1 to the X -register.

A side effect of the automatic floating-point expression evaluation is that attempted execution or compilation of unrecognized words containing decimal points will result in the BASIC message ERE: [ata TUFe. For example, entering an undefined word CHZAEC causes the FORTH message FTH ERF: MTZAEG not rerognized, but entering the MYZ. AEC will cause the BASIC message ERR: Cata TyFe because of the decimal point.

Floating-point trigonometric functions use the current HP-71 angular mode. FORTH words are provided to switch the mode between degrees and radians. If the mode is set in FORTH, then subsequent BASIC operations will use that mode, and vice versa. Similarly, the floating-point display mode is common to FORTH and BASIC. Floating-point numbers are converted for output (F, FSTR \ddagger) in decimal according to the current display mode, which can be set from FORTH or BASIC.

The names of several floating-point operations are prefaced with " F " to distinguish them from operations with similar names. In the following description, x is the contents of the X-register, y is the contents of the Y-register, and so on. All floating-point arithmetic operations return the result to the X-register.

Floating-point Words

- $F+$ returns $y+x$.
- F- returns $y-x$.
- F末 returns $y \times x$.
- F. returns $y \div x$.
- \because e returns x^{2}
- $10^{\circ} \mathrm{C}$ returns 10^{x}.
- EIH returns the sine of x.
- GS returns the cosine of x.
- THH returns the tangent of x.
- E× returns e^{x}.
- 1, returns the reciprocal of x.
- EERT returns the square root of x.
- 定 returns y^{x}.
- LST returns $\log _{10}$ of x.
- LH returns the natural \log of x.
- ATHH returns the arc tangent of x.
- HEIH returns the arc sine of x
- 月COS returns the arc cosine of x.
- EDU rolls down the stack ("down" in the HP-RPN sense).
- RUP rolls up the stack ("up" in the HP-RPN sense).
- Xy swaps x and y.
- \because, \forall, Z, T, and L return the address of the corresponding floating-point register.
- LASTX pushes the contents of the LAST X register onto the floating-point stack.
- FEHTEE pushes the contents of the X-register onto the floating-point stack.
- FIL fetches a floating-point number from the address on top of the data stack and pushes it onto the floating-point stack.
- ETO stores x into the address on top of the data stack.
- F: displays x without altering the floating-point stack.
- FUFEIAELE creates a floating-point variable in the FORTH dictionary.
- FIUHETHHT creates a floating-point constant in the FORTH dictionary.
 push a true flag (-1) onto data stack; or if false, push a false flag (0) onto data stack.
- DEGEEES sets the active angular mode to degrees.
- FHUIHHS sets the active angular mode to radians.
- STG, FIY, EHL, and EI set the display format.

String Operations

HP-71 FORTH includes words to create string constants, string variables, and string arrays; to compare strings; to manipulate portions of strings (substrings); and to match string patterns. A string is stored in memory in the following format.

Format of a String in Memory

Maximum length	Current length	Character string (left-justified)
1 byte 1 byte Maximum-length bytes		

A string in memory is usually represented on the stack by a pair of values: an address and a character count (count on top). The address is the location of the first character of the string in memory, and the character count is the current length. This is the format expected by the standard word TYFE.

Occasionally a "counted string" in memory is represented on the stack simply by an address. The address is the location of the string's length byte, which is followed in memory by the string's characters. This is the format expected by the standard word HUMEER.

String constants are created by the word ", which puts the maximum-length byte, the current-length byte, and the string in the pad (system scratch space). String constants are thus very temporary-don't type in two string constants followed by a comparison operator, because the second will have been created on top of the first. String constants are used mainly to set the values of string variables, but you can also use them with other functions as long as you notice when the pad is being overwritten.

String variables are dictionary entries much like numeric variables. At the PFA are the maximum-length and current-length bytes followed by the string. The code field contains the address of code that returns to the stack the address of the first character (PFA +4) and the current length.

String variable arrays are similar to single variables, but the first two bytes at the PFA indicate the maximum length of each element and the number of elements in the array. Next come the strings, each in the format described above: maximum length, current length, string. The nth element is accessed by typing n array name; the CFA points to code that returns the address and count of this element, which can be manipulated just like a regular string variable or constant.

String Words

- " creates a temporary string.
- HEE returns the ASCII code for the first character in a string.
- CHEF returns a temporary string of length 1 for a specified ASCII code.
- E $\mathrm{HA} \ddagger$ creates a temporary substring from the last part of a string.
- FSTFi converts the number in the X-register to a string.
- LEETEF creates a temporary substring from the first part of a string.
- MHELEH returns the maximum allocated length of a string.
- HIILL \ddagger creates a temporary string of zero length.
- FUE returns the position within a string of a substring.
- FITHTC creates a temporary substring of specified length from the last part of a string.
- $-=$ returns a true flag if two strings are equal, a false flag if not.
- S returns a true flag if string ${ }_{1}<$ string $_{2}$, a false flag if not.
- - stores string ${ }_{1}$ into string ${ }_{2}$.
- 8 . adds a copy of one string to the end of another string.
- $>\mathrm{Q}$ adds a copy of one string to the beginning of another string.
- SHOUE stores a string at a specified address.
- STE converts a double number into a string.
- ETEING creates a string variable.
- STRIHG-AEEAY creates a string-array variable.
- SUE

Vocabularies

The HP-71 FORTH vocabulary structure is a tree-like structure. Every vocabulary contains the word FOETH, which sets the FORTH vocabulary as the CURRENT vocabulary (to which subsequent new words will be added). This is because FIETH is the first word in the FORTH vocabulary, and all vocabularies eventually chain back to the FORTH vocabulary. The following example creates a vocabulary called NEW.

```
UOCHEULAF'Y HEA
```

HEA DEFIHITIGHE

In the first line, WGAEULAE' $\}$ creates a new vocabulary called NEW. This entry, NEW, is entered into the current vocabulary, which is the FORTH vocabulary. Execution of HEH in the second line makes NEW the CONTEXT vocabulary (in which searches for words begin). DEFIUITIGHG sets the CURRENT vocabulary to be the same as the CONTEXT vocabulary. To continue the example:

```
    HOEDI:
WOCHEULAE'Y HEMEE
HENEF GEFINITIOHE
: HOPDE S
```

Now three vocabularies exist: FORTH, NEW, and NEWER. Suppose that 10 Fa 3 is added to the NEW vocabulary, and WORO4 is added to the FORTH vocabulary. The diagram below shows the result.

If either NEW or NEWER is the CONTEXT vocabulary, the word search won't find $\operatorname{HORE} 4$ in the FORTH vocabulary. If NEWER is the CONTEXT vocabulary, the word search won't find HOROZ in NEW, but it will find HREI. In terms of the diagram, the word search proceeds in vocabularies other than the CONTEXT vocabulary by moving leftward and upward, never rightward or downward.

It is important to realize that, while FORTH can be reached from any vocabulary, the converse is not always true. HEM can be found when FORTH, NEW, or NEWER is the CONTEXT vocabulary, but NE日EF: can be found only when NEW or NEWER is the CONTEXT vocabulary.

Whenever an error occurs, FORTH becomes both the CONTEXT and CURRENT vocabulary.

Error Trapping

When an error occurs during execution of a FORTH word, a system routine equivalent to GEOET or HEGRT" is executed. Normally, these routines will reset the data and return stacks and return to the outer interpreter loop for new input. However, HP-71 FORTH provides an error-trapping facility that can allow FORTH execution to continue after an error.

The user variable ONERR contains the CFA of a word to execute when an error occurs. The system abort routines check the contents of ONERR; if ONERR contains zero, the routines will exit normally through DUIT. If the value of ONERR is non-zero, execution will be transferred to the address contained in ONERR. The stacks are not reset, so the error routine has a chance to recover some or all of the state of the systerm at the time of the error. (The words AEORT and FEORT" don't respect the setting of ONERR.)

FORTH Memory Organization

HP-71 Memory

The diagram below shows a map of the HP-71 memory with the FORTH/Assembler ROM installed.

The FORTH/Assembler ROM uses addresses in three regions:

- Hard-configured ROM, from E0000 to EFFFF. The hard-configured ROM contains the FORTH operating system, the built-in FORTH dictionary, and the assembler.
- Soft-configured ROM. This is a 16 K -byte module that contains the editor, all BASIC keywords in the FORTH/Assembler ROM, and the initialization routines for the FORTH environment.
- The FORTHRAM file. This file is stored in user memory and contains the changeable parts of the FORTH system-user variables, user dictionary, and so on. When the FORTH system is active, FORTHRAM will always be the first file in user memory.

The FORTHRAM File

When FIRTH or FIRTHS is executed, a file called FORTHRAM is created (unless it exists already). FORTHRAM contains both the FORTH system's status information and all words added by users. FORTH has been assigned LIF file types E218 and E219. When the FORTH/Assembler ROM is plugged in and a CATHLL is executed, the FORTH system intercepts the file-type poll and displays FGTH instead of the numeric file type for FORTHRAM. Initially FORTHRAM contains about 3 K bytes. You can enlarge the file (to expand the dictionary) or contract the file (at the expense of the dictionary), but only after the entire 3 K -byte file exists.

To re-enter FORTH when FORTHRAM is no longer the first file in memory, 37 bytes are required to swap the file back into the first position. If there is not enough memory, an error message is displayed.

Copying FORTHRAM. You can rename, copy, and purge FORTHRAM using HP-71 BASIC file commands. This enables you to have multiple versions of the FORTH system, each containing a different user dictionary. When you have multiple FORTH files, the file currently named FORTHRAM will be the active FORTH file when you enter the FORTH environment. Also, if you make backup copies of your FORTH system, you can restore your system following a memory loss (common when programming in FORTH) by reloading a FORTHRAM file from mass storage rather than by recompiling the dictionary. The FORTH/Assembler ROM is not required to copy the FORTHRAM file out to mass storage, but it is required to copy FORTHRAM back into RAM.

Contents of FORTHRAM. The diagram on the opposite page shows the structure of FORTHRAM. At the beginning of the file are 37 nibbles of system overhead-file name, file type, link to next file, and so on. Next is the address of the FORTHRAM file; when the FORTH system is re-entered, this address indicates whether FORTHRAM has been moved. Next is up to 101 bytes of unused space, depending on FORTHRAM's starting address. Enough space is added to ensure that FORTHRAM's data begins at 2FAFD.

Starting at 2FAFD is the housekeeping information needed to save the FORTH pointers when a system routine alters all of the CPU registers. At 2FB11 starts the block of FORTH system variables called "user variables." The floating-point stack follows the user variables in the file. The user dictionary space starts above the floating-point stack. When the FORTHRAM file is created, 2 K bytes (the minimum required by the FORTH standard) are allocated for dictionary entries. The data stack is deep enough to hold a minimum of 40 entries. The return stack and the Terminal Input Buffer share 200 bytes, of which a maximum of 98 bytes can be used by the Terminal Input Buffer (keyboard entry is limited to 96 characters, and FORTH appends 2 null characters for its own use). The mass memory buffers are allocated 312 bytes.

FORTHRAM File Structure

ADDRESS
PDINTER

File Header (37 nibbles)

The tables below show the details of a newly created FORTHRAM file．Although the FORTHRAM file is always the first file in user memory，its starting address varies according to the length of the HP－71 configuration buffers，which precede FORTHRAM in memory．The current address of the start of the file can be found by executing

＂FGETHEAM＂FIHIIF in FORTH．

System Save Area

Address	Contents
2 FAFD	Data－stack pointer save．
2 FB02	Return－stack pointer save．
2 FB07	Instruction pointer save．
2 FB0C	FORTH active flag．

User Variables

Address	Contents	FORTH Words To Return Contents
2FB11	Pointer to bottom of data stack．	90 or spg io
2FB16	Pointer to bottom of return stack．	FFG 日
2FB1B	Pointer to TIB．	TIE
2FB20	Next buffer．	USE 回
2FB25	Most recent mass storage buffer．	FREU E
2FB2A	First mass storage buffer．	FIFST
2FB2F	End of FORTHRAM +1.	LIMIT E
2FB34	Vocabulary link．	
2FB39	Buffer record size．	
2FB3E	Number of characters in TIB．	\＃TIE 区
2FB43	Maximum word－name length．	MIDTH in
2FB48	Warning mode．	WhRE 回
2FB4D	Enable／disable पF in QUIT．	DEFLE
2FB52	Line number in current LDADF file． （Reset when load error occurs．）	ELE E
2FB57	Offset in TIB．	＞IH 百
2FB5C	Number of characters read by ESFELT9E．	SFAH 咟
2FB61	FIB\＃of active LOHLIF file．	SEFFIE E
2FB66	Address of CONTEXT vocabulary．	EOHTE\％T E

User Variables (continued)

Address	Contents	FORTH Words To Return Contents
2FB6B	Address of CURRENT vocabulary.	CUFEEHT E
2FB70	Compilation flag.	STATE E
2FB75	Current base.	EHSE
2FB7A	Number type indicator.	
2FB7F	Unused. Available for user programming.	
2FB84	Current position of stack. (Used by compiler.)	
2FB89	Pointer to last character in display string.	
2FB8E	FQEGET boundary.	FENCE E
2FB93	Next available nibble in dictionary.	
2FB98	Buffer size in nibbles.	
2FB9D	Line number in current LQHDF file. (Preserved after load error.)	LIHE\#
2FBA2	Return address for BASIC keywords.	
2FBA7	Reserved for HP-IL use.	
2 FBAC	Secondary HP-IL address.	SEGTHDPET E
2FBB1	Primary HP-IL address.	FEIMAEY
2FBB6	On-error execution address.	OHERE E
2FBBB	Error-occurence flag.	

Floating-Point Stack Registers

Address	Contents	FORTH Words To Return Value to X-register
2FBCO	LAST X register.	L FCL
2FBDO	X-register.	$\because \mathrm{PCL}$
2FBE0	Y-register.	\bigcirc ECL
2FBF0	Z-register.	2 ECL
2FC00	T-register.	T RCL
2 FC 10	System use. (Eight bytes for file name.)	

Vectored Execution Addresses

Address	Contents
2FC20	IHTEFFFET
2 FC 25	EfEATE
2FC2A	HUNEEF
2FC2F	, (comma)
2FC34	[. : (c-comma)
2FC39	FLLIT
2FC3E	For x xx i \equiv n't thique message.

Assembler User Variables

Address	Contents	FORTH Words To Return Contents
2FC43	ID of buffer to preserve.	UFFID E
2FC48	Page length.	FHGESIZE
2FC4D	Name of listing file.	LISTIHG
2FC79-	System use.	
$2 F C 8 C$		

User Dictionary and Above

Address	Contents	FORTH Words To Return Contents
2FC8D	FORTH word.	$\begin{aligned} & \text { FOETH } z--1 \\ & \text { TFHUEFSE } 5- \end{aligned}$
2FCB1	Start of first user-defined word. (Addresses above 2FCB1 are variable.)	
2FCB1*	End of dictionary. (Next available nibble.)	HERE
2FD0B*	Pad. (Floats after dictionary.)	FHO
30D7C*	Top of data stack.	SFIE
$30 \mathrm{D7C} \dagger$	Bottom of data stack $=$ Start of TIB.	SQ, SFG or or TE
$30 \mathrm{FOC} \dagger$	Bottom of return stack $=$ Start of first mass storage buffer.	EFG FIFET 回
$3117 \mathrm{C} \dagger$	First nibble after FORTHRAM.	LIHIT 旦
* Changes when words are compiled or executed. \dagger Changes when EFON or EHEIAK is executed.		

The FORTH Dictionary

When you type in a word to be executed or when the system compiles a word from a source file, FORTH must search through its dictionary to find the word and its execution address. HP-71 FORTH searches the RAM part of the dictionary first (the user dictionary) and then the ROM part (the built-in FORTH words). Words in ROM are arranged according to word length to minimize the search time. The length of the target word is used as an index into a jump table so that, for example, only the list of three-character words are searched for a three-character word. A test is also made to ensure that the word is not longer than the longest word in the ROM portion of the dictionary.

As an example of an entry in the dictionary, the structure of a FORTH primitive CNDUE is shown below. Although this word is in the ROM dictionary, its structure is typical of words in either the ROM or RAM parts of the dictionary.

Structure of a Word

Field	Address	Contents
Link	LFA $=$ E3AEE	E3AA6
Name	NFA $=$ E3AF3	5834D4F4655C
Code	CFA $=$ E3AFF	E3B04
Parameter	PFA $=$ E3B04	code

Link Field. The contents of the link field (E3AA6) point to the name field of the previous dictionary entry.

Name Field. The first byte of the name field, 85, is 10000101 in binary (note that the byte's two nibbles are reversed, with " 5 " stored at a smaller address than " 8 "). The byte's high-order bit is set to indicate the start of the name field, and the second bit is clear to indicate that the word is not immediate. The third bit (the smudge bit, set during compilation of a secondary to prevent the word being used in its own definition) is clear. The five low-order bits have a value of 5 to indicate that the name is five characters long; the maximum length is 31 characters. The second and subsequent bytes in the name field are the ASCII representation of the word's name, with the high bit of the last character is set to indicate the end of the name field. Here the last character is "E" with ASCII value 01000101, so the binary value 11000101 is stored (with nibbles reversed) as 5 C .

Code Field. Because 巨d曰UE is a primitive, the code field contains this word's PFA, E3B04, so that the code in the parameter field will be executed. In a secondary, the code field contains the address of the runtime code of : , which nests the FORTH program pointer down one level.

Parameter Field. Because CHDUE is a primitive, the parameter field contains executable code. In a secondary, the parameter field contains the CFAs of the words that make up the secondary.

The ROM－based dictionary contains all of the built－in FORTH words except FIRTH，which is always the first word in the RAM－based dictionary．To speed compilation，the FORTH system doesn＇t search the entire ROM－based dictionary．The ROM－based dictionary is composed of 13 separate linked lists，with each list containing words of a specific length，so the FORTH system searches only the list for the appro－ priate word length．

At E0000 is a jump table with 13 entries．Each entry contains a pointer to the beginning of the word list for words of a specific length，from 0 through 12 characters．To illustrate this structure，a word ULIST appears below that will display all words in the ROM dictionary．Note that the pointer initially indicates the list of one－character words．

```
HE:
: WLIST EG@GS
    [1 1 [ぃ!
        [I|F 目
        EEGIH [IIF
            EOUHT 1F FHAL 1-
        [IUF >F 2# ENAF [UUF >F
```



```
        TYFE ENIT EF 5- 回听星=
        IUHTIL
    5+ LDOF LROF:
```


The HP－71 File System

The HP－71 contains a 64 K －byte operating system kernel that starts at address 00000 ．The kernel per－ forms various control functions and contains the BASIC interpreter．External software may be added to the machine in the form of files that the kernal interprets or executes directly．These files may be directly plugged into the machine through ROM or RAM modules，or copied into the machine from external media such as cards or tape．

File Types

The following file types are directly supported by the HP－71 mainframe．OEM software developers may support other file types by first reserving the file type with Hewlett－Packard and then including the appropriate poll handlers in a LEX file．Each file type is identified by a 16 －bit value that conforms to Hewlett－Packard＇s Logical Interchange Format for Mass Media．

When HP-71 files are stored on external media, file security and privacy are encoded, if applicable, in the numeric file type as shown in the chart below. When files are stored in memory, privacy and security are encoded in the flags field of the file header, and the file type stored in the file header is always the normal file type.

Numeric File Type

Type	Description	Normal	Secure	Private	Execute Only
BASIC	Tokenized BASIC program.	E214	E215	E216	E217
BIN	HP-71 machine language.	E204	E205	E206	E207
DATA	Fixed data.	E0F0	E0F1	n / a	n / a
LEX	Language extension.	E208	E209	E20A	E20B
KEY	Key assignment.	E20C	E20D	n / a	n / a
SDATA	Stream data.	E0D0	n / a	n / a	n / a
TEXT	ASCII text, in LIF Type 1 format.	0001	E0D5	n / a	n / a
FORTH	FORTHRAM file.	E218	E219	n / a	n / a

Four of these file types are program files: BASIC, BIN (Binary), LEX (Language Extension), and FORTH. BASIC files may be developed on the HP-71 using the built-in BASIC interpreter. BIN, LEX, and FORTH files may be developed on the HP-71 using the FORTH/Assembler ROM.

Types of Program Files

Type	Format	Method of Invocation	Mode of Execution
BASIC	Tokenized BASIC statements.	RUN or CALL command.	Interpretation.
BIN	Machine language (binary).	RUN or CALL command.	Direct execution.
LEX	Language extension file; adds BASIC keywords, messages, and functional extensions; written in machine language.	Through its added BA- SIC keywords and by polls from operating sys- tem.	Direct execution.
FORTH	FORTH vocabulary.	Through FORTH inter- preter.	Threaded inter- pretation.

Structure of the File Chain

The HP-71 maintains a file area in main RAM that is composed of a linked list, or chain, of file entries. (Each plug-in ROM module and independent RAM contains its own file chain.) At the beginning of each file entry is a file header. The file header contains identifying information about the file along with the link to the next file entry in the chain. The end of the chain is marked by a zero byte. Each file header contains the following fields:

Fields in a File Header

Field	Size
File name	16 nibbles
File type	4 nibbles
Flag	1 nibble
Copy Code	1 nibble
Creation Time	4 nibbles
Creation Date	6 nibbles
Link	5 nibbles

File Name. The file-name field contains the eight-character file name in ASCII, filled with blanks to the right (high memory).

File Type. The file-type field contains a four-digit hex integer, listed in the "File Types" table above.
Flag. The flag field contains four system flags. The two bits in the low end of the flag field indicate file protection. When set, the lower of the two bits indicates a file is SECURE; the higher of the two bits indicates a file is PRIVATE. The remaining two bits of the flag field are unused.

File Header-Flags

Copy Code. The copy-code field indicates the file attributes neccessary for external copying.

Creation Time and Creation Date. The creation-time and creation-date fields represent the time and date in BCD. The time field contains four nibbles; the minutes are in the low byte, and the hour is in the high byte. The date field contains six nibbles; the day is represented in the low byte, the month in the next byte, and the year in the high byte. For example, the internal representation of 03:45 on December 16,1981 , would be as follows:

Link. The link field contains the offset to the next file (header) in memory.

The Editor

The FORTH/Assembler ROM editor enables you to create, modify, copy, list, and print text files. These files are suitable source files for the FORTH system and the assembler. This section describes the editor's operation in three parts:

- "Overview of the Editor" describes how to enter and exit the editor, the two types of editor commands, and editor operations other than commands.
- "Editor Commands" describes the specific commands that act on the edit file.
- "Editor Files" describes files used in the editor's operation.

Additional material related to the editor appears in the appendixes. Appendix B, "Error Messages," includes the error messages generated by the editor. Appendix C, "BASIC Keywords," includes the editor keywords पELETE, EITEST, FILESZF, IHEERT\#, MSG事, FEFLACE\#, SCFOLL, and SEFRICH, which you can use in your own BASIC programs.

Also in the keyword dictionary is the BASIC keyword EETEDRED IS. Used in conjunction with DISFLH' IS, EEYEQAEG IS allows almost any terminal (or computer acting as a terminal emulator) to be an extension of the HP-71 keyboard and display. Although this keyword isn't strictly a part of the editor, a full-size keyboard can greatly aid text input.

Overview of the Editor

The editor is a BASIC program; when you enter the editor, the HP-71 Feपा annunciator appears. You can enter the editor directly from the FORTH environment by using EFSIC:

```
: EUTEST SEREEH" EHEIOQ
```

will run the editor on a file named SCREEN. When you exit the editor, the HP-71 will automatically return to FORTH. Here is a FORTH word that you might find useful:

```
EQIT " EDTEXT SQEEEH: EHETGX " LGEQMMQ: :" TYPE : SGREEH"
LO#पF :
```

When you execute EDIT, the editor will open the file SCREEN for editing. When you exit the editor, the display will show Leging : : while the FORTH system compiles the contents of SCREEN into the dictionary.

To enter the editor from BASIC, type EOTEXT filename END LINE. The editor opens that file for editing or, if filename is a new name, creates a new file with that name. The display then shows Line n. Emd: where line n is the current line in the file. Line numbers, which begin with 1 , are for reference only; they aren't stored in the file. If you're at the end of the file, the current line is indicated by Ef.

When the Emi prompt is displayed, you can:

Display the Current Line. To temporarily display the current line, hold down the END LINE key. When you release the key, the [m: prompt returns.

Move to A Different Line. There are three methods for moving to a different line:

- To move to any line in a file, enter the line number and press END LINE. For example, to move to line 2, enter \geq END LINE.
- To move to the previous line (smaller line number), press $\boldsymbol{~}$. To move to the following line (larger line number), press \downarrow.
- To move to the beginning of a file, press $9 \square$. To move to the end of a file, press $9 \square$.

Display the File Name. If you press \dagger when the line 1 is the current line, the editor will display the name of the edit file. To display the file name from any place in the file, hold down $\dagger+$. When you release $+\square$, the E 配: prompt returns.

Execute a Command. The editor commands, each of which is described in detail below, fall into two classes:

- The commands T (Text) and I (Insert) are used for entering text. Once you execute the Text or Insert command, the editor remains in Text or Insert mode until you press RUN or ATTN; only then will the [mid prompt return.
- All other editor commands perform specific operations, after which the C mid prompt returns automatically.

Exit the Editor. To end the editing session, enter E END LINE. The editor closes the edit file and displays [1one: filename. If you decide not to keep this file, purge it following the instructions in section 6 of the HP-71 Owner's Manual.

When you call the editor, a copy of your own redefined keyboard is stored and the editor's key redefinitions are added to yours. Unless the editor keys are the same keys you've redefined, your redefined keys are still available to you while the editor is active. When you exit the editor, the combined redefined keyboard is purged and your own redefined keyboard is restored.

To override a key assignment, use the 9 USER key. This will deactivate USER mode for the next key pressed. Note that if you enter the editor from FORTH, disable USER mode, and then either press ATTN or cause any error, the HP-71 will immediately return to the FORTH environment, leaving the current edit file in a corrupted state.

Editor Commands

You can enter the following editor commands whenever the I.md : prompt is displayed. Some editor commands require parameters such as line numbers or a file name. These parameters are identified in syntax diagrams for each command. Any default values for parameters are given after the syntax diagram. In the syntax diagrams:

- Items [enclosed in square brackets] are optional parameters. Some optional parameters are nested within others. This indicates that the parameter in the outer pair of brackets must be present before the parameter in the inner pair can be included.
- Items shown in पOT MATFI\% text must appear exactly as shown (although either upper or lower case is acceptable).
- There are two substitute characters that can be used for any line-number parameter. A period (:) indicates the current line, and the pound sign (\#) indicates the last line in the file.
- Two adjacent numeric parameters must be separated by a space or comma. No separation is required between a numeric parameter and an alphabetic parameter.

The Text (T) and Insert (I) Commands

```
[line number] T
```

[line number] I

Default value: line number $=$ current line
The Text command is your primary means of adding text to the edit file. When you enter Text mode, the current line appears in the display with the cursor at the beginning of the line. Modify the current line as desired (using the standard HP-71 editing keys) and then press ENDLINE. The editor stores these changes to the current line and then makes the following line the current line, displaying it to start the cycle again.

The Insert command permits you to add a line or a series of lines into the middle of a file. When you enter Insert mode, the current line is displayed until you press a key. Type in the text for the new line (using the standard HP-71 editing keys) and press END LINE. The editor inserts the new line into the file, just before the current line, and then displays the next line number as the new current line. (The text for the new current line is the same as before; only its line number changes.) Flag one is on to indicate that you are in Insert mode.

Either Text mode or Insert mode work equally well for entering text at the end of a file. In either mode, text is stored in the file only when you press END LINE. If you make changes or enter text and then move to another line (by using \square or \dagger) before you press END LINE, no changes or text will be stored.

To exit from Text or Insert mode, press RUN or ATTN.

The List (L) and Print (F) Commands

[beginning line number [ending line number]] L [number of lines] $[1 \cdot 4]$

```
[beginning line number [ending line number]] F [number of lines][ [H]
```

Default values: beginning line number $=$ current line
ending line number $=$ last line
The List and Print commands are similar. List causes the specified lines of text to be displayed consecutively on the current display device (usually the display window or a monitor). If you have an HP 82401A HP-IL Interface installed and a printer assigned, Print causes the specified lines to be printed. When no printer is present, Print responds like List.

After listing or printing, the current line will be the line after the ending line number. The following examples show some List and Print commands with parameters:

L	List from the current line to the end of the file.
. L19	List from the current line to the end of the file, or just 10 lines, whichever comes first.
39 LH	List from line 3 to line 9 with line numbers.
1 LEEH	List, with line numbers, the entire file or the first 20 lines, whichever comes first.
F	Print from the current line to the end of the file.
FSt	Print five lines starting at the current line, with line numbers.
1 FH	Print the entire file with line numbers.

The Copy (i) and Move (fi) Commands

[beginning line number [ending line number]] [: [filename]

```
[beginning line number [ending line number]] if [filename]
```

Default values (Edit file): beginning line number = current line ending line number $=$ beginning line number
(Other file): beginning line number $=$ line 1
ending line number $=$ last line

The Copy command permits you to copy one or more lines from one place in the file to another place in the file. You can also copy part of another file into your edit file. Copy always inserts the copied text before the current line. The Move command is similar to the Copy command but deletes the text in the original location.

If no filename is specified, the indicated lines come from the edit file. If a filename is specified, the indicated lines come from the specified file. You can't copy or move a block of text that includes the current line, unless the current line is the first or last line of the block of text.

The Horting... message is displayed when you copy or move text.
Here are some examples of the Copy and Move commands:
Duplicate the current line.
Copy line 5 and insert it before the current line.
Move lines 3 through 9 from within the edit file and insert them before the
current line, then delete the original lines 3 through 9.

The Delete (I) Command

[beginning line number [ending line number]] [: [filename [+]]

Default values: beginning line number $=$ current line
ending line number $=$ beginning line number
The Delete command deletes one or more lines from the edit file. You can place the deleted lines into a new file or, using the + option, append the lines to an existing file. When you execute Delete with line number parameters specifying more than one line, the message OK to $\mathrm{delef} \boldsymbol{H}$ You must answer Y before the editor will complete the deletion. If you answer H, the Command Prompt returns.

The brking . . message is displayed when you use Delete.
The following examples show some uses of the Delete command:
$\square \quad$ Delete the current line.
$123 \mathrm{Q} \quad$ Delete lines 12 through 32.
49 EACHE Delete lines 4 through 9 and store them in a new file called CACHE.
$2210 \mathrm{HECHO}+$ Delete lines 2 through 21 and append them to the end of a file called ARCHV.
You can not purge a file while you are in the editor, but you can delete all of the text and leave an empty file. Refer to section 6 of the HP-71 Owner's Manual for instructions on how to purge a file.

The Search (S) and Replace (F) Commands

```
[beginning line number [ending line number]][?] S%string1[ [ ]
```

Default values: beginning line number $=$ current line +1
ending line number $=$ last line
[beginning line number [ending line number]][?] F string1 string $2[$]

Default values: beginning line number $=$ current line
ending line number $=$ beginning line
The Search and Replace commands allow you to search through a file for a certain string of characters string1. If you use a Search command, the first line containing string1 becomes the current line. If you use a Replace command, all occurrences of string1 are replaced by string2, and the last line containing string1 becomes the current line. If either command can't find string1, it displays Hot Found.

These commands search the specified lines in the edit file for the string indicated between the slashes ($)$. These slashes act as delimiters, marking the string's boundaries. If you need as a normal character in your search string, you can use any other character (except a blank space) as the delimiter. The first nonblank character after the command ζ or F is the delimiter. The last delimiter is optional unless another command follows this command.

Search and Replace can distinguish between uppercase and lowercase letters. For example, a search for the string $1 . \exists \mathrm{F}$ will not find the string s.ack.

The following examples show some Search commands and Replace commands with parameters:

```
Evjagt From the next line through the end of the file, search for the first occurrence of
    the string "Jack."
了 \(\overline{\mathrm{F}}\) 亿ill 1 From line 3 through line 7 , search for the string "Jill."
Fegterg Replace all occurences of "cat" with "dog" on the current line.
```



```
    is used as the delimiter so that slashes may occur in the strings.
\#F\%mest From the current line to the end of the file, replace "meet" with the null string
    (that is, delete "meet").
```

If the replacement string2 causes the line to be longer than 96 characters, the editor will redimension variables, causing a slight delay.

Response Option. You can more closely control the Search and Replace commands by including the option in the command string. With this option the editor stops with each match to string1 and waits for you to respond. The display shows the following information:

- The number of the line containing the matching string.
- The number of the column in which the first letter of the matching string occurs.
- A backslash () delimiter.
- Some of the line, beginning with the matching string.
- A slash () delimiter.
- A question mark () indicating that a response is expected.

Responding to a Search command, your options are:

- Press Y to stop the search at this match and make this line the current line.
- Press N to search for the next occurrence of the string.
- Press Q to quit the search and return to the previous current line.

Responding to a Replace command, your options are:

- Press Y to replace this occurence of string1 with string2 and search for the next occurrence of string1.
- Press N to leave this occurence of string1 intact and search for the next occurrence of string1.
- Press Q to quit the replacement search and make the last line where replacement occured the current line (or return to the previous current line if no replacements occurred).

If you press any other key (except ATTN), the display will show $\%$, to indicate that only Y, N or Q are permitted as responses. If you press ATTN, the Cmd : prompt returns.

The Replace command can result in lines longer than 96 characters. If this occurs while you're using the option, you can scroll through only a 96 -character substring that contains that search string, not through the whole line.

Defining Patterns in Strings. Five characters (., 回, \&, and \ddagger) can have special meanings when you're defining strings. To switch these characters to their special meanings, place a backslash (©, assigned to $\square \square$) in the string; to return these characters to their normal meanings, place a second backslash in the string. (The string's final delimiter also returns the characters to their normal meanings.) Any of these five characters appearing between the two backslashes will be given their special meaning.

The five characters, their special meanings and some examples of their uses are described in the following paragraphs:

- The period (.) represents any character, and so is called a wild-card character. When the editor searches for a matching string, any character can be in those positions where you put a period.
Example. RAEC. . . Fecheck ID\# will replace the occurrences of ABC followed by any three characters, such as AECG9g, fECxyz, or AEC $\exists \mathrm{A}$, with the string Recheck IG\#. FefEC, . Ferherk IGI has the same effect; the second backslash is not needed because the end of string 1 stops the special-meaning feature, and the ending slash is optional for string2.
－The commercial＂at＂symbol（í）represents any number of wild－card characters．Because the program starts searching for the end of the string at the end of the line，the longest match possible is found．
 ends with CDE，such as AEC1z马CDE，AECLDE，or FEGIZ AZEGDE ，with the string FEにトにに：I I \＃
－The ampersand（\％）represents the text that matches string1；it is used in a Replace command to insert the actual string that matched string1（which may include wild cards）into string2．

Example．FAE $\because G E F$ searches for the string AB wildcard and appends the string DEF to it． If ABC is found，the new string will be ABCDEF ．
－The up－arrow（ ${ }^{\circ}$ ）represents the beginning of a line．As the first character in a string，it specifies that a matching string must be at the beginning of a line．If the up－arrow isn＇t the first character in the string，it has its normal meaning．

Example．$F, A E C D E$ will search for the string $A B C$ only at the beginning of a line．If $A B C$ appears anywhere else in the line，a match will not be made．

Example．Suppose you have loaded a text file from the HP－75 into your HP－71．Now you want to delete the four－digit line numbers that the HP－75 put at the beginning of every line． $1 \# F, \because, \ldots$ tells your HP－71 to search，from line 1 to the end of the file，for any four charac－ ters at the beginning of the line，and replace them with nothing（delete them）．
－The dollar sign（ \ddagger ）represents the end of a line．As the last character in a string，it specifies that a matching string must be at the end a line．If the dollar sign isn＇t the last character in the string，it has its normal meaning．
Example．$F A B E \subset \subset=[E E$ will search for the string $A B C$ only at the end of a line．If $A B C$ appears anywhere else in the line，it will be ignored．A second backslash is not needed after the $\$$ because the dollar sign is at the end of string1．

If you need to search for a string containing a backslash character as part of the text，you don＇t want Search and Replace to see the backslash as a switch．The solution is to use two sequential backslashes． The editor will interpret \because as a single backslash character，not as a switch．

Editor Files

The editor uses several files in its operation．The names of these files must not be used as the names of files in the HP－71 user memory，because the HP－71 first searches its own memory before searching the plug－in modules．The following list gives the name of each file in the module，along with a brief descrip－ tion of the file．

ELTE：T The editor BASIC language program．
ELILE A LEX file containing the assembly level support for the editor，including the BASIC keywords．

ELKEYS The editor keys file．
ELINEYS A temporary keys file created by the editor in main memory to store your user defined keys while the editor is running．When you exit the editor，these keys again become current．

Section 4

The Assembler

The FORTH/Assembler ROM contains an assembler that enables you to write assembly language extensions to the FORTH system or to the BASIC operating system. The assembler provides access to the complete HP-71 CPU instruction set through source code mnemonics that are nearly identical to those of the assembler used to produce the HP-71 BASIC operating system, as listed in the HP-71 IDS.

The assembler is invoked from the FORTH environment by the word HS GEMELE , which is preceded by a string specifying the name of the assembler source file. The source file is an HP-71 text file, which you can create using the editor described in section 3. The output of the assembler can be either new FORTH words, which are placed directly into the FORTH dictionary, or HP-71 language extension (LEX) or binary (BIN) files, which are loaded automatically into the HP-71 file chain. The type of assembler output is specified by pseudo-ops included in the source file. The assembler can also produce an optional assembly listing, which is directed to an HP-71 file or to a listing device on HP-IL.

This section gives the rules for using the assembler, describes the HP-71 CPU, shows some sample source files for the three types of assembly, and finally describes the assembler's mnemonics and pseudo-ops.

Using the Assembler

Running the Assembler

The assembler is run while in the FORTH system by typing:
" source-file specifier" HEEEMELE
The source-file specifier can include a mass storage device specifier. You can't run the assembler from BASIC (using FDETH天) because the assembler uses EHSIEx.

There is no intermediate link operation. The assembler acts as a loader, creating absolute modules that are ready to execute. New FORTH primitives go directly into the FORTHRAM dictionary. LEX and BIN files go directly into the file chain in RAM.

While the assembler is running, the display will show PASG $1 \ldots$, : or PBSE $2, \ldots$ to indicate the assembly's progress. A dot : is added to the display as each source line is processed. If you press ATTN while the assembler is active, the assembler will halt and prompt you with the message HEDET [YH] $?$ If you now press Y, the assembly will terminate, and the message EsEmbler gturted will be displayed. If you press any other key, the assembly will resume.

The Listing File

There are two variables in the FORTH system that control the listing file. The first variable, LISTING, is a string variable containing the listing-file specifier. To set this variable, type:
" listing-file specifier" LISTIHE S!
The listing-file specifier can be the name of an HP-71 text file, the HP-IL device specifier of a printer or display device, or the null string. If you specify a file name, the listing will be output to a RAM file, which you can list or edit using the editor. If you specify an HP-IL device, the listing will be output to that device as the assembly proceeds. If you specify the null string, no listing is created.

The second variable, PAGESIZE, is a numeric variable containing the number of lines per page in the listing file. That is, if PAGESIZE contains the value n, a form feed (character code 12) will be sent to the listing file or device after every n lines. The default value of PAGESIZE is 56 .

Assembler Source Code

The text file containing source code for the assembler, which you create with the editor, must have the following form:
Output Pseudo-op
\vdots
Code
\vdots
END

The output pseudo-op must be FIFTH, LE\%, or EIH, to determine whether the assembler output will be FORTH primitives, a LEX file, or a BIN file. The pseudo-op EHD indicates the end of the source code.

The code portion of the file consists of any number of text lines, each containing one or more of the following items: label, mnemonic, modifier, pseudo-op, expression, comment. These items and the general line format are discussed below.

Line Format

The following template is the recommended column alignment for items in a source-file line. However, the assembler is "free format," requiring only a space to delimit the fields. The maximum length for a label is 6 characters (extra characters are ignored); for a mnemonic, 6 characters; and for a modifier, 50 characters. To distinguish mnemonics generated by pseudo-ops from your source mnemonics, an assembly listing will indent the former to column 3.

label	mnemonic	modifier	comments	
4	4	4	4	4
1	8	15	24	80

Comments

Text that follows a complete instruction-a mnemonic and any required modifiers-is a comment. If the first non-blank character in a line is a star (\ddagger), the entire line is a comment. All other text is considered part of an instruction.

Labels

Labels can contain up to six characters. All alphanumeric characters are allowed, as are all special characters except commas, spaces, and right parentheses. The first character cannot be sharp (\#), single quote ('), minus sign (-), left parenthesis, star (\ddagger), or the digits 0 through 9 . Leading equal signs ($=$) are ignored, so that $=$ FFEL and FRED are the same label. There is no case folding. A label must begin in column 1 or 2 ; otherwise it will be interpreted as a memonic. The restricted label $F i L E H d$ is automatically generated after the last line of source in LEX and BIN files; if you enter this label in your source file, the assembly aborts.

Expressions

Expressions can contain labels, the location-counter value, constants, and operators. Any expression enclosed in parentheses can be nested within a larger expression, with up to three levels of nesting.

Labels. Legal label names are described above. When a label is used within a larger expression, paren-

Location-Counter Value. A star (\ddagger) in an expression represents the value of the location counter at the beginning of the current instruction.

Constants. The numeric value of a constant can be expressed in decimal, hexadecimal, or ASCII. Some instructions require a constant of a particular type; those instructions are listed under the required type of constant.

- Decimal constants can't exceed 1,048,575. Example: 23434.
- Hexadecimal constants must be preceded by the sharp (\#) character and can't exceed FFFFF. Example: \#IFFE. Hexadecimal constants are required with LCHES and HIEHES. (Leading \# is optional when hexadecimal constant is required.)
- ASCII constants must be enclosed within single quotes and can contain one or two characters, . Example: 'HE' (equals 4142_{16}). ASCII constants are required with LCFSE and HIEFSI.

Operators. There are seven operators, listed below in descending order of precedence. Operators on the same level of precedence are executed left to right in the expression.

\% (Logical AND)	! (Logical OR).
£. (Multiplication)	(Integer division)
+ (Addition)	- (Subtraction)

Overview of the CPU

The HP-71 CPU is a proprietary CPU optimized for high-accuracy BCD math and low power consumption. The data path is four bits wide. Memory is accessed in four-bit quantities, called "nibbles" or "nibs." Addresses are 20 bits, yielding a physical address space of 512 K bytes or 1 M nibbles.

There are two types of registers on the CPU: arithmetic registers, used for data transfers and arithmetic operations; and control registers, used for program and system control.

Arithmetic Registers

The arithmetic registers comprise the carry flag, the working registers $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D , and the scratch registers $\mathrm{R} 0, \mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$, and R 4 .

Arithmetic Registers

Name	Description	Size (bits)
Carry	Carry flag, adjusted by calculations and tests. During a calculation the carry flag is set if the calculation overflows or borrows; otherwise the carry flag is cleared. During a test the carry flag is set if the test is true; otherwise the carry flag is cleared. A Working register, used for shifts, tests, and arithmetic. Also used for memory access and for exchange with scratch registers and data-pointer registers. B	1
C	Working register, used for shifts, tests, and arithmetic. Most powerful working register, used for shifts, tests, and arithmetic. Also used for memory access, bus access, loading constants, and exchange with scratch registers, data-pointer registers, the pointer register, the hardware return stack, and status bits. D	64
R0	Least powerful working register, used for shifts, tests, and arithmetic. Scratch register. Used for exchange with A or C register. R1	64
R2	Scratch register. Used for exchange with A or C register. Scratch register. Used for exchange with A or C register.	64
R3	Scratch register. Used for exchange with A or C register. R4	Scratch register. Used for exchange with A or C register. However, the HP-71 interrupt system uses the five low- order nibbles, effectively making the entire A field unavail- able.
64		

Subfields of the working registers may be manipulated by field selection. The possible field selections range from the entire register to any single nibble of the register. Certain subfields are designed for use in BCD calculations; others are used for data access or general data manipulation. The following diagram shows the seven fixed fields within a 16 -nibble working register.

Fixed Fields within a Working Register

There is a one-nibble CPU pointer (the P register, described under "Control Registers") that can indicate any nibble in a working register. This allows two variable fields to be defined: the indicated nibble alone, or that nibble along with all lower nibbles (to the right). This makes a total of nine fields, listed below.

Fields within a Working Register

Name	Nibbles	Description
B	$1-0$	Exponent or byte.
X	$2-0$	Exponent and sign.
XS	2	Exponent sign.
A	$4-0$	Address.
W	$15-0$	Full word.
M	$14-3$	Mantissa.
S	15	Sign.
P	P	At pointer.
WP	P-0	Word through pointer.

Control Registers

The following table describes the CPU's control registers. The two data-pointer registers, D0 and D1, contain pointers to memory used for all memory access.

Control Registers

Name	Description	Size (bits)
PC	Program counter.	20
RSTK	Eight-level subroutine-return stack.	20
ST	Program-status flags.	16
SB	Sticky bit.	1
SR	Service Request bit.	1
MP	Module Pulled bit.	1
XM	External Module Missing bit.	1
PPointer register. Points to a nibble in the working registers. Used with field selection and Load Constant mnemonics.	4	
D0	Data-pointer register. Used with register A or C during memory access.	20
D1	Data-pointer register. Used with register A or C during memory access.	20
OUT	Keyscan/write-only output register. Used by system; other uses limited.	12
IN	Keyscan/read-only input register. Used by system; other uses limited.	16

Subroutine Return Stack. Return addresses are stored on an eight-level LIFO hardware stack. Subroutine call and return instructions automatically push and pop addresses on this stack. If a ninth address is pushed onto the stack, the oldest address will be lost and will be replaced by zero when it is eventually popped from the stack. Because the memory-reset code of the operating system resides at address 00000 , excessive nesting of subroutine calls will cause a memory reset.

Note: Because interrupt processing requires one level of the hardware return stack, code that executes with interrupts enabled must not use more than seven levels of return addresses on that stack. Otherwise, an interrupt may eventually result in a memory reset.

Loading Data from Memory

When memory is read into a register, the CPU places the lowest-addressed nibble in the lowest-order nibble of the register. The nibbles in a CPU register are numbered right-to-left, from least significant to most significant. For example, if the data in memory shown below is read into a CPU register, the data in the register will be arranged as shown.

When data is written to memory from a register, the CPU places the least significant nibble of the register in the lowest nibble of the addressed memory location. For example, if the data in the register shown above is written to memory, the data in memory will be arranged as shown.

Types of Assembly

To indicate whether to assemble a FORTH primitive, a LEX file, or a BIN file, the first line of the source file must contain a FORTH, LEA, or EIH pseudo-op. The sample files below illustrate each type of assembly.

FORTH Primitives

FORTH primitives must maintain three FORTH-system pointers. These pointers are the instruction pointer (different from the CPU hardware program counter), the data-stack pointer, and the return-stack pointer. They are maintained in the following CPU registers.

FORTH-System Pointers in CPU Registers

CPU Register	FORTH-System Pointer
D0	Instruction Pointer
D1	Data-Stack Pointer
A field in B	Return-Stack Pointer

Because the FORTH return stack is a software stack, it isn't limited to the seven levels of the CPU hardware stack .

In FORTH，stacks grow down in memory．Therefore，to push an item onto the data stack，you should decrement the data－stack pointer by 5 before storing the item on the stack：

```
# Et.ack Fuミh:
*
[1=01- 5 [ECrement Etjack fointer.
GHT=G G Gtore item from H fieldat the g regi=ter onto the
    *
    *
    #
    * Staロk FOF:
    #
```



```
    *
[1=[1+5
```

```
    dまちも ミちま!に,
```

 dまちも ミちま!に,
 register.
 register.
 Increment Etack fointer.

```
Increment Etack fointer.
```

End all FORTH primitives with RTNCC（return and clear the carry flag）．

Sample FORTH Assembly．

	FOETH		［uedere an assembly of FORTH Frimitives．
	HORC	＇+1	Ereate a link field，name field，and Gode field for a Frimitiot celled＂＋：＂
	$\begin{aligned} \mathrm{H} & =[1 \mathrm{HT} 1 \\ & \text { 末 } \\ & 末 \end{aligned}$	H	Gopy into the field of register f the Gontents of memory fointed to by 01．This copies the first Farameter gh the FORTH data stas．
	$\begin{gathered} {[1=[1+} \\ \quad \text { 末: } \end{gathered}$	5	Increment the at data fointer．This incremente the FORTH Ggtョ－ミtack pointer
	$\begin{aligned} \mathrm{C} & =\left[\mathrm{HT}^{1}\right. \\ & * \end{aligned}$	H	Copy the second farameter on the FORTH dets stack inte the field of register
	$\mathrm{A}=\mathrm{A}+\mathrm{C}$	A	Fde the two fargmeters．
		H	Copy the result to the stack．
	ETHOC		Eeturn to inner loges
［EFCHT	$\begin{gathered} \text { EQU } \\ \quad \neq \\ \ddagger \\ \$ \\ \$ \end{gathered}$	\＃ 2 E3FE	aefine a label for the 三ustem logetion thet controle the disflay contrast．A nibble g giuseminimum Gontrast and a nibele 15 gives meximum contrest as with the EASIG rommand COHTERET：
	$\begin{aligned} & \text { HOFDI } \\ & \text { 末: } \end{aligned}$	＇［19F＇	Create a link field，name field，and ：ode field for ar immediate frimitive Gヨlled＂OISp．＂
		H	For the first farameter into the h field of
	$\square 11=[11+$	5	register A ．
	$\mathrm{F}=$	$\underline{1}$	Get the fointer register to for gubsequent Logd Gonstant instruction．
	$\begin{gathered} \operatorname{LC} 5) \\ \vdots \end{gathered}$	［SFCHT	Loge the f field ©lou－order five nibbiest gi register C with the Enstem logation［gFCHT，
	E［GE：		Exchange the f field of register e mith the deta FGinter 00．
	$\begin{aligned} & \text { पAT } \bar{Q}=\mathrm{F} \\ & \text { 末 } \end{aligned}$	1	Cofy one nibble of register A to memory pointed to比 0 日
	CDGE ＊		Exthange the f field of register a and $\mathrm{G} 日$ beck to arigingl walues：
	RTHEC		Feturn to the immer loge
	EHI		fark the end of the source file coptiongly

LEX Files

Although LEX files usually define new BASIC keywords，they can also answer system polls or define message tables．After assembling a LEX file you must turn the HP－71 off and then on again．This reg－ isters the LEX file in the system＇s LEX entry buffer for keyword checking and poll handling．For a full description of LEX files and their uses，refer to the HP－71 IDS．

Two sample LEX files appear below．The first is a poll handler，the second defines a keyword．Note that both files begin with the pseudo－ops LEY，IG，MGG，and FGLL；this sequence is required for all LEX files．

Sample Poll－Handler LEX File．The following LEX file will intercept the configuration poll and save the general purpose buffer whose ID is \＃E01．

	LES	＇FGLL＇	Derlare an asembly of a Lex file mamed＂FOLL
	Ifi	\＃515	This LEX file hes En I0 of SC．
	Mgs	0	There is no messege table in this Lex file．
	FOLL	FOLHHO	Our foll handler begins at the label Fouhto
	EHITMT \vdots \vdots a		Atark the end of the EHEIC keyword tables：In this base there are no tables，but the ENGTKT fseudo－op $\mathrm{i} \equiv$ 三till required．
EuFHum	EDU	\＃E61	Ciefine a label for the IG\＃of the bufter to soue
1 ORES	E0U	\＃118FF	［efine a label for the entry foint of a jsitem
	\％		routine：This Essten routime mill prevert the
	＊		Euster from recleiming the buffer indicsted in the
	\％		X field of register \bar{C} ，
FCOHFS	EQU	\＃FE	Define a label for the gonfigure foll
FOLHHO			［efine a label for the 三tart of the foll－ansuering
	＊		routine：
	GETHEX		Get the arithmetic mode to hexadecimel
	$\mathrm{F}=$	9	Set the fointer fegister to 0 for zubsequent Logd
	\＄		Constant instructions：
	$\begin{aligned} & \text { Leq } \\ & \pm \end{aligned}$	FGOHFG	Lag E field clou－grder tua nibbles of register with the foll we uant to hande．
	$\mathrm{OE}=\mathrm{E}$	E	Test whether the curtent foll is the configute foll
	GOVES	Cohfig	If En，brench to gut routine corry fleg im Eety
	FTHSXH		If not，Exit ¢sarry fige is clear）．
COHFIS	＊		［afine a label for the gtart of our routine to gnswer the configure poll．
	$\begin{gathered} \operatorname{LE}(3) \\ \\ 4 \end{gathered}$	ELIFHUA	Logd X field Glou－grder three ribules of register with the I口\＃of the buffer to syue
	$\begin{aligned} & \text { GUSEUL } \\ & \text { : } \end{aligned}$	IMEES	Gall the Eystem routine to prevent sustem from reclaiming this buffer．The routine oleare the
	\％		Gerry fleg
	ETHSM		Exit and set External hodule missimg bit
	ENCI		Mark the end of the source file coptionsi）

Sample Keyword LEX File．The following LEX file defines a BASIC function OHE that returns the number 1.

	LE\％	＇KE＇MAFE＇	
	I 1	\＃ 51	This LE？filehas an ibiof 50，
	HS	$\underline{1}$	There is hormessage table in this Leq file
	F＇OLL	$\underline{1}$	There $i=n$ Foll harider in this LEs file：
FHETH 1	E或 末 末		 Farameter to themath etaロk：
	EHTF＇i＇	FHET	This Eeyuord is Euded at the label FHiT：
	EHAF 末	\＃F	
	KE＇i＇	＇BraE	This kEnumedis Ealled＂OHE：
	$\begin{aligned} & \text { TGKEH } \\ & \text { 末 } \end{aligned}$	1	Thi keybor－g has toker 1 ：The LEX In\＃and token Uriquely define esth EAGIG keymora．
	EHITMT		Matk the erd of the EHGIt kemurad tables
	HIEHES 本	601	
FHET	末		［efine a label for the start ot the code for the KEyworg OHE
	米		Fut a tlogtirg－Fint＂1＂irtoregister＇ti
	$\Gamma=0$	1.1	Clegr all digits integister E：
	$\mathrm{F}=$	14	－igit ir the foryti三sヨ：
	LCHE： ＊	1	Lajd themostsignifiagnt digit integister fos
	EOULHE	FHETH1	Geraj theresult bagk to the EyEtem；
	EA［1		Hart the erot of the goutce tile coptiongis：

Note the pseudo－ops EATEY，EHAR，KEY，and TOEEN；these are required for each keyword in a LEX file．When there are multiple keywords in an assembly，the EHTEY and CHER pseudo－ops for the first keyword come first，followed by the EHTRY and CHAF pseudo－ops for the second keyword，and so on． After the EHTRY and CHAR pseudo－ops for the final keyword come the KEY and TOEEH pseudo－ops for the first keyword，followed by the $K E \gamma$ and TOEEH pseudo－ops for the second keyword，and so on．

Binary Files

Binary files are program files coded in assembly language．They can be executed like BASIC programs by using $\mathrm{F} \| \mathrm{H}, \mathrm{CHAIH}$ ，or GALL．They usually run faster than comparable BASIC programs and，unlike BASIC programs，can refer to system entry points．

Sample Binary Program．This binary program displays HELL․

	EIH	＇HELLO＇	［atclare an assembly of 引 bingry file gelled＂HEL
	$\begin{gathered} \text { EHAIH } \\ \vdots \\ \vdots \end{gathered}$	－1	There are no subprogrens in this file．Eingru subprograns are desoribed in the HF－71 Idg
EFELSF	$\begin{gathered} \text { EDU } \\ \text { \# } \\ \text { 末 } \\ \ddagger \end{gathered}$	\＃ 616 EE	Gefine a label for the entry faint of ヨ 三ystem routine：The sustem routine di三play the striru ir memory that Etarte Et GAT1 and End uith a Gharaeter \＃FF．
EHEEIH	$\begin{gathered} \text { EDU } \\ \vdots \\ \vdots \\ \text { 末 } \end{gathered}$	\＃ 4 764E	Lefine ョ label for the entry paitut of the Eystem foutine that ends a binary frogram The code immediztely follous the pesuda－npe
	$\begin{gathered} \text { CogUE } \\ \ddagger \\ \vdots \end{gathered}$	FOF	Thi三 line，Gombined uith G＝RETK Gabeled FQPy．Fut E the address of the fallouing string ifta the f field of register E ．
	HIEHSC	＇HELLI］	The Etring HELLO．
	HIEHES	［GAGFF	Carrigge feturn，line feed，end－gfostring mart
FQF	$\mathrm{C}=\mathrm{FETK}$ ＊		Fof the return address Gumith is the addrese git the Fteceding 三tring into the f field of regieter E ．
	$\square 1=\square$		Copy the string E address to［1，
	$\begin{aligned} & \operatorname{CogevL} \\ & \quad . \end{aligned}$	EFEGEF	Call the sustem routine to di三play the Etring Fointed to be［i．
	EOULHE	ENDEIA	The correct way to exit a binary frogram：
	EHC		ligrt the end of the gource file coptionsly

Assembler Mnemonics

The assembler mnemonics are listed below in condensed form，grouped by function．A list of all mnemon－ ics（listed in ASCII order）with their opcodes and cycle times appears in the HP－71 Software IDS．

Branching Mnemonics

GOTO Mnemonics．In the following mnemonics，
－offset is the distance in nibbles to the specified label．

GOTG label	Short goto $(-2047 \leqslant$ offset $\leqslant 2048)$.
GOL label	Short goto if carry $(-127 \leqslant$ offset $\leqslant 128)$.
GOLUHE label	Short goto if no carry $(-127 \leqslant$ offset $\leqslant 128)$.
GYES label	Long goto $(-32766 \leqslant$ offset $\leqslant 32769)$.
	Very long goto（to absolute address）．
	Short goto if test true $(-128 \leqslant$ offset $\leqslant 127)$. （Used only with test mnemonics．）

GOSUB Mnemonics. In the following mnemonics,

- offset is the distance in nibbles to the specified label.

GOEUE label	Short gosub $(-2044 \leqslant$ offset $\leqslant 2051)$.
GOEUEL label	Long gosub $(-32762 \leqslant$ offset $\leqslant 32773)$.
GOEEVL label	Very long gosub (to absolute address).

Return Mnemonics.

ETH	Return.
FTHES	Return and set carry.
ETHEC	Return and clear carry.
FTHESM	Return and set External Module Missing bit.
FTI	Return from interrupt (enable interrupts).
ETHE:	Return if carry set.
ETHAC	Return if no carry set.
ETHYES	Return if test true. (Used only with test mnemonics.)

Test Mnemonics

Each test mnemonic must be followed with a GYES or RTHYES mnemonic. The test mnemonic and the EOYES or RTHTES mnemonic combine to generate a single opcode. Each test will set the carry flag if true, or clear the carry flag if false.

Register Tests. In the following mnemonics,

- $(r, s)=(\mathrm{A}, \mathrm{B}),(\mathrm{A}, \mathrm{C}),(\mathrm{B}, \mathrm{A}),(\mathrm{B}, \mathrm{C}),(\mathrm{C}, \mathrm{A}),(\mathrm{C}, \mathrm{B}),(\mathrm{C}, \mathrm{D})$, or (D, C).
$\bullet f s=\mathrm{A}, \mathrm{P}, \mathrm{WP}, \mathrm{XS}, \mathrm{X}, \mathrm{S}, \mathrm{M}, \mathrm{B}$, or W .
?r=s fs
?r\#s is
or= f f
Tr\# is
Pres fs
Pres is
Tres $f s$
Tres fs

Is $f s$ field of r equal to $f s$ field of s ?
Is $f s$ field of r not equal to $f s$ field of s ?
Is $f s$ field of r equal to zero?
Is $f s$ field of r not equal to zero?
Is $f s$ field of r greater than $f s$ field of s ?
Is $f s$ field of r less than $f s$ field of s ?
Is $f s$ field of r greater than or equal to $f s$ field of s ?
Is $f s$ field of r less than or equal to $f s$ field of s ?

Pointer Tests. In the following mnemonics,

- n is an expression whose hex value is from 0 through F .
$\rho F=n$
Is P register equal to n ?
?F\# n
Is P register not equal to n ?

Program-Status Tests. In the following mnemonics,

- n is an expression whose hex value is from 0 through F.
?डT= $n \quad$ Is bit n in ST equal to 0 ?
?ST=1 $n \quad$ Is bit n in ST equal to 1 ?
क巨T\#Q $n \quad$ Is bit n in ST not equal to 0 ?
ЭडT\# $n \quad$ Is bit n in ST not equal to 1 ?

Hardware-Status Tests.

$\mathrm{CE}=\mathrm{E}=0$	Is the External Module Missing bit clear?
$\mathrm{CE}=\mathrm{E}=0$	Is the Sticky bit clear?
$\mathrm{CH}=\mathrm{E}$	Is the Service Request bit clear?
	Is the Module Pulled bit clear?

P Register Mnemonics

In the following mnemonics,

- n is an expression whose hex value is from 0 through F.

Note that the C register is the only working register used with the P register. During those operations that involve a calculation, the carry flag is set if the calculation overflows or borrows; otherwise the carry flag is cleared.

$F=n$	Set P register to n.
$\mathrm{F}=\mathrm{F}+1$	Increment P register.
$F=F-1$	Decrement P register.
$\underline{C+F+1}$	Add P register plus one to A field in C. Arithmetic is hexadecimal.
EFES n	Exchange P register with nibble n in C.
$F=\square$	Copy nibble n in C to P register.
$\mathrm{Q}=\mathrm{F} \quad n$	Copy P register to nibble n in C .

Status Mnemonics

In the following mnemonics,

- n is an expression whose hex value is from 0 through F.

ST=an n	Set bit n in ST to 0 .
$\underline{G T=1} n$	Set bit n in ST to 1 .
ESTE\%	Exchange X field in C and bits 0 through 11 in ST.
$\mathrm{E}=\mathrm{ST}$	Copy bits 0 through 11 in ST into X field in C.
$S T=\square$	Copy X field in C into bits 0 through 11 in ST.
ELEST	Clear bits 0 through 11 in ST.
$\mathrm{SE}=\mathrm{E}$	Clear Sticky bit (SB).
$g \mathrm{~F}=\mathrm{Cl}$	Clear Service Request (SR) bit.
$\mathrm{HF}=\mathrm{O}$	Clear Module Pulled (MP) bit.
$\mathrm{XH}=\mathrm{E}$	Clear External Module Missing (XM) bit.
CLEHST	Clear SB, SR, MP, and XM bits.

System-Control and Keyscan Mnemonics

The first four mnemonics below are useful for most programmers. The remaining mnemonics are used by the system and have limited general use; for details, refer to the HP-71IDS and the HP-71 Hardware Specification.

SETHE?	Set arithmetic mode to hexadecimal.
SETGEL	Set arithmetic mode to decimal.
$\mathrm{C}=\mathrm{ESTK}$	Pop return stack into A field in C.
FSTK=	Push A field in C onto return stack.
EDHFIG	Configure.
UHCHFE	Unconfigure.
EESET	Send Reset command to system bus.
EHECL	Send Bus Command C to system bus.
EHIITEH	Stop here.
$\Gamma=1 \square$	Request ID (A field in C).
EREG?	Sets service request bit if service has has been requested. Nibble 0 in C shows what bit(s) are pulled high.
IHTGFF	Disable interrupts (doesn't affect ON-key or module-pulled interrupts).
IHTOH	Enable interrupts.
ПUT $=0$	Copy X field in C into OUT.
DUT=「:	Copy nibble 0 of C into OUT.
$\mathrm{H}=\mathrm{IH}$	Copy IN into nibbles 0 through 3 in A .
$\underline{C=I H}$	Copy IN into nibbles 0 through 3 in C .

Scratch Register Mnemonics

In the following mnemonics,

```
- r = A or C.
```

- $s s=\mathrm{R} 0, \mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$, or R4.

```
rssE% Exchange r and ss.
r=ss Copy ss into r.
ss=r Copy r into ss.
```


Memory-Access Mnemonics

Data-Pointer Mnemonics. In the following mnemonics,

- $r=\mathrm{A}$ or C .
- $s s=$ D0 or D1.
- n is an expression whose hex value is from 0 through F.
- nnnnn is an expression whose hex value is from 0 through FFFFF.

During those operations that involve a calculation, the carry flag is set if the calculation overflows or borrows; otherwise the carry flag is cleared.

rssEs	Exchange A field in r with ss.
rss\%	Exchange nibbles 0 through 3 in r with ss.
$s s=r$	Copy A field in r into ss.
$s s=r$ S	Copy nibbles 0 through 3 in r into ss.
$s s=s s+n$	Increment $s s$ by n.
$s s=s s-n$	Decrement ss by n.
	Load $s s$ with two nibbles from $n n n n n$.
	Load ss with four nibbles from nnnnn.
$s s=5$ ¢ $n n n n n$	Load ss with nnnnn.

Data-Transfer Mnemonics. In the following mnemonics, - $r=\mathrm{A}$ or C .

- $f s=\mathrm{A}, \mathrm{P}, \mathrm{WP}, \mathrm{XS}, \mathrm{X}, \mathrm{S}, \mathrm{M}, \mathrm{B}, \mathrm{W}$ (or a number n from 1 through 16).
$r=$ GFTG $f s \quad$ Copy data at address contained in D0 into fs field in r (or into nibble 0 through nibble $n-1$ in r).
$r=$ IFTL $f s \quad$ Copy data at address contained in D1 into fs field in r (or into nibble 0 through nibble $n-1$ in r).
$\square H T G=r$ fs \quad Copy data in $f s$ field in r (or in nibble 0 through nibble $n-1$ in r) to address contained in D0.

ロAT $1=r$ fs Copy data in $f s$ field in r (or in nibble 0 through nibble $n-1$ in r) to address contained in D1.

Load-Constants Mnemonics

In the following mnemonics,

- h is a hex digit.
- i is an integer from 1 through 5.
- nnnnn is an expression with hex value from 0 through FFFFF.
- c is an ASCII character.

LEHE $h \ldots h$ Load up to 16 hex digits into C. The least significant digit is loaded at the pointer position; more significant digits are loaded into higher positions, wrapping around from nibble 15 to nibble 0 .
LEG nnnnn Load i hex digits from the value of nnnnn into C . The least significant digit is loaded at the pointer position; more significant digits are loaded into higher positions, wrapping around from nibble 15 to nibble 0.
LEAGI ' c. . c ' Load up to eight ASCII characters into C. The least significant nibble of the low-order character is loaded at the pointer position; more significant nibbles are loaded into higher positions, wrapping around from nibble 15 to nibble 0 . For example, LEAES 'AE' is equivalent to LEHES 4142.

Shift Mnemonics

In the following mnemonics,

- $r=\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D .
$\bullet f s=\mathbf{A}, \mathrm{P}, \mathrm{WP}, \mathrm{XS}, \mathbf{X}, \mathbf{S}, \mathrm{M}, \mathrm{B}$, or W .
Non-circular shift operations shift in zeros. If any shift-right operation, circular or non-circular, moves a non-zero nibble or bit from the right end of a register or field, the Sticky bit SB is set. The Sticky bit is cleared only by a $\Xi E=E$ or ELEHET instruction.

$r G E E$	Shift r right by one bit.
r SLE	Shift r left by one nibble (circular).
rEE	Shift r right by one nibble (circular).
r ¢ fs	Shift $f s$ field in r left by one nibble.
refe fs	Shift $f s$ field in r right by one nibble.

Logical Mnemonics

These mnemonics are summarized below, using the following variables:

- $(r, s)=(\mathrm{A}, \mathrm{B}),(\mathrm{A}, \mathrm{C}),(\mathrm{B}, \mathrm{A}),(\mathrm{B}, \mathrm{C}),(\mathrm{C}, \mathrm{A}),(\mathrm{C}, \mathrm{B}),(\mathrm{C}, \mathrm{D})$, or (D, C).
- $f s=\mathbf{A}, \mathrm{P}, \mathrm{WP}, \mathrm{XS}, \mathbf{X}, \mathrm{S}, \mathrm{M}, \mathrm{B}$, or W .
$r=r$ \& s fs $\quad f s$ field in r AND $f s$ field in s into $f s$ field in r.
$r=r!s f s \quad f s$ field in r OR $f s$ field in s into $f s$ field in r.

Arithmetic Mnemonics

Arithmetic results depend on the current arithmetic mode. In hexadecimal mode (set by SETHE\%), nibble values range from 0 through F. In decimal mode (set by $\Xi E T[E E$), nibble values range from 0 through 9 , and arithmetic is BCD arithmetic.

There are two groups of arithmetic mnemonics. In the first group (general), almost all combinations of the four working registers are possible; in the second group (restricted), only a few combinations are possible. During those operations that involve a calculation, the carry flag is set if the calculation overflows or borrows; otherwise the carry flag is cleared.

General Arithmetic Mnemonics. In the following mnemonics,

```
- (r,s) = (A, B), (A, C), (B, A), (B, C), (C, A), (C, B), (C, D), or (D, C).
- fs = A, P, WP, XS, X, S, M, B, or W.
r=b fs Set fs field in r to zero.
r=r+r fs Double fs field in r (shift left by one bit).
r=r+1 fs Increment fs field in r by 1.
r=r-1 fs Decrement fs field in r by 1.
r=-r fs Tens complement or twos complement, depending on arithmetic mode, of fs
field in r. Clears Carry if argument =0; sets Carry otherwise.
r=-r-1 fs Nines complement or ones complement, depending on arithmetic mode, of fs
field in r. Clears Carry.
r=r+s fs Sum fs field in r and fs field in s into fs field in r.
s=r+s fs Sum fs field in r and fs field in s into fs field in s.
r=s fs Copy fs field in s into fs field in r.
s=r fs Copy fs field in r into fs field in s.
rsE& fs Exchange fs field in r and fs field in s.
```

Restricted Arithmetic Mnemonics. In the following mnemonics,

- $(r, s)=(\mathrm{A}, \mathrm{B}),(\mathrm{B}, \mathrm{C}),(\mathrm{C}, \mathrm{A})$, or (D, C).
- $f s=\mathrm{A}, \mathrm{P}, \mathrm{WP}, \mathrm{XS}, \mathrm{X}, \mathrm{S}, \mathrm{M}, \mathrm{B}$, or W .
$r=r-s$ fs Difference of $f s$ field in r and $f s$ field in s into $f s$ field in r.
$r=s \cdots$ fs Difference of $f s$ field in s and $f s$ field in r into $f s$ field in r.
$s=s-r$ fs Difference of $f s$ field in s and $f s$ field in r into $f s$ field in s.

No-op Mnemonics

NOP3
NOP4
NOPS

Three-nibble no-op.
Four-nibble no-op.
Five-nibble no-op.

Pseudo-ops

Control Pseudo-ops

EUEET
EHG
label EQU expression
LIGT GHLLIST OFF

STITLE subtitle

TITLE title

Generate a form feed in the assembly listing.
Mark the end of the assembly source file. Any characters in the file following EHI are ignored by the assembler. This pseudo-op is optional.
Define label to have the value of expression. All references to label will have this value; label can't be redefined in a later part of the program.

Send/suppress output to the listing file. (Limited RAM may require a shortened listing file.)

Force a new page and put subtitle at the top of each page of the listing file, just underneath the title. The text for subtitle can contain up to 40 characters.
Put title at the beginning of each page of the listing file. The text for title can contain up to 40 characters.

Constant-Generating Pseudo-ops

EG Expression
[GH(i) expression

HIEFEC 'chars'

HIEHESh ... h
EELGO expression

Evaluate expression and generate that number of zero nibbles.
Evaluate expression and generate an absolute constant of length i nibbles, $1 \leqslant i \leqslant 5$.
Generate the specified ASCII characters, with the two nibbles within each byte reversed. The modifier field may specify up to eight characters. (The result is the same if each character is placed in its own HIEASE pseudo-op.)

Generate up to sixteen hexadecimal nibbles.
Evaluate expression and generate a constant (relative to the current location-counter value) of length i nibbles, $1 \leqslant i \leqslant 5$.

Macro-Expansion Pseudo-ops for FORTH Words

FGFTH

HOFI 'name'

HOEDI 'name'

Assemble a new FORTH primitive. This pseudo-op must be the first line in the file.

Define a FORTH primitive called name. The assembly code that defines name should directly follow the lORO pseudo-op.

Define an immediate FORTH primitive called name. The assembly code that defines name should directly follow the HEDI pseudo-op.

Macro-Expansion Pseudo-ops for LEX Files

LES 'name'

I Q byte

MElabel

FULL label

EHTEY label

CHAE h

Assemble a new LEX file called name. This pseudo-op must be the first line in the source file. The LEX file will have the correct header. The intial data for this file is defined by the $I[1, G G$, and FOLL pseudoops, which must be present in that order.
Define the LEX ID of this LEX file. The byte is placed in the appropriate data field. This pseudo-op is required when the $L E \subset$ pseudo-op is used.

Define the beginning of this LEX file's message table. 15 will place label in the appropriate field. This pseudo-op is required when the $L E=$ pseudo op is used. If there is no message table, enter itG \square.

Define the beginning of this LEX file's poll-handling routine. FOLL will place label in the appropriate field. This pseudo-op is required when the LE: pseudo-op is used. If there is no poll-handling routine, enter FOLL 6.

Begin the definition of a BASIC keyword. Each keyword requires four pseudo-ops: EHTF', CHAF, KEY, and TOKEH.

Because of the structure of the LEX file's keyword tables, these pseudoops require a particular order. For example, the following assemblylanguage header defines two keywords, $K E Y 1$ and $K E Y Z$.

EHTEY label1
CHAF 5

ENTEY label2

EHAE \#F The second keyword is a function.

TOEEH 1 The first keyword has token 1.

TUEEH 2 The second keyword has token 2.
EHDTYT

KEY 'KEYI' The first keyword is invoked with "KEY1" in BASIC.

KE' 'KEYZ' The second keyword is invoked with "KEY2" in BASIC.
The code for the first keyword begins at labell. The first keyword is legal for keyboard execution and after THEH:. ELEE.

The code for the second keyword begins at label2.

Mark the end of the keyword tables.

Describe the type of BASIC keyword. Each EHTEY requires a corresponding :HFF, which places a "characterization nibble" in the keyword tables. The characterization nibble defines BASIC keywords as follows.

Values for the Characterization Nibble

Value	Type of keyword
1	Keyboard execution.
4	Legal after THEH . . ELSE.
8	Begin BASIC (legal as first keyword in a statement).
15	Function.

EE' ' name' Define the name that will evoke the keyword in BASIC. When there are multiple keywords in one LEX file, the names of the keywords must be in alphabetic order. There is one exception: the name 'abc' is not before the name 'abcd'. If the first characters are the same, the longer text must come first. Otherwise, the BASIC operating system will never find the longer keyword.

TOFEH number Define the token number of the keyword most recently named (by KEV). When there are multiple keywords in one LEX file, their token numbers must be in ascending order. TOEEN places the token number in the keyword tables.

EHDTYT Mark the end of the keyword tables. This pseudo-op follows the EATEY, EHFF, KE Y, and TGKEH pseudo-ops when a keyword is defined, or it marks their absence if no keyword is defined.

Macro-Expansion Pseudo-ops for BIN Files

EIH 'name'

EHAIH 'label'

Assemble a BIN file called name. This pseudo-op must be the first line in the source file. EIH creates the file header; the user must create the subheader using the EHAIN pseudo-op.

Create a 12 -nibble subheader containing a subprogram and label chains. If there are no subprograms, enter CHAIH-1.

Care, Warranty, and Service Information

Care of the Module

The HP-71 FORTH/Assembler ROM does not require maintenance. However, there are several precautions, listed below, that you should observe.

CAUTIONS

- Do not place fingers, tools, or other objects into the plug-in ports. Damage to plug-in module contacts and the computer's internal circuitry may result.
- Turn of the computer (press OFF) before installing or removing a plug-in module.
- If a module jams when inserted into a port, it may be upside down. Attempting to force it further may result in damage to the computer or the module.
- Handle the plug-in modules very carefully while they are out of the computer. Do not insert any objects in the module connector socket. Always keep a blank module in the computer port when a module is not installed. Failure to observe these cautions may result in damage to the module or the computer.

Limited One-Year Warranty

What We Will Do

The HP 82441A FORTH/Assembler ROM is warranted by Hewlett-Packard against defects in materials and workmanship affecting electronic and mechanical performance, but not software content, for one year from the date of original purchase. If you sell your unit or give it as a gift, the warranty is transferred to the new owner and remains in effect for the original one-year period. During the warranty period, we will repair or, at our option, replace at no charge a product that proves to be defective, provided you return the product, shipping prepaid, to a Hewlett-Packard service center.

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy. ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or countries do not allow limitations on how long an implied warranty lasts, so the above limitation may not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be determined by statute.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard dealer or a Hewlett-Packard sales and service office. Should you be unable to contact them, please contact:

- In the United States:

Hewlett-Packard Personal Computer Group
Customer Support
11000 Wolfe Road
Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)

- In Europe:

Hewlett-Packard S.A.
150, route du Nant-d'Avril
P.O. Box CH-1217 Meyrin 2

Geneva
Switzerland
Telephone: (022) 838111
Note: Do not send units to this address for repair.

- In other countries:
Hewlett-Packard Intercontinental
3495 Deer Creek Rd.
Palo Alto, California 94304
U.S.A.
Telephone: (415) 857-1501

Note: Do not send units to this address for repair.

Service

Hewlett-Packard maintains service centers in most major countries throughout the world. You may have your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit is under warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt at any service center. This is an average time and could vary depending upon the time of year and the work load at the service center. The total time you are without your unit will depend largely on the shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational products is located in Corvallis, Oregon:

Hewlett-Packard Company
Service Department
P.O. Box 999
Corvallis, Oregon 97339, U.S.A.
or
1030 N.E. Circle Blvd. Corvallis, Oregon 97330, U.S.A.
Telephone: (503) 757-2000

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer where you purchased your unit.

AUSTRIA

HEWLETT-PACKARD Ges.m.b.H
Kleinrechner-Service
Wagramerstrasse-Lieblgasse 1
A-1220 Wien (Vienna)
Telephone: (0222) 236511

BELGIUM
HEWLETT-PACKARD BELGIUM SA/NV
Woluwedal 100
B-1200 Brussels
Telephone: (02) 7623200

DENMARK

HEWLETT-PACKARD A/S
Datavej 52
DK-3460 Birkerod (Copenhagen)
Telephone: (02) 816640
EASTERN EUROPE
Refer to the address listed under Austria.

FINLAND

HEWLETT-PACKARD OY
Revontulentie 7
SF-02100 Espoo 10 (Helsinki)
Telephone: (90) 4550211

FRANCE

HEWLETT-PACKARD FRANCE
Division Informatique Personnelle
S.A.V. Calculateurs de Poche

F-91947 Les Ulis Cedex
Telephone: (6) 9077825

GERMANY
HEWLETT-PACKARD GmbH
Kleinrechner-Service Vertriebszentrale
Berner Strasse 117
Postfach 560140
D-6000 Frankfurt 56
Telephone: (611) 50041

ITALY
HEWLETT-PACKARD ITALIANA S.P.A.
Casella postale 3645 (Milano)
Via G. Di Vittorio, 9
l-20063 Cernusco Sul Naviglio (Milan)
Telephone: (2) 903691

NETHERLANDS

HEWLETT-PACKARD NEDERLAND B.V. Van Heuven Goedhartlaan 121 NL-1181 KK Amstelveen (Amsterdam) P.O. Box 667

Telephone: (020) 472021

NORWAY

HEWLETT-PACKARD NORGE A/S
P.O. Box 34

Oesterndalen 18
N -1345 Oesteraas (Oslo)
Telephone: (2) 171180
SPAIN
HEWLETT-PACKARD ESPANOLA S.A.
Calle Jerez 3
E-Madrid 16
Telephone: (1) 4582600
SWEDEN
HEWLETT-PACKARD SVERIGE AB
Skalholtsgatan 9, Kista
Box 19
S-163 93 Spanga (Stockholm)
Telephone: (08) 7502000
SWITZERLAND
HEWLETT-PACKARD (SCHWEIZ) AG
Kleinrechner-Service
Allmend 2
CH-8967 Widen
Telephone: (057) 312111
UNITED KINGDOM
HEWLETT-PACKARD Ltd
King Street Lane
GB-Winnersh, Wokingham
Berkshire RG11 5AR
Telephone: (0734) 784774

International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is available in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local HewlettPackard service center to see if service is available for it. If service is unavailable, please ship the unit to the address listed above under Obtaining Repair Service in the United States. A list of service centers for other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and materials. In the United States, the full charge is subject to the customer's local sales tax. In European countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherever applicable. All such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are not covered by the fixed repair charges. In these situations, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period of 90 days from date of service.

Shipping Instructions

Should your unit require service, return it with the following items:

- A completed Service Card, including a description of the problem.
- A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of purchase date should be packaged in adequate protective packaging to prevent in-transit damage. Such damage is not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the shipment to the service center. The packaged unit should be shipped to the nearest Hewlett-Packard designated collection point or service center. Contact your dealer for assistance. (If you are not in the country where you originally purchased the unit, refer to "International Service Information" above.)

Whether the unit is under warranty or not, it is your responsibility to pay shipping charges for delivery to the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-ofwarranty repairs in the United States and some other countries, the unit is returned C.O.D. (covering shipping costs and the service charge).

Further Information

Circuitry and designs are proprietary to Hewlett-Packard, and service manuals are not available to customers. Should other problems or questions arise regarding repairs, please call your nearest HewlettPackard service center.

When You Need Help

Hewlett-Packard is committed to providing after-sale support to its customers. To this end, our customer support department has established phone numbers that you can call if you have questions about this product.

Product Information. For information about Hewlett-Packard dealers, products, and prices, call the toll-free number below:
(800) FOR-HPPC
(800 367-4772)
Technical Assistance. For technical assistance with your product, call the number below:
(503)

7572004
For either product information or technical assistance, you can also write to:
Hewlett-Packard
Personal Computer Group
Customer Communications
11000 Wolfe Road
Cupertino, CA 95014

Appendix B

Error Messages

The error messages listed in the following tables relate only to FORTH/Assembler ROM operations. For other error or warning messages, refer to the HP-71 Reference Manual.

This appendix contains four listings:

1. An alphabetical listing of FORTH error messages with their corresponding error numbers. You can use the error's number to look up the error in the next listing.
2. A numerical listing of FORTH error messages with a description of each error condition.
3. An alphabetical listing of assembler messages with a description of each message.
4. An alphabetical listing of editor messages with a description of each message.

FORTH Messages

Alphabetical Listing of FORTH Messages

Numerical Listing of FORTH Messages with Descriptions

Error Number	Message and Condition
47002	\qquad Hot Found The argument to＇（tick）isn＇t in the dictionary．Check the spelling of the word．
47003	म曰 Ending ： The definition being compiled from a text file is unfinished．Put in an ending semicolon．
47004	no Efudirg \＆or isn＇t matched by an ending parenthesis．Put in an ending parenthesis．
47005	no ernaing＂ ．＂or＂isn＇t matched by an ending double quote．Put in an ending double quote．
47006	ョドヨumeにt＜ 1 A word that expects positive integers finds negative numbers or zero on the stack．Ensure the proper values on the stack．
47007	definition not firished The stack＇s size at the end of a word doesn＇t equal its size at the start．Review the control structures and immediate words used in the definition．
47008	－iにtigrory full The dictionary space in FORTHRAM is used up．Use FGFGET or GROA．
47009	Gomfile orly A compile－time word is used at run time．Check word usage in definitions．
47010	HF－IL Error Something is wrong related to the HP－IL interface．Check that the HP－IL interface is plugged into the HP－71；check the integrity of the loop．
47011	ヨttemptedtaredefinerull A colon（starting a colon definition）is the only input received from the keyboard；or HOFD＇＇or WFEII＇＇appears in a primitive assembly．Fatal to assembly．You can＇t redefine the null word in FORTH．
47013	ir Froterted giにtiongry The argument for FGFGET is below FENCE（or in ROM）．Reset FENCE．
47014	EMFtり 三tac: A word expecting stack parameters finds the stack empty．Provide stack parameters．
47015	```full 三tまにk``` The space in FORTHRAM for the data stack is used up．Use GFOH to enlarge FORTHRAM or use FGFGET to make space in FORTHRAM．
47016	\qquad The input is neither an existing word nor a number．Check the spelling of the word；check the CONTEXT vocabulary．
47017	coriditiongls not Faired A control－structure word（such as THE \mathcal{H} ）appears without the preceding word（such as IF）．Supply the missing word．

Error Number	Message and Condition
47018	FORTHEAM file not in flace FGETHI，FGETHF，or FGETH末 is attempted when the FORTHRAM file hasn＇t been cre－ ated or has moved．Use FGETH or FGFTH：to enter FORTH and then exit．
47019	Invalig Filesfec The argument to FINDF is an illegal file specifier．Supply a valid file specifier．
47043	Edress mot inside \exists file H［1USTF is given an address not properly within a file，such as the address of a file header．Check the address of the file．
47046	 A string word finds an out－of－range value on the stack，such as a character－position param－ eter of 20 for a string only 10 characters long．Check the stack value．
47052	Gerfigur ation An oversized configuration buffer or an erroneous pointer to that buffer prevents the FORTHRAM file from occupying its required location．This will never occur under normal circumstances．Remove a LEX file from RAM or remove a module．
47053	string wart t fit A string is too long for the specified variable．Check the size of the variable．
47054	hot in Eurrent vosabulary The argument for FGRGET isn＇t in the CURRENT vocabulary．Check the spelling of the word and the CURRENT vocabulary．
47055	Earrot 10．ad The file is open，doesn＇t exist，etc．Check the file＇s status．
47059	ho bin before LEFUE LEFUE is used outside a［IO－loop．Use LEFUE only inside a［illoop．
47060	illegal CHEE 三tructure EHILASE isn＇t preceded by valid CHEE ．．DF ．．．EHDUF structure．Check the com－ plete control structure．
47063	EHEIC not reーertrant EASIC\％is used in an argument to FOETH：Eliminate such usage．
47064	FORTH not reーertrgat FDETH：is used in an argument to EASIG\％，or in a program or user－defined function executed from EAEIC\％，EASIEI，or EHSICF．Eliminate such usage．

Assembler Messages

User has aborted the assembler．
ヨttemftegtaredefinermll
A colon（starting a colon definition）is the only input received from the keyboard；or WORD＇＇or HOFLI＇＇appears in a primitive assembly．Fatal to assembly．You can＇t redefine the null word in FORTH．

The argument to HEEHELE is invalid，missing，or the file is open．Fatal to assembly．Check that the source file is a text file in RAM or on tape．

The evaluation of the equate differs between the first and second passes．Check that all parts of the expression can be evaluated during the first pass．
dictiongry full
The dictionary space in FORTHRAM is used up．Use FDEGET or GEDH．
－tafliにヨte latロel
An existing label name is used again．Recall that labels of more than six characters are defined by the first six characters．Rename the duplicate label．

An expression contains too many characters．Check that the expression is stated correctly．

GigES Gr FTHYES required

A test instruction isn＇t followed by a GYE or RTHYES instruction．The test and branch instructions appear to be separate but combine to form one instruction．Supply the missing GOES or ETHYES instruction．
illegal dF arithmetia walde
An illegal value is used in data－pointer arithmetic．Check that the value of the modifier field is from 1 through 16.
illegal ExFression
An expression has illegal syntax or is too complicated．Check the syntax，the levels of parentheses，and the number of operations．
ill巨gal FGifter F口ミitigh
The pointer register is set to or tested for an illegal value．Check that the value of the modifier field is from 0 through 15.
ill巨gョl 三t日tus もit
The status bits are set to or tested for an illegal value．Check that the value of the modifier field is from 0 through 15.
illegal trヨnョfer velue
An illegal value is used in data transfer．Check that the modifier field contains a valid word select or a number from 1 through 16.
illegal word 三elect
The modifier field isn＇t a valid word select．Valid entries are：A，B，M，P，S，W，WP，X，and XS．
inualidfilergme ョFerifier
The filename specifier following a LES or EItt pseudo－op isn＇t a valid filename．Fatal to assembly． Refer to the HP－71 Owner＇s Manual for valid filenames．

Iruelid FilesFer

The argument to FINDF is an illegal file specifier．Supply a valid file specifier．

irualid 1 istirg ヨrgumert

The modifier field of LIST is neither GH nor GFF．Check that the modifier is uppercase．

The contents of LISTING are invalid，or listing file equals source file．Fatal to assembly．Set LISTING to HUL L \＆for no listing，to an HP－IL device for a listing to that device，or to a RAM filename for a listing to that text file．

One or both single quotes are missing from a quoted string or quoted constant．

Jump or galbe tog large
A relative jump is too great，or the value of a constant requires more nibbles than the instruction can generate．Use a mnemonic for a longer jump，or check the value of the constant．
li＝ting filefull
There is no space in RAM for more of the listing file．Move the listing and source files out of RAM，or move other files to external storage．
listing file not TEXT
The file specified in LISTING already exists and isn＇t an HP－71 text file．Fatal to assembly．Provide a different file specifier．
mismetahed Farentheses
A right parenthesis is missing．Supply right parenthesis．

Illegal characters appear in a label，or a label required for an EDU instruction is missing．Check that a legal label is present．
miseing multifle file type
The first line in the source file isn＇t LES，EIN，or FGETH（fatal to assembly）；or one of these pseudo－ ops appears a second time；or any pseudo－op of the wrong type appears（such as MOFI within a LEX file）．Check that the source file begins with a $L E *$ ，EIH，or FIETH pseudo－op and contains pseudo－ ops suitable for that type of file．

A LiYES or ETHYES instruction appears without a preceding test instruction．The test and branch instructions appear to be separate but combine to form one instruction．Supply the missing test instruction．

The modifier field contains illegal characters．Use only hex digits 0 through F ．

There is insufficient space in RAM for the required assembler variables，files，or operations．Fatal to assembly．Put the listing file to an HP－IL device；move the source file（or other files）to external storage．

FヨコEミize tog＝rigll
PAGESIZE is set to less than 8 ．Fatal to assembly．Set PAGESIZE to 8 or greater．

The user has placed this restricted label in the source file．Fatal to assembly．Choose a different label．

There is no space in RAM for more symbols．Fatal to assembly．Move listing file or source file out of RAM．

```
tog many HSEI L ERarE Fresert.
```

The modifier field contains more than eight ASCII characters．Use no more than eight ASCII characters．

The modifier field contains more than 16 hex digits．Use no more than 16 hex digits．

```
Gnkricury GFGOde
```

The opcode isn＇t recognized．Check that the opcode is spelled correctly，in uppercase letters，and prop－ erly placed in an opcode field．

An undefined label appears within an expression．Check whether parentheses are required to separate the label from an operator．

```
warmimg: worg mot bricque
    name in HRED 'name' is already present in the FORTH dictionary.
```


Editor Messages

LOHE

The editor has been exited．

File EXist：
The file specified to receive deleted lines already exists．Use the \pm option，or choose a different filename．

Inこufficient Memory
There is insufficient memory for the operation being performed．If other operations requiring less mem－ ory can be performed，the $\overline{\mathrm{E}} \mathrm{m}$ ：prompt returns to the display．If no further operations are possible，the editor is exited．Purge a file or execute LESTEGY FLL．

Imualid File TuFE：
The file specified in the command string must be a text file．

IrリヨlidFまrヨm：
The editor doesn＇t recognize the parameter portion of a command string．Review the command＇s syntax．

Line Too Lorg
The line of text is longer than 96 characters，which is not allowed in text mode．
$?$ Emd：
The editor doesn＇t recognize the letter as a valid command．The valid commands are c, d, e, f, h, i, l, m ， $\mathrm{p}, \mathrm{r}, \mathrm{s}$ ，and t ．

Horking：：
The editor is executing a command．

BASIC Keywords

Introduction

This Appendix describes the BASIC keywords added to the HP-71 when the FORTH/Assembler ROM is plugged in. The keywords fall into three categories:

Organization

Entries in this appendix are arranged in alphabetical order. The same format is used for every keyword entry so that you can quickly find the information you need. The format is similar to that used in the HP-71 Reference Manual-refer to that manual for additional details.

Each keyword entry provides the following information for the keyword:

- Keyword name. Shows the basic keyword.
- Purpose. Gives a one-line summary of the operation that the keyword performs.
- Keyword type. Identifies the keyword as a statement or as a function. (None of the keywords are operators.)
- Execution options. Indicates situations in which you can execute the keyword:
- From the keyboard.
- In CALC mode.
- After THEH or ELSE in an IF ... THEH ... ELSE statement.
- While the HP-71 is operating as an HP-IL device (not as controller). This is given only for HP-IL words.
- Syntax diagram. Defines the required and optional components within the statement or function for proper syntax. Parameters shown within brackets are optional. Parameters shown in a vertical stack are alternatives.
- Examples. Illustrates and explains some ways that the keyword can be used, and shows some possible syntax variations.
- Input parameters. Defines the parameters used in the syntax diagram, gives their default values (if applicable), and lists restrictions on parameter values or structure. (This heading isn't included for keywords that use no parameters.)
- Operation. Gives a detailed description of the keyword's operation and other information that's useful for learning and using the keyword.
- Related keywords. Lists other keywords that either influence the results of the subject keyword or else are similar in function.

Deletes one record from a text file.

\square Statement	\square Keyboard Execution
\square Function	\square CALC Mode
\square Operator	\square IF...THEN...ELSE

पELETE\# channel number. record number

Example

DELETE\# 5. 14 Deletes the 14th record from the text file currently assigned to channel \#5.

Input Parameters

Item	Description	Restrictions
channel number record number	Numeric expression rounded to an integer. Numeric expression rounded to an integer.	1 through 255.

Operation

The IELETE\# keyword deletes the specified record from the text file assigned to the specified channel number. Record numbers always begin at 0 , so line number 1 is record number 0 .

The channel number and the record number can be expressions. पELETE\# rounds each of the resulting values to an integer.

पELETE\# returns an error message if the assigned file is external, protected, or not a text file.

Related Keywords

HSEIGH\#, IHEERT\#, REFLFEE\#, FILESTE

EDTEXT

Invokes the text editor.

\square Statement	\square Keyboard Execution
\square Function	\square CALC Mode
\square Operator	\square IF...THEN...ELSE

E[ITE:TT file specifier[, command string]

Examples

ELTEKT ECEEEH	Runs the editor program, with SCREEN as the edit
	file.

Input Parameters

Item	Description	Restrictions
file specifier	String expression or unquoted string.	File must be in RAM or IRAM. command string
See description of editor command strings in section 3.		

Operation

The EIITEXT keyword starts the editor program. The optional command string permits you to have the editor begin immediate execution of editor commands that appear in the command string.

An error can cause the editor program to terminate without going through its normal exit path. If you are running the editor from another BASIC program, or from the FORTH environment, you can check for this situation by using $[I S F=$ to read the display contents. If the result is other than
 may be in a corrupt state, and the editor key assignments may still be active. For example, from the FORTH environment, you can type the sequence

to edit the file SCFEEH. When the editor terminates, a true flag will be pushed on the stack if the editor terminated normally (here we are checking the numerical equivalent of the first three characters on the display to see if they match "Don", which translates to -102588).

Related Keywords

ESCAPE

Adds or modifies an escape-sequence key specification in the current KEYEDAREI IG key map buffer.

\square Statement	\square Keyboard Execution
\square Function	\square CALC Mode
\square Operator	\square IF...THEN...ELSE
	\square
	Device Operation

```
ESEFFE string : key number
```


Example

EGTAFE "A": 43

ESEAFE "A":

Specifies that the escape sequence (ESC)A received from the KEYEOHRD IS device will be changed to key code 43.
Cancels the (ESC)A assignment.

Input Parameters

Item	Description	Restrictions
string	String expression.	Only the first character is used. key number
Keycode.	0 through 168.	

Operation

ESCAFE specifies that a particular one-character escape sequence (the escape character ASCII 27 followed by a single character) received by the HP-71 from the current EEYEDAED IS device will be replaced by an HP-71 keycode in the key buffer input. ESCHFE requires two parameters, a one-character string and a numeric keycode. The string specifies the escape sequence; the number indicates the corresponding keycode.

The first execution of ESCAFE creates a special HP-71 buffer that specifies the mapping of escape sequences received from a KEVEOFFI IS device to HP-71 keycodes. Each subsequent use of ESIGFE will add a new character/key code mapping, or modify an existing one, in the buffer. You can clear the buffer completely by executing FESET ESCAFE. The buffer will be cleared if you turn on the HP-71 when the FORTH/Assembler ROM is not installed.

ESCAPE (continued)

A mapping of an escape sequence created with $E G F F E$ can be cancelled by assigning keycode 0 to the character:

```
EGAFE "character". 日
```

removes the entry for character from the keymap buffer.
As an example of the use of ESC.FFE, suppose that you have connected a terminal to the HP-71 through the HP 82164A HP-IL/RS232 interface. On many terminals the cursor up, down, right, and left keys transmit the escape sequences (ESC)A, (ESC)B, (ESC)C, and (ESC)D, respectively. The following program will cause these sequences to map to the corresponding cursor keys on the HP-71, when the terminal is the KEYEGAFI IS device:

10 RESET ESCAPE	Purges any former key map buffer.
20 ESCAPE " $\mathrm{A} ", 50$	Maps (ESC)A to cursor-up key (50).
30 ESCAPE " $\mathrm{B} ", 51$	Maps (ESC)B to cursor-down key (51).
40 ESCAPE " $\mathrm{C} ", 48$	Maps (ESC)C to cursor-right key (48).
50 ESCAPE " $\mathrm{D} ", 47$	Maps (ESC)A to cursor-left key (47).
60 END	

Related Keywords

```
KEYEGARG IS, FESET ESGAFE
```

Returns the number of records in a text file.

```
Statement
- Keyboard Execution
- Function
\square \text { CALC Mode}
\square \text { Operator}
- IF...THEN...ELSE
```

```
FILESZR (filename:
```


Example

$\because=F L E S E G$ STEEEN" \quad Sets the variable $\%$ equal to the number of records in the text file ECFEEH.

Input Parameters

Item	Description	Restrictions
file name	String expression or quoted string.	Can not include a device specifier or CARD.

Operation

The FILESZE keyword returns the number of records in the file specified, if that file exists. If the file does not exist, or the operation fails for any other reason, a negative number is returned. The absolute value of the negative number is the error number of the error that caused the function to fail.

Related Keywords

IHSERT\#, DELETE\#, FEFLACE\#

FORTH

Transfers HP-71 operation to the FORTH environment.

```
| Statement
Keyboard Execution
```

```Function
CALC Mode
```

```Operator
IF...THEN...ELSE
```

```
FGETH
```


Operation

Keyboard execution of FDFTH (it is not programmable) causes the HP-71 to exit the BASIC operating system environment and transfer control to the FORTH environment. The message HF-T1FGRTH 1 H is displayed. Subsequent keyboard input is interpreted by the FORTH outer interpreter.

If the HP-71 is turned off while FORTH is active, it will automatically reenter the FORTH environment when the HP-71 is turned back on.

Execution of the FORTH word E'E will return the HP-71 to BASIC.
Because of the complete access to the HP-71 memory space provided by FORTH, it is quite possible for a FORTH program to store inappropriate data into HP-71 operating system RAM. In many cases, this will cause a memory lost condition. Following a memory loss, the HP-71 will return to the BASIC environment.

Related Keywords

FORTH\＄

Returns to a BASIC string variable the contents of a string defined in the FORTH environment by an address and character count on the FORTH data stack．

| \square Statement | \square Keyboard Execution |
| :--- | :--- | :--- |
| \square Function | \square CALC Mode |
| \square Operator | \square IF．．．THEN．．．ELSE |

FGETHま

Examples

HF＝FGETHt

曰もニ曰も

Returns the value of the FORTH string to the BASIC variable Hi．

Concatenates the FORTH string to C ． ．

Operation

FORTH末 reads a string specified by the address and character count on the FORTH data stack and returns its value to a BASIC string variable．The contents of the FORTH data stack must already have been established prior to execution of FQFTHF．If there are fewer than two values on the data stack when FOETHE is executed，an error will occur，producing the message FTH EFE：EmFtustack．

When FGETHF is executed，two values are dropped from the top of the FORTH data stack．There is no other effect on the FORTH environment．If the FORTHRAM file does not exist，the message FTH EEE：FGETHEAM Rot ir Flage will be displayed．

Related Keywords

FOETH，FOFTHF，FORTHI，FOFTHX

FORTHF

Returns the contents of the FORTH floating-point X-register to a BASIC numeric variable.

\square Statement	\square Keyboard Execution	
\square Function	\square CALC Mode	
\square Operator	\square	IF...THEN...ELSE

FOFTHF

Examples

```
\because=FGFTHF Copies the contents of the FORTH X-register to the
BASIC variable %.
Computes the sine of the contents of the X-register and places the result in the BASIC variable \(\therefore\).
FGETHN'" F" EHEIEF FWDRG'
Copies the BASIC variable A to the FORTH
\(\mathrm{E}=\mathrm{FDFTHF}\)
```

X-register, then executes a FORTH word FMGR[, and returns the resulting value from the X -register to the BASIC variable E.

Operation

FGFTHF allows floating-point numeric data in the FORTH environment to be accessed from the BASIC environment. FGFTHF copies the contents of the FORTH floating X-register to a BASIC numeric variable. The contents of the FORTH floating-point stack remain unchanged, and there is no other effect on the FORTH environment.

The FORTH environment can be configured prior to execution of FORTHF through the keyword F口ETH: If the FORTHRAM file does not exist, the message FTH EFF: FOFTHFAN ngt in Flyce will be displayed.

Related Keywords

FGETH, FGFTHき, FDFTHI, FGFTH\&

Returns the top value from the FORTH data stack to a BASIC numeric variable．

```
Statement
Keyboard Execution
Function
| CALC Mode
\square \text { Operator}
■ IF...THEN...ELSE
```

FGETHI

Examples

$\mathrm{I}=\mathrm{FGFTHI}$
$\mathrm{I}=\mathrm{FOFTHI} \mathrm{Z}$

FGETH：＂＂$I^{\prime \prime}$ EREIEI FHOREM $\mathrm{E}=\mathrm{FOFTHI}$

Moves the top value from the FORTH data stack to the BASIC variable I．

Computes the square of the value on the FORTH data stack and places the result in the BASIC vari－ able I．

Copies the BASIC variable I to the FORTH data stack，then executes a FORTH word FWGRD，and returns the resulting top value from the data stack to the BASIC variable E．

Operation

FGETHI allows values contained on the FORTH data stack to be accessed from the BASIC environment． FOFTHI moves the value on the top of the FORTH data stack to a BASIC numeric variable．The value is dropped from the data stack，but there is no other effect on the FORTH environment．

If there are no values on the data stack when FDFTHI is executed，an error will occur，producing the message FTH EFE：EmFさ』 三tヨによ．The FORTH environment can be configured prior to execution of FGFTHF through the keyword FQFTH\＆．If the FGRTHFAM file does not exist，the message FTH EFE：FGFTHEAM rit irt Flate will be displayed．

Related Keywords

FGRTH，FQRTHま，FOFTHF，FGFTH？

FORTHX

Executes a FORTH command string．

```
- Statement
```

－Keyboard Execution

```
\(\square\) Function
\(\square\) CALC Mode
Operator
IF．．．THEN．．．ELSE
```

```
FOFTHX" command string"[. parameter list]
```


Example

FOFTHA＂DFOF＋，TYFE EF＂，
＂HE11ロ＂．1．コ．

Push onto the FORTH data stack the address and character count of the string＂Hello，＂and the values 1,2 ，and 3；then execute the FORTH words GFOF， + ，，TYFE，and ER．

Input Parameters

Item	Description	Restrictions
command string	String expression．	Contains valid FORTH words． parameter listNumeric expressions and string expressions，separated by commas．
Maximum of 14 parameters．		

Operation

The FDFTH：keyword allows you to execute FORTH routines from the BASIC environment．The op－ tional parameter list is a list of up to 14 string or numeric expressions，separated by commas．Each item in the list is pushed onto the FORTH data stack：numbers as single length numbers，and strings each as two numbers representing the address and character count of the string．After the parameters are placed on the stack，the sequence of FORTH words specified in the command string is executed，following which control is returned to the BASIC environment．

EASIL\％can not be included in the command list－the FORTH／BASIC interface does not permit re－ entrant execution．

The strings passed to FORTH in the parameter list are created in temporary memory．FORTH words can copy those strings to FORTH string variables，or concatenate them to existing strings，but you should not attempt to write other strings to the addresses of the temporary FOFTH：strings．

Related Keywords

Inserts one record into a text file.

\square Statement	\square Keyboard Execution
\square Function	\square CALC Mode
\square Operator	\square

THSEET\# channel number record number: new record

Example

INEEET 5. 14: "Helle there" Inserts the string "Hello there" into the file currently assigned to channel \#5, as record 14 . The former record 14 becomes record 15 .

Input Parameters

Item	Description	Restrictions
channel number record number new record	Numeric expression rounded to an integer. Numeric expression rounded to an integer. String expression.	1 through 255.

Operation

The $M H E E T \#$ keyword inserts the new record at the record number in the file assigned to the specified channel number. The new record is an HP-71 string expression. The channel number and the record number can be expressions. Record numbers always begin at 0 , so line number 1 is record number 0 . HHSEET\# rounds each of the resulting values to an integer.

The new record is inserted ahead of the record previously numbered at the record number. The former record, and all subsequent records, have their records numbers incremented incremented by 1 .

MSERTH returns an error message if the assigned file is external, protected, or not a text file.

Related Keywords

```
GSEICH, GELETE#, FEPLFCE#, FILESZF
```


KEYBOARD IS

Assigns one HP-IL device to be used as an external keyboard.

- Statement \square Function \square Operator		- Keyboard Execution \square CALC Mode - IF...THEN...ELSE \square Device Operation
KEYEOHFD IS	device specifier [!]HDLL [!] ${ }^{\text {[}}$ "[:]H!LL" "[]] \ddagger	

Examples

```
KEYEOHFD IG FGEzZC% Assigns the second HP-IL/RS232 Interface to be the
    EEYEGHED IS device.
KEYEORFD IS 末 Deactivates any EEYEOHFD IS assignment.
```


Input Parameters

Item	Description	Restrictions
device specifier	See standard description in HP-IL Interface Owner's Manual.	None

Operation

The KEYEOARE IS statement assigns one HP-IL device to act as a remote keyboard for the HP-71. That is, whenever the HP-71 is expecting keyboard input, it will check the KEYEQAED IS device to determine if the device has data available. If so, the data will be read into the HP-71 key buffer, and executed as if it had been entered from the HP-71 keyboard. The HP-71 keyboard continues to function normally. Input can be mixed from the HP-71 keyboard and the remote keyboard.

```
KEYEGFEG IS is deactivated by either of the statements EEYEGAED IG HULL or
FEYEOHRD IS $.
```

While KEGBGED IE is active, the HP-71 is continually transmitting on HP-IL. This results in an increase in power consumption, even while the HP-71 is apparently idle. It is recommended that you connect the AC adapter to the HP-71 to conserve battery life while you are using EEYEGAFD IE for remote input.

KEYBOARD IS (continued)

If the loop is broken while $K E Y E G E D I S$ is active, press ATTN twice to restore HP-71 operation. When the loop is restored, execute FESET HFIL, reinitialize the keyboard device, and execute KEYEGAED IS again.

By making IISFLF' IS and KEGEOAFEIS assignments to the same HP-IL device (usually an interface class device), almost any terminal, or computer acting as a terminal emulator, can be used as an extension of the HP-71 keyboard and display. Most HP-71 operations can be executed from the terminal just as if they were keyed in directly on the HP-71. If you set Flag -21, the automatic loop power down that occurs when the HP-71 turns itself off will be disabled, so that the KEGEOFFD IS device can turn the HP-71 on remotely.

For proper operation of KEYEGFF[IS, the designated device must be enabled to set HP-IL service requests when it has data available. You can refer to the owner's manual for an HP-IL device to determine how to enable the device. For example, the following sequence will set up the HP 82164A HPIL/RS232 Interface for use as the KEYEHED IS device:


```
&"S232"), 2^20%)
```

The remote mode command SE0 disables any current service request mode on the interface; SE3 sets the interface for service request on data available. The status read ($\Xi \mathrm{FGLL}$) shows any error condition-the [ITH末 formats the device status in hexadecimal. A normal status will show the friendly "A1" as the last byte.

All characters received from the KEYEQFF[I IS device are placed directly into the key buffer, with the following two exceptions:

1. "Control characters," i.e., characters corresponding to ASCII codes from 0 through 31, are generated on the HP-71 by pressing the 9 CTRL combination followed by another character. The latter character determines the output character according to its ASCII code: the control character will have the ASCII value 64 less than the keyed character. For example, character 1 is generated by pressing 9 CTRL A (A=ASCII 65) KEYEGHFD IS makes the same translation of control characters to keyboard characters. Control characters received from the KEYEGHED IG device are replaced in the key buffer by two keycodes-key 158 (9 CTRL) plus an additional keycode to specify the control character according to the mapping just described.
2. One-character escape sequences (the escape character ASCII 27 followed by one additional character), which can optionally be replaced in the input stream by user-specified HP-71 keycodes. Through use of the EGEFFE keyword, the user can map such escape sequences into arbitrary HP-71 keys (such as ON or the command stack) from the remote keyboard. (Notice, however, that remote execution of the ON key will not interrupt the HP-71 unless it is expecting keyboard input.) For a complete explanation of this feature, refer to the documentation of the ESCAFE keyword.

Related Keywords

ESGAFE, FESET ESGAFE, IISFLFY IG, FFIHTEF IS

MSG\＄

Returns the message string corresponding to a specified error number．

\square Statement	\square Keyboard Execution
\square Function	\square CALC Mode
\square Operator	\square IF．．．THEN．．．ELSE

サEG丰error number

Example

Places the message string associated with error \＃58 into the string variable $\overline{\mathrm{H}} \ddagger$ ．

Input Parameters

Item	Description	Restrictions
error number	Numeric expression．	Valid error number．

Operation

The $\begin{aligned} & \mathrm{G} \\ & \mathrm{G}\end{aligned} \mathrm{t}$ keyword provides access to the error message strings generated by the HP－71 operating sys－ tem，the FORTH／Assembler ROM，or any other LEX file．MGG n ？returns the string corresponding to the nth error．

MEG is a generalization of the keyword EFFM丰，which returns the message string associated with the most recent error．

Related Keywords

EFEH，EREL，EREM

REPLACE\＃

Replaces one record in a text file．
－Statement
－Keyboard Execution
\square Function
\square CALC ModeOperator
－IF．．．THEN．．．ELSE

```
EEFLHGE# channel number, record number: new record
```


Example

FEFLHEE\＃5．14：＂HE110 †んEトモ＂Replaces the 14th record in the text file currently as－ signed to channel \＃5，with the string＂Hello there＂．

Input Parameters

Item	Description	Restrictions
channel number record number new record	Numeric expression rounded to an integer． Numeric expression rounded to an integer． String expression．	1 through 255．

Operation

The FEFLFEE\＃keyword replaces a specified record，in the text file assigned to the specified channel number，with a new record．The new record is an HP－71 string expression．The channel number and the record number can be expressions．Record numbers always begin at 0 ，so line number 1 is record number 0 ．FEFLAEE\＃rounds each of the resulting values to an integer．

FEFLHCE\＃returns an error message if the assigned file is external，protected，or not a text file．

Related Keywords

```
HESIGH\＃，IELETE\＃，IHEEFT\＃，FILEGこF
```


RESET ESCAPE

Purges any existing key-map buffer created by the EGGFE keyword.

- Statement
- Keyboard Execution
\square Function
\square Operator

FESET ESCAFE

Related Keywords

KEYEMAFD IS, EGCAFE

SCROLL

Scrolls the display to a position and waits for a key to be pressed.

\square Statement	\square Keyboard Execution	
\square Function	\square CALC Mode	
\square Operator	\square	IF...THEN...ELSE

SCFULL position

Example

GTSP "HEIlo there" GerQLL 4

Display the string "Hello there," with the fourth character in the string as the first character in the display, so that the display shows "lo there."

Input Parameters

Item	Description	Restrictions
position	Numeric expression rounded to an integer.	1 through 96.

Operation

The GCROLL keyword enables you to display a string, under program control, that can be scrolled from the keyboard. Execution of GCFOLL causes the current display string to shift so that the character in the position specified by the numeric expression is the leftmost character in the display. Execution halts, so that a user can press the left- and right-arrow keys to scroll the display. Execution resumes when any other key is pressed (the pressed keycode is placed in the key buffer). The number input with GCEDLL must be greater than zero.

SEARCH

Finds a string in a text file.
\square Statement

- Keyboard Execution
Function
CALC Mode
Operator
IF...THEN...ELSE

```
GEHFCH: search string, column number, begin line, end line,channel`
```


Example

Searches the file assigned to channel \#2 for the string "Hello." The search starts in column 5, line 1, and extends through line 99.

Input Parameters

Item	Description	Restrictions
search string column number begin line end line channel	String expression. Numeric expression rounded to an integer.	Numeric expression rounded to an integer.
Numeric expression rounded to an integer.	1 through 9999	
Numeric expression rounded to an integer.	1 through 9999	

Operation

The GEFFEH keyword enables you to determine the location of a specified string within an HP-71 text file. If the search is successful, $\Xi E A F E H$ returns a value in the format $n n n . c c c l l l$, where $n n n$ is the record number, $c c c$ is the column number, and $l l l$ is the length of the matched string. If the search is unsuccessful, zero is returned.

The search string can be any string expression, and the other parameters can be any numeric expression. Each input value is rounded to an integer. A zero is returned for an empty file.

Related Keywords

IHEEFT\#, IELETE\#, FEFLACE\#

Appendix D

FORTH Words

This appendix describes all FORTH words in the FORTH/Assembler ROM. The words appear in ASCII order. For a discussion of nonstandard FORTH operations, refer to section 2, "The HP-71 FORTH System." For a listing of all FORTH words grouped by functional category, refer to the inside back cover of this manual.

Each entry shows the word, its pronunciation, its use of the data stack, and a brief description of the word's operation. A word E'SHMFLE might have the following entry:

EXAMPLE
 (Example)
 $\begin{array}{llll}n_{1} & n_{2} & \rightarrow & n_{3}\end{array}$

Perform the specified operation on n_{1} and n_{2}, replacing them on the data stack with the result n_{3}. (Before ESAMFLE is executed, n_{2} is on the top of the stack. After EXATPLE is executed, n_{3} is on the top of the stack.)

Some descriptions begin with "COMPILE" or "IMMEDIATE." These indicate the following:

- COMPILE indicates that the word is intended for use only during compilation. Direct execution of the word can give meaningless or dangerous results; where appropriate, a FTH EFE: ©OmFile orly error occurs.
- IMMEDIATE indicates that the word is executed, rather than compiled, when encountered during compilation.

Notation
The stack-use diagrams use the following variables to represent various types of data.

Definition of Stack Variables

Variable	Type of Data
n	A signed (twos complement) 20-bit integer. un d
An unsigned 20-bit integer. flag signed (twos complement) 40-bit integer. An unsigned 40-bit integer. A signed (twos complement) 20-bit value, either -1 (true) or 0 (false). A 20-bit value whose two low-order nibbles represent an ASCII character. A 20-bit address. addr 20-bit value whose two low-order nibbles represent the number count	of characters in a string. A 40-bit value comprising addr and count. Count is on top and tells how many characters are to be found at addr.
str	

Errors

Many FORTH words require one or more parameters on the data stack. When a word is executed with too few parameters on the stack, unpredictable errors will occur. The error message FTH EFF: EmFty 三taEk might be displayed, but only after the operation is carried out on spurious parameters. These spurious parameters come from the terminal input buffer (TIB), which resides above the data stack. If a result is returned, it will be written into the TIB, and an error message like FTH EFE: X'İg not recognized occurs when FORTH tries to interpret this result as a character string containing FORTH words and data.

FORTH is similar to assembly language in its lack of user protection. In most cases FORTH will attempt to perform the specified operation, even if the operation will cause a Memory Lost condition. For instance, it is easy to write a FORTH loop that pushes a value onto the data stack $1,000,000$ times. Execution of this loop will overwrite the user dictionary, the FORTH system variables, and the BASIC O/S variables. Eventually the machine will be too confused to continue and will perform a cold start. In other cases you might need to perform an IHIT 3 to recover normal HP-71 operation.

FORTH Glossary

! (Store) n addr \rightarrow

Store n at $a d d r$.
6 (Quote) \rightarrow str

Used in the form: "ccc"
IMMEDIATE. In execute mode: Take the characters ccc, terminated by the next ", from the input stream, and store them in a temporary string variable at the PAD. The string variable's header shows a maximum length of 80 characters or the current length, whichever is greater. Any other word that returns another temporary string will wipe out the first string.

In compile mode: Compile into the dictionary the runtime address of ", two bytes for the length of the string ccc (maximum length $=$ current length), and the string itself. A string must be contained on a single line of a source file.

$\#$	(Sharp) $u d_{1} \rightarrow u d_{2}$

Used in the form: 《\# \#\#\# \#>
Divide $u d_{1}$ by EHEE, convert the remainder to an ASCII character, place this character in an output string, and return the quotient $u d_{2}$. Used in pictured output conversion; refer to \& .
\# > (Sharp-greater) $u d \rightarrow$ addr n

End pictured output conversion. \# > drops $u d$ and returns the text address and character count. (These are suitable inputs for TYFE.)
\#S (Sharp-s) ud $\rightarrow 0 \quad 0$

Convert $u d$ into digits (as by repeated execution of \#), adding each digit to the pictured numeric-output text until the remainder is zero. A single zero is added to the output if $u d=0$. Used between <\# and \#.
\#TIB \quad (Number-t-i-b) \rightarrow addr

Return the address of the variable \#TIB, which contains the number of bytes in the terminal input buffer. Set by DUEET.

,$~($ Tick $)$	\rightarrow addr

Used in the form: ' name
Return the CFA of name.

'STREAM	(Tick-stream)

Return the address of the next character in the input stream.
\rightarrow (Paren) \rightarrow

Used in the form: ccc
IMMEDIATE. Consider the characters ccc, delimited by 3 , as a comment to be ignored by the text interpreter. The blank following © is not part of ccc. \& may be freely used while interpreting or compiling. A comment must be contained on a single line of a source file.

* (Times) \quad| n_{1} | n_{2} | \rightarrow | n_{3} |
| :--- | :--- | :--- | :--- |

Return the arithmetic product of n_{1} and n_{2}.

| $* 1$ | (Times-divide) | n_{1} | n_{2} | n_{3} | \rightarrow | n_{4} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Multiply n_{1} and n_{2}, divide the result by n_{3}, and return the quotient n_{4}. The product of n_{1} and n_{2} is maintained as an intermediate 40 -bit value for greater precision in the division.

| $* / M O D$ | (Times-divide-mod) | n_{1} | n_{2} | n_{3} | \rightarrow | n_{4} | n_{5} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Multiply n_{1} and n_{2}, divide the result by n_{3}, and return the remainder n_{4} and the quotient n_{5}. The product of n_{1} and n_{2} is maintained as an intermediate 40 -bit value for greater precision in the division.

+ (Plus) $\quad n_{1} \quad n_{2} \rightarrow \quad n_{3}$

Return the arithmetic sum of n_{1} and n_{2}.

$+!$	(Plus-store)

Add n to the 20 -bit value at $a d d r$.
+BUF \quad (Plus-Buff) \quad addr $r_{1} \rightarrow$ addr $_{2}$ flag

Advance the mass-storage-buffer address $\left(a d d r_{1}\right)$ to the address of the next buffer ($a d d r_{2}$). +EUF returns a false flag if $a d d r_{2}$ is the address of the buffer currently pointed to by FEEU; otherwise, +EUF returns a true flag.
, (Comma) $\quad n \rightarrow$

Used in the form: 1234
Allot five nibbles and store n in the dictionary.
— (Minus) $\quad n_{1} \quad n_{2} \rightarrow \quad n_{3}$

Subtract n_{2} from n_{1} and return the difference n_{3}.

- TRAILING	(Dash-trailing)	addr count $_{1} \rightarrow$ addr count $_{2}$

Adjust the character count of the text beginning at addr to exclude trailing blanks.

.	$($ Dot $)$

Convert n according to EFSE and display the result in a free-field format with one trailing blank. Display a minus sign if n is negative.
\square
(Dot-quote) \rightarrow

Used in the form: " $c c c$ "
COMPILE, IMMEDIATE. Compile the characters ccc, delimited by ", so that later execution will transmit ccc to the current display device. The blank following ." is not part of ccc. A string must be contained on a single line of a source file.
\square

Used in the form: , ccc
IMMEDIATE. Display the characters ccc, delimited by 3 . The blank following : is not part of ccc. A string must be contained on a single line of a source file.

.S	$($ Dot-S $)$

Print the contents of the stack as unsigned integers, starting with the top of the stack. : doesn't alter the stack.
$/$ (Divide) $\quad n_{1} \quad n_{2} \rightarrow \quad n_{3}$

Divide n_{1} by n_{2}, and return the quotient n_{3}. Division by 0 always yields 0 .

/MOD \quad (Divide-mod) $\quad n_{1} \quad n_{2} \rightarrow n_{3} \quad n_{4} \quad$

Divide n_{1} by n_{2}, and return the remainder n_{3} and quotient n_{4}.

0	(Zero $)$	$\rightarrow 0$

Return the constant 0 .

$\mathbf{0}<\quad$ (Zero-less) $\quad n \rightarrow$ flag \quad

Return a true flag if $n<0$; otherwise, return a false flag.

$\mathbf{0}=$	(Zero-equals)	$n \rightarrow f l a g$

Return a true flag if $n=0$; otherwise, return a false flag.
$0>$
(Zero-greater)
$n \rightarrow$ flag

Return a true flag if $n>0$; otherwise, return a false flag.

1	(One)	$\rightarrow 1$

Return the constant 1.
$1+$
(One-plus)
$n \rightarrow n+1$

Increment n by 1 .

```
1-
(One-minus)
\(n \rightarrow n-1\)
```

Decrement n by 1 .

1/X
(Reciprocal-of-X)

Divide 1.0 by the contents of the X-register. 1% places the result in the X-register and the original value of x in the LAST X register.
$10^{\wedge} \mathrm{X}(10-$ to-the- X$) \quad \rightarrow$

Raise 10 to the power contained in the X -register. $1 \mathrm{Q}^{\circ} \mathrm{d}$ places the result in the X -register and the original value of x in the LAST X register.

2	(Two)	$\rightarrow 2$

Return the constant 2.

$2 *$	(Two-times)

Return the product of n and 2 .

$2+$	(Two-plus)
n	$\rightarrow n+2$

Increment n by 2 .

$2-$	(Two-minus)

Decrement n by 2 .
2) (Two-divide) $n \rightarrow n / 2$

Divide n by 2 and return the result. z produces $n / 2$ by shifting n one bit to the right and extending the sign bit.
2DROP (Two-drop) d \rightarrow

Drop the double number (or two single numbers) on the top of the data stack.
2DUP $($ Two-dup $) \quad d_{1} \rightarrow d_{1} d_{1}$

Duplicate the double number (or pair of single numbers) on the top of the data stack.

```
2OVER
(Two-over)
\(d_{1} d_{2} \rightarrow d_{1} d_{2} d_{1}\)
```

Make a copy of the second double number (or third and fourth single numbers) on the data stack.

Reverse the order of the two double numbers on the top of data stack.

3	(Three)

Return the constant 3.
4N@ \quad (Four-n-fetch) \quad addr $\rightarrow n$

Return the four-nibble (two-byte) quantity located at addr.

$5+$	(Five-plus)	$n \rightarrow n+5$

Increment n by 5 .

$5-$	(Five-minus)

Decrement n by 5 .
\square

Used in the form: : name . . .
Create a word definition for name in the compilation vocabulary and set compilation state. The search order is changed so that the first vocabulary in the search order is replaced by the compilation vocabulary. The compilation vocabulary is unchanged. The text from the input stream is subsequently compiled. name is called a colon definition. The newly created word definition for name cannot be found in the dictionary until the corresponding ; is successfully processed.
; \quad (Semicolon) \rightarrow

Used in the form: : name . . . :
IMMEDIATE, COMPILE. Stop compilation of a colon definition. : compiles EXIT into the dictionary, clears the smudge bit (so that this colon definition can be found in the dictionary), and sets execute state.

$<$	(Less-than)	$n_{1} n_{2} \rightarrow$ flag

Return a true flag if $n_{1}<n_{2}$; otherwise, return a false flag.

$<\#$	(Less-sharp)	\rightarrow

Initialize pictured numeric output. The words 《\#, \#, \#S, HOLD, SIGH, and \#> can specify the conversion of a double number into an ASCII-character string stored in right-to-left order.

$<>$	(Not-equal)
$n_{1} n_{2} \rightarrow$ flag	

Return a true flag if $n_{1} \neq n_{2}$; otherwise, return a false flag.

$=$	(Equals)
n_{1}	$n_{2} \rightarrow$ flag

Return a true flag if $n_{1}=n_{2}$; otherwise, return a false flag.

$>$	(Greater-than)	$n_{1} n_{2} \rightarrow$ flag

Return a true flag if $n_{1}>n_{2}$; otherwise, return a false flag.

$>$ BODY	(To-body)	addr

Return the PFA $\left(a d d r_{2}\right)$ of the word whose CFA is $a d d r_{1} .\left(a d d r_{2}=a d d r_{1}+5.\right)$

$>\mathbf{N}$	(To-in $)$	\rightarrow addr

Return the address of the variable $>$ IN, which contains the current offset within the input stream. The offset is expressed in nibbles and points to the first position past the first blank.
$>\mathbf{R} \quad($ To-R $) \quad n \rightarrow$

COMPILE. Transfer n to the return stack.

$?$	(Question-mark)	addr \rightarrow

Used in the form: HE\% $2 F \mathrm{CQ}$?
Display the number at $a d d r$ using the current EHSE and the : (dot) format.

?COMP	(Query-comp)	\rightarrow

COMPILE. Issue a FTH EFE: GMFile GH : message if not in compile mode.
?DUP \quad (Query-dup) $n \rightarrow n(n)$

Duplicate n if $n \neq 0$.

?STACK

(Query-stack)
\rightarrow

Issue a FTHERE: EmFty 三t Eck message if the stack pointer is above the bottom of the stack; or issue a FTH ERE: full \equiv TGEK message if the stack pointer has grown into the pad.

$$
\text { ?TERMINAL } \quad \text { (Query-terminal) } \quad \rightarrow \text { flag }
$$

Return a true flag if a key has been pressed and placed in the key buffer; otherwise, return a false flag.

@ (Fetch)	@	addr $\rightarrow n$

Return the number stored at $a d d r$.

ABORT

(Abort) \rightarrow

Reset the data and return stacks, close all files, set execution mode, set FDFTH as the current and context vocabulary, and return control to the terminal.
ABORT، ${ }^{\text {(Abort-quote })} \quad$ flag \rightarrow

Used in the form: : name . . HEOFT" ccc" . . . :
COMPILE, IMMEDIATE. If flag is true, display the character string ccc (delimited by ") and execute HEORT; otherwise, drop the flag and continue execution. The character string must be contained on a single line of a source file.

ABS	(Absolute)
$n \rightarrow\|n\|$	

Return the absolute value of n.

ACOS	$(A-\cos)$	\rightarrow

Calculate the arc cosine of the contents of the X-register, according to the currently active angular mode. ACOS places the result in the X-register and the original value of x in the LAST X register.

ADJUSTF	(Adjust-f)	addr $n \rightarrow f l a g$

Adjust a file by n nibbles, starting at $a d d r$ and moving toward greater addresses, and return a true flag if successful or a false flag if not. A[IIGTF enlarges the file for positive n or shrinks the file for negative n.

ALLOT	(Allot)

Add n bytes to the parameter field of the most recently defined word (regardless of the CUREENT and [DHTEKT vocabularies).

AND	(And)
n_{1}	$n_{2} \rightarrow n_{3}$

Return the bit-by-bit AND of n_{1} and n_{2}.

ASC	(Ascii)
str $\rightarrow n$	

Return the ASCII value of the first character in the string specified by str.

Calculate the arc sine of the contents of the X-register, according to the currently active angular mode. HSIH places the result in the X -register and the original value of x in the LAST X register.

ASSEMBLE	(Assemble)	str \rightarrow

Assemble the file whose name is specified by str. FSEEHELE uses EHSTO\%, so you can't call ASSEMELE from BASIC.

ATAN	$(A-\tan)$	\rightarrow

Calculate the arc tangent of the contents of the X-register, according to the currently active angular mode. HTHH places the result in the X -register and the original value of x in the LAST X register.
BASE \quad (Base) $\quad \rightarrow$ addr

Return the address of the variable BASE, which contains the current numeric-conversion base.
BASIC\$ \quad (Basic-dollar) $\quad \operatorname{str}_{1} \rightarrow \operatorname{str}_{2}$

Used in the form: " H " EASIC

```
    " A&[1, З]" EHEICE
```

Return the current value of a BASIC string expression (specified by $s t r_{1}$) to the pad as a FORTH string (specified by str_{2}.)

BASICF

(Basic-f)
str \rightarrow

```
Used in the form: " A" EHGICF
    " H1,HE" EHSIEF
    " HG*FI" ERSIGF
    " TIME" EHSICF
```

Return the current value of a BASIC numeric expression (specified by str) to the FORTH X-register, lifting the floating-point stack.

BASICl	(Basic-i)

Used in the form: " A" EASIEI
" A1. HE " EHSIII

Return the current value of a BASIC numeric expression (specified by str). An overflow error occurs if the variable's value exceeds FFFFF.

BASICX	(Basic-x)

Used in the form: " EUH ', IDE': EASIC\&
" EEEF" EASICX
" $\mathrm{H}=\mathrm{FI}$ " EHSIC?
" 1 [IISF $\mathrm{H}^{\prime \prime}$ EASIE:

Pass a string (specified by str) to the BASIC system for parsing and editing/execution, and then return to FORTH.

BEGIN . . . UNTIL

Used in the form: . . . EEGIH actions flag UHTIL . .
IMMEDIATE, COMPILE. Execute actions and test flag; if flag is false, repeat; if flag is true, skip to the word following IIHTIL.

BEGIN . . . WHILE . . . REPEAT

Used in the form: . . . EEGIH actions, flag WHILE actions ${ }_{2}$ FEFEHT . . .
IMMEDIATE, COMPILE. Execute actions $_{1}$ and test flag; if flag is true, execute actions ${ }_{2}$ and repeat; if flag is false, skip to the word following FEFEAT.
BL (Blank) $\rightarrow c$

Return 32_{10}, the ASCII value for a space or blank.
BLK
(B-I-k)
$\rightarrow \quad a d d r$

Return the address of the variable BLK, which contains the number of the line being interpreted from the active file. The value of BLK is an unsigned number; if it is zero, the input stream is taken from the keyboard device.

BLOCK

(Block)
$n \rightarrow$ addr

Return the address of the first byte in the mass-storage-buffer copy of line n in the active file. If line n hasn't already been copied from the file (in RAM or on mass storage) into a mass storage buffer, ELDCK does so.

BYE	(Bye)	\rightarrow

Exit the FORTH environment and return control to the BASIC environent.

C!	(C-store)
n addr \rightarrow	

Store the two low-order nibbles of n at $a d d r$.
C, \quad (C-comma) $\quad n \rightarrow$

ALIUT one byte and store the two low-order nibbles of n at HERE.

C@	(C-fetch $)$

Return the contents of the byte at $a d d r$. The three high-order nibbles of the five-nibble stack entry are 0 .

C@+	(C-at-plus)	$s t r_{1} \rightarrow s t r_{2} \quad c$

Return c, the first character in the string specified by $s t r_{1}$, and $s t r_{2}$, where $a d d r_{2}=a d d r_{1}+2$ and count $_{2}$ $=$ count $_{1}-1$. If count ${ }_{1}=0, c=0$ and str ${ }_{2}=$ str 1.

CASE . . OF . . ENDOF . . . (Case Statements) $n \rightarrow$ ENDCASE

Used in the form: . . DESE
n_{1} QF actions 1_{1} EHDOF actions ${ }_{1}{ }^{\prime}$
n_{2} IF actions ${ }_{2}$ EHDUF actions ${ }_{2}^{\prime}$
n_{3} IF actions 3_{3} EHLIUF actions ${ }^{\prime}$
EHIICHEE . .
IMMEDIATE, COMPILE. Starting with the first case statement ($i=1$):

- If $n=n_{i}$, drop n, execute actions ${ }_{i}$, and skip to the word following ENDCASE.
- If $n \neq n_{i}$, execute actions ${ }_{i}{ }^{\prime}$ and examine the next case statement. (If there are no more case statements, drop n and skip to the word following EHICAEE). Note that each optional actions ${ }_{i}^{\prime}$ can alter the value of n (the number on the top of the stack) tested by the next case statement.

CHR\$	(Char-dollar)

Convert the two low-order nibbles of n into an ASCII character and place it in a string specified by str. The string is a temporary string of length 1 , located on the pad.

CHS	(Change-sign)

Replace x, the contents of the X-register, with $-x$.

CLOSEALL

(Close-all)
\rightarrow

Close all open files (that is, files with an open FIB entry).
CLOSEF (Close-f) $n \rightarrow$

Close the file whose FIB\# is n.

CMOVE	(C-move)	addr $_{1}$ addr	un \rightarrow

Move $u n$ bytes, first moving the byte at $a d d r_{1}$ to $a d d r_{2}$ and finally moving the byte at $a d d r_{1}+2(u n-1)$ to $a d d r_{2}+2(u n-1)$. If $u n=0$, nothing is moved.

CMOVE $>$	(C-move-up $)$	addr	addr
2			

Move un bytes, first moving the byte at $a d d r_{1}+2(u n-1)$ to $a d d r_{2}+2(u n-1)$ and finally moving the byte at $a d d r_{1}$ to $a d d r_{2}$. If $u n=0$, nothing is moved.

COMPILE

(Compile)

Used in the form: : name ${ }_{1} \ldots$ GMFILE name ${ }_{2} \ldots$

COMPILE. Compile the CFA of $n a m e_{2}$ when name e_{1} is executed. Typically name ${ }_{1}$ is an immediate word and $n a m e_{2}$ is not; COMF ILE ensures that name e_{2} is compiled, not executed, when name e_{1} is encountered in a new definition.

CONBF
(Con-buff) $n_{1} \quad n_{2} \quad \rightarrow \quad$ flag

Contract by n_{1} nibbles the general-purpose buffer whose ID\# is n_{2}, and return a true flag; or return a false flag if such a buffer doesn't exist. If the specified buffer contains fewer than n_{1} nibbles, IOHEF contracts it to 0 nibbles. n_{1} must not exceed FFF.

CONSTANT

(Constant) $n \rightarrow$

Used in the form: n EOHETHHT name

Create a dictionary entry for name, placing n in its parameter field. Later execution of name will return n.

CONTEXT	(Context)

Return the address of the variable CONTEX'T, which specifies which vocabulary to search first during interpretation of the input stream. (Word searches through successive parent vocabularies are discussed in section 2.)

CONVERT (Convert) $\quad d_{1}$ addr $r_{1} \rightarrow d_{2}$ addr r_{2}

Accumulate the string of digits beginning at $a d d r_{1}+2$ into the double number d_{1}, and return the result d_{2} and the address $a d d r_{2}$ of the next non-digit character. For each character that is a valid digit in EASE, GUHUEET converts the digit into a number, multiplies the current double number (initially d_{1}) by EAEE, and adds the converted digit to the current double number. When GQHVEFT encounters a nondigit character, it returns the current double number and the non-digit character's address.

cos

Calculate the cosine of the contents of the X-register, according to the currently active angular mode. Cos places the result in the X-register and the original value of x in the LAST X register.

COUNT	(Count)	$a d d r_{1} \rightarrow$ addr $_{2} n$

Return the address ($a d d r_{2}$) of the first character, and the character count (n), of the counted string beginning at $a d d r_{1}$. The first byte at $a d d r_{1}$ must contain the character count n. The following diagram shows the parameters for a three-character text string:

Address	Contents
addr $_{1} \rightarrow$addr\rightarrow 1000	3
1002	A
1004	B
1006	C

$\mathbf{C R}$	$(\mathrm{C}-\mathrm{r})$

Send a carriage-return and line-feed to the current display device.

CREATE	(Create)

Used in the form: EEEATE name
Create a standard dictionary entry for name without allotting any parameter-field memory. Later execution of name will return name's PFA. Words that use CFEFTE directly are called defining words.

CREATEF (Create-f) | str $n \rightarrow$ addr |
| :--- |
| str $n \rightarrow$ false |

Create a text file in RAM whose name is specified by str and that contains n nibbles. If successful, QEEFTEF returns the address of the beginning of the file header (which contains the file name); otherwise, it returns a false flag. If the specified string exceeds eight characters, the file name will be the first eight characters.
CRLF
(C-r-l-f)
\rightarrow str

Return str specifying the two-character string constant containing the ASCII characters carriage-return and line-feed. This string can be concatenated with other strings for use with words such as IIITPUT.
CURRENT \quad (Current) $\quad \rightarrow$ addr

Return the address of the variable CURRENT, which specifies the vocabulary to receive new word definitions.
D+ $\quad(D$-plus $) \quad d_{1} d_{2} \rightarrow d_{3}$

Return the arithmetic sum of d_{1} and d_{2}.
D -
(D-minus)
$d_{1} \quad d_{2} \rightarrow d_{3}$

Subtract d_{2} from d_{1} and return the difference d_{3}.
D.
(D-dot)
$d \rightarrow$

Display d according to BASE in a free-field format, with a leading minus sign if d is negative.
D.R $(D-$ dot-R $) \quad d n \rightarrow$

Display d (according to BASE) right-justified in a field n characters wide.
$\mathbf{D}<\quad$ (D-less-than) $\quad d_{1} d_{2} \rightarrow$ flag

Return a true flag if $d_{1}<d_{2}$; return a false flag otherwise.

DABS
(D-abs)
$d_{1} \rightarrow|d|$

Return the absolute value of d.
DECIMAL \quad (Decimal) $\quad \rightarrow$

Set the input-output numeric conversion $E A E E$ to ten.

DEFINITIONS	(Definitions)	\rightarrow

Set the EUFREHT vocabulary to match the EDHTEYT vocabulary.

DEGREES	(Degrees)

Select $\square E F E E S$ angular mode.
DEPTH \quad (Depth) $\rightarrow n$

Return n, the number of items on the data stack (not counting n itself).

DIGIT	(Digit)
	$c$$n_{1} \rightarrow n_{2}$ true $c n_{1} \rightarrow$ false

If c is a valid digit in base n_{1}, return that digit's binary value (n_{2}) and a true flag; otherwise, return a false flag.

DLITERAL	$(D$-literal $)$

COMPILE, IMMEDIATE. Compile d into the word being defined, such that d will be returned when the word is executed.

DNEGATE	(D-negate)	$d \rightarrow-d$

Return the twos complement of a double number d.

```
DO ... (DOOP (Do, Plus-loop) 的 n n >
```

Used in the form: ... [iD actions n +LODF..
COMPILE, IMMEDIATE. Execute a definite loop, each time incrementing the loop index by n. moves n_{1} (the loop limit) and n_{2} (the initial value of the loop index) to the return stack, with n_{2} on top, and then executes actions. +LODF increments the index by n (which can be negative) and repeats actions, until the index is incremented across the boundary between $n-1$ and n. For example,

101 DO actions 1 +LDOF

will execute actions nine times, with values of the index from 1 through 9; and

```
-10-100 actions -1 +LODF
```

will execute actions ten times, with values of the index from -1 through -10 . प0 . . . + L off may be nested within control structures.

```
DO . . . LOOP
```

$n_{1} \quad n_{2} \rightarrow$

Used in the form: ... actions L00F...
COMPILE, IMMEDIATE. Execute a definite loop, each time incrementing the loop index by 1 . 0 moves n_{1} (the loop limit) and n_{2} (the initial value of the loop index) to the return stack, with n_{2} on top, and then executes actions. LDOF increments the index by 1 and repeats actions, until the index is incremented from $n-1$ to n. DO . . LODF may be nested within control structures.

DOES >

(Does)

Used in the form: : name . . CEEFTE . . . DIESY . . . ;
COMPILE, IMMEDIATE. Define the run-time action of a word created by a defining word. $10 E S$ marks the termination of the defining part of the defining word name and begins the definition of the run-time action for words that will later be defined by name.

DROP	(Drop)	$n \rightarrow$

Drop the top number from the stack.

DUP	(Dup)	$n \rightarrow n$

Return a second copy of the top number on the stack.

EMIT

(Emit)
$C \rightarrow$

Transmit the character c to the current display device.

ENCLOSE	(Enclose)	addr $\quad \mathrm{c} \rightarrow$ a $\begin{array}{llllll}\text { addr } & n_{1} & n_{2} & n_{3}\end{array}$

Examine the string that begins at $a d d r$, and return:

- n_{1}, the nibble offset from $a d d r$ to the first character that doesn't match the delimiter character c.
- n_{2}, the nibble offset from $a d d r$ to the first delimiter character c that follows non-delimiter characters in the string.
- n_{3}, the nibble offset from $a d d r$ to the first unexamined character.

An ASCII null is treated as an unconditional delimiter.

END\$	(End-dollar)

Create a temporary string (specified by $s t r_{2}$) consisting of the nth character and all subsequent characters in the string specified by str . (FIGHT I is similar but takes substring length, not character position, for a parameter.)

ENG	(Engineering)

Select engineering display mode with $n+1$ significant digits displayed, for $0 \leqslant n \leqslant 11$.

Receive up to n_{1} bytes of data from the HP-IL device whose address is specified by FEINARY and
 stack and returns n_{2}, the actual number of characters received. Executing EHTEF requires the HP 82401A HP-IL Interface.

There are two options for termination in addition to the limit of n_{1} characters:

- If system flag -23 is set, EHTEF will terminate when an End Of Transmission message is received.
- If the argument on the top of the stack is $0, E H T E F$ interprets the second argument on the stack to be a character and will terminate when an incoming character matches this character. This option is effective only when system flag -23 is clear.
EOF $\quad(E-o-f) \quad \rightarrow f l a g$

Return a true flag if there are no more records in the active file; otherwise, return a false flag. EOF examines the record length of the next record in the file specified by the FIE\# in SCFFIE. It assumes that the current pointer into the file is pointing at the next record length and that the file is a text file.

EXECUTE	(Execute)	addr \rightarrow

Execute the dictionary entry whose CFA is on the stack.

EXIT	(Exit)

COMPILE. Terminate execution. Don't use E:KIT within a loop.
EXPBF (Expand-buff) $\quad n_{1} \quad n_{2} \rightarrow f l a g$

Expand by n_{1} nibbles the general-purpose buffer whose ID\# is n_{2}, and return a true flag; or return a false flag if such a buffer doesn't exist, if the resulting size would exceed 2 K bytes, if there is insufficient memory, or if n_{1} is negative. n_{1} must not exceed FFF.

EXPECT96

(Expect-96)
addr \rightarrow

Accept 96 characters from the keyboard (or fewer characters followed by ENDLINE), append two null bytes, and store the result at $a d d r$ and above (greater addresses). EKPECT9E also copies the text into the Command Stack.

$\mathbf{E}^{\wedge} \mathbf{X}$	$($ E-to-the-x $)$	\rightarrow

Raise e to the power contained in the X-register. E* places the result in the X-register and the original value of x in the LAST X register.

F*	(F-times $)$	\rightarrow

Multiply the contents of the X - and Y -registers. F : drops the stack (duplicating T into Z), then places the result in the X -register and the original value of x in the LAST X register.

$\mathbf{F}+$	(F-plus $)$	\rightarrow

Add the contents of the X - and Y-registers. $\mathrm{F}+$ drops the stack (duplicating T into Z), then places the result in the X -register and the original value of x in the LAST X register.

F	(F-minus)

Subtract the contents of the X-register from the contents of the Y-register. F - drops the stack (duplicating T into Z), then places the result in the X -register and the original value of x in the LAST X register.

F.	(F-dot $)$

Display the contents of the X-register according to the currently active display format. F: doesn't alter the contents of the X -register.

F/	(F-divide)

Divide the contents of the Y-register by the contents of the X-register. $F \cdot$ drops the stack (duplicating T into Z), then places the result in the X -register and the original value of x in the LAST X register.
FABS $(F$-abs $) \rightarrow$

Take the absolute value of the contents of the X-register. FHEG places the result in the X-register and the original value of x in the LAST X register.

FCONSTANT

(F-constant)

Used in the form: floating-point number FGUHETAHT name
Create a dictionary entry for name. When name is later executed, the value that was in the X -register when name was created is placed in the X -register, lifting the floating-point stack.
FDROP \quad (F-drop) \rightarrow

Copy the contents of the Y-register into the X -register, the contents of the Z -register into the Y -register, and the contents of the T-register into the Z-register. The previous contents of the X-register are lost.
FENCE \quad (Fence) \rightarrow addr

Return the address of the variable FENCE, which contains the address below which the dictionary is protected from FQEGET.

FENTER	(F-enter)

Copy the contents of the Z-register into the T-register, the contents of the Y-register into the Z-register, and the contents of the X -register into the Y -register. The previous contents of the T -register are lost.

| FILL | (Fill) \quad addr un byte \rightarrow |
| :--- | :--- | :--- |

Fill memory from $a d d r$ through $a d d r+(2 u n-1)$ with $u n$ copies of byte. FILL has no effect if $u n=0$.
FIND \quad (Find) \quad addr $_{1} \rightarrow$ addr $r_{2} \quad n$

Search the dictionary (in the currently active search order) for the word contained in the counted string at $a d d r_{1}$. If the word is found, FIHD returns the word's CFA ($=a d d r_{2}$) and either $n=1$ (if the word is immediate) or $n=-1$ (if the word isn't immediate). If the word isn't found, FIND returns $a d d r_{2}=a d d r_{1}$ and $n=0$.

$$
\begin{array}{lll}
\text { FINDBF } & \text { (Find-buff) } & n \rightarrow \text { addr } \\
n \rightarrow \text { false }
\end{array}
$$

Return the start-of-data address in the general-purpose buffer whose $\operatorname{ID\# }$ is n, or return a false flag if such a buffer doesn't exist.

| FINDF | (Find-f) | str |
| :--- | :--- | :--- |\rightarrow addr

Search main RAM for the file whose name is specified by str, and return either the address of the beginning of the file header (if successful) or a false flag (if not). If the specified string exceeds eight characters, FIHLIF considers only the first eight characters.

FIRST	(First)

Return the address of the variable FIRST, which contains the address of the first (lowest addressed) mass storage buffer in the FORTHRAM file.

FIX	(Fix)

Select fixed-point display mode with n decimal places, $0 \leqslant n \leqslant 11$.

FLITERAL	(F-literal)	\rightarrow

IMMEDIATE, COMPILE. Compile the value x (the contents of the X-register) into the dictionary. When the colon definition is later executed, x will be placed in the X-register, lifting the floating-point stack.

FLUSH	(Flush)	\rightarrow

Unassign all mass storage buffers.

| FORGET | (Forget) |
| :--- | :--- |\rightarrow

Used in the form: FGEGET name

Delete from the dictionary name (which must be in the search order that begins with the GUREEFT vocabulary) and all words added to the dictionary after name (regardless of their vocabulary). Failure to find name in the search order that begins with the CURRENT vocabulary is an error condition.

Set the CONTEXT vocabulary to FORTH, the name of the first vocabulary in RAM. Because all vocabularies ultimately chain to the FORTH vocabulary, the word FORTH can be found regardless of the CONTEXT vocabulary.
FP $(F-p) \quad \rightarrow$

Take the fractional part of the contents of the X -register. FF places the result in the X -register and the original value of x in the LAST X register.

FSTR	(F-string-dollar $)$

Create a string (specified by str) that represents the contents of the X-register.

| FTOI | (F-to-i) |
| :--- | :--- |$\rightarrow n$

Convert x (the contents of the X-register) to an integer and return it to the data stack. If $|x|>$ FFFFF, an overflow error occurs. FTGI takes the absolute value of x, rounds it to the nearest integer, and converts it to a five-nibble value. If x was positive, FTOI returns this result; if x was negative, FTOI returns the twos complement of this result.

FVARIABLE

(F-variable)

Used in the form: FUFFIGELE name
Create a dictionary entry for name, and allocate eight bytes for its parameter field. Subsequent execution of name will return name's PFA. This parameter field will hold the contents of the variable, which must be initialized by the application that creates it.

GROW	(Grow)

Enlarge the user dictionary by n nibbles and return a true flag; or if there is insufficient memory, return a false flag (without enlarging the dictionary).
H. $(H$-dot $) \quad$ un \rightarrow

Display un in base 16 as an unsigned number with one trailing blank.

HERE	(Here)

Return the address of the next available dictionary location.

HEX	(Hex)	\rightarrow

Set $E A G E$ to sixteen.

HOLD	(Hold)

Insert character c into a pictured numeric output string. Used between 《\# and \#».
\square
Used in the form: . . [iO . . . I . . LIOF
COMPILE, IMMEDIATE. Return the current value of the [0-loop index.

```
IF . . . THEN
flag ->
```

Used in the form: . . . IF actions THEH . . .
COMPILE, IMMEDIATE. Execute actions if and only if flag is true. IF . . THEH conditionals may be nested.

```
IF . . THEN . . . ELSE flag -> 
```

Mark the most recent dictionary entry as a word to be executed, not compiled, when encountered during compilation.
INTERPRET \quad (Interpret) \rightarrow

Interpret the input stream to its end, beginning at the offset contained in $>\mathrm{IH}$. The input stream comes from the TIB (if ELK contains 0) or from the mass storage buffer containing the nth line of the active file (if $E L E$ contains n.)
IP $(1-p) \quad \rightarrow$

Take the integer part of the contents of the X -register. IF places the result in the X -register and the original value of x in the LAST X register.

ITOF	$(1-$ to-f $)$

Convert n into a floating-point number and place it in the X -register, lifting the floating-point stack.
\square
Used in the form: . . . Qu . . . [iO LODF . . . LODP

COMPILE, IMMEDIATE. Return the index of the next outer loop. Used within nested aI. . . L IDF structures.
KEY (Key) $\quad \rightarrow c$

Return the low-order seven bits of the ASCII value of the next key pressed. If the key buffer is empty, wait for a key to be pressed.
KILLBF \quad (Kill-buff) $\quad n \rightarrow$ flag

Delete the general-purpose buffer whose ID\# is n, and return a true flag; or return a false flag if no such buffer exists.
$\mathbf{L} \quad(L) \quad \rightarrow$ addr

Return the address of the floating-point LAST X register.

LASTX	$($ Last-x $)$

Lift the floating-point stack and copy the contents of the LAST X register into the X-register.

| LATEST | (Latest) |
| :--- | :--- |\rightarrow addr

Return the NFA of the most recent word in the CUFEEHT vocabulary.

LEAVE	(Leave)	\rightarrow

COMPILE, IMMEDIATE. Skip to the word after the next LOGF or +LQOF. LEPVE terminates the loop and discards the control parameters. Used only within a DII . . LIOF or +LIOF construct.

LEFT\$	(Left-dollar)	$s t r_{1}$	n	\rightarrow	$s t r_{2}$

Create a temporary string (specified by $s t r_{2}$) consisting of the first n characters in the string specified by $s t r_{1}$.
LIMIT (Limit) \rightarrow addr

Return the address of the variable LIMIT, which contains the first address beyond the mass-storage-buffer area.
LINE\# \quad (Line-number) \rightarrow addr

Return the address of the variable LINE\#, which contains the number of the line being loaded from the active file (specified by SCRFIB).
LISTING \quad (Listing) $\quad \rightarrow$ str

Return str specifying the contents of the string variable LISTING, which identifies the file or device to which the assembler will direct its output. LISTIHG can contain up to 20 characters.

LITERAL	(Literal)

COMPILE, IMMEDIATE. Compile n into the word being defined, such that n will be returned when the word is executed.
LN \quad (Natural \log) \rightarrow

Calculate the natural \log (base e) of the contents of the X -register. LH places the result in the X -register and the original value of x in the LAST X register.

LOADF	(Load-f)

Interpret the entire file specified by str. If the file cannot be opened for any reason (doesn't exist, wrong type, already opened, etc.), LOADF will give the error message FTH ERR: filename cannat logd.

LGT	(Log-ten)

Calculate the common \log (base 10) of the contents of the X -register. LGT places the result in the X register and the original value of x in the LAST X register.

$\mathbf{M} *$	(Mixed-multiply)
$n_{1} \quad n_{2} \rightarrow d$	

Return the double-number product d of two single numbers n_{1} and n_{2}. All numbers are signed.
M/ \quad (Mixed-divide) $\quad d \quad n_{1} \rightarrow n_{2} n_{3}$

Divide the double number d by the single number n_{1}, and return the single-number remainder n_{2} and the single-number quotient n_{3}. All numbers are signed.

M/MOD

(Mixed-divide-mod)
$u d_{1} u n_{1} \rightarrow u n_{2} u d_{2}$

Divide the double number $u d_{1}$ by the single number $u n_{1}$, and return the single-number remainder $u n_{2}$ and the double-number quotient $u d_{2}$. All numbers are unsigned.

MAKEBF	(Make-buff)	$\begin{gathered} n \rightarrow \text { addr ID\# true } \\ n \rightarrow \text { false } \end{gathered}$

Create a buffer n nibbles long and return a true flag, the buffer ID\#, and the address of the beginning of data area in the buffer; or if unsuccessful (not enough memory, no free buffer ID\#s), return a false flag. n cannot exceed 4095_{10}.

MAX	(Max)	$n_{1} \quad n_{2}$	\rightarrow

Return the greater of n_{1} and n_{2}.

MAXLEN	(Max-length)

Return the maximum length (that is, bytes of memory allotted in the dictionary) for the string specified by $s t r$.

$\mathbf{M I N}$	(Min)	n_{1}	n_{2}	\rightarrow	n_{3}

Return the smaller of n_{1} and n_{2}.
MOD (Mod) $\quad n_{1} \quad n_{2} \rightarrow n_{3}$

Divide n_{1} by n_{2}, and return the remainder n_{3} with the same sign as n_{1}.
N@ $(N$-fetch $) \quad$ addr $\rightarrow \quad n$

Return the contents of the nibble at addr. The four high-order nibbles of n are zeros.

$N!$	$(N$-store $)$
n addr \rightarrow	

Store at $a d d r$ the low-order nibble of n.

NALLOT	$(N$-allot $)$
$n \rightarrow$	

Add n nibbles to the parameter field of the most recently defined word (regardless of the LUEEEHT and COHTEST vocabularies).
NEGATE \quad (Negate) $n \rightarrow-n$

Return the twos complement of n.

NFILL	(N-fill)	addr un $n \rightarrow$

Fill memory from $a d d r$ through $a d d r+(u n-1)$ with $u n$ copies of the low-order nibble in n. HF ILL has no effect if $u n=0$.
NMOVE \quad (N-move) \quad addr r_{1} addr r_{2} un \rightarrow

Move $u n$ nibbles, first moving the nibble at $a d d r_{1}$ to $a d d r_{2}$ and finally moving the nibble at $a d d r_{1}+$ (un $-1)$ to $a d d r_{2}+(u n-1)$. HIUUE has no effect if $u n=0$.
NMOVE $>$ (N-move-up) \quad addr r_{1} addr \quad un \rightarrow

Move un nibbles, first moving the nibble at $a d d r_{1}+(u n-1)$ to $a d d r_{2}+(u n-1)$ and finally moving the nibble at $a d d r_{1}$ to $a d d r_{2}$. H1OUE has no effect if $u n=0$.
NOT (Not) $\quad n_{1} \rightarrow n_{2}$

Return the ones complement (true Boolean NOT) of n_{1}.
NULL\$ \quad (Null-dollar) $\quad \rightarrow$ str

Create a temporary string (specified by str) in the pad, with maximum length $=80$ and current length $=$ 0.

NUMBER	(Number)
addr addr$\rightarrow d$	

Examine the counted string at addr and convert it into a double number d.

- If the string contains a decimal point, HUNEEF tries to convert it into a floating-point number and place it in the X-register, lifting the floating-point stack. If the string contains a decimal point but is

- If the string does not contain a decimal point, HIMEER tries to convert it into an integer number and return it to the data stack. If the string isn't a legal integer, a FTH ERE: HUPEER not recognizederror occurs.

OKFLG

(Okay-flag)
\rightarrow addr

Return the address of the variable OKFLG. If the value of OKFLG is 0 , the 아 \& n) message is shown when the FORTH system is ready for input; otherwise, the message is suppressed.

ONERR	(On-error)

Return the address of the variable ONERR, which contains the CFA of the user's error routine. The value of ONERR is checked when a FORTH-system error occurs. If the value of ONERR is zero, the error is processed by the system's error routine. If the value of ONERR is not zero, control is transferred instead to the user's error routine. The stacks are not reset. The BASIC keywords FORTH and FGRTH: set the value of ONERR to zero.

OPENF (Open-f) | str | $\rightarrow t$ | t |
| :--- | :--- | :--- |
| $s t r$ | \rightarrow | str f |

Open an FIB for the file whose name is specified by str, and store the FIB\# into SCRFIE. If successful, GFENF returns a true flag. If the file was empty or there was a problem in opening the file, OFENF returns str and a false flag.

OR	(Or)
$n_{1} n_{2} \rightarrow n_{3}$	

Return the bit-by-bit inclusive OR of n_{1} and n_{2}.

OUTPUT	(Output)

Send n bytes, stored at $a d d r$ through $a d d r+2(n-1)$, to the HP-IL device whose address is specified by FRIMARY and gecohaney. Executing OUTFUT requires the HP 82401A HP-IL Interface.
OVER (Over) $\quad n_{1} n_{2} \rightarrow n_{1} n_{2} n_{1}$

Return a copy of the second number on the stack.
PAD \quad (Pad) \rightarrow addr

Return the address of the pad, which is a scratch area used to hold character strings for intermediate processing.

PAGESIZE

Return the address of the variable PAGESIZE, which contains the number of printed lines per page for the assembler listing. The default value is 56 ; the minimum value is 8 .

PICK	(Pick)
$n_{1} \rightarrow n_{2}$	

Return a copy of the n_{1}-th entry on the data stack (not counting n_{1} itself). For example, 1 FIGK is equivalent to DUF, and 2 FICK is equivalent to GUER.

POS	(Pos)	

Search the string specified by $s t r_{2}$ for a substring that matches the string specified by $s t r_{1}$, and return the position of the first character in the matching substring (or a false flag if there is no matching substring).
PREV \quad (Prev) $\quad \rightarrow$ addr

Return the address of the variable PREV, which contains the address of the most recently referenced mass storage buffer.
PRIMARY \quad (Primary) \rightarrow addr

Return the address of the variable PRIMARY, which specifies an HP-IL address. The valid range for PRIMARY is 0 through 31, and the default value is 1 . (The contents of PRIMARY and SECONDARY specify which HP-IL device to use with EHTEE and DUTFUT. If system flag -22 is clear, the contents of PRIMARY alone specify a simple address; if system flag -22 is set, the contents of PRIMARY and SECONDARY specify an extended address.)

QUERY

(Query)

Accept characters from the current keyboard until 96 characters are received or an END LINE character is encountered, and store them in the TIB. DIEFY sets \#TIE to the value of SFAH.

QUIT	(Quit)

Clear the return stack, set execution mode, and return control to the keyboard. No message is displayed.
$\mathbf{R} \gg(R$-from $) \rightarrow n$

COMPILE. Remove n from the top of the return stack and return a copy to the data stack.
R@ \quad (R-fetch $) \quad \rightarrow n$

COMPILE. Return a copy of the number on the top of the return stack.

RADIANS

(Radians)
\rightarrow

Select FADIAHS angular mode.
RCL \quad (Recall) \quad addr \rightarrow

Lift the floating-point stack and place in the X-register the floating-point number found at addr.
RDN \quad (Roll-down) \rightarrow

Roll down the floating-point stack. E[HP copies from the T-register into the Z-register, from the Z-register into the Y-register, from the Y-register into the X -register, and from the X -register into the T -register.

RIGHT\$
(Right-dollar) $\quad \operatorname{str}_{1} n \rightarrow s t r_{2}$

Create a temporary string (specified by $s t r_{2}$) consisting of the last (rightmost) n characters in the string specified by str $_{1}$. (END $=$ is similar but takes character position, not substring length, for a parameter.)
ROLL \quad (RoII) $\quad n \rightarrow$

Move the nth entry on the data stack (not counting n itself) to the top of the stack. For example, 2 ROLL is equivalent to GMFF, and 3 ROLL is equivalent to ROT.
ROT (Rote) $\quad n_{1} n_{2} n_{3} \rightarrow n_{2} n_{3} n_{1}$

Rotate the top three entries on the data stack, bringing the deepest to the top of the stack.
RP! $($ R-p-store $) \quad \rightarrow$

Reset the return stack to 0 addresses.
RP@ $\quad(R$-p-fetch $) \quad \rightarrow$ addr

Return the current value of the return-stack pointer.

RPO

(R-p-zero) $\quad \rightarrow$ addr

Return the address of the system variable RP0, which contains the address of the bottom of the return stack. (The bottom of the return stack has a greater address than the top.)

RUP	(Roll-Up)

Roll up the floating-point stack. FUF copies from the X-register into the Y-register, from the Y-register into the Z-register, from the Z-register into the T-register, and from the T-register into the X-register.

| S! | (S-store) | str $_{1} \quad$ str $_{2} \rightarrow$ |
| :--- | :--- | :--- | :--- |

Store the contents of the string specified by $s t r_{1}$ into the string specified by $s t r_{2}$.
$\mathbf{S}->\mathbf{D} \quad$ (Sign-extend) $\quad n \rightarrow d$

Return a signed double number d with the same value and sign as the signed single number n.
SO \quad (S-zero $) \quad \rightarrow$ addr

Return the address of the bottom of the data stack.
$\mathbf{S}<\quad$ (S-less) \quad str $_{1} \quad$ str $2 \rightarrow \quad$ flag

Return a true flag if the string specified by $s t r_{1}$ is "less than" the string specified by $s t r_{2}$, or a false flag if not. Ξ first compares the ASCII values of the first characters; if they are equal, it then compares the second characters, and so on. AEL is defined to be less than AEC[I.

$\mathbf{S}<\boldsymbol{\&}$	(S-left-concatenate)	str_{1}	str_{2}	\rightarrow	str $_{3}$

Append the contents of the string specified by $s t r_{2}$ to the end of the string specified by $s t r_{1}$, and return $s t r_{3}$, the address and length of the resulting string. The address of $s t r_{3}$ is the address of $s t r_{1}$; the length of $s t r_{3}$ is the combined length of $s t r_{1}$ and $s t r_{2}$. If the concatenation would exceed $s t r_{1}$'s maximum length, no concatenation occurs and $s t r_{3}=s t r_{1}$. Either $s t r_{1}$ or $s t r_{2}$ can specify a temporary string in the pad. The < sign indicates that the left string will contain the result of the concatenation.
$\mathbf{S}=(S$-equals $) \quad s t r_{1} s t r_{2} \rightarrow$ flag 9

Return a true flag if the two strings are equal, or a false flag if not. $\Xi=$ compares only the current length and contents of the strings, not the maximum length or old contents stored beyond current length.

$\mathbf{S}>\boldsymbol{\&}$	(S-right-concatenate)	str $_{1}$	str $_{2}$	\rightarrow	str $_{3}$

Append the contents of the string specified by $s t r_{2}$ to the end of the string specified by $s t r_{1}$, and return $s t r_{3}$, the address and length of the resulting string. The address of $s t r_{3}$ is the address of $s t r_{2}$; the length of $s t r_{3}$ is the combined length of $s t r_{1}$ and $s t r_{2}$. If the concatenation would exceed $s t r_{2}$'s maximum length, no concatenation occurs and $s t r_{3}=s t r_{2}$. Either $s t r_{1}$ or $s t r_{2}$ can specify a temporary string in the pad. The \geqslant sign indicates that the right string will contain the result of the concatenation.

SCI	(Scientific)	$n \rightarrow$

Select scientific display mode with $n+1$ significant digits displayed, $0 \leqslant n \leqslant 11$.
SCRFIB \quad (Screen-f $-i-$-b) $\quad \rightarrow$ addr

Return the address of the variable SCRFIB, which contains the FIB\# of the currently active file (or 0 if no file is being loaded).

Return the address of the variable SECONDARY, which specifies the extended portion of an HP-IL address. The valid range for SECONDARY is from 0 through 31, and the default value is 0 . (The contents of PRIMARY and SECONDARY specify which HP-IL device to use with ENTER and GUTFUT. If system flag -22 is clear, the contents of PRIMARY specify a simple address; if system flag -22 is set, the contents of PRIMARY and SECONDARY specify an extended address.)

SHRINK	(Shrink)	$n \rightarrow$ flag

Shrink the user's dictionary space (and consequently the FORTHRAM file) by n nibbles, and return a true flag; or return a false flag if there are fewer than n free nibbles in the dictionary.
SIGN \quad (Sign) $\quad n \rightarrow$

Insert the ASCII minus sign - into the pictured numeric output string if n is negative. Used between \& and \#\%.
SIN $($ Sine $) \quad \rightarrow$

Calculate the sine of the contents of the X-register, according to the currently active angular mode. EIN places the result in the X -register and the original value of x in the LAST X register.

SMOVE	(S-move)	str addr \rightarrow

Store at addr and above (greater addresses) the characters in the string specified by str.

SMUDGE
 (Smudge)
 \rightarrow

Toggle the smudge bit in the latest definition's name field.

SP!	$(S$-p-store $)$

Reset the data stack to 0 items.
SP0 $(S$-p-zero $) \rightarrow$ addr

Return the address of the system variable SP0, which contains the address of the bottom of the data stack. (The address of the bottom of the data stack is greater than the address of the top.)
SP@ \quad (S-P-fetch $) \quad \rightarrow$ addr

Return addr, the address of the top of the data stack before EPas executed.

SPACE	(Space)	\rightarrow

Transmit an ASCII space to the current display device.

SPACES	(Spaces)

Transmit n spaces to the current display device. Take no action for $n \leqslant 0$.

SPAN	(Span)

Return the address of the variable SPAN, which contains the count of characters actually read by the last execution of ERFECTIE.
SQRT \quad (Square-root) \rightarrow

Calculate the square root of the contents of the X-register. SQRT places the result in the X-register and the original value of x in the LAST X register.
STATE $($ State $) \quad \rightarrow$ addr

Return the address of the variable STATE, which contains a non-zero value if compilation is occurring (or zero if not).

STD	(Standard)

Select the BASIC standard display format.

STO	(Store $)$	addr \rightarrow

Store the contents of the X -register at $a d d r$.

STR\$	(String-dollar)	$d \rightarrow s t r$

Convert the number d into a temporary string in the pad, specified by str.

STRING

Used in the form: n GTEING name.

Create a dictionary entry for name, allotting one byte for a maximum-length field (value $=n$), one byte for a current-length field (value $=0$), and n bytes for the string characters.

STRING-ARRAY
 (String-array)
 $\begin{array}{lll}n_{1} & n_{2} & \rightarrow\end{array}$

Used in the form: $n_{1} n_{2}$ STRIHG-ARFA G name

Create a dictionary entry for name, allotting one byte for the maximum-length field (value $=n_{1}$), one byte for the dimension field (value $=n_{2}$), and ($n_{1}+2$) bytes each for n_{2} string-array elements. STEIHE-AFEA'H fills in the maximum-length (value $=n_{1}$) and current-length (value $=0$) fields for each string-array element.

Later execution of n name will return $s t r_{n}$, the address and current length of the nth element of the string array.

SUB\$
 (Sub-dollar)
 $\operatorname{str}_{1} \quad n_{1} \quad n_{2} \rightarrow s t r_{2}$

Create a temporary string (specified by $s t r_{2}$) consisting of the n_{1} th through n_{2} th characters in the string specified by $s t r_{1}$.

SWAP	(Swap)
n_{1}	$n_{2} \rightarrow n_{2} n_{1}$

Exchange the top two entries on the data stack.

SYNTAXF	(Syntax-f)	str \rightarrow flag

Return a true flag if the string specified by $s t r$ is a valid HP-71 file name, or return a false flag if not. If the specified string exceeds eight characters, $5 \mathcal{H T H Y F}$ checks only the first eight characters.

\mathbf{T}	(T)
addr	

Return the address of the floating-point T-register.

TAN
(Tan)

Calculate the tangent of the contents of the X-register, according to the currently active angular mode.
TAH places the result in the X -register and the original value of x in the LAST X register.
TIB $(T-i-b) \quad \rightarrow$ addr

Return the address of the terminal input buffer. The terminal input buffer can hold up to 96 characters.

TOGGLE (Toggle) addr $n_{1} \rightarrow$

Replace n_{2} (the contents at addr) with the bit-by-bit logical value of (n_{1} XOR n_{2}).

$$
\text { TRAVERSE } \quad \text { (Traverse) } \quad \text { addr } r_{1} n \rightarrow a d d r_{2}
$$

Return the address of the opposite end (length byte or last character) of a definition's name field.

- If $n=1$, $a d d r_{1}$ is the address of the length byte, and $a d d r_{2}$ is address of the last character.
- If $n=-1, a d d r_{1}$ is the address of the last character, and $a d d r_{2}$ is the address of the length byte.
- If n doesn't equal 1 or $-1, a d d r_{1}=a d d r_{2}$.
TYPE (Type) addr $n \rightarrow$

Transmit n characters, found at $a d d r$ through $a d d r+(2 n-1)$, to the current display device. TYFE transmits no characters for $n \leqslant 0$.
U. $(U-$ dot $) \quad$ un \rightarrow

Display un (according to BASE) as an unsigned number in a free-field format with one trailing blank.

$\mathbf{U}<$	(U-less-than)	$u n_{1} u n_{2} \rightarrow$ flag

Return a true flag if $u n_{1}<u n_{2}$, or return a false flag if not.
UM* (U-m-times) $u n_{1} u n_{2} \rightarrow u d$

Return the double-number product $u d$ of two single numbers $u n_{1}$ and $u n_{2}$. All numbers are unsigned.
UM/MOD \quad (U-m-divide-mod) $\quad u d_{1} \quad u n_{1} \rightarrow u n_{2} u n_{3}$

Divide the double number $u d_{1}$ by the single number $u n_{1}$, and return the single-number remainder $u n_{2}$ and the single-number quotient $u n_{3}$. All numbers are unsigned.
USE \quad (Use) $\quad \rightarrow$ addr

Return the address of the variable USE, which contains the address of the next mass storage buffer available for use.

VAL

```
str }->
```

Convert the string specified by str into a number.

- If the string contains a decimal point, UHL tries to convert it into a floating-point number and place it in the X -register, lifting the floating-point stack. If the string contains a decimal point but is not a legal floating-point number, a $1 \exists+\exists \mathrm{T} \boldsymbol{\mathrm { fF }} \mathrm{F}$ error occurs.
- If the string does not contain a decimal point, VFL tries to convert it into an integer number and return it to the data stack. If the string is not a legal integer, a FTHERE: YAL not recegrized error occurs.

VARIABLE

(Variable)

Used in the form: UARIfELE name
Create a dictionary entry for name, allotting five nibbles for its parameter field. Later execution of name will return name's PFA. This parameter field will hold the contents of the variable, which must be initialized by the application that created it.
VARID $\quad($ Var-i-d $) \quad \rightarrow$ addr

Return the address of the variable VARID, in which the assembler stores the ID\# of the general-purpose buffer that it uses. If the value of VARID is non-zero, the FORTH system will preserve the buffer with that ID\#.

VOCABULARY

Used in the form: UGGEIILAF' $=$ name

Create (in the EUFEENT vocabulary) a dictionary entry for name that begins a new linked list of dictionary entries. Later execution of name will select name as the COTTET vocabulary. (Vocabularies are discussed in section 2.)
WARN \quad (Warn $) \rightarrow$ addr

Return the address of the variable WARN. If WARN contains a non-zero value, compiling a new word whose name matches an existing word causes a name $i=t t^{\prime} t$ thte message to be displayed; if WARN contains 0 , the message is suppressed.
WIDTH \quad (Width) \rightarrow addr

Return the address of the variable WIDTH, which determines the maximum allowable length for the name of a word. The valid range for WIDTH is from 1 through 31.

WORD	(Word)
$c \rightarrow$ addr	

Receive characters from the input stream until the non-zero delimiting character c is encountered or the input stream is exhausted, and store the characters in a counted string at addr. W0F口 ignores leading delimiters. If the input stream is exhausted as WORD is called, a zero-length string results.
$\mathbf{X}(X) \quad \rightarrow$ addr

Return the address of the floating-point X-register.
\square
$\mathbf{X}<>\mathbf{Y}$
(X-exchange-y)

Exchange the contents of the X - and Y-registers.

X\#Y?	$X<=Y$?	Floating-point Comparisons	\rightarrow flag
$X<Y$?	$\mathrm{X}=0$?		
$X=Y$?	$\mathrm{X}>=\mathrm{Y}$?		
$X>Y$?			

Compare the contents of the X- and Y-registers, and return a true flag if the test is true or a false flag if not. The tests don't alter the contents of the X - and Y -registers.

XOR (X-or) $\quad n_{1} n_{2} \rightarrow n_{3}$

Return the bit-by-bit exclusive OR of n_{1} and n_{2}.

$X^{\wedge} 2$	$(X$-squared $)$

Calculate the square of the contents of the X -register. places the result in the X -register and the original value of x in the LAST X register.
$\mathbf{Y} \quad(\mathrm{Y}) \quad \rightarrow$ addr

Return the address of the floating-point Y-register.

$Y^{\wedge} X$	$(Y$-to-the-x)

Raise the contents of the Y -register to the power contained in the X -register. $\Psi \%$ places the result in the X -register and the original value of x in the LAST X register.
$\mathbf{Z} \quad$ (Z) $\quad \rightarrow$ addr

Return the address of the floating-point Z-register.
\square
IMMEDIATE. Suspend compilation. Subsequent text from the input stream will be executed.
\square
['] (Bracket-tick) \rightarrow

Used in the form: : name ${ }_{1} \ldots[$ name 2
COMPILE, IMMEDIATE. Compile the CFA of name ${ }_{2}$ as a literal. An error occurs if name e_{2} is not found in the currently active search order. Later execution of name 1_{1} will return name ${ }_{2}$'s CFA.

[COMPILE]	(Bracket-compile)

Used in the form: . . [COHFTLE] name...
IMMEDIATE, COMPILE. Compile name, even if name is an INHEDTGTE word.
\square

Resume compilation. Subsequent text from the input stream is compiled.

Subject Index

Page numbers in bold type indicate primary references; page numbers in regular type indicate secondary references.

A

Aborting the assembler, 45
Address space, HP-71, 13
Angular mode, 20
Arithmetic mnemonics, 61
Arithmetic mode, 58
Arithmetic registers in CPU, 48
Arrays, string variable, 22
Assembler
aborting the, 45
comments in source file, 47
constants in expressions, 47
expressions in source file, 47
form of source file, 46
format of source line, 46
labels in source file, 47
listing file for, 46
pagesize of listing, 46
running the, 45
user variables for, 30
Assistance, technical, 70
ATTN key
aborting the assembler, 45
clearing the display, 12
stopping execution, 12
with remote keyboard, 95

B

BASIC operating system, reference for, 13
BASIC/FORTH interaction, 16-17, 86-90
Battery life, conserving, 94
Binary (BIN) files, 54, 64
Buffer
general purpose, 18
mass memory, 15

C

Card, magnetic, 15
Carry flag, 48, 57, 59, 61
CFA, 31
Characterization nibble, 63-64
Code field, 31
Command stack, 12
Comments, in assembler source, 47
Compilation from files, 14
Compile-only words, 99
Constant-generating pseudo-ops, 62
Constants, in assembler expressions, 47
Control characters, 95
Control pseudo-ops, 62
Control registers in CPU, 50
Copy command, 40-41
Counted string, 22
CPU, FORTH use of, 51

D

Data-pointer mnemonics, 59
Data-transfer mnemonics, 59
Delete command
in BASIC, 81
in editor, 41
Dictionary, 30, 31-32
ROM-based, 32
Display, scrolling the, 97
E
Editor, 37-44, 82
files used by, 44
Entering the FORTH environment, 11
Entering text, 39
Entry, in FORTH dictionary, 31
Error
messages, 19, 71-77, 92
trapping, 24
Errors, 12, 100
Escape sequences, 83-84, 95
Exiting the FORTH environment, 11
Expressions, in assembler source file, 47
External keyboard, 83-84, 94-95

F

FIB, 15
Fields, in CPU registers, 49
File chain, HP-71, 34-35
File header, 34-35
File information block, 15
File type, HP-71, 32
Files
number of records in, 85
types of, HP-71, 32
used by editor, 44
used as screen, 14
Flag, in FORTH, 100
Flag -21, 95
Flag - 23, 18
Floating-point operations, 19-21
Floating-point stack registers, 29
Foreign language error messages, 19
Format of assembler source file, 46
FORTH-83 Standard, 13
FORTH/BASIC interaction, 16-17, 86-90
FORTHRAM, 26-30
copying, 26
G
General purpose buffers, 18
GOSUB mnemonics, 56
GOTO mnemonics, 55

H

Hardware-status tests, 57
Header, HP-71 files, 34-35
HP-71
arithmetic registers, 48
control registers, 50
file chain, 34-35
file headers, 34-35
file types, 32
memory map, 25
operating system, reference for, 13
HP-IL, 17, 94-95

I, J

Immediate words, 31, 99
Insert command
in BASIC, 91
in editor, 39
Installing the module, 9
Interrupts, 50

K

Key assignments
in editor, 38
in FORTH, 12

L

Labels, in assembler source file, 47
LEX file, 19, 53-54, 63-64
LFA, 31
Line format, for assembler source file, 46
Link field, 31
List command, 40
Listing, assembler, 46
Load-constants mnemonics, 60
Loading data from memory, 51
Logical mnemonics, 60
M
Macro-expansion pseudo-ops
for BIN files, 64
for FORTH words, 62
for LEX files, 63-64
Magnetic card, 15
Mass memory buffers, 15
Mass storage, loading screens from, 14
Memory, loading data from, 51
Memory-access mnemonics, 59
Messages
explanation of, 71-77
corresponding to error number, 92
Move command, 40-41

N

Name field, 31
NFA, 31
No-op mnemonics, 61
Numeric file types, 33

0

0. message, 12

Operators, in assembler expressions, 47

\mathbf{P}, \mathbf{Q}

P register, 49-50
mnemonics, 57
Pad, 22, 27, 30
Pagesize, of assembler listing, 46
Parameter field, 31
Patterns in strings, defining, 43
PFA, 31
Pointer tests, 57
Port, 9, 65
Power consumption, 94
Primitive, FORTH, 11, 31, 51, 62
Print command, 40
Product information, 70
Program files, types of, 33
Program-status tests, 57
Pseudo-ops, 62-64

R

Records, number in a text file, 85
Registers in CPU
arithmetic, 48
control, 50
fields in, 49
tests on, 56
Remote keyboard, 83-84, 94-95
Removing the module, 9
Repair, 67-69
Replace command
in BASIC, 93
in editor, 42-44
Return mnemonics, 56
Return stack
in CPU, 50
in FORTH, 51
ROM-based dictionary, 32

\mathbf{S}

SB (Sticky bit), 50, 58, 60
Scratch register mnemonics, 59
Screen, 14
Scrolling the display, 97
Search command
in BASIC, 98
in editor, 42-44
Secondary, FORTH, 11, 31
Service, 67-69
Shift mnemonics, 60
Shipping, 69
Smudge bit, 31
Stack-use diagrams, 100
Status mnemonics, 58
Sticky bit, 50, 58, 60
String variables, 22
Strings
counted, 22
defining patterns in, 43
operations on, 22-23
represented on the stack, 22
Subroutine return stack, in CPU, 50
Support, technical, 70
System save area, 28

T

Technical assistance, 70
Temporary environment, 16
Test mnemonics, 56-57
Text command, 39
Text editor, 37-44
Text file
number of records in, 85
used as screen, 14
Trigonometric functions, 20

V

Vectored execution addresses, 30
ULIET, 32
Vocabularies, 23-24
$\mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$
Warranty, 65-67
Wild-card character, 43-44
Word, in FORTH dictionary, 31

U
User dictionary, 30
User mode
in editor, 38
in FORTH, 12
User variables, 28-29

BASIC Keywords by Category

This list shows all BASIC keywords by functional category. All BASIC keywords and their defininitions appear in appendix C, in alphabetic order.

Keyword	
BASIC to FORTH	Description
FOFTH	
FOFTH	Transfers HP-71 operation to the FORTH environment. Returns to a BASIC string variable the contents of a string in the FORTH enivronment.
FOFTHI	Returns to a BASIC numeric variable the contents of the FORTH floating-point X-register.
FOETH\%	Returns to a BASIC numeric variable the value on the top of the FORTH data stack.
	Executes a FORTH command string.

Editor

DELETE\#
ELTEST
FILEGER
IHEEET\#
HG日
EEFLFICE\#
SEETLL
SEAFEH
Remote Keyboard
ESDHFE
EEYEDAFE IG
FESET ESCAFE

Deletes one record from a text file.
Invokes the text editor.
Returns the number of records in a text file.
Inserts one record into a text file.
Returns the message string corresponding to a specified error number.
Replaces one record in a text file.
Scrolls the display and waits for a key to be pressed.
Finds a string in a text file.

Adds or modifies an escape-sequence key specification in the key-map buffer. Assigns one HP-IL device to be used as an external keyboard.
Purges any existing key-map buffer created by the ESTFE keyword.

FORTH Words by Category

This list shows all FORTH words by functional category. Some words appear in more than one category. All FORTH words and their defininitions appear in appendix D, sorted by name in ASCII order.

General			Files File Manipulations
Dictionary Management	Control Structures	Return Stack	
hllit	emein . . . until	Pe	+ EuF
COHTEST	EEgin. . . M Hile	1	Anusty
cument	. . REFEET	d	Elode
definitions	CASE.. OF... ENDOF	F*	CLOEEALL
FEHCE	. . Endicase	F80	Closef
Forget	[0]. . . + Liop	EF!	createf
FOETH	[0]. . . Liop	FFE	EuF
GEDM	IF . . THEN	FFFe	Findor
HERE	IF... THEN		FLush
hallat	ELSE	Defining Words	Lugaf
FFD	LEFWE	:	OFESF
SHRIAK WGCAEILARY	Memory	COHETAHT	SYATESF
			General Purpose Buffers
System	$+1$	E\%IT	
> Eat	4 H6	FCOHSTAHT FWARIAELE	
STACK			EsFEF
heart	\%	$\begin{aligned} & \text { ETRING } \\ & \text { ETRING-RERAY } \end{aligned}$	FTHDEF
HEDRT"	E!		KILLEF
hssemele	0	ETEIHG-REFHY warifele	
ETE	Clt		Mramer
begimal			
OEGREES	CHOVE FILL	Compilation	
OEFTH		Coump	
emecute	$\mathrm{H!}$!	Compile	
Fifil	Hig		
HES	HFILL	OLITEFAL	
Lategt	HHOUE	口oEs	
QuIT		FLITEFAL	
Rhatame	HMOUE FCL	Immegiate	
TiE	s!	LIteral	
togele	Smowe	STATE	
traverge	ET0		
BASIC System Access	Interpretation	[.]	
EASICO	'	${ }_{\text {[[0MPILE] }}$	
EASICF			
$\begin{aligned} & \text { EASIOI } \\ & \text { EASIO: } \end{aligned}$	IHTEFFRET	Assembler	
		ascemble	
		LISTIHE	
		frgesize	

Input／Output	Arithmetic	Stack	User Variables
Constants	Single Length	Single Length	\＃TIE
\square	＊	CFIGF	\％ 14
1	4	［11F	EHEE
2	\％\％od	DEFE	ELE
3	＋	FICK	COHTERT
EL	－－	FOLL	CUEEEHT
	\％	ROT	FIEST
Numeric－Input	mod	36	
Conversion	$1+$	EF！	LINIT
EHSE	1－1	EFE	LIHE\＃
COHPERT	2＊	EF＇İ	LISTIHS
OIGIT	$2+$	EHfF	OLFLS
Huteer	E－	Double Length	DHEEE FHGEGIZE
Numeric Output	2	20FOF	FREO
	5	20uF	FeIdhey
：	Hes	ZOUER	SCEFIE
EfSE	FTOI	こらWFF	secombrby
\square	M00		SPRH
［．E	HEGATE	Floating Point	ETATE
F		FDFOF	T
H	Double Length	FEHTEF	USE
1	a＋	LHETS	UREID
Number Formatting	－	EDH	MBEI
Number Formatting	9fes	RUF	MIDTH
\＃	GUECATE	Qr	8
\＃；	\％－＞ロ		
\＃			2
＊	Mixed Length		
EHG	成	Comparisons	String Words
FIX	M，	Single Length	＂
EcI	Unts	$0 ¢$	
5104	Un－Mod	e＝	CHEs
970	Floating Point	6	EHOF
Character Input	1\％	8	FSTFE
TTEENIHAL	18\％	$=$	LEFTE
count	mcos	\％	HHXLEH
EHCLOEE	HSTH	TOUF	PnL
ERFECTES	BTGH	पन\％	PGS
KEY	CHS	HIH	RIEHT
DUEEY	Dos	Uく	
WORD	E＊\％		
ETREAT	F\％	Double Length	S\％
Character Output	$\mathrm{F}+$	F \％	STE＊
－TRAILIME	F	Floating Point	Ques
：	Fhes	－\＃＇？	リคL
－	FP	x＜＝	
CE	IP	x＂\％	
EHIT	TTOF	$8=6$	
EfRCE	LT	人 $=$＇？	
SPRCES	LH	$x=18$	
TYPE	SIH	人\％	
HP－IL	SEPT	String	
EHTEF	He	E	
OUTFUT	ध\％	8＝	
FEIMARY	Logical		

How To Use This Manual (page 7)
1: Installing and Removing the Module (page 9)
2: The HP-71 FORTH System (page 11)
3: The Editor (page 37)
4: The Assembler (page 45)
A: Care, Warranty, and Service Information (page 65)
B: Error Messages (page 71)
C: BASIC Keywords (page 79)
D: FORTH Words (page 99)
BASIC Keywords by Category (page 151)
FORTH Words by Category (inside back cover)
(lp) HEWLETT
PACKARD

