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Introducing the Math Pac 

The Math Pac is a set of powerful tools for solving a wide range of mathematical, scientific, and en ­
gineering problems. These tools are provided in Lhe convenient and flexible form of BASIC keY'vords. 
Once the math module is plugged into your HP-71 Computer, these keywords are instantly available: 
no program to load, no waiting. You can use these keywords in any program as often as needed; you 
avoid the restrictions that would apply to program calls and save the memory that subroutines would 
require. 

The Math Pac adds the following capabilities to your HP-71. 

• Complex variables and arrays. 

• Advanced real- and complex-valued functions. 

• Real and complex array operations. 

• Solutions to systems of equations. 

• Roots of polynomial equations and user-defined functions. 

• Numerical integration. 

• Finite Fourier transform. 
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How To Use This Manual 

This manual assumes that you are generally familiar with the operation of your HP-71 Computer, 
especially how to create, edit, store, and run programs. You should also understand the mathematical 
basis for the operations you will be performing. Because the keywords in the Math Pac cover such a 
wide range of mat.hematical subjects, we cannot provide much tutorial information on the mathematical 
concepts involved. 

The keywords in the Math Pac are independent of one another, so you may deal with only the 
keywords that specifically interest you. Each section in this manual contains information on keywords 
of a particular mathematical type- complex functions and operations. array arithmetic, and so on. All 
keywords described after section 5 (except FHI':DDT and I IHEGRAL) use arrays in their operation. 
For an introduction to arrays, as used with the HP-71, read sections 3 and 14 of the HP-71 Owner's 
Manual. 

Variable Declarations 

The examples and programs in the Math Pac assume all variables are simple real unless otherwise 
declared. If an ERR : 0.:;. taT y p e occurs as you execute an example or program, declare as F~ E Ii L any 
variable not otherwise declared and continue operation. 

Array Types 

The Math Pac refers to two types of arrays, vectors and matrices. As used in this manual, the term 
vector identifies 8 singly-subscripted array, and matrix identifies a doubly-subscripted array. A sub­
script must be a real numeric expression . At run time, a subscript expression is rounded to an integer. 
The value of this integer must be in the range [O,65535J (OPT I Of! BASE '3) or [I,65535J 
(DP TIDf! BAc:E 1). Of course, in vi rtually all cases, available memory will determine the largest 
subscript you can use. 

An array can be one of five data types: REAL, SHORT, I IHEGER, CO t1PLE~< , or CDt'1PLEX SHDRT 
(refer to section 3 for a description of COt'1PLE X and COt'1PLE X SHORT). Math Pac t'1AT statements 
will not change the declared type of an array; for example. when the values from aRE R L array are 
assigned to a SH 0 F~ T or I t·~ T E G E P array. t.he values are rounded as they are stored into that array. 

9 
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Array Redimensioning 
Some Math Pac keywords allow you to optionally redimension an array. rrhis is called explicit 
redimensioning. Other keywords automatically redimension result arrays, if possible, to accomodate the 
number of elements generated by the keyword's action. This is called implicit redimensioning. The kind 
of array redimensioning performed by a keyword, explicit or implicit, is stated in each keyword's 
description. 

Explicit redimensioning occurs when an array's size and subscript count is changed according to the 
number and value of new subscripts supplied by you, For example, if A is a 3 x 4 REAL type matrix, 
then the HP-7 1 statement F:EAL A( 3) explicitly redimensions A to be a 3 dimensional vector, Note 
that explicit redimensioning allows arrays to be changed from vectors to matrices and vice-versa. Ex­
plicit redimensioning also re-evaluates OPT I ON BA:::E; that is, resets the lower bound of an array's 
subscripts if the OPT I Ofl BASE setting has changed, 

Implicit redimensioning occurs only in Math Pac operations of the form 

t1AT result array ; operation (operand array(s)), 

Implicit redimensioning only changes an array's s ize. It does not allow changes between vectors and 
matrices, nor does it re-evaluate OPTION BASE. 

Keyword Description 
Within each section you will find a description of each keyword name, function, syntax, and operation 
in the following format. 

KEYWORD NAME Function That the Keyword Pe rforms 

Syntax 

Legal data types and numeric values for use with this keyword, 

Description of the values returned by this keyword and the details of the keyword's operation, 

Keyword Na me . This is the way the keyword will be referenced elsewhere in the manual. It is usually 
a mnemonic of the function that the keyword performs. In most cases the name must. be embedded in a 
longer statement that includes arguments, parentheses, and so on; the name by itself usually isn't. an 
acceptable BASIC statement , 

Several keywords have names that are identical to names of keywords already present in your HP-71-
like 0 I SP , +, and t.. The syntax in which such a name is embedded indicates which opera lion to 

perform. All operations available to you in the H P-71 itse lf are st ill available, unaffected by the pres­
ence of the Math Pac, 
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Syntax. This is a description of the acceptable BASIC statemenis in which the keyword's name can 
be embedded. The following conventions are used throughout the manual in describing the syntax of a 
keyword. 

'!Ypographicru Item 

DOT ~lRTRI X 

italic 

bold 

lJ 

stacked items 

Interpretation 

Words in dot matrix (like COr'lPLEXj can be entered in lowercase or upper­
case letters. The examples in this manual show statements, functions, and op­
erators entered in UPPERCASE . 

Items in italics are the variables or parameters you supply, such as X in the 
:,; I f~ H <: X) statement. 

Variables in bold type represent arrays. 

Square brackets enclose optional items. For instance, NAT A= I Df~[(X, n] 
indicates the redimensioning subscripts X and Yare optional. 

When items are placed one above the other, one and only one must be chosen. 

An ellipsis indicates that the optional items within the brackets can be re­
peated. For instance, r'lAT HlPUT At, BJ ... indicates that r'IAT I NPUT re­
quires at least one array variable, and may accept several, with the array 
variables separated by commas. 

Legal Data '!Ypes and Numeric Values. This information, in the same box as the syntax, describes 
the types and ranges of arguments for the keyword that are acceptable to the Math Pac. Use this 
information to avoid generating errors and to isolate the cause of those that do occur. This is not a 
mathematical definition of the domain of the function that the keyword computes. 

Values Returned and Details of Operation. This information, in the box just below the syntax 
box, describes how the keyword works, tells what values the keyword returns, states whether array 
redimensioning (if any) is explicit or implicit, and states whether or not the keyword is usable in CALC 
mode. 

Examples 

Included in each section ace a number of examples illustrating the use of the keywords in the section . 
To try an example yourself, type in the statements given in the Input/Result column using either 
upper· or lowercase, ending each line wilh with an 1 END LINE I. After you complete a line, the display of 
your HI'-7! should look like the display shown in the Input/Result column following the line- pro­
vided that you have set your HP-71 operating conditions as indicated below. 
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• All operating conditions should be set as listed in the reference manual in the Systems 
Characteristics Section under the topic Reset Conditions, except for t hose whose set.tings follow. 

• Set line width to 22 by entering ~.JI DT H 22 I END LINE I. 
• Set OELAV so that each display in a sequence of displays, often produced by a single statement, 

will remain visible long enough to be read and understood. The DELAY statement is described in 
The HP-7J Referellce ManLmI and section 1 of the HP-7J Owner's Manual. In each you' ll find 
descriptions of how you can control the length of time each display remains visible. For the display 
of array elements, you may find a OELA .... ' ::: setting useful. This causes each display to remain 
until any key, such as I END LINE I, is pressed. 

Additional Information 

Some sections in the Math Pac include additional information to help you make effective use of the 
more sophisticated operations. If you would like stil1 more information, you can refer to the HP-J5C 
A dua nced Functions Handbook. Although the Math Pac differs from the HP-15C Advanced Pro­
grammable Scientific Calculator in its operation and capabilities, much of the information in the 
HP-J5C Aduanced Functions Handbuok applies to t he Mat h Pac. Such informaLion includes tech niques 
to increase the effectiveness of equation-solving algorithms, integrat ion algorithms, matrix operations, 
system solutions, and accuracy of numerical calculat ions. 



Section 1 

Installing and Removing the Module 

The Math Pac module can be plugged into any of the four ports on the front edge of the computer. 

CAUTIONS 

• Be sure to turn off the HP-71 (press ITJI OFF II before installing or removing the module. 

• If you have removed a module to make a port available for the math module, before installing the 
math module. turn the computer on and then off to reset internal pOinters. 

• Do not place fingers , tools, or other objects into any of the ports. Such actions CQuid result in minor 
electrical shock hazard and interference with pacemaker devices worn by some persons. Damage 
to port contacts and internal circuitry could also result. 

• If a module jams when inserted into a port , it may be upside down. Attempting to force it further 
may result in damage to the computer or the module . 

• Handle the plug-in modules very carefully while they are out of the computer. Do not insert any 
objects in the module connecter socket. Always keep a blank module in the computer's port when 
a module is not installed. Failure to observe these cautions may result in damage to the module or 
the computer. 

Th insert the Math Pac module, orient it so that the label is 
right-side up, hold the computer with the keyboard facing up, and 
push in the module until it. snaps into place. During t.his opera­
tion be sure to observe the precautions described above. 

To remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the 
module and pull the module straight out of the port. Instal l a blank module in the port to protect the 
contacts inside. 

13 



Section 2 

Base Conversions 

Binary, Octal, and Hexadecimal Representations 
The operations in this sect ion allow your HP-71 to recognize and manipulate numbers expressed in 
number systems other than decimal (base 10). 

Because the HP-71 assumes that. any real number stored in a numeric variable or ent.ered from the 
keyboard is a decimal number, you must enter and store every non-decimal number as a character 
string. 1n part icular, if you store the number in a variable, t he variable's name must end with "$"; if 
you enter the number from the keyboard, it must be enclosed in quotes. 

In the tables below, S$ will represent a binary, octal, or hexadecimal string or string expression. 

• A binary strin.g consists entirely of O's and l 's, and represents a number in the base 2 number 
system. A binary strin.g expression is a string expression whose value is a binary st.ring. 

• An octal string consists entirely of 0'5, l's, ...• 6's, and 7'5, and represents a number in t he base 8 
number system. An octal string expression is a string expression whose value is an octal st ring. 

• A hexadecimal string consir..ts of D's, ...• 9's, A's, ... , and F's (the letters may be either uppercase or 
lowercase) , and this string represent-I:! a number in the base 16 number system. A hexadecimal string 
expression is a string expression whose value is a hexadecimal string. 

Base Conversion Functions 

BVAL Binary, Octal, or Hexadecimal to Decimal Conversion 

BVAL{ S$ , N ) ~ 
where S$ is a binary string expression whose value is not greater than 
1110100011 01 01 001 01 001 01 0000111111111111 (binary), and N is a numeric expression whose 
rounded integer value is 2; 

or S$ is an octal string expression whose value is not greater than 16432451207777 (octal), and N is a 
numeric expression whose rounded integer value is 8: 

or S$ is a hexadecimal string expression whose value is not greater than E8D4A50FFF (hexadecimal), 
and N is a numeric expression whose rounded integer value is 16. 

15 
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BVAL (continued) 

I Converts a strin-g- e- x-p-r-es- s-iO- n- S-$-r-ep- r-e-s-en- t-in-g- a- n-u-m-b-e-r -e-xp- r-e-s-se-d- in- b- a-s-e- N- in-t-o-t-he- e-q-Ui-v-al-e-nt- d- e- c-im- a'i 

number. The value of the decimal equivalent can 't exceed 999,999,999,999 (decimal). 

Not usable in CALC mode. 

BSTR$ Decimal to Binary, Octal, or Hexadecimal Conversion 

E: S TR$ ( X , N ) 

where X is a numeric expression, 0 .. X < 999,999,999,999.5, and N is a numeric expression whose 
rounded integer value is 2, 8, or 16. 

Converts the rounded integer value of X (decimal) into the equivalent base N string, 

When N - 16, returns uppercase A, ... , F. 

Not usable in CALC mode, 

Examples 
Jnput(Result 

E: 1,} A L( 1101~3"1 ?) I ENDLINE I 

1 [1 

E: $ " 1 1 11" t ENDLINEt 
8VAL(8 t ,2) JENDLINEI 

15 

E:'JAU B.H ,B:f,2 ) IENDLINEI 

E:~, TR$ (3 , 2 ) t END LINE I 

11 

The decimal value of 1010 (binary), 

The decimal value of the binary string "1111." 

The decimal value of the binary string 
"111 11 111." 

T he binary representation of 3 (decimal) . 



BSTR$(72 .. 8) IENOLlNE ] 

110 

8~3TR$(B\}AL( "AF1C8!1 J 16) 12) 

I END LINE I 

10101111000 11 1001000 

BSTR$(BVA L(I' 14772 ",8) 
+81}AL{ "57 0 " 1 8) 18~' I ENOLlNEj 

15562 

Additional Information 
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The octal representation of 72 (decimal) . 

The binary represenLation of AFleS 
(hexadecimal). 

The octal sum of 14772 (octal ) and 570 (octal) . 

Three considerations determined the range of acceptable parameters for the base conversion keywords. 

• The keyword~ give the exact answer for any integer in the range of acceptable parameters. 

• The keywords are inverses of one another, so that composit ion in either direction is the identity 
transfo rmat ion for integers. 

• The integers from 0 through 999,999,999,999 form the largest block of consecutive non -negative 
integers that the Hp· 71 can cisplay in integer format. 



Section 3 

Complex Variables 

Complex Data Types 

The operations in this section allow your HP-71 to declare, recognize and manipulate complex num­
bers. These operations include: 

• Declaration of complex variables and arrays using COt'lPLE~-( and COt'lF'LE::·:: :::HOPT statements. 

• Extension of HP-71 variable assignment and the RE:3 function to the complex case. 

• Extension of HP-71 I t'lAGE format strings to include complex fields 

• Conversion of real numbers to complex, 

Declaring Complex Variables 

COMPLEX 

COI'lPLE>: variable list 

Complex Variable Creation with 12-Digit Precision 

where the syntax is the same as that used for F:EAL , SHORT, and I IHEG ER keywords. That is , each 
variable in the variable list has the form numeric variable [ < dim 1 [ ., dim 2] :> ], and dim 1 and dim 2 are 
real numeric expressions. 

Not usable in CALC mode. 

COMPLEX SHORT Complex Variable Creation with 5-Oigit Precision 

CDt'lF'LEi: SHORT variable list 

where the syntax is the same as that used for REAL, ";HOF.:T, and ltHEGEF: keywords. That is, each 
variable in the variable list has the form numeric variable [ .: dim 1 [ I dim 2] ) ], and dim 1 and dim 2 are 
real numeric expressions . 

Not usable in CALC mode. 
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20 Section 3: Complex Variables 

COM PL EX and COI'IPLE X S HORT bot h allocate memory for variables and arrays. If the array or 
variab le does not a lr eady ex ist , c reation occur s upon exec ut io n of t he CO t'1 P L E ~< o r 
CO t'l PLE>~ S HO RT statement, and all variables and array elements are initialized to (0,0). The 
dimension limits of arrays are evaluated at creat ion time. The lowest numbered subscript in any 
dimension is 0 or 1, depending upon the OPT I ON BASE setting when the array is created. 

A COt'1PLE >:: statement redimensions existing arrays if they are t.ype COf'1 PLE ~< . hut does not 
reinitialize them to (0,0). Similarly. a CONPLE ::< SHOR T statement redimensions existing arrays if 
they are type COt-l PLE)< S HO RT, but does no, reinitialize them to (0,0). If an array is being ex­
panded, then all newly-created elements will be initialized. Redimensioning does preserve the sequence 
of elements within an array, but not necessarily the elements' positions within an array. Refer to the 
HP-71 Owner's Manual, section 3, under the topic Declaring Arrays (0 I 1'1, F: EAL , ',: HO ln, 
ItH EGER), for more information. 

The following table indicates the condi t ions tha t apply to COI1 P LE :, a nd COt'lPLE)< S HORT vari­
ables and arrays. 

CO I1PL E )·: and CO I'lF' LE :, ',: HORT Numeric Variables 

Initial value 

Numeric precision 
COr'1PLE X 
COI'IPLE X SHOF~ T 

Exponent range 

Maximum number of array dimensions 

Maximum dimension limit 

Simple variable memory usage (bytes) 
CDt'1F'LE X 
CDI'lPLE X SHDRT 

Array memory usage (bytes) 
CDI'IPLE X 

CDI'IPLE )( SHOIi:T 

(0 , 0) 

12 decimal digi ts 
5 decimal digits 

± 499 

2 

65535 

25.5 
18.5 

16· (dim 1 - option base + 1) 
• (dim 2 - option base + 1) + 9.5 

9 • (dim 1 - option base + 1) 
• (dim 2 - option base + 1) + 9.5 
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Complex Number Operations 

(,) Real to Complex Conversion 

( X, Y ) 

where X and Yare real- or complex-valued numeric expressions. 

This is the way the HP-71 recognizes a complex number: as an ordered pair of real numbers. Since (X , y) 
is defined as (real part of X, real part of y), if either X or Y is complex , (X,y) is not necessarily equivalent 
to X + iY . 

I Can be used in CALC mode. 

REPT Rea l Part of Complex Number 

r REPT ( z) 

where Z is a real- or complex-valued numeric expression. 

Returns the real part (fi rst component) of Z. If Z is real , F: E P T ( z) - Z. 

Can be used in CALC mode. 

IMPT Imaginary Part of Complex Number 

H1PT( Z) 

where Z is a real- or complex-valued numeric expression. 

Returns the imaginary part (second component) of Z. If Z is real , I MPT ( Z ) - O. 

Can be used in CALC mode. 
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Other Complex Operations 

The Math Pac allows extension of many operations of the HP-71 to the complex case. These include 
numeric functio ns such as :::; I 1'4 , t, etc. , as described in sect ion 5. Other extensio ns are t he ability to 
assign values to complex variables created by a COt'1PLE>:: or CO t'l PLE::'~ ::,; HOPT statement, execution 
of the PES functio n when the last result. is complex, and so on. [n other words, when t he Math Pac 
module is plugged in, the HP~ 7] can operate with complex numbers in much the same way that it 
operates with real numbers. 

An important feature provided by the Math Pac is the extension of I t'1 AGE format strings to include 
complex field speci fiers. This extension is described below. Refer to the I t'1 AGE keyword entry in the 
HP-7! Reference Manual for additional information on format strings. 

c (, ) Complex Field in an IMAGE String 

[n] C ( format string ) 

where n is an optional multiplier. 

Causes a complex expression in a 0 I ~; P or P f;;: I t·~ T output list to be formatted according to the format 
string. The real part is formatted first and the imaginary part second . On output, the number is enclosed 
in parentheses, with the real and imaginary parts separated by a comma. The comma is sent out when 
the second numeric field is encountered . 

The format string may not include: 

• A carriage control symbol (#). 

• String fields . 

• Imbedded complex format strings. 

The format string must include two and only two numeric speci fiers, but no special restrictions (other 

I 
than those stated above) are placed on non~numeric specifiers. 

Not usable in CALC mode. 

Complex expressions in a D I ::;P US I t·~G or PP I t·~T U:::; I t·lG output list may only be formatted by a 
complex fie ld in t he Jt-l A GE li st. Likewise, rea l expressions in a D]:;; P U ',; ItjG or F'R I tH U,,; I H G 
output list may not be formatted by a complex field in the I r'lRGE list. 



SeLtlon 3: Complex Variables 23 

Examples 

COMPLEX, COMPLEX SHORT, (,), REPT, IMPT 

Input/Resu)t 

DE STROY ALL I ENDLINEI 

CCq'1PLE~·~ Z 1 ~'1 1 ('3) " I,} (7.,7) 
I END LINE I 

COMPLEX SHORT C(4,7)} Y 
I END LINE I 

:: :;: ( 1 ) '30 R (25) ) I END LINE I 

Z I END LINE I 

\,t<6} 5):;:3I ENDLINEI 

v ( 1 ) 1 ) .! I\! ( 6 ) 5;' I END LI NE I 

y:;: ( (, 1 I 2) , (:"3, 4 ) " I END LINE I 

y I ENDLINE I 

( 1 ) 3) 

Insures that none of the variables and arrays in 
the following statements exist. ]f one did exist, it 
would not be initialized to (0,0) when the vari­
able or array declaration statement is executed. 

Creates a complex variable, a complex vector, 
and a complex matrix. The variable Z and all ele­
ments of t he arrays y~ 1 and I,} are initialized to 
(0,0). 

Creates a complex short array and a complex 
short variable. Y and all elements of C are initial­
ized to (0,0) . 

Assigns the complex number 1 + 5i to Z. 

The HP-71 representation of the complex num ­
ber 1 + 5i. 

Assigns the real number 3 to the complex array 
element t,} (6.' 5 ) . 

Displays two array element values. 

Complex element ~} ( 1 J 1 ) was assigned 
( t1 J t 1 ) at its creation. Since the real number 3 
was assigned to a complex element, it becomes 
t he complex number (3., 0 ) . 

Assigns (1,3) to Y, since (1,3) is 
(R EPT( 1 J 2), REPT(3 .. 4) . 

Displays the complex number ..,. . 
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RES I ENDLINEI 

( 1 .' :3 ) 

REPTCI).: It1PTCI) I ENDLINE I 

1 :::: 

Complex IMAGE Fields 

Input/Result 

5 STD @ COMPLEX Y 
10 Y ~(59 . 14 ,- 12 . 7) 

20 DISP USING 100; Y 
30 DISP UStNG 200: y, Y 
40 DISP USING 300; y, Y 
50 DISP USING 400; Y, Y, Y 
50 DISP USING "C(DDD,DDD)"; Y 
1 00 IMAGE C(2D.2D,4D.2D"j") 
200 IMAGE C(4Z,XXX,4*),j,C(4Z,XXX4*) 
300 IMAGE C(B,K"j"),X ,C(A,4*.2DE) 
400 IMAGE 3C(2(DDD,XX)) 

(6::: . 14., 
( (HJ69 
«(HJ69., 

-12 . 70i) 
.,-l13) 
-l13) 

Displays the value of the most recently executed 
or displayed numeric expresion, which in this case 
is complex. 

Line 100 HIAGE display. 
Line 200 HI R G E display. 



( E,-12. 7i) (,-1 27 , 00E-
001 ;. 

( . -" 0" - 1 :3 ) .:: 69 - 1 , ., ) ( 69 - 13 ) 
~ , 

( 6~~) -13) 
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Line 300 H1AGE display. 

Line 400 11'1 AGE display . 

Line 60 display. 



pc 

Section 4 

Real Scalar Functions 

Hy perbolic Functions 
Th e functions S I H H, COS H, and TA t·l H (described below) are also defined for complex arguments. See 

ion 5. sect 

SI NH Hyperbolic Sine 

S IIIH( X) 

w here X is a realcvalued numeric expression, M < 1151.98569368 

Ca n be used in CALC mode. 

CO SH Hyperbolic Cosine 

C 08H( X> 

w here X is a real-valued numeric expression, IX! < 1151.98569368 

Ca n be used in CALC mode. 

TA NH Hyperbolic Tangent 

T 

wh ere X is a real-valued numeric expression. 

Ca n be used in CALC mode. 

27 
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ASINH 

ASHIH( X ) 

where X is a real-valued numeric expression. 

Can be used in CALC mode. 

ACOSH 

ACO::;H ( X ) 

where X is a real-valued numeric expression, X ~ 1. 

Can be used in CALC mode. 

ATANH 

RTRI·IH( X ) 

where X is a real-valued numeric expression, - 1 < X < 1. 

Can be used in CALC mode. 

Other Functions Performing Calculations 

GAMMA 

GAi'1t'1A ( X ) 

Inverse Hyperbolic Sine 

l 

Inverse Hyperbolic Cosine 

Inverse Hyperbolic Tangent 

Gamma Function 

where X is a real-valued numeric expression whose range is defined as fo llows: 

X not equal to zero or a negative integer. 

- 253 < X < 254.1190554375. 

Within the range - 263 < X < - 253, certain values of X cause GAr1r1A ( X ) to underflow as indicated 
by 1he graph of G A l'It'1 A ( X ). 

For X < - 263. IG A 1'11'1 A ( X )I < 1·1II·II;:EAL. so GAI1I'1A( X ) will always underflow here. 



J 

GAMMA (continued) 

If X equals a positive integer, G A t'HI A ( X ) - FA C T( X - 1 ) , 
In general , GAI'I~IR ( X ) ~ r (X), defined for X > 0 as 

f(X) ~ l oor -'e -'dt 
o 

and defined for other values of X by analytic continuation . 

Can be used in CALC mode, 

LOG2 

I LOG2( X ) 

where X is a real-valued numeric expression , X > O. 

LOG2 ( X) 10 (X) ~ ~ 
g2 In(2) 

Can be used in CALC mode, 

SCALE10 

I SCALE10 (x " P ) 
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Base 2 Logarithm 

Power of Ten Scaling 

where X is a real-valued numeric expression and P is a real numeric expression that must evaluate to an 
integer value . 

Multiplies X by 10 raised to the power P by adding P to the exponent of X. You will find SCALE 1 (1 

useful in preventing intermediate underflows and overflows in long chain calculations. 

Can be used in CALC mode. 
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Integer Round 

IROUND 

I F:OUflD <X> 

where X is a real-valued numeric expression. 

Rounds X to an integer using the current 0 F' T I (I t-l P (I U H D setting. 

Can be used in CALC mode. 

Round to Integer 

Functions Providing Information 

NAN$ Not-a-Number Diagnostic Information 

where X is a real-valueq numeric expression. 

Returns a string representing the error number contained in its t~ .:d·j argument; that is , the number of 
the error that caused the t·l.:d·j to be created. The string returned is of the same form as the number 
returned by the EF:Rt·l function (refer to the HP-71 Reference Manual) . However, the LEX identification 
number is 0 for all t~dt·-I S created by Math Pac functions since the Math Pac uses only HP-71 error 
messages when creating t-l .:':I t4 s. 

If X is not a t·lat·l, then t·lAtH( X > returns a null string. 

Not usable in CALC mode. 

NEIGHBOR 

where X and Yare real-valued numeric expressions. 

Nearest Machine Number 

Returns the nearest machine-representable number to X in the direction toward Y. This is the machine 
successor (or predecessor) of X depending on the relative location of Y. You will find t·lE I GHBCIF: useful 
when you wish to evaluate a function in a local neighborhood of a given value. 

Can be used in CALC mode. 
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TYPE Expression Type and Dimension 

I TYPE ( X) 

I where X is a real-. complex-, string-, or array-valued expression. 

Returns an integer from 0 through 8 depending on the type and dimension of X as shown in the follow­
ing table. 

Except for string and array arguments. can be used in CALC mode. 

X 

Simple real (includes ItHEGER . 
S HORT . and F~EAL simple 
variables.) 

Simple complex (includes COMP LEX 
and COt'1PLE :l< SHOln simple 
variables.) 

Simple string 

I IHEGER array 

SHOF.:T array 

F~ EAL array 

cor'1PLE:< SHORT array 

COr·1PLE:·: array 

String array 

Examples 

COSH, SINH, ATANH, ACOSH 
Lnput/Result 

T YPE ( X) 

0 

1 

2 

3 

4 

5 

6 

7 

::: 

C I] ". H ( 0) ~I E~N~D~L~I N~E~I Hyperbolic cosine of a numeric constant. 

1 
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2~380 , 13£18825 

>~=9 1 END LINE I 
ATAtlH (1 /S C!R (:.:» I END LINE I 

,3 4657359028 

ACl)::;H (C OSH (2£H3» I END LINE I 

2£10 

LOG2, IROUND 

Input/ResuIt 

LOG2 (2 A 1?::' I END LINE I 

17 

OF'T I Ofl ROUflD t·IEAR I END LINE I 

IF:OUHD(234, 5) I END LINE I 

234 

OPTIDN ROUND POS IENDLINE I 

IPOUHO(234,5) I ENDLINEI 

235 

Hyperbolic sine of a numeriC expression. 

Inverse hyperbolic t.angent of a numeric ex­
pression with a numeric variable. 

Inverse hyperbolic cosine of a numeric 
expression. 

Logarithm (base 2) of a numeric expression. 

Rounds to the nearest integer (the nearest even 
integer in case of a Lie). 

Rounds to the nearest larger integer. 



NAN$, NEIGHBOR, TYPE 

Input/Result 

X=TF:AP< nil., 2) IENDLINE I 

l,IF.:H: In',i.') id At'g 

:.: I END LINE I 

t-JAII$ ( :~) I END LINE I 

1 1 

t-JEIGH80F.:< 1 ., 5) I ENDLINE I 

NEIGHBOR( 1, -10) I ENDLINE I 

.999999999999 

l i E I GHE:Cq;: ( 1 E400 , 1 E401;' I END LINE I , 

1,00000000001E400 
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Sets trap value :2 for I ',.!l . Refer to the HP-71 
Reference Manual for information on the T R A F' 
function. 

1rap value 2 for I I,} L causes a warning, not an 
error, to be given when the invalid operation 
::: I I'l ( I H F;' is executed. 

The invalid operation assigns t·~ .~ t-l (Not~a­

Number) to ~< , since . It,} L has a trap value of 2 . 

The message number associated with the value 
t·~ .:d~ identifies the In "/ ali dAr'~ message. 

The nearest machine number to 1 in the direc ­
tion toward 5. 

The nearest machine number to 1 in the direc­
tion toward - 1 0 . 

The nearest machine number to 1 E 4 0 0 in the 
direction toward 1 E 4 <] 1. 



j·lEIGH80R ( 1 , 234 E-63, (1) I ENDLINE I 

1 .2 3399999999E-63 

I NTEGER I, ,J0:3 , 9) IENDLINEI 

COI'IF'L EX S HORT 2 ( 2 ) , I, IENDLINEI 

TV PE ( Z); TVP E( I)JTV PE (J); TVPE (Z) 
.' TYPE O D I END LINE I 

I) 3 6 1 

The nea rest machine number to 1 , 234E-63 
in the direction toward 0 . 

The numbers returned by 1'/ F' E identify the 
type and dimension of each of the expresr- ions. 



Section 5 

Complex Functions and Operations 

Many useful functions are defined for complex as well as real a rguments. The Mat h Pac allows you to 
use many HP-71 keywords for bot h complex and real arguments. In addition, t his section describes 
other keywords defined specifically for complex operations. 

All the funct ions and operations described in th is section (except fiB::;, ARG, COt~J, and the relat ional 
operators) return a complex ·type resulL 

With the exception of the ~: E C T function, all complex numbers Z and Ware assumed to be in recian­
gular, not polar, form. 

The two-dimensional nature of these functions precludes giving simple bounds for the arguments that 
will avoid underflow and overflow messages. 

Operators 

+ Addition 

I -
z+w 

where Z and/or Ware complex-valued numeric expressions. 

Can be used in CALC mode. 

Unary Minus 

-z 
I where Z is a complex-valued numeric expression. 

Can be used in CALC mode. 
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Subtraction 

z- w 

where Z and/or Ware complex-valued numeric expressions. 

Can be used in CALC mode. 

* Multiplication 

n w 

where Z and/or Ware complex-valued numeric expressions . 

Can be used in CALC mode. 

I Division 

J 
where Z and/or Ware complex-valued numeric expressions, W .. (0,0). 

Can be used in CALC mode. 

Exponentiation 

IZ"W 
I where Z and/or Ware complex-valued numeric expressions. 

-----------------------
Returns the principal value of ZW = eW 1n(l) . 

Can be used in CALC mode. 



r 
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Logarithmic Functions 

LOG 

LOG ( Z) or U l ( Z) 

where Z is a complex-valued numeric expression, Z =1= (0 ,0). 

If Z ~ x + iV, and R (cos 8 + i sin 8) is the polar representat ion of Z , then 

LOG( z) ~ In R + i8. 

where - 1l" ~ () ~ 1l" (radian measure). 

Can be used in CALC mode. 

EXP 

I EXP ( Z) 

I where Z is a complex-valued numeric expression. 
, 

If Z ~ x + iV , then 

E::<P ( Z ) = eX + iy = e X (cos y + is in V). 

I 
where y is taken to be radian measure , 

Can be used in CALC mode. 

Natural Logarithm 

Exponential 
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Tr go ometric and Hyperbolic Fun tio s 

All trigonometric calculat.ions take their arguments to be in radian measure regardless of the angular 
set.ting. 

SIN 

SIN(l) 

where Z is a complex-valued numeric expression . 

If Z - x + iy , then 

S I II ( Z ) - sin (x + iy) - sin x cosh y + i cos x sinh y . 

Can be used in CALC mode. 

COS 

( 0 '3( Z ) 

where Z is a complex-valued numeric expression. 

If Z - x + iy , then 

C (I S ( Z ) = cos (x + iy) .... cos x cosh Y - i sin x sinh y. 

Can be used in CALC mode. 

TAN 

TR,J( l) 

where Z is a complex-valued numeric expression. 

If Z - x + iy , then 

TRfI ( l) _ tan (x + iy) _ sin (x + iy) 
cos (x + iy) 

Can be used in CALC mode. 

sin x cos x + i sinh y cosh y 
sinh2y + cos2x 

Sine 

Cosine 

Tangent 
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SINH Hyperbolic Sine 

SIHH( Z) 

where Z is a complex-valued numeric expression. 

If Z ~ x + iy. then 

~; I H H ( z::. ~ sinh(x + iy) ~ (-I) sin ( - y + ix). 

Can be used in CALC mode. 

COSH Hyperbolic Cosine 

COSH( Z) 

where Z is a complex-valued numeric expression. 

If Z ~ x + iy . then 

CDSHC: l) ~ cosh (x + iy) ~ cos ( - y + ix). 

Can be used in CALC mode. 

TANH Hyperbolic Tangent 

I TAfjH ( l) 

where Z is a complex-valued numeric expression . 

If Z ~ x + iy . then 

TAtjHC: l) ~ tanh (x + iy) ~ ( - i) tan ( - y + ix). 

Can be used in CALC mode. 



40 SectIon 5: Complex FunctIons and Operations 

Polar/Rectangular Conversions 

POLAR Rectangular to Polar Conversion 

I POLAIU Z ) 

where Z is a real- or complex-valued numeric expression. 

If Z - x + iy . and R (cos 0 + i sin 0) is the polar representation of Z, then 

PO LAR ( Z) - (R , 0) 

The angle 0 is expressed in degrees ( - 180 .. 0 .. 180) or radians ( - ". .. 0 .. ".) according to the 
current angular setting . 

Can be used in CALC mode. 

RECT 

f-ECT( Z) 

Polar to Rectangular Conversion 

where Z is a real- or complex-valued numeric expression. 

RE CT is the only keyword in this section that assumes its argument Z to be in polar form . 

If Z - (R ,O), where R (cos 8 + i Sin 0) is the polar representation of the complex number x + iy, then 

RECT ( z) - x + iy 

The angle 8 is taken to be in degrees or radians according to the current angular setting . 

Can be used in CALC mode. 

"eneral Functions 

SORT 

SO RT ( Z ) or ~:; OR ( Z ) 

where Z is a complex-valued numeric expression . 

Returns the complex principal value of the square root of Z . 

Can be used in CALC mode. 

Square Root 
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SGN 

SGN( Z ) 

where Z is a complex-valued numeric expression. 

Returns the un~t vector in the direction of Z; that is, 

where Z ~ x + iy. 

SGfH z) _ I z . I 
x + Iy 

liZ ~ (0 ,0), then SGtl( z) ~ Z. 

Can be used in CALC mode. 

ABS 

AE:S(z) 

where Z is a complex-valued numeric expression. 

II Z ~ x + iV , then 

x + iy 

RE:S ( Z) ~ Ix + iy l ~ \lx2 + y2 

ASS ( Z ) always returns real type. 

Can be used in CALC mode. 

Unit Vector 

Absolute Value 
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ARG Argument 
-

APG( Z) 

where Z is a real· or complex·valued numeric expression. 

If Z ~ x + iy and R (cos 0 + i sin 0) is the polar representation of Z, then 

ARG ( z) ~ O. 

The angle 0 is expressed in degrees ( - 180 '" 0 '" 180) or radians ( - ~ '" 0 '" ,,) according to the 
current angular setting . 

APG( Z) always returns real type. 

Can be used in CALC mode. 

CONJ 

[ON,J ( Z ' 

where Z is a real· or complex.valued numeric expression. 

If Z ~ x + iy, then 

C.OrlJ (Z ) ~ x - iy 

C (I N oj ( Z \ always returns the same type (real or complex) as Z . 

Can be used in CALC mode. 

PROJ 

where Z is a real- or complex-valued numeric expression . 

If Z - x + iy, then 

or 

F'RO ,) ( Z ) 

Can be used in CALC mode. 

Z 

Inf + iO 

if AE:S ( Z) '" I nf 

if A8 :3 ( Z ) 

Complex Conjugate 

Projective Infinity 

In f_ 
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Relational Operators 

=, <, > , #, ? Equal or Unordered 
--------------------------------------

Z comparison operator W 

where Z and/or W are complex-valued numeric expressions. 

When at least one of two expressions is complex valued , only two comparison results are possible: 
either the expressions are equal or they are unordered (or unequal , which is equivalent to unordered in 
this case) , 

Suppose Z - x + iy and W ~ u + iv , 

If x ~ u and y ~ v, then any comparison that contains = is true (that is, evaluates to 1), 

If x "* u or y "'# v, then any comparison that contains ** or '? is true. 

Any comparison that contains < or > without ? or # produces an exception. 

Can be used in CALC mode, 

Examples 

t, -, *, / 
Inpul/Resull 

'; TD I~ COI'IPL Ei< Z, I,J I END LINE I 
2:' .. 4 ,.5) @ 1·J=(-3.2) I ENDLlNE I 

Z+W I ENDLINEI 

( 1 .' 7) 

3+Z+lJ+1I ENDLINEI 

cl~ I END LINE I 

(7 .. 3) 



44 Sect,on 5 Complex Functions and Operations 

(2, 3 I l(4,S) I ENDLINE I 

(-7 )22) 

0.2)/(3 .. 4 ) IENDLINEI 

2/ <3 .. 4) I END LINE I 

(.24,.-,32) 

" LOG, EXP 

Inpu t/Result 

F n; .. I END LINE I 
( :3 .. 4 ) A ( 6.. 3) rl E""N""DocL-', N"'E""I 

( 1,3472,:3,4565) 

LOG ( ( 1 , 2:' ) I END LJNE I 

«(1,:::047,1, U371) 

EXP( (1,2) ') IENDLJNEI 

(-1.1312 .. 2."?1?) 



SIN, TAN, COSH 

Input/Result 

FI X41 ENDLINEI 
8ItH (2 1 , 2) [ ENDLINEI 

(3. 1477 } -1,9 :::65) 

TAt-~( (5 .. 5») I ENDUNE I 

(-4,9401E-5, 1 .0 0[11 ) 

COSH«Z .• 3::0::0 IENO LINE I 

(-3,7245 .. (1.511:3) 

ASS, ARG, CONJ, PROJ 

Input/Result 

FI X4! ENDLlNE! 

A8:3 « 3 .. 4) I ENDlINE I 

DEGREES ! ENOLlNE ! 

ARG«3 .. 4)::0 ! ENOLlNE ) 

5~.1::l01 

RAD I AW3) ENOLlNE ) 

ARG ( (3} 7) I END LINE I 

-1.1659 
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The fourth quadrant angle 0 measured in radi­
ans, which is the argument of the complex num­
ber 3 - 7i. 
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:::;T[I I~ CO~·LJ ( (1.,2) ;. I END LINE I 

( 1 1 -2) 

PRO,J ( ': - I n f .' - I n f) ) I END II NE I 

(Inf .. O) 

PPO,J ( I~ 1 ., 2)) I ENDLINE I 

POLAR, RECT, SGN 

Input/Resu lt 

STD IENDLINE I 

DEGI"EE'3 I END LINE I 

POLAR(-l) IENDLINEI 

(1 1 1::::0) 

F I :,:4 I END LINE I 

P OLAP ( (3 ., 4» I ENDLINE I 

(5,OI30C1 .• 53,1301) 

F:AD I Rfj~, I END LINE I 

RECTO: (-5) P I / 4 );' IENDLINEI 

Rectangu lar to polar conversion for a real 
argument. 

The absolute value (r) is 1 and the argument (0) 
is 1 :::: (1 degrees. 

Rectangular to polar conversion for a complex 
argument. 

The absolute value (r) is 5 , (10(1 (1 and the argu­
ment (0 ) is 5:3 , 1 3 (1 1 degrees. 

Polar to rectangular conversion for a complex 
argument. T he absolute value (r) is 5 and the 
argument (8) is -3"./ 4 radians. Since the R 
given is negative, this is the reflection of the polar 
point (5,PI/ 4) through the origin. 



0) 

\1-

ar 

(-3,5355~-3,5355) 

SGN« 1 ) 1;') IENDLINE I 

0],7071,1.3.70( 1) 

SORT, LOG 
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The real part (x) and the imaginary part (y) are 
both -3,5355. 

Note the behavior of :3 C! R T and L CI G at the branch cut. Refer to the discussion of branches under the 
"Additional Information" topic below. 

Input/Result 

FI )-::4 I~ SQRT( (1) 2);' IENOLINEI 

( 1. 2?2~j.' (1. 7:::62) 

SQRT«-16,O» IENDLINEI 

( 1.3,00(10.,4, (HJ~j0;' 

SQRT«-16, -0)) IENDLINEI 

(0. (1I~1)0 .. -4,000[1) 

LOG« E:><P(S).,(J)) I END LINE I 

(5,(n](u:1,3,1416) 

LOG«-E:'P(S).' -[))) IENDLINE I 

(5.(H300,,-3. 1416) 
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Additional Information 
In genera l, t he inverse of a function ((z)-denoted ( - I(z)- has more than one value for any argument z. 
Ho\,.:ever, the Math Pac ca lculates the single principal value, which lies in the part of the range defi ned 
as the principal branch of the inverse function ( - I (z). 

The iJlustrations that follow show the principal branches that the Math Pac uses for SORT and LOG . 
The left-hand graph in each figure represents the cut domai n of the inverse func.tion; the right.-hand 
graph shows the range of lhe principal branch. The blue and the black lines in the left-hand graph are 
mapped, under the inverse function , to the corresponding blue and black lines in the right-hand graph. 

SQRT 

Vz ~ \Ir ."12 for - ,,- .. 0 .. ,,-
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LOG 

LN(z) In r + iO for - 11" ~ 0 ~ 11' 

;" 
~ 

" '-
/ "-

/ "-
I \ 

/ ~ \ .... 
I / 

\ \ I 0 j 0 

/ 

.... / 
~ I 

\ 
I 

\ 
/ 

"- /' .... 
" '-

I I 

IIIIIIIIINIII, ,/11#111111111 

z w ~ LN(z) 

The principal branch of w' is derived from that of the log function and the equation: 

w' ~ exp (z LN wI, 

where LN denotes the single~valued function. 

To determine all values of the inverse function , use the expressions below to derive these values [rom 
the principal values calculated by the Math Pac. In these expressions, k = 0, ± l , ± 2. and so on, and 
uppercase leit.ers denote single-valued functions. 

v' ~ ± SQR(z) In(z) ~ LN(z) + 2"ik 
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Array Input and Output 

The keywo rds in this section enable you to: 

• Fill an array with values . 

• Display or print values already in an array. 

Assignments 

= 

I·IAT A= B 

where A and B are both vectors or both matrices. 
Array B may be either real or complex type. 
II B is complex, then A must be complex. 

Simple Assignment 

If B is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to 
zero. 

Implicitly redimensions A to be the same size as 8 , and assigns the value of every element in B to the 
corresponding element in A. 

To halt operation , press I AnN I twice. 

Not usable in CALC mode. 
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= () Numeric Expression Assignment 

where X is either a real- or complex-valued numeric expression. 
If X is complex , then array A must be complex type. 
If X is real , then A may be real or complex; if complex, all imaginary parts of all elements in A are set to 
zero. 

Assigns X to all elements of A. Array A is not redimensioned . 

To halt operation. press I ATTN I twice. 

Not usable in CALC mode. 

CON 

~l AT A=COfl [ ( X [, Y) ) ] 

Constant Array 

where A is either a real- or complex-type array, and the optional redimensioning subscripts X and Yare 
real-valued numeric expressions. X and Yare rounded to the nearest integer just as are subscripts in 
D I "1 statements. 

Assigns the real value one to all elements of A. If redimensioning subscript(s) are provided , A is explicitly 
redimensioned according to the number and value of those subcripts. 

Not usable in CALC mode. 

ION Identity Matrix 

r1 AT A=IDfl [ ( X .. Yl ] 

where A is a real- or complex-type array and where the optional redimensioning subscripts X and Yare 
real-valued numeric expressions with the same rounded integer value. X and Yare rounded to the 
nearest integer just as are subscripts in D I ~1 statements. If X and Yare not provided , A must be a 
square matrix (it must have two equal subscripts). 

If no redimensioning subscripts X and Yare provided, then A will become an identity matrix. If 
redimensioning subscripts X and Yare provided, then A is explicitly redimensioned to a square matrix 
with the upper bound of each subscript equal to the rounded integer value of X and Y and then assigned 
the values of an identity matrix . 

Not usable in CALC mode. 



Section 6: Array Input and Output 53 

ZER Zero Array 
----------------------------------------~ 

I I1AT A~ZEF: [<X [ ., Y] ) J or I'IAT A~ZEF': O [ ( X [.. Y] :O J 

where A is either a real- or complex-type array, and the optional redimensioning subscripts X and Yare 
real-valued numeric expressions. X and Yare rounded to the nearest integer just as are subscripts in 
D HI statements. 

Assigns zero to all elements of A. If redimensioning subscript(s) are provided , A is explicitly 
redimensioned according to the number and value of those subcripts . 

Not usable in CALC mode. 

Array Input 

INPUT Assign Values from Keyboard Inpul 

MAT I fWUT A [. BJ ... 

where A (and B) are real- or complex-type array(s). 

Assigns real or complex numbers to the specified array(s). Complex values cannot be assigned to real 
array elements. 1'1 A T J I~ PU T prompts with the name of an array element and then accepts a numeric 
expression from the keyboard, evaluates that expression , and assigns the result as the value of that 
element . For each array, 1'1 AT J H F' U T gives prompts for the elements in row order (from left to right in 
each row, from the first row to the last). If there is more than one array. they are handled in the order 

specified. 

When the name of an array element is displayed , enter its value by typing in the numeric expression and 
then pressing I END LINE I. You can enter values for several consecutive elements by separating the val­
ues with commas . When an array is filled, the remaining values are automatically entered into the next 

I 
array . After you press 1 END II NE I. the computer will display the name of the nexl element (if any) 10 be 
assigned a value. 
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INPUT (continued) 

l in other respects, t'l A T I t~F' UT acts as does I I~F'UT. For instance: 

• The Command Stack is always active during t'lAT I HPUT execution . You can move up and down 
in the Command Stack with ~, IYI, []J [X] , and []J W without first pressing []J 1 CMOS I· 

• You can use a direct execute user-defined key to provide the response to the MAT I NF'UT 
prompt. 

• The IIJI VIEW I key sequence and the []J 1 ERRM 1 key sequence are active during ~lAT I tlF'UT 
execution. 

• If you are making a response to a 1'1 R T I t lF' U T statement, but have not pressed 1 END II NE I, 
pressing I ATTN I once clears the typed entry, allowing another entry to be typed . If you press 1 ATTN 1 

twice, the HP-71 clears the entry, pauses the program, and clears the display. 

I Not usable in CALC mode. ~ 

Array Output 

lb halt the operation of any of the keywords described below you need press I AnN I only once. 

OISP Display in Standard Format 

t'lAT DISP A [ ; BJ.. . [ ' ] 

where A (and B) are real- or complex-type array(s). 

Displays the values of the elements of the specified arrays. The values are displayed in row order. Each 
row begins on a new line: a blank line is displayed between the last row of an array and the first row of 

the next array. 

The choice of terminator-comma or semicolon-determines the spacing between the elements of an 
array. 

Terminator Spacing Between Elements 

Close: Elements are separated by two spaces. A minus sign. if present , 
occupies one of the two spaces. 

Wide: EJements are placed in 21-column fields. 

If the last array specified doesn ' t have a terminator, the array will be displayed with wide spacing be­
tween elements. 

Not usable in CALC mode. 
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PRINT Print in Standard Format 

11A T F'F~ INT A [ ; BJ...[ · ] 

where A (and B) are real- or complex·type array(s). 

Prints the values of the specified arrays. Operation is identical to I·t AT D 1:3 F', except that the output is 
sent to the PR I IH ER I~; device, which requires Hp·lL. If no PF: I IHER I S device is present, out­
put is sent to the display. or to the HP·IL D I ~; F' L A 'y' I ~; device. Also. you can override the CR/LF 
normally generated by 1'1 A T F' F: I IH with the EflD L I I j E statement. END L IN E is described in the 
Hp·71 Reference Manuaf and in section 13 of the Hp·?1 Owner 's Manual. 

Not usable in CALC mode. 

DISP USING Display Using Custom Format 

format string . [ , ] [ , ] 
NAT [lISP U:3HjG .. A B ... 

line number .: ,: 

where A (and B) are real- or complex-type array(s). 

Displays the values of the elements of the specified arrays in a format determined by the format string or 
by the specif ied HIAGE statement identified by the line number. (Refer to the Hp·?1 Reference Manual 
for information about 0 I SF' U:,; I l·j G. format strings . I ~IAGE statements . and their results). 

If any array is complex type. the corresponding field specifier in the format string or I MAGE statement 
must be a complex field specifier. Refer to the description of the complex field specifier (C ( .' ) ) in 
section 3, page 22 , 

The values are displayed in row order. Each row begins on a new line: a blank line is displayed between 
the last row of an array and the first row of the next array . 

The terminators between the arrays-commas or semicolons-serve only to separate the arrays and 
have no effect on the display format. 

The Math Pac must be plugged in to F: E I·W 1'18 ER a program containing a 11 A T D I :,; P U~; I I·j G [hne 
number] statement ; otherwise, the line number will not be correctly updated. 

Not usable in CALC mode. 
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PRINT USING Print Using Custom Format 

I t'lAT PRItH U',IHG 
format string , [ , ] [ , ] 

.' A B .. , 
line number .: ; 

where A (and B) are real- or complex-type array(s). 

Operation is identical to t'l A T [I I :3 P U:3 HI G, except that lhe output is sent to the P R I NT E R I "; 
device which requires HP-IL If no F' f': !tHE": I S device is present, output is sent to the display, or to 
the HP-IL D I SPLAY I:, device. Also, you can override the CRI LF normally generated by 
~IAT PR I IH US I l·lG with the ENDL I HE statement, EI~DL I HE is described in the HP-71 Ref­
erence Manual and in section 13 of the Hp· 71 Owner 's Manual . 

Not usable in CALC mode. 

Examples 
With the opt ional delay of 8 or larger (infinite line replacement delay), you press I END LINE I (or any 
other key) to display t he next line. So you can control how long each array row is displayed. 

CON, ION, ZER, OISP 

Input/Result 

OPT I 01·1 BASE 1 I~ STD I END LINE I 

D HI A ( 3, 3) , 8 ( 1 ) I END LINE I 

COt1PLE~< C( l~] J 20) I ENDLINEI 

t'lAT A;ID H I ENDLINEI 

t,tAT [I I SP A ; I END LINE I 

1 0 0 
o 1 0 
o 0 1 

B is dimensioned to be a one element vector. 

Displays the identity matrix A with close spacing 
between the elements. 



l,tAT B=ZER(2" 2) I ENDLINEI 

l'tAT [lISP 8; I ENDLINEI 

[i [i 

\) \) 

MAT C=COH(3 .. 3) I END LINE I 

l'tAT 0 I SF' C.: I END LINE I 

( 1 .' 0 ) ( 1 .' ~1 ) ( 

( 1 .' '3 ) ( 1 .' ~j ) ( 

( 1 .' 0 ;. ( 1 .. 1-3 ) ( 

INPUT 

[nput!Result 

OPT I 011 BRSE 1 I END LINE I 

1 
1 
1 

[I I f'I A ( 2 .' ::3;' .' 8 (3) I END LINE I 

OPTIOI·j BRSE [i I ENDLINEI 

COI'IPLE>< (2., 1) IENDLINE I 

l'tAT ItlF'UT R., E:., C I END LINE I 

1 , 2 } ::3 1 4 I END LI NE I 

.' 0 ) 

.' 0 " 

.' 
\) ;. 
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Redimensions B from a one-element vector to a 
2 x 2 matrix and assigns to it a zero array. 

Redimensions C and assigns to it a constant 
array. 

Declares C to be a 3 x 2 complex array (remem ­
ber we are in OPT I 0 11 E:A:,:E [1 ) , 

Prompts for the first element's value. 

More than one value can be entered. 

Prompts for the fifth element's value. 
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5, 6 , 7 I END LINE I 

E: ( 2 ) " • 

8, 9 , 10 I END LINE I 

C( O .. 1)'7 • 

1 ~ 2 I ( 5 J 6) J ( 7 J :::) [END LINE I 

IIAI, IENDLINEI 

5TD ~ ~lAT DI~:F' A ; 8 ;C.: IENDLINE I 

1 2 
4 " ._' 

7 

9 

< 10 .. 0 ) 
(2) ~j ) 

(? J 8) 

3 
6 

( 1 J 0) 

Enters values for the last two 
elements of A and the first element of B. 

Enters values for the last two elements of B and 
tbe first element of the complex array C. 

Enters values for the next four elements of C. 

Enters l'not a number" for the last element of C. 

Displays each array in sequence, with a blank 
line between each. 



and 

,f C. 

< 

DISP USING 

Input/Result 

10 OPTION BASE 1 @ INTEGER A(5,5) 

15 WIDTH 22 @ DELAY B 

20 COMPLEX SHORT Z(3,4) 

25 MAT A ~ IDN @ MAT Z~ ((4,5)) 

30 MAT DISP USING 'DDD,ZZZ';A,A 

35 MAT DISP USING '#,D';A @ DISP 4 

40 MAT DISP USING 100;Z 

45 DELAY 1 

100 IMAGE C(K,2D, 'j') 
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Causes the output to appear in the display as 
shown below. After each display, press I END LI NE I 
to produce next display. 

Assigns the identity matrix to A and the 
complex number ( 4 1 5 > to every element of Z. 

This format string consists of two field 
specifiers, DOD and Z Z Z. Each element of A is 
displayed according to these field specifiers used 
repeatedly until all elements have been displayed. 
The final element of A is displayed according to 
[I [I [I. Then a blank line is displayed, followed by 
another display of all elements of A. The field 
specifier ZZZ (the next specifier in the format 
string) is used to format the display of the first 
element during this second display of A. 

The # symbol supresses the automatic end-of­
line sequence (CR/LF) following the display of A. 
This causes 4 to be displayed on the same 1 ine 
as the last element of A. 

The I t1 AGE statement must use the C ( " ) form 
to format the display of a complex array. The 
parentheses must contain two numeric field 
specifiers. 
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'3 (1 (1 (1 

1000 

000£1 1 ~2H:H) (1 

000 0000 1000 
0000 00')~) 1 

0000 '3')00 

0001 0000 (1 

[1(1[1 ~30(11 [H:uj0 

00fH) '3001 0 
(1(1(1 000(1 (1(101 

The 0 format symbol replaces leading zeros with 
blanks. Since A is an identity matrix, element 
(1,1) is 1. Therefore the two leading zeros are 
replaced with blanks, and element (1,1) is dis-
played as 1. The Z format symbol fills each 
leading zero with '), so element (I ,2) is displayed 
as €10~:1 . The remaining elements, in roworder, 
are displayed according to the format string 
[rOO .. ZZZ used repeatedly. 

After the last (fifth) element of the first row is 
displayed, an end-or-line sequence (carriage re­
turn, line feed) is sent, causing the display of 
element (2,1) to start a new line. 

The field specifier [r 0 [r formats the display of 
the last element of A, causing the display of 1. 

Following the display of the last element of the 
last row, a second end-oC-line sequence is sent, 
causing the display of a blank line between the 
two displays of array A. 

Since the variable I ist following the format 
string in line 30 is A ~ A, array A is displayed 
twice. This time, element (1,1) is displayed 
according to the field specifier Z Z Z, since D [I 0 
was used just above for the last element of A 
during the first display of this array. 

Since this is the display of the In,,! array in the 
variable list of line 30, no blank line is displayed, 
even though this display line ends with the last 
element of the last row of A. 



lith 

'h 
yed 
'r, 

is 

f 

,e 

Ie 

I [I 

,e 
'ed, 
st 

a:::1100~~1 

~~1010 ~~1 

a:::l~~1010 

a:::t~jO~j 1 4 

4 
" " '-' i ::. 

( 4 5 i ) 

4 .. " ,J i ) 

( 4 " i ::. 
" '-' 

4 • " '-' i ) 

, 4 " ,-' i , .:: 

0:: 4 " i ::. ( 
" '-' 

4 " -' i 

4 " i .. '-' 

) 0:: 

) 0:: 
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Since the portion of the format string of line 35 
that controls character display consists only of 0, 
the elements of each row of A are displayed with 
no extra characters or spaces. 

The II symbol in the format string of line 35 
supresses the end-of-line sequence normally sent 
after the display of the final row of the last array 
in the variable list. 

The symbol f:: in the format string of line 100 
specifies a compact field, resulting in the display 
of no leading or trailing blanks. This symbol 
controls the display format of the real part of 
each (identical) element of Z. The display of the 
imaginary part of each element is controlled by 
20 . flinte the imaginary part, 5, cOnfiiRtR of only 
one digit, a leading blank is displayed. The COm­

plex image specification C < ) causes the display 
of the parentheses and comma. 

The display of each row is ended with an end-af­
line sequence, so each new row starts a new dis­
play line. 
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Array Arithmetic 

The keywords in this sect ion perform ari th metic operat.ions on arrays. The dimensions of the operand 
arTays must be compatible with the particular operation, as discussed below. 

• For addition and subtraction, the operand arrays mllst both be vectors or both be matrices, and 
they must have the same number of rows and the sa me number of columns. In this case we will say 
that the arrays are conformable for addition. 

• For multiplication of two arrays, the first array must be a matrix, while the second array can be a 
matrix or a vector. The number of columns of the first array must be equal to the number of rows 
of the second array. If these conditions are satisfied. we will say that the arrays are conformable for 
multiplication. 

• For transpose multiplication of two arrays, the first array must be a matri x, while the second array 
can be a matrix or a vector. The number of rows of the first array must be equal to the number of 
rows of the second array. If these conditions are sat isfied, we will say that the arrays are con­
formable for transpose multiplication. 

Operators 

=-

I1AT A= - B 

where A and B are both vectors or both matrices . 
Array B may be either real or complex type. 
If B is complex , then A must be complex . 

Negation 

If B is real, then A may be real or complex ; if complex , all imaginary parts of all elements in A are set to 
zero. 

Implicitly redimensions A to be the same size as B and assigns to each element of A the negative of the 
corresponding element of B. 

To halt operation, press I ATTN I twice. 

Not usable in CALC mode. 

63 
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+ Addition 

t'lAT A= B+C 

where A, B, and C are all vectors or all matrices, and B and C are conformable for addition. 
Arrays B and C may be either real or complex type. 
If either B or C is complex. then A must be complex. 
If both B and C are real . then A may be real or complex; il complex. all imaginary parts of all elements in 
A are set to zero. 

Implicitly redimensions A to be the same size as B and C. and assigns to each element of A the sum of 
the values of the corresponding elements 01 B and C. 

To halt operation , press I AnN I twice. 

Not usable in CALC mode. 

Subtraction 

NAT A= B- C 

where A, B, and C are all vectors or all matrices, and B and C are conformable for addition . 
Arrays B and C may be either real or complex type. 
II either B or C is complex, then A must be complex . 
If both B and C are real , then A may be real or complex; if complex, all imaginary parts of all elements in 
A are set to zero. 

Implicitly redimensions A to be the same size as B and C, and assigns to each element of A the dif­
ference of the values of the corresponding elements of B and C. 

To halt operation, press I AnN I twice . 

I Not usable in CALC mode. 
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()* Multiplication by a Scalar 

t'lAT A= ( X) l B 

where A and B are both vectors or both matrices and X is a numeric expression. 
Array B may be either real or complex type and expression X may be either real or complex valued. 
If either B or X is complex, then A must be complex. 
If both B and X are real , then A may be real or complex; if complex, all imaginary parts of all elements in 
A are set to zero. 

Implicitly red imensions A to be the same size as B and assigns to each element of A the product of the 
value of X and the value of the corresponding element of B. 

I 
To halt operation , press I AnN I twice. 

Not usable in CALC mode. 

* I tm T A= Bl C 

Matrix Multiplication 

where B is a matrix , A and C are both vectors or both matrices, and B and C are conformable for 
multiplication. 
Arrays B and C may be either real or complex type. 
If either B or C is complex, then A must be complex . 
If both B and C are real , then A may be real or complex; if complex , all imaginary parts of all elements in 
A are set to zero. 

Implicitly redimensions A to have the same number of rows as B and the same number of columns as C. 
The values of the elements of A are determined by the usual rules of matrix multiplication . 

To halt operation, press I AnN I twice . 

Not usable in CALC mode. 
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TRN * Transpose Multiplication 

11AT A= TR'l< B ).I:C 

where B is a matrix , A and C are both vectors or both matrices, and B and C are conformable for 
transpose multiplication. 
Arrays B and C may be either real or complex type. 
If either B or C is complex, then A must be complex. 
If both B and C are real. then A may be real or complex: if complex, all imaginary parts of all elements in 
A are set to zero. 

Implicitly redimensions A to have the same number of rows as the number of columns in B and the same 
number of columns as C. 

The result of this operation is the same as if the transpose of B (or the conjugate transpose of B, if B is 
complex type) was computed and then post-multiplied by C. However, the Math Pac uses special mul­
tiplication rules so that B does not have to be explicitly transposed prior to the multiplication. 

To halt operation, press I ATTN I twice. 

Not usable in CALC mode. 

Examples 

+, *, ( l*, TRN * 
InputjResult 

OPT I Ot·l 8A:3E 1 @ STO I END LINE I 

F: EAL A(2 , 3), S(3 , 4 ) IENDLINEI 

CO~lP LEX SHOR T e(3 , 1 ),0( 2 ), E O) 
I END LINE I 

~lAT A=IO,1(2,2 ) I END LINE I 

l'lAT C= «;3, 4 » *A I END LINE I 

MAT DIS F' C; IENDLINEI 

(3, 4 ) 
(0 .. [1) 

< (1 , ~:1) 

( 3, 4) 

C is redimensioned to 2 x 2 and every element 
of C is assigned the product of the complex num­
ber ( 3, 4 ) and the corresponding 
element of A. 

The array C. 



tion 

'or 

le 

is 
11-

I'IAT A= CON (. I'I A T C= C +A IENDLINEI 

NA T DISP C ; I END LINE I 

( 4 ., 4 ) 

( 1 .,0 ) 
(1 , 0 ) 
0:: 4 ., 4 :> 

I'IAT 8 = A*A IENDLINEI 

I'IAT DISP 8 ; I ENDLINEI 

2 2 
2 

J 11 AT I NPUT D I END LINE I 

0(1 ) 0 • 

( 1 , 2 ) , ( 3 .' 4 ) I END LINE r 

~IAT E=H:N 0:: C ) HI I END LINE I 

l,tAT OI ':;P E I ENDLINE I 

( 15 .. :::) 
( 29 .. 6 ) 

,-
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C holds the array sum of A and C. No 
redimensioning is necessary since C is already the 
correct size. 

The array C. 

B is redimensioned to 2 x 2 to hold the matrix 
product A* A. 

The array B. 

E is redimensioned to be a 2 element vector to 
hold the product of the conjugate transpose of C 
and the vector D. 

The array E. 
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Scalar-Valued Array Functions 

The keywords in this section are functions that use real- or complex -type arrays as arguments (except 
OET uses only real arrays) and give a real number as a value (except DOT can give either a real or 
complex number ). Like other Hp· 71 functions, they may be used alone or in combination with other 
functi ons to produce numeric expressions. 

Determinant Functions 

DET Determinant 

OET( A ) 

where A is a square real-type matrix . 

I Returns the determinant of the matrix A. 

To halt operation , press I AnN I twice. 

Not usable in CALC mode. 

-
DETL Determinant of Last Matrix 

--
DETl or DET 

---------------------------- -
Returns the determinant 01 the last real-type matrix that was: 

• Inverted in a 1'1 R T ... H l '.} statement (described in section 9) . 

• Used as the first argument of a NAT , . , SYS statement (described in section 9). 

DET l retains its value (even il the HP-71 is turned off) unti l another l·lRT ... IIW (with a real type 
argument) or a I1R T . . . SY S (with a real type lirst argument) is executed . 

Not usable in CALC mode. 

69 
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Array Norms 

CNORM One-Norm (Column Norm) 

CljO PI'1 ( A ) 

where A is a real- or complex-type array, 

Relurns Ihe maximum value (over ali columns of A) of the sums of the absolute values of ali elements in 
a column, Refer to the keyword description for A8S, page 41 in section 5, for the definition of the 
absolute value of a complex number, 

To halt operation, press I ATTN I twice, 

Not usable in CALC mode, 

RNORM Infinity Norm (Row Norm) 

where A is a real· or complex-type array. 

Returns the maximum value (over all rows of A) of the sums of the absolute values of all elements in a 
row, Refer to the keyword description for AE:S, page 41 in section 5, for the definition of the absolute 
value of a complex number. 

To hall operation, press I ATTN I lwice, 

Not usable in CALC mode. 

FNORM 

FtlOF't1 ( A ' 

where A is a real- or complex-type array. 

Frobenius (Euclidean) Norm 

Returns the square root of the sum of the squares of the absolute values of ali elements of A. Refer to 
the keyword description for A8S , page 41 in section 5, for the definition of the absolute value of a 
complex number. 

To haft operation. press I ATTN I twice. 

Not usable in CALC mode, 
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Inner Product 

DOT Inner (Dot) Product 

DOT ( X, Y) 

where X and Y are real- or complex-type vectors with the same number of elements . 

Returns X·Y, the inner product of X and Y. If both X and Y are real , then the result is real. If either X or Y 
is complex , then the result is complex. 

If X is a complex vector, then the complex conjugates of the elements of X are used to compute the 
inner product. 

To halt operation, press I ATTN I twice. 

Not usable in CALC mode. 

Subscript Bounds 

The following functions are useful in keeping track of array option base, number of dimensions, and 
size in each dimension, since these quantities may change when variables are dimensioned and 
red imensioned. 

UBND Subscript Upper Bound 

UBNO CA, N) m UBOUNO CA, N) 

where A is a real- or complex-type array and N is a numeric expression whose rounded integer value is 1 
or 2. 

Returns the upper bound of the Nth (first or second) subscript of A. If A is a vector, UBt, OCA, 2) 
- 1. 

I Not usable in CALC mode. 
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LBND Subscript Lower Bound 

L8NO~ A . N ) m L80UNOC A , N ) 

where A is a real- or complex-type array and N is a numeric expression whose rounded integer value is 1 
or 2. 

Returns the OPT I ON BRSE setting in effect when A was last dimensioned. If A is a vector. 
L811D(R .. 2) - - 1. 

Not usable in CALC mode. 

E mples 

DET, DOT 

Input/Result 

OPTIOt·l BA SE llENDLINEI 

011'1 A( 10,10 ) IENDLINEI 

rlAT A=IDtlI ENDLINEI 

1'IAT A= ( -3):!'A IENDLINEI 

OET<A) IENDLINEI 

596 4 9 

l·tAT A=IO tH3,3) IENDLINEI 

l·tAT A=(2HA I END LINE I 

l·tAT A=INV(A) I END LINE I 

DET I END LINE I 

Assigns - 3 to each diagonal element; all oLher 
elements remain zero. 

Displays the determinant of A. 

Assigns 2 to each diagonal element; all other 
elements remain zerO. 

Computes the inverse of A. 

Displays the determinant of the last real matrix 
inverted in a t'lAT , , , I t·n} statement or used as 
the first argument of a t'1 R T . , , ::: Y S statement. 
Refer to pages 77-79 in section 9 for definitions of 
I Nl} and SYS. 



d 

f 

8 

D H I A ( 1 '3 ) , B ( 10 ) I END LINE I 

l1AT A= ( 2 ) IENDLINEI 

l1AT 8=CO I'IIENDLINEI 

DO H A , 8 ) IENDLINEI 

rO l·IF·LE:·< C ( 1[1) I ENDLINEI 

MAT C= « (! .. 2 » I ENDLINEI 

DOT ( C , A ) I ENDLINEI 
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Assigns 2 to each element of A. 

Assigns one to each element of B. 

Displays the inner product of A and B. 

Assigns the complex number ( 1 J 2) to each 
element. of C. 

Displays the inner product (a complex number) 
of C and A. 

RNORM,CNORM, FNORM,UBND, LBND 
Input/Result 

OPTION BASE llENDLINEI 

o HI A ( 3, 5) I END LINE I 

l1A T A=COrll END LINE I 

RNOR1'1 ( A ) I END LINE I 

Assigns 1 to each element of A. 

Displays the row norm of A. 
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COI'1PLE X SHORT A ( 2 , 4 ) I ENOLINEI 

1'1 AT H IPUT A I END LINE I 

AU , ! )" • 

( 1 ,2), (3, 4 ), ( 5 .. 6 ), ( 7,H ) , (9, 1£1 ) 
( 11 ,1 2 ), ( 13 , 14 ), ( 15 , 16 ) 

I END LINE I 

RI·IDF:IH A ) I END LINE I 

7 0 .7 6913(u3172 

CI~OF: I'1 ( A ) I END LINE I 

32.56 1:3 5 8 0122 

FNOR I'1< A ) I END LINE I 

3:3,67 :3 159 2 117 

CO I'1F'LEX B (3') IENOLINEI 

UE:IW(A, 1 ) : U8ND ( A " 2 ) I ENOLINEI 

2 4 

UE:IW(8 , 1 ) ; U8 fID ( 8 , 2 ) IENOLINEI 

Displays the row nor m of A, 

Displays the column norm of A. 

Displays the Frobenius norm of A, 

First, displays the upper bound of A's fi rst sub· 
script, then displays the upper bound of A's sec­
ond subscript. 

First, displays t he upper bound of B's lirst sub­
script, then attempts to display the upper bound 
of B's second subscript. Since B has only one 
subscript, U B N D ( 8 , 2 ) returns - 1 . 
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L8t~O(A, 1 ) I ENDLINEI 
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Displays the OPT I Ofj BASE setting when A 
was last dimensioned. 



Section 9 

Inverse, Transpose and System Solution 

Operations 

INV 

I NA T A= IN ',,' ( B) 

where A is a matrix and B is a square matrix. 
Array B may be either real or complex type. 
I! B is complex, then A must be complex . 

Matrix Inverse 

If 8 is real. then A may be real or complex; if complex, all imaginary parts of all elements in A are set to 
zero. 

Implicitly redimensions A to be the same size as B and assigns to A the value of the matrix inverse of B. 

To halt operation, press I AnN I twice. 

I Not usable in CALC mode. 

TRN 

t'IAT A=H:fH B ) 

where A and B are matrices. 
Array B may be either real or complex type. 
I! B is complex , then A must be complex. 

Matrix Transpose or Matrix Conjugate Transpose 

I! B is real , then A may be real or complex ; if complex , ali imaginary parts of ali elements in A are set to 
zero. 

[ ImpliCitly redimensions A to be the same size as the matrix transpose of B. I! B is real, assigns to A the 
value of the matrix transpose of B. If B is complex, assigns to A the values of the matrix conjugate 
transpose of B. 

To halt operation, press I AnN I twice. 

Not usable in CALC mode. 

77 
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Solving a System of Equations 

The Math Pac provides a quick and accurate way to solve a system of linear equations involving real or 
complex coefficients. The first step in using this capability is to translate the system of equations into a 
triple of arrays: the result array, the coefficient array, and the constant array. The result array corre­
sponds to the variables in the equations; the coefficient array holds the values of the coefficients of the 
variables; the constant array holds the values of the constants in the equations. For example, if you 
wanted to solve the system of equations 

5x + 3y + 2z = 4 

7x + y + 3z = 14 

6x + 4y + 9z = 1 

then the result array would correspond to the array 

the coefficient array would be 

and t he constant array would be 

If we denote the result array by X, the coefficient array by A, and the constant array by B, then the 
system of equations can be written in matrix notation as AX = B. This is the form assumed by the S\'::; 
keyword. 
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SYS System Solution 

l'tAT X=SYS ( A , B ) 

where A is a square matrix , X and B are both vectors or both matrices, and A and B are conformable for 
multiplication. Refer to the beginning of section 7, page 63, for a definition of "conformable for 
multiplication. " 

Arrays A and B may be either real or complex type. 

~
f either A or B is complex, then X must be complex . 

If both A and B are real, then X may be real or complex ; if complex , all imaginary parts of all elements in 
X are set to zero. 

Implicitly redimensions X to be the same size as B and assigns to X the computed solution to the matrix 
equation AX = B. 

To halt operation, press I ATTN I twice. 

Not usable in CALC moriA 

Example~ 

INV, TRN 

Input/Resul t 

OPTIOt·l E:ASE llENOLINEI 

0111 AO, 3) IENDLINE I 

l'tAT A=IDt'II ENDLINEI 

MAT A= ( Z)*A IENOLINE I 

MAT A=INV(A ) I ENOLINEI 

l,tAT DISF' A .: I ENDLINE I 

e 
~, £1 [l 

~j e 
'-' [l 

0 £1 5 

Assigns 2 to all diagonal elements of A, All other 
elements are zero. 

Displays the inverse of A. 
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o Ii'1 C ( 3, 2 ) I END LINE I 
~1f1 T C=CO N I ENDLINEI 

HRT OISP C; I END LINE I 

1 
1 
1 

OH1 D(2, 2) I ENDLINEI 

t'1AT D=TR tH C) I END LINE I 

MAT DISP 0; I END LINE I 

1 1 
1 1 

COMPLEX SHORT 0 (2, 3 ), C(3,3) 
I END LINE I 

t'1AT D=« 1,2» I END LINE I 

t'1AT D I ',;P [I; I END LINE I 

( 1 ) 2) 
( 1 .' 2) 

( 1 ) 2 > 
( 1 .' 2) 

t'1AT 0 TRtHD> I ENDLINEI 

t'1AT 0 I SF' 0; I END LINE I 

(1.,-2) 
(1,-2) 
(1,-2) 

(1 ) -2 
( 1 ) -2 
( 1 I - 2 

( 1 ! 2 > 
( 1 , 2 > 

Assigns one to all elements of C. 

Displays C 

Computes the transpose of C and redimensions 
D to be a 2 x 3 matrix, 

Displays the transpose of C, 

Assigns the complex value ( 1 , 2;' to all ele­
ments of D, 

The complex matrix O. 

Redimensions D to 3 x 2 and ass igns D the 
value of its conjugate transpose. 

The conjugate transpose of 0 , 



HAT IN PU T C IENDLINE I 

C( l} l )? • 

1 , ( 1 , 2) , (C' , 10 ) I END LINE I 

C(2 " I)" • 

(1, 1 ), «(~ J3)., ( 5,1 4 ) [ ENDLINEI 

C(3,l)? • 

'. 1, 1 ) , (8, 5 ) I (-8 I 2 (1 ) I END LINE I 
1'lAT DISP C, I ENDLINEI 

( 1 , 0) 
( l,l) « (1 , 3 ) 
( -5 , 14) 
( 1 , 1 ) (0 .. 5 ) 
( -:3 ,20) 

1'lAT D= I N'..!(C) I ENDLINE I 

~IAT DISP 0; I ENDLINE I 

(- 3 ,-2) 
( 9 , -3 ) 
( -7, 09E-II " ::: ) 
(-3, -2 ) 
(-2,2) ( -1 ,, -2 ) 
( 1 , -1, l032E-ll ) 
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The complex mat rix C, 

Redimensions 0 to 3 x 3 and assigns to 0 the 
value of the matrix inverse of C. 

The inverse of the complex matrix C is the 
matrix 

['"+' 
- 2 + 6i -'-'] 9-3i 8i -3-2i 

- 2+ 2i - 1-2i 1 
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SYS 
To solve the system of equations given on page 78, namely, 

5x + 3y + 2z - 4 

7x + y + 3z - 14 

6x + 4y + 9z - 1 

we could use the following keystrokes. 

Input/Result 

OF'T I Of1 E:ASE 1 I~ ~n[l l END LINE I 

D I r'l X (:3 ;. ~ B (:3 ;. .' A ( 3 , 3::0 [ END LI NE I 

t'lAT INPUT B,A IENDLINEI 

B<1 I"~ • 

4, 14 , 1 I END LINE I 

5 I 3 2! 7 , 1 J 3 J 6., 4., :3 I END LINE I 

t'lAT :,:=:3\',,<A, 8 > I ENDLINEI 

t'lAT 0 I SP :': I END LINE I 

2 5566(137735::: 
-2.65094339623 
-. 415~~194 339623 

Assigns values to the elements of B. 

Assigns va lues to the elements of A. 

Displays the values of the result array elements. 

- x. 
- y. 
= z. 

Although in typical applications the result array X and constant a rray B are each one column ar rays, 
S'lS does not restrict these arrays to only one column. ThiR allows you, for example, to simultaneously 
solve any number of different systems, limited only by memory, of n equations in n unknowns, provided 
that the coefficients in each. systems of equations are identical. The following example illustrates this 
use of ':-S'3. 
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Example. Your company's Publications M,anager wants to determine the cost factors used by her two 
outside printers. She knows that each printer estimates jobs based on the number of pages and the 
number of photographs, plus a fixed setup chafge. Given the t hree estimates from each printer shown 
below, write a program that calculates their cost per page, cost per photograph, and setup cha rge. 

Number 01 Number of Total Cost 
Job 

Pages Photographs 
Printer A Printer B 

1 273 35 $5835 .00 $7362.50 
2 150 8 $3240.00 $4085.00 
3 124 19 $2775 .00 $3517.50 

We need to solve the following system of equations for two sets of cost estimates. 

These equations can be represented in matrix notation as AX = B, where: 

• A is the coefficient matrix, having the number of pages in its first column, t he number of photo~ 
graphs in its second column, and the number of setup charges (one for each job) in its third col­
umn. Each row contains this data for a different job. 

• B is the constant array. Each row contains cost estimates for one job from the two printers; each 
co lumn contains one printer's cost estimates for the three jobs. 

• X is the result array, having the unknown cost factors X l , x2. and X3 in its rows. XI is t he cost per 
page, x2 is t he cost per photograph, and x3 is the setup charge. Since we are solving two systems, 
the constant array is a two~column matrix. So the result array must also be a matrix; that. is, iL 
should be declared with two dimensions. (Its size, if not the same size as that of the consta nt array 
B, will automatically be redimensioned to the size of B when the S Y S statement is executed). Each 
column will contain the cost factors for one printer. 
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10 OPTION BASE 1 

20 DIM A(3,3),X(3,2),B(3,2) 

30 DATA 273 ,35,1 

40 DATA 150,8,1 

50 DATA 124 ,19,1 

60 DATA 5835.7362.5 

70 DATA 3240,4085 

80 DATA 2775,3517.5 

90 READ A,B 

100 MAT X- SYS(A,B) 

110 DISP USING ·9A,3X.9A,/,; 
'PRINTER A' ,'PRINTER B' 

120 MAT DISP USING 'X3D.2D,6X, 
3D.2D' ;X 

PRItnER A PR I ~nE": 

20,01:' 25.0'3 
5, [10 7. SCi 

200,00 27 5. (1[1 

8 

Specifications for job 1. 

Specifications for job 2. 

Specifications for job 3. 

Estimates for job l. 
Estimates for job 2. 

Estimates for job 3. 

Cost per page. 
Cost per photograph. 
Setup charge. 

Example. This example demonstrates the usefulness of ::;YS in the solution of circuit analysis prob· 
lems. ]n the circuit shown below, the impedances of the components are indicated in complex form. \Ve 
will determine the complex representation of the currents I) and 12-

E= 5 Zc= - 30i 

Zt = 200i 
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This system can be represented by the complex matrix equation 

or 

[

10+200; 

- 200; 

Here is a program that solves for 11 and 12, 

10 OPTION BASE 1 @ STO 

20 COMPLEX SHORT A(2,2),X(2) 

30 DIM B(2) 

40 MAT INPUT A,B 

50 MAT X=SYS(A,B) 

60 MAT DISP X 

A ( l , l)? • 

l10, 200 ).( 0,-200),(0.-200). 
( 0 , 1 ([) I END LI NE I 

8( i)? • 

5, [) I END LINE I 

<. , ~337156 , , 13114 ) 
(,~343713 ... 154 2:::) 

-200i ] [II] [5] 
(2oo - 30)i I , = 0 

AX = B 

If either A or B is complex, X must be complex. 

Assigns va lues to the elements of A. 

Assigns values to the elements of B. 
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Additional Information 

The Math Pac operat ions DET ( A) , t1AT B=ItW ( A ;' , and t'lAT X=SY~;( A , B) , where A is a real ­
type square mat.rix. aU use the LU decomposition of A as an intermediary step. The method used to 
generate the LU decomposition of A is a compact Crout factorization with partial pivoting a nd ex­
tended precision arithmetic. The L U decomposition of A can be represented by the equation PA = LU, 
where 

• l is a lower t riangular matrix-it has values of zero for a ll elements above the diagonal. 

• U is an upper triangular martix- it has values of zeco for all elements below the diagonal- with 
values of one for all elements on the diagonal. 

• P is 8 permutation matrix representing the row interchanges in t he matrix A resulting from parLiai 
pivoting. 

The factorization PA = LU is valid for any non-singular matrix A. However, special attention is paid to 
matrices A that are singular or "machine singular." [n this case, the LU decomposition is changed by an 
amount. that is usually small in comparison with roundoff error. [n the absence of underflow or over­
flow, the resulting LU decomposit ion of A will be close, in norm, to the exact LU decomposition of 
another matrix A', where A' is close in norm to A. 

Consider the matrix shown below. 

~ ~] 
2 0 

Although this matrix is very nearly singular, it can be successfully inverted using t he I tV.) keyword: 

Input/Resul t 

OF'T I Ot·~ BIi '3E I END LINE I 

D Irl A <: 3 , 3) , B ( 3, 3 ;' I END LINE I 
t'lAT H~P U T Ii I ENDLINE I 

1. 3. iJ, iJ .. '3., 1 I END LINE I 

A(3 .. 1 )'? • 



,6666666 6 6667 ~ 2, 0 I END LINE I 

~IAT 8 =I NV(A) IENDLINE I 

HAT B=8 IA IENDLINE I 

MAT DISP 8 ; IENDLINE I 

o 
1 
o 
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A now represents the matrix given above. 

B is now the computed inverse of A. 

Displays the identity matrix B, which is the 
product of the matrix A and its computed inverse. 

The SYS keyword solves the matrix equation AX = B for X in several stages. First, the LU decompo­
sition of A is found to give PA = LU . 

Using PA ~ LU, the equivalent problem i. to solve LUX ~ PB for X. This is done by solving LY ~ PB 
for Y (forward substitution) and then solving UX ~ Y for X (bacf,ward substitution). This value for X is 
used as a fi rst approximat. ion to the desi red solution in a process of iterative re finement, which pro­
duces t he final resu lt. 

In many cases, the Math Pac will arrive at a correct solution even if t he coeffi cient a rray is si ngula r (so 
that t he fo rmula X = A 18 is invalid). This feature allows you to use :::;'r':::; to solve under- and over­
determined systems of equations. 

For an under-determined system (mo re va riables than equat ions), the coefficient array will have fewer rows 
than column s. 1'0 find a solut ion using :::;'"(S : 

• Append enough rows of ze ros to Lhe hot.Lam of your coeffieient. array to make it squa re. 

• Append co rresponding rows of zeros to the constant array. 

You can now use these arrays with the S Y S keyword to find a solut.ion to the original system. 

For an overdetermined system (more equations than variables), the coefficient a rray will have fe \\'e r columns 
than rows. 1b find a solution using '3 .y" s: 

• Append enough columns of ze ros on the right of your coeffi cient array to make it square. 

• Be sure that your resul t a rray is dimensioned to have at least as many rows as the new coefficient a rray 
has columns. 

• Add enough zeros on t.he bOLt.om of your constant a rray to ensure conformab ility. 

You can now use these arrays with the :3'/::; keyword to find a solution to the original system. Only those 
elements in the result array that correspond t.o your original variables will be meaningfu l. 
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For both under· and overdeterminded systems t he coefficient array is singular, so you should check the re· 
suits returned by S'y' S to see if they satisfy the original equation. 

If A is a complex type square matrix, then r'lAT C; I No.) ( A) and r1AT X; SYS ( A, B ) use the same 
techniques 8S above, with the arrays A and B replaced by equivalent real·type partitioned forms, 

The 81':3 keyword can also be used for inverting a square matrix A. t'lAT X=SYS( A , B ) will return 
the inverse of A if B is chosen to be the identity matrix. This technique is more accurate and generally 
faster than t'lAT X= I ~H} ( A ), but it requires more memory for its operation. (Refer to appendix B for 
informalion about memory requirements) . 



e-

1e 

n 

y 
or 

Section 10 

Solving f(x) - 0 

eywords 

You can use the keywords in this section to help you determine the solutions or minima of equations of 
from one to five real variables. 

Throughout. mOSL o f this sect ion, the operation of these keywords will be described for 8 one-variable 
function. Multi-variable functions arc covered under the topic Nest ing Rules, 

The keyword F N RI)O T can be used from the keyboard or inside a program to find the value of x for 
which [(x) is zero or a minimum, provided the keyboard line or program contains t he defini t ion of the 
function. 

The keywords F',,'ALUE and FGUESS are provided to he lp you use FHROOT and to interpret its re­
sults. Since all three keywords are numeric-valued funct ions, they can be used alone or in combination 
with other funct ions and variables to form numeric expressions. A fourth keyword, F I,} A R. represents 
the variable in the function being solved by FHROOT. It also contains the most recent guess generated 
by an execut i ng FNROOT . 

FNROOT Function Root 

FI~ROO T ( A , B ., f) 

where A, B, and F are real numeric expressions. 

Seeks a real root of the funct ion F, starting with the two guesses A and B . These guesses can be equal, 
but if so, one is immediately perturbed . 

Returns the first value found that is one of the fol lowing: 

1. An exact root of the specified function. 

2. An approximation to a root of the specified function , correct to 12 digits. 

3. An approximation to a local minimum of the absolute value of the specified function. 

4. In a region where the specified function is constant . 

5. ± 9.99999999999E499 if the search for a root led beyond the range of representable numbers. 

89 
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FNROOT (continued) 

Not usable in CALC mode. Refer to page 97 for more information about F tW 0 0 T and CALC mode. 

Refer to pages 97-99 for information about F N ROO T nesting and about the interactions between 
FfIROOT and I AnN I and between FNR OO T and user-defined functions . 

FVAR 

Represents the variable x in fix) , the variable whose value FNRI)OT seeks. 

Also returns the most current guess generated by a running F ~~ ROO T . 

Can be used in CALC mode. 

FVALUE 

I F'.}ALIJE 

Function Variable 

Function Value 

Returns the value of the function F (the third argument of F fl R 0 I) T) at the result generated by the most 
recently completed Ft·IRO 0 T. 

IF\} RLUE retains its value, even if your HP-71 is turned off, until nmOI)T is again completed . 

Can be used in CALC mode. 

FGUESS Previous Estimate of Function Root 

FGUESS 

Returns the next-to-Iast value tried as a solution in the most recently completed FIWOOT statement. 

FGUE~;S retains its value, even if your HP-71 is turned off, until nlF:OOT is again executed . 

Can be used in CALC mode. 
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By checking t he values of F'.}ALU E and FGUES~; , you can interpret the result of FI1ROOT as follows: 

• If FVALUE = 0, the result of FNROOT is an exact root and the result of FGUES:::: will be a 
number close to the root. 

o If the result of FfjROOT and the result of FGUE'3S differ only in the twelfth significant digit, and 
FVALUE and F ( FGUESS:; have opposite signs. these two numbers surround the exact root. 

o If the result of FfWOOT and the result of FGUESS differ, but F'.,.'ALIJE and the value of the 
function at FGUE:::;S are equal, these results lie in a region where Ft'~F is constant. 

'Ib solve an equation for a particular variable, use this procedure: 

1. Write the equation to be solved in the form fIx) = o. 
2. Substitute the keyword F J,) A R everywhere for the variable you wish to solve for in the formula 

defining fIX). 

3. Use the defining formula for fIX) as the third argument for FI1ROOT . 

4. Choose two initial guesses (which may be equal) and use these as the first two arguments for 
Ft~POOT . Even if only One initial guess is used, use it. for both A and B, since FNROOT always 
requires t.hree arguments. 

Examples 

Solving x2 = 2 (nWOOT , F',}ALUE , F',}AF: ) 

The following s ix examples illustrate various ways F~~F:O[lT and F',}AR can be used to solve the equa· 
tion x"! = 2. Ini tial guesses of 1 and 2 are used. The first and sixth examples show the solution. 

Example One. 

Input/Result 

Ft'~ROOT( 1 ,2" F',}AR A 2-2 ;' IENDLINEI 

1,41421356238 

Example 'I\vo. 

10 DISP FNROOT(COS(0),LOG2(4), 
FVARA2- 2) 

20 DISP 'FVALUE = ';FVALUE 

FrlROOT can be used from the keyboard as well 
as in a program. 

The initial guesses can be expressions. 



92 Section 10 SolVing {(xl 0 

Example Three. 

10 DEF FNG - FVARA2 - 2 

20 DISP FNROOT(1 ,2,FNG) 

30 DISP 'FV.A.LUE -';FVALUE 

Example Four. 

10 DEF FNF(X) _XA2- 2 

20 DISP FNROOT(1 ,2,FNF(FVAR» 

30 DISP 'FVALUE-';FVALUE 

Example Five. 

10 DEF FNH 

20 FNH - FVAR A 2 - 2 

30 END DEF 

40 DISP FNROOT(1 ,2,FNH) 

50 DISP 'FVALUE - ';FVALUE 

Example Six. 

10 DEF FNJ(X) 

20 FNJ - XA2-2 

30 END DEF 

40 DEF FNF(X) - 2*X 

50 DISP FNROOT(1 ,FNF(1 ),FNJ(FVAR» 

60 DISP 'FVALUE - ';FVALUE 

Input/Result 

IRUN I 

1,4142135623:3 
F'·}ALUE ;::: I [1(100(H~1[1£100 2 

The third argument of Ft-lF:OOT can be an 
expression or a reference to a user-defined 
function. 

FIJAR can appear in the user-defined function, 
as above, or in the third argument of FI~ f;: 0 0 T_ 

The user-defined function can consist of one or 
several lines. 

The first or second arguments of Ft~r;;::OOT can 
be references to user-defined functions. 

The solution for x2 - 2. 
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Solving log (x) = e/x (F tl F.: CI CI T, n,1 A L U E, F I,,.'A P, Feu E ::; ::; ) 

Th solve loglx) ~ ej x, we first write the equation in the form fix) ~ O. This can be done by subtracting 
el x from both sides of the equation, yielding log(x) - elx ~ O. We can rewrite this in the equivalent 
but slightly more convenient form x log(x) - e ~ O. Since the left-hand side of this equation is un­
defined for x < = 0, and we can't guarantee that the search for a root will not venture into this region, 
we will consider instead the equation Ix l loglxl - e ~ O. This equation has exactly the same positive 
solution(s) as the first equation, but this equation makes sense for both positive and negative (but non­
zero) numbers. The program below includes a user-defined function that computes the left-hand side of 
this equation, and uses F N F: I) 0 T to find a solution of the equation. 

10 STD 

20 DEF FNF(X) 

30 FNF ~ ABS(X)*LOG(ABS(X))- EXP(1) 

40 END DEF 

50 INPUT A,B 

60 R ~ FNROOT(A ,B , FNFIFVAR)) 

70 DISP 'R ~ ' ;R 

80 DISP 'FNF(R) - '; FVALUE 

90 DISP 'FGUESS ~ ' ;FGUESS 

This user-defined function computes the left­
hand side of the equation. 

These will be the initial guesses. 

To use the program we must decide on initial guesses. Although the initial guesses need not be in 
increasing order, or even distinct, a choice of initial guesses that surround a root will produce results 
more quickly in general. Noting that if I F I,} A P I < 1 then F ~~F (F U A P > will be negative and if F I,) A P is 
large (say, tOO) then F~~F (FI,}AP) will be positive, we can choose .5 and 100 for our initial guesses. 

Key in the program and I RUN I it , and when prompted with ? respond with ,5 J 1 [1 [1 I END LINE I, which 
supplies the initial guesses. The computer will then display 

R = 2,71828182846 
FHF(F:::O = '" 
FGUESS= 2 , 76000738029 

Since FHF <: R::O ~:::lt the value given is an exact root for Ft~F , 
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Additional Information 

Choosing Initial Estimates 

When you use F t~ROOT to find roots of equations, the initial estimates determine where the search for 
a root wi ll begin. If t he two estimates surround an odd number of roots (signified by their function 
va lues having opposite signs), then F t'~ RO OT will find a foot between the estimates quite rapidly. If the 
function values at the two estimates do not differ in sign, then F t·l ROO T must search for a region 
where a root lies. Selecti ng initial estimates as near a root as possible will tend to speed up this search. 
If you merely want to explore the behavior of the function near the initial etimates (such as to deter· 
mine if there are any roots or extreme points nearby), then specify any estimates you like, 

Another thing to consider is the range in which the equation is meaningful. In solving {(x) ~ 0, the 
variable x may only have a limited range in which it is concept.ually meaningful as a solution. In this 
case, it is reasonable to choose initial estimat.es within t.h is range. Frequently an equation t hat is ap­
plicable to a real problem has, in addition to the desi red solut ion, other roots that are physically 
meaningless, These usually OCCUI because the equation being analyzed is appropriate only between 
certain limits of t he variable. You should recognize t his restriction and interpret the results 
accordingly. 

Interpreting Results 

Ft'~ROOT always evaluates the function at the value returned, as described above. This enables you to 
interpret the results. There are two possibilit ies: the value of the function at. the value returned by 
F Ij PO 0 T in close to 0; or the value of the function at the value returned by F 11 ROO T is not close to O. 
I t is up to you to decide how close is close enough to consider the value a rooL 

If the function value is too large, then the information returned by the keyword F G U E S '3 , together 
with informution already considered, is sufficient to determine the general behavior of the function in 
t he region. For example, suppose that Ft'lF~OOT is used to find a root of a function - say, f(x) - and t he 
value returned is r, If IFVALUE j is too large to consider r a root, then t here are seve ral possibi lities. 

If F',}ALUE and ! (F GUESS ) have the same sign, t hen r is either an approximation to a local minimum 
of V(x)1 or in a region where the graph of {(x) is horizontal. 



Section to: Solving flK) o 95 

Case a Case b 

In the two cases above, Ft..JHOOT sees no tendency of I(x) to decrease in absolute value, and so to cross 
the x-axis. It will then try to approximate a local extreme point, if any. This approximation can be 
resolved to further precision by further executions of F "~RO OT , using r and FGU ESS as initial es­
timates. Repeated execution of F"~R OO T in this manner will converge to the extreme point in many 
cases. The idea is that F t'IROOT can be used to find local extreme points, or the information about 
where the extreme points are can be used to re-di rect the search elsewhere, in hope of finding a root. 

When iFI"IALUE I is too large to consider r a root, a nother possibility is that FI,.JALUE and !(FGUESS) 
have different s igns. In this case it would appear that the re is a root between, because for the function 
to change s igns it should cross the x-axis. 'JYpically, when Ft·WOOT finds two guesses on opposite sides 
of the x-axis, it only stops after it has resolved them to two consecutive machine numbers. In this case 
there is no machine representable number between r and FGUE::;~; . Thus, the behavior of the function 
cannot be determined between rand FGU ESS . To interpret such resul ts, you should be aware of these 
situations. 

Case 1 
I 

Case 2 Case 3 
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In case 1, rand FGUE:3::':: are the best app roximations to the root that are representable on the ma­
chine. Case 2 looks exactly the same to Ft'~ROOT, but there is no root-there is a jump discontinuity 
instead. In case 3 there is a pole, which can look like a root if a guess on each side of the pole is found. 
FHROOT returns information in FGUE8::':; and the Fl,)ALUE to help you isolate situations where 
convergence is to a pole. 

Decreasing Execution Time 

The exponent range of your HP -71 is ±499 (except when H,AP <:: Ut·1F) ~ 2, which effectively extends 
the negat.ive exponent range to -510). This allows for sensitive observation of the behavior of a func­
tion, even very close to a root. F t·~ R 0 [I T takes advantage of this dynamic range by not accepting a 
guess as a root until t.he funct.ion value underflows, is zero, or two consecutive machine representable 
numbers t.hat. bracket. a root. are found. The cost. of this precision is that, occasionally, it may take quite 
a while to obtain such precision. If this high degree of sensit ivity is not required, then you may wish to 
set a smaller tolerance. For example, you may only need to know a place where the function is less than 
1 E - 20. This is accomplished in your function definition by checking the value of the function before 
assigning it to the function variable and setting the function variable to zerO if the comput.ed value is 
smaller than the desired tolerance. For example, suppose you wanted to find any root of {(x) = x\ and 
If(x) I < = t E - 32 is acceptable as a rooL. Here is a program you can use. 

10 STD 

20 DEF FNFIX) 

30 F~ XA4 

40 IF F <~ 1.E - 32 THEN FN F ~ O ELSE 
FNF ~ F 

50 END DEF 

60 DISP FNROOT(2,3.FNF(FVAR)) 

70 DISP FVALUE 

Input/Result 

8,30442502653E-9 
(I 

Multiline function definition of f(x) = x4. 

Checks errOr tolerance and sets the function 
value accordingly. 

Computes and displays the root. 

Displays the function va lue at the root. 

In this example, if the tolerance technique WeTe not used, execution wou ld last much longer. This is 
because the computed function wil l not underflow unti l x is very small, since the root is at zero and the 
distribution of machine-representable numbers is very dense close to zero. So F~~F.:OOT has a lot of 
guesses to try before finding one it. can accept as a root. 



,-
.y 
d. 
re 

1s 
c­
a 

Ie 
t e 

Section 10: Solving f(xl o 97 

An alternate approach to decreasing execution time is to translate the function so thai the rooi is not 
so neBf zero, compute the root of the translated function, then translate the root back. This wi ll de­
crease the time to find roots of certain functions with roots close to zero, but will generally decrease 
the accuracy of the roots found. Here is a sample program for I(x) = x4. 

10 STD 

20 DEF FNF(XI~ (X - 1Ih4 

30 R - FNRDOT(3,4,FNF(FVAR)) 

40 DISP R - 1 

50 DISP FVALUE 

This is x' translated by l. 

Computes the root. 

' Iranslates t he root back and displays the root 
and function value. 

to Finally, there is a technique that may improve the speed and accuracy of Ft·lR OOT . Any equation is 
1n typically one of an infinite family of equivalent equations with the same roois. However, some may be 
Te easier to solve than others. For example, the two equations f(xl = 0 and exp(f(x)) - 1 ~ 0 have the 
is same real roots, but one is almost always easier to solve. When {(x) = X4 - 6x - 1, the first is easier; 

1d but when fIx) ~ !n(x' - 6x - 1), then the second is easier. While F NR(I(lT has been designed to 
provide accurate results for a wide range of problems, it is worthwhile to be aware of such possibilities. 

is 
he 
of 

Suspending F t·l F.: 0 0 T With I ATTN I 
If none of the arguments of F tiR [1 0 T contain multi-line user-defined function calls, pressing I ATTN I will 
not terminate the aCLion of Ft"iPOOT until intermediate results are saved. In particular, Ft~ROOT will 
return and save the current F \.! RR as though it were a root, it will save the previous guess as FGUESS , 
and it will save the value of f(xl at the current F',,'AR as t he value of F',.!ALUE . Only then will the 
action of F ,I Ii' I) (I T stop. 

ff. on the other hand, there are one or more multi -line user-defined functions as ~:g\.lments for 
FfIROOT (that is, if the calculat ion of Ft·IF:OOT involves several BASIC program lin es), I ATTN I will be 
ignored until a multi·line user-defined function is called. Execution will then halt at a I:ne of one of the 
user-defined function s. This g-i ves you the abili ty to examine relevent values, such as the current value 
of F J~·' A P , then continue the execution of FNF.:OOT if you wish. 

In addition, if there are multi-line user-defined [unctions as arguments for F ~H~: 00 T, then fatal errors 
wi thin the user-defined function do nOL destroy the F t~ROOT envi ronment, giving you the exact same 
correct and continue capability as with any other HP-7 1 call to multi-line user-defined functions. 

CALC Mode 

You cannot execute FHROOT directly or indirectly in CALC mode. For instance, suppose your current 
fi le contains a single- line user-detined function Ft'lF whose definition contains an FHROOT keyword. fr 
you attempt to execute FH F in CALC mode, an error will resul t. 
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Nesting Rules 

I f the third argument F of H, ROO T defines a formula whose evaluation encounters another F N ROO T 
keyword, we say that the two Ft,F:OOT keywords are nested. Up to five FHROOT keywords can be 
nested in this way. 

As an example of FHF:OOT nesting, consider the following program thal solves f(x,y) - x2 + y2 - 2x 
- 2y + 2 for x and y. 

10 STD 

20 DEF FNF(X,Y) - XA 2+ YA 2 - 2*X- 2*Y + 2 

30 DEF FNG(X) 
40 R - FNROOT( - 4,4,FNF(X,FVAR)) 
SO FNG - FVALUE 
60 END DEF 

70 DISP FNROOT( - 3,3,FNG(FVAR));R 

Input/ Result 

I RUN I 

1 , 99999999999:.~ 

Defines the function whose solution is sought. 

Lines 30 through 60 define a one variable 
function fix) that receives a fixed x value (F VAF: ) 
from line 70. 

If this F~~ROOT function receives a nonzero 
resull from line 50, it selects another x value for 
the HI ROO T in line 40 to try. If it receives a 
zero result, a solution for f(x,y) is found . 

The x and y values returned by the H, F: (I (I T 
function in line 70. The x value is displayed on 
the left. 

The closest Ft·lROOT comes to the true y value, one, is ,999999999999 , since these x and y values 
satisfy the objective of FfIROOT. This objective is to find x and y values for which the computed value 
of f(x ,y) is zero. 

FVALUE IENDLINE I 

These values for x and y when used in f(x ,y) give 
(1 as the resu I t. 
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A common use for Ft4ROOT nesting is determining minima. To demonstrate this application, we'll 
modify the above function f(x,y) by adding one to the expression, thereby ensuring that the function 
has no solution, since the paraboloid represented by the modified function no longer intersects the xy 
plane. The only program modification is in line 20: 

All other program 1 i nes are unchanged. 

The earlier nested FNROOT program required about 20 seconds to reach a solution. Since Ft;ROOT 

takes special care to make sure a true minimum is found, the modified program requires about 31f2 
minutes to tind and display the x and y values whose use in f(x,y) result in a funct ion minimum. 

Input/Result 

IRUN I 

1,0fH100191t:32 
014444 

FI..'ALUE I END LINE I 

1 

1 ,00(Hj The x and y values that give a minimum for the 
modified function . 

Displays the value given by the modified func­
tion using these x and y values. 

There is no need to wait the full 3'h minutes for a result. As explained on page 97, you can suspend an 
executing F~~~~OO T fundion and tben display interim results. If two consecutive inspections of interim 
results show insignificant change, you might wish to accept them as baving satisfactory accuracy. 

Use of User-Defined Functions 

If the third argument of an FNFi:OOT [unction evaluates any user-defined function , then you must 
execute Lhe Ft-lROOT function as a program statement, not from the keyboard. Also, if FtlROOT is 
suspended while executing, you cannot execute a user-defined [unction from the keyboard, in either 
BASIC or CALC mode. 
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Numerical Integration 

Keywords 

You can use the keywords in this section to evaluate the integral of a funct ion of from one to five 
variables between definite limits to an accuracy of your choosing. 

Throughout most of this section, the operation of these keywords will be described for a one-variable 
function. Multi-variable functions are covered under the topic Nesting Rules - Volume Integrat ion, 
pages 109-110. 

The keyword I tnEGRAL can be used from the keyboard or inside a program to calculate the integral 
of the function, provided the keyboard line or program contains the funct ion definit ion. 

The keywords I BOUND and I ',.'ALUE give you additional flexibility in the evaluat ion of the integrals. 
I t~TEGRAL, I BOUN D. and I VA L LI E are numeric-valued, so they can be used alone or in combination 
with other funct ions and variables to form numeric express ions. A fourth keyword, I ~}AR , represents 
the variable (or one of t he variables) of in tegrat ion in the function being integrated by IN T E G R A L. It 
also contai ns the most recent sampling point used by an executing INTEGRAL. 

INTEGRAL Delinite Integral 

ItITEGRALC A, B , E , F ) 

where A, B. E, and F are real numeric expressions . 

Returns an approximation to the integral from A to B of F. The relative error E (rounded to the range 1 E-
12 < = E < = 1) ind icates the accuracy 01 F and is used to calculate the acceptable error in the 
approximation of the integral. 

This integral approximation can be: 

• An approximation to the integral that is as accurate as the relative error E would allow. 

• The last of 16 approximations to the integral, which have sampled the integrand at 65535 points 
without meeting the convergence criterion. 

• The best current approximation to the integral returned when I AnN I is pressed and when F does 
not call a multi-line user-defined function . 

101 
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INTEGRAL (continued) 

I NT E G R A L generates a sequence of increasingly accurate approximations to the definite integral. If 
three successive approximations are within the acceptable error of each other-the first is close to the 
second and the second is close to the third-they are considered to have converged and the third 
approximation is returned as the value of the definite integral. If a total of 16 approximations are cal­
culated without converging, the sixteenth is returned . 

Not usable in CALC mode. Refer to page 111 for more information about I IH E G PA L and CALC mode. 

Refer to pages 109-111 for information about I IHE GRA L nesting (volume integration) and about the 
interactions between ItH EGF:AL and ~ and between ItH EGR AL and user-defined functions . 

IVAR Integration Variable 

I ',JAR 

Represents the variable of integration in the formula defining F, the last argument of HlTEGRAL. 

Also contains the most recent sampling point used by a running ItH E G R A L . 

Can be used in CALC mode. 

IVALUE Last Result of INTEGRAL 

IliALIJE 

Returns the last approximation computed by the I tHEGRAL keyword. If the I ATTN I key was pressed 
or the operation of I tHEGRAL was otherwise interrupted, then H'ALUE returns the value of the 
current approximation to the integral. Otherwise, I VALUE returns the same value that HlTEGF'AL 
last returned . 

I VALUE retains its value (even if your HP-71 is turned off) until another HlTEGRAL is computed , 

Can be used in CALC mode. L-______________________________________________________________ ~ 
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IBOUND Error Approximation for INTEGRAL 

IBOUH O 

Returns the final absolute error estimate for the definite integral most recently computed by 
INTEGR AL . 

• A positive value for I 8 0Ut~D means that the approximations converged . 

• A negative value for 180UflD means that the approximations didn 't converge, so that the value 
returned by I HTE GR AL may not be representative of the Irue value . 

Like I ',}ALUE , I BOUHO retains its value (even if the HP-71 is turned off) until another I I-ITEGR AL is 
computed. Unlike I ~} A LU E, the value of I BOUND has no relation to the current approximation to the 
integral if the operation of I fn E G F: A L is interrupted. 

Can be used in CALC mode. 

To integrate 8 function between bounds, you ca n follow these steps: 

1. \Vrite down an expression that represenLs the function t.o be integrated. 

2. Substitute the keyword I I.} AR everywhere in the expression for the variable of integrat ion. 

3. Use this expression as the fourth argument F of I t-ITEG RAL. 

4. Use the lower and upper hounds of integrat ion as the first and second arguments A and B of 
I t-IT E G R A L , respectively. 

5. Choose a value for the third argument E of I r~ T E G R A L that represents an estimate of the relative 
error in the computation of the integrand. Any value for E is always rounded to the range 
[lE - 12,1]. Thus, E should satisfy, after rounding 

ITRUE INTEGRAND - COMPUTED INTEGRAND I < ~ E. 

ICOMPUTED INTEGRAND I 

Since I HT EGRAL has nO way of knowing what the true value of the function is intended to be, 
only you can supply this estimate. For many purely mathematical functions (S It~ , EXP, poly­
nom ials, etc.) and modest limits of integration, fuJI 12 digit accuracy can be retu rned so that a 
value for E around lE-12 should be suitable. 
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The operation of I tn E G~: A L and I B 0 U Ii 0 can be described more precisely as follows. 

1. Based on a relative error of E for the specified function , the computer calculates an error tolerance 
for the integral of the specified function. If [(X) is the "true" function that F approximates, then 
choose E such that 

for all X in the interval of integration. Your input for E is rounded to the range lE-12~E~ 1. 

For example, if P is derived from experimental data with N significant digits, let E equal IO - N. 

2. The computer calculates a sequence of approximations h to the integral of the specified function. 
The difference between successive approximations is compared to the erTor tolerance for the 
integral. 

3. A value for the integral is returned when 

• The approximations I k have converged. Convergence is determined using J k• defined as the kth 
approximation to the integral of E"'IFI over the same interval of integration. Jk represents the 
error inherent in the computation of Ik. 

The approximations I . are judged to have converged to In if 

for k ~ " - 1 and k ~ n. The value of In is then ret"rned by I InEGRR L; a positive value for 
the error estimate will be returned by J BOUfW. 

or when 

• The computer has evaluated 11 through h6 but the convergence criterion is still not met. 116 is 
then returned by I NTEG RAL ; a negative value for the error estimate will be returned by 
I BDUtiD. 
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Examples 

Integrating f(x) = x2 - 2 ( I IH E G F': A L, I I,} A F':) 

The following six examples illustrate various ways I t·~T E GRAL and I ',,'AR can be used to integrate the 
function x2 - 2 from 1 to 2 . The first and sixth examples show the solution. 

Example One. 

Input/ResulL 

HITEGF:AL<!, 2, ! E-! ! , I' . ..' AF:'··2-2:' 
I END LINE I 

, 333333333331 

Example Two. 

10 DISP INTEGRAL(COS(0),LOG2(4), 
1E - 11 ,IVARA2 - 2) 

Example Three. 

10 DEF FNG - IVARA2 - 2 

20 DISP INTEGRAL(1 ,2,1 E - 11 ,FNG) 

Example Four. 

10 DEF FNF(X) _ XA2 - 2 

20 DISP INTEGRAL(l ,2,1 E - 11 ,FNF(IVAR)) 

Example Five. 

10 DEF FNH 

20 FNH - IVARA2 - 2 

30 END DEF 

40 DISP INTEGRAL(l ,2,1 E - 11.FNH) 

I fH E G R A L can be used from t he keyboard as 
well as in a program. 

The l~mits of integration can be expressions. 

The fourth argument of I NT E G R A L can be an 
expression or a reference to a user·defined 
function. 

I ',,'AR ca n appear in the user-defined function, 
as above, or in the fourth argument of 
INT EGRAL . 

The user-defined function can consist of one or 
several lines. 
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Example Six. 

10 DEF FNJ(X) 

20 FNJ - XA 2 - 2 

30 END DEF 

40 DEF FNF (X)- 2·X 

50 DISP INTEGRAL(1 ,FNF(1), 1 E - 11 , 
FNJ(IVAR)) 

60 DISP IBOUND 

Input/Result 

IRUN I 

. 333333333331 

7 , 7 0341735781E - 12 

The first, second or third argument.s of 
I t-iTEGF~ A L can be references to user-defined 
functions. 

'l'he resulting integral. 

The absolute error estimate for the result.ing 
int.egral. S ince it's positive, the approximations 
converged. 

Integrating f(x) = eX-2 ( I tH E C; F:A L, I I,) A F:, I I,) ALU E) 

This example features I VALUE . This function returns the most recent integration approximat.ion and 
is updated even whi le t he execution of I IHEGo:AL is in progress. After the execution of I tHEGRAL 
is completed, I' .... ALUE returns the same value returned by I HTEGRAL . 

You can watch the progress of integral approximations by displaying I I.} AL UE during the execution of 
I UT E GRA L. This is demonstrated by the following program, wh ich integrates the funct ion eX - 2 from 
one to three. The error bound used is lE·12. 

10 Y- IVALUE 

20 DEF FNF(X) 

30 IF IVALUE - Y THEN 50 

'( = value of I I,} A L U E when program starts 
(assumes I VA L U E S is set from a previous 
I tHEGRAL). 

Displays I '.}AL UE only if it has changed. 
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40 DISP IVALUE @ Y~IVALUE 
50 FNF ~ EXP(X)-2 

60 END DEF 

70 DISP INTEGRAL(1,3,.000000000001, 
FNF(IVAR)) 

[nput/ Result 

I RUN I 

10 , 77::: 11 21979 
13 . 683897213 
13 . 3653590516 
13 , 367156~1314 

13 . 3672555263 
13. 367255~3945 
13 . 3672550947 
13 , 367255(1947' 

Integrating (x) 
I',}A LUE ) 

1b find the integral from 0 to 1 of the function 
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First displayed value of I ',,'ALUE. 

Last displayed value of I \} R L U E. 
Value of I tHEGRRL . 

I',}Af<: , I E:OUtlD , 

[(x) ~ exp(x3 + 4x" + x + 1) 

you can use the following program. 

10 DEF FNF(X)~ EXP(X~3 + 4*XA2+ X + 1) 

20 INPUT E 

30 DISP 'Integrating ' 

40 X - INTEGRAL(O,1,E,FNF(IVAR)) 

50 BEEP 

60 DISP 'Integral ~ ';X 

70 DISP 'The approx . error ~' 

80 DISP IBOUND 

The user-defined function FflF . 

Gets the relative error we expect in FNF as 
compared with f. 
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After you key in the program, run it using the following keystrokes. 

lnput/Result 

IRUNI 

'? • 

1 E - 5 I END LINE I 

In t e';! t- a t i ng 

In t -=-'3 r a 1 = 
104,29 P397226 

The approx, er r o r 
1,04263904392 E-3 

I VRLUE I END LINE I 

I'H,2910972 26 

The prompt to enier the relative error of the 
function. 

Although our function is accurate to one part in 
10 12, we can say t.hat it is less accurate (in this 
case, one part in ] 05) so that the computation 
will finish mare quickly. 

The value of the integral is 104.2911 ± (1.04 X 

10- 3). 

It,} R L U E gives the value of the last computed 
integral. 

Integrating C(T) = a + bT ( I tHECPAL, I',..'AP, I E:ClUtlD ) 

You can use I NTEGRAL to compute the amount of heat required to heat one gram of gas at a constant 
volume from one temperatuIe to another. The amount of heat needed, Q, is given by the formula 

Q = f7"C(T) dT JT1 

where C(7') is the specific heat of the gas as a function of temperature, Tl is the starting temperature, 
and '['2 is the tinal temperature. 

If C(T) = a + bT, where a and b are experimentally determined to be a = 1.023E- 2 and b = 2.384E 2 

with four significant digits , then we can compute the relative error of C(T) to be approximately 5E-4. 
The program below prompts you for the initial and fina l temperature in degrees Kelvin and then com· 
putes the heat needed to raise the temperature of the gas from the initial to the fina l temperature. 



10 DEF FNC(T)~ .01023+.02384*T 

20 INPUT 'Initial, final T (K)?' ;T1 ,T2 

30 DISP . Integrating' 

40 Q ~ INTEGRAL(T1 ,T2,.0005,FNC(IVAR)) 

50 DISP 'Heat needed -';0; '+ - ';IBOUND 

Sect lOr" 1 t Numencal Ir"tegratlor" 1 09 

The user-defined function that calculates the 
specific heat. 

Computes the integral. 

Displays the answer and the approximate error. 

1b find the heat needed to raise the temperature from 3000 K to 31O ' K, type in the program and use the 
following keystrokes. 

Input!Result 

I RUNI 

Initial , final T (K )? I 

300,310 I END LINE I 

I n ~ eg t- .~ t i n';:1 
Heat needed = 72.8143 
+- ,~J364[1715 

Additional Information 

Nesting Rules-Volume Integration 

If the fourth argument F of I t'~TEGRAL defines a formula whose evaluation encounters another 
INTEGRAL keyword, we say the two ItHEGRAL keywords are nested. Up to five ItHEGF:AL 
keywords can be nested in this way. A program that nests two INTE GF:RL keywords can determine 
volumes. 

As an example of I t~TEGRRL nesting, consider the following program that integrates f(x ,y), where 
{(x, y) ~ x2 + 2y , over the square 0 < x < 1, 0 < Y < 1. That is, the program evaluates 

fo' fo '{(x, y )dydx . 
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10 DEF FNF(X , Y) - X~2 + 2*Y 

20 DEF FNG(X) - INTEGRAL(O, 1,1 E - 6, 
FNF(X ,IVAR)) 

30 INTEGRAl(0,1, 1 E - 6 ,FNG(IVAR» 

Input/Result 

I RUN I 

1 , 3T333333333 

I 8 0 Ut·m I END LINE I 

1 , 33317012712E-6 

Defines the function whose integral is sought. 
For each value of X, integrates a slice parallel to 
the y-axis. 

Sums all of the contributions from the slices 
parallel to the y-axis. 

The volume returned by the Hn E G 1': A L func ­
tion in line 30. 

The answer is exaCL even though I B 0 U ~~ 0 only 
predicts six correct digits. 

The fo llowing example demonstrates the use of ItHEGRAL to evaluate t he integral 

Input!Result 

RADlA t1 S I ENDLINE I 

lNTEGRAL( B .P l / 2.1 E-3. 
1 tHEGF:AL ( 0. 1 ',,'AF: ., 1 E-3 .. 
S 1 tH n'AF:») I END LINE I 

, 57080016668 

l80U tID I ENDLINE I 

5 , 69950328155E-4 

1,/2 ry 
o J

o 
sin (x) dxdy 

Note that the first lllAR is the integration vari ­
able of the outside 1 NTEGRAL, 

The true answe r is 7r/2 - 1 (approximately 
.5707963268). 
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Suspending I H T E C; F: A L With I ATTN I 
If none of the arguments of I tH EG RAL contain multi-line user-defined function calls, pressing I AnN I 
will not terminate the action of I t·~T E GF~AL until intermediate values are saved. In particular, 
INTEGF:R L will save and return the current I ',} AL UE as t hough it were the integral, and will make 
negative the current value of I E:OU t·W. Only then will the action of I fITE GF: AL stop. 

If, on the other hand, there are one or more multi-line user-dermed functions as arguments for 
ltHEGRAL (that is, if the calculation of I tHEGF:AL involves several BASIC program lines), I AnN I 
will be ignored until a multi-line user-defined function is called. Execution will then halt at a line of 
one of the user-defined functions. This gives you the ability to examine relevent values, such as the 
current value of I ',.!ALUE, then continue the execution of I tHE GF:AL if you wish, 

In addition, if there are multi-line user-defined functions as arguments for I t~TEGR A L , then fatal 
errors within the user-defined function do not destroy the IN T E G R A L environment, giving you the 
exact same correct and continue capability as with any other HP-71 calJ to multi-line user-defined 
functions. 

CALC Mode 

You cannot execute I ~·~TEGRRL directly or indirectly in CALC mode. For instance, suppose your cur­
rent file contains a single-line user-defined function F~~ F whose definition contains an I ~~TEGPAL 
keyword, If you attempt to execute F t·1 F from CALC mode, an error will result, 

Use of User-Defined Functions 

If the fourth argument of an I ~~ T E G R A L function evaluates any user-detined function, then you must 
execute the I H T E G F: A L function as a program statement, not from the keyboard, Also, if I t·1 T E G R A L 
is suspended while executing, you cannot execute a user-defined function from the keyboard, in either 
BASIC or CALC mode, 

Overview of Numerical Integration 

Numerical integration schemes generally sample the function to be integrated at a number of points in 
the interval of integration. The calculated integral is simply a weighted average of the funct.ion values 
at these sample points. Since a definite integral is really an average value of a function over an infinite 
number of points, numerical integration can produce accurate results only when the points sampled are 
truly representative of the function's behavior. 
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If the sample points are close together and the function does not change rapidly between two consec­
utive sample points, then the numerical integration will give reliable results. On the other hand, 
numerical integration will not produce good answers on a function who~e values vary wildly over a 
domain that is small in comparison with the region of integration . Other errors that can affect the 
result of a numerical integration include the round-off errors typical of any floating point computation 
and errors in the procedure that computes the function to be integrated. 

Handling Numerical Error 

The I t·~TEGRAL keyword requires specification of an error tolerance E for its operation. This error 
tolerance is taken to be the relative error of the computed function as compared with the (' true" func ­
tion to be integrated. The error tolerance is used to define a ribbon around the computed function and 
the "true" function should then lie inside this ribbon. If the "true" function is {(xl and the computed 
function is F(xl, then 

F(xl - Error (xl "" {(xl "" F(xl + Error (xl 

where Error (x) is half the width of the ribbon at x. 

//-
/ ' (xl 

--~----~------------~-----x a b 

We can then conclude that 

i b 
{(xl dx '" lb F(x) dx ± i b 

Error (xl dx 
a " a 

where the third integral is just half the area of the ribbon-that is, integrating the computed function 
instead of the actual function can introduce an error no greater t.han balf the area of the ribbon. 
I t~TEGRRL estimates this error while computing the integral; I BOUND gives you access to the 
estimate. 

( 
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Choosing the Error Tolerance 

The accuracy of the computed function depends on three factors: 

• The accuracy of empirical constants in the function. 

• The degree to which the function may accurately describe a physical situation. 

• The round-off error introduced when the function is computed. 

Functions like cos(x - sinx) are purely mathematical functions. This means t.hat. the functions contain 
no empirical constants, and neither the variables nor the limits of integration represent any actual 
physical quantities. For such functions you can specify as !;mall an error tolerance as desired, provided 
the function is calcu lated within that error tolerance (despite round-off) by the BASIC function. Of 
course, due to the trade-off between accuracy and computation time, you may choose not to specify the 
smallest possible error tolerance. Any specified error tolerance is rounded to the range 11E- 12, 1]. 

When the integrand relates to an actual physical situation, there are additional considerations. In these 
cases, you must ask you rself whether the accuracy you would like in the computed integral is justified 
by the accuracy of the integrand. For example, if the function contains empirical constants that 
approximate the actual constants to three digits, then it may not make sense to specify an error tol · 
erance smaller than lE- 3. 

An equally important consideration , however, is that nearly every function relating to a physical situa· 
lion is inherently inaccurate because it is only a mathematical model of an actual process or event. A 
mathematical model is typically an approximation that ignores the effects of factors judged to be in­
significant in comparison with the factors in the model. 

For example, the equation s = s' - (.5)gt2, which gives the height s of a falIing body when dropped 
from an initial height S', ignores the variation with altitude of g, the acceleration due to gravity. 
Mathematical descriptions of the physical world can provide results of only limited accuracy. If you 
calculated an integral with an accuracy greater than your model can support, then you would not be 
justified in using the calculated value to its full (apparent) accuracy. It makes sense to supply an error 
tolerance that reflects any inaccuracies in the function , or the I ~~TEG R AL keyword will waste time 
computing to a level of accuracy that may be meaningless. Further, the value returned by I BOUND 
may not be significant. 

If [(xl is a function relating to a physical situation, its inaccuracy due to round-off is typically very 
small compared to the inaccuracy in modelling the situation. If [(x) is a purely mathematical function, 
then its accuracy is limited only by round-off error. Precisely determining the relative error in the 
computation of such a function generally requires a complicated analysis. In practice, its effects are 

m determined through experience rather than analysis. 
n . 
1e 
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Handling Difficult Integrals 

Integrating on Subintervals. A function whose values change substantially with small changes in 
its argument will likely require many more points than one whose values change only slightly. This is 
because the behavior of the function must be adequately represented by the sampling. If 8 function is 
changing more rapidly in some subintervals of the interval of integration than in others, you can sub­
divide the interval and integrate the function separately on the smaller intervals. Then the integral 
over the whole inter'lal is the sum of the integrals over all the subintervals, and the eTror of the integral 
is the sum of the errors of the integrals over the subintervals. 

The algorithm used by I t·~ T E G R A L makes a reasonable decision during execution of how many points 
to sample. based on the behavior of the specified integrand on a particular interval. When the interval 
of integration is split UP. each subinterval can be handled according to the function behavior on that 
subinterval alone. This results in greater speed and precision. 

For example, to integrate !(x) = (x2 + lE-12)lh from x = -3 to x = 5 using an error tolerance of 
1 E- 12. it speeds up execution to subdivide the interval at x = 0, where !(x) has a sharp bend in its 
graph. Because [(x) is very smooth on the subintervals ( - 3, 0) and (0, 5), the integrals over these 
subintervals can be evaluated quickly. 

J5 JO L5 
[(x) dx ~ [(x) dx + [(x) dx 

- 3 -3 0 

The following program computes this integral on the two subintervals and then combines the results. 

10 DEF FNF(X) - SQR(X*X + IE - 12) 

20 I - INTEGRAL( - 3,0.1 E- 12,FNF(IVAR)) 

30 E- IBOUND 

40 DISP "Integral ="; 

50 DISP 1+ INTEGRAL(0,5, 1 E - 12,FNF(IVAR)) 

60 DISP "Error =":E + IBOUND 

We will use X:t X rather than ~-.:: .". 2 because x:t::-:: 
is more accurate. An analogous situation generally 
occurs for any integer power of a variable. 

Integrate over the first subinterval. 

Save the error to add in later. 

The sum of the first and second integrals. 

Compute the relative error by adding Lhe two 
errors together. 

You can run this program by keying it in and then pressing I RUN I. Tbe following will then appear in 
t he display. 

In \ "9 r a 1 = 17 
Error = . 000000000017 

, 
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When the interval is subdivided. I ~~TEGRAL computes the answer in a few secondf'. Without subdivid­
ing the interval, execution may take a long time. 

Subdividing the interval of integration is also useful for fun ctions with a singularity in the interval. 
The singularity may consist of one or more points where t.he function is undefined or has a sharp 
corner point. 

For example, the integral 

r2 dx 
Jo (x - 1)2 L' dx 12 dx may be split into ,, + ( )' o (x - 1)- l x - 1 

to avoid evaluating the function at x = 1, where it. is undefined. You can now integrate the function on 
each subinterval because x = 1 is an endpoint of each subinterval, and I t~ TEGRAL does not sa mple at.. 
an endpoint. 

Similarly, the fun ction V I x- II , has a sharp corner point. at x = 1. 

\f Ix - II 

Suppose you need to integrate this function from 0 to 2. You can increase the speed and accuracy of the 
computation by integrating separately on the subintervals (0, 1) and (1, 2), because tl.e function is 
smooth on each of these subintervals. 

Transformation of Variables, A second method of handling difficult integrands is by transforming 
the variable. \Vhen the variable in a definite integral is transformed, the resulting definite inl,egral may 
be easier to compute numerically. Consider the integral 

11 (~yrx~x _____ 1 )dX 
o x- I In x . 

The derivative of the integrand approaches infinity as x approaches 0, as shown on the left below. The 
substitution x = u2 stretches the x-axis and causes the function to be better behaved, as shown on the 
right. 
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0.1 

0.1 

Vx 

u - --
In u (u + 1 )(u - 1) 

x - 1 In x 

o ~--------------------~~-- x O~--------------------------~U 
o o 

You can now evaluate t.he integral that results from this substitut ion: 

rl (_-=-2U' _ __ u ) du 
Jo (u + I)(u - I) In u . 

(Do not replace (u + l )(u - 1) with u2 - 1; as u approaches 1, u2 - 1 loses half of its digits to 

roundoff, yielding a final result that is too large.) 

As a second case requiring substitution , consider the following funclion. Its graph has a long tail 
stretching much farther than the main body (where most of the area is). 

1 
x'+10 10 

----



o 

il 
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Although a very thin tail may be truncated without greatly degrading accuracy, this function has too 
wide a tail to ignore when calculating 

Jt dx 
l x2 + 10 10 

if t is large. In general, the compressing substitut.ion x = b tan u maps the entire real line into ( - 11"/ 2, 
. /2) and maps subsets of the real line into subsets of ( - ,,/2, ... /2). For b ~ IE-5 the substitution 
becomes x ~ IE- 5 tan u and the integral becomes 

1 
tlUl I (l ib) 

10' du 
tan L( fIb) 

which is readily computed for very large L. 

This compressi ng substiiution is also a standard way to deal with infinite intervals. For example, 

Joo dx _ 10' r' /2 du 
00 x2 + 10 - 10 J- 1r/ 2 

In some cases the tail can be chopped off. Consider the function exp (- x2). This functions underflows 
(that is, gives a result of zero in machine arithmetic) for x > 34 . Thus, 

Loo 
e-r'dx "" L3

• e '" dx 

Therefore, when dealing with infinite integrals you can cut off the tail if it is insignificant, but you 
should use a compressing substitution if it is not. 
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About the Algorithm 

The Math Pac uses a Romberg method fo r accumulating the value of an integral. Several refinements 
make it more effective. Instead of equally spaced samples, which can introduce a kind of resonance or 
aliasing that. produces mis leading results when the integrand is periodic, I t'~ TEGRAL uses samples 
that are spaced non uniformly. Their spacing can be demonstrated by substituting 

3 1 Ib x ~ - u - - u3 into [(x)dx 
2 2 a 

and then spacing u uniformly. Besides suppressing resonance, the substitution has two additional bene­
fits. First, no sample need be taken from either endpoint of the interval of integration unless the inter­
val is so small t hat points in t he interval round to an endpoint. As a resul t , an integra l like 

LI sin x dx 
o x 

will not be interrupted by division by zero at an endpoint. Second, I HTEGPAL can integrate functions 
whose slope is infini te at an endpoint. Such functions are encountered when calculating the area en­
closed by a smootb closed curve like x2 + [ 2(x) ~ R. 

In addition, I tiTEGRAL uses extended precision. In te rnally, sums are accumulated in l5-digit num· 
bers. This allows thousands of samples to be accumulated, if necessary, wi thout losing any more signifi· 
cance to round-off than is lost within your function. 

During the computation, I t~TEG~:AL generates a sequence of iterates that are increasingly accurate 
estimates of t he actual value of the int.egral. It also estimates the width of the error ribbon at each 
iterate. I HTEGRAL stops only after three successive iterates are within the computed error of each 
other or after 16 iterations have been performed without th is cri terion being met. 

In the latter case the function will have been sampled at 65,535 points. The value returned by 
I BOUND will be the negative of t he computed error to signify that the returned value of the 
I tnEGF'AL is likely not within the error to lerance of Lhe actual value. Typically. you shou ld then split 
up the interval of in tegrat ion into smaller subin tervals and integrate the function over each of the 
subintervals. The integral over t.he original interval will then be the sum of t he integrals over the 
subintervals. In this way, up to 65,535 points can be sampled on each subinterval, thus computing the 
integral to greater precision , 

In summary, I NTEGRAL has been designed to return reliable resuI t.s rapidly and in a convenient, 
easy-to-use fas hion. The above theoretical consideralions di scuss problems with numerical integration 
in general. The I IHEGRAL keyword is capable of handling even difficult integrals with relative ease. 



~nts 

~ or 
)Ies 

ne· 
er· 

lOS 

;!n-

m· 
fi · 

Ite 
ch 
c h 

by 
he 
lit 
oe 
,e 
,e 

,t , 

Section 12 

Finding Roots of Polynomials 

eyword 
The keyword in this section finds all solutions-boLh real and complex- of P(x) ~ 0, where P is a 
polynomial of your choice with real coefficients. If P is a polynomial of degree n there will be n (not 
necessarily distinct) solutions of this equat.ion, so this keyword resembles an array operation in its 
format. 

Th use this keyword to find the solutions of the equation P(x) ~ 0, where 

P(x) = onxn + 0n _ lX'I - 1 + .. . + alx + Go 

first store the coefficients am an- It . .. • a 0 in a real-type array with n + 1 elements in al l. They should 
be stored in Lhe order indicated above, with the coefficient of the highest power first and the constant 
term last. Aside from the total number of elements in the array, which indicates to the Math Pac t he 
degree of the polynomial, the dimensions of the array are irrelevant. For example, the arrays 

6 

:l[; :] ""' 
5 

[6, 5, 4, 3, 2, 1], [ : 
5 4 

2 3 

2 

1 

all can represent the fift h degree polynomial 

6r' + 5x4 + 4x3 + 3x2 + 2x + l. 

In The array in which you wish the resulting roots to be stored must be complex type to accept complex 
e. roots. )f the polynomial whose roots are sought has degree N . and if the result array is a vector, iL will 

be redimensioned to have N elements. I f the result array is a matrix, it will be redimensioned to have 
N rows and one column. 

The degree of the polynomial whose roots you can find is limiLed only by the amount of memory you 
have available. 

119 
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PROOT Roots of a Polynomial 

ilAT R=PF,OOT 0: P ) 

where P is a real vector or matrix with N + 1 elements, where N = degree of polynom ial whose roots 
are sought, and R is a complex vector or matri x. 

If R is a vector. implicitly redimensions R to have N elements. If R is a matrix , implicitly redimensions R to 
have N rows and one column. R wi ll be assigned the (complex) values of the solutions of the equation 
P(x) ~ 0 (where P is the polynomial of degree N whose coefficients are the values of the elements of Pl. 

To halt operation , press ! ATTN! twice. 

Not usable in CALC mode. 

Example 

The following example finds all roots of the polynomial 

5Z6 - 45Z' + 225Z' - 425Z3 + 170Z' + 370Z - 500 

OPTIOII BA:,:E l! ENDLlNE! 

[I I i1 A"?)! END LINE ! 

COI'lPLE>·: E:O: 1", ., ! ENDLINE! 

MAT HIPUT A! END LINE! 

A(l)? I 

5.-45 1 225, -425.170,370.-500 
! END LINE ! 

1'1AT B=PPOOT'-: A:" ! END LINE I 

Creates real vector for coeffic ients. 

Creates complex vector [or roots. 

First redimensions the vector B to have si.x ele­
ments, just large enough to contain the six (com­
plex) roots of the six -degree polynomial. Then 
finds all roots and stores them in B. 
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~l AT 0 I :o; P E: I END LI NE I 

( 1 J 1 ) 
( 1)- 1 ) 

( -1 ., 121> 
(2 .. 0 ) 
( 3 , 4 ) 
( 3 .. -4 ) 

Additional Information 
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Displays all roots. 

There are several methods of gaugi ng the accuracy of t he calculated roots. The first method is to cal· 
culaLe the value of t he polynomial at t he a lleged root. and compare this value with zero. Although Quite 
straightforwa rd in t heory, th is has a number of drawbacks in pract ice. It may easily happen that the 
root calculsLed is t he closest machine- representable number to a t rue root. but because the polynomial 
has such a large value for its derivative at this root, the value of the polynomia l at t he calculated root is 
very large. A simple example of t his phenomenon is given by t he polynomial 1 E20x2 - 2E20. A true 
root is v'"2; a calculated root is 1.41421356237, which is the machine· represe ntable number closest to 
V2. Howeve r, t he \'a lue of the polynomial a t th is approximation to the squa re root of 2 is 
- 1,000,000,000, a number t hat seems very far from zero. 

Another d rawback of t he above method is that because of the limited precision avai lable in a ny numeri­
cal calculation , t he roundoff errors that occur in the calculat ion of the polynomial value may com ­
pletely eliminate t he s ignificance of the difference between t he calculated value a nd zerO. T his is 
espec ially t rue when t he polynomial is of large degree, has coefficien ts widely varying in size, or has 
roots of high multiplicity. 

A second method of gaugi ng t he accuracy of t he calculated roots is to attempt to reconstruct the poly· 
namia! from these roots. ]f the reconstructed polynomial closely resembles t he original, t he rOOLS are 
then judged to be accurate. T his technique is less sensit ive to t he problems that affect the polynomial 
evaluation method. Of course, this method does not give information on the accuracy of an individual 
root. 

The program below asks you for a polynomial a nd calculates t he roots of that polynomial using t he 
PROOT keyword. If you wish, the program will a lso ca lculate t he reconstructed coefficients from Lhe 
c~ Iculated roots. In addition , if desired, t he progra m will compute the value of the polynomial a t either 
a calculated root or any other real or complex value. 

Lines 10 t hrough 200 drive th e program and use the PROOT function to calculate t he roots of t he given 
polynom ial. Lines 210 through 250 comprise the subrout ine t hat evaluates the polynomial at any real or 
complex point. Horner's method is used. 
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Lines 260 through 410 comprise the subroutine that reconstructs the coeffic ients from the calculated 
roots. Starting with the polynomial 1, the subroutine successively multiplies the polynomial by the 
linear factors (Z - R), where R is a calculated real roOL, Or by the quadratic Z2 - 2REPT(R) + 
ABS(R)2, where R is a calculated complex root. (Note that CONJ(R) will also be a calculated root). 

10 OPTION BASE 0 @ INTEGER D,E 
@ DIM U$[4] @ DELAY 1 @ WIDTH 96 

20 INPUT "DEGREE? "; D 

30 DIM P(D) ,C(D) @ COMPLEX R(D - 1) 

40 DISP "ENTER COEFFICIENTS" 
@ MAT INPUT P 

50 DISP "WORKING .. ." 

60 MAT R- PROOT(P) 

70 DISP "THE ROOTS ARE" @ DELAY 8 @ 
MAT DISP R @ DELAY 1 

80 U$-KEY$ @ INPUT 
"RECONSTRUCT? (YIN) ";U$ 

90 IF UPRC$(U$) - "Y" THEN GOSUB 260 
ELSE 110 

100 DISP "RCON COEFFICIENTS ARE" @ 
DELAY 8 @ MAT DISP C @ DELAY 1 

110 U$ - KEY$ @ INPUT 
"EVALUATION? (YIN) ";U$ 

120 IF UPRC$(U$)#"Y" THEN 190 
ELSE COMPLEX Z 

130 INPUT "AT A ROOT? (YIN) ";U$ 

140 IF UPRC$(U$)#"Y" THEN INPUT 
"VALUE? ";Z @ GOTO 160 

D is the degree of the polynomial. 

Array P will contain the coefficients of the 
polynomial in the order given previously, array R 
will contain the calculated roots, and array C 
will contain the reconstructed coefficients. 

Enter the coefficients. The leading coefficient 
should be nonzero for the program to work 
properly. 

Calculates the roots and stores them in array R. 

Displays the calculated roots. To continue the 
program after each root is displayed, press 
I END LINE I. 
If you wish, the program will reconstruct t he 
coefficients from the calculated roots. 

The subroutine starting at line 260 performs the 
reconstruction and stores the reconstructed 
coefficients in array C. 

Displays the reconstructed coefficients. To 
continue the program after each display, press 
I END LINE I. 
If you wish, the program will evaluate the 
polynomial at a root or at any other point. 

The complex variable Z will hold the polynomial 
value. 

The point may be either real or complex. 
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150 DISP USING '#,"WHICH ROOT 

(l ... ",K,")" ';D @ INPUT E 
@ Z ~ R(E - l) 

160 GOSUB 210 @ DISP "POLYNOMIAL 
VALUE IS' @ DELAY 8 @ DISP Z @ 
DELAY 1 

170 U$ ~ KEY$ @ INPUT 
"ANOTHER VALUE? (YIN) ";U$ 

180 IF UPRC$(U$) ~ "Y" THEN 130 

190 INPUT "ANOTHER POLY? (YIN) ";U$ 

200 IF UPRC$(U$) ~ ·Y" THEN 20 ELSE STOP 

210 COMPLEX B @ B ~ P(O) 

220 FOR K ~ l TO 0 

230 B ~ P(K)+ Z*B 

240 NEXT K 

250 Z ~ B @ DESTROY B @ RETURN 

260 OISP "WORKING .. ." 

270 MAT C ~ ZER @ C(O) ~ l 

280 FOR L ~ l TO 0 

290 IF IMPT(R(L - l))#O THEN 340 

300 FOR K ~ O - L TO 0 - 1 

310 C(K)~ C(K + l)- C(K)*REPT(R(L- l)) 

320 NEXT K 

330 C(O) ~ - C(O)*REPT(R(L - l)) @ GOTO 
400 

340 REAL B @ B ~ REPT(R(L - l))A2 

+ IMPT(R(L - l ))A2 

350 FOR K ~ O - L- l TO 0 - 2 
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Input the number of the root where you want 
the polynomial evaluated. 

The subroutine beginning at line 210 evaluates 
the polynomial at the given point or root. This 
value is then displayed. To continue, press 
I END LINE I-
The program will evaluate the polynomial again 
if you wish. 

You can choose to start the program over again 
with a new polynomial. 

The polynomial evaluation subroutine uses 
Horner's method. 

This line begins the coefficient reconstruction 
subroutine. Some rounding error may accumulate· 
during reconstruction, so even if the roots are 
exact, the reconstructed coefficients may not 
exactly coincide with the original coefficients. 
Creates polynom ial 1 in array C. 

We use each calculated root in turn. 

Lines 300 through 330 mul tiply the current 
reconstructed polynomial by a linear factor. 

Lines 340 through 390 multiply the current 
reconstructed polynomial by a quadratic factor. 
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360 C(K)=C(K+2) - 2*REPT(R(L-1)) 
*C(K+1)+B*C(K) 

370 NEXT K 

380 C(D - 1)- - 2*REPT(R(L- 1))*C(K +1) 
+B*C(K) 

390 C(D) = B*C(D) @ L=L + 1 

400 NEXT L 

410 MAT C=(P(O))*C @ DESTROY B 
@ RETURN 

We increment L since we multiplied the 
polynomial by both the complex root and its 
complex conjugate. 

The reconstructed polynomial has leading 
coefficient 1 and so must be adjusted if the 
original leading coefficient was not 1. 

Example. If we wanted to find and evaluate the roots of the polynomial 

x6 + x!' + x' + ;{"1 + x' + x + 1. 

we would run t..he program using the following keystrokes. 

Input/ Result 

I RUN I 

DEGREE" • 

6 I END LINE I 

ENTER COEFFICIENTS 

1 • 1 . 1. 1 , 1 , 1 , 1 I END LINE I 

[KIRK It'G .. , 



THE ROOTS RRE 

33956,-.974927912182) 

(-.22252093395 6 .-.9 74 

1 END LINE 1 

933956 ... 9749279121 :::2) 

(-,2 22520933956 .. 9749 
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The display scrolls to display the imaginary part 
of the first root. 

The rea l part of the first root. 

The imaginary part. of the second root. 

The real part of the second root. 

Display Lhe last four roots in the same way. These displayed roots are: 

Thi rd root: .:: - ,90096:=::'::67902., -,433:':::'::373911:'::;' 

Fourth root.: (-, :'~[H]96 :'::8679[12! ,433:::83739118::' 

Fifth root: ( ,623 489801 :'::59! .7 ::: 1 :::31482468,:. 

Sixth root: (.623 48980 1859, -,781 :33 14 :32468;' 

After the last root is displayed, continue the program by pressing 1 END LINE I. 

Input/Result 

RECONSTRUCT0 (¥/N) I Any response but \' or '~ is interpreted as " no. " 

'.! I END LINE I 
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RCON COEFFICIENTS ARE 

1 The coefficient of the XO term_ 

I END LINE I 

, 99999999999 The coefficient of the :0 term. 

Display the remaining five coefficients in the same way- These displayed coefficients are: 

Coefficient of x4 term: 1 

Coefficient of x3 term: , 9999999999::: 

Coefficient of x2 term: 1 

Coefficient of xl term: , 9999999 9999 

Coefficient of xO term: 1 

After the last coefficient is displayed, continue the program by pressing 1 END LINE 1_ 

lnput/Result 

EVALUATION? (Y/Nl I 

I 1 END LINE 1 

y I END LINE I 

~jHICH ROOT (1 ... 6)'" • 
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11 END LINE I 

POLYNOMIAL VALU E IS 

(1d}-7. 52E-13 ) 

I END LINE I Continues the program. 

ANOTHER VRLUE0 (Y/N) • 

I I END LINE I 

AT R ROOT ? (Y/N) • 

N I END LINE I 

\,'ALUE') • 

( - . 2, ,9 ) @'iQQN:I/ 

POLYNOMIAL VALUE IS 

(. 222523} . 1:::5:314) 

I END LINE I 

ANOTHER VALUE0 (Y/N) • 

N I END LINE I 

ANOTHER POLY0 (V/Nl • 

fl l END LINE I Ends the program. 
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About the Algorithm 

The Math Pac finds the roots of polynomials using Laguerre's method, which is an iterative process. 
The Laguerre step at the iterate Zk for the polynomial P(Z) of degree N is 

-NP(Z,) 

P'(Z.) ± [(N - 1)2 (P'(Z,))' - N (N - 1) P(Z,l P"(Zk)j'· 

The sign in the denominator is chosen to give the Laguerre step of smaller magnitude. Polynomials or 
their quotients of degree < 3 are solved using the quadratic formula or linear factorization. 

Laguerre's method is cubically convergent to isolated zeros and linearly convergent t.o zeros of mul ­
tiplicity greater than one. 

The PROOT function is global in the sense that the user is not required La supply either an initial guess 
or a stopping crite rion; in other words, no prior knowledge of the location of the roots is assumed. The 
F'F'OOT function always attempts to begin its search (iteration) at the origin of the complex plane. An 
annulus in the plane known to contain the smallest magnitude root of the current (original or quotient) 
polynomial is constructed about the origin (using five theoretical bounds) and the initial Laguerre step 
is rejected if it exceeds the upper limit of this annulus. In this case, a spiral search from the lower 
radius of the annulus in the direction of the rejected initial step is begun until a suitable initial iterate 
is found. 

Once the iteration process has successfu lly started, circles around each iterat.e are constructed (using 
two theoretical bounds) that are known to bound the root closest to that iterate; the Laguerre step size 
is constantly tested against the radii of these circles and modification of the step is made when it is 
deemed to be too large or when the polynomial value does not decrease in the direction of the step. For 
this reason, the roots are normally found in order of increasing magnitude, thus minimizing the 
roundoff errors resulting from deflation. 

Evaluation of the polynomial and its derivatives at a real iterate is exact.ly Horner's method. 
Evaluation at a complex iterate is a modification of Horner's method that saves approximately half of 
the multiplications. This modification takes advantage of the fact that the Horner recurrence is sym· 
metric with respect to complex conjugation. 

PF'OOT uses a sophist icated technique to determine when an aoproximation Zk should be accepted as a 
rooL. As the polynomial is being evaluated at Zk, a bound for the evaluation roundoff error is also being 
computed. If the polynomial value is less than this bound, Zk is accepted as a root. Zk can also he 
accepted as a root. if the value of the polynomial is decreasing hut the size of the Laguerre step has 
become negligible. Before an approximation Zk is used in an evaluation, its imaginary part is set to zero 
if this part is small compared to the step size. This improves performance, since real-number 
evaluations are faster than complex evaluat.ions. If the Laguerre step size has become negligible but the 
polynomial is not decreasing, then the message PROOT f.:t i !IJt· Eo is reported and the computation 
stops. This is expected never to occur in practice. 
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As the polynomial is being evaluated, the coefficients of the quotient polynomial (by either a linear or 
quadratic factor corresponding to the Zk) are also computed. When an approximation Zk is accepted as 
a root, this quotient polynomial becomes the polynomial whose roots are sought, and the process begins 
again. 

Multiple Zeros 

No polynomial rootfinder. including PROOT, can consistently locale zeros of high multiplicity with 
arbitrary accuracy. The general rule-oC-thumb for PROOT is that for multiple or nearly-multiple zeros, 
re,olution of the root is approximately 12/ K significant digits, where K is the multiplicity of the root. 

Accuracy 

PROOT's cri terion for accuracy is that the coefficients of the polynomial reconstructed from the cal­
culated roots should closely resemble the original coefficients. 

We will illustrate PF:OO T's performance with isolated zeros using the 100th degree polynomial 

100 

P(Z) ~ 2: Z' 
' -0 

Of the 200 real and imaginary components of the calculated roots, about half were found to 12 digit 
accuracy. Of the rest, the error did not exceed a few counts in the 12th digit.. 

The polynomial (Z + 1)20 with all 20 roots equal to - 1 was solved by PF: OOT to yield the following 
roots. 

( - .997874038627,0) 
( - .934656570635,0) 
( - .947080146258, - .160105886062) 
(- .947080146258,.160105886062) 
(- .678701343788, -6.24034855342E - 2) 
(- .678701343788,6.24034855342E- 2) 
(- .815082852233, - .270565874916) 
( - .815082852233,.270565874916) 
( - .725960092383, - .178602450179) 
( - .725960092383,.178602450179) 
( - .9349324 78844, - .326980158732) 
(- .934932478844,.326980158732) 
(- 1.06905713438, - .337946194292) 
( - 1.06905713438,.337946194292) 
(-1.19977533452,- .295162714497) 
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( -1.19977533452,.295162714497) 
(-1.30383056467, - .200016185042) 
( -1.30383056467,.200016185042) 
( - 1.3593147483,7.00833934259E-2) 
( - 1.3593147483,-7.00833934259E-2) 

The roots appear inherently inaccurate due to the high multiplicit.y of -1 as a root. Between 0 and 1 
correct digits were expected, even though the first zero found was better than this. However, the re· 
constructed coefficients are very close and are shown below (rounded to 12 digits). 

Original Reconstructed 
Coeff icients Coefficients 

1 1 
20 20 
190 190.000000001 
1140 1140 
4845 4845.00000003 
15504 15504 
38760 38760.0000003 
77520 77520.0000007 
125970 125970.000001 
167960 167960.000002 
184756 184756.000002 
167960 167960.000003 
125970 125970.000002 
77520 77520 .0000015 
38760 38760.0000009 
15504 15504.0000004 
4845 4845 .00000011 
1140 1140.00000004 
190 190.000000042 
20 20.0000000344 
1 1.00000001018 
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Time Performance 

The speed of the PR OOT function is illustrated in the following table. The times given are those re­
quired to calculate all the roots of the polynomial 

N 
P(Z) L Z' 

k - O 

for values of N given in the Degree column, 

Note that times are approximate. 

Degree Time (sec) 

3 3 
5 6 

10 22 
15 42 
20 142 
30 168 
50 568 

I 
70 1060 

100 2101 



Section 13 

Finite Fourier Transform 

Keyword 

The finite Fourier transform is a key step in solving many problems in mathematics, physics, and 
engineering, such as problems in signal processing and differential equations. 

Civen a set of N complex data points Zoo Zho", ZN j. the finite Fourier transform will return another 
set of N complex values Woo W " .... WN - 1• such that for k ~ O. 1 •. .. • N - 1. 

Z - N"l W ( 27rkj + .. 21rhj ) 
k - ~ j cos l sm 

j - O N N 

The W'g then represent the complex amplitudes of the various frequency components of the signal 
represented by the data points. The values for the W s are given by the formula 

W - liN N~l Z ( - 21rkj + .. -27rkj ) 
j- L.. Ie cos Lsm 

k- o N N 

This formula holds for any number of data points. The Math Pac uses the Cooley-Tukey algorithm and 
the internal language of the HP-71 to achieve excellent speed and accuracy in the calculation of the 
finite Fourier transform. This requires, however, that N be an integral power of 2; for example, 2, 4, 8, 
16. 32. 64. and 128 are all acceptable values for the number of complex data points. 

To use the finite Fourier t ransform, store your complex data points Zo, ... , ZN- l as successive elements 
of an N ·element complex array with Zo as the first element, ZI as the second element, and so on. Aside 
from t he total number of elements in the array, which indicates to the Math Pac the number of com­
plex data points, the dimensions of the array are irrelevant. For examp1e. each of t.he following eight­
element arrays 

133 
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[ (1,2) 

(9,10) 

(1,2) 

(3,4) 

(5,6) 

(7,8) 

(9,10) 

( I 1,12) 

(13,14) 

(15,J 6) 

(1,2) (3,4) 

(5,6) (7,8) 

(9,10) (11,12) 

(13,14) (15,16) 

(3,4) (5,6) 

(11,12) (13,14) 

(7,8) ] 

( 15,16) 

[(1 ,2) (3,4) (5,6) (7,8) (9,10) (11,12) (13,14) 

can represent the set of input data points 

(15,16)J 

f (1,2) ,(3,4),(5,6),(7,8),(9,10),(11, 12) ,(1 3,14 ),(15,16) } 

The array in which you wish the transformed data to be stored must be complex type. rr the number of 
input data points is N , and if the result array is a vector, it will be redimensioned to have N elements. 
If the result array is a matrix, it will be redimensioned to have N rows and one column. The results of 
the finite Fourier transform Wo,"., W N - l will be returned with the complex values stored in successive 
elements of this N-elernent complex result array- the same form as the data points. 

The number of data points you can use is limited only by the amount of available memory and by the 
requirement thai the number of data points be a non -negative integral power of 2. 
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FOUR Finite Fourier Transform 

I t'tAT W= FOUR ( Z ) 

where Z is an N-element complex array, either a vector or matrix , N is the number of complex data 
points, which must be a non-negative integer power of 2, and W is a complex array, either a vector or 
matrix . 

If W is a vector, implicitly redimensions W to have N elements; if W is a matrix, implicitly redimensions W 
to have N rows and one column. W will be assigned the complex values of the finite Fourier transform of 
the data points represented by Z. 

To halt operation, press t ATTN t twice. 

Not usable in CALC mode. 

Example 

The following example computes the finite Fourier t ransform of the input data set (l,2), (3,4), (5,6), 
(7,8), (9,10) , (11,12), (l3,14), (15,16», 

10 OPTION BASE 1 

20 COMPLEX SHORT A(8), B(1 ,2) 

30 MAT INPUT A 

40 MAT B - FOUR(A) 

50 MAT OISP B 

A cont.ains the data set, and B, arLer 
redimensioning, contains the transform of t.he 
data, 
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.: 1 I 2 ) I ( 3 J 4 ) I ( 5 J 6 ) .' ( 7 J :3 ) .' ( 9 " 1 0 ) .' 
'" 1 1 " 1.2 · J ( 13 , 14) J ( 15 , 1 6 ) 
[Bi[LJNEJ 

( 8 , 9 ) 
( -3 . 4 14 2, 1 . 41 4 2 ) 
( -2 , 0 ) 
( -1 . 4 1 4 2) -, 5 :3 5 79) 
( -i / -1> 
(-, 58579) - 1 , 414 2) 
(~j , -2 ) 
( 1 . 4142 ,-3. 4 142) 

Additional Information 

Time Performance 

The app roximate time required by FOUF: to return the transform, based on the number of data points, 
is shown ill this table. 

Number 01 Transform Time 
Data Points (Seconds) 

1 0.07 
2 0.11 
4 0.26 
8 0.75 

16 1.9 
32 4.7 
64 11 

128 25 
256 55 
512 120 

1024 260 
2048 558 

-
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Relation Between the Finite and Continuous Fourier Transform 

The finite Fourier transform is most often used as on approximation to the continuous (infinite) Fou­
rier transform. 'To understand in what sense it is an approximation, and to understand the effects of 
various choices to be made in using this approximation, it is most useful to have the direct relationship 
between the continuous and finite transforms. 

If Z(x) is a complex valued function, its continuous Fourier transform is defined to be 

W(f) ~ 100 

Z(x) exp( - 2".ifx) dx 
~ 

If we have a set of N complex data points Zo, Z\> ... , ZN- I given by sampling the function Z at N 
equally spaced points 

Zk ~ Z(xo + kllx) for k ~ 0, 1, .... N - 1, 

and then find the finite Fourier transform Wo, Wh ... , W N - l of this data set, we can relate these values 
to the values of the continuous Fourier transform W(j) as follows . For k = 0, ... , N - I, 

Wk ~ (r/N) W(k/ NIlx) where r ~ exp( -2".ixo). 

W is a jjsmeared" version of the true continuous Fourier transform W. To get W from W, you must 
average W in two important but very different ways. The first type of averaging that occurs can be 
described by defining a new function A(f) intermediate between Wand W. 

00 

A(f) ~ L W(f + k/Ilx) 
k - - 00 

This says that the value of A at a point f is equal to the sum of the values of W at all points that are 
integer multiples of the limiting frequency 1(llx away from f. In particular, if W consists of a small 
bump centered at the origin, then A will consist of an infinite sequence of bumps spaced 1/ ~x units 
apart. This is the aspect of the finite Fourier transform that gives rise to alia..,ing: any frequency that 
occurs in W (that is, W has a nonzero value there) will give rise to a nonzerO value for A (and also W) 
somewhere in the interval [0, l / .1.xJ no matter what the originallrequency was. For this reason, you 
should choose Ilx small enough so t hat 1/ Ilx is larger than the distance between Lhe largest and small­
est /'s that you suspect will occur in W. Since most functions occuring in actual situations (and all 
real-valued functions) have continuous Fourier transforms that are roughly symmetric about the origin, 
if a frequency to occurs in W, it is likely that -II) also occurs in W. For the finite Fourier transform to 
conLain both frequencies without aliasing, l / Ilx must be larger than 2fo. If we define Lhe largest fre­
quency occuring in Was M, we can express the no-alias ing requirement as af.1.x < 1/2. 
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The second type of averaging that. occurs when going between Wand W is much more local in nature 
than the first. It results in a loss of frequency resolution in W as compared with W; more precisely, 

IV(/) - (Nllx) J oo sinc(gNllx) A(j - g) dg 
~ 

where sinc(a) _ [ 1 .if a( - ) 0, 
SIn rra otherwise. 

7ra 

Since sine (gN~x) consists primarily of a bump with width inversely proportional to N!J.x, W is more 
blurred (compared to W) for smaller values of Nllx. This is not a serious problem unless W has a large 
value at a frequency that is not a multiple of the fundamental frequency N/Ilx. In this case, the "side 
lobes" of the sine function become evident in W. This can be reduced some\vhat by multiplying the 
data values Zk by a smoothing function G(k) before taking the finite Fourier transform. This results in 
an averaging function that has smaller side lobes than t he sine function. One example of such a func· 
t ion is the Hanning function G(k) - (1/2)(1 - cos(27rk/N)). 

Inverse Finite Fourier Transform 

Many applications of the finite Fourier transform involve taking the transform of a set of data points, 
operating on the transformed values (for example, increasing or decreasing the amplitudes), and then 
retransforming the data using the inverse Fourier transform defined by 

N - l (2k· 2k·) Z k = L Wj cos.E!..!3L + i sin .E!..!!L 
j~ O N N 

You can also use the F I) U F: keyword to compute the inverse finite Fourier transform in a simple way. If 
W is an N·element complex array for which you want the inverse finite Fourier transform: 

1. Redimension W to have N rows and one column (if W is an array with only one column, then no 
redimensioning is necessary). 

2. Take the transpose (TF: t·l) of W. This produces the complex conjugate of W, without changing the 
order of the elements. 

3. Take the finite Fourier transform of the result. 

4. Take the transpose of the result of the finite Fourier transform and scalar multiply this result by 
N. This will produce the inverse finite Fourier transform of the original array. 
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Example. This illustrates an application of the finite Fourier transform, and shows the procedure for 
obtaining the inverse finite Fourier transform. 

Suppose we want to find the steady state solution Z(x) of the inhomogeneous differential equation 

Z"(x) + 3Z'(x) + 12Z(x) ~ P(x) 

where P(x) is a function for which we have sampling data. If we denote the (continuous) Fourier trans­
form of any function Q by Q, by taking the Fourier transform of the above equation we arrive at 

-('i(j) + 3i{i(j) + 12i(f) ~ P(f). 

Solving this equation algebraically we obtain 

- P(j) 
Z(f) ~ (_ {' + 12) + 3i{ 

If we can get a good approximation of P, we can easily calculate the right hand side of this equation. 
From this result we can obtain the solution to t.he original equation by taking the inverse Fourier 
transform. 

For simplicity, we will assume that the equation has been scaled so the P (x) has unit period, and that 
the highest frequency component of P is (approximately) 30 times the fundamental frequency. Sam­
pling P 64 times in one period will then suf/ice to avoid aliasing. 

Rather than prompt the user for 64 complex data point.s representing the sampling of P, the program 
below uses a relatively simple funct.ion for P, although you could use values from any other source 
equally well. 

10 OPTION BASE 1 

20 COMPLEX P(64),Q(64,1),Z(1,64) 

30 COMPLEX T 

40 DISP "Working; please wait." 

50 RADIANS 

P will contain the data points reeresenting the 
sampling of P. Q will represent P and eventually 
PI( _f 2 + 3i{ + 12). Z will represent the solution 
to the differential equation. 

T is a complex scalar for use in the complex 
division. 
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60 FOR 1- 1 TO 64 
70 R - PI*I/32 
80 P(I) - ( 6000*COS(3*R)*SIN(7.5*R)* 

COS(5.5*R) , 4000*COS(13*R)+ 
3500*SIN(11*R) ) 

90 NEXT I 

100 MAT O- FOUR(P) 

110 FOR F- - 31 TO 32 

120 J - MOD(F,64) + 1 

1400(J,1) - O(J ,1)/T 

150 NEXT F 

160 MAT O- TRN(O) 

170 MAT Z - FOUR(O) 

180 MAT Z - TRN(Z) 

190 MAT Z -(64)*Z 

200 COMPLEX Z(64 ,1) 

210 DISP "The val lies are" 

220 MAT DISP USiNG 
"X,C(MDDD.D,MDDD.D)";Z 

This is the sampling routine that assigns to P 
the values of the complex-valued functions 
represented by the right-hand side of line 80, 
sampled at 64 equally spaced points. 

Q now represents P. 
F represents the frequency variable and spans 
the full range of frequencies, positive and 
negative, that we expect to occur in P. 
,J represents the number of the element in the a 
array where the amplitude of the frequency F is 
stored. 

T will be the denominator of the complex 
fraction . 

a now represents PI( - / 2 + 3il + 12) . 
This starts the procedure that assigns the values 
of the inverse Fourier transform to Z. The 
transpose is used here to take the conjugate of a. 

The transpose is used here for conjugat ion as 
well. 

'The values displayed will represent the complex 
values of the steady state solution of the 
differential equation sampled at 64 equally 
spaced points in One period. 
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Fourier Sine/Cosine Series 

There is another transform closely related to the finite Fourier transform that is applicable when the 
data poi:"lt.s Zk are purely real (that. is, their imaginary parts are equal to zero), This is the Fourier 
series transformation, which takes a set of 2N (real) data points Zo, Zl' "" Z 2N - l and returns a set of 
2N + 1 real values Ao. At • . ..• AN. B" ...• BN with the property that 

If Wo, W1, .. " W2N- 1 a re the complex values of the fir. te Fourier transform of the real data points 
::l Zo.,· " Z2N- t. then the Fourier series values are given Ly 

for j .., 0, .. " N - l, 

for j ~ 1 •. ..• N. 

s 
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Owner's Information 

Installing and Removing the Math Pac Module 
The math module can be plugged into anyone of the four ROM ports on the front edge of the 
computer. 

CAUTIONS 

• Be sure to turn off the HP-71 (press OJ I OFF i) before installing or removing the module. 

• If you have removed a module to make a port available for the math module, before installing the 
math module, turn the computer on and then off to reset internal pointers. 

Do not place fingers , tools, or other objects into any of the ports. Such actions could result in minor 
electircal shock hazard and interference with pacemaker devices worn by some persons. Damage 
to port contacts and internal circuitry could also result. 

• If a module jams when inserted into a port, it may be upside down. Attempting to force it further 
may result in damage to the computer or the module . 

• Handle the plug-in modules very carefully while they are out of the computer. Do not insert any 
objects in the module connecter socke\. Always keep a blank module in the computer port when a 
module is not installed. Failure to observe these cautions may result in damage to the module or 
the computer. 

Limited One-Year Warranty 

What We Will Do 

The Math Pac is warranted by Hewlett-Packard against defects in malerials and workmanship affect­
ing electronic and mechanical performance, but not software content, for one year from the date of 
original purchase. If you sell your unit or give it as a gift, the warranty is transferred to the new owner 
and remains in effect for the original one-yea! period. During the warranty period, we will repair or, at 
our option, replace at no charge a product that proves to be defective, provided you return the product, 
shipping prepaid, to a Hewlett-Packard service center. 
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What Is Not Covered 

This warranty does not apply if the product has been damaged by accident or misuse Or as the result of 
service or modification by other than an authorized Hewlett· Packard service center. 

No other express warranty is given. The repair or replacement of a product is your exclusive remedy. 

ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED 
TO THE ONE-YEAR DURATION OF TIDS WRITTEN WARRANTY. Some states, provinces, 
or countries don' t allow limitations on how long an implied warranty lasts, so the above limitation may 
not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE 
FOR CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclu· 
sian or limitation of incidental or consequential damages, so the above limitation may not apply to you. 

This warranty gives you specific legal rights, and you may also have other rights which may vary from 
state to state, province to province, or country to country. 

Warranty for Consumer Transactions in the United Kingdom 

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a 
consumer. In relation to such transactions, the rights and obligat.ions of Seller and Buyer shall be 
determined by statute. 

Obligation To Make Changes 

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett~Pack8rd 

shall have nO obi igation to modify or update products once sold. 

Warranty Information 

If you have any questions concerning this warranty, please contact an authorized Hewlett·Packard 
dealer or a Hewlett·Packard sales and service office. Should you be unable to contact them, please 
contact: 

• In the United States: 

Hewlett · Packard Company 
Personal Computer Group 
Customer Communications 

11000 Wolfe Road 
Cupertino, CA 95014 

Toll·Free Number: (800) FOR·HPPC (800367·4772) 
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• In Europe: 

• In other countries: 

Service 

Service Centers 
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Hewlett-Packard S.A. 
150, route du ant-d'AvTil 

P.O. Box CH-1217 Meyrin 2 
Geneva 

Switzerland 
Telephone: (022) 83 81 11 

Note: Do not send products to this address for repair . 

Hewlett-Packard Intercontinental 
3495 Deer Creek Rd. 
Palo AI to, CA 94304 

U.S.A. 
Telephone: (415) 857-1501 

Note: Do not send products to this address for repair. 

Hewlett-Packard maintai ns service centers in most. major countries throughout the world. You may 
have your product repaired at a Hewlet.t-Packard service center any time it needs service, whether the 
un it is under warranty or not. There is a charge for repairs after the one-year warranty period. 

Hewlett-Packard computer products normally are repaired and reshipped within five (5) working days 
of receipt at any service center. This is an average time and could vary depending on the time of year 
and work load at the service center. The total time you are without you product will depend largely on 
the shipping t ime. 
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Obtaining Repair Service in the United States 

The Hewlett-Packard United States Service Center for battery-powered computational devices is lo­
cated in Corvallis, Oregon: 

Hewlett-Packard Company 
Service Department 

P.O. Box 999 
Corvallis, OR 97339, U.S.A. 

or 
1030 N.E. Circle Blvd. 

Corvallis, OR 97330, U.S.A. 
Telephone: (503) 757 -2000 

Obtaining Repair Service in Europe 

Service centers are maintained at the following locations. li'or countries not listed, contact the dealer 
where you purchased your unit.. 

AUSTRIA 
HEWLETT-PACKARD Ges.m.b.H. 
Klelnrechner-ServlCe 
Wagramerstrasse-Ueblgasse 1 
A-1220 Wien (Vienna) 
Telephone: (0222) 23 65 11 

BELGIUM 
HEWLETT-PACKARD BELGIUM SA/NV 
Woluwedal 100 
B-1200 Brussels 
Telephone: (02) 762 32 00 

DENMARK 
HEWLETI-PACKARD A/S 
Datavej 52 
DK-3460 Birkerod (Copenhagen) 
Telephone' (02) 81 66 40 

EASTERN EUROPE 
Refer to the address listed under Austria. 

FINLAND 
HEWLETT -PACKARD OY 
Revontulentie 7 
SF-02100 Espoo 10 (Helsmkl) 
Telephone: (90) 455 02 11 

FRANCE 
HEWLETT-PACKARD FRANCE 
Division Informatique Personnelle 
S.A V. Calculateurs de Poche 
F·91947 Les Ulis Cedex 
Telephone: (6) 907 78 25 

GERMANY 
HEWLETT-PACKARD GmbH 
Kleinrechner-Service 
Vertriebszentrale 
Berner Strasse 11 7 
Poslfach 560 140 
0-6000 Frankfurt 56 
Telephone: (611) 50041 

ITALY 
HEWLETT-PACKARD ITAUANA S.P A. 
Casella postaJe 3645 (Milano) 
Via G. Oi Vittorio, 9 
1-20063 Cernusco SuI Navigho (Milan) 
Telephone: (2) 90 36 91 

NETHERLANDS 
HEWLETT-PACKARD NEDERLAND B.V 
Van Heuven Goedhartlaan 121 
N-1181 KK Amstelveen (Amsterdam) 
P.O. Box 667 
Telephone: (020) 472021 

NORWAY 
HEWLETT-PACKARD NORGE A/S 
P.D Box 34 
Oesterndalen 18 
N-1345 OeSleraas (Oslo) 
Telephone: (2) 17 II 80 

SPAIN 
HEWLETT-PACKARD ESPANOLA SA 
Calle Jerez 3 
E-Madrid 16 
Telephone: (1) 458 2600 

SWEDEN 
HEWLETI-PACKARD SVERIGE A8 
Skalholtsgalan 9, Kista 
Box 19 
S-163 93 Spanga (StOCkholm) 
Telephone: (08) 750 20 00 

SWITZERL AND 
HEWLETT-PACKARD (SCHWEIZ) AG 
Kleinrechner-Service 
Allmend 2 
CH-8967 Widen 
Telephone: (057) 31 21 11 

UNITED KINGDOM 
HEWLETI-PACKAAD Ltd 
King Street Lane 
GB-Winnersh. Wokingham 
Berkshire RG 11 5AR 
Telephone: (0734) 784 774 
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International Service Information 

Not all Hewlett·Packard service centers offer service for a ll models of HP products. However, if you 
bought your product from an authorized Hewlett·Packard dealer, you can be sure that service is avail­
able in the country where you bought it. 

If you happen to be outside of the country where you bought your unit, you can contact the local 
Hewlett· Packard service center to see if service is available for it. rf service is unavai lable, please ship 
the unit to the address listed above under Obtaining Repair Service in the United States. A list of 
service centers for other countries can be obtained by writing to that address. 

All shipping, reirnportation arrangements, and customs costs are your responsibility. 

Service Repair Charge 

There is a standard repair charge for out·of·warranty repairs. The repair charges include all labor and 
materials. In the United States, the full charge is subject to the customer's local sales tax. 

Computer products damaged by accident or misuse are not covered by the fixed repair charge. In these 
cases, repair charges will be individually determined based on t ime and materials. 

Service Warranty 

Any out.·of·warranty repairs are warranted against defects in materials and workmanship for a period 
of 90 days from date of service. 

Shipping Instructions 

Should your product require service, return it with the following items: 

• A completed Service Card, including a description of the problem . 

• A sales receipt or other documentary proof of purchase date if the one·year warranty has not 
expired. 

The product, the Service Card, a brief description of the problem, and (if requi red) t.he proof of pur· 
cbase date should be packaged in adequate protective packaging to prevent in·transit. damage. Such 
damage is not covered by the one·year limited warranty; Hewlett-Packard suggests that. you insure the 
shipment to the service center. The packaged product should be shipped to the nearest Hewlett­
Packard designated collection point or service center. Contact your dealer for assistance. 
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Whether the product is under warranty or not, it is your responsibility to pay shipping charges for 
delivery to the Hewlett-Packard service center. 

After warranty repairs are completed, the service center returns the product with postage prepaid. On 
out-of-warranty repairs in the United States and some other countries, the product is returned C.O.D. 
(covering shipping costs and the service charge). 

Further Information 

Service contracts are not available. Computer products circuitry and design are proprietary to Hewlett­
Packard, and service manuals are not avai lable to customers. Should other problems or questions arise 
regarding repairs, please call your nearest Hewlett-Packard service center 

When You Need Help 

Hewlett-Packard is committed to providing after-sale support to it.o;; customers. To this end, OUT cus­
tomer support deparLment has established phone numbers t.hat you can call if you have questions about 
t his product. 

Product Information. For information about Hewlett-Packard dealers, products, and prices, call the 
toll · free number below: 

(800) FOR-HPPC 
(800 367-4772) 

Technical Assistance. For technical assistance with your product, call the number below: 

(503) 754-6666 

For either product information or technical assistance, you can also write to: 

Hewlett-Packard Company 
Personal Computer Group 
Customer Communications 

11000 Wolfe Road 
Cupertino, CA 95014 
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Appendix B 

Memory Requirements 

The Math Pac reserves 43.5 bytes of read/ write memory for its own uses. In addition, small amounts of 
memory are temporarily used for routine overhead purposes. Significant amounts of memory can be 
used to declare complex variables and arrays (see page 20), and to redimension arrays to a larger size, 
but this memory usage is easily determined. This appendix lists the amounts of tempory memory used 
by other Math Pac operations. 

Item 

Matrix operations 
OET< A ) 

t'IAT PRINT USING 

t1AT 0 I SP US I fl G 

MAT ItlPUT 

MAT A; A'f. A 
t'IAT A; A 'f. B 
t'IA T A; B'f. A 

fIAT A;TRfH A)tA 
fIAT A;TRtH A ) 'f.B 
t'IAT A; T RN( B ):tA 

Memory Required For Operation 

2N(4N + I ) bytes, where A is an N x N matrix . 

14 bytes. 

14 bytes, 

40 bytes, 

Requires additional memory only if an operand array is used for the result 
array. If the product (that is , the redimensioned array A) is M x N (for vec­
tors, let N - 1), then the memory requi red is: 

3MN bytes, if A is type I tHE GER. 
4.5MN bytes, if A is type :':HORT. 
8MN bytes, if A is type REAL . 
9MN bytes, if A is type COt'I PLE:< SHOF:T, 
16MN bytes, if A is type COfIPL EX. 

Requires additional memory only if an operand array is used for the result 
array. If the product (that is, the redimensioned array A) is M x N (for vec­
tors, let N - 1), then the memory required is: 

3MN bytes, if A is type HlTEGER. 
4.5MN bytes, if A is type SHORT, 
8MN bytes, if A is type REAL. 
9MN bytes, if A is type CO t'I PLE X SHORT. 
16MN bytes, if A is type COfIPLEX. 
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Item 

MAT B; I IW( A ) 

I'IAT C;SYS ( A , B ) 

I'IAT A;TRN( A ) 

I'IAT B;PROOT ( A ) 

I'IA T B;F DUR ( A ) 

FflRDOT 

Memory Required For Operation 

A is N x N. 
If A is F~ EAL , SHOF:T or I NTEGER and B is ~: EAL: 

4N bytes. 
If A is REAL, SHO RT or ItH EGER and B is not REAL: 

4N(2N + 1) bytes. 
If A is CDI'IPLE X or CDI1PLE :~ SHOF~T: 

8N(4N + 1) bytes . 

A is N x Nand B is N x P (for vectors, let P ~ 1). 
If A is REAL, SHOF: T, or aHEGE": and B is REAL, :,HORT, or 
r tHEGER: 

4N(2N + 4P + 1) bytes. 
If A is REAL, SHOR T, or It-ITEGER and B is COI'IPLE X or 
COI'WLE :, SHORT : 

4N(2N + 8P + 1) bytes. 
If A is COI1 P LD~ or C O~IPLE X SHORT : 

8N(4N + 4P + 1) bytes. 

If A is M x N and INTEGER: 
MN/2 bytes. 

If operand and result matrix are different, or if A is not I t-IT E G E R, no extra 
memory is needed. 

A represents an Nth degree polynomial. 
21N + 261 bytes. 

A contains N elements . 
If B is CO I'I F'LO: SHORT: 

16N bytes. 
If B is CO I'IPLE X type, no extra memory is needed. 

112.5 bytes if Ft,ROOT is not nested. 
96.5 additional bytes for each level of nesting . 

208.5 bytes if aHEGRAL is not nested. 
192.5 additional bytes for each level of nesting . 
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Error Conditions 

The Math Pac reports two classes of error messages. 

• Math Pac error messages. These have a LEX ID number of 2. These error messages are explained 
in the first table . 

• HP-71 error messages that are reported by Math Pac functions. These have a LEX ID number of 
O. These error messages are explained in the second table. 

Math Pac Error Messages 

Number Error Message and Condition 

1 #DH1S 

• DOT( A 1B ) : A or B is a matrix. 

• DET( A ), 11AT B=ItW( A),I'lRT B=TRth A ), I'IAT A=IDt·l , 
l'lRT X=S'r'S( A ,. V ) : A or B is a vector. 

• 1'1 R T A= I DN ( i ) : only one redimensioning subscript specified. 

• ~1 R T A=operation ( operand array!s) ): number of subscripts of A is not the same as the 
number of subscripts required for the result of the operation. 

2 H01; :3qIJ .~re 

• [lEH A ), I'I AT A= I [ltl, I'IAT B= It~'H A ) , I'IAT X =:,:'o'~:( A " B): A is a matrix but 
the number of rows of A is not equal to the number of columns. 

• l'l AT A=ID tH i ,i) : i oF j . 

151 



152 Appendix C: Error Conditions 

I 

Number Error Message and Condition 

3 CQnfQ t"m.ab i l it ':ol 

• t1 AT A=B +C, t1AT A=B- C: B and C are not conformable for addition (the number of 
rows are unequal or the number of columns are unequal) 

• t'1 AT A=B:t: C: 8 and C are not conformable for multiplication (8 is a vector or the num­
ber of columns of B is not equal to the number of rows of C). 

• t'lAT A= IF: 1·1 ( B ) l C: B and C are not conformable for transpose multiplication (B is a 
vector or the number of rows of B is not equal to the number of rows of C). 

• r1 A T X =~: \' ::: ( A ., B ): Although A is a square matrix, A and B are not conformable for 
multiplication. 

• DOT ( A .. B ;' : Although A and B are vectors, the number of elements of A is not equal to 
the number of elements of B. 

• The result array of a t" A T statement is a subprogram parameter. The statement requires 
array redimensioning , which changes the number of array elements. 

5 HE'S t i ng E r- t" Q t" 

• More than five FHR OOT or I IHEGF:AL keywords are nested. 

6 kwbJ FH i n FNROOT/IHTEGRAL 

• Attempting to execute FI·WOOT or I IHEGF:AL from the keyboard in BASIC mode, 
and the function whose root or integral is sought is a user-defined function . 

• Attempting to execute a user-defined function from the keyboard while an FHROOT or 
I t·l T E G PA L execution is suspended during the evaluation of the function whose root or 
integral is sought. 

• Interrupting DET ( A ) , CfIOF: t'l ( A ;' , RfIOF: t'l ( A ;', FflOR t'1 ( A ) , or DOT ( A ., B ) by 
pressing I AnN I twice. 

8 B ·~d At" r .~I::I Size 

9 

• r'l AT B= F 0 LIF: 0:: A :' where the number of elements of A is not a non-negative integral 
power of two. 

• r'l AT B= P F: 0 (I T ( A ) where A has only one element . 

PPOOT F·:.i llAre 

• F' R (I (I T failed to find a root. 
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Number Error Message and Condition 

10 GRt'HtR= I nf 

• GRt'H1R ( X ) where X is a non-positive integer. 

11 RTrNH( +-1) 

• ATf1l-1H ( 1 ) or ATANH ( -l) 

No Ini t ial iz .~t ion 
error 

• The Math ROM cannot init ialize due to insufficient memory, This ROM requires 43 .5 
number bytes of user memory for its own use. This memory must be available before plugging in 

the module. 

HP-71 Error Messages 

Number Error Message and Condition 

11 In v .;;l id A,-g 

• 8 'JAL ( 8$ , R ), E:STR$ ( X , R ): The rounded integer value of R is not equal to 2, 8, or 
16. 

• B~} R L ( B$ ~ R ;.: B$ is not a valid string representation of a number in base R. 

• 8 S TF: $ ( X , R ): The rounded integer value of X is not in the interval [0 ,1 EI2). 

• E: ',I A L ( 8$ ., R ) : The decimal equivalent of 8$ exceeds 999 ,999,999 ,999 . 

• L 8 flO ( A , N ), U E: I~ [I ( A ., N ): The rounded integer value of N is not equal to 1 or 2. 

• An illegal subscript has been used in a ~tAT CDll, t'tAT I [Ill, t'tA T ZER, 
CDMPL EX, or CD t'tP L E>·: ',: HDRT statement. 

24 Insufficient t'1em or l::l 

• Appendix B gives the memory requirements for various Math Pac operations. 

31 Data T'::Ip e 

• A scalar (real t)r complex) has been used where an array is required or vice-versa. 

• A complex ' ype (scalar or array) has been used where a real type (scalar or array) is 
required or vice-versa. 
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Number Error Message and Condition 

32 No O,na 

Attempting to execute 0 E T L before the first completion of r't AT , , , Hl V with a real­
type argument or r'1 AT , , , S Y S with a real-type first argument. 

• Attempting to execute F',IALUE or FGUESS before the first completion of an 
FNROOT keyword , 

• Attempting to execute I VALUE or I BOUND before any I tHEGRAL keyword has 
completed the first evaluation of the function whose integral is sought. 

• Attempting to execute F\iAR while no Ft'WOOT is evaluating the function whose root is 
sought. 

• Attempting to execute I \JAR while no I tHEGRAL is evaluating the function whose 
integral is sought. 

46 I nva lld USING 

• Formatting a real expression with a complex I ~1 R G E field or vice-versa. 

79 I lle':pd Co nte x t 

80 

• Attempting to execute ItH E G R A L or F N ROO T from CALC mode in any way except 
by direct execution. 

In va lid Pararoeter 

l'tAT I NPUT attempts to execute an expression in the 
where that expression calls a user-defined function . 

l,tAT I t;PUT response lineJ 
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Attention Key Actions 

The way I AnN ) operates during the execution of each the following three keY"l'Ords is described on the 
referenced page. 

MAT H~ P IJT Refer to page 54. 

F t, RO OT Refer to page 97. 

INTEG RA L Refer to page 111. 

The keywords listed below in this appendix can be aborted by pressing the I ATTN I key once or twice. 

Array Output Statements 

All Math Pac array output statements (t'IAT DIS P/p"'Hn [ USJt~G]) can be halted at any time by 
press ing I ATTN) once. 

Other '1 T Statements 

The following t1AT statements may be halted at any time by pressing I ATTN I twice. 

~I A T result = r -] operand 

MAT result = operand +/ - / .j: operand 

M AT result = ( scalar ) (:I: operand] 

t1AT result = I NV ( operand ) 

t'l R T result :;: S 'y'S ( operand ) operand ) 

t'IAT result = TRtl< operand ) [:1: operand] 

t'IAT result = FOUR( operand ;. 

MAT result = F' R 0 I) TO: operand ;. 
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Suppose a lengthy program contained a t'l A TIN \1 statement. Suppose further that you wished w 
abort this program. You press I ATTN I once, and the program does not halt (the SUSP annunciawr does 
not turn on). This tells you that the t1AT I tW statement may be executing, and gives you a chance to 
wait for the result of this NAT I ~H} execution, or to abort the MAT I t·~ I.} execution and the program 
immediately by pressing I AnN I a second time. In this way the "press I AnN I twice" rule gives a user 
more control over program and statement suspension. 

Pressing I AnN I once during execution of NAT I t-I t,} would suspend the program in the usual way after 
this statement is completed. 

Scalar-Valued Array Functions 
The following sca lar·valued array functions can be halted at any ti me by pressing I AnN I twice. 

DET ( operand ) 

DOT ( operand operand 

FtWRM ( operand ) 

Ctl ORM ( operand ) 

RNORt'l ( operand , 

The benefits provided by this ('press I AnN I twice" rule are t he same as those described above. However, 
only an error can halt the execution of an expression, so when you press I ATTN I twice to halt any of the 
above functions, the Hp·71 will display the error message F unl:t ion Inte rrupted . 
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Appendix E 

Numeric Exceptions and the IEEE Proposal 

Introduction 

This appendix will discuss IEEE exception handling by Math Pac functions and operations, including 
computation with t~ at·~ and In f arguments, exception flag setting, handling of out-of-range arguments, 
error or warning messages, and default values for I VL and [11\,12 exceptions. The HP-71 reference 
manual discusses the IEEE proposal for handling math exceptions. Math Pac functions, when appro­
priaLe, will set the exception flags 1\) L , 0 I,} Z, (I V F, UHF, and I N X and report errors or warnings (with 
default results returned) according to the H :RP settings for each of these flags. You can rerer to the 
appropriate sections of this manual for definitions and/or computational formulas for many of the 
functions described here. 

No exception flags are set by any of the keywords in sections 2 or 3 of this manual, or by Math Pac 
keywords TYP E, (negation or complex numbers), COf~.-' , CON, I Dt~, ZER, 
t'lRT [I I SP/PR I NT [US I f~G l, LBt·m, U8tW, DETL, FVAR, FVRLUE, FGUESS, I ' . ..'AR, I VALU E, 
and I B 0 U N [I. Remember th.t exception nags Jt~;<, 0 II F, and U flF may be set when values are 

r, rounded to fit. the destination type, such as, for example, assigning ( t-1R :"~ RERL J MAXREAL) to a 
e COI'lPLE:': :, HORT variable or executing t1AT A~ B where A is ItHEGEf;: type .nd B contains ele­

menls greater than 99999. 

Aside from exceptions occurring during rounding, the statements t'1AT A=B, MAT A=- B, 
t'lRT A~TRfH B ;' , and t'lAT A~( X ;' set on ly the I VL exception nag (reporting message 
S ig n.a 1 ed OF' ) and only when A is I ~~TEGER type and either B contains, or /. is, a signaling ~iaN. 
This is because I t~TEGER variables Can contain only quiet, not signaling, ~~at·~ s. The same applies to 
t'lAT Jt~PUT. 

The cases given for each of the keywords in the t.a.bles which follow are evaiu"ted in order from top to 
bottom. 

Note: Throughout this appendix, * represen~5 any argument. 
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Real Scalar Functions 
These fu nctions are described in section 4 of this manual. Any signaling t~=rt..J argument sets I~} L and 
reports message Sign.:. le d Op; if TRAP( I~}L ) = 2, then this t·~ ·=d..J becomes quiet a nd t he opera­
tion can continue. With the exception of the "~at·~:t fun ction, any quiet t·1a t·~ argument returns a NaN 
result with no exception flags set. (Aside from signaling H.:d·1 arguments, the functions I RO UNO and 
ija ij $ set no except ion flags). 

Real Hyperbolic Sine (S HI H ( X» 

Argument X Result 

± Inf X; no exception flags set. 
± O X; no exception flags set. .. HI:, set; UHF , O\JF set as appropriate . 

Real Hyperbolic Cosine (COS H ( X ;. ) 

± Inf 
± O .. 
L-

Argument X 

IX I; no exception flags set. 
1; no exception flags set. 

Result 

I N::< set; OI.}F set as appropriate . 

Real Hyperbolic Tangent (T Ri'l H 0:: X ;' ) 

Argument X Result 

± I n f ',: G N ( X ;' ; no exception flags set . 
± O X .. I 1·1 :., set ; U [I F set as appropriate . 

Real Hyperbolic Arc Sine (R S HI H ( X ;. ) 

Argument X Result 

±Inf X; no exception flags set. 
± O X; no exception flags set. .. I NX set; Ui·IF set as appropriate . 
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Real Hyperbolic Arc Cosine (A COSH ( X » 

Argument X Result 

In f X; no exception flags set. 
X< I I·.} L set: NaN result; message Invalid Arg. 
I 0; no exception flags set. 

* I fl X set. 

Real Hyperbolic Arc Tangent (RTRflH( X » 

Argument X Result 

IXI> I I I,) L set ; H.at~ result; message I nva 1 i d Ar g. 
IXI - I OVZ set ; message RTRt, H ( +- 1 ). 

:,;GN ( X ) x Inf result if TRAP(OCIZ) - 2. 
SGfl( X ) x t1A )(REAL result with IW( set if TRRP ( OCIZ) - I . 

± O X; no exception flags set. 

* I H)( set; U t·l F set as appropriate. 

ease 2 Logarithm (L 0 G 2 ( X ) 

Argument X Result 

In f X; no exception flags set. 
X < 0 I ~'L set; t·l d N result ; message LOG ( "e9 ). 
±O D~.JZ set; message LOG ( ~3) . 

- Inf result if H:AP(OI,'Z) - 2. 
-fIRXR ERL result with I t·lX set if TRRP(OCIZ) - 1 . 

I 0; no exception flags set. 

* I t·~ ~< set. 

Gamma Function (G A t·1t1 A ( X » 

Argument X Result 

Inf X; no exception flags set . 
± O OVZ set; message GAt'IMA= I t·l F. 

CLASS( X) x Inf result if TRAP ( O'.IZ ) - 2. 
CLRSS ( X) x MA)'(REAL result with It, X set if TRAF' (D'JZ ) - 1. 

X < 0 and integral O'JZ set; message GAtH'lA= I t<F. 
- I nf result if TRAP ( OI .... Z ) - 2. 
- t'lA)(REAL result with I NX set if TRAP ( OVZ ) - 1 . 

* I t< X set for all X not in the set 
{ I , 2, ... , IS}; Ut,F , DCIF set as appropriate. 
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Nearest Machine Number ( I~EIGH80F.:( X .. y ») 

Arguments 
Result 

X y 

X ~ Y X ~ Y X; U I~ F . I NX set if TF:AP (UNF) '" 2 and 0 < IXI < EPS. 
11A XREAL Inf Y; no exception f lags set. 
- 1'IA :>( REAL - I nf Y; no exception flags set. 
±I nf ... SGI·j ( X ) x t1AXREAL; no exception flags set. 
± O ... :3Glj( y) x t'1I,WEAL; UI·jF, IN:": set if TRAP(UNF) '" 2. 
t'1I I·WEAL ± O 0; no exception flags set. 
- 1'1 I NF:EAL ± O - 0; no exception flags set. 
... ... U,jF, INX set i!lNEI GH80R ( X , Y>I < EPS and TRAP(UNF) '" 2 . 

Power of Ten Scaling (SCALE 1 ,:' ( X , N » ) 

Arguments 
Result 

X N 

... non-integer I VL set; NaN result; message Invalid Ar-g. 
± Inf - I nf I ·~.'L set; t~aN result ; message Inf*O, 
0 Inf I \.JL set; Na,j result; message Inf*0. 
±I nf ... X; no exception flags set. 
... - I nf SG~H X ) x 0; no exception flags set. 
... In f :,:GI·j ( X ) x I n f; no exception flags set. 
... ... jfj:,,:. O',iF. U,W set as appropriate . 

Complex Functions and Operations 

These functions are described in section 5 of this manual. For extensions of HP-71 and Mat h Pac 
fun ctions to complex arguments ( +, - , l, , .... , '\ LOG , EXP, SIt-i, COS , TA ~~. SIt~H, COSH, TANH, 
SO RT, ::;GN , ABS , =, <, >, "' , and # ), only the complex case is discussed here. For the functions 
POLAR, RECT, ARG . and P~:O . .J . computat.ion at a real argument X is equivalent to computat.ion at 
the complex argument (X, 0). 

Any s ignaling t·~ a t·~ argument (including real and imaginary parts of complex arguments) sets 1\) L and 
reports message S ig n ·~ 1 ed Op; if TRAP (I I,}L) = 2, then this Ha~~ becomes quiet and the opera­
tion can continue. In the following discussion, all references to t·~ ,EI~~S are to quiet t·~a t4 s. 
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The following te rms are used: 

o Complex denotes complex DATA type. 

o Real denotes real DATA type (e.g., (3, 0) is complex and 3 is real) . 

• CHa t~ denotes any complex number with at least one t·~ .a "~ component. 

• C I n f denot.es any complex number whose magnitude is In f; t hat is, any complex number with at 
least one ± I n f component. 

o CZERO denotes any complex number whose magnitude is O. 

o Arg(Z) denotes the argument of Z, that is, the infinitely precise value of the Math Pac function 
RRG ( Z ) . 

o I Z I denotes the magnitude of Z. 

o The complex variables Z and W will also be denoted by (x, y) and (u, v) respectively. 

+, - (Addition and Subtraction) 

For real a and complex Z , 0 ± Z ~ (0 ± x, y) and Z ± 0 ~ (x ± a, y) . For complex Z and W, Z ± W 
= (x ± u, y ± u). I '.}L is set and message In f - I n f is reported if any componentwise addition or 
subtraction is equivalent to I n f - I n f; a t~ a ~~ is returned for the corresponding resu! t component. 
Otherwise, IN X, OVF, and U t·~F are set for each result component as appropriate. 

l (Multiplication) 

For real a a nd complex Z, a X Z = Z x a = (ax, ay). I ~} L is set and message In f t ~1 is reported if 
any componentwise multiplication is equivalent to ( ± I n f) x (±O); a t·L::d~ is returned for the 
corresponding result component. Otherwise, I N ::< . 0 'v' F. and U t·~ F are set for each result component as 
approp riate. 
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For cO\Dplex Z and W, Z x W is given by the table below. 

Complex x Complex Multiplication (Z • W) 

Arguments 
Result 

Z W 

Ct4 al~ • ( t~ a t·1 .' t·1 a t·1 ) ; no exception flags set. 

• Ct~at~ ( t·1 a t·1 , t·1 a t·1 ) ; no exception flags set. 

Cl nf CZERO I '.j l set; ( t·l .a t4 , t~ a H) result; message Inf:t:f1. 

CZERO Cl nf I '.i l set; ( Ilat·I, t~atn result; message I n flO. 

Cl nf • REel( (lnf, Arg(Z) + Arg(W) ) ); no exception flags set. 

• Cl nf j;:ECT« Ir,f, Arg(Z) + Arg(W) ) ); no exception flags set. 

• • (xu - yv , xv + yu); I H:X:, t] I.} F . UHF set for each result component as 
appropriate . 

. / (Division) 

For real a and complex Z, Zia = (x/a, y/a). I I,} L is set and message ~3 /" 0 is reported if any 
componentwise division is equivalent to (± O)/ ( ± O); a ~'~ a r~ is returned for the corresponding resul t 
component. 1 \) L is set and message In f / I n f is reported if any componentwise division is equivalent 
to ( ± I n f )/( ± I n f); a r~ a r~ is returned for the corresponding result component. 0 I,} Z is set and mes­
sage / Ze t' I) is repor ted if any componentwise division is equivalent to T/(±O) where T is neither a 
t~ .;j t~ , ± I n f , or ±OJ In f of the appropriate sign is returned for the corresponding result component if 
TRAP (D '.·'Z) ~ 2; t'l A:·, j;:EAl of the appropriate sign is returned with 11-1 >': set for the corresponding 
resul t component if T RAP ( D I,) Z) = 1. Otherwise, I t,~ ;>:: , 0 I,} F, and UHF are set for each result compo­
nent as appropriate. 

For complex Z, we defin e t he following. If Z ~ CZERO. then l /Z is defined to be (C lA S S (x) x In f . 
- '3G tl(y)). If Z ~ Cl n f, then l/Z is defined to be ( S Gt·l(x) x 0, -,,;GI-I(y) x 0). 
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For real a and complex Z , a/Z is given by the table below. 

Real/Complex Division (8 / Z) 

Arguments 
Result 

a Z 

tj" 1·1 * ( t< at< , t'I,," ); no exception flags set. 

* CI·I .:; " ( t1 a II , II a II ) ; no exception flags set. 

± I n f Cr nf I I,} L set; (II .:; II .' t< at< ) result ; message Inf / ln f 

± O CZERO r 'JL set; .: t·I ."t, ., t<at< ) result ; message (1 / ,3. 

±Inf CZERO :::G t« a) x (1/Z) (real x complex multiplication); no exception flags set. 

* CZERO DVZ set; message / Z er o. 
a x (I/Z) (real x complex multiplication) result if TRAP ( O\,JZ) - 2. 
8 x (1/Z) (real x complex multiplication) result with ± r n f result component 

replaced by ± t'IR XRERL and It, X set if TRRP ( O','Z) - 1. 

* Cr nf a x (1/Z) (real x complex multiplication); no exception flags set. 

±Inf * a x COI·Io-I(2) (real x complex multiplication); r V L set and message rnfHl 
reported if any componentwise multipl ication is equivalent to (± r n f) x (± 0); a 
tjatj is returned for the corresponding result component. Otherwise, no excep-
tion flags set. 

* * (a/I Z I') x C (I 1·1,-' ( Z :> (real x complex multiplication); r t1 X, O\.IF, Ut·IF set for 
each result component as appropriate . 
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For complex Z and W, W / Z is given by the table below. 

Complex / Complex Division (W/Z) 

Arguments 
Resull 

W Z 

Clh l·1 « ( H a H , H a t~ ) ; no exception flags set . 

« C~la 1·1 ( N a H , H a t~ ) ; no exception flags set. 

CZERO CZERO I \.IL set; 0 1 .• 1-1 , 1'1 .• In result ; message 0 ,," 3 . 

C lnf C lnf I \.' L set; 0 1 a 1·1 .' 1·1 a I~ ) result ; message I n f / I n f. 

C lnf CZERO W x (l /Z) (complex x complex multiplication); no exception flags set . 

« CZERO O"}Z set; message -", Zet" o. 
W x (I/Z) (complex x complex multiplication) result if T RAP ( [I \.' 2 ) - 2. 
W x (I/Z) (complex x complex multiplication) result with ± I n f result compo-

nent(s) replaced by ±t'IA XREAL and I I~ X set if T RAP ( [l V2 ) ~ 1. 

« C lnf W x (1/Z) (complex x complex multiplication); no exception flags set. 

« « (W x C O~IJ ( Z»)/IZI' (complex x complex multiplication and complex/ real di-
vision); HI >~ . O'IF, U I~F set for each result component as appropriate. 

For complex Z, I(Z ) is given for the specified functions by the following tables. 

Complex Sine ( ~: I ~I ( 1) ) 

Argument Z Result 

CI~ .• I·I ( ~I a H , H .• 11 ::-; no exception flags set. 

(± Inf . «) I VL set; ( N.:d·j } t~ at..J ) result: message In v a l id Ar 9. 

(<<. ± I n f ) RECT « I n f , Arg«sin(x). SGI·I ( y ;' cos(x))) ) ) ; no exception flags set. 

« IH X. D'.I F. UN F set for each result component as appropriate. 

Complex Hyperbolic Sine ( S I N H ( Z ) ) 

Argument Z 

OlaN 

(<< . ± Inf) 

(± Inf. « ) 

Result 

OJ a I·j • ~j a ID ; no exception flags set. 

I VL set ; -: Ij a l·j. ~j aI1 ) result ; message I tw .• ! i oj At- ·". 

R E C T ( -: In f . Arg« S G ~H x ;. cos(y) . sin(y))) ::- ::- ; no exception flags set . 

I ~l X, (t 1,,1 F , U ~l F set for each result component as appropriate. 
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Complex Cosine ( C (I S ( Z ) ) 

Argument Z Result 

ClhN 0 1 a I~ , fl a fl); no exception flags sel. 

(±Inf, *) I ',,1 L set; ( t,~ aN) H -3 N) result; message In'.lal id At·g. 

(*, ±Inf) RECT« Inf , Arg((cos(x), -SGIHy ) sin(x»))); no exception flags set. 

* Hl>(, (I V F, U fl F set for each result component as appropriate. 

Complex Hyperbolic Cosine (C 0 S H <: l) ) 

Argument Z Result 

Cfl afl ( NaN, fl a I~ ) ; no exception flags set. 

(*, ± I n f) I \} L set; 01 aN, N a 1·1) result ; message Invalid Arg. 

(±Inf, *) RECT « Inf , Arg«cos(y), SG IHx ;' sin(y)))) ;. ; no exception flags set. 

* I H X, 0 V F , U 1·1 F set for each result component as appropriate. 

Complex Tangent (T AN ( Z » 

Argument Z Result 

CI~ .• N (fl .• I·l .' 1·1 .• In; no exception flags sel. 

(± I n f, ± I n f) ( 0 , S G Ii ( y ) ) ; no exception flags sel. 

(± Inf,*) I'.}Lset; (NaN, H .• 1·1 ) result; message I n ',/.~ 1 i d At- g. 

(* , ±Ini) ( S G N (sin(x)cos(x» :t 0 , S G N ( y ) ) ; no exception flags set. 

* I H X, 0 V F, U t< F set for each result component as appropriate. 

Complex Hyperbolic Tangent (TA flH ( Z » 

Argument Z Result 

Cf1 .• fl ( Nati ) t~aN ) ; no exception flags set. 

(± I n f, ± I nf) ( S G ~~ ( x ) I - ~3 ) ; no exception flags set. 

(* , ±Inf) I VL set: ("~ .=t·~) t~aN ) result; message I nva 1 i d At'9 . 

(±In f, *) ( S G 1·1 ( x) , S G N ( sin(y)cos(y» :t oj ) ; no exception flags set. 

* I N >~ , O\}F I UHF set for each result component as appropriate. 
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Absolute Value (A8S ( Z » 

Argument Z Result 

CNaN Na N; no exception flags set . 

C I nf I n f; no exception flags set. 

"" INX, OVF, UNF sot as appropriate. 

Argument (AR(;( Z » 

Argument Z Result 

C f~af~ N.3 f~ ; no exception flags set. 

( Inf / Int ) 45 degrees or ... /4 radians; I N X set if radian mode. 

( -l n f ., Inf ) 135 degrees or 3,,/4 radians; I N >< set if radian mode. 

( Inf,-lnf) - 45 degrees or - ... /4 radians; I t·~ :x: set if radian mode. 

( -lnf .. -Inf) - 135 degrees or - 3 ... /4 radians; IN:, set if radian mode. 

"" A t~GLE( x .. y ) ; I f~ )-; , U t~F set as appropriate. 

Projective tnfin ity (F'RO ,I ( Z » 

Argument Z Result 

C f~ 3 f~ ( f~af~ ., t ·~ ."t·~ ) ; no exception flags set . 

C Inf ( I n f .' 13 ); no exception flags set. 

"" Z ; UHF . I HX set for any component whose magnitude is between a and EF'S if 
TRRP ( U t~F) #0 2. 

Unit Vector ( SGf~ ( Z » 

Argument Z Resutt 

CNat~ (t-~ a f~ .' t ·~ ." tn; no exception flags set. 

CZERO Z; no exception flags set. 

(± Inf, ± I nf) RECT«! .. Arg(Zp ); I t~ ~< set. 

(±Inf, "") (:3GN ( x ) .. SGfl( y ) :t.O ) ; no exception flags set. 

("" , ± I nf) (::;GN ( x ):t:u, SGH( y )); no exception flags set. 

"" I t~ X , U t~ F set for each result component as appropriate. 
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Square Root (SQRT ( z» 

Argument Z Result 

CHa l1 ( N a t·1 .' t~ a t·~ ) ; no exception flags set. 

C l n r REC T « I n f , Arg(Z)/ 2 ) ) ; no exception flags set . 

* I fl :' :, U flF set for each result component as appropriate. 

Rectangular to Polar Conversion (P 0 L AR ( Z » 

Argument Z Result 

* ( ABS ( Z ), AR G( Z » ; I ~~ >C 0 ..... F, U ~~ F set for each result component as 
appropriate. 

Polar to Rectangular Conversion (R EC T ( Z ;. ) 

Argument Z Result 

CNa N ( N a ~~ } H a ~·1 >; no exception flags set. 

(±In f, ±In f ) ( SGN ( x ) * I n f J 0 ) ; no exception flags set. 

(±O,± Inf) (x , x) ; no exception flags set. 

(*, ± I n f) I \) L set; (t1 .• I·L Hal1) result ; message Inva l id Ar l~. 

(± I nf ,*) (acos(y),bsin(y»; no exception flags set; 

{ x if cos(y) "" 0 a -
SG H ( x ) if cos(y) - 0 

and 
b _ { x if sin(y) "" 0 

SG fl ( x ) if sin(y) - 0 

* (xcos(y),xsin(y»; I N X, UH F set for each result component as appropriate. 
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Natural Logarithm (LOG ( 2») 

Argument Z Result 

COlaN ( 1, .3 N , N a I, ); no exception flags set. 

CZERO DVZ set ; message LOG ( 0). 
(- Inf , ARG(Z » result if TRAP ( O'JZ) - 2. 
( -t'IAXREAL,ARG ( z» result with IN X setil TRAP ( DVZ) - 1. 

I ~I nf 
( Inf ., ARG(z»; I I·! X set for the result imaginary part as appropriate. 

I I, ;" U I·! F set for each result component as appropriate. 

Exponential (DW ( Z ») 
-

Argument Z Result 

Ct·! a I·! ( NaN, N a tn; no exception flags set. 

(- I n f, ± I n f) ( 0 ~ ~1 ) ; no exception flags set. 

(Inf, ±In f) ( I n f " 11 ) : no exception flags set. 

(*, ±Inf) It.,. L set; (t~.5 N } t·L:i t·~ :' result; message Inv·:sl id Ht-':l. 

(-Inf, *) (0 x cos(y),O x sin(y)); H! X set for each result component as appropriate. 

(I nf. *) R E C T ( Z ) ; no exception flags set. 

* I I, X, OVF, Ut·jF set for each result component as appropriate . 

Relational Operators 

When comparing two values, at least one of which is complex, any numeric comparison operator 
containing < or > without ? or '# sets I VL and reports message Unor del'" ed . If TRAP (I VL) = 2, 
then a result of 0 or 1 will be returned based on the presence of the comparison operator ;;;, that is, Z 
( = W, Z > = W, and Z <> = Ware true if and only if x ~ u and y ~ u; Z < W, Z > W, and Z <> Ware 
always false. 
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..... (Exponentiation) 

Before W A Z is computed, the following peliminary actions are taken: 

1. If either W or Z is real then, for the purposes of the computation, it becomes complex with 0 
imaginary part. 

2. If either W or Z is a C ~~ a t·~, then a result of ( NaH , t '~ a '~ ) is returned with no exception flags set. 

3. For the purposes of the computation, Wand Z are then converted to a canonical form representa­
tion defined as follows: if one part of a complex number is ± I n f while the other part is finite, 
then the canonical form representation replaces the finite part by ± O (that is, preserves its sign); 
otherwise, the complex number is already said to be in canonical form. For example, (0 ., In f ) 
and (- I n f , - 0 :' are the canonical form representations of (6 , 7 .' I n f ) and ( - I n f J -

NA XREAL :' respectively. In what follows, Wand Z are assumed to be in canonical form . 

For W - CZERO, W A Z is given by the table below. 

Exponention (W A Z): W = CZERO 

Argument Z 

x > 0 

x < 0 

x - o and y 

I x = o and y 
"" 

0 

0 

Result 

(S GtH uAx ), (1) ; no exception flags set. 

DVZ set; message 0 A t~ e9 . 

(~:: Gt-1 ( u ····· x ):t l nf ., 0) result if T RA P ( [l l.}Z ) = 2 . 
(S G tH uAx ):l;t'lA>~ ~:EAL, 10) resutt with an< set if T RA P C:OVZ) = 1. 

No exception flags set; message 0 /-. 0 reported; default result of ( 1 ., (1 ;' returned 
if T RAP <I C}L) "" O. 

IVL set; ( I·~at·~ , t'~ atn result; message I nva l id Ar·" . 

For y "" 0, W A Z is given by the table below. 

Exponention (W -, Z): y "" 0 

Arguments 

I Z 
~--

W 

(1, ± O) GIn f 

* * 

Result 

I1v1L set; 0:: Hat·~ ) t~at~) result; message 1 .... · I nf. 

E>{P( Z-I.LOG ( W» (comptex x complex multiplication). If Z.I.LOG ( W) 
equals (± O, ± I nf l, then this quantity is not in the domain of E )<: P and 
I l.} L is set, ( t-~ a H ) t~ at~) is returned , and message I n va 1 i d A ~'9 is 
reported. Otherwise, 11'0( , O'.} F, and Ut·W are set for each result compo­
nent as appropriate. 
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For y ~ 0 and u ~ 0, W A Z is given by the table below. 

Exponention (W A Z): y ~ 0 and v ~ 0 

Arguments 
Result 

W Z 

IWI ~ 1 C lnf IVL set; ql .• H , 14 .• 1·0 result ; message Inv .. l id At"g. 

C lnf CZERO No exception flags set; message I" f " i) reported; default result of ( 1 ~ 0 ) 
returned if T R f1F' ( I 'J L ) ~ O. 

" " EX P ( x* L (I G ( W )) (real. complex multiplication); I r~>=:. o 11.1 F , UtiF set for 
each result component as appropriate. 

For y ~ 0 and u ~ 0, W A Z is given by the table below. 

Exponention (W .'. Z): y ~ 0 and v ~ 0 

Arguments 

W Z 
Result 

-

u ~ ±Inf x - 0 No exception flags set; message In f A t:l reported; default result of 0: 1 , (I ) 

returned if TRAP (I '-.I L ) ~ O. 
u ~ ± 1 Cl nf I'·}L set; 04 a II, 14 .• In result; message 1 , .... Inf. 

" C lnf (Iul'·x., [J); no exception flags set. 

" " E ;,; P ( xl LOG ( W ) ) (real x complex multiplication); III;" m,' F, UIIF set for 
each result component as appropriate. 
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Array Functions and Operations 

These functions are described in sections 7, 8, and 9 of this manual. Refer to the previous discussion for 
definiLions of CZERO, C I n f, complex, etc. 

If A is M x N (for vectors take N ~ 1), then 

M 

c:t1O F' IH A) ~ MAX 2: laill 
l <-J <~ N i - I 

F:HOF:I" ( A) ~ 
N 

MAX "la·1 l <-'<-M L IJ ) 1 = I 

If any element of A is a signaling t·L::i t~ (including either part. of complex array elements) , then each 
function sets II,}L and reports message Si':Jnai e d OP . If TF.:AP( II,}L) = 2, the result. is a quiet 
HaN with no other elements processed. 

If any element of A is a quiet t·~a t·~ (including either part of complex array elements), then each fune· 
tion sets I VL and reports message Uno t- der ed ; a t-~at~ result is returned. Otherwise, lUX, OI.}F. and 
U tlF a re set for the result as appropriate. 

FHOF.:t·l ( A> 

If A is M x N (for vectors take N ~ 1), then 

HWRrH A) ~ / ( f V i - I 

If any element of A is 8 signaling H.:=, t·i (including eit.her part of complex array eiemenlsL then I II,IL is 
set and message ::; is! na 1 e d Op is reported. If TF.:AP ( I ~)L) .... 2, the result is a quiet. ti ~t" with no 
other elements processed. 

Quiet Nar~s pass through with no exception flags set. Otherwise, I t·~:;<, OI,.'F, and Ur~F are set for the 
result as appropriate. 
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DOT( A , B ) 

If A and B are N -element vectors, then 

DOH A, B) 
N 

L a,b, 
i - l 

(If either A or B is complex, refer to the definitions of complex addition and multiplication given 
previously). [f any element of A or B is a signaling t~ a ~~ (including either part of complex array ele­
ments), then I~) L is set with message S i 9 n .~ 1 Eo d (I p. If, in any term in the above expression, ± 0 or 
CZERO is multiplied by ± In f or C I t-, f, then HI L is set with message In f:j: ('. If, in the above 
expression, the summation executes an addition equivalent to In f - It". f. then I I,) L is set with 
message I n f - I n ( . 

If only one I~) L exception occurs, that message is reported. If more than one r V L exception occurs, 
the particular message(s) reported depends upon the order and type of exception that occurs. If 
TRAP ( I VL ) = 2, the result is either a real ~r:.N or a complex value with one or two NaN compo­
nents. Quiet N.:sNs pass through with no exception nags set. Otherwise, I t-~X, OI,}F, and UNF are set for 
the result, or each result component, as appropriate. 

t'lAT C = A:t. B 

If A is M x Nand B is N x P (for vectors take P~ i), tben 

N 

Cij = L aikbJU '-I 
(If either A or B is complex, refer to the defi n it ions of complex addition and multiplication given 
previously). Since each result element is derived from an inner product, exception handling is the same 
as that for [t OT ( A, B), applied to each result element separately. 

t'l A T C = T F.: t·~ 0:: A ::' l B 

If A is M x Nand B is M x P (for vectors take P~ i) , then 

M 

cij = L Glubkj 

'-I 
(If either A or B is complex, refer to the definitions of complex addition and multiplication given 
previously). 

Since each result element is derived from an inner product, exception handling is the same as that for 
[t 0 T ( A , B ) , appl ied to each resul t element separately. 
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t'lAT C=A+ B 

All elements of C are computed separately as 

(If either A or B is complex, refer to the definitions of complex addition and subtraction given pre­
viously) . 

If any element of A or B is a signaling t·~ a H (including either part of complex array elements) , then 
I f\) L is set and message S i 9 n ale d 0 p is reported. If T RAP ( I I,} L) = 2, the corresponding result 
elemen t or component becomes a quiet t..j . :':I~..j and the operation continues. Quiet H.:dis pass t.hrough 
with no exception flags set. 

I VL is set and message In f - I n f is reported if a ny addition Or subtract ion (or componentwise addi­
tion or subtract.io n) is equivalent to In f - In f; a t~ .~t·l is returned for the corresponding result 
element or component. Otherwise, It~;<t o '"I F, and UNF are set for each resul t element or component 
as appropriate. 

t'1AT B=O::s ::' l A 

All elements of B are computed separately as 

bij = saU 

(lr either s or A is complex, refer to the definition or complex multiplication given previously). If s (or 
either part o f 8, if s is complex) is a signaling t~ .3N, t hen I VL is set and message ::: ig n.:':Il eo::! Op is 
reponed; if any element of A is a signaling H a t~ (including either part. of complex array elements) , then 

\,'L is set and message S i ':J na 1 ed Op is reported. In either event, if TF:AP (I VL > = 2, these 
tL~t~s become quiet and the operation continues. Quiet t~aN s pass through with no exception nags set. 

Il.IL is set a nd message In f *(1 is reported if, during the computation of any result element, ± O or 
CZERO is multiplied by ± I ni or C InL If T~'AP( J',IL) - 2, Lhe corresponding resul t e lement is 
either a real H:::.N or a complex value with one or two N~t~ components . Ot.herwise, INX, OVF, and 
~W are set for each result e lement or component as appropriate. 

DET 0:: A ::' , t'l A T C= I t·l ',} 0:: A :;' , t'l AT C= :::; \' :::; 0:: A ., B ::' 

Due to the int.ricate algorithmic basis of these three operations, exception handling is complex; only a 
summary is provided here. 

If any element of A or B is a signaling H.:':I H (including eit her part of complex array elements), then 
I L is set and message ~:: i'3 n.31 ed Op is reported. If TRAP ( I ',}L) = 2, the corresponding element. 
or component. becomes a quiet Ha~~ and the operation cont. inues. Quiet Hat~ s pass through with no 
exception flags set.. 
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CH) F , UHF , and I t·n~ are set for each result element as appropriate and may also be set at intermediate 
stages of the computation (especially CP,}F when A is (machine) singular). I I,}L may also be set with 
any of the following messages reported: I n f lO, I n f - I n f, and/or In f./ I t"1 f . These messages are 
only possible due to a ± I n f in A or B or an intermediate overflow becoming ± In f; in the latter case 
they may be suppressed by setting T~:AP (O',}F > = ] before the computation. 

Other Math Pac Functions 

F'P DDT 

Special cases for the F' ROO T function are handled first. These are t1 a t·js, In f s, or leading and trailing 
zeros in the coefficient array. 

HaNs are handled first. If any coefficient is a t·l.:! ~i , then every element of the result array becomes 
( ~.~ a H ., t~ .::d4 ) with no exception flags set and the function is complete. (Signaling t·~ a r~ coefficients do 
not set I',}L ). 

In f s are dealt with next. If any coefficient is ± In f , then every finite coefficient will become zero and 
the computation falls through to handle leading and trailing zeros. 

Leading zeros are handled next. Every leading zero coefficient wi ll produce a root at (I n f ! I n f) 
wit h no exception flags set. The next coefficient then becomes the leading coefficient and the process 
loops. Every such root stored decrements the degree of the polynomial; the function is comp lete if the 
degree becomes zero. 

Trailing zeros are handled next. Every trailing zero coefficient will produce a root at ( ~)! (1) with no 
exception nags set. The second to the last coefficient then becomes t he trailing coefficient and the 
process loops. Every such root stored decrements the degree of the polynomial and the function is 
complete if the degree becomes zero. 

At t his point, the degree of the polynomial is positive and either all (remaining) coefficients are finite, 
in which case the roots of the (reduced) polynimial will be found, or t he leading and trai lin g coefficients 
are both ± I n f , In the latter case, at least two of the original coefficients were ± I n f and factoriza ­
tion does nOL make sense; if the (new) degree of the polynomial is D, then D roots at 0: H a t·j, fj a H) are 
stored into the result array and the [unction is complete; every such root stored sets I I,} L and reports 
message I nva 1 i d Rt-,~. 

Except for the above special cases, OVF and Ut·~ F are set for every result array component as appro­
priate with I t·~ X always set. 
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FOUP 

As with the PROOT function, special cases for the FOUR function are handled first. These are l~aN 

and In f components in the data array. 

Ha~~ s are handled first. If any component of any data array element is a ~~.:!~~ . then every element. of 
the result array becomes ( t~ .:!t~ .. NaH) with no exception nags set. and the function is complete. 
(Signaling 11.311 components do not set I '.'L ). 

In fs are dealt with next. If any component of any data array element is ± I n f . t.hen every result. 
element becomes ( I n f .' I n f) with no exception flags set. and t.he function is complet.e. 

Except. for the above special cases, O'.}F and UHF are set for every result array component as appro­
priate with I t·lt~ always set unless the data array was identically zero. 

nWOOT and I tHEGPAL 

If a t'~al'~ (signaling or quiet) results during the evaluation of any of the arguments of FNROOT or 
I t·~ T E G R A L, then errOr I n val i oj A t- 9 is reported; no exception flags are set and this error hal ts 
the computation. 

Tn general , a ny value of ± I nf resulting from the evaluation of any of the argument.s of FNROOT or 
IIHEGRAL becomes ±t1AXREAL for the purposes of the computation. IH :": , O'..·'F, and UI~F a re set 
for the result as appropriate. 

Remember that F I, P (I (I T looks at the value of T RAP ( U IlF) to decide whether or not to search the 
range of denormalized numbers for a root. This region is searched only if T RAP (UHF) = 2 when the 
Ft·Hi'OOT function is started. 



Keyword 

A8S 
ACOSH 
ARC 
ASlflH 
ATAflH 
8STR$ 
81!RL 
C ( ~ ) 
CflOR I1 
CO I'IP LE X 
CO I'IP LO: ~.HORT 

( , ) 

COt·I.J 
COS 
COSH 
COSH 
[lET 
[I E T (no operand) 

[lETL 
[lOT 
EXP 
FGUE'3S 
FtlORI1 
FtlROOT 
F'.!ALUE 
F'.)AR 
GRI1t'1A 
180Ut·10 
HIPT 
IfITEGRAL 
I ROUt·1[I 

Keyword Index 

I Page I 
41 
28 
41 
28 
28 
16 
15 
22 
70 
19 
19 
21 
42 
38 
27 
39 
69 
69 

69 
71 
37 
90 
70 
89 
90 
90 
28 

103 
21 

101 
30 

Description 

Absolute value of a complex number. 
Inverse hyperbolic cosine. 
Argument of a complex number. 
Inverse hyperbolic sine. 
Inverse hyperbolic tangent. 
Decimal to binary/octal/hexadecimal conversion. 
Binary/octal/hexadecimal to decimal conversion . 
Complex I I'1AGE field . 
One-norm (column norm) of an array. 
Complex variable creation . 
Complex short variable creation. 
Conversion, real to complex . 
Complex conjugate. 
Complex cosine . 
Hyperbolic cosine. 
Complex hyperbolic cosine. 
Determinant of a matrix . 
Determinant of last real matrix used as operand of I N I.} or first 
operand of S'IS. 
Same as [I E T (no operand). 
Dot (inner) product. 
Complex exponential ("z) 
Second-best guess to value returned by last Ffl ROO T . 
Frobenius norm. 
Rootfinding for functions . 
Functional value of last Ft·IROOT. 
Variable to solve for in Ffl ROO T . 
Gamma function . 
Uncertainty of last I tHEGRAL. 
Imaginary part of complex number. 
Integration of functions . 
Integer round . 
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Keyword 

IVALUE 
IVAR 
L8flO 
LBOUNO 
LOG 
LOG2 
MAT OISP 
t'IAT [lISP USUI G 
flAT U~PUT 

t'IAT, , COfl 
t'IAT, , I [IN 
t'IAT , , ZE F~ 

t'IAT , ,ZERO 
MAT, , PRINT 
t'IAT PRUIT USHIG 
t'IAT = 
t'IAT 
t'IAT = , + 
flAT = 
1'IAT = , t 
l'IAT =() 

11AT =()t 
1'IAT = FOUR 
l'ltiT I I-I'J 
1'IAT = F'ROOT 
1'IAT = SYS 
MAT = TRI'I 
t'IAT = TRfl , , , .I: 
flAfit 
liE I GHBOR 
POLAR 
PROJ 
RECT 
REPT 
RflORt1 
SCALE10 
SG~~ 

, SIN 

I Page I 
102 
102 

72 
72 
37 
29 
54 
55 
53 
52 
52 
53 
53 
55 
56 
51 
63 
64 
64 
65 
52 
65 

135 
77 

120 
79 
77 
66 
30 
30 
40 
42 
40 
21 
70 
29 
41 
38 

Description 

Current approximation to an IN T E GRAl. 
Variable of integration in I NT E G R A L, 
Array subscript lower bound . 
Same as LBNO , 
Complex natural logarithm, 
Log base 2, 
Array display (unformatted), 
Array display (formatted), 
Interactive array input. 
Constant array with redimensioning . 
Identity matrix with redimensioning . 
Zero array with redimensioning. 
Same as flAT, , ,ZER, 
Array printing (unformatted). 
Array printing (formatted). 
Array copying (simple assignment). 
Array negation. 
Array addition . 
Array subtraction. 
Array multiplication. 
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Scalar to array assignment (numeric expression assignment). 
Scalar multiplication. 
Finite Fourier Transform . 
Matrix inversion . 
Polynomial rootfinding. 
System solution . 
Transpose or conjugate transpose. 
Transpose or conjugate transpose multiply. 
NaN diagnostic function . 
Successor/predecessor function. 
Rectangular to polar conversion. 
Conversion of complex infinities to projective infinities. 
Polar to rectangular conversion. 
Real part of complex number. 
Infinity (row) norm of an array. 
Exponent scaling function . 
Complex unit vector. 
Complex sine . 
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Keyword 

S INH 
t; I HH 
SQR 
SQRT 
TA t~ 

TAHH 
TfHJH 
HPE 
UBND 
UBOUNO 
+ 

/ 

< 
> 
# 

" 

I Page I 
27 
39 
40 
40 
38 
27 
39 
31 
71 
71 
35 
35 
36 
36 
36 
36 

43 

Description 

Hyperbolic sine. 
Complex hyperbolic sine. 
Complex square root. 
Same as SG~R. 
Complex tangent. 
Hyperbolic tangent. 
Complex hyperbolic tangent. 
Data type function . 
Array subscript upper bound. 
Same as U8HO. 
Complex addition . 
Complex unary minus. 
Complex subtraction. 
Complex multiplication . 
Complex division. 
Complex exponentiation (Zw) 

Complex relational operators. 
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