/A aciaro

HP 82480A

Math Pac

Owner’s Manual

For the HP-71

Hewlett-Packard Company makes no express or implied warranty with regard to the key-
stroke procedures and program material offered or their merchantability or their fitness for
any particular purpose. The keystroke procedures and program material are made avail-
able solely on an “as is” basis, and the entire risk as to their quality and performance is
with the user. Should the keystroke procedures or program material prove defective, the
user (and not Hewlett-Packard Company nor any other party) shall bear the entire cost of
all necessary correction and all incidental or consequential damages. Hewlett-Packard
Company shall not be liable for any incidental or consequential damages in connection
with or arising out of the furnishing, use, or performance of the keystroke procedures or
program material.

Printed in Singapore

A crlicann

Math Pac

Owner’s Manual

For Use With the HP-71

March 1984

82480-90001

© Hewlett-Packard Company 1984

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTARILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequen-
tial damages in connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by
Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced, or translated to another program language without the prior written consent of
Hewlett-Packard Company.

© 1984 by Hewlett-Packard Co.

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

BRIiOET oneun sounn 50 caii 5 s 37 SEtE T SRR TiEE a0 Mar 1984; Manufacturing Part Number 82480-90011
Manual Update Aug 1984; Manufacturing Part Number 82480-90015
BAIBION 2 caiuaie smmn vimwimain s v vl o5 fimees ¥ SUANn 58 ST B 6 Sep 1984; Manufacturing Part Number 82480-90016

Introducing the Math Pac

The Math Pac is a set of powerful tools for solving a wide range of mathematical, scientific, and en-
gineering problems. These tools are provided in the convenient and flexible form of BASIC keywords.
Once the math module is plugged into your HP-71 Computer, these keywords are instantly available:
no program to load, no waiting. You can use these keywords in any program as often as needed; you
avoid the restrictions that would apply to program calls and save the memory that subroutines would

require.
The Math Pac adds the following capabilities to your HP-71.
® Complex variables and arrays.

® Advanced real- and complex-valued functions.

® Real and complex array operations.

® Solutions to systems of equations.

Roots of polynomial equations and user-defined functions.
Numerical integration.

Finite Fourier transform.

Contents

How To Use This Manual « ..o sv s on e ve e ann oot saiennssessionssssse 9
Section 1: Installing and Removing the Module 13
Section 2: Base CONVErSIONS = : e ch oo s oms o ok i an s e sas s araie o s 15
Binary, Octal, and Hexadecimal Representations 15
Base Conversion Functions (EV AL, BESTEE)t 15
EXAMPIOE ..o o win o s smns wimm = isie sose s S 8 BSTe ARSI SIS R BEE et S & A M 16
Additional Information 17
Section 3: Complex Variables . .- i 19
Complex Data TYPESt 19
Declaring Complex Variables (COMFLEX, COMFLE: SHORET) 19
Complex Number Operations (& . @, REFT, IMFT) 21
Other Complex Operations (£ € ,) . v cu s vsw smm s » smis 550 sreidmima e smnie wnly s 22
EXBIMPIES: i x s winm w s o i wios & A 05 5 bits s VA B SRS RTGT Sikre LAk, W Sene ST 23
Section 4: Real Scalar Functions ot enenieannnenanas 27
Hyperbolic Functions (5 IHH, COZH, TAHH, HSIHH,
BEDSH, ATEAMHEY & o sem e ¢ w o wms 5 am 0 s 6 wme 95 © 69 5 500 2903 e e 3 27
Other Functions Performing Calculations
(GRMEER. LOG2, SERALE LB) & .pc ves s o 6 6 oes was ons « aa © sy aws e & svis 28
Integer Botimd (TROMMOY0 oo vos w5 o0 5 smn 3500 5 53 5 58 § 508 Sam v e ¢ o 30
Functions Providing Information (MAM$, HEIGHEOR, TYFE) 30
EXBMBISES oo s sieie scvns s m wime e woris n v m s e & 66 & W 5 VAT SR 880 § OEE 3
Section 5: Complex Funections and Operations oo 35
OPErators (/=0 R Ze TY o s s nae mu mmer o mrn senes senee 5 2 6 W57 ViR IR § 5Y 8 RS 35
Logarithmic Functions (LG, E=F) .o o 37
Trigonometric and Hyperbolic Functions
(SN, OS5, ERR VS TMHCEEHE FHEEY . cq san o v e nn s m o s vm s 38
Polar/Retangular Conversions (FOLARE, RECT) oo 40
General Functions (S0RT, SGH, ABS, ARG, COM.L, PROJ) . o .o ... 40
Relational Operators: (=, € 3, By DY 6 oa s e aiis it sias o wmais smess siars = s s see 43
EXSMIDIBS . oo on t oo s sins sads wals wof a arag Hn MsFa o @ WS sgan Hide @ a s s vt 43
Additional TnTormation. e sos 705 wiF D9 P65 658§ 55 & 465 Wes 95 & wrd i ves 48

Section 6: Array Input and Output 0 51
Assignments (=, =< ¥, CON, IDN, ZER) ., oore vnsvin cios oms s s o vie s 60 s s 51
AraY INPUETTHPLTY o v woiome i mom A o R ety e o e 53
Array Output (DI SF, FEIHT, DISF USIHG, FRIMT RESTEREAT (L - siay 54
EXAMPIBE o wis s v o s som smass @i g il § RO 50 S T b 2 ot e 56

Section 7: Array Arithmetic 63
Operatorgi(==, &~ € 3E, B. TRH &) i nv v v annior s 63
EXemples: . co. c o wan wes 2 smie s s 5 8 0 B v s o SR A 66

Section 8: Scalar-Valued Array Functions 69
Determinant Functions (DET, DETL)vviiiiititna e 69
Array Norms (CHORM, RHORM, FHOREF) 70
Inner ProdUCt (B0 T = o i 565 2050« o5 sse somen 0 mimn s svee s o o et PSR 71
Subscript Bounds (LUEHD, LEMDO) ... 71
EXEIMDIES 5 iiiic oo ome o sumr oo mionn sim i simue siwse s % siimes Soi s b & o) gy F 72

Section 9: Inverse, Transpose, and System Solution ., ., 77
Operations (IMW, TRH) . . T
Solving a System of Equations (SS) 78
EXATHPIBE. ... | i1 2 e s mpmr o oo smnn s = e B oo o b, JE5, 0 mean I bl 79
Additional Information 86

Section 10: Solving f(x) = O . . 89
Keywords (FMREOOT, FUAR, FUALLUE, FGUESS) 89
T 91
dditional Informalion .. . o s o i 5 56 506 580 5 558 TEE REE 5 57 5 995 B as 5 e sl 94

Section 11: Numerical Integration 0 101
Keywords (INTEGRAL, IVAR, INMALUE, IBOUND)ovvuvninnnnn.nn 101
EXERPIOST . ¢ s 5 oo s wmss = s wmes T 5 9 06 WA 5 AR SR WER 505 4 PRE U ot 105
ACHIONALIRIOPMBION v con o sws s v edies 2508 66 655 5 Tk Locs Sot o oo oot bae 109

Section 12: Finding Roots of Polynomials 119
Keyword (PRIEBDT o ool v v on s von g ¢ 655 09 555 5 08 5 a5 Snm e e e 119
EXEAPIRN - o s oo st s 555 6 50 e S S i s oo S 120
ACHEONAIRTORMAEION ' ¢ /o s & o r st msin oot o b ein simn mtore ot wis s 3iate alohe o s mar 121

Section 13: Finite Fourier Transform 133
e oA I v = o e e e 133
ERTIEET o R ot R L SRR s TS RO e ine LU aERR SRR 135

Additional Information 136

Contents

Appendix A: Owner’s Information cviinin. 143
Installing and Removing the Math Pac Module 143
Limited One-Year Warrantyooniniontnrnar o annonanns 143
ST ord 1 - S T A S .-l TS e Jo) I . o A, I, L Y 145
When You Need Help i 148

Appendix B: Memory Requirements 149

Appendix C: Error Conditionscc0ciiiiiiiiiiiiniins 151
Math Pac Emor MeSSA0ES e cvn s mvn vm s ca b aes Sl S5is 55 s salh s 151
HP=71 Error MESSAGEE. . - Lo seud s n o b o mosbhst b e o sons gy &ans o be & LGS A8 153

Appendix D: Attention Key Actions 0.0 000l 155
Array Output Statementsceeeeren e nemar soe wbd 4 s GREHETE 5 155
Other BT SafeMEnts - = cuw sem @ wn ¢ waes o s sl sbre kLT B AN oty 155
Scalar-Valued Array FUNCHONSo« von mom sisie o s miaie siwie simie n s sos el s 8 156

Appendix E: Numeric Exceptions and the IEEE Proposal 157
[FRT{ £ e |6 o Lo o LR O PR GO g S 157
Real Scalar FUNCHONS o ws = s ooboas smm ot g o e s s s s s sl o men 2, pial 662 158
Complex Functions and Operationscoooiiiiiiiiiiinin.. 160
Array Functions and Operations it 171
Other MBth Pap FUNCHONS oo o sas v i s sem o o et s 50 © 65 4 5 memy o 174

Keyword INdeX .. oo van v ovw smni by Wi s sae siep o s b i e shoe bEeligey 176

How To Use This Manual

This manual assumes that you are generally familiar with the operation of your HP-71 Computer,
especially how to create, edit, store, and run programs. You should also understand the mathematical
basis for the operations you will be performing. Because the keywords in the Math Pac cover such a
wide range of mathematical subjects, we cannot provide much tutorial information on the mathematical
concepts involved.

The keywords in the Math Pac are independent of one another, so you may deal with only the
keywords that specifically interest you. Each section in this manual contains information on keywords
of a particular mathematical type—complex functions and operations, array arithmetic, and so on. All
keywords described after section 5 (except FHEOOT and IMTEGRAL) use arrays in their operation.
For an introduction to arrays, as used with the HP-71, read sections 3 and 14 of the HP-7! Owner’s
Manual.

Variable Declarations

The examples and programs in the Math Pac assume all variables are simple real unless otherwise
declared. If an ERF :[Oata Tups occurs as you execute an example or program, declare as FEAL any
variable not otherwise declared and continue operation.

Array Types

The Math Pac refers to two types of arrays, vectors and matrices. As used in this manual, the term
vector identifies a singly-subscripted array, and matrix identifies a doubly-subscripted array. A sub-
script must be a real numeric expression. At run time, a subscript expression is rounded to an integer.
The value of this integer must be in the range [0,65535] (OFTIOH ERSE &) or [1,656535]
(MFTIOH BASE 1). Of course, in virtually all cases, available memory will determine the largest
subscript you can use.

An array can be one of five data types: EEAL, SHORT, IMTEGER, COMPLER, or COMFLEX SHORT
(refer to section 3 for a description of COMFLEX and COMFLE SHORET). Math Pac MAT statements
will not change the declared type of an array; for example, when the values from a FERL array are
assigned to a SHIIRET or IMTEGER array, the values are rounded as they are stored into that array.

10 How to Use This Manual

Array Redimensioning

Some Math Pac keywords allow you to optionally redimension an array. This is called explicit
redimensioning. Other keywords automatically redimension result arrays, if possible, to accomodate the
number of elements generated by the keyword’s action. This is called implicit redimensioning. The kind
of array redimensioning performed by a keyword, explicit or implicit, is stated in each keyword’s
description.

Explicit redimensioning occurs when an array’s size and subscript count is changed according to the
number and value of new subscripts supplied by you. For example, if A is a 3 X 4 FEFAL type matrix,
then the HP-71 statement REAL A< Z > explicitly redimensions A to be a 3 dimensional vector. Note
that explicit redimensioning allows arrays to be changed from vectors to matrices and vice-versa. Ex-
plicit redimensioning also re-evaluates FT I EASE; that is, resets the lower bound of an array’s
subscripts if the OFTIOH EAZE setting has changed.

Implicit redimensioning occurs only in Math Pac operations of the form
[MHAT result array = operation (operand array(s)).

Implicit redimensioning only changes an array’s size. It does not allow changes between vectors and
matrices, nor does it re-evaluate OFTIOH EBASE,

Keyword Description

Within each section you will find a description of each keyword name, function, syntax, and operation
in the following format.

KEYWORD NAME Function That the Keyword Performs

Syntax

Legal data types and numeric values for use with this keyword.

Description of the values returned by this keyword and the details of the keyword's operation.

Keyword Name. This is the way the keyword will be referenced elsewhere in the manual. It is usually
a mnemonic of the function that the keyword performs. In most cases the name must be embedded in a
longer statement that includes arguments, parentheses, and so on; the name by itself usually isn’t an
acceptable BASIC statement.

Several keywords have names that are identical to names of keywords already present in your HP-71—
like DI%F, +, and #. The syntax in which such a name is embedded indicates which operation to
perform. All operations available to you in the HP-71 itself are still available, unaffected by the pres-
ence of the Math Pac.

v to Use This Manual 11

Syntax. This is a description of the acceptable BASIC statements in which the keyword’s name can
be embedded. The following conventions are used throughout the manual in describing the syntax of a
keyword.

Typographical Item Interpretation

DOT MATRIA Words in dot matrix (like CIOMFLE) can be entered in lowercase or upper-
case letters. The examples in this manual show statements, functions, and op-
erators entered in UFFEFRLCHSE.

italic Items in italics are the variables or parameters you supply, such as X in the
SIHHCX? statement.

bold Variables in bold type represent arrays.

[] Square brackets enclose optional items. For instance, MAT A=IDH[CX, Y]

indicates the redimensioning subscripts X and Y are optional.
stacked items When items are placed one above the other, one and only one must be chosen.

An ellipsis indicates that the optional items within the brackets can be re-
peated. For instance, MAT IHFUT A[,B]... indicates that MAT IMFUT re-
quires at least one array variable, and may accept several, with the array
variables separated by commas.

Legal Data Types and Numeric Values. This information, in the same box as the syntax, describes
the types and ranges of arguments for the keyword that are acceptable to the Math Pac. Use this
information to avoid generating errors and to isolate the cause of those that do occur. This is not a
mathematical definition of the domain of the function that the keyword computes.

Values Returned and Details of Operation. This information, in the box just below the syntax
box, describes how the keyword works, tells what values the keyword returns, states whether array
redimensioning (if any) is explicit or implicit, and states whether or not the keyword is usable in CALC
mode.

Examples

Included in each section are a number of examples illustrating the use of the keywords in the section.
To try an example yourself, type in the statements given in the Input/Result column using either
upper- or lowercase, ending each line with with an [END LINE]. After you complete a line, the display of
your HP-71 should look like the display shown in the Input/Result column following the line—pro-
vided that you have set your HP-71 operating conditions as indicated below.

12 How to Use This Manual

o All operating conditions should be set as listed in the reference manual in the Systems
Characteristics Section under the topic Reset Conditions, except for those whose settings follow.

» Set line width to 22 by entering {I[TH & [ENDLINE].

o Set DELFY so that each display in a sequence of displays, often produced by a single statement,
will remain visible long enough to be read and understood. The LELf' statement is described in
The HP-71 Reference Manual and section 1 of the HP-71 Owner’s Manual. In each you'll find
descriptions of how you can control the length of time each display remains visible. For the display
of array elements, you may find a DELAY = setting useful. This causes each display to remain

until any key, such as [ENDLINE], is pressed.

Additional Information

Some sections in the Math Pac include additional information to help you make effective use of the
more sophisticated operations. If you would like still more information, you can refer to the HP-15C
Advanced Functions Handbook. Although the Math Pac differs from the HP-15C Advanced Pro-
grammable Scientific Calculator in its operation and capabilities, much of the information in the
HP-15C Advanced Functions Handbook applies to the Math Pac. Such information includes techniques
to increase the effectiveness of equation-solving algorithms, integration algorithms, matrix operations,
system solutions, and accuracy of numerical calculations.

Section 1

q 1 R

1stalling and Removing the Module

.
P) ¥

The Math Pac module can be plugged into any of the four ports on the front edge of the computer.

* Be sure to turn off the HP-71 (press [f] [OFF]) before installing or removing the module.

« If you have removed a module to make a port available for the math module, before installing the
math module, turn the computer on and then off to reset internal pointers.

« Do not place fingers, tools, or other objects into any of the ports. Such actions could result in minor
electrical shock hazard and interference with pacemaker devices worn by some persons. Damage
to port contacts and internal circuitry could also result.

= If a module jams when inserted into a port, it may be upside down. Attempting to force it further
may result in damage to the computer or the module.

» Handle the plug-in modules very carefully while they are out of the computer. Do not insert any
objects in the module connecter socket. Always keep a blank module in the computer’s port when |
a module is not installed. Failure to observe these cautions may result in damage to the module or
the computer.

To insert the Math Pac module, orient it so that the label is
right-side up, hold the computer with the keyboard facing up, and
push in the module until it snaps into place. During this opera-
tion be sure to observe the precautions described above.

To remove the module, use your fingernails to grasp the lip on the bottom of the front edge of the
module and pull the module straight out of the port. Install a blank module in the port to protect the
contacts inside.

13

Section 2
Base Conversions

Binary, Octal, and Hexadecimal Representations

The operations in this section allow your HP-71 to recognize and manipulate numbers expressed in
number systems other than decimal (base 10).

Because the HP-71 assumes that any real number stored in a numeric variable or entered from the
keyboard is a decimal number, you must enter and store every non-decimal number as a character
string. In particular, if you store the number in a variable, the variable’s name must end with “$”; if
you enter the number from the keyboard, it must be enclosed in quotes.

In the tables helow, S§ will represent a binary, octal, or hexadecimal string or string expression.

o A binary string consists entirely of 0’s and 1’s, and represents a number in the base 2 number
system. A binary string expression is a string expression whose value is a binary string.

« An octal string consists entirely of 0’s, 1’s, ..., 6's, and 7's, and represents a number in the base 8
number system. An octal string expression is a string expression whose value is an octal string.

» A hexadecimal string consists of 0’s, ..., 9’s, A’s, ..., and F’s (the letters may be either uppercase or
lowercase), and this string represents a number in the base 16 number system. A hexadecimal string
expression is a string expression whose value is a hexadecimal string,

BVAL Binary, Octal, or Hexadecimal to Decimal Conversion

BEVALCSE, N

where S§ is a binary string expression whose value is not greater than
1110100011010100101001010000111111111111 (binary), and N is a numeric expression whose
rounded integer value is 2;

or S§ is an octal string expression whose value is not greater than 16432451207777 (octal), and N is a
numeric expression whose rounded integer value is 8;

or S§ is a hexadecimal string expression whose value is not greater than EBD4A50FFF (hexadecimal),
| and N is a numeric expression whose rounded integer value is 16. '

15

BVAL (continued)

Converts a string expression S§ representing a number expressed in base N into the equivalent decimal
number. The value of the decimal equivalent can't exceed 999,999,999,999 (decimal). }

Not usable in CALC mode.

BSTR$ Decimal to Binary, Octal, or Hexadecimal Conversion

ESTEFX,N2

where X is a numeric expression, 0 < X < 999,999,999,999.5, and N is a numeric expression whose
rounded integer value is 2, 8, or 16.

Converts the rounded integer value of X (decimal) into the equivalent base N string.

When N = 186, returns uppercase A, ..., F.

Not usable in CALC mode.

Examples
Input/Result
EMALCTI@1a", 2o

10 The decimal value of 1010 (binary).

o

"1111" |ENDLINE

m

15 The decimal value of the binary string “1111.”

WAL CEFLES, 2% [ENDLINE

I

The decimal value of the binary string
g I e 5 1

o
|

)

[
(]
-
Eal
s

(3,21 [ENDLINE]

11 The binary representation of 3 (decimal).

ESTRFCBVALC"AFLICEY 182, 20

Additional Information

Base Conversions 17

The octal representation of 72 (decimal).

The binary representation of AF1C8
(hexadecimal).

The octal sum of 14772 (octai) and 570 (octal).

Three considerations determined the range of acceptable parameters for the base conversion keywords.

¢ The keywords give the exact answer for any integer in the range of acceptable parameters.

» The keywords are inverses of one another, so that composition in either direction is the identity

transformation for integers.

¢ The integers from 0 through 999,999,999,999 form the largest block of consecutive non-negative
integers that the HP-71 can display in integer format.

Section 3

Complex Variables

Complex Data Types
The operations in this section allow your HP-71 to declare, recognize and manipulate complex num-
bers. These operations include:
» Declaration of complex variables and arrays using COMFLER and COMPFLER SHORT statements.
» Extension of HP-T1 variable assignment and the RES function to the complex case.
» Extension of HP-71 IMAGE format strings to include complex fields

* Conversion of real numbers to complex.

Declaring Complex Variables

COMPLEX Complex Variable Creation with 12-Digit Precision

COMFLE X variable list

where the syntax is the same as that used for REAL, SHORT, and I HTEGER keywords. That is, each
variable in the variable list has the form numeric variable [dim 1 [. dim 2]], and dim 7 and dim 2 are
real numeric expressions.

Not usable in CALC mode.

COMPLEX SHORT Complex Variable Creation with 5-Digit Precision

COMFLEX SHUORT variable list

where the syntax is the same as that used for RERL, =HURET, and [HTEZER keywords. That is, each
variable in the variable list has the form numeric variable [dim 1 [. dim 2]3], and dim 1 and dim 2 are
real numeric expressions.

Not usable in CALC mode.

19

20 Section 3: Complex Vari

COMPLEX and COMPLEX SHORT both allocate memory for variables and arrays. If the array or
variable does not already exist, creation occurs upon execution of the COMFLEY or
COMFLEX SHORT statement, and all variables and array elements are initialized to (0,0). The
dimension limits of arrays are evaluated at creation time. The lowest numbered subscript in any
dimension is 0 or 1, depending upon the JFTIOH ERSE setting when the array is created.

A COMFLEX statement redimensions existing arrays if they are type CTOMFLEX, but does not
reinitialize them to (0,0). Similarly, a COMPLEY SHORT statement redimensions existing arrays if
they are type COMFLEX SHORT, but does not reinitialize them to (0,0). If an array is being ex-
panded, then all newly-created elements will be initialized. Redimensioning does preserve the sequence
of elements within an array, but not necessarily the elements’ positions within an array. Refer to the
HP-71 Owner’s Manual, section 3, under the topic Declaring Arrays (DIHM, EEFAL, SHORET,
IHTEGER), for more information.

The following table indicates the conditions that apply to COMFPLEX and COMFLE SHORT vari-
ables and arrays.
COMPLEY and COMFLEX SHORET Numeric Variables
Initial value (0, 0)

Numeric precision

COMPLE 12 decimal digits
COMFLE® SHORET 5 decimal digits
Exponent range +499
Maximum number of array dimensions 2
Maximum dimension limit 65535
Simple variable memory usage (bytes)
COMPLEX 25.5
COMPLEX SHORT 18.5

Array memory usage (bytes)
COMPLES

COMFLEX SHORET

16 = (dim 1 — option base + 1)

= (dim 2 — option base + 1) + 9.5
9 » (dim 1 — option base + 1)

« (dim 2 — option base + 1) + 9.5

Section 3: Complex Variables 21

Complex Number Operations

(s) Real to Complex Conversion

X, YD

where X and Y are real- or complex-valued numeric expressions.

This is the way the HP-71 recognizes a complex number: as an ordered pair of real numbers. Since (X,Y)
is defined as (real part of X, real part of Y), if either X or Y is complex, (X,Y) is not necessarily equivalent

to X + IY.
Can be used in CALC mode.

REPT Real Part of Complex Number

EEPT 20

where Z is a real- or complex-valued numeric expression.

Returns the real part (first component) of Z. If Z is real, REF T Z = Z.

Can be used in CALC mode.

IMPT Imaginary Part of Complex Number

IMPTLZ)

where Z is a real- or complex-valued numeric expression.

Returns the imaginary part (second component) of Z. If Z is real, IMFT:Z: = 0.

Can be used in CALC mode.

22 Section 3: Complex V.

Other Complex Operations

The Math Pac allows extension of many operations of the HP-71 to the complex case. These include
numeric functions such as S IH, ¥, etc., as described in section 5. Other extensions are the ability to
assign values to complex variables created by a COMFLE® or COMFLE® SHOET statement, execution
of the FEZ function when the last result is complex, and so on. In other words, when the Math Pac
module is plugged in, the HP-71 can operate with complex numbers in much the same way that it
operates with real numbers.

An important feature provided by the Math Pac is the extension of IMAZE format strings to include
complex field specifiers. This extension is described below. Refer to the 1MAGE keyword entry in the
HP-71 Reference Manual for additional information on format strings.

C(,) Complex Field in an IMAGE String

[n]C < format string

where n is an optional multiplier.

Causes a complex expression ina I I ZF or PR IMT output list to be formatted according to the format
string. The real part is formatted first and the imaginary part second. On output, the number is enclosed
in parentheses, with the real and imaginary parts separated by a comma. The comma is sent out when
the second numeric field is encountered.
The format string may not include:

= A carriage control symbol (#).

« String fields.

» Imbedded complex format strings.

The format string must include two and only two numeric specifiers, but no special restrictions (other
than those stated above) are placed on non-numeric specifiers.

Not usable in CALC mode.

Complex expressions in a DISF USIHG or FEIMT USIHE output list may only be formatted by a

complex field in the IMAGE list. Likewise, real expressions in a DISF USIHG or FEINT U IMG
output list may not be formatted by a complex field in the IHAGE list.

) 3

Examples

COMPLEX, COMPLEX SHORT, (,), REPT, IMPT

Input/Result
DESTROY ALL

COMFLE =

(END LINE]

COMPLE X

= 1.5
(END LINE]

4}

SHORT Cod,. 7o,

R CZ5 2 [ENDLINE

v

Mg, 5 3=3 |ENDLINE

Bl 108,585
g, U =
=001 ,22,03,4 2 [ENDLINE
i [END LINE

Insures that none of the variables and arrays in
the following statements exist. If one did exist, it
would not be initialized to (0,0) when the vari-
able or array declaration statement is executed.

Creates a complex variable, a complex vector,
and a complex matrix. The variable * and all ele-
ments of the arrays 41 and ' are initialized to
(0,0).

Creates a complex short array and a complex
short variable. '/ and all elements of are initial-
ized to (0,0).

Assigns the complex number 1 + 5i to Z.

The HP-71 representation of the complex num-
ber 1 + 5i.

Assigns the real number Z to the complex array

-

element /i &, 5,

Displays two array element values.

Complex element %/ 7 1, 1 * was assigned

CE, &3 at its creation. Since the real number 2
was assigned to a complex element, it becomes
the complex number © 2, &>,

Assigns (1,3) to ¥, since (1,3) is
CREFTEL 23 ,REPTCE, 43 b,

Displays the complex number *'.

RES Displays the value of the most recently executed
or displayed numeric expresion, which in this case
is complex.

(1.3

REFTCY 2 IMPTSY)

- 3

Complex IMAGE Fields

Input/Result

5 STD @ COMPLEX Y
10 Y=(69.14,—12.7)

20 DISP USING 100; Y

30 DISP USING 200; Y,Y

40 DISP USING 300; Y,Y

50 DISP USING 400; Y.Y,Y

60 DISP USING “C(DDD,DDD)";Y

100 IMAGE C(2D.2D,4D.2D"")

200 IMAGE C(4Z,XXX,4%),/,C(4Z XXX4%)
300 IMAGE C(B,K'i"),X,C(*,4%.2DE)

400 IMAGE 3C(2(DDD,XX))

RUN

.78 Line 100 IMAGE display.
S e Line 200 IHMAGE display.

(E;=12:%1
BEl

Line 300 IMAGE display.

Line 400 IMAGE display.

Line 60 display.

1 3: Complex Variables

25

F

Section 4

Real Scalar Functions

Hyperbolic Functions

The functions = IHH, T05H, and THHH (described below) are also defined for complex arguments. See
section 5.

SINH Hyperbolic Sine

SIHHOX

where X is a real-valued numeric expression, [X| < 1151.98569368

Can be used in CALC mode.

COSH Hyperbolic Cosine

COSHOXx

where X is a real-valued numeric expression, [X| < 1151.98569368

Can be used in CALC mode.

TANH Hyperbolic Tangent

THHHCX

where X is a real-valued numeric expression.

Can be used in CALC mode.

27

28 Section 4: Real Scalar Functions

ASINH Inverse Hyperbolic Sine
!

ASIHHCX

where X is a real-valued numeric expression.

Can be used in CALC mode.]

ACOSH Inverse Hyperbolic Cosine

ACOSHOX

| . . R
where X is a real-valued numeric expression, X = 1.

|

' Can be used in CALC mode.

ATANH Inverse Hyperbolic Tangent

ATAHHCX?

where X is a real-valued numeric expression, —1 < X < 1.

Can be used in CALC mode.

Other Functions Performing Calculations

GAMMA Gamma Function

| GAMMACX

where X is a real-valued numeric expression whose range is defined as follows:
X not equal to zero or a negative integer.

—253 < X < 254.1190554375.

Within the range —263 < X < —253, certain values of X cause GHIMMHA C X to underflow as indicated
by the graph of GHMMACX .

For X < —263, |[ZAMMA XY < MIMREAL, so GAMMACX will always underflow here.

|

Section 4: Real Scalar Functions 29

GAMMA (continued)

If X equals a positive integer, GAMMACX: = FACT(X—17.
In general, GAMMACXY = T (X), defined for X > 0 as

) = J;wrx“e"dt

and defined for other values of X by analytic continuation.

Can be used in CALC mode.

LOG2 Base 2 Logarithm

EX]

LOGECXD

r

where X is a real-valued numeric expression, X > 0.

e e In(X)
LOCROXy = | X) =
0g,(X) In(2)
Can be used in CALC mode.
SCALE10 Power of Ten Scaling

SCRLELACX,. P2

where X is a real-valued numeric expression and P is a real numeric expression that must evaluate to an
integer value.

Multiplies X by 10 raised to the power P by adding P to the exponent of X. You will find SCHLE 153
useful in preventing intermediate underflows and overflows in long chain calculations.

Can be used in CALC mode.

30 Section 4: Real Scalar Functions

Integer Round

IROUND Round to Integer

IROUMHDCX

where X is a real-valued numeric expression.

Rounds X to an integer using the current OFTIOH EOUHD setting.

Can be used in CALC mode.

Functions Providing Information

NANS Not-a-Number Diagnostic Information

MAME X0

where X is a real-valued numeric expression.

Returns a string representing the error number contained in its M =H argument; that is, the number of
the error that caused the t=H to be created. The string returned is of the same form as the number
returned by the ERRHM function (refer to the HP-71 Reference Manual). However, the LEX identification
number is 0 for all 1 =ts created by Math Pac functions since the Math Pac uses only HP-71 error
messages when creating H zks.

If X is not a M=t then MAME (X returns a null string.

Not usable in CALC mode.

NEIGHBOR Nearest Machine Number

HEIGHBOR XY

where X and Y are real-valued numeric expressions.

Returns the nearest machine-representable number to X in the direction toward Y. This is the machine
successor (or predecessor) of X depending on the relative location of Y. You will find HE I GHE DR useful
when you wish to evaluate a function in a local neighborhood of a given value.

Can be used in CALC mode.

) =

TYPE

Section 4: Real Scalar Functions

3

Expression Type and Dimension

TYFECXD

where X is a real-, complex-, string-, or array-valued expression.

ing table.

Returns an integer from 0 through 8 depending on the type and dimension of X as shown in the follow-

Except for string and array arguments, can be used in CALC mode.

Examples

X TYFELXY

Simple real (includes IHTEZER,

SHORET, and RERL simple

variables.) 5]

Simple complex (includes COMFLER

and COMFLEX SHORT simple

variables.) 1

Simple string z

IHTEGEFR array 3

SHORET array 4

FERL array 5
&

COMFLEX SHORET array
COMFLEX array
String array

unl

COSH, SINH, ATANH, ACOSH

Input/Result

Hyperbolic cosine of a numeric constant.

1

Section 4: Real I
SIMHOL - 342230 Hyperbolic sine of a numeric expression.
SEEE 1388825
Inverse hyperbolic tangent of a numeric ex-
ATAMNHC 1 ~SRRE{E 2 pression with a numeric variable.
A4 ESYISEazE
ACOSHOCOSHCZ@a > » [END LINE Inverse hyperbolic cosine of a numeric
expression.
2EG
LOG2, IROUND
Input/Result
LOGZC2~170 Logarithm (base 2) of a numeric expression.
i
OFTIOH ROUMD HEAR Rounds to the nearest integer (the nearest even
integer in case of a tie).
IROUNDCZ34, 50
OFTIOH ROUMD FPOS
IROUHDOC234 , 5 [END LINE

fa
il
i

Rounds to the nearest larger integer.

)

S Real Scalar Functions 33
NANS$, NEIGHBOR, TYPE
Input/Result
BETRAPCIVL, 20 Sets trap value = for IVl . Refer to the HP-71
Reference Manual for information on the TERF
function.
B=BIHCIHF 2
WEH: Inwalid Hrag Trap value & for I/l causes a warning, not an
error, to be given when the invalid operation

SIHCINF Y 1s executed.

Hah The invalid operation assigns HatH (Not-a-
Number) to i, since I%'L has a trap value of =.

MAMKE ¥ [END LINE

i | The message number associated with the value
Mah identifies the Triwzlicd Fra message.

MEIGHEORCL, 52

—————————— i

1.oEannnenaan] The nearest machine number to 1
tion toward .

in the direc-

,FESOa9999999 The nearest machine number to | in the direc-
tion toward — 1 &,

NEIGHEORC1IE488, 1E401

]

1, A0RAAGRARAIE4EA The nearest machine number to [E< & in the
direction toward 1E<41,

34 Section 4: Real Scalar Functic

et g B oo i L LR The nearest machine number to 1 . ZZ4E~&73
in the direction toward .

IMTEGER I,J03,93
COMPLER SHORET Zi2, W
TYPECZ 2 EYPECLI 2 TYPECEs s TYPELZ D

} TYFECUD

¥'s}

5 3 = i The numbers returned by T7%FE identify the
type and dimension of each of the expressions.

o

o
Lo

P
B

Section 5

Complex Functions and Operations

Many useful functions are defined for complex as well as real arguments. The Math Pac allows you to
use many HP-71 keywords for both complex and real arguments. In addition, this section describes
other keywords defined specifically for complex operations.

All the functions and operations described in this section (except AFE =, ARG, TOH.J, and the relational
operators) return a complex-type result.

With the exception of the RECT function, all complex numbers Z and W are assumed to be in rectan-
gular, not polar, form.

The two-dimensional nature of these functions precludes giving simple bounds for the arguments that
will avoid underflow and overflow messages.

Operators

am Addition

Z+Ww

where Z andfor W are complex-valued numeric expressions.

Can be used in CALC mode.

& Unary Minus

=z

where Z is a complex-valued numeric expression.

Can be used in CALC mode.

35

36 Section 5: Complex Functions and Operations

Subtraction

Z-W

where Z and/or W are complex-valued numeric expressions.

Can be used in CALC mode.

*

Multiplication

ZEW

where Z and/or W are complex-valued numeric expressions.

Can be used in CALC mode.

/ Division

Z-W

where Z and/or W are complex-valued numeric expressions, W = (0,0).

Can be used in CALC mode.

Exponentiation

W

where Z and/or W are complex-valued numeric expressions.

Returns the principal value of Z¥ = ¢"'"@)
Can be used in CALC mode.

Section 5: Complex Functions and Operations 37

Logarithmic Functions

LOG Natural Logarithm

LOGCZ» or LHEZY

where Z is a complex-valued numeric expression, Z # (0,0).

IfZ =x + iy, and R (cos # + i sin #) is the polar representation of Z, then
LOGIZy = InR + if.

where —7 < fi < = (radian measure).

Can be used in CALC mode.

EXP Exponential

EXPLZ)

where Z is a complex-valued numeric expression.

If Z = x + iy, then
ExXPi(Z) = e "% = ¢ (cos y + isin y).
where y is taken to be radian measure.

Can be used in CALC mode.

All trigonometric calculations take their arguments to be in radian measure regardless of the angular
setting.

SIN Sine
EIMCZS
where Z is a complex-valued numeric expression.

If Z = x + iy, then
SIHCZ: = sin (x + iy) = sin x cosh ¥ + i cos x sinh y.

Can be used in CALC mode.

cos Cosine
CseZa
where Z is a complex-valued numeric expression.

If Z = x + iy, then

CmeZr = ¢cos (x + iy) = cos x cosh y — i sin x sinh y.

Can be used in CALC mode.

TAN Tangent
THHCZ
where Z is a complex-valued numeric expression.

If Z = x + iy, then

sin (x +7y) _ sinxcosx + isinhy coshy
cos (x + iy) sinh®y + cos®x

TAMCZY = tan (x + iy) =

Can be used in CALC mode.

Section 5: Complex Functions and Operations 39

SINH - Hyperbolic Sine

EINHCZ

where Z is a complex-valued numeric expression.

1 fZ = x + iy, then
: SIHHCZ: = sinh(x + iy) = (=) sin (—y + ix).
Can be used in CALC mode.

COSH Hyperbolic Cosine

[EOSHC(Z

where Z is a complex-valued numeric expression.

IfZ = x + iy, then
COEHOZY = cosh (x + iy) = cos (—y + ix).
Can be used in CALC mode.

TANH Hyperbolic Tangent

TAMHCZ

where Z is a complex-valued numeric expression.

IfZ = x + iy, then
TAMHCZ? = tanh (x + iy) = (—i) tan (—y + ix).
Can be used in CALC mode.

o

POLAR Rectangular to Polar Conversion

FOLARCZ

where Z is a real- or complex-valued numeric expression.

It Z = x + iy, and R (cos # + i sin f) is the polar representation of Z, then
FOLARCZ: = (R, 0)

The angle @ is expressed in degrees (—180 < # < 180) or radians (—7 < f <) according to the
current angular setting.

Can be used in CALC mode.

RECT Polar to Rectangular Conversion
RECTCZ2
where Z is a real- or complex-valued numeric expression.

FECT is the only keyword in this section that assumes its argument Z to be in polar form.

It Z = (R,0), where R (cos # + i sin #) is the polar representation of the complex number x + iy, then
RECTC(ZY = x + iy

The angle f is taken to be in degrees or radians according to the current angular setting.

Can be used in CALC mode.

SQRT Square Root

where Z is a complex-valued numeric expression.

Returns the complex principal value of the square root of Z.

Can be used in CALC mode.

Section 5: Complex Functions and Operations 41

SGN Unit Vector

SGHOZY

‘where Z is a complex-valued numeric expression.

Returns the unit vector in the direction of Z; that is,

Z _ X+ iy

SGHIZy = — =
[x +1iy] Vx? 4 y?
| where Z = x + iy.
If Z = (0,0), then SGHIZ:» = Z.
Can be used in CALC mode.
S Absolute Value

HBRSCZ%

where Z is a complex-valued numeric expression.

IfZ = x + iy, then
RESCZ) = |x +iy| = VX2 + 2

HEZZ always returns real type.

| Can be used in CALC mode.

42 Section 5: Complex Functions and Operations

ARG Argument

ARGLZ2

where Z is a real- or complex-valued numeric expression.

If Z = x + iy and R (cos ## + i sin #) is the polar representation of Z, then
ARGOZY = f,

The angle f is expressed in degrees (—180 =< f =< 180) or radians (—= < f < =) according to the
current angular setting.

|
| HEGCZ 5 always returns real type.
|

‘ Can be used in CALC mode.

CONJ Complex Conjugate

COMACZn

where Z is a real- or complex-valued numeric expression.

If Z = x + iy, then
COMJdcZy = x — iy
COMJCZY always returns the same type (real or complex) as Z.

Can be used in CALC mode.

PROJ Projective Infinity

FEQJCZ)

where Z is a real- or complex-valued numeric expression.

If Z = x + iy, then
FROJZY = Z if ABRS(Zs # Inf
or

FREOJCZY = Inf + i0 if AEBZCZy = Inf.

Can be used in CALC mode.

Relational Operators

= <, >, # 7

Section 5: Complex Functions and Operations 43

Equal or Unordered

Z comparison operator W

where Z and/or W are complex-valued numeric expressions.

this case).

Can be used in CALC mode.

Suppose Z = x + iyand W = u + jv.

When at least one of two expressions is complex valued, only two comparison results are possible:
either the expressions are equal or they are unordered (or unequal, which is equivalent to unordered in

If x = uvandy = v, then any comparison that contains = is true (that is, evaluates to 1).
If x # v ory + v, then any comparison that contains # or ~ is true.

Any comparison that contains < or * without 7 or # produces an exception.

Examples

+s T *s /
Input/Result

&T0 & COMPLEX Z,HM
Z=i4,53 @ W=¢-3, 2 [ENDLINE]
Z+)1 [END LINE]

2-H

pis
ol

44 »ection 5: Complex Functions and Operations

C2 L BORCA ST

(1,2¥,03,4)

1

=,
kA
[l

C.odd,

{24, =320

~, LOG, EXP

Input/Result

FIx4
(3,438, 9

,_.
el
ga
=4
el
)

Jou
i
iy
|

LOGoC1, 2% [ENDLINE

Section 5: Complex Functions and Operations 45

SIN, TAN, COSH

Input/Result

F1%4 [ENDLINE]
SINCCZ1, 200

TAHO LS, 530

C-d, 94/l E-5, 1. 86681
EOSH (2,30
e, TedD,8.51185%
ABS, ARG, CONJ, PROJ
Input/Result
FI1x4
AESC (3,430
5.a888
DEGREES
ARG, 435
a3, 13281
EADIAHS
BREECCR, ~F 3
-1.,165% . The fourth quadrant angle # measured in radi-
ans, which is the argument of the complex num-
ber 3 — Ti.
| 3

46 Section 5: Complex Functions and QOperations

STOD @ COHJCCL, 230

FEOJCC-Int . —Infd > [ENDLINE

POLAR, RECT, SGN

Input/Result

STD
DEGREES
POLRREC—1)

(1,18

[x]
]

F 14 [ENDLINE
403

FOLARCCE,

O]
il
il
3%]
]
Vo
i
|
ot
)
i
—r

RAOIAHS
RECTCC-S,PI1. 42

Rectangular to polar conversion for a real
argument.

The absolute value (r) is I and the argument (#)
is 124 degrees.

Rectangular to polar conversion for a complex
argument.

The absolute value (r) is &, B85 and the argu-

ment (A) is 53, 1351 degrees.

Polar to rectangular conversion for a complex
argument. The absolute value (r) is 5 and the
argument (f) is —3x/4 radians. Since the R
given is negative, this is the reflection of the polar
point (5,PI/4) through the origin.

f)

ar

I
1
L
%]
[}
i

i
]
n
93]
o
L

SEHCCL, 100

I
-
=
=l
—
St

Cl.7

v
ol

71,

SQRT, LOG

Note the behavior of SEFET and LOG at the branch cut. Refer to the discussion of branches under the

“Additional Information” topic below.

Input/Result

FIX4 B SQERTCC1,2)) (ENDLINE]

£ .

[

F2l, 8. 7TBE2)

R

SARTCC-16,8 % [ENDLINE

LOGEC-EXP (S, @00

£3.88688,32,14160

LOGCC-EXPCS), —@3)

(5.8888,-3.14167

Section 5: Complex Functions and Operations 47

The real part (x) and the imaginary part (y) are
both' =32 ; 53585,

48 Section 5: Complex Functions and Operations

Additional Information

In general, the inverse of a function f(z)—denoted f~!(z)—has more than one value for any argument z.
However, the Math Pac calculates the single principal value, which lies in the part of the range defined
as the principal branch of the inverse function f~!(z).

The illustrations that follow show the principal branches that the Math Pac uses for 05T and L0,
The left-hand graph in each figure represents the cut domain of the inverse function; the right-hand
graph shows the range of the principal branch. The blue and the black lines in the left-hand graph are
mapped, under the inverse function, to the corresponding blue and black lines in the right-hand graph.

SQRT

e
Vz =\/r_em"2for—1re£ﬂ$1r

3
< TIRITITIII

Section 5: Complex Functions and Operations 49

LN(z) =Inr + it for —r <8 <«

=T T 1 j

s ~ | |

/ \\ | |

; e \ | :

'f "o \\. xl | 0o 4

-.//(///////Y\/ / /‘ : :

\\ S f | |

\ // | |

> - | |
L L //////////W////////W////////

z W = LN(Z)

The principal branch of w? is derived from that of the log function and the equation:
w? = exp (z LN w),
‘where LN denotes the single-valued function.

To determine all values of the inverse function, use the expressions below to derive these values from
the principal values calculated by the Math Pac. In these expressions, &k = 0, =1, =2, and so on, and
uppercase letters denote single-valued functions.

B\/z = +SQR(2) In(z) = LN(z) + 2wik wt = welwik:

Section 6

Array Input and Output

The keywords in this section enable you to:
« Fill an array with values.

» Display or print values already in an array.

Assignments

= Simple Assignment

HAT A=B

where A and B are both vectors or both matrices.

Array B may be either real or complex type.

If B is complex, then A must be complex.

If B is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to
zero.

Implicitly redimensions A to be the same size as B, and assigns the value of every element in B to the
corresponding element in A.

To halt operation, press twice.
Not usable in CALC mode.

51

52 Section 6: Array Input and Qutput

= () Numeric Expression Assignment

where X is either a real- or complex-valued numeric expression.
If X is complex, then array A must be complex type.

If X is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to
zero.

Assigns X to all elements of A. Array A is not redimensioned.
To halt operation, press twice.
Not usable in CALC mode.

CON Constant Array

MAT A=COH [CX [LY] *]

where A is either a real- or complex-type array, and the optional redimensioning subscripts X and Y are
real-valued numeric expressions. X and Y are rounded to the nearest integer just as are subscripts in

017 statements.
Assigns the real value one to all elements of A. If redimensioning subscript(s) are provided, A is explicitly |
redimensioned according to the number and value of those subcripts.

Not usable in CALC mode.

IDN Identity Matrix

MAT A=T0H [£X,Y3]

where A is a real- or complex-type array and where the optional redimensioning subscripts X and Y are |
real-valued numeric expressions with the same rounded integer value. X and Y are rounded to the |
nearest integer just as are subscripts in 1 111 statements. If X and Y are not provided, A must be a |
square matrix (it must have two equal subscripts).

If no redimensioning subscripts X and Y are provided, then A will become an identity matrix. If
redimensioning subscripts X and Y are provided, then A is explicitly redimensioned to a square matrix
with the upper bound of each subscript equal to the rounded integer value of X and Y and then assigned
the values of an identity matrix.

Not usable in CALC mode.

Section 6: Array Input and Output 53

ZER Zero Array

MAT A=ZER [“X[.Y] »]Jor MAT A=ZERO [CX [.Y] 2]

where A is either a real- or complex-type array, and the optional redimensioning subscripts X and Y are
real-valued numeric expressions. X and Y are rounded to the nearest integer just as are subscripts in
01 statements.

Assigns zero to all elements of A. If redimensioning subscript(s) are provided, A is explicitly
redimensioned according to the number and value of those subcripts.

Not usable in CALC mode.

Array Input

INPUT Assign Values from Keyboard Input

MAT IMFUT A [, B]...

where A (and B) are real- or complex-type array(s).

Assigns real or complex numbers to the specified array(s). Complex values cannot be assigned to real
array elements. MMAT IHFLUT prompts with the name of an array element and then accepts a numeric
expression from the keyboard, evaluates that expression, and assigns the result as the value of that
element. For each array, IAT IHFUT gives prompts for the elements in row order (from left to right in
each row, from the first row to the last). If there is more than one array, they are handled in the order
specified.

When the name of an array element is displayed, enter its value by typing in the numeric expression and
then pressing [END LINE]. You can enter values for several consecutive elements by separating the val-
ues with commas. When an array is filled, the remaining values are automatically entered into the next
array. After you press [END LINE |, the computer will display the name of the next element (if any) to be
assigned a value.

INPUT (continued)

In other respects, MAT IHMFLT acts as does I HFILIT. For instance:
* The Command Stack is always active during 1A T IHFLIT execution. You can move up and down
in the Command Stack with [A], [¥], [9] [X], and (2] [¥] without first pressing [¢] [CMDS .
* You can use a direct execute user-defined key to provide the response to the MAT IHFLUT |
prompt. ‘

* The key sequence and the 9] key sequence are active during FMAT IHFUT
execution.

“ If you are making a response to a MAT IHFUT statement, but have not pressed [ENDLINE], |
pressing once clears the typed entry, allowing another entry to be typed. If you press
twice, the HP-71 clears the entry, pauses the program, and clears the display.

Not usable in CALC mode.

Arrav Output

To halt the operation of any of the keywords described below you need press only once.

DISP Display in Standard Format

where A (and B) are real- or complex-type array(s).

Displays the values of the elements of the specified arrays. The values are displayed in row order. Each
row begins on a new line; a blank line is displayed between the last row of an array and the first row of
the next array.

The choice of terminator—comma or semicolon—determines the spacing between the elements of an
array.

Terminator Spacing Between Elements

Close: Elements are separated by two spaces. A minus sign, if present,
occupies one of the two spaces.

Wide: Elements are placed in 21-column fields.

If the last array specified doesn’t have a terminator, the array will be displayed with wide spacing be- |
tween elements.

Not usable in CALC mode. |

!

MAT PRINT A |: B]...[’]

where A (and B) are real- or complex-type array(s).

section 6: Array Input and Output 55

PRINT Print in Standard Format

Prints the values of the specified arrays. Operation is identical to MAT [I%F, except that the output is
sent to the FRIMTER I5 device, which requires HP-IL. If no FEIHTER IE& device is present, out-
put is sent to the display, or to the HP-IL DI ZFLAY I% device. Also, you can override the CR/LF
normally generated by MAT FRIMT with the EHOL IHE statement. EHOL IME is described in the
HP-71 Reference Manual and in section 13 of the HP-71 Owner's Manual.

Not usable in CALC mode.

DISP USING Display Using Custom Format

format string : .
FRT DISF USIHMEG CA B ...
line number i E

where A (and B) are real- or complex-type array(s).

Displays the values of the elements of the specified arrays in a format determined by the format string or
by the specified IMAGE statement identified by the line number. (Refer to the HP-71 Reference Manual
for information about 0T 5F LIZIHE, format strings, IMAGE statements, and their results).

If any array is complex type, the corresponding field specifier in the format string or IIMAGE statement
must be a complex field specifier. Refer to the description of the complex field specifier (Z 7. *) in
section 3, page 22.

The values are displayed in row order. Each row begins on a new line; a blank line is displayed between
the last row of an array and the first row of the next array.

The terminators between the arrays—commas or semicolons—serve only to separate the arrays and
have no effect on the display format.

The Math Pac must be plugged in to FEMHUMEER a program containing a MAaT DIEF WS IHEG [Ane
number] statement; otherwise, the line number will not be correctly updated.

Not usable in CALC mode.

56 Section 6: Array Input and Output

PRINT USING Print Using Custom Format

format string . _.
MAT FPRIHT USIHG A B|l..
line number i i

where A (and B) are real- or complex-type array(s).

Operation is identical to MAT DI=F LIS IHEG, except that the output is sent to the FRIMTER I
device which requires HP-IL. If no FEIMTER 15 device is present, output is sent to the display, or to
the HP-IL DIZFLAY I3 device. Also, you can override the CR/LF normally generated by
MAT PRIMT UsIHG with the EHDLIHE statement. EHDL IHE is described in the HP-71 Ref-
erence Manual and in section 13 of the HP-77 Owner's Manual.

Not usable in CALC mode.

Examples

With the optional delay of & or larger (infinite line replacement delay), you press (or any
other key) to display the next line. So you can control how long each array row is displayed.

CON, IDN, ZER, DISP

Input/Result

OPTIOH BASE 1 @ STO

OIM ACE,32,B017 B is dimensioned to be a one element vector.
COMPLE® Ccl@, 2@n

MAT A=I0H

MAT DISF A; Displays the identity matrix A with close spacing
between the elements.

[y

1 @ @
a1 @
Boa 1

F

MAT BE=ZER(Z, 23

MAT QISP E:

MAT C=COMLIZE, 30

MAT DISF

(1,82 1,83 (1.8
C1,8% {1,837 ¢1,.8%
L R 5 B 1.8 LI)
INPUT
Input/Result

OFTION EASE 1 (ENDLINE]
OIM A2, 33, EC3) (ENDLINE)
OFTIOH EASE @ (ENDLINE]
' [END LINE]

COMPLEX ©oZ2

13
MAT IMFUT @, &, (ENDLINE)

Acl,. 1507 B

Section 6: Array Input and Output 57

Redimensions B from a one-element vector to a
2 x 2 matrix and assigns to it a zero array.

Redimensions C and assigns to it a constant
array.

Declares C to be a 3 x 2 complex array (remem-
ber we are in OFTIOM EBAZE &),

Prompts for the first element’s value.

More than one value can be entered.

Prompts for the fifth element’s value.

58 Section 6: Array Input and Output

= Enters values for the last two
elements of A and the first element of B.
Ecz2y? W
8.9,18 Enters values for the last two elements of B and
the first element of the complex array C.
Cop, 107 B
1,2,(5,60,4F .85 Enters values for the next four elements of C.
Coz, it B
HFH Enters “not a number” for the last element of C.
STOD B MAT DISF RA;E;C; Displays each array in sequence, with a blank
line between each.
1@ LT
4 5 &
O = I T W -
DICEN 5 AT 200
CV L EY dMal, 80

and

i C.

DISP USING

Input/Result

10 OPTION BASE 1 @ INTEGER A(5,5)
15 WIDTH 22 @ DELAY 8

20 COMPLEX SHORT Z(3,4)
25 MAT A=IDN @ MAT Z=((4,5))

30 MAT DISP USING 'DDD,ZZZ";AA

35 MAT DISP USING ‘#,D";A @ DISP 4

40 MAT DISP USING 100;Z
45 DELAY 1
100 IMAGE C(K,2D,'i")

Section 6: Array Input and Output 59

Causes the output to appear in the display as

shown below. After each display, press
to produce next display.

Assigns the identity matrix to A and the
complex number <4, 5 to every element of Z.

This format string consists of two field
specifiers, 00D and ZZZ. Each element of A is
displayed according to these field specifiers used
repeatedly until all elements have been displayed.
The final element of A is displayed according to
OCOD. Then a blank line is displayed, followed by
another display of all elements of A. The field
specifier ZZZ (the next specifier in the format
string) is used to format the display of the first

element during this second display of A.

The # symbol supresses the automatic end-of-
line sequence (CR/LF) following the display of A.
This causes 4 to be displayed on the same line
as the last element of A.

The IMAZE statement must use the ¢ . » form
to format the display of a complex array. The
parentheses must contain two numeric field
specifiers.

60 Section 6: Array Input a

RUN

la|a agee &
HEEA 1a@a HEEE
BEEE 1888 @A
HEA EHEEE 1888
HOEE QeEan 1
HEl BEEE G080
ARG BEER &
REE QAal HEER
FEEE @AEE] 5]
BEE AREE HEE]

The ' format symbol replaces leading zeros with
blanks. Since A is an identity matrix, element
(1,1) is 1. Therefore the two leading zeros are
replaced with blanks, and element (1,1) is dis-
played as 1. The Z format symbol fills each
leading zero with &, so element (1,2) is displayed
as HEE, The remaining elements, in row order,
are displayed according to the format string
OO0, ZZZ used repeatedly.

After the last (fifth) element of the first row is
displayed, an end-of-line sequence (carriage re-
turn, line feed) is sent, causing the display of
element (2,1) to start a new line.

The field specifier [0 formats the display of
the last element of A, causing the display of 1.

Following the display of the last element of the
last row, a second end-of-line sequence is sent,

causing the display of a blank line between the
two displays of array A.

Since the variable list following the format
string in line 30 is M, A, array A is displayed
twice. This time, element (1,1) is displayed
according to the field specifier ZZ =, since OO0
was used just above for the last element of A
during the first display of this array.

Since this is the display of the last array in the
variable list of line 30, no blank line is displayed,
even though this display line ends with the last
element of the last row of A,

s

e

e

i

e
ed,
st

—
(]

e
fx]

=
s
e}

Since the portion of the format string of line 35
that controls character display consists only of [,
the elements of each row of A are displayed with
no extra characters or spaces.

The # symbol in the format string of line 35
supresses the end-of-line sequence normally sent
after the display of the final row of the last array
in the variable list.

The symbol F in the format string of line 100
specifies a compact field, resulting in the display
of no leading or trailing blanks. This symbol
controls the display format of the real part of
each (identical) element of Z. The display of the
imaginary part of each element is controlled by
Z[, Since the imaginary part, =, consists of only
one digit, a leading blank is displayed. The com-
plex image specification ¢ @ causes the display
of the parentheses and comma.

The display of each row is ended with an end-of-
line sequence, so each new row starts a new dis-
play line.

Section 7

Array Arithmetic

The keywords in this section perform arithmetic operations on arrays. The dimensions of the operand
arrays must be compatible with the particular operation, as discussed below.

* For addition and subtraction, the operand arrays must both be vectors or hoth be matrices, and
they must have the same number of rows and the same number of columns. In this case we will say
that the arrays are conformable for addition.

» For multiplication of two arrays, the first array must be a matrix, while the second array can be a °
matrix or a vector. The number of columns of the first array must be equal to the number of rows
of the second array. If these conditions are satisfied, we will say that the arrays are conformable for
multiplication.

¢ For transpose multiplication of two arrays, the first array must be a matrix, while the second array
can be a matrix or a vector. The number of rows of the first array must be equal to the number of
rows of the second array. If these conditions are satisfied, we will say that the arrays are con-
formable for transpose multiplication.

Operators

=—- Negation

MAT A=—-B

where A and B are both vectors or both matrices.

Array B may be either real or complex type.

If B is complex, then A must be complex.

If B is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to
zero.

Implicitly redimensions A to be the same size as B and assigns to each element of A the negative of the
corresponding element of B.

To halt operation, press twice.
Not usable in CALC mode.

63

64 Section 7: Array Arithmetic

A Addition
mH T A=B+C

where A, B, and C are all vectors or all matrices, and B and C are conformable for addition.

Arrays B and C may be either real or complex type.

If either B or C is complex, then A must be complex.

If both B and C are real, then A may be real or complex; if complex, all imaginary parts of all elements in
A are set to zero.

Implicitly redimensions A to be the same size as B and C, and assigns to each element of A the sum of
the values of the corresponding elements of B and C.

To halt operation, press twice.
Not usable in CALC mode.

= Subtraction

fMAT A=B-C

where A, B, and C are all vectors or all matrices, and B and C are conformable for addition.

Arrays B and C may be either real or complex type.

If either B or C is complex, then A must be complex.

If both B and C are real, then A may be real or complex; if complex, all imaginary parts of all elements in
A are set to zero.

Implicitly redimensions A to be the same size as B and C, and assigns to each element of A the dif-
ference of the values of the corresponding elements of B and C.

To halt operation, press twice.
Not usable in CALC mode.

Section 7: Array Arithmetic 65

()% Multiplication by a Scalar

MAT A=0X1%B

where A and B are both vectors or both matrices and X is a numeric expression.

Array B may be either real or complex type and expression X may be either real or complex valued.

If either B or X is complex, then A must be complex.

If both B and X are real, then A may be real or complex; if complex, all imaginary parts of all elements in
A are set to zero.

Implicitly redimensions A to be the same size as B and assigns to each element of A the product of the
value of X and the value of the corresponding element of B.

To halt operation, press twice.
Not usable in CALC mode.

* Matrix Multiplication

HAT A=B%C

where B is a matrix, A and C are both vectors or both matrices, and B and C are conformable for
multiplication.

Arrays B and C may be either real or complex type.

If either B or C is complex, then A must be complex.

If both B and C are real, then A may be real or complex; if complex, all imaginary parts of all elements in
A are set to zero.

Implicitly redimensions A to have the same number of rows as B and the same number of columns as C.
The values of the elements of A are determined by the usual rules of matrix multiplication.

To halt operation, press twice.
Not usable in CALC mode.

TRN * Transpose Multiplication

MAT A= TRHIBX¥C

where B is a matrix, A and C are both vectors or both matrices, and B and C are conformable for
transpose multiplication.

Arrays B and C may be either real or complex type.

If either B or C is complex, then A must be complex.

If both B and C are real, then A may be real or complex; if complex, all imaginary parts of all elements in
A are set to zero.

Implicitly redimensions A to have the same number of rows as the number of columns in B and the same
number of columns as C.

The result of this operation is the same as if the transpose of B (or the conjugate transpose of B, if B is
complex type) was computed and then post-multiplied by C. However, the Math Pac uses special mul-
tiplication rules so that B does not have to be explicitly transposed prior to the multiplication.

To halt operation, press twice.
Not usable in CALC mode.

Examples

+, %, ()%, TRN *
Input/Result

OFTIOM EASE 1 @ STOD [ENDLINE)
FEEAL AC2,Z22 ,BC3,45

"COMFLE® SHORT CoZ, 12,0620 ,E09)
MAT A=IOM{Z,23
MAT C=003,412%A C is redimensioned to 2 x 2 and every element
of C is assigned the product of the complex num-
ber © Z, 4 and the corresponding
element of A.
MAT DISP C;

) CE,ED The array C.

tion MAT A=COH C=C4+A
or MET DISF C:
i, 40 5l
LA A 5 L3
in
: MAT E=A+*A (END LINE]
e
AT DISP B;
is .8 -
- -os
MAT IHFUT O
ODopne
(1,23,03,42
MAT E=TRHCC %0 [ENDLINE]
MAT DISP E
(15,8
e B
1-

C holds the array sum of A and C. No
redimensioning is necessary since C is already the
correct size.

The array C.

B is redimensioned to 2 X 2 to hold the matrix
product A% A,

The array B.

E is redimensioned to be a 2 element vector to
hold the product of the conjugate transpose of C
and the vector D.

The array E.

Section 8

Scalar-Valued Array Functions

The keywords in this section are functions that use real- or complex-type arrays as arguments (except
DET uses only real arrays) and give a real number as a value (except 11T can give either a real or
complex number). Like other HP-71 functions, they may be used alone or in combination with other
functions to produce numeric expressions.

Determinant Functions

DET Determinant

DETCAZ

where A is a square real-type matrix.

Returns the determinant of the matrix A. \
To halt operation, press twice.

Not usable in CALC mode.

DETL Determinant of Last Matrix

DETL. or DET

Returns the determinant of the last real-type matrix that was:

® Inverted ina MAT . . . IHW statement (described in section 9).
¢ Used as the first argument of a MAT . . . %= statement (described in section 9).
DETL retains its value (even if the HP-71 is turned off) until another MAT . . . THY (with a real type
argument) or a MAT . . . 5%5 (with a real type first argument) is executed. ,
Not usable in CALC mode. J
69

70 Section 8: Scalar Valued Array Functions

Array Norms

CNORM One-Norm (Celumn Norm)

| CHORMCAY

|
| where A is a real- or complex-type array.

| Returns the maximum value (over all columns of A) of the sums of the absolute values of all elements in
a column. Refer to the keyword description for AE%S, page 41 in section 5, for the definition of the
absolute value of a complex number.

To halt operation, press twice.

Not usable in CALC mode.

RNORM Infinity Norm (Row Norm)

EHOREMCAS

where A is a real- or complex-type array.

Returns the maximum value (over all rows of A) of the sums of the absolute values of all elements in a
row. Refer to the keyword description for AE S, page 41 in section 5, for the definition of the absolute
value of a complex number.

7o halt operation, press [ATTN] twice.

| Not usable in CALC mode.

FNORM Frobenius (Euclidean) Norm

where A is a real- or complex-type array.

Returns the square root of the sum of the squares of the absolute values of all elements of A. Refer to
the keyword description for AES, page 41 in section 5, for the definition of the absolute value of a
complex number.

To halt operation, press twice.

Not usable in CALC mode.

m)

m)

Section 8: Scalar Valued Array Functions 71

Inner Product

DOT Inner (Dot) Product

BOT X, Y

where X and Y are real- or complex-type vectors with the same number of elements.

Returns X=Y, the inner product of X and Y. If both X and Y are real, then the result is real. If either X or Y
is complex, then the result is complex.

If X is a complex vector, then the complex conjugates of the elements of X are used to compute the
inner product.

To halt operation, press twice.

Not usable in CALC mode.

Subscript Bounds

The following functions are useful in keeping track of array option base, number of dimensions, and
size in each dimension, since these quantities may change when variables are dimensioned and
redimensioned.

UBND Subscript Upper Bound

UBHDCA, N2 or UBCUHDCA, N

where A is a real- or complex-type array and N is a numeric expression whose rounded integer value is 1
or 2.

Returns the upper bound of the Nth (first or second) subscript of A. If A is a vector, LIEHD (A, 2 =
=1,

Not usable in CALC mode.

LBND Subscript Lower Bound

LEMOCA, N or LEOUHDCA N

where A is a real- or complex-type array and N is a numeric expression whose rounded integer value is 1 |
or 2.

Returns the COFTICZH ERSE setting in effect when A was last dimensioned. If A is a vector,
LEHOCA, 20 = —1.

Not usable in CALC mode.

DET, DOT

Input/Result

OFTION BRSE 1
OIM A1, 1&8n
MAT A=10H

MAT

A=:-Z3%A Assigns —Z to each diagonal element; all other
elements remain zero.
DET:A > [ENDLINE Displays the determinant of A.
o045

MAT A=IONCE, 23

MAT A=CZ1%A Assigns = to each diagonal element; all other
elements remain zero.

MAT A=IMVCA Computes the inverse of A.

DET [(ENDLINE Displays the determinant of the last real matrix
inverted in a MAT . .. IHY statement or used as
the first argument of a MAT . . . %35 statement.
Refer to pages 77-79 in section 9 for definitions of
ITHY and =45,

e

-

Section 8: Scalar Valued Array Functions

DIM AC1@Y , BL182

MAT A=¢Z> Assigns 2 to each element of A.

MAT E=COH Assigns one to each element of B.

DOTCA, B Displays the inner product of A and B.

COMPLEX CO180

MAT C=ddl, 230 Assigns the complex number <1, 2 to each
element of C.

DOTCC,.A Displays the inner product (a complex number)
of C and A.

CEE, 4|

RNORM, CNORM, FNORM, UBND, LBND

Input/Result

OFTION BASE 1

DT A3 .5)

MAT A=COH Assigns 1 to each element of A.
RHORMOA Displays the row norm of A.

73

74 Section 8: Scalar Valued Array Functions

COMFLEX SHORT Ro2,42
MAT IHFUT A (ENDLINE]

ACl, 127 B
B e, L9867 BP0 1103
20013 ;143 , 18,180
RHORMCA Displays the row norm of A.
FELFEF1IZARIVE
CHORMOA Displays the column norm of A.
22,5sl283588122
FHORMOA Displays the Frobenius norm of A.
ZE.p7RLIEF211 S

COMPLEX E¢3)

UEHDCA, 12 :UBHDCA, 22 First, displays the upper bound of A’s first sub-
script, then displays the upper bound of A’s sec-
ond subscript.

HEHDOE, 13 UBHDCE, 20 First, displays the upper bound of B’s first sub-
script, then attempts to display the upper bound
of B’s second subscript. Since B has only one
subscript, UEHDOCE , 2 returns —1.

Section 8: Scalar Valued Array Functiens 75

LEMOCA, 13 Displays the OF TIOM ERSE setting when A
was last dimensioned,

Section 9

Inverse, Transpose and System Solution

Operations
INV Matrix Inverse
MAT A=IHW B2

where A is a matrix and B is a square matrix.

Array B may be either real or complex type.

If B is complex, then A must be complex.

If B is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to

Zero.

Implicitly redimensions A to be the same size as B and assigns to A the value of the matrix inverse of B.

To halt operation, press twice.

Not usable in CALC mode.

TRN Matrix Transpose or Matrix Conjugate Transpose

MAT A=TEHIB?

where A and B are matrices.

Array B may be either real or complex type.

If B is complex, then A must be complex.

If B is real, then A may be real or complex; if complex, all imaginary parts of all elements in A are set to

Zero.

Implicitly redimensions A to be the same size as the matrix transpose of B. If B is real, assigns to A the
value of the matrix transpose of B. If B is complex, assigns to A the values of the matrix conjugate
transpose of B.

To halt operation, press twice.

Not usable in CALC mode.

78 Section 9: Inverse, Transpose and System Solution

Solving a System of Equations

The Math Pac provides a quick and accurate way to solve a system of linear equations involving real or
complex coefficients. The first step in using this capability is to translate the system of equations into a
triple of arrays: the result array, the coefficient array, and the constant array. The result array corre-
sponds to the variables in the equations; the coefficient array holds the values of the coefficients of the
variables; the constant array holds the values of the constants in the equations. For example, if you
wanted to solve the system of equations

5+ 3y + 22 = 4
Tx +y + 32 = 14
6x +4dy + 9z = 1

then the result array would correspond to the array

the coefficient array would be

and the constant array would be

If we denote the result array by X, the coefficient array by A, and the constant array by B, then the

system of equations can be written in matrix notation as AX=B. This is the form assumed by the ="%'%
keyword.

T N

where A is a square matrix, X and B are both vectors or both matrices, and A and B are conformable for

System Solution

i R

multiplication. Refer to the beginning of section 7, page 63, for a definition of “conformable for

multiplication.”

Arrays A and B may be either real or complex type.

X are set to zero.

Implicitly redimensions X to be the same size as B and assigns to X the computed solution to the matrix |

| equation AX=B.

To halt operation, press twice.

Not usable in CALC mode

Examples

INV, TRN

Input/Result

OFTION BASE 1 [ENDLINE]
DIM ACE, 33
MAT FA=10H [ENDLINE)

MAT A=< 22%A [ENDLINE]

MAT A=IHVCAD
MAT DISF A

T - I -
@ .5 @
e B

If either A or B is complex, then X must be complex.

If both A and B are real, then X may be real or complex; if complex, all imaginary parts of all elements in |

Assigns = to all diagonal elements of A. All other

elements are zero.

Displays the inverse of A.

(e -]
o

Section 9: Inverse, Transpose and System

OIM CO3,20
MAT C=COM
MAT DISP C;

1 1

1 1

1 1
OIM OCZ2,20
MAT D=TRHLC>
MAT OISF O}

1 1 1

1 1 1
COMEPLEY SHORT D¢E,32,LE(3 33

MAT O=¢g1,23)

MAT OISP DO;

U

RO Y]

MAT D=TRH:O?>

MAT DISF D

Solution

Assigns one to all elements of C.

Displays C

Computes the transpose of C and redimensions
D to be a 2 X 3 matrix.

Displays the transpose of C.

Assigns the complex value ¢ 1, 2 to all ele-
ments of D.

The complex matrix D.

Redimensions D to 3 x 2 and assigns D the
value of its conjugate transpose.

The conjugate transpose of D.

MAT IHPUT C

B8 (1, 20,002,180

cez2,127 1

—
=t

2,08, 3%, 0-5,142 [ENDLINE

CoZ, 127 @

61,13, 08,5, ¢-2, 2@
AT DISPE C

kB2 (E,:270 CE TRy
[WP 1 CE,E0
t=5,142
€1,1% ¢@,5)
Ce3 L RE
MAT D=IHWCD)
MAT DISF O
¢168;1) C-2,6)
(9, -3
0 ASE~41 .82
i Tooi=1,-20

— [

¢1,-1,1832E-113

Section 9: Inverse, Transpose and System Solution

The complex matrix C.

Redimensions D to 3 x 3 and assigns to D the
value of the matrix inverse of C.

The inverse of the complex matrix C is the
matrix

10+1 —24-61 —83—28i
9-—3i Bi: =3=19i
=842 =1=21 1

81

82 Section 9: Inverse, Transpose and System Solution

SYS

To solve the system of equations given on page 78, namely,
6x + 3y + 2z =4
Tx+y+ 32 =14
6x + 4y + 9z =1

we could use the following keystrokes.

Input/Result

OFTIOH BARASE 1 @ ST [ENDLINE]
M WOB3,BL3Y,AE3, 3
MAT IMPUT E,A [ENDLINE]

i

[t

BEilsT H
4,14,1 Assigns values to the elements of B.
AC1,12% W

JEE 4,8 Assigns values to the elements of A.

AT ALBY
MAT DISP = Displays the values of the result array elements.

I
N2

Il

Although in typical applications the result array X and constant array B are each one column arrays,
=% does not restrict these arrays to only one column. This allows you, for example, to simultaneously
solve any number of different systems, limited only by memory, of n equations in n unknowns, provided
that the coefficients in each systems of equations are identical. The following example illustrates this
use of =% =,

Section 9: Inverse, Transpose and System Solution 83

Example. Your company’s Publications Manager wants to determine the cost factors used by her two
outside printers. She knows that each printer estimates jobs based on the number of pages and the
number of photographs, plus a fixed setup charge. Given the three estimates from each printer shown
below, write a program that calculates their cost per page, cost per photograph, and setup charge.

e Number of Number of Total Cost
Pages Photographs Printer A | Printer B
1 273 35 $5835.00 | $7362.50
2 150 8 $3240.00 | $4085.00
3 124 19 $2775.00 | $3517.50

We need to solve the following system of equations for two sets of cost estimates.
273xy + 3bxy + x3 = cost;
160x; + 8xy + x3 = costy
124x; + 19x; + x3 = costy

These equations can be represented in matrix notation as AX = B, where:

® A is the coefficient matrix, having the number of pages in its first column, the number of photo-
graphs in its second column, and the number of setup charges (one for each job) in its third col-
umn. Each row contains this data for a different job.

® B is the constant array. Each row contains cost estimates for one job from the two printers; each
column contains one printer’s cost estimates for the three jobs.

¢ X is the result array, having the unknown cost factors x;, xo, and x3 in its rows. x; is the cost per
page, x, is the cost per photograph, and x5 is the setup charge. Since we are solving two systems,
the constant array is a two-column matrix. So the result array must also be a matrix; that is, it
should be declared with two dimensions. (Its size, if not the same size as that of the constant array
B, will automatically be redimensioned to the size of B when the = = statement is executed). Each
column will contain the cost factors for one printer.

10 OPTION BASE 1

20 DIM A(3,3),X(3,2),B(3,2)
30 DATA 273,35, 1

40 DATA 150,8,1

50 DATA 124,19, 1

60 DATA 5835,7362.5

70 DATA 3240,4085

80 DATA 2775,3517.5

90 READ A B

100 MAT X=SYS(A,B)

110 DISP USING ‘9A,3X,9A./";
‘PRINTER A’,'PRINTER B’

120 MAT DISP USING ‘X3D.2D,6X,
3D.2D";X

RUN

FEIHTER A PEIMTER

2l
hn
el
]

)
=]
) S
o S 2 B
)

sk
L)

i

Specifications for job 1.
Specifications for job 2.
Specifications for job 3.
Estimates for job 1.
Estimates for job 2.
Estimates for job 3.

Cost per page.
Cost per photograph.
Setup charge.

Example. This example demonstrates the usefulness of ='v% in the solution of circuit analysis prob-
lems. In the circuit shown below, the impedances of the components are indicated in complex form. We
will determine the complex representation of the currents I; and I.

Zz=10

Section Inverse, Transpose and System

This system can be represented by the complex matrix equation

10+200i —200i |]|1, 5

—200i (200—-30)i || I, 0
or AX =B

Here is a program that solves for I, and /5.

10 OPTION BASE 1 @ STD
20 COMPLEX SHORT A(2,2),X(2)
30 DIM B(2)

40 MAT INPUT A,B

50 MAT X=SYS(A,B)

60 MAT DISP X
RUN
ALL, 12 E
cif, 288, C@, -28@) (8, -288>
B, 17A

Solution

Assigns values to the elements of A.

Assigns values to the elements of B.

85

If either A or B is complex, X must be complex.

arse, Transpose and System Solutior

Additional Information

The Math Pac operations DET< A, MAT B=IHY<A}, and MAT X=5YZ<{A,B>, where A is a real-
type square matrix, all use the LU decomposmlon of A as an intermediary step. The method used to
generate the LU decomposition of A is a compact Crout factorization with partial pivoting and ex-
tended precision arithmetic. The LU decomposition of A can be represented by the equation PA = LU,
where

® L is a lower triangular matrix—it has values of zero for all elements above the diagonal.

® U is an upper triangular martix—it has values of zero for all elements below the diagonal—with
values of one for all elements on the diagonal.

¢ P is a permutation matrix representing the row interchanges in the matrix A resulting from partial
pivoting.

The factorization PA = LU is valid for any non-singular matrix A. However, special attention is paid to
matrices A that are singular or “machine singular.” In this case, the LU decomposition is changed by an
amount that is usually small in comparison with roundoff error. In the absence of underflow or over-
flow, the resulting LU decomposition of A will be close, in norm, to the exact LU decomposition of
another matrix A’, where A’ is close in norm to A.

Consider the matrix shown below.
1i 3 0
0 0 1
666666666667 2 0

Although this matrix is very nearly singular, it can be successfully inverted using the IHY keyword:
Input/Result
OFTIOH EBASE 1 (ENDLINE]
ODIM ACZ,Z3,B03, 25 (ENDLINE]
MAT I[HFUT H [ENDLINE]
Al 107 B

1,3,8,8,8,1 [ENDLINE

Section 9: Inverse, Transpose and System Solution 87

VEBGGEREE6GET . 2, B A now represents the matrix given above.

MAT B=IMWIA? B is now the computed inverse of A.

MAT B=B#*A

MAT DISF B! Displays the identity matrix B, which is the

product of the matrix A and its computed inverse.

1 @ B
B 1 @&
gooa i

The =4 % keyword solves the matrix equation AX = B for X in several stages. First, the LU decompo-

sition of A is found to give PA = LU.

Using PA = LU, the equivalent problem is to solve LUX = PB for X. This is done by solving LY = PB
for Y (forward substitution) and then solving UX = Y for X (backward substitution). This value for X is
used as a first approximation to the desired solution in a process of iterative refinement, which pro-
duces the final result.

In many cases, the Math Pac will arrive at a correct solution even if the coefficient array is singular (so
that the formula X = A !B is invalid). This feature allows you to use =% = to solve under- and over-
determined systems of equations.

For an under-determined system (more variables than equations), the coefficient array will have fewer rows
than columns. To find a solution using =% =i

« Append enough rows of zeros to the bottom of your coeffieient array to make it square.

» Append corresponding rows of zeros to the constant array.

You can now use these arrays with the =% = keyword to find a solution to the original system.
For an overdetermined system (more equations than variables), the coefficient array will have fewer columns
than rows, To find a solution using =% =:

» Append enough columns of zeros on the right of your coefficient array to make it square.

» Be sure that your result array is dimensioned to have at least as many rows as the new coefficient array
has columns.

» Add enough zeros on the bottom of your constant array to ensure conformability.

You can now use these arrays with the %% keyword to find a solution to the original system. Only those
elements in the result array that correspond to your original variables will be meaningful.

For both under- and overdeterminded systems the coefficient array is singular, so you should check the re-
sults returned by =% = to see if they satisfy the original equation.

If A is a complex type square matrix, then MAT C=IHY{A> and MAT X=%%5(A,B> use the same
techniques as above, with the arrays A and B replaced by equivalent real-type partitioned forms.

The == keyword can also be used for inverting a square matrix A. HAT X=34Y3Z A, B> will return
the inverse of A if B is chosen to be the identity matrix. This technique is more accurate and generally
faster than MAT X=1IHW A, but it requires more memory for its operation. (Refer to appendix B for
information about memory requirements).

Section 10

Solving f(x) = 0

Keywords

You can use the keywords in this section to help you determine the solutions or minima of equations of
from one to five real variables.

Throughout most of this section, the operation of these keywords will be described for a one-variable
function. Multi-variable functions are covered under the topic Nesting Rules.

The keyword FHECOT can be used from the keyboard or inside a program to find the value of x for
which f(x) is zero or a minimum, provided the keyboard line or program contains the definition of the
function.

The keywords FUWALUE and FGUESS are provided to help you use FHEDIT and to interpret its re-
sults. Since all three keywords are numeric-valued functions, they can be used alone or in combination
with other functions and variables to form numeric expressions. A fourth keyword, F AR, represents
the variable in the function being solved by FHEDOT, It also contains the most recent guess generated
by an executing FHREOOT.

FNROOT Function Root

FMREOOTCA,B,F2

where A, B, and F are real numeric expressions.

Seeks a real root of the function F, starting with the two guesses A and B. These guesses can be equal,
but if so, one is immediately perturbed.

Returns the first value found that is one of the following:

. An exact root of the specified function.

. An approximation to a root of the specified function, correct to 12 digits.

. An approximation to a local minimum of the absolute value of the specified function.

. In a region where the specified function is constant.

. +9.99999999999E499 if the search for a root led beyond the range of representable numbers.

FNROOT (continued)

Not usable in CALC mode. Refer to page 97 for more information about FHRECOQT and CALC mode.

Refer to pages 97-99 for information about FHRIOT nesting and about the interactions between |
FHEOOT and and between FHEODT and user-defined functions.

FVAR Function Variable

Represents the variable x in f(x), the variable whose value FHEDIOT seeks.
Also returns the most current guess generated by a running FHEODIT.

Can be used in CALC mode. ;

FVALUE Function Value
Returns the value of the function F (the third argument of F+E I T) at the result generated by the most |

recently completed FHECLT. ‘
FURLLUE retains its value, even if your HP-71 is turned off, until FHEOZT is again completed.

Can be used in CALC mode. ‘

FGUESS Previous Estimate of Function Root

FGUESS ‘

Returns the next-to-last value tried as a solution in the most recently completed FHFEDOT statement.

FLUEZE retains its value, even if your HP-71 is turned off, until FHEDCDT is again executed.

Can be used in CALC mode.

Section 10: Solving fix) = 0 91

By checking the values of FUFLUE and FGUESES, you can interpret the result of FHEOOT as follows:

e If FUALUE = 0, the result of FHEDOT is an exact root and the result of FEUESS will be a
number close to the root.

¢ If the result of FHRETOT and the result of FZUESS differ only in the twelfth significant digit, and

FUHLUE and FCFEZUESE » have opposite signs, these two numbers surround the exact root.
¢ If the result of FHEOOT and the result of FGLUESS differ, but FWHALIUE and the value of the
function at FGLUESS are equal, these results lie in a region where FHF is constant.
To solve an equation for a particular variable, use this procedure:
1. Write the equation to be solved in the form f(x) = 0.

2. Substitute the keyword F.'FiF everywhere for the variable you wish to solve for in the formula
defining f(x).

3. Use the defining formula for f(x) as the third argument for FHREDOT,

. Choose two initial guesses (which may be equal) and use these as the first two arguments for

FHREODT, Even if only one initial guess is used, use it for both A and B, since FHEQOT always
requires three arguments.

Examples

Solving x2 = 2 (FHREOOT, FUALLUE, FUAR)

The following six examples illustrate various ways FHFEOOT and FiA AR can be used to solve the equa-
tion x* = 2. Initial guesses of 1 and Z are used. The first and sixth examples show the solution.

Example One.

Input/Result

FHEOOTOL , 2, FYRAR"2-23 FHEODT can be used from the keyboard as well
as in a program.

1.414213582328

Example Two.

10 DISP FNROOT(COS(0),LOG2(4), The initial guesses can be expressions.
FVAR"2—2)

20 DISP ‘FVALUE =';FVALUE

Example Three.

10 DEF FNG=FVAR 2—2
20 DISP FNROOT(1,2,FNG)

30 DISP ‘FVALUE=";FVALUE

Example Four.
10 DEF FNF(X)=X"2—-2
20 DISP FNROOT(1,2,FNF(FVAR))

30 DISP ‘FVALUE=";FVALUE

Example Five.

10 DEF FNH

20 FNH=FVAR"2—2

30 END DEF

40 DISP FNROOT(1,2,FNH)
50 DISP ‘FVALUE=";FVALUE

Example Six.

10 DEF FNJ(X)
20 FNJ=X"2—2

30 END DEF

40 DEF FNF(X)=2%X

50 DISP FNROOT(1,FNF(1),FNJ(FVAR))

60 DISP ‘FVALUE =';FVALUE

Input/Result
RUN

1.41421356238

FURLLUE = |A8806E0EZ

e R S G O

The third argument of FHEIOT can be an
expression or a reference to a user-defined
function.

FUHE can appear in the user-defined function,
as above, or in the third argument of FHEDIOT,

The user-defined function can consist of one or
several lines.

The first or second arguments of FHEITean
be references to user-defined functions.

The solution for x2 = 2.

Section 10: Solving fix) = 0 93

Solving log (x) = e/x (FHEOOT, FUYALUE, FUAR, FGUESS

To solve log(x) = e/x, we first write the equation in the form f(x) = 0. This can be done by subtracting
¢/x from both sides of the equation, yielding log(x) — e/x = 0. We can rewrite this in the equivalent
but slightly more convenient form x log(x) — e = 0. Since the left-hand side of this equation is un-
defined for x <= 0, and we can’t guarantee that the search for a root will not venture into this region,
we will consider instead the equation |x| log|x| — e = 0. This equation has exactly the same positive
solution(s) as the first equation, but this equation makes sense for both positive and negative (but non-
zero) numbers. The program below includes a user-defined function that computes the left-hand side of
this equation, and uses FHREOOT to find a solution of the equation.

10 STD

20 DEF FNF(X) This user-defined function computes the left-
hand side of the equation.

30 FNF=ABS(X)*LOG(ABS(X))—EXP(1)

40 END DEF

50 INPUT A,B These will be the initial guesses.
60 R=FNROOT(A,B,FNF(FVAR))

70 DISP ‘R =';R

80 DISP ‘FNF(R) =';FVALUE

90 DISP 'FGUESS=";FGUESS

To use the program we must decide on initial guesses. Although the initial guesses need not be in
increasing order, or even distinct, a choice of initial guesses that surround a root will produce results
more quickly in general. Noting that if |FU/AR | <1 then FHF CFU AR » will be negative and if FY/AE is
large (say, 100) then FHF FUAR will be positive, we can choose .5 and 100 for our initial guesses.

Key in the program and it, and when prompted with % respond with . % . 1% [END LINE], which
supplies the initial guesses. The computer will then display

Since FHF CF» = #, the value given is an exact root for FHF.

94 Section 10: Solving f{x) 0

Additional Information

Choosing Initial Estimates

When you use FHECOT to find roots of equations, the initial estimates determine where the search for
a root will begin. If the two estimates surround an odd number of roots (signified by their function
values having opposite signs), then FHE DT will find a root between the estimates quite rapidly. If the
function values at the two estimates do not differ in sign, then FHEDIT must search for a region
where a root lies. Selecting initial estimates as near a root as possible will tend to speed up this search.
If you merely want to explore the behavior of the function near the initial etimates (such as to deter-
mine if there are any roots or extreme points nearby), then specify any estimates you like.

Another thing to consider is the range in which the equation is meaningful. In solving f(x) = 0, the
variable x may only have a limited range in which it is conceptually meaningful as a solution. In this
case, it is reasonable to choose initial estimates within this range. Frequently an equation that is ap-
plicable to a real problem has, in addition to the desired solution, other roots that are physically
meaningless. These usually occur because the equation being analyzed is appropriate only between
certain limits of the wvariable. You should recognize this restriction and interpret the results
accordingly.

Interpreting Results

FHEOOT always evaluates the function at the value returned, as described above. This enables you to
interpret the results. There are two possibilities: the value of the function at the value returned by
FHEDOT in close to 0; or the value of the function at the value returned by FHEIT is not close to 0.
It is up to you to decide how close is close enough to consider the value a root.

If the function value is too large, then the information returned by the keyword FZUEZE, together
with information already considered, is sufficient to determine the general behavior of the function in
the region. For example, suppose that FHFEOOT is used to find a root of a function—say, f(x)—and the
value returned is r. If |[FRLLUE| is too large to consider r a root, then there are several possibilities.

If FYALUE and f(FZUEZ3) have the same sign, then r is either an approximation to a local minimum
of |f(x)| or in a region where the graph of f(x) is horizontal.

Section 10: Solving f(x) 0 95

| |
1

Case a Case b

In the two cases above, FHREOOT sees no tendency of f(x) to decrease in absolute value, and so to cross
the x-axis. It will then try to approximate a local extreme point, if any. This approximation can be
resolved to further precision by further executions of FHREOIT, using r and FEUESS as initial es-
timates. Repeated execution of FHREZOIT in this manner will converge to the extreme point in many
cases. The idea is that FHREOOT can be used to find local extreme points, or the information about
where the extreme points are can be used to re-direct the search elsewhere, in hope of finding a root.

When |FLUALLIE | is too large to consider r a root, another possibility is that FYALUE and f(FGUESS)
have different signs. In this case it would appear that there is a root between, because for the function
to change signs it should cross the x-axis. Typically, when FHE10T finds two guesses on opposite sides
of the x-axis, it only stops after it has resolved them to two consecutive machine numbers. In this case
there is no machine representable number between r and FGUE = %, Thus, the behavior of the function
cannot be determined between r and F=UEZ =, To interpret such results, you should be aware of these

situations.

f-/’ ~ i
rr ~ /

In case 1, r and FZUESS are the best approximations to the root that are representable on the ma-
chine. Case 2 looks exactly the same to FHECOOT, but there is no root—there is a jump discontinuity
instead. In case 3 there is a pole, which can look like a root if a guess on each side of the pole is found.
FHEDOT returns information in FGUESS and the FURALLUE to help you isolate situations where
convergence is to a pole.

Decreasing Execution Time

The exponent range of your HP-71 is =499 (except when TEAF LUHF 3 = 2, which effectively extends
the negative exponent range to —510). This allows for sensitive observation of the behavior of a func-
tion, even very close to a root. FHEDOOT takes advantage of this dynamic range by not accepting a
guess as a root until the function value underflows, is zero, or two consecutive machine representable
numbers that bracket a root are found. The cost of this precision is that, occasionally, it may take quite
a while to obtain such precision. If this high degree of sensitivity is not required, then you may wish to
set a smaller tolerance. For example, you may only need to know a place where the function is less than
1E—20. This is accomplished in your function definition by checking the value of the function before
assigning it to the function variable and setting the function variable to zero if the computed value is
smaller than the desired tolerance. For example, suppose you wanted to find any root of f(x) = x* and
|[f(x)| <= 1E—32 is acceptable as a root. Here is a program you can use.

10 STD

20 DEF FNF(X) Multiline function definition of f(x) = x*

30 F=X"4

40 IF F<<=1.E—32 THEN FNF=0 ELSE Checks error tolerance and sets the function

FNF=F value accordingly. i

50 END DEF

60 DISP FNROOT(2,3,FNF(FVAR)) Computes and displays the root.

70 DISP FVALUE Displays the function value at the root.
Input/Result
RUN

4
i
fa
Ja
I
L

In this example, if the tolerance technique were not used, execution would last much longer. This is
because the computed function will not underflow until x is very small, since the root is at zero and the
distribution of machine-representable numbers is very dense close to zero. So FHEOIOT has a lot of
guesses to try before finding one it can accept as a root.

-

tion 10: Solving f(x) 0 97
4 An alternate approach to decreasing execution time is to translate the function so that the root is not
v so near zero, compute the root of the translated function, then translate the root back. This will de-
1. crease the time to find roots of certain functions with roots close to zero, but will generally decrease
- the accuracy of the roots found. Here is a sample program for f(x) = x*.
10 STD
20 DEF FNF(X)=(X—1)"4 This is x* translated by 1.
s 30 R=FNROOT(3,4,FNF(FVAR)) Computes the root.
c‘— 40 DISP R—1 Translates the root back and displays the root
i and function value.
le 50 DISP FVALUE
te
to Finally, there is a technique that may improve the speed and accuracy of FHREOIOT. Any equation is
n typically one of an infinite family of equivalent equations with the same roots. However, some may be
re easier to solve than others. For example, the two equations f(x) = 0 and exp(f(x)) — 1 = 0 have the
is same real roots, but one is almost always easier to solve, When f(x) = x! — 6x — 1, the first is easier;
d but when f(x) = In(x* — 6x —1), then the second is easier. While FHF 3T has been designed to
provide accurate results for a wide range of problems, it is worthwhile to be aware of such possibilities.
Suspending FHEDDT With [ATTN
If none of the arguments of F#F 7T contain multi-line user-defined function calls, pressing will
not terminate the action of FHEDCDT until intermediate results are saved. In particular, FHEDIOT will
return and save the current F4'FF as though it were a root, it will save the previous guess as FiZLIES S,
and it will save the value of f(x) at the current F./fiF as the value of FUWALLUE. Only then will the
action of FHEDOT stop.
if, on the other hand, there are one or more multi-line user-defined functions as arguments for
FHEDOT (that is, if the calculation of FHECOT involves several BASIC program lines), will be
ignored until a multi-line user-defined function is called. Execution will then halt at a I'ne of one of the
user-defined functions. This gives you the ability to examine relevent values, such as the current value
of FI/AE, then continue the execution of FHFEOOT if you wish.
In addition, if there are multi-line user-defined functions as arguments for F 07T, then fatal errors
within the user-defined function do not destroy the FHFEIDT environment, giving you the exact same
correct and continue capability as with any other HP-71 call to multi-line user-defined functions.
CALC Mode
hl: You cannot execute FHEDDT directly or indirectly in CALC mode. For instance, suppose your current
| file contains a single-line user-defined function F HiF whose definition contains an FH=I0T keyword. If
of i -
you attempt to execute FHF in CALC mode, an error will result.

T

98 Section 10: Solving fix) = 0

Nesting Rules

If the third argument F of FHF DT defines a formula whose evaluation encounters another FHEOOT
keyword, we say that the two FHREZIOT keywords are nested. Up to five FHROIOT keywords can be
nested in this way.

As an example of FHFI0T nesting, consider the following program that solves f(x,y) = x* + y* — 2x
— 2y + 2 for x and .

10 STD
20 DEF FNF(X,Y)=X"2+Y"2—2%X—2%Y+2 Defines the function whose solution is sought.
30 DEF FNG(X) Lines 30 through 60 define a one variable
40 R=FNROOT(—4,4 FNF(X,FVAR)) function f(x) that receives a fixed x value (F'./AF)
50 FNG=FVALUE from line 70.
60 END DEF
70 DISP FNROOT(—3,3,FNG(FVAR));R If this FHEDDT function receives a nonzero
result from line 50, it selects another x value for
the FHEOOT in line 40 to try. If it receives a
zero result, a solution for f(x,y) is found.
Input/Result
RUN
1 L S599995353999 The x and y values returned by the FHEDOT
function in line 70. The x value is displayed on
the left.

The closest FHEOOT comes to the true y value, one, is . 3233323325 %% since these x and y values
satisfy the objective of FHE 1T, This objective is to find x and y values for which the computed value
of f(x,y) is zero.

FURLUE [ENDLINE

These values for x and v when used in f(x,y) give
£ as the result.

o
o

Section 10: Solving f(x) 0 99

A common use for FHFEOOT nesting is determining minima. To demonstrate this application, we’ll
modify the above function f(x,y) by adding one to the expression, thereby ensuring that the function
has no solution, since the paraboloid represented by the modified function no longer intersects the xy
plane. The only program modification is in line 20:

20 DEF FNF(X,Y)=X"2+4Y"2 —2%X —2%Y+3

All other program lines are unchanged.

The earlier nested FHEIOT program required about 20 seconds to reach a solution. Since FHEOOT
takes special care to make sure a true minimum is found, the modified program requires about 3V
minutes to find and display the x and y values whose use in f(x,y) result in a function minimum.

Input/Result
RUN
1. 88800191232 1, 0666 The x and y values that give a minimum for the
B1dddd modified function.
FURLUE Displays the value given by the modified func-
tion using these x and y values.
1

There is no need to wait the full 3%z minutes for a result. As explained on page 97, you can suspend an
executing FHREOOT function and then display interim results. If two consecutive inspections of interim
results show insignificant change, you might wish to accept them as having satisfactory accuracy.

Use of User-Defined Functions

If the third argument of an FHEOCT function evaluates any user-defined function, then you must
execute the FHREOOT function as a program statement, not from the keyboard. Also, if FHEOOT is
suspended while executing, you cannot execute a user-defined function from the keyboard, in either
BASIC or CALC mode.

Section 11

Numerical Integration

Keywords

You can use the keywords in this section to evaluate the integral of a function of from one to five
variables between definite limits to an accuracy of your choosing.

Throughout most of this section, the operation of these keywords will be described for a one-variable
function. Multi-variable functions are covered under the topic Nesting Rules - Volume Integration,
pages 109-110.

The keyword IHTEZREFAL can be used from the keyboard or inside a program to calculate the integral
of the function, provided the keyboard line or program contains the function definition.

The keywords IECQLIMD and IWALLE give you additional flexibility in the evaluation of the integrals.
IMTEGRAL, IEOUHD, and IWALLE are numeric-valued, so they can be used alone or in combination
with other functions and variables to form numeric expressions. A fourth keyword, I'/AF, represents
the variable (or one of the variables) of integration in the function being integrated by THTEGERL. It
also contains the most recent sampling point used by an executing IHTEGRHAL.

INTEGRAL Definite Integral

IHNTEGERLCA,B,E.F2

where A, B, E, and F are real numeric expressions.

Returns an approximation to the integral from A to B of F. The relative error E (rounded to the range 1E-
12<=E<=1) indicates the accuracy of F and is used to calculate the acceptable error in the

approximation of the integral.

This integral approximation can be:
« An approximation to the integral that is as accurate as the relative error E would allow.
« The last of 16 approximations to the integral, which have sampled the integrand at 65535 points
without meeting the convergence criterion.

+ The best current approximation to the integral returned when is pressed and when F does
not call a multi-line user-defined function.

101

102 Section 11: Numerical Integration

INTEGRAL (continued)

| IHTEGRAL generates a sequence of increasingly accurate approximations to the definite integral. If
three successive approximations are within the acceptable error of each other—the first is close to the
second and the second is close to the third—they are considered to have converged and the third
approximation is returned as the value of the definite integral. If a total of 16 approximations are cal-
culated without converging, the sixteenth is returned.

| Not usable in CALC mode. Refer to page 111 for more information about IHTEZF AL and CALC mode.

| Refer to pages 109-111 for information about IHTEGFEHAL nesting (volume integration) and about the
interactions between IHTECGRAL and and between IMTEGRFAL and user-defined functions.

IVAR Integration Variable

TUHE

Represents the variable of integration in the formula defining F, the last argument of IHTECRERAL.

Also contains the most recent sampling point used by a running IHTEGEHL.

Can be used in CALC mode.

IVALUE Last Result of INTEGRAL

IVALUE

Returns the last approximation computed by the IHTEGZREFL keyword. If the key was pressed
or the operation of [HTELGREAL was otherwise interrupted, then IVWHLUE returns the value of the
current approximation to the integral. Otherwise, I HLLUE returns the same value that THTEGREAL
last returned.

IWHLLUE retains its value (even if your HP-71 is turned off) until another IHTEGEHL is computed.

Can be used in CALC mode.

Section 11: Numerical Integration 103

IBOUND Error Approximation for INTEGRAL

IBCUHD

Returns the final absolute error estimate for the definite integral most recently computed by
INTEGREAL.
» A positive value for IE0LIMHD means that the approximations converged.
» A negative value for IEOLUHMHD means that the approximations didn’'t converge, so that the value
returned by IHTEGZREHAL may not be representative of the true value.

Like IWALUE, TEBOUHD retains its value (even if the HP-71 is turned off) until another THTEGERL is
computed. Unlike IWALLE, the value of TECQLIMD has no relation to the current approximation to the
integral if the operation of THTEGRHAL is interrupted.

Can be used in CALC mode.

To integrate a function between bounds, you can follow these steps:

1. Write down an expression that represents the function to be integrated.

2. Substitute the keyword I/AF everywhere in the expression for the variable of integration.
3. Use this expression as the fourth argument F of IHTEGEAL,.
4

. Use the lower and upper bounds of integration as the first and second arguments A and B of
IHTEGREAL, respectively.

Choose a value for the third argument £ of IHTEGRAL that represents an estimate of the relative
error in the computation of the integrand. Any value for E is always rounded to the range
[IE—12,1]. Thus, E should satisfy, after rounding

[TRUE INTEGRAND — COMPUTED INTEGRAND| __
ICOMPUTED INTEGRAND| -

on

Since IMTEZEAL has no way of knowing what the true value of the function is intended to be,
only you can supply this estimate. For many purely mathematical functions (%1 H, E=F, poly-
nomials, etc.) and modest limits of integration, full 12 digit accuracy can be returned so that a
value for E around 1E-12 should be suitable.

104 Section 11: Numerical Integration

The operation of IHMTECGERL and IEQUMD can be described more precisely as follows.

1. Based on a relative error of E for the specified function, the computer calculates an error tolerance
for the integral of the specified function. If f(X) is the “true” function that F approximates, then
choose E such that

|F — X))
IFl

for all X in the interval of integration. Your input for K is rounded to the range 1IE—12<E=<1.

ol

For example, if F is derived from experimental data with N significant digits, let E equal 10N,

2. The computer calculates a sequence of approximations [}, to the integral of the specified function.
The difference between successive approximations is compared to the error tolerance for the
integral.

3. A value for the integral is returned when

» The approximations I have converged. Convergence is determined using J;, defined as the kth
approximation to the integral of E«F| over the same interval of integration. «J; represents the
error inherent in the computation of [;.

The approximations I, are judged to have converged to I, if
= Tp—a|<dy

for k = n — 1 and & = n. The value of [, is then retnrned by IHTEGRAL; a positive value for
the error estimate will be returned by I B,
or when

= The computer has evaluated [; through I;; but the convergence criterion is still not met. I is
then returned by IHTECGREFAL; a negative value for the error estimate will be returned by
IEOUND,

Examples

Section 11: Numerical Integration 105

Integrating f(x) = x2—2 (IMTEGRAL, IWAR)

The following six examples illustrate various ways I HTEGRERL and IUEFE can be used to integrate the
function x> — 2 from 1 to 2. The first and sixth examples show the solution.

Example One.

Input/Result

INTEGRALC1,2, 1E-11, INAR™2-23

Example Two.

10 DISP INTEGRAL(COS(0),LOG2(4),
1E—11,IVAR*2—2)

Example Three.

10 DEF FNG=IVAR"2—-2
20 DISP INTEGRAL(1,2,1E—11,FNG)

Example Four.

10 DEF FNF(X)=X"2—2
20 DISP INTEGRAL(1,2,1E—11,FNF(IVAR))

Example Five.

10 DEF FNH

20 FNH=IVAR"2—2

30 END DEF

40 DISP INTEGRAL(1,2,1E—11,FNH)

IMTEGEAL can be used from the keyboard as
well as in a program.

The limits of integration can be expressions.

The fourth argument of IHTEGEAL can be an
expression or a reference to a user-defined
function.

TWARE can appear in the user-defined function,
as above, or in the fourth argument of
THTEGREAL.

The user-defined function can consist of one or
several lines.

Example Six.

10 DEF FNJ(X)
20 FNJ=X"2—-2

30 END DEF
40 DEF FNF (X)=2*X
50 DISP INTEGRAL(1,FNF(1),1E—11, The first, second or third arguments of
FNJ(IVAR)) IMTEGREHL can be references to user-defined
functions.
60 DISP IBOUND
Input/Result
RUN
SO SDEIEBTET The resulting integral.
L THZ4ITIESTRIE~LE The absolute error estimate for the resulting
integral. Since it’s positive, the approximations
converged.

Integrating f(x) = e*—2 (IMTEGREAL, IVAR, IVALIUE)

This example features 1%'ALLE. This function returns the most recent integration approximation and
is updated even while the execution of IHTEGRAL is in progress. After the execution of [HTEGRAL
is completed, TWVALLIE returns the same value returned by IHTEGRAL.

You can watch the progress of integral approximations by displaying I '/fILUE during the execution of
[HTEGREAL. This is demonstrated by the following program, which integrates the function e*—2 from
one to three. The error bound used is 1E-12.

10 Y=IVALUE Y = value of I'/ALUE when program starts
(assumes IWHLIUES is set from a previous
INTEGRAL).

20 DEF FNF(X)
30 IF IVALUE=Y THEN 50 Displays I\ ALUE only if it has changed.

Section 11: Numerical Integration 107

40 DISP IVALUE @ Y=IVALUE
50 FNF=EXP(X)—2
60 END DEF '

70 DISP INTEGRAL(1,3,.000000000001,
FNF(IVAR))

Input/Result
RUN

First displayed value of I'/HLLE.

Last displayed value of IVHLLIE.
Value of IHTEGREAL,

Integrating fx) = exp(x3+4x2+x+1) (IHTEGREAL, VAR, IBOUHD,
b IVALUE)

To find the integral from 0 to 1 of the function
: flx) = exp(x® + 422 + x + 1)

you can use the following program.

10 DEF FNF(X)=EXP(X"3+ 4*%X"2+X+1) The user-defined function FHF.

20 INPUT E Gets the relative error we expect in FHF as
compared with f.

30 DISP ‘Integrating’

40 X=INTEGRAL(0,1,E,FNF(IVAR))
50 BEEP

60 DISP ‘Integral =";X

70 DISP ‘The approx. error =’

80 DISP IBOUND

n 11

Numerical Integration

After you key in the program, run it using the following keystrokes.

Input/Result
RUN
T B The prompt to enter the relative error of the
function.
PE~5 Although our function is accurate to one part in

1072, we can say that it is less accurate (in this
case, one part in 10°) so that the computation
will finish more quickly.

Intearating

The value of the integral is 104.2911 + (1.04 x
1079),

1684, 291837228 ITWHLUE gives the value of the last computed
integral.

Integrating C(T) = a + bT (IHTEGRAL, IVAR, IBOUND)

You can use IHTEGEHAL to compute the amount of heat required to heat one gram of gas at a constant
volume from one temperature to another. The amount of heat needed, @, is given by the formula

T
Q- [‘cmar

where C(T) is the specific heat of the gas as a function of temperature, T'1 is the starting temperature,
and T2 is the final temperature.

If C(T) = a + bT, where a and b are experimentally determined to be a = 1.023E 2 and b = 2.384E *
with four significant digits, then we can compute the relative error of C(T) to be approximately 5E —4.
The program below prompts you for the initial and final temperature in degrees Kelvin and then com-
putes the heat needed to raise the temperature of the gas from the initial to the final temperature.

Section 11: Numerical Integration 109

10 DEF FNC(T)=.01023+.02384%T The user-defined function that calculates the
specific heat.

20 INPUT ‘Initial, final T (K)?;T1,T2

30 DISP ‘Integrating’

40 Q=INTEGRAL(T1,T2,.0005,FNC(IVAR)) Computes the integral.

50 DISP ‘Heat needed =";Q;'+ —";IBOUND Displays the answer and the approximate error.

To find the heat needed to raise the temperature from 300°K to 310°K, type in the program and use the
following keystrokes.

Input/Result
RUN

Initial, final T (EXTHE

JEE, 2158 | ENDLINE

i
i
3%
1T
B
i
-]
Il
Lan)
o
B
sl

Additional Information

Nesting Rules—Volume Integration

If the fourth argument F of IHTECGEAL defines a formula whose evaluation encounters another
INTEGEAL keyword, we say the two IMTEGREAL keywords are nested. Up to five THTEGRAL
keywords can be nested in this way. A program that nests two IHMTEZREFAL keywords can determine
volumes.

As an example of THTECZRAL nesting, consider the following program that integrates f(x,y), where
flx,y) = x* + 2y, over the square 0 < x < 1, 0 <y < 1. That is, the program evaluates

I [e vy

10 DEF FNF(X,Y)=X"2+42%Y

20 DEF FNG(X)=INTEGRAL(0,1,1E—86,
FNF(X,IVAR))

30 INTEGRAL(0,1,1E—6,FNG(IVAR))

Input/Result
RUN

IEQUNHD

1,823 1781EVIZE=%

Defines the function whose integral is sought.

For each value of :, integrates a slice parallel to
the y-axis.

Sums all of the contributions from the slices
parallel to the y-axis.

The volume returned by the THTEGRAL func-
tion in line 30.

The answer is exact even though IEZURD only
predicts six correct digits.

The following example demonstrates the use of IHTECZRAL to evaluate the integral

Input/Result

FADIAHS
INTEGRALC(®,PI 2,1E-3
INTEGRAL (B, IVAR, 1E-3,
+ [END LINE]

SIHCIVAREY

i
1
A
11
KA}
kA
—t
iy
Ty
Ty
e}

TEOUHD (END LINE

i
Ty
i
O
n
fun]
ed
[l
0
=
[
[1]
"
i
$u

I = [} sin(x) dxdy

Note that the first IUAE is the integration vari-
able of the outside IHTEGREFL,

The true answer is #/2 — 1 (approximately
.H707963268).

Suspending IHTECGREAL With

If none of the arguments of IHTEZEFL contain multi-line user-defined function calls, pressing
will not terminate the action of IMTEGERAL until intermediate values are saved. In particular,
IHTEGRAL will save and return the current I ALUE as though it were the integral, and will make
negative the current value of IECUIHD, Only then will the action of IHTEZREAL stop.

If, on the other hand, there are one or more multi-line user-defined functions as arguments for
IHTEGRAL (that is, if the calculation of IHTEGRAL involves several BASIC program lines), [ATTN
will be ignored until a multi-line user-defined function is called. Execution will then halt at a line of
one of the user-defined functions. This gives you the ability to examine relevent values, such as the
current value of IV ALLUE, then continue the execution of IHTEGEARL if you wish.

In addition, if there are multi-line user-defined functions as arguments for IHTECGEFL, then fatal
errors within the user-defined function do not destroy the IHTEGFHL environment, giving you the

exact same correct and continue capability as with any other HP-71 call to multi-line user-defined
functions.

CALC Mode

You cannot execute IHTEGEAL directly or indirectly in CALC mode. For instance, suppose your cur-
rent file contains a single-line user-defined function FHF whose definition contains an IMTEGRERAL
keyword. If vou attempt to execute FHF from CALC mode, an error will result.

Use of User-Defined Functions

If the fourth argument of an IHTEZREAL function evaluates any user-defined function, then you must
execute the IHTEGRAL function as a program statement, not from the keyboard. Also, if INTEGEAL

is suspended while executing, you cannot execute a user-defined function from the keyboard, in either
BASIC or CALC mode.

Overview of Numerical Integration

Numerical integration schemes generally sample the function to be integrated at a number of points in
the interval of integration. The calculated integral is simply a weighted average of the function values
at these sample points. Since a definite integral is really an average value of a function over an infinite
number of points, numerical integration can produce accurate results only when the points sampled are
truly representative of the function’s behavior.

If the sample points are close together and the function does not change rapidly between two consec-
utive sample points, then the numerical integration will give reliable results. On the other hand,
numerical integration will not produce good answers on a function whose values vary wildly over a
domain that is small in comparison with the region of integration. Other errors that can affect the
result of a numerical integration include the round-off errors typical of any floating point computation
and errors in the procedure that computes the function to be integrated.

Handling Numerical Error

The IHTEGRAL keyword requires specification of an error tolerance E for its operation. This error
tolerance is taken to be the relative error of the computed function as compared with the “true” func-
tion to be integrated. The error tolerance is used to define a ribbon around the computed function and
the “true” function should then lie inside this ribbon. If the “true” function is f(x) and the computed
function is F(x), then

F(x) — Error (x) < f(x) < F(x) + Error (x)

where Error (x) is half the width of the ribbon at x.

We can then conclude that

b b b
J;f(x} dx ~ f F(x) dxij; Error (x) dx

where the third integral is just half the area of the ribbon—that is, integrating the computed function
instead of the actual function can introduce an error no greater than half the area of the ribbon,
IHTEZREAL estimates this error while computing the integral; IEC0UMHD gives you access to the
estimate.

L

mn

e

Choosing the Error Tolerance

The accuracy of the computed function depends on three factors:

, The accuracy of empirical constants in the function.

, The degree to which the function may accurately describe a physical situation.

. The round-off error introduced when the function is computed.

Functions like cos(x — sinx) are purely mathematical functions. This means that the functions contain
no empirical constants, and neither the variables nor the limits of integration represent any actual
physical quantities. For such functions you can specify as small an error tolerance as desired, provided
the function is calculated within that error tolerance (despite round-off) by the BASIC function. Of
course, due to the trade-off between accuracy and computation time, you may choose not to specify the
smallest possible error tolerance. Any specified error tolerance is rounded to the range [IE—12, 1].

When the integrand relates to an actual physical situation, there are additional considerations. In these
cases, you must ask yourself whether the accuracy you would like in the computed integral is justified
by the accuracy of the integrand. For example, if the function contains empirical constants that
approximate the actual constants to three digits, then it may not make sense to specify an error tol-
erance smaller than 1E—3.

An equally important consideration, however, is that nearly every function relating to a physical situa-
tion is inherently inaccurate because it is only a mathematical model of an actual process or event. A
mathematical model is typically an approximation that ignores the effects of factors judged to be in-
significant in comparison with the factors in the model.

For example, the equation s = s’ — (.5)gt?, which gives the height s of a falling body when dropped
from an initial height s’, ignores the variation with altitude of g, the acceleration due to gravity.
Mathematical descriptions of the physical world can provide results of only limited accuracy. If you
calculated an integral with an accuracy greater than your model can support, then you would not be
justified in using the calculated value to its full (apparent) accuracy. It makes sense to supply an error
tolerance that reflects any inaccuracies in the function, or the INTEGRAL keyword will waste time
computing to a level of accuracy that may be meaningless. Further, the value returned by IEQLIHD
may not be significant.

If f(x) is a function relating to a physical situation, its inaccuracy due to round-off is typically very
small compared to the inaccuracy in modelling the situation. If f(x) is a purely mathematical function,
then its accuracy is limited only by round-off error. Precisely determining the relative error in the
computation of such a function generally requires a complicated analysis. In practice, its effects are
determined through experience rather than analysis.

Handling Difficult Integrals

Integrating on Subintervals. A function whose values change substantially with small changes in
its argument will likely require many more points than one whose values change only slightly. This is
because the behavior of the function must be adequately represented by the sampling. If a function is
changing more rapidly in some subintervals of the interval of integration than in others, you can sub-
divide the interval and integrate the function separately on the smaller intervals. Then the integral
over the whole interval is the sum of the integrals over all the subintervals, and the error of the integral
is the sum of the errors of the integrals over the subintervals.

The algorithm used by IHTEGFEAL makes a reasonable decision during execution of how many points
to sample, based on the behavior of the specified integrand on a particular interval. When the interval
of integration is split up, each subinterval can be handled according to the function behavior on that
subinterval alone. This results in greater speed and precision.

For example, to integrate f(x) = (x2 + 1E—12)" from x = —3 to x = 5 using an error tolerance of
1E—12, it speeds up execution to subdivide the interval at x = 0, where f(x) has a sharp bend in its
graph. Because f(x) is very smooth on the subintervals (—3, 0) and (0, 5), the integrals over these
subintervals can be evaluated quickly.

5 0 5
[0, fw de = [fa) ds + [) dx
The following program computes this integral on the two subintervals and then combines the results.

10 DEF FNF(X)=SQR(X*X+1E—12) We will use % rather than =2 because =%
is more accurate. An analogous situation generally
occurs for any integer power of a variable.

20 I=INTEGRAL(—3,0,1E—12,FNF(IVAR)) Integrate over the first subinterval.

30 E=IBOUND Save the error to add in later.

40 DISP “Integral =",

50 DISP I+INTEGRAL(0,5,1E—12,FNF(IVAR)) The sum of the first and second integrals.

60 DISP “Error =",E + IBOUND Compute the relative error by adding the two
errors together.

You can run this program by keying it in and then pressing [RUN]. The following will then appear in
the display.

Integral = 17

Error = ,00BHGEE000E1Y

Section 11: Numerical Integration 115

When the interval is subdivided, THTEZRFL computes the answer in a few seconds. Without subdivid-
ing the interval, execution may take a long time.

Subdividing the interval of integration is also useful for functions with a singularity in the interval.

The singularity may consist of one or more points where the function is undefined or has a sharp
corner point.

For example, the integral

2 dx 5 1 dx 2 dx
J(; x - 1 may be split into J; J;

(x — 1) * (x — 1)°

to avoid evaluating the function at x = 1, where it is undefined. You can now integrate the function on

each subinterval because x = 1 is an endpoint of each subinterval, and THTEGRAL does not sample at
an endpoint.

Similarly, the function \/|x — 1|, has a sharp corner point at x = 1.

Vix — 1|

Suppose you need to integrate this function from 0 to 2. You can increase the speed and accuracy of the
computation by integrating separately on the subintervals (0, 1) and (1, 2), because thLe function is
smooth on each of these subintervals.

Transformation of Variables. A second method of handling difficult integrands is by transforming
the variable. When the variable in a definite integral is transformed, the resulting definite integral may
be easier to compute numerically. Consider the integral

fol (T\/?l— 1)dx.

In x

The derivative of the integrand approaches infinity as x approaches 0, as shown on the left below. The

substitution x = wu? stretches the x-axis and causes the function to be better behaved, as shown on the
right.

116 Section 11: Numerical Integration

0.1+
01— \ 2u® _u
' ‘ u +)y —1) In u
\ Vi1
“\\ x — 1 In x
N\ e P il ™
4 LN rd o
\\ _,// \\
R /
\ / \
. /
00— \I X 0 \‘| u
0 0 1

You can now evaluate the integral that results from this substitution:

J‘l (2u? u)
— du
0 (v + 1w — 1) In u
(Do not replace (1 + 1)(u — 1) with u? — 1; as u approaches 1, u> — 1 loses half of its digits to
roundoff, vielding a final result that is too large.)

As a second case requiring substitution, consider the following function. Its graph has a long tail
stretching much farther than the main body (where most of the area is). |

| 4 | 1
' \ 2 + 10710

n

Section 11: Numerical Integration 117

Although a very thin tail may be truncated without greatly degrading accuracy, this function has too
wide a tail to ignore when calculating
J‘f dx
oA 1057

if ¢ is large. In general, the compressing substitution x = b tan u maps the entire real line into (—m/2,
7/2) and maps subsets of the real line into subsets of (—x/2, #/2). For b = 1E—5 the substitution
becomes x = 1E—5 tan u and the integral becomes

tan '(¢/b)
10°
J‘1'.zan_l(—l‘,"b)
which is readily computed for very large t.

This compressing substitution is also a standard way to deal with infinite intervals. For example,

o0 dx 5 /2
—_— = 10
f-oo 2+ 10710 f f—Tr/Z o

In some cases the tail can be chopped off. Consider the function exp (—x2). This functions underflows
(that is, gives a result of zero in machine arithmetic) for x > 34. Thus,

oo 2 34 o
f e “dx = f 2 Tidx
0 0

Therefore, when dealing with infinite integrals you can cut off the tail if it is insignificant, but you
should use a compressing substitution if it is not.

118 Section 11: Numerical Integration

About the Algorithm

The Math Pac uses a Romberg method for accumulating the value of an integral. Several refinements
make it more effective. Instead of equally spaced samples, which can introduce a kind of resonance or
aliasing that produces misleading results when the integrand is periodic, IHTEGRFL uses samples
that are spaced nonuniformly. Their spacing can be demonstrated by substituting

R L, o b
L 5 u 3 u’ into J; flx)dx
and then spacing u uniformly. Besides suppressing resonance, the substitution has two additional bene-
fits. First, no sample need be taken from either endpoint of the interval of integration unless the inter-
val is so small that points in the interval round to an endpoint. As a result, an integral like

fl sin x iy
i} X

will not be interrupted by division by zero at an endpoint. Second, I HTEFFL can integrate functions
whose slope is infinite at an endpoint. Such functions are encountered when calculating the area en-
closed by a smooth closed curve like ¥ + f2(x) = R.

In addition, THTECGREFAL uses extended precision. Internally, sums are accumulated in 15-digit num-
bers. This allows thousands of samples to be accumulated, if necessary, without losing any more signifi-
cance to round-off than is lost within your function.

During the computation, IHTEGRAL generates a sequence of iterates that are increasingly accurate
estimates of the actual value of the integral. It also estimates the width of the error ribbon at each
iterate. I[HTEGEHAL stops only after three successive iterates are within the computed error of each
other or after 16 iterations have been performed without this criterion being met.

In the latter case the function will have been sampled at 65,535 points. The value returned by
I M will be the negative of the computed error to signify that the returned value of the
IHTEGRHAL is likely not within the error tolerance of the actual value. Typically, you should then split
up the interval of integration into smaller subintervals and integrate the function over each of the
subintervals. The integral over the original interval will then be the sum of the integrals over the
subintervals. In this way, up to 65,535 points can bhe sampled on each subinterval, thus computing the
integral to greater precision.

In summary, THTEZEAL has been designed to return reliable results rapidly and in a convenient,
easy-to-use fashion. The above theoretical considerations discuss problems with numerical integration
in general. The THTEGRAL keyword is capable of handling even difficult integrals with relative ease.

Section 12

Finding Roots of Polynomials

Keyword

‘The keyword in this section finds all solutions—both real and complex—of P(x) = 0, where P is a
polynomial of your choice with real coefficients. If P is a polynomial of degree n there will be n (not
‘necessarily distinct) solutions of this equation, so this keyword resembles an array operation in its
format.

To use this keyword to find the solutions of the equation P(x) = 0, where
P(x) = ax" + a,_ 12" 1 + ... + aix + aqq

first store the coefficients a,, a, 1, ..., 8 In a real-type array with n + 1 elements in all. They should
be stored in the order indicated above, with the coefficient of the highest power first and the constant
term last. Aside from the total number of elements in the array, which indicates to the Math Pac the
degree of the polynomial, the dimensions of the array are irrelevant. For example, the arrays

6
5
6 5 4 4
(6, 5, 4, 3, 2, 1], |4 3], and
3 21 3
2 A
2
1

all can represent the fifth degree polynomial
6x% + 5x* + 4x? + 3x% + 2x + L.

The array in which you wish the resulting roots to be stored must be complex type to accept complex
roots. If the polynomial whose roots are sought has degree N, and if the result array is a vector, it will
be redimensioned to have N elements. If the result array is a matrix, it will be redimensioned to have
N rows and one column.

The degree of the polynomial whose roots you can find is limited only by the amount of memory you
have available.

119

=

120 Section 12: Finding Roots of Polynomials

PROOT Roots of a Polynomial

MAT R=FEOOTCPX

' where P is a real vector or matrix with N + 1 elements, where N = degree of polynomial whose roots
are sought, and R is a complex vector or matrix.

If R is a vector, implicitly redimensions R to have N elements. If R is a matrix, implicitly redimensions R to
have N rows and one column. R will be assigned the (complex) values of the solutions of the equation
P(x) = 0 (where P is the polynomial of degree N whose coefficients are the values of the elements of P).

To halt operation, press twice.

Y

| Not usable in CALC mode.

Example
The following example finds all roots of the polynomial

5Z6 — 4525 4 225Z% — 42523 + 170Z2 + 370Z — 500

OFTIOM EASE 1 [ENDLINE

OImM .7+ [END LINE Creates real vector for coefficients.
COMPLE® EJ1&D) (ENDLINE Creates complex vector for roots.
MAT IHFUT A [ENDLINE
Reia? B
5, -45 ;225,425,178 378 ; ~588
END LINE
MAT BE=FROOTCA>» [ENDLINE First redimensions the vector B to have six ele-

ments, just large enough to contain the six (com-
plex) roots of the six-degree polynomial. Then
finds all roots and stores them in B.

Section 12: Finding Roots of Polynomials 121

MAT DISF E Displays all roots.

L

B Additional Information

There are several methods of gauging the accuracy of the calculated roots. The first method is to cal-
culate the value of the polynomial at the alleged root, and compare this value with zero. Although quite
straightforward in theory, this has a number of drawbacks in practice. It may easily happen that the
root calculated is the closest machine-representable number to a true root, but because the polynomial
has such a large value for its derivative at this root, the value of the polynomial at the calculated root is
very large. A simple example of this phenomenon is given by the polynomial 1E20x2 — 2E20. A true
root is \/ 2 ; a calculated root is 1.41421356237, which is the machine-representable number closest to
\/2. However, the value of the polynomial at this approximation to the square root of 2 is
—1,000,000,000, a number that seems very far from zero.

Another drawback of the above method is that because of the limited precision available in any numeri-
cal calculation, the roundoff errors that occur in the calculation of the polynomial value may com-
pletely eliminate the significance of the difference between the calculated value and zero. This is
especially true when the polynomial is of large degree, has coefficients widely varying in size, or has
roots of high multiplicity.

A second method of gauging the accuracy of the calculated roots is to attempt to reconstruct the poly-
nomial from these roots. If the reconstructed polynomial closely resembles the original, the roots are
then judged to be accurate. This technique is less sensitive to the problems that affect the polynomial
evaluation method. Of course, this method does not give information on the accuracy of an individual
root.

The program below asks you for a polynomial and calculates the roots of that polynomial using the
FROOT keyword. If you wish, the program will also calculate the reconstructed coefficients from the
cuiculated roots. In addition, if desired, the program will compute the value of the polynomial at either
a calculated root or any other real or complex value.

Lines 10 through 200 drive the program and use the FE 0T function to calculate the roots of the given
polynomial. Lines 210 through 250 comprise the subroutine that evaluates the polynomial at any real or
complex point. Horner’s method is used.

F

section 12: Finding Roots of lynomials

Lines 260 through 410 comprise the subroutine that reconstructs the coefficients from the calculated
roots. Starting with the polynomial 1, the subroutine successively multiplies the polynomial by the
linear factors (Z — R), where R is a calculated real root, or by the quadratic Z* — 2REPT(R) +
ABS(R)?, where R is a calculated complex root. (Note that CONJ(R) will also be a calculated root).

10 OPTION BASE 0 @ INTEGER D.E
@ DIM U$[4] @ DELAY 1 @ WIDTH 96

20 INPUT “DEGREE? ":D
30 DIM P(D),C(D) @ COMPLEX R(D—1)

40 DISP "ENTER COEFFICIENTS "
@ MAT INPUT P

50 DISP “WORKING..."
60 MAT R—=PROOT(P)

70 DISP “THE ROOTS ARE” (@ DELAY 8 @
MAT DISP R @ DELAY 1

80 U$S=KEY$ @ INPUT
“RECONSTRUCT? (Y/N) ";U$

90 IF UPRC$(U$)="Y" THEN GOSUB 260
ELSE 110

100 DISP “RCON COEFFICIENTS ARE" @
DELAY 8 @ MAT DISP C @ DELAY 1

110 US=KEY$ @ INPUT
“EVALUATION? (Y/N) ":U$
120 IF UPRC$(U$)#"Y" THEN 190

ELSE COMPLEX Z

130 INPUT “AT A ROOT? (Y/N) ";U$

140 IF UPRC$(US)#"Y" THEN INPUT
“VALUE? ";Z @ GOTO 160

[is the degree of the polynomial.

Array P will contain the coefficients of the
polynomial in the order given previously, array R
will contain the calculated roots, and array C
will contain the reconstructed coefficients.

Enter the coefficients. The leading coefficient
should be nonzero for the program to work
properly.

Calculates the roots and stores them in array R.

Displays the calculated roots. To continue the
program after each root is displayed, press

(END LINE].

If vou wish, the program will reconstruct the
coefficients from the calculated roots.

The subroutine starting at line 260 performs the
reconstruction and stores the reconstructed
coefficients in array C.

Displays the reconstructed coefficients. To
continue the program after each display, press

[END LINE].

If you wish, the program will evaluate the
polynomial at a root or at any other point.

The complex variable Z will hold the polynomial
value.

The point may be either real or complex.

W

150 DISP USING '#,“WHICH ROOT
(1..K,"y";D @ INPUT E
@ Z=R(E—1)

160 GOSUB 210 @ DISP “POLYNOMIAL
VALUE IS” @ DELAY 8 @ DISP Z @
DELAY 1

170 US=KEY$ @ INPUT
“ANOTHER VALUE? (Y/N) ";U$

180 IF UPRC$(US$)="“Y" THEN 130
190 INPUT “ANOTHER POLY? (Y/N) ";U$

200 IF UPRC$(U$)="Y" THEN 20 ELSE STOP
210 COMPLEX B @ B=P(0)

220 FOR K=1TO D

230 B=P(K)+ Z*B

240 NEXT K

250 Z=B (@ DESTROY B @ RETURN
260 DISP "WORKING..."”

270 MAT C=ZER @ C(D)=1

280 FOR L=1 TO D

290 IF IMPT(R(L—1))#0 THEN 340

300 FOR K=D—L TO D—1

310 C(K)=C(K+1)— C(KPKREPT(R(L— 1))

320 NEXT K

330 C(D)= — C(D)*REPT(R(L—1)) @ GOTO
400

340 REAL B @ B=REPT(R(L—1))"2
+IMPT(R(L—1))"2

350 FOR K=D—L—-1TO D—-2

Input the number of the root where you want
the polynomial evaluated.

The subroutine beginning at line 210 evaluates
the polynomial at the given point or root. This
value is then displayed. To continue, press

(ENDLINE].

The program will evaluate the polynomial again
if you wish.

You can choose to start the program over again
with a new polynomial.

The polynomial evaluation subroutine uses
Horner’s method.

This line begins the coefficient reconstruction
subroutine. Some rounding error may accumulate:
during reconstruction, so even if the roots are
exact, the reconstructed coefficients may not
exactly coincide with the original coefficients.

Creates polynomial 1 in array C.
We use each calculated root in turn.

Lines 300 through 330 multiply the current
reconstructed polynomial by a linear factor.

Lines 340 through 390 multiply the current
reconstructed polynomial by a quadratic factor.

124 Section 12: Finding Roots of Polynomials

360 C(K)=C(K+2)—2%REPT(R(L—1))

*C(K+1)+B*C(K)

370 NEXT K

380 C(D—1)= —2%REPT(R(L— 1)*C(K + 1)

+B*C(K)

390 C(D)=B*C(D) @ L=L+1 We increment L since we multiplied the
polynomial by both the complex root and its
complex conjugate.

400 NEXT L

410 MAT C=(P(0))*C @ DESTROY B The reconstructed polynomial has leading

@ RETURN coefficient 1 and so must be adjusted if the

original leading coefficient was not 1.
Example. If we wanted to find and evaluate the roots of the polynomial
B4 Ottt P L R

we would run the program using the following keystrokes.

Input/Result

RUN

EMTER COEFFICIEHTES

B &
T

o
i

1.1.1,1,1,1,1 [ENDLINE]

Section 12: Finding Roots of Polynomials 125

THE ROOTE ARE
AEEEE, -, 8T45ET912182 The display scrolls to display the imaginary part
of the first root.
(9]
L—; PREBRBREEREE; ~: 974 The real part of the first root.

QEFESE, 2749279 21EE The imaginary part of the second root.

£l
-, PEESPRSEEARE , BV49 The real part of the second root.

Display the last four roots in the same way. These displayed roots are:
Third root: « -,
Fourth root: ©~,

Fifth root: « . 523«

Sixth root: .
After the last root is displayed, continue the program by pressing [END LINE .

Input/Result

EECOMSTREUCTY &% H3 B Any response but % or i is interpreted as “no.”

WORKTIHG., ..

126 Section 12: Finding Roots of Polynomials

RCOM COEFFICIEHTS ARE

1 The coefficient of the x8 term.
i D R R e B e i The coefficient of the x term.

Display the remaining five coefficients in the same way. These displayed coefficients are:
Coefficient of x* term: 1

Coefficient of x* term: , 233233230353

Coefficient of x* term: 1

Coefficient of x! term: . 3533533539533

Coefficient of x” term: 1

After the last coefficient is displayed, continue the program by pressing [END LINE].

Input/Result

EVALURATIONT {(Y-H) H

AT A ROOT? {Y«H) A

' [END LINE

MHICH ROOT <1...527 @

1 [END LINE]

FOLYHOMIAL

VALUE IS

C8 -, SEE—1.33

AHOTHER WALUE?D ¢

Yob

Y | END LINE

AT A ROOTT <Y M3

(END LINE]

YHLUET @

.21 [END LINE

FOLYHOMIAL

VALUE I3

(. 222523, 185814
(END LiNE]

AHOTHER YALUET <Y M3
H [END LINE]

RAHOTHER FOLY® oY

AH 2

+ [END LINE]

Section 12: Finding Roots of Polynomials

Continues the program.

Ends the program.

127

128 Section 12: Finding Roots of Polynomials

About the Algorithm

The Math Pac finds the roots of polynomials using Laguerre’s method, which is an iterative process.
The Laguerre step at the iterate Z;, for the polynomial P(Z) of degree N is

—NP(Z))
P(Z) + [(N — 1)* (P(Z))* — N (N — 1) P(Z) P"(Z)]"

The sign in the denominator is chosen to give the Laguerre step of smaller magnitude. Polynomials or
their quotients of degree < 3 are solved using the quadratic formula or linear factorization.

Laguerre’s method is cubically convergent to isolated zeros and linearly convergent to zeros of mul-
tiplicity greater than one.

The F 00T function is global in the sense that the user is not required to supply either an initial guess
or a stopping criterion; in other words, no prior knowledge of the location of the roots is assumed. The
FRO0T function always attempts to begin its search (iteration) at the origin of the complex plane. An
annulus in the plane known to contain the smallest magnitude root of the current (original or quotient)
polynomial is constructed about the origin (using five theoretical bounds) and the initial Laguerre step
is rejected if it exceeds the upper limit of this annulus. In this case, a spiral search from the lower
radius of the annulus in the direction of the rejected initial step is begun until a suitable initial iterate
is found.

Once the iteration process has successfully started, circles around each iterate are constructed (using
two theoretical bounds) that are known to bound the root closest to that iterate; the Laguerre step size
is constantly tested against the radii of these circles and modification of the step is made when it is
deemed to be too large or when the polynomial value does not decrease in the direction of the step. For
this reason, the roots are normally found in order of increasing magnitude, thus minimizing the
roundoff errors resulting from deflation.

Evaluation of the polvnomial and its derivatives at a real iterate is exactly Horner’s method.
Evaluation at a complex iterate is a modification of Horner’s method that saves approximately half of
the multiplications. This modification takes advantage of the fact that the Horner recurrence is sym-
metric with respect to complex conjugation.

FEO0T uses a sophisticated technique to determine when an approximation Z;, should be accepted as a
root. As the polynomial is being evaluated at Z,, a bound for the evaluation roundoff error is also being
computed. If the polynomial value is less than this bound, Z; is accepted as a root. Z; can also be
accepted as a root if the value of the polynomial is decreasing but the size of the Laguerre step has
become negligible. Before an approximation Zj, is used in an evaluation, its imaginary part is set to zero
if this part is small compared to the step size. This improves performance, since real-number
evaluations are faster than complex evaluations. If the Laguerre step size has become negligible but the
polynomial is not decreasing, then the message FEOOT f=2ilur e is reported and the computation
stops. This is expected never to occur in practice.

Section 12: Finding Roots of Polynomials 129

As the polynomial is being evaluated, the coefficients of the quotient polynomial (by either a linear or
quadratic factor corresponding to the Z,) are also computed. When an approximation Z), is accepted as
a root, this quotient polynomial becomes the polynomial whose roots are sought, and the process begins
again.

Multiple Zeros

No polynomial rootfinder, including FROOT, can consistently locate zeros of high multiplicity with
arbitrary accuracy. The general rule-of-thumb for FRO0T is that for multiple or nearly-multiple zeros,
resolution of the root is approximately 12/K significant digits, where K is the multiplicity of the root.

Accuracy

FROOT’s criterion for accuracy is that the coefficients of the polynomial reconstructed from the cal-
culated roots should closely resemble the original coefficients.

We will illustrate FROOT’s performance with isolated zeros using the 100th degree polynomial
100

Pz)y= 3 z
k=0

Of the 200 real and imaginary components of the calculated roots, about half were found to 12 digit
accuracy. Of the rest, the error did not exceed a few counts in the 12th digit.

The polynomial (Z + 1)2* with all 20 roots equal to —1 was solved by FEI0IT to yield the following
roots.

(—.997874038627,0)
(—.934656570635,0)
(—.947080146258,—.160105886062)
(—.947080146258,.160105886062)
(—.678701343788,—6.24034855342E — 2)
(—.678701343788,6.24034855342E — 2)
(—.815082852233, — .270565874916)
(—.815082852233,.270565874916)
(—.725960092383, —.178602450179)
(—.725960092383,.178602450179)
(—.934932478844, — .326980158732)
(—.934932478844,.326980158732)
(—1.06905713438, —.337946194292)
(—1.06905713438,.337946194292)
(—1.19977533452, —.295162714497)

130 Section 12: Finding Roots of Polynomials

(—1.19977533452,.295162714497)
(—1.30383056467,—.200016185042)
(—1.30383056467,.200016185042)
(—1.3593147483,7.00833934259E —2)
(—1.3593147483,—7.00833934259E — 2)

The roots appear inherently inaccurate due to the high multiplicity of —1 as a root. Between 0 and 1
correct digits were expected, even though the first zero found was better than this. However, the re-
constructed coefficients are very close and are shown below (rounded to 12 digits).

Original Reconstructed
Coefficients Coefficients

1] 1

20 20

190 190.000000001
1140 1140

4845 4845.00000003
15504 15504

38760 38760.0000003
77520 77520.0000007

125970 125970.000001
167960 167960.000002
184756 184756.000002
167960 167960.000003
125970 125970.000002

77520 77520.0000015
38760 38760.0000009
15504 15504.0000004
4845 4845.00000011
1140 1140.00000004
190 190.000000042
20 20.0000000344

1 1.00000001018

Section 12: Finding Roots of Polynomials 131

Time Performance

The speed of the FROOT function is illustrated in the following table. The times given are those re-
quired to calculate all the roots of the polynomial

N
PZ) = Yy Z*
k=0

for values of N given in the Degree column.

Note that times are approximate.

Degree | Time (sec)

3 3
5 6
10 22

15 42

Section 13

Finite Fourier Transform

Keyword

The finite Fourier transform is a key step in solving many problems in mathematics, physics, and
engineering, such as problems in signal processing and differential equations.

Given a set of N complex data points Z;, Z,,..., Zy5_, the finite Fourier transform will return another
set of N complex values Wy, W,..., Wy |, such that for k = 0, 1,..., N — 1,

. 2rkf .. 2mhj
Zy= 2 W, |cos + i sin
j=0 N N
The W’s then represent the complex amplitudes of the various frequency components of the signal
represented by the data points. The values for the W’s are given by the formula

N —2mkj —2nkj
W,=1N Y Z, (cos—N’rL + fsin—N—L)
k=0

This formula holds for any number of data points. The Math Pac uses the Cooley-Tukey algorithm and
the internal language of the HP-71 to achieve excellent speed and accuracy in the calculation of the
finite Fourier transform. This requires, however, that N be an integral power of 2; for example, 2, 4, 8,
16, 32, 64, and 128 are all acceptable values for the number of complex data points.

To use the finite Fourier transform, store your complex data points Z,..., Z, _; as successive elements
of an N-element complex array with Z as the first element, Z, as the second element, and so on. Aside
from the total number of elements in the array, which indicates to the Math Pac the number of com-
plex data points, the dimensions of the array are irrelevant. For example, each of the following eight-
element arrays

134 Section 13: Finite Fourier Transform

[(1,2
(3,4)
(5,6)
(7,8)
(9,10)
(11,12)
(13,14)
(15,16)

(1,2) (3,4)
(5,6) (7,8)
(9,10) (11,12)
(13,14) (15,16)

(L2) (34 (56 (78
(9,10) (11,12) (13,14) (15,16)

[(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) (13,14) (15,16)]

can represent the set of input data points
1(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16) }

The array in which you wish the transformed data to be stored must be complex type. If the number of
input data points is N, and if the result array is a vector, it will be redimensioned to have N elements.
If the result array is a matrix, it will be redimensioned to have N rows and one column. The results of
the finite Fourier transform W,,...,Wp_, will be returned with the complex values stored in successive
elements of this N-element complex result array—the same form as the data points.

The number of data points you can use is limited only by the amount of available memory and by the
requirement that the number of data points be a non-negative integral power of 2.

Section 13: Finite Fourier Transform 135

FOUR Finite Fourier Transform

MAT W=FOLRCZ

where Z is an N-element complex array, either a vector or matrix, N is the number of complex data
points, which must be a non-negative integer power of 2, and W is a complex array, either a vector or

matrix.

If W is a vector, implicitly redimensions W to have N elements; if W is a matrix, implicitly redimensions W
to have N rows and one column. W will be assigned the complex values of the finite Fourier transform of
the data points represented by Z.

To halt operation, press twice.
Not usable in CALC mode.

Example

The following example computes the finite Fourier transform of the input data set ((1,2), (3,4), (5,8),
(7,8), (9,10), (11,12), (13,14), (15,16)).

10 OPTION BASE 1

20 COMPLEX SHORT A(8),B(1,2) A contains the data set, and B, after
redimensioning, contains the transform of the

data.

30 MAT INPUT A
40 MAT B=FOUR(A)
50 MAT DISP B

RUN

136 Section 13: Finite Fourier Transform

;A9 180,

Additional Information

Time Performance

The approximate time required by F 1LIE to return the transform, based on the number of data points,
is shown in this table.

Number of | Transform Time

Data Points (Seconds)
1 0.07
2 0.11
4 0.26
8 0.75
16 1.9
32 47
64 1
128 25

256 55

Section 13: Finite Fourier Transform 137

Relation Between the Finite and Continuous Fourier Transform

The finite Fourier transform is most often used as an approximation to the continuous (infinite) Fou-
rier transform. To understand in what sense it is an approximation, and to understand the effects of
various choices to be made in using this approximation, it is most useful to have the direct relationship
between the continuous and finite transforms.

If Z(x) is a complex valued function, its continuous Fourier transform is defined to be
e &) z
Wi = [Z(x) exp(—2xifx) dx
-0

If we have a set of N complex data points Zy, Z,,..., Zy_; given by sampling the function Z at N
equally spaced points

Zy = Z(xyg + RAx) for k= 10,1,..., N — 1,

and then find the finite Fourier transform W, W,..., Wy_, of this data set, we can relate these values
to the values of the continuous Fourier transform W(f) as follows. For &k = 0,..., N — 1,

W, = (r/N) W(k/NAx) where r = exp(—2wix,).

W is a “smeared” version of the true continuous Fourier transform W. To get W from W, you must
average W in two important but very different ways. The first type of averaging that occurs can be
described by defining a new function A(f) intermediate between W and W.

Af) = i W(f + k/Ax)

k= —oao

This says that the value of A at a point f is equal to the sum of the values of W at all points that are
integer multiples of the limiting frequency 1/Ax away from f. In particular, if W consists of a small
bump centered at the origin, then A will consist of an infinite sequence of bumps spaced 1/Ax units
apart. This is the aspect of the finite Fourier transform that gives rise to aliasing: any frequency that
occurs in W (that is, W has a nonzero value there) will give rise to a nonzero value for A (and also W)
somewhere in the interval [0, 1/Ax]| no matter what the original frequency was. For this reason, you
should choose Ax small enough so that 1/Ax is larger than the distance between the largest and small-
est f's that you suspect will occur in W. Since most functions occuring in actual situations (and all
real-valued functions) have continuous Fourier transforms that are roughly symmetric about the origin,
if a frequency f; occurs in W, it is likely that —f, also occurs in W. For the finite Fourier transform to
contain both frequencies without aliasing, 1/Ax must be larger than 2f,. If we define the largest fre-
quency occuring in W as Af, we can express the no-aliasing requirement as AfAx < 1/2,

138 Section 13: Finite Fourier Transform

The second type of averaging that occurs when going between W and W is much more local in nature
than the first. It results in a loss of frequency resolution in W as compared with W; more precisely,

W) = (NAx) f * sinc(eNAx) A(f — g) dg

lifa =0,
where sinc(a) = :
sin (ra) otherwise.
Ta

Since sinc (gNAx) consists primarily of a bump with width inversely proportional to NAx, W is more
blurred (compared to W) for smaller values of NAx. This is not a serious problem unless W has a large
value at a frequency that is not a multiple of the fundamental frequency N/Ax. In this case, the “side
lobes” of the sine function become evident in W. This can be reduced somewhat by multiplying the
data values Z;, by a smoothing function G(k) before taking the finite Fourier transform. This results in
an averaging function that has smaller side lobes than the sinc function. One example of such a func-
tion is the Hanning function G(k) = (1/2)(1 — cos(2wk/N)).

Inverse Finite Fourier Transform

Many applications of the finite Fourier transform involve taking the transform of a set of data points,
operating on the transformed values (for example, increasing or decreasing the amplitudes), and then
retransforming the data using the inverse Fourier transform defined by

! 2kj 2mkj
Z, = j;l W, (COS—le‘ + i sin —RT'L)

You can also use the F ILIE keyword to compute the inverse finite Fourier transform in a simple way. If
W is an N-element complex array for which you want the inverse finite Fourier transform:

1. Redimension W to have N rows and one column (if W is an array with only one column, then no
redimensioning is necessary).

2. Take the transpose (TFH) of W. This produces the complex conjugate of W, without changing the
order of the elements.

3. Take the finite Fourier transform of the result.

4. Take the transpose of the result of the finite Fourier transform and scalar multiply this result by
N. This will produce the inverse finite Fourier transform of the original array.

Section 13: Finite Fourier Transform 139

Example. This illustrates an application of the finite Fourier transform, and shows the procedure for
obtaining the inverse finite Fourier transform.

Suppose we want to find the steady state solution Z(x) of the inhomogeneous differential equation
Z"(x) + 3Z'(x) 4+ 12Z(x) = P(x)

where P(x) is a function for which we have sampling data. If we denote the (continuous) Fourier trans-
form of any function @ by @, by taking the Fourier transform of the above equation we arrive at

—f2Z() + 3fZ(H + 12Z() = P(f).
Solving this equation algebraically we obtain

P(p
(—f* + 12) + 3if

Z(f) =

If we can get a good approximation of P, we can easily calculate the right hand side of this equation.
From this result we can obtain the solution to the original equation by taking the inverse Fourier
transform.

For simplicity, we will assume that the equation has been scaled so the P(x) has unit period, and that
the highest frequency component of P is (approximately) 30 times the fundamental frequency. Sam-
pling P 64 times in one period will then suffice to avoid aliasing.

Rather than prompt the user for 64 complex data points representing the sampling of P, the program
below uses a relatively simple function for P, although you could use values from any other source

equally well.

10 OPTION BASE 1

20 COMPLEX P(64),Q(64,1),Z(1,64) P will contain the data points representing the
sampling of P. Q will represent P and eventually
P/(—f* 4+ 3if + 12). Z will represent the solution
to the differential equation.

30 COMPLEX T T is a complex scalar for use in the complex
division.

40 DISP "Working; please wait.”
50 RADIANS

60 FOR I=1 TO 64

70 R=PI*|/32

80 P(lI)=(6000k COS(3*R)*SIN(7.5%R)*
COS(5.5%R) , 4000%COS(13*%R)+
3500%SIN(11%R))

90 NEXT |
100 MAT Q=FOUR(P)
110 FOR F=—31 TO 32

120 J=MOD(F,64)+1

130 T=(—F"2+12,3%F)

140 Q(,1)=Q(,1)/T
150 NEXT F
160 MAT Q=TRN(Q)

170 MAT Z=FOUR(Q)
180 MAT Z=TRN(Z)

190 MAT Z=(64)%Z
200 COMPLEX Z(64,1)
210 DISP “The values are”

220 MAT DISP USinG
“X,C(MDDD.D,MDDD.D)";Z

This is the sampling routine that assigns to P
the values of the complex-valued functions
represented by the right-hand side of line 80,
sampled at 64 equally spaced points.

Q now represents P.

F represents the frequency variable and spans
the full range of frequencies, positive and
negative, that we expect to occur in P.

.| represents the number of the element in the Q

array where the amplitude of the frequency F is
stored.

T will be the denominator of the complex
fraction.

Q now represents P/(—f2 + 3if + 12).

This starts the procedure that assigns the values
of the inverse Fourier transform to Z. The
transpose is used here to take the conjugate of Q.

The transpose is used here for conjugation as
well.

The values displayed will represent the complex
values of the steady state solution of the
differential equation sampled at 64 equally
spaced points in one period.

Section 13: Finite Fourier Transform 141

Fourier Sine/Cosine Series

There is another transform closely related to the finite Fourier transform that is applicable when the
data points Z, are purely real (that is, their imaginary parts are equal to zero). This is the Fourier
series transformation, which takes a set of 2N (real) data points Z;;, Z;, ..., Zyy_7 and returns a set of
2N + 1 real values A, Aq, ..., Ay, By, ..., By with the property that

A 2mjk 2mjk
Z,=—+ A cos <ME | B gin SR
kT e ,-;1 AT 7
If Wy, Wy, ..., Wypn_ are the complex values of the fir te Fourier transform of the real data points
Zyy -~y Zyn—1, then the Fourier series values are given by

A; = 2REPT(W) forj =0, ..., N—1,

Ay = REPT(Wy)

B; = —2IMPT(W,) forj=1,..., N.

Appendix A

Owner’s Information

Installing and Removing the Math Pac Module

The math module can be plugged into any one of the four ROM ports on the front edge of the
computer.

CAUTIONS

» Be sure to turn off the HP-71 (press [f] [OFF]) before installing or removing the module.

« If you have removed a module to make a port available for the math module, before installing the
math module, turn the computer on and then off to reset internal pointers.

» Do not place fingers, tools, or other objects into any of the ports. Such actions could result in minor
electircal shock hazard and interference with pacemaker devices worn by some persons. Damage
to port contacts and internal circuitry could also result.

« If a module jams when inserted into a port, it may be upside down. Attempting to force it further
may result in damage to the computer or the module.

» Handle the plug-in modules very carefully while they are out of the computer. Do not insert any
objects in the module connecter socket. Always keep a blank module in the computer port when a
module is not installed. Failure to observe these cautions may result in damage to the module or
the computer.

Limited One-Year Warranty

What We Will Do

The Math Pac is warranted by Hewlett-Packard against defects in materials and workmanship affect-
ing electronic and mechanical performance, but not software content, for one year from the date of
original purchase. If you sell your unit or give it as a gift, the warranty is transferred to the new owner
and remains in effect for the original one-year period. During the warranty period, we will repair or, at
our option, replace at no charge a product that proves to be defective, provided you return the product,
shipping prepaid, to a Hewlett-Packard service center.

143

What Is Not Covered

This warranty does not apply if the product has been damaged by accident or misuse or as the result of
service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.

ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED
TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces,
or countries don’t allow limitations on how long an implied warranty lasts, so the above limitation may
not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE
FOR CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclu-
sion or limitation of incidental or consequential damages, so the above limitation may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which may vary from
state to state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a
consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be
determined by statute.

Obligation To Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard
shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact an authorized Hewlett-Packard
dealer or a Hewlett-Packard sales and service office. Should you be unable to contact them, please
contact:

+ In the United States:

Hewlett-Packard Company
Personal Computer Group
Customer Communications
11000 Wolfe Road
Cupertino, CA 95014

Toll-Free Number: (800) FOR-HPPC (800 367-4772)

Appendix A: Owner's Information 145

¢ In Europe:
Hewlett-Packard S.A.
150, route du Nant-d’Avril
P.O. Box CH-1217 Meyrin 2
Geneva
Switzerland
Telephone: (022) 83 81 11

Note: Do not send products to this address for repair.

» In other countries:

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.
Palo Alto, CA 94304
U.S.A.
Telephone: (415) 857-1501

Note: Do not send products to this address for repair.

Service

Service Centers

Hewlett-Packard maintains service centers in most major countries throughout the world. You may
have your product repaired at a Hewlett-Packard service center any time it needs service, whether the
unit is under warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard computer products normally are repaired and reshipped within five (5) working days
of receipt at any service center. This is an average time and could vary depending on the time of year
and work load at the service center. The total time you are without you product will depend largely on
the shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for battery-powered computational devices is lo-

cated in Corvallis, Oregon:

Hewlett-Packard Company
Service Department
P.O. Box 999

Corvallis, OR 97339, U.S.A.

or

1030 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

Telephone: (503) 757-2000

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer

where you purchased your unit.

AUSTRIA

HEWLETT-PACKARD Ges.m.b.H.
Kleinrechner-Service
Wagramerstrasse-Lieblgasse 1
A-1220 Wien (Vienna)

Telephone: (0222) 23 65 11

BELGIUM

HEWLETT-PACKARD BELGIUM SA/NV
Woluwedal 100

B-1200 Brussels

Telephone: (02) 762 32 00

DENMARK
HEWLETT-PACKARD A/S
Datavej 52

DK-3460 Birkerod (Copenhagen)
Telephone: (02) 81 66 40

EASTERN EUROPE
Refer to the address listed under Austria.

FINLAND
HEWLETT-PACKARD QY
Revontulentie 7

SF-02100 Espoo 10 (Helsinki)
Telephone: (90) 455 02 11

FRANCE

HEWLETT-PACKARD FRANCE
Division Informatique Personnelle
S.A.V. Calculateurs de Poche
F-91947 Les Ulis Cedex
Telephone: (6) 907 78 25

GERMANY
HEWLETT-PACKARD GmbH
Kleinrechner-Service
Vertriebszentrale

Berner Strasse 117
Postfach 560 140

D-6000 Frankfurt 56
Telephone: (611) 50041

ITALY

HEWLETT-PACKARD ITALIANA S.P.A.
Casella postale 3645 (Milano)

Via G, Di Vittorio, 9

|1-20063 Cernusco Sul Naviglio (Milan)
Telephone: (2) 90 36 91

NETHERLANDS

HEWLETT-PACKARD NEDERLAND B.V.

Van Heuven Goedhartlaan 121
N-1181 KK Amstelveen (Amsterdam)
P.O. Box 667

Telephone: (020) 472021

NORWAY

HEWLETT-PACKARD NORGE A/S
P.O. Box 34

Oesterndalen 18

N-1345 Oesteraas (Oslo)
Telephone: (2) 17 11 80

SPAIN

HEWLETT-PACKARD ESPANOLA S.A.
Calle Jerez 3

E-Madrid 16

Telephone: (1) 458 2600

SWEDEN

HEWLETT-PACKARD SVERIGE AB
Skalholtsgatan 9, Kista

Box 19

5-163 93 Spanga (Stockholm)
Telephone: (08) 750 20 00

SWITZERL AND
HEWLETT-PACKARD (SCHWEIZ) AG
Kleinrechner-Service

Allmend 2

CH-8967 Widen

Telephone: (057) 31 21 11

UNITED KINGDOM
HEWLETT-PACKARD Ltd
King Street Lane
GB-Winnersh, Wokingham
Berkshire RG11 5AR
Telephone: (0734) 784 774

International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you
bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is avail-
able in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local
Hewlett-Packard service center to see if service is available for it. If service is unavailable, please ship
the unit to the address listed above under Obtaining Repair Service in the United States. A list of
service centers for other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and
materials. In the United States, the full charge is subject to the customer’s local sales tax.

Computer products damaged by accident or misuse are not covered by the fixed repair charge. In these
cases, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period
of 90 days from date of service.

Shipping Instructions

Should your product require service, return it with the following items:
® A completed Service Card, including a description of the problem.

* A sales receipt or other documentary proof of purchase date if the one-year warranty has not
expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of pur-
chase date should be packaged in adequate protective packaging to prevent in-transit damage. Such
damage is not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the
shipment to the service center. The packaged product should be shipped to the nearest Hewlett-
Packard designated collection point or service center. Contact your dealer for assistance.

148 Appendix A: Owner's Information

Whether the product is under warranty or not, it is your responsibility to pay shipping charges for
delivery to the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the product with postage prepaid. On
out-of-warranty repairs in the United States and some other countries, the product is returned C.0.D.
(covering shipping costs and the service charge).

Further Information

Service contracts are not available. Computer products circuitry and design are proprietary to Hewlett-
Packard, and service manuals are not available to customers. Should other problems or questions arise
regarding repairs, please call your nearest Hewlett-Packard service center

When You Need Help

Hewlett-Packard is committed to providing after-sale support to its customers. To this end, our cus-
tomer support department has established phone numbers that you can call if you have questions ahout
this product.

Product Information. For information about Hewlett-Packard dealers, products, and prices, call the
toll-free number below:

(800) FOR-HPPC
(800 367-4772)

Technical Assistance. For technical assistance with your product, call the number below:

(503) 754-6666
For either product information or technical assistance, you can also write to:

Hewlett-Packard Company
Personal Computer Group
Customer Communications
11000 Wolfe Road
Cupertino, CA 95014

Appendix B
Memory Requirements

The Math Pac reserves 43.5 bytes of read/write memory for its own uses. In addition, small amounts of
memory are temporarily used for routine overhead purposes. Significant amounts of memory can be
used to declare complex variables and arrays (see page 20), and to redimension arrays to a larger size,
but this memory usage is easily determined. This appendix lists the amounts of tempory memory used
by other Math Pac operations.

Item Memory Required For Operation

Matrix operations

DETCA> 2N(4N + 1) bytes, where A is an N x N matrix.

MAT FRIMT USIHG | 14 bytes.

MAT DISP USIHG 14 bytes.

MAT IHFUT 40 bytes.

MAT A=A%xA Requires additional memory only if an operand array is used for the result
MAT A=A%B array. If the product (that is, the redimensioned array A) is M x N (for vec-
MAT A=BfA tors, let N = 1), then the memory required is:

3MN bytes, if A is type INTEGER.

4 5MN bytes, if A is type SHORET.

8MN bytes, if A is type FEHAL.

9MN bytes, if A is type COMFPLER SHORT,
16MN bytes, if A is type COMFLE.

MAT A=TREHCATEA Requires additional memory only if an operand array is used for the result
MAT A=TEHCA»¥B array. If the product (that is, the redimensioned array A) is M x N (for vec-
MAT A=TEHMHIB %A tors, let N = 1), then the memory required is:

| 3MN bytes, if A is type INTEGER.

4 5MN bytes, if A is type SHORT.

8MN bytes, if A is type FEAL.

9MN bytes, if A is type COMFLEX SHORT.

16MN bytes, if A is type COMFLE .

Appendix B: Memory Requirements

| Item Memory Required For Operation
MAT B=IHUCA> Ais N x N.
If Ais FEAL, SHORT or INTEGER and B is REAL:
4N bytes.
If Ais REAL, SHORT or IMTEGEFR and B is not REAL:
4N(2N + 1) bytes.
If Ais COMPLES or COMFLE® SHORT:
8N(4N + 1) bytes.
MAT C=SYZ(A,B> Ais N x Nand Bis N x P (for vectors, let P = 1).
‘ If Ais REARL, SHORT, or IMNTECER and B is REAL, SHORT, or
‘ IMTEGER:
4N(2N + 4P + 1) bytes.
‘ If A is REAL, SHORT, or IHWTEZER and B is COMFLEX or
COMPLE=® SHORT:
‘ 4N(2N + 8P + 1) bytes.
If Ais COMFLEX or COMPLEY SHORT:
i 8N(4N + 4P + 1) bytes.
MAT A=TREHCAZ If AisM x Nand IHTEGER:
| MN/2 bytes.
If operand and result matrix are different, or if A is not IHTEGER, no extra
| memory is needed.
MAT B=FROOTCAD A represents an Nth degree polynomial.
21N + 261 bytes.
‘ MAT B=FOURCA} A contains N elements.
| If Bis COMFLEX SHORT:
16N bytes.
| If Bis COMFLEX type, no extra memory is needed.
| FHEOQOT 112.5 bytes if FHEOOT is not nested.
96.5 additional bytes for each level of nesting.
| INTEGRAL 208.5 bytes if IHTEGRAL is not nested.

192.5 additional bytes for each level of nesting.

Appendix C

Error Conditions

The Math Pac reports two classes of error messages.

® Math Pac error messages. These have a LEX ID number of 2. These error messages are explained
in the first table.

® HP-71 error messages that are reported by Math Pac functions. These have a LEX ID number of
0. These error messages are explained in the second table.

Math Pac Error Messages

Number Error Message and Condition

1 #OIMS

“O0TCA,Br: A or Bis a matrix.

S ODETCAS, MAT B=IHWIAY, MAT B=TEHMCAX, MAT A=I0H,
MAT X=%%SCA,Y>: AorBis a vector.

“ MATA=IDOHi: only one redimensioning subscript specified.

“ MATA=operation ' operand array(s) *: number of subscripts of A is not the same as the
number of subscripts required for the result of the operation.

2 Hot Square

® ODETCAY, MAT A=I0H, MAT B=IHV A MAT X=3Z¥ECA,B>: Ais a matrix but
the number of rows of A is not equal to the number of columns.

® MAT A=IDHCi, jr:i # |.

151

« MAT A=B+C, MAT A=B-C: B and C are not conformable for addition (the number of
[rows are unequal or the number of columns are unegual)

[» MAT A=B#¥C: B and C are not conformable for multiplication (B is a vector or the num-
ber of columns of B is not equal to the number of rows of C).

o MAT A=TREHCB:*C: B and C are not conformable for transpose multiplication (B is a
vector or the number of rows of B is not equal to the number of rows of C).

o MAT X=2%YZ<A,B>: Although A is a square matrix, A and B are not conformable for
multiplication.

» OOTCA,BX: Although A and B are vectors, the number of elements of A is not equal to

the number of elements of B.
Farameter Eedim
» The result array of a MMH T statement is a subprogram parameter. The statement requires
array redimensioning, which changes the number of array elements.
Heztima Error
» More than five FHEOOT or INTEGRAL keywords are nested.
Eabd FH in FHEOOT-IMTEGREAL

» Attempting to execute FHEDOT or INTEGREAL from the keyboard in BASIC mode,
and the function whose root or integral is sought is a user-defined function.

» Attempting to execute a user-defined function from the keyboard while an FHFEOOT or
IHTEGRAL execution is suspended during the evaluation of the function whose root or
integral is sought.

Function Interruptec

o Interrupting DETCAY, CHORMCAY, RMORMCAY, FHORMCAY, or DOTCA, B by

pressing twice.
Bzd Hrrag =ize

« MAT B=FOUFR A where the number of elements of A is not a non-negative integral
power of two.

« MAT B=FROOTCAY where A has only one element.

[FROOT Failure
o FREODOT failed to find a root.

Appendix C: Error Conditions 153

Number Error Message and Condition
10 CHMMA=In{
¢ GAMMACX: where X is a non-positive integer.
m ATAMHC +=1 12
® ATAMHC 1Y or ATAKMHI—1
No Initialization
ikl * The Math ROM cannot initialize due to insufficient memory. This ROM requires 43.5
flumber bytes of user memory for its own use. This memory must be available before plugging in
the module.

HP-71 Error Messages

Number Error Message and Condition
L Irwalid Ara
* BEVALCBS. Ry, ESTR£.X, R : The rounded integer value of R is not equal to 2, 8, or
16.
¢ BEVHLCB$.R:: B% is not a valid string representation of a number in base R.
* BSTE#1X,R*: The rounded integer value of X is not in the interval [0,1E12).
¢ BEVALCB%.R:: The decimal equivalent of B§ exceeds 999,999,999,999.
® LEHDOCA, N, LUEMDOCA,N2: The rounded integer value of N is not equal to 1 or 2.
* An illegal subscript has been used ina MAT COH, MAT I0OH, MAT ZEER,
COMPLE®, or COMFLE: SHORET statement.
24 Inzufficient Memorug
* Appendix B gives the memory requirements for various Math Pac operations.
31 Data Tupse

@ A scalar (real or complex) has been used where an array is required or vice-versa.

® A complex ‘ype (scalar or array) has been used where a real type (scalar or array) is
required or vice-versa.

Number Error Message and Condition

» Attempting to execute DETL before the first completion of MAT . . . IHY with a real-
type argument or MAT . . . £%5 with a real-type first argument.
» Attempting to execute FUALLUE or FGUESS before the first completion of an

FHREOOT keyword.

» Attempting to execute IWHLLUE or IEOLMD before any IHMTEGZRAL keyword has

32 Ho Data w
|
|
|

completed the first evaluation of the function whose integral is sought. :

» Attempting to execute F'/AF while no FHEDOT is evaluating the function whose root is
sought.

Attempting to execute I'AFR while no THTEGRAL is evaluating the function whose
integral is sought.

46 Ihwalid USIHG
» Formatting a real expression with a complex IMAZE field or vice-versa.
79 Illegal Contest

« Attempting to execute INTECGFAL or FHROIOT from CALC mode in any way except
by direct execution.

80 Inwalid FParameter

» MAT IHFUT attempts to execute an expression in the MAT IHFUT response line
where that expression calls a user-defined function.

Appendix D

Attention Key Actions

The way operates during the execution of each the following three keywords is described on the
referenced page.

MAT IHFUT Refer to page 54.
FHEOOT Refer to page 97.
IMTEGRAL Refer to page 111.

The keywords listed below in this appendix can be aborted by pressing the key once or twice.

Array Output Statements

All Math Pac array output statements (MAT DISF/PEIHT[UEZIHEZ]) can be halted at any time by
pressing once.

Other I

The following MAT statements may be halted at any time by pressing twice.

Statements

MAT result = [~] operand

MAT result = operand +/-/% operand

MAT result = i scalar * [¥ operand]

i

[AT result THW T operand

MAT result = =45 operand , operand
HAT result = TEHY operand [+ operand]
FMAT result = FOUR operand

MAT result

FROOT @ operand

7

Suppose a lengthy program contained a MAT IHY' statement. Suppose further that you wished to
abort this program. You press once, and the program does not halt (the SUSP annunciator does
not turn on). This tells you that the MAT 1M statement may be executing, and gives you a chance to
wait for the result of this MAT IH\ execution, or to abort the AT IHY execution and the program
immediately by pressing a second time. In this way the “press twice” rule gives a user
more control over program and statement suspension.

Pressing once during execution of MAT IHY would suspend the program in the usual way after
this statement is completed.

Scalar-Valued Array Functions
The following scalar-valued array functions can be halted at any time by pressing twice.
ODETY operand :
0T operand , operand
FHOEM: operand
CHOREM S operand
FEHORMY operand

The benefits provided by this “press twice” rule are the same as those described above. However,
only an error can halt the execution of an expression, so when you press twice to halt any of the
above functions, the HP-71 will display the error message Furniction Interrupted,

Appendix E

Numeric Exceptions and the IEEE Proposal

Introduction

This appendix will discuss IEEE exception handling by Math Pac functions and operations, including
computation with H=H and I arguments, exception flag setting, handling of out-of-range arguments,
error or warning messages, and default values for 1%L and [I'/Z exceptions. The HP-71 reference
manual discusses the IEEE proposal for handling math exceptions. Math Pac functions, when appro-
priate, will set the exception flags I\L, 0OV Z, OWF, UHF, and IH# and report errors or warnings (with
default results returned) according to the TREAF settings for each of these flags. You can refer to the
appropriate sections of this manual for definitions and/or computational formulas for many of the
functions described here.

No exception flags are set by any of the keywords in sections 2 or 3 of this manual, or by Math Pac

keywords TYFE, = (negation of complex numbers), COM.1, COH, IDH, ZER,
MAT OISF/PRIMTIUSING), LEHMD, UEHMD, DETL, FUAR, FUARLLE, FCUESS, IVAR, IVALUE,
and IECLUHDO. Remember that exception flags IMH:, TWF, and UHF may be set when values are

rounded to fit the destination type, such as, for example, assigning © MAXFEAL , MA=FEAL? to a
COMFLE® SHORT variable or executing MAT A=B where A is IMNTEGEFR type and B contains ele-
ments greater than 99999,

Aside from exceptions occurring during rounding, the statements AT A=B, FMAT A=-B,
MAT A=TEH:B», and MAT A=:X: set only the IVL exception flag (reporting message
Zigrnaled Op) and only when A is IHTEGER type and either B contains, or /< is, a signaling M =zH.
This is because IHTEGER variables can contain only quiet, not signaling, M =ts. The same applies to
MAT IHFUT.

The cases given for each of the keywords in the tables which follow are evalusted in order from top to
bottom.

Note: Throughout this appendix, # represenis any argument.

157

158 Appendix E: Numeric Exceptions and the |IEEE Proposal

Real Scalar Functions

These functions are described in section 4 of this manual. Any signaling =M argument sets I'L and
reports message Sianaled Op;if TRAFCIVL » = 2, then this HaH becomes quiet and the opera-
tion can continue. With the exception of the H=zt# function, any quiet HaH argument returns a Hal
result with no exception flags set. (Aside from signaling H=zH arguments, the functions IR {OLIHD and
HaH%E set no exception flags).

Real Hyperbolic Sine (S IHH(X)

Argument X Result
| £Int X; no exception flags set.
+0 X; no exception flags set.
% IH® set; LIHF, OWF set as appropriate.

Real Hyperbolic Cosine (COSH X)

Argument X Result
| £Inf |X]; no exception flags set.
+0 1; no exception flags set.
* IH set; OWF set as appropriate.

Real Hyperbolic Tangent (THAHH X)

Argument X Result
+Inf ZGH X no exception flags set.
=+ X
S IH set; UHF set as appropriate.

Real Hyperbolic Arc Sine (HSIHHX)

i Argument X Result
== Tsef X; no exception flags set.

[=0 X; no exception flags set.
* IH: set; LIMF set as appropriate.

Appendix E: Numeric Exceptions and the IEEE Proposal 159

Real Hyperbolic Arc Cosine (RCOSH X)

Argument X Result
Inf X; no exception flags set.
X <1 IWL set; HaM result; message Inwalid FAra.
1 0; no exception flags set.
* IHH set.

Real Hyperbolic Arc Tangent (RTHHH X)

Argument X Resuit

1 IVL set; HaHM result; message Irnwalid Ara.
1 OWE set; message ATHMHHC +—1 .
SEHOX: X Imf result if TRAFCOVE Y = 2,
SGHOXY X MAXREEAL result with ITHX set if TRAFCDWE D = 1,
+0 X; no exception flags set.
* IH¥ set; LUHF set as appropriate.

Base 2 Logarithm (LOGZ X 1)

Argument X Result
Inf X; no exception flags set.
X<2o IVL set; MHaH result; message LOG Criag .
=0 OWZ set; message LOGCE D,

—Inf resultif TRAFLDWZ = 2.
—MAXEEAL result with TH¥ setif TRAF<ZOWZ > = 1.

1 0; no exception flags set.
* IHA set.
Gamma Function (GAMMA X)
Argument X Result
Int X; no exception flags set.
+0 042 set; message GHRMIMA=IHF,

CLASS XY x Inf resultif TRAPCOWZ 2 = 2,

CLASSCX? X MAXEEAL result with ITHx setif TRAFCOWZ Y = 1.
X < 0 and integral W2 set; message GAMMA=IHF,

—1Irf resultif TRAFCDOWZ» = 2.

—MAXKEEAL result with THH setif TRAFCOWZ > = 1.

* IH¥ set for all X not in the set

{1, 2, ..., 18}; UHF, 2WF set as appropriate.

160 Appendix E: Numeric Exceptions and the IEEE Proposal

Nearest Machine Number (HEIGHEOR (X, Y)

[Arguments
Result
[X Y
X=Y X=Y X; UHF, IH= setif TRAFCUHFY # 2and 0 < |X| < EFE.

MASREAL Lt Y: no exception flags set.

—MHAREAL | = Int Y; no exception flags set.

It A SEHOXD X MARFEEAL; no exception flags set.

+0 # SLHOYY X MIMEEAL; UHF, IH= setif TRAFCLUNF Y = 2,

MIMREERL +0 0; no exception flags set.

—MIMRERL | +0 —0; no exception flags set.

* * UHF, IM= set if MEIGHEORCX, Y < EFS and TRAFP (LHF 1 # 2,
Power of Ten Scaling (5CHLEIE<X,N)

Arguments
Result
X N

* non-integer | 1%L set; Hah result; message Iriwvalid FArag.

+=In€ — I ¥ IWL set; MaH result; message I+ f$6.

0 Inf¥ I#L set; MaH result; message 1t 35,

+1n¥ # X; no exception flags set.

* —Lf ZGHOXY x 0; no exception flags set.

Inf SZGHOXY X Irnf; no exception flags set.

* * ITH=, OWF, UHF set as appropriate.

Complex Functions and Operations

These functions are described in section 5 of this manual. For extensions of HP-71 and Math Pac
functions to complex arguments (+, —, %, .-, =, LG, EXF, S1H, CO%, THH, SIMH, COSH, TRNH,
SORET, SGH, BBE, =, 4, 5, 7, and #), only the complex case is discussed here. For the functions
FOLAR, RECT, ARG, and FEO.1, computation at a real argument X is equivalent to computation at
the complex argument (X, 0).

Any signaling M=t argument (including real and imaginary parts of complex arguments) sets 1L and
reports message Signaled Op;if TRAFCIVL Y = 2, then this Mal becomes quiet and the opera-
tion can continue. In the following discussion, all references to I4=Hs are to quiet Hzts.

Appendix E: Numeric Exceptions and the IEEE Proposa 161

The following terms are used:
» Complex denotes complex DATA type.
» Real denotes real DATA type (e.g., (3, 0) is complex and 3 is real).
» CHaM denotes any complex number with at least one H =zt component.

» CIrf denotes any complex number whose magnitude is I ; that is, any complex number with at
least one = I f component.

» CZERO denotes any complex number whose magnitude is 0.

» Arg(Z) denotes the argument of Z, that is, the infinitely precise value of the Math Pac function
REGLZ,

s |Z| denotes the magnitude of Z.

» The complex variables Z and W will also be denoted by (x, v) and (u, v) respectively.

+, — (Addition and Subtraction)

For real @ and complex Z, e + Z = (a = x, v) and Z + a = (x = a, ¥). For complex Zand W, Z + W
= (x + u, y £ v). IVL is set and message Irnf—Inf is reported if any componentwise addition or
subtraction is equivalent to Inf — Inf;a HaH is returned for the corresponding result component.
Otherwise, IH:, OUF, and LIHF are set for each result component as appropriate.

(Multiplication)

For real a and complex Z, a x Z = Z x a = (ax, ay). 1\'L is set and message I+ % is reported if
any componentwise multiplication is equivalent to (+1#+¥) x (+0); a HaH is returned for the
corresponding result component. Otherwise, TH, T4 F, and UHF are set for each result component as
appropriate.

162 Appendix E: Numeric Exceptions and the IEEE Proposal

For complex Z and W, Z x W is given by the table below.

Complex x Complex Multiplication (Z - W)

Arguments
Result
z w
CHah * THaH,HaH?; no exception flags set.
* CHaH tHaHM,HaM?; no exception flags set.

Clnf CZERO | IYL set; iHaM,HaH > result; message Irf#4.
CZERO | CInf IVL set; HaH, HaM> result; message Inf &,

Clnf * FECTCCInf, Arg(Z) + Arg(W):; no exception flags set.
* Clnf FECTCCInt . Arg(Z) + Arg(W):; no exception flags set.
* * (xu — yv, xv + yu); IMx, OWF, LIHF set for each result component as

appropriate.

- (Division)

For real a and complex Z, Z/a = (x/a, yfa). 1L is set and message &3 is reported if any
componentwise division is equivalent to (+0)/(%0); a HaH is returned for the corresponding result
component. IYL is set and message I+ .- In{ is reported if any componentwise division is equivalent
to (£ Inf)/(£1Irnf); atHaH is returned for the corresponding result component. I/ Z is set and mes-
sage - Z=r o is reported if any componentwise division is equivalent to T/(+0) where T is neither a
HzH, +1nf,or +0; Inf of the appropriate sign is returned for the corresponding result component if
TEAFCOWZ » = 2; MAXEEAL of the appropriate sign is returned with IH: set for the corresponding
result component if TERF 0OV Z 3 = 1. Otherwise, IH, 04WF, and UHF are set for each result compo-
nent as appropriate.

For complex Z, we define the following. If Z = CZERQ, then 1/Z is defined to be (ZLFASS(x) x Inf,
~SGH(). If Z = CInf, then 1/Z is defined to be (SGH(x) X 0, ~ZGH(y) x 0).

For real a and complex Z, a/Z is given by the table below.

Real/Complex Division (a |/ Z)

Arguments
Result
a £
Hat * THak,HzH; no exception flags set.
* CH=aH tHaM,HaHI; no exception flags set.
£lmt | Glng IVL set; cHaHM, Hak>» result; message Int~Inf
+0 CZERO | I\L set; tHah, HaH> result; message A .-H.
+Inf | CZERO | ZCH(a) x (1/2) (real x complex multiplication); no exception flags set.
* CZERO | OV Z set; message ~Zer o,
a x (1/Z) (real x complex multiplication) result if TREAF{OWZY = 2,
a x (1/2) (real x complex multiplication) result with + I+ { result component
replaced by +MHA=FEARL and IHX set if TRAFCOWZY = 1.
* Cinft a x (1/Z) (real x complex multiplication); no exception flags set.
FEint % a x COHJCZY (real x complex multiplication); I'/L set and message Irif £&

reported if any componentwise multiplication is equivalentto (£ 1 f) x (+0); a
HaH is returned for the corresponding result component. Otherwise, no excep- |
tion flags set. .
* % (@/1Z]2) x CoOH.dcZ (real X complex multiplication); IHH, OWF, UHF set for
each result component as appropriate.

164 Appendix E: Numeric Exceptions and the |IEEE Proposal

For complex Z and W, W/Z is given hy the table below.

Complex / Complex Division (W/Z)

Arguments
Result
w Z
CHazH * tHaH,HakH; no exception flags set.
* CHah tHaH, Hak; no exception flags set.
CZERO | CZERO | IWL set; “HaH,Hak > result; message H.-&.
Clnf CInf IVL set; tMaM,Hak > result; message Inf .~ Inf.
Clnft CZERO | W x (1/Z) (complex x complex multiplication); no exception flags set.
* CZERO | DWZ set; message ~Z=t o,
W x (1/2) (complex x complex multiplication) result if TEAF COWVZ 2 = 2,
W x (1/2) (complex x complex multiplication) result with + I f result compo-
nent(s) replaced by +MAXFEEAL and IM¥ setif TRAFCOWZY = 1.
* Clnft W x (1/2) (complex x complex multiplication); no exception flags set.
* * (W x COMJCZ3)|Z]?2 (complex X complex multiplication and complex/real di-
vision); TH, OWF, UHF set for each result component as appropriate.

For complex Z, f(Z) is given for the specified functions by the following tables.

Complex Sine (ZIHZ)

Argument Z Result
CHaH cHaM, Hak»; no exception flags set.
(£Inf, %) IVL set; cHMaM,MaM? result; message Inwalid Hrag.
| (%, £ Int) FECTCCInmf, Arg((sin(x), SEHCyicos(x))r *; no exception flags set.
* IH=, OWF, LUHF set for each result component as appropriate.

Complex Hyperbolic Sine (S IHHTZY)

' Argument Z Result
{
CHaH rHak, HaMr; no exception flags set.
(%, £Inf) IVL set; “HaM,HaH) result; message Inwalid Ara.
(£Inf, *) FRECTCCImt, Arg((SGHCx2cos(y), sin(y)): »; no exception flags set.

IHH=, OWF, LIMF set for each result component as appropriate.

Complex Cosine (C05¢Z3)

Argument Z Result
CHaH tHaH.HaH; no exception flags set.
(Inf, *x} IWL set; cMaM, HaHi result; message Irwalid Arg.
(*; £lnt) FECTC CInf . Arg((cos(x), —SGEHCyasin(x) 7; no exception flags set.
* IHE, OWF, UMF set for each result component as appropriate.

Complex Hyperbolic Cosine (COSH tZY)

Argument Z Result
CHaM tHaM, HaHX; no exception flags set.
(*, £1In¥) IVL set; (HaM,HaH>» result; message Irwalid Ara.
(ELrf,; &) RECTCCInf . Arg((cos(y), SEH x> sin(y)) *; no exception flags set.
* IHH, OWF, LINF set for each result component as appropriate.

Complex Tangent (TAM:Z 1)

Argument Z Result
CHaH tMaHl, HaH; no exception flags set.
EInft, £=I0€) tE, EGMYy i no exception flags set.
(£Inf, %) IVL set; tHak, Hak > result: message Irnwalid Arag.
(4, InE) tEGH usin(x)cos(x) &, SEH Iy ¥ ; no exception flags set.
* IH=, OVF, UHF set for each result component as appropriate.

Complex Hyperbolic Tangent (TAHH:Z 1)

Argument Z Result
CHaH tHaH, HaM2; no exception flags set.
(£ lnt, &=DInf) TEGH XY, —E1; no exception flags set.
(#, £1rf) IVL set; MaM, HaM> result; message Irwalid FAra.
(£Inf, %) LEGH XD L SGEH Csin(y)cos(y) r £6 1; no exception flags set.
I'He=, OUF, UHF set for each result component as appropriate.

166 Appendix E: Numeric Exceptions and the IEEE Proposal

Absolute Value (REZZ)

Argument Z Result
CHzH HaH; no exception flags set.
CInf Irif; no exception flags set.
* IHH, OWF, UHF set as appropriate.
Argument (RREGCZ)
Argument Z Result
CHzH HaH; no exception flags set.
CInf.Infa 45 degrees or w/4 radians; IM# set if radian mode.
C=Inf,Infl 135 degrees or 3w /4 radians; [H: set if radian mode.
CInf o~TamED —45 degrees or —~/4 radians; IHX set if radian mode.

C—Lm¥ . ~Ln#d
*

—135 degrees or —3x/4 radians; IH= set if radian mode.
AHGLECx.yx; IHX, UHF set as appropriate.

Projective Infinity (FFO.J<Zx)

Argument Z Result
CHaH tHaM, HaH?; no exception flags set.
Clnft v It .83, no exception flags set.

*

Z; lIHF, 1H* set for any component whose magnitude is between 0 and EF 5 if
TEAFCUHF Y =+ 2.

Unit Vector (= GHCZ 1)
Argument Z Result

CHaH iHak, HaH; no exception flags set.
CZERO Z; no exception flags set.
(£Inf, xIn¥) | RECTEC1, Arg(Z)s; IHX set.
(£Inf, &) CSGHoxy SGHOyr3E 2 no exception flags set.
(®, £Int) CSGHOx G, SEHOY D) no exception flags set.
*

IHH, UHF set for each result component as appropriate.

Appendix E: Numeric Exceptions and the IEEE Proposal

167

Square Root (SHRETZX)
Argument Z Result
CHaH “Hak.HaH; no exception flags set.
Cinft RECTCCInt . Arg(Z)- 27, no exception flags set.

#

IH®, UMF set for each result component as appropriate.

Rectangular to Pola

r Conversion (FOLARCZ1)

Argument Z

Result

CAESCZY JARGCZN y; THE, OWF, LUMF set for each result component as
appropriate.

Polar to Rectangula

r Conversion (RECT<Z)

Argument Z Result
CHaH tHaHM, Hak»; no exception flags set.
(£ Lt = IRf) cEGEHOxrkE It , B, no exception flags set.
(£0, = 1Iri¥) (x, x); no exception flags set.
(#, £Inf) IWL set; ©HaMH, HaH result; message Irvalid HAra.
(£Inf, &) (acos(y),bsin(y)); no exception flags set;

_ {x if cos(y) = 0
SCHOx if cos(y) = 0
and
= {x if sin(y) = 0
SGH x> if sin(y) = 0

(xcos(y),xsin(y)); IHH, UHF set for each result component as appropriate.

Natural Logarithm (LOG(Z2)

Argument Z ' Result
CHaHh “HaH,HaH>; no exception flags set.
CZERO OWZ set; message LG CE .
t=Inf, ARGLZ)) result if TRAFCDVZY = 2.
C=MAXFEEAL . ARG CZY 1 result with IHH set if TRAF{OWZ» = 1.
Clnf cInf ARGOZx 3 THE set for the result imaginary part as appropriate.
* IHMH, UHF set for each result component as appropriate.

Exponential (E+=F ©2Z)

Argument Z Result
CHaH CHaM, Hak?; no exception flags set.
(=Inf, £Inf) L, 82; no exception flags set.
(Inf, £Int) tIrmf ., B3 no exception flags set.
(%, £In{t) | IWL set; ©HaM,HaH > result; message Irwalid Arag.
(=1Inf; #) | (0 x cos(y),0 x sin(y)); IH: set for each result component as appropriate.
(Inf,) FECT<Z; no exception flags set.
* | [HH, OUF, LINF set for each result component as appropriate.

Relational Operators

When comparing two values, at least one of which is complex, any numeric comparison operator

containing < or > without * or # sets I'/L and reports message Uriordered, If TRAFCIMLY = 2,
then a result of 0 or 1 will be returned based on the presence of the comparison operator =, that is, Z
=W, 2= W,andZ <= Waretrueifandonlyifx = vandy = v, Z < W, Z > W,and Z <> W are

always false.

“ (Exponentiation)

Before W - Z is computed, the following peliminary actions are taken:

1. If either W or Z is real then, for the purposes of the computation, it becomes complex with 0
imaginary part.

| 2. If either Wor Z is a CHzH, then a result of ©Hah . HaH 3 is returned with no exception flags set.

| 3. For the purposes of the computation, W and Z are then converted to a canonical form representa-
tion defined as follows: if one part of a complex number is = I+ while the other part is finite,
then the canonical form representation replaces the finite part by +0 (that is, preserves its sign);
otherwise, the complex number is already said to be in canonical form. For example, © &, Inf &
and (—Inf,—-8>» are the canonical form representations of & .7, Inf» and t—-Inf,-
MASREAL » respectively. In what follows, W and Z are assumed to be in canonical form.

For W = CZERO, W = Z is given by the table below.

Exponention (W ~ Z): W = CZERO

" Argument Z Result
x>0 CSGHOuTxy , @0 no exception flags set.
x < 0 OWZ set; message B"Heaq.
CEGHSu x4 Inf, 82 result if TRAFCOWZ 2 = 2,

CESGHlutx EMASEEAL , B result with THi setif TRRFCOVZY = 1.

x = 0andy = 0 | No exception flags set; message &~ reported; default result of © 1. . returned
if TRAFCIWLY = 0.

Dandy = 0 | IYL set; tHaM,HaM> result; message Irnwalid Ara.

>
II

For v # 0, W ~ Z is given by the table below.

Exponention (W = Z):y + 0

Arguments
Result
w Z
] |
(1, £0) Cinf IVL set; “HaM,HakH result; message 1™ 1nf.
* * EAFCZELOGIW: 2 (complex x complex multiplication). If Z#L0GCW:
equals (+0, +Ir¥), then this quantity is not in the domain of ExF and
WL is set, “H=H,HaH? is returned, and message Irwalid Hra is
reported. Otherwise, 1M, OWF, and UHF are set for each result compo-
! nent as appropriate.

170

Appendix E: Numeric Exceptions and the |IEEE Proposal

Fory =0and v # 0, W ~ Z is given by the table below.

Exponention (W ~ Z): y = 0 and v+ 0

Arguments
Result

w F 4
W) =1 Cinft IWVL set; ©HMz=H, Hak result; message [rnwzslid Arg.
Cinft CZERO | No exception flags set; message I+ & reported; default result of © 1,87

returned if TRAF<IVL T # 0.
* E=POx#¥L0G W32 (real « complex multiplication); IH:, OWF, LiHF set for
| each result component as appropriate.

Fory = 0and v =

0, W~ Z is given by the table below.

Exponention (W “ Z):y = 0andv =0

I Arguments =

' Result

W z

‘ u==xInf [x=20 No exception flags set; message I+ & reported; default result of © 1, &
returned if TERFCIWLY #+ 0.

‘ i == =1 Clnt IWVL set; cHaM,HaM > result; message 1~ Irf.

[# Clnft Clu“x., B 1; no exception flags set.

| * # EXFOXELOGCW: » (real x complex multiplication); IH, OUF, UHF set for

| each result component as appropriate.

Appendix E: Numeric Exceptions and the IEEE Proposal 171

Array Functions and Operations

These functions are described in sections 7, 8, and 9 of this manual. Refer to the previous discussion for
definitions of CZERO, CIr ¥, complex, etc.

CHORMCAY , EHORMCAD
If Ais M x N (for vectors take N = 1), then

M N
CHORMCAY = MAX | 5o RNORMCA) = MAX S |oj

If any element of A is a signaling Hz# (including either part of complex array elements), then each
function sets I''L and reports message Sigrnaled Op. If TRRFCIVL 3 = 2, the result is a quiet
H = with no other elements processed.

It any element of A is a quiet H=H (including either part of complex array elements), then each func-

tion sets I'/L and reports message Uricr der =) a Habl result is returned. Otherwise, 1t 00U F, and
LIHF are set for the result as appropriate.

FHOREMCAZ
If Ais M x N (for vectors take N = 1), then

FHORMCA: =

(& %)

If any element of A is a signaling H=H (including either part of complex array elements), then IVL is
set and message Sigrialed Op is reported. If TRAF< IUL » = 2, the result is a quiet HzH with no
other elements processed.

Quiet [=is pass through with no exception flags set. Otherwise, 1+, 0UWF, and LIHF are set for the
result as appropriate.

OOTCA,B?

If A and B are N-element vectors, then

N pa—

OOTCA.BY = > ab;

i=1
(If either A or B is complex, refer to the definitions of complex addition and multiplication given
previously). If any element of A or B is a signaling HaHM (including either part of complex array ele-
ments), then I4'L is set with message Zignzled Op. If, in any term in the above expression, =0 or
CZERO is multiplied by +Irxf or CIr+, then IVL is set with message I+ ¢ #&. If, in the above
expression, the summation executes an addition equivalent to Irnf — Irf, then IVL is set with
message Irif—Irif.

If only one I'L exception occurs, that message is reported. If more than one IY'L exception occurs,
the particular message(s) reported depends upon the order and type of exception that occurs. If
TEAFCIWVL Y = 2, the result is either a real HaM or a complex value with one or two HaH compo-
nents. Quiet Hats pass through with no exception flags set. Otherwise, I H¥, 04F, and UHF are set for
the result, or each result component, as appropriate.

MAT C=A%¥B
If Ais M x N and B is N X P (for vectors take P=1), then
N
Cij = Z aikbkj

(If either A or B is complex, refer to the definitions of complex addition and multiplication given
previously). Since each result element is derived from an inner product, exception handling is the same
as that for DOT <A, B>, applied to each result element separately.

MAT C=TEHIAX¥B
IfAis M x Nand Bis M x P (for vectors take P=1), then
Mo
Cy = Z by
k=1
(If either A or B is complex, refer to the definitions of complex addition and multiplication given
previously).

Since each result element is derived from an inner product, exception handling is the same as that for
DOTCA, B>, applied to each result element separately.

Appendix E: Numeric Exceptions and the |IEEE Proposal 173

MAT C=AxB

All elements of C are computed separately as

(If either A or B is complex, refer to the definitions of complex addition and subtraction given pre-

viously).

If any element of A or B is a signaling FHzaH (including either part of complex array elements), then
IVL is set and message Sizmaled Op is reported. If TRAFC IWL » = 2, the corresponding result
element or component becomes a quiet H=H and the operation continues. Quiet HzHs pass through
with no exception flags set.

I4L is set and message 11~ 11{ is reported if any addition or subtraction (or componentwise addi-

tion or subtraction) is equivalent to Imf — Ir#; a HaH is returned for the corresponding result

element or component. Otherwise, IHi, OWF, and UHF are set for each result element or component

as appropriate.

AT B=isi¥A
All elements of B are computed separately as
b = say;

(If either s or A is complex, refer to the definition of complex multiplication given previously). If s (or
either part of s, if s is complex) is a signaling H=H, then IVL is set and message Sigraled Op is
reported; if any element of A is a signaling tat (including either part of complex array elements), then
1YL is set and message Signaled Op is reported. In either event, if TRRFCIVL Y = 2, these
Hztis become quiet and the operation continues. Quiet i zks pass through with no exception flags set.

IUL is set and message I f %6 is reported if, during the computation of any result element, +0 or
CZERO is multiplied by +1rf or CIr¥. If TRRF T IWL 5 = 2, the corresponding result element is
either a real M=k or a complex value with one or two H=H components. Otherwise, I+, 1UF, and

UHE are set for each result element or component as appropriate.

OETCAY, MAT C=IHVCAY, MAT C=SYS (A, B3

Due to the intricate algorithmic basis of these three operations, exception handling is complex; only a
summary is provided here.

If any element of A or B is a signaling Mz (including either part of complex array elements), then
1YL is set and message “ignaled OF is reported. If TREAF < IWL » = 2, the corresponding element
or component. becomes a quiet Hakl and the operation continues. Quiet Hz!Ms pass through with no

exception flags set.

OUWF, UHF, and IH} are set for each result element as appropriate and may also be set at intermediate
stages of the computation (especially 0'/F when A is (machine) singular). I'/L may also be set with
any of the following messages reported: [+ ¥#8, Irnf—1n¥, and/or I+ f - Ir+. These messages are
only possible due to a =11+ in A or B or an intermediate overflow becoming + I f; in the latter case
they may be suppressed by setting TERF < 0WF » = 1 before the computation.

Pac Functions

FROOT

Special cases for the FEOOT function are handled first. These are Hzks, Irifs, or leading and trailing
zeros in the coefficient array.

HzHs are handled first. If any coefficient is a HaH, then every element of the result array becomes
CHak, HaH s with no exception flags set and the function is complete. (Signaling 14 =H coefficients do
not set IWL).

Irits are dealt with next. If any coefficient is + I+ 1, then every finite coefficient will become zero and
the computation falls through to handle leading and trailing zeros.

Leading zeros are handled next. Every leading zero coefficient will produce a root at « Irit , Irid
with no exception flags set. The next coefficient then becomes the leading coefficient and the process
loops. Every such root stored decrements the degree of the polynomial; the function is complete if the
degree becomes zero.

Trailing zeros are handled next. Every trailing zero coefficient will produce a root at « &, & with no
exception flags set. The second to the last coefficient then becomes the trailing coefficient and the
process loops. Every such root stored decrements the degree of the polynomial and the function is
complete if the degree becomes zero.

At this point, the degree of the polynomial is positive and either all (remaining) coefficients are finite,
in which case the roots of the (reduced) polynimial will be found, or the leading and trailing coefficients
are both = I+, In the latter case, at least two of the original coefficients were + 1+ { and factoriza-
tion does not make sense; if the (new) degree of the polynomial is D, then D roots at < HazH, HaH: are
stored into the result array and the function is complete; every such root stored sets I'/L and reports
message [wriwalid HAedg.

Except for the above special cases, 0W/F and HF are set for every result array component as appro-
priate with 1M always set.

Appendix E: Numeric Exceptions and the IEEE Proposal 175

F LR

As with the FRO0OT function, special cases for the FIUUFE function are handled first. These are Hah
and [t components in the data array.

M zts are handled first. If any component of any data array element is a H=H, then every element of
the result array becomes ¢ HzH, Mzt with no exception flags set and the function is complete.
(Signaling HaH components do not set I\L).

Irifs are dealt with next. If any component of any data array element is = I, then every result
element becomes © I+, [rif * with no exception flags set and the function is complete.

Except for the above special cases, 0%/F and L!HF are set for every result array component as appro-
priate with IH: always set unless the data array was identically zero.

FHEOOT and ITMTEGREAL

If a Mzt (signaling or quiet) results during the evaluation of any of the arguments of FHEOOIT or
THTEGREAL, then error Irmwalid FAra is reported; no exception flags are set and this error halts
the computation.

In general, any value of + I resulting from the evaluation of any of the arguments of FHEOOT or
THTEGRAL becomes +MAMEEAL for the purposes of the computation. TH X, T4VF, and LIHF are set
for the result as appropriate.

Remember that FHFEDOT looks at the value of TEAF ©URF » to decide whether or not to search the
range of denormalized numbers for a root. This region is searched only if TRAF CiiHF» = 2 when the
FHEDOT function is started.

CHOREM
COMFLE®
COMFLE® SHORT

CDHJ

COSH
OET
OET (no operand)

OETL
ooT
EXF
FGILIESS
FHCOREM
FHEDDT
FUARLLUE
FYWARE
GHMMA
IEOUHD
IMFT
IMTEGEAL
TROUHD

69
71
37
90
70
89
90
90
28
103
21
101
30

Description

Absolute value of a complex number.
Inverse hyperbolic cosine.

Argument of a complex number.
Inverse hyperbolic sine.

Inverse hyperbolic tangent.

Decimal to binary/octal/hexadecimal conversion.
Binary/octal/hexadecimal to decimal conversion.
Complex THMAGE field.

One-norm (column norm) of an array.
Complex variable creation.

Complex short variable creation.
Conversion, real to complex.

Complex conjugate.

Complex cosine.

Hyperbolic cosine.

Complex hyperbolic cosine.
Determinant of a matrix.

Determinant of last real matrix used as operand of 1H! or first
operand of Z%' =,

Same as DET (no operand).

Dot (inner) product.

Complex exponential (%)

Second-best guess to value returned by last FHEDOOT,
Frobenius norm.

Rootfinding for functions.

Functional value of last FHEOOT.

Variable to solve for in FHEODT,

Gamma function.

Uncertainty of last THTEGREHRL.

Imaginary part of complex number.

Integration of functions.

Integer round.

176

Keyword Page Description

IWALUE 102 Current approximation to an INTEGREAL.

IVAR 102 Variable of integration in INTECZRAL.
LEHD 72 Array subscript lower bound.
LEOUMD 72 Same as LEHO.

Lo 37 Complex natural logarithm.

LGz 29 Log base 2.

MAT DISF 54 Array display (unformatted).

MAT DISF USIHG 55 Array display (formatted).

MAT THFUT 53 Interactive array input.

MAT .. . CONH 52 Constant array with redimensioning.
MAT . . . I0OH 52 Identity matrix with redimensioning.
AT ; . s ZER 53 Zero array with redimensioning.
MAT...2ERD 53 Sameas MAT...ZER.

MAT . . .PRINT 55 Array printing (unformatted).

MAT PRIMT LUSIHG 56 Array printing (formatted).

MAT = 51 Array copying (simple assignment).
MAT =- 63 Array negation.

MAT =. ..+ 64 Array addition.

MAT = .= 64 Array subtraction.

MAT =...% 65 Array multiplication.

MAT = 52 Scalar to array assignment (numeric expression assignment).
MAT =t 1% 65 Scalar multiplication.

MAT = FOUR 135 Finite Fourier Transform.

MAT = IHY 77 Matrix inversion.

MAT = FROOT 120 Polynomial rootfinding.

MAT = ZY¥3 79 System solution.

MAT = TEH 77 Transpose or conjugate transpose.
MAT = TREH... #* 66 Transpose or conjugate transpose multiply.
HAHMF 30 H=H diagnostic function.

HEIGHEOR 30 Successor/predecessor function.
FOLAR 40 Rectangular to polar conversion.
FRO. 42 Conversion of complex infinities to projective infinities.
RECT 40 Polar to rectangular conversion.
REFT 21 Real part of complex number.

F R R 70 Infinity (row) norm of an array.
SCALELS 29 Exponent scaling function.

SGH 41 Complex unit vector.

SIH 38 Complex sine.

178 Keyword Index

Description

Hyperbolic sine.

Complex hyperbolic sine.
Complex square root.

Same as SF.

Complex tangent.
Hyperbolic tangent.
Complex hyperbolic tangent.
Data type function.

HEHD 71 Array subscript upper bound.
LUEOLHD 71 Same as LIEHD.
¥ 35 Complex addition.

= 35 Complex unary minus.
= 36 Complex subtraction.
* 36 Complex multiplication.
36 Complex division.
36 Complex exponentiation (Z¥)

43 Complex relational operators.

How To Use This Manual (page 9)

Installing and Removing the Module (page 13)
Base Conversions (page 15)

Complex Variables (page 19)

Real Scalar Functions (page 27)

Complex Functions and Operations (page 35)
Array Input and Output (page 51)

Array Arithmetic (page 63)

Scalar-Valued Array Functions (page 69)
Inverse, Transpose, and System Solution (page 77)
Solving f(x)=0 (page 89)

Numerical Integration (page 101)

Finding Roots of Polynomials (page 119)
Finite Fourier Transform (page 133)

ol R

T (P (i S §
Y W

Owner‘s Information (page 143)

Memory Requirements (page 149)

Error Conditions (page 151)

Attention Key Actions (page 155)

Numeric Exceptions and the IEEE Proposal (page 157)
Keyword Index (page 176)

myem»

(ﬁﬂ HEWLETT

PACKARD

Portable Computer Division
1000 N.E. Circle Bivd., Corvallis, OR 97330, U.S.A.

European Headquarters HP-United Kingdom
150, Route Du Nant-D’Avril (Pinewood)
P.0. Box, CH-1217 Meyrin 2 GB-Nine Mile Ride, Wokingham
Geneva-Switzerland Berkshire RG11 3LL

Reorder Number Printed in Singapore 9/84
82480-90001 B2480-90016

	How To Use This Manual (page 9)
	1: Installing and Removing the Module (page 13)
	2: Base Conversions (page 15)
	3: Complex Variables (page 19)
	4: Real Scalar Functions (page 27)
	5: Complex Functions and Operations (page 35)
	6: Array Input and Output (page 51)
	7: Array Arithmetic (page 63)
	8: Scalar-Valued Array Functions (page 69)
	9: Inverse, Transpose, and System Solution (page 77)
	10: Solving f(x)=0 (page 89)
	11: Numerical Integration (page 101)
	12: Finding Roots of Polynomials (119)
	13: Finite Fourier Transform (page 133)
	A: Owner's Information (page 143)
	B: Memory Requirements (page 149)
	C: Error Conditions (page 151)
	D: Attention Key Actions (page 155)
	E: Numeric Exceptions and the IEEE Proposal (page 157)
	Keyword Index (page 176)

