=5 ";"" 5

() B

Using the
HP-1B Interface Windovs.
and Command
Library with DOS.

i tbb L
i i i b bl h"""""I-l--h-i-l.l..

i b b i - = e I_E"“"[.

WiEl

V. Computer
- SMuseur
‘:&KMU eum

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP MAKES NO WARRANTIES OF ANY KIND WITH
REGARD TO THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED.
HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Copyright (© Ilewlett-Packard Company 1989, 1991

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Microsoft@, MS-DOS®, and GW-BASIC® are U.S. registered trademarks of
Microsoft Corporation.

Vectra® is a U.S. registered trademark of Hewlett-Packard Company.

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Printing History
First Edition - July 1989
Second Edition - December 1991

Contents

1. Using the Command Library for HP-IB Control

System Requirements 1-1
Programming Languages - 1-2
Overview of the Command Library 1-2
HP-IB Control 1-3
Library Commands 1-4
Compatibility o000 - 1-6
Typical HP-IB Operations 1-8
Data Transfers 1-8
Formatted-Data Transfers 112
Operation00 1-12
Optional Conditions 1-14
Ending Formatted Input 1-14
Ending Formatted Qutput 1-14
Example of Formatted Transfers 115
Block-Data Transfers 1-15
Operation 0000 1-16
Optional Conditions R B Vi
Ending Arbitrary-Block Input 1-17
Ending Arbitrary-Block Output 1-18
Ending Binary Input o000 .. 118
Ending Binary Output 1-19
Swapping Bytes oo o0 L 1-19
Arbitrary-Block Data Coding 1-20
Example of Block-Data Transfers 1-21
File Transfers 1-21
Operation0 e 1-21
Optional Conditions 122
Ending FileInput 122
Ending File Qutput 1-23

Contents-1

Example of File Transfers

String Transfers oo L.

Operation « « « v . o v e e e e
Optional Conditions
Ending String Inputo
Ending String Qutputo L.
Example of String Transfers

Direct-Memory-Access Transfers
BASIC Service-Request Interrupts
Enabling and Disabling Service-Request Interrupts
Servicing a Requesto L.
Interacting with DMA Transfers
Pascal and C Service-Request Interrupts
Processing I/O Errors
Error Message Mnemonics
BASIC Error Variables
Error Reportingo L.
Addressing Library Commands
Basic Addressingo L.
Extended Addressing L.
System and Active Control
Description of System and Active Control

System Controller
Active Controller

SYSCTL.EXE Program

Syntax Lo e e e
Examples
Comments When you first turn on your computer, the

HP 82335 interface

When the Command Library is Not Controller
Detecting HP-IB Cards Programmatically
Where toGo Nexto,

Contents-2

2.

GW-BASIC Programming

Introductiono oo oo oo 0oL 2-1
Copying Files 2-2
Setting the Environment oo . 2-3
Programming in GW-BASIC 2-4
Writing a BASIC Program 2-6
Saving the BASIC Program 2-12
Running the BASIC Program 2-12
BASIC Error Handling 2-13
Command Library Parameters 2-14
Passing Parameters 2-14
Parameter Types 2-14
Numeric Variable 214
String Variableo 0 2-15
Numeric Array 2-15
Any Typeof Array 215
Example Programs L. 2-16
Oscilloscope Example 2-16
Multimeter Example 2224
QuickBASIC and QBasic Programming
Introductiono .00 Lo L 3-1
Copying Files. 3-2
Programming in QuickBASIC 3-3
Dimensioning Arrays 3-4
Chaining in BASIC 3-4
Writing a BASIC Program 3-6
Saving the BASIC Program 3-12
Compiling and Linking the BASIC Program 3-13
Automatic Compiling and Linking 3-13
Compiling and Linking Separately 3-14
Compiling and Linking in the QuickBASIC Environment . . 3-16
Running the BASIC Program 3-16
BASIC Error Handling 317
Programming in QBasic L. 3-19
Command Library Parameters 3-20
Passing Parameters 3-20
Parameter Types 3-20

Contents-3

Integer Variableo 0L 3-20

Long-Integer Variable 3-21
Single-Precision Real Variable 3-21
Single-Precision Real Array 3-21
String Variableo 0oL 3-22
Any Typeof Array 3-22
Example Programs 3-23
Oscilloscope Example 3-23
Multimeter Exampleo oo L. 3-31
4. BASIC Reference

IOABORT o o oo 4-3
IOCLEAR« o o o o 4-5
IOCONTROL o o oo oo oo .. 4-7
IODMA e 4-11
IOENTER o o o oo v e 4-13
IOENTERA 4-15
IOENTERAB 4-19
IOENTERB oo . 4-23
IOENTERF 4-27
IOENTERS o 4-30
IOEOL o o o 4-33
IOEOL o oo 4-35
IOFASTOUT o o . . o o oo o .. 4-37
IOGETTERM o oo .. 4-39
IOLLOCKOUT« o v v v v o . 4-41
IOLOCAL o .« oo 4-42
IOMATCH o . . o oo oo e e 4-44
IOOUTPUT o o o o o o v s v s 4-46
IOOUTPUTA oo oo v oo 4-48
IOOUTPUTAB 4-51
IOOUTPUTB 4-55
IOOUTPUTF o o o o . 4-59
IOOUTPUTS o o oo s 4-61
IOPASSCTL o . o« o o oo 4-63
IOPEN oo 4-65
IOPPOLL oo 4-67
IOPPOLLC o . o o 4-69

Contents-4

IOPPOLLU o . o o0 4-72
IOREMOTE« ... 4-74
IOREQUEST o .. 4-76
IORESET o o o o o o e 4-78
IOSENDo e 4-80
IOSPOLL o o o oo 4-82
IOSTATUS o o o oo o 4-84
IOTAKECTL o o o oo v v v v oo . 4-88
IOTIMEOUT« 4-90
IOTRIGGER 4-92
Pascal Programming
Introduction o Lo Lo 5-1
Copying Files L. 5-2
Programming in Pascal 5-3
Writing a Pascal Program 5-3
Saving the Pascal Program 5-12
Compiling and Linking with Microsoft Pascal . . . 5-13
Automatic Compiling and Linking 5-13
Compiling and Linking Separately 5-14
Compiling with Turbo Pascal 5-15
Using the Command Library Program 5-15
Using the Command-Line Compiler 5-16
Compiling in the Integrated Environment 5-16
Running the Pascal Program 5-16
Pascal Error Handling 5-17
Command Library Parameters 5-18
Passing Parameters 5-18
Parameter Types 5-18
Integer Expressiono 5-18
Long/Four-Byte Integer Expression 5-19
Integer Variable oL 5-19
Real Expression 5-19
Real Variable o . 5-20
Real Arrayo 5-20
String Variable 000 5-20
Character 9-21
Any Typeof Array 5-21

Contents-5

Example Programs
Oscilloscope Example
Multimeter Exampleo oL

6. C Programming
Introductiono o 0oL
Specifying Memory Models
Copying Files.
ProgramminginC -
Writing a C Program
Saving the C Program
Compiling and Linking the C Program -
Using the Command Library Program
Using the Command-Line Compiler
Compiling in the Integrated Environment
Running the C Program
Using Microsoft FORTRAN With the C Library Ce e
C Error Handling
Command Library Parameters
Passing Parameters
Parameter Types
Integer Expression
Long-Integer Expression
Integer Variableo oL L.
Float Expression
Float Variable
Double Expression
Float Array
String Variable
String Expressiono
Character Expression
Any Typeof Array
Example Programs o000,
Oscilloscope Exampleo
Multimeter Example

Contents-6

7.

Pascal and C Reference

IOABORT o o . . o . o o o 7-3
IOCLEAR oo 7-5
IOCONTROL o o oo oo oo oo 7-7
IODMA 0 7-10

IOENTER Computer 7-12
IOENTERA% “Museumn SR A V']
IOENTERAB¥ "-w 7-17
IOENTERB o i 7-21
IOENTERF o o i e e e 7-25
IOENTERS o o o i v e e s e 7-28
IOEOT o o 7-31
IOEOL o 7-33
IOFASTOUT o o o s e e e s 7-35
IOGETTERM o s o 7-37
IOLLOCKOUT v o v i i i s s e 7-39
IOLOCAL . . o v v v e s e e s, 7-40
IOMATCH o . i s e s s 7-42
IOOUTPUT v oo o e e e e s 7-44
IOOUTPUTA v o o e o e e s s 7-46
IOOUTPUTAB o o e s e . 7-49
IOOUTPUTB . . . « v o v o e o it e s s 7-52
IOOUTPUTF o i s i i s e e 7-55
IOOUTPUTS v o v e e e s e s, 7-57
IOPASSCTL v i i et s s s 7-60
IOPPOLL o o i i s e 7-62
IOPPOLLC i i et s s, 7-64
IOPPOLLU o v v e i e e e e s s 7-67
IOREMOTE o v i s e e s 7-69
IOREQUEST v o v v e i i o e e e 7-71
IORESET o e 7-73
IOSEND o 7-75
IOSPOLL o v i s 7-77
IOSTATUS o i s e s s 7-79
IOTAKECTL o oo e i et e s 7-83
IOTIMEOUT v i st e, 7-85
IOTRIGGER 1-87

Contents-7

A. Error Descriptions

B. Summary of HP-IB

HP-IB Abbreviations B-1
HP-IB Description 0oL B-2
Commands and Data B-6
Controllers, Talkers, and Listeners B-6
Controller B-6
Talker« . .. e B-7
Listener 0 . 0o e e e e B-8
Extended Addressing B-8
Bus Commands B-9
Universal Commands B-9
Addressed Commands B-10
Unaddress Commands B-10
Service Requests B-11
Serial Poll B-11
Parallel Poll B-11
ASCII Codes B-12

C. Reserved Names

Index

Contents-8

Using the Command Library
for HP-IB Control

This manual describes how to use the HP-IB Interface and Command Library
for HP-IB control. Use this manual if you want to control instruments from a
DOS-based language listed on the Supported Languages sheet.

This chapter shows how to set up and use the Command Library for HP-IB
instrument control. The following chapters provide detailed information about
how to use the Command Library for programming in various languages.

System Requirements
You must have the following components to set up and use the Command
Library:

» An HP Vectra® PC or IBM PC/XT/AT (or compatible) computer with
at least 256 kilobytes of memory and an MS-DOS® 3.1 or later operating
system (or PC-DOS 3.1 or later).

m The HP 82335 HP-IB Interface, which should be installed. (See the Installing
the HP-1B Interface booklet for instructions.)

If you’re using an earlier HP 82990A HP-IB Interface, see “Compatibility”
later in this chapter.

m The HP-IB Tools disks, which contain software to provide HP-IB control
commands for the programming language you intend to use.

m A supported programming language, such as Microsoft® QuickBASIC. This
software is not part of the Command Library. (See the Supported Languages
sheet for a list of languages.)

Using the Command Library for HP-IB Control 1-1

Programming Languages

The Command Library supports four categories of programming languages.
The supported versions of each language are listed on the Supported Languages
sheet.

a GW-BASIC® and similar languages, including HP Vectra BASIC, Microsoft
GW-BASIC, and IBM BASICA.

m QuickBASIC and similar languages, including Microsoft QuickBASIC,
Microsoft QBasic and Microsoft Compiled BASIC.

m Pascal languages, including Microsoft Pascal and Borland Turbo Pascal.
m C languages, including Microsoft C, Microsoft QuickC, and Borland Turbo C.

Each category is discussed in a separate chapter in this manual. See
the appropriate chapter for specific programming information. General
programming information follows below.

Overview of the Command Library

The HP-IB Command Library for MS-DOS is a series of commands that let
you control HP-IB instruments with a personal computer.

The commands are available on the Library disks in several programming
languages: BASIC (interpreted and compiled), Pascal, and C. See the
Supported Languages sheet for a detailed list of languages. For convenience,
example programs in many supported languages are also included on the disk.
In addition, a READ.ME file gives you current notes about the Command
Library.

The HP-IB interface card provides the necessary electrical and mechanical
interface for IEEE-488 communication. See appendix B for more information
about HP-IB operation.

1-2 Using the Command Library for HP-IB Control

HP-IB Control

The Library commands give you access to the IEEE-488 standard control lines

and bus commands listed below.

Control Lines:
IFC
ATN
SRQ
REN
EOI

LLO
DCL
SPE
SPD
PPU

GTL
SDC
PPC
GET
TCT

UNL
UNT

Command

Universal Bus Commands:

Addressed Bus Commands:

Unaddress Bus Commands:

Description

Interface Clear
Attention
Service Request
Remote Enable
End Or Identify

Local Lockout

Device Clear

Serial Poll Enable

Serial Poll Disable
Parallel Poll Unconfigure

Go To Local

Selected Device Clear
Parallel Poll Configure
Group Execute Trigger
Take Control

Unlisten
Untalk

The HP-IB Interface and Command Library support the following HP-IB
functions (indicated by their IEEE 488.1 capability codes): SH1, AH1, T5,

TES5, L3, LE3, SR1, RLO, PP0, DCO, DTO, E2, C1, 2, 3, 4, 9.

Using the Command Library for HP-IB Control

1-3

Library Commands

The Library commands give you a great deal of programming flexibility. For
example, you can enter or output data directly as strings, real numbers, or

binary data.

The following commands perform over 80 percent of the I/O tasks in most
applications. Because the Library has a built-in number builder and formatter,
there’s no need for the programmer to convert data between string and
numeric format. This reduces the number of programming statements and

the associated overhead. Alternatively, unformatted transfers maximize the

data-transfer rate.

IOENTER
IOENTERA
IOENTERAB
IOENTERB
IOENTERF
IOENTERS
I00UTPUT
IOOUTPUTA
IOOUTPUTAB
100UTPUTB
IOOUTPUTF
IOOUTPUTS

Enter a single real number from a device.

Enter an array of real numbers from a device.

Enter IEEE-488.2 “arbitrary-block” data from a device.
Enter an unformatted block of data from a device.
Enter the contents of a file from a device or interface.
Enter an ASCII string from a device.

Output a single real number to a device.

Output an array of real numbers to a device.

Output IEEE-488.2 “arbitrary-block” data to a device.
Output an unformatted block of data to a device.
Output the contents of a file to a device or interface.

Output an ASCII string to a device.

1-4 Using the Command Library for HP-IB Control

The following commands let you check instrument and bus status whenever
your program requires it.

IOPEN Set up a service-request interrupt (BASIC only).
IOPPOLL Perform a parallel poll.

IOPPOLLC Perform a parallel poll configure.

IOPPOLLU Perform a parallel poll unconfigure.

IOSPOLL Perform a serial poll.

IOSTATUS Determine the status of the HP-IB interface.

The following commands let you transfer active control using the HP 82335
HP-IB card.

IOPASSCTL Pass active control from the computer to a device on the bus.

IOREQUEST Set up a serial poll status byte for the computer to request
service from the active controller.

IOTAKECTL Take active control from the currently active controller back to

the computer.

Using the Command Library for HP-IB Control 1-5

The following commands give you access to various HP-IB control lines and bus

commands.

IOABORT Abort all interface activity.

IOCLEAR Return a device to a known state.
IOCONTROL Write information directly to the interface.
IODMA Set up DMA control.

IOEOI Control the interface EOI mode.

IOEOL Define an end-of-line string for output.
IOFASTOUT Enables high-speed output timing.
IOGETTERM Determine the reason for a read termination.
IOLLOCKOUT Disable device front panel operation.
IOLOCAL Enable device front panel operation.
IOMATCH Define a read termination character.
IOREMOTE Place a device in REMOTE mode.
IORESET Set the interface to its start-up configuration.
IOSEND Send user-specified HP-IB commands.
[IOTIMEOUT Set a timeout value.

IOTRIGGER Trigger a device.

Compatibility

This HP 82335 HP-IB Interface and Command Library differ from the earlier
HP 82990A HP-IB Interface and Command Library.

Any program written and compiled using the earlier Command Library will
run properly on the current HP-IB interface.

Any program written and compiled using the current Command Library

will run properly on the earlier HP-IB interface—ezcept that BASIC
service-request interrupts using IOPEN and pass control functions are not
supported by the earlier interface. All other current features of the Command
Library are supported (see below).

1-6 Using the Command Library for HP-IB Control

The current Command Library differs from the earlier library in the following
ways:

m The supported programming languages have changed.

m The current library and interface support service-request interrupts for
BASIC languages. (This is not supported by the earlier interface.)

m The current library supports arbitrary-block and binary data transfers, which
don’t require formatting conversions.

m The current library supports file transfers.

m The current library supports high-speed and standard-speed data transfers
for all output operations, whereas the earlier library used high-speed
transfers for DMA output and standard-speed transfers for all other output.

m The current library does not support the obsolete Hewlett-Packard PC
Instruments System, whereas the earlier library did support it. This means
you can’t control both HP-IB instruments and the PC Instruments System
from the same program with the current library.

m The current library supports passing of active control.

m The current library does not support HP-IB disk and tape access.

Using the Command Library for HP-IB Control 1-7

Typical HP-IB Operations

The following sections of this chapter give general guidelines for typical HP-1B
operations:

m Formatted-data transfers.
m Block-data transfers.

a File transfers.

String transfers.

m Direct-memory-access (DMA) transfers.

Service-request interrupts.

Processing 1/0 errors.

m Addressing Library commands.

These guidelines apply to the type of operation, not to the programming
language. Use this general information along with the specific information in
the chapters that cover your programming language.

Data Transfers

The Command Library provides six types of data transfers, each with an input
command and an output command. The type of transfer you use in a program
depends in part upon these factors:

a The format of the data required by the HP-IB device.
m The type of program variable that holds or will hold the data.

m The transfer speed required by the program or application.

1-8 Using the Command Library for HP-IB Control

The following table shows some of the differences among the types of data
transfers. It can help you decide which type of transfer to use for a particular

application.
Type of Commands HP-IB Device Program Transfer
Transfer Format Variable Speed
Formatted IOENTER ASCII string Real number Slower
Number IOOUTPUT
Formatted Array IOENTERA ASCII string Real number Slower
IO0OUTPUTA
String IOENTERS ASCII string String (character Faster
IOOUTPUTS array)
Arbitrary-Block IOENTERAB IEEE-488.2 Real number, Faster
Data IOOUTPUTAB (numeric or integer, or string
(IEEE-488.2) string data)* (character
array)*
Binary Block IOENTERB Numeric or string Real number, Faster
Data IOOUTPUTB data* integer, or string
(character
array)*
File IOENTERF Numeric or string Real number, Slower
IOOUTPUTF data integer, or string
(character array)
* String data not supported for BASIC. Use IOENTERS or IOOUTPUTS.

Using the Command Library for HP-IB Control

1-9

Certain other capabilities of the six types of transfers will help you decide
which type to use. Detailed information about these differences is given in the
sections that follow.

Type of Transfer Commands DMA Transfer Byte-Swapping
Supported? Supported?

Formatted Number IOENTER No Not applicable
IOOUTPUT

Formatted Array IOENTERA No Not applicable
IOOUTPUTA

String IOENTERS Yes Not applicable
IOOUTPUTS

Arbitrary-Block Data IOENTERAB Yes* Yes*

(IEEE-488.2) IOOUTPUTAB

Binary Block Data IOENTERB Yes* Yes*
IOOUTPUTB

File IOENTERF No No
IOOUTPUTF

* DMA and byte-swapping not supported simultaneously.

In the table above, “DMA transfer” refers to using the computer’s ability to
transfer data directly to and from memory—the data bypasses the computer’s
main processor. “Byte-swapping” refers to the computer’s ability to adjust

for data-transfer differences between an HP-IB device and the computer—
many devices send and receive numerical data with the most-significant byte
first, whercas the computer stores and retrieves numerical data with the
least-significant byte first. These aspects of data transfer are discussed in more
detail next.

Input transfers differ in the conditions that end the input. Qutput transfers
differ in the actions that occur at the end of the output. The following table
summarizes input and output termination.

1-10 Using the Command Library for HP-IB Control

Input Commands
and Terminating Conditions

Output Commands
and Terminating Actions

IOENTER

IOOUTPUT

EOI sensed true (if enabled) EOL added

Linefeed received EOI set true (if enabled)
IOENTERA IOOUTPUTA

EOI sensed true (if enabled) EOL added

Linefeed received
Maximum number of values received

EOI set true (if enabled)

IOENTERAB IOOUTPUTAB
Coded number of bytes received (definite) (nothing)
Linefeed with EOI true (indefinite) *

Maximum number of bytes received
*

IOENTERB IOOUTPUTB

EOI sensed true (if enabled) EOL added

Match character with EQI true (if enabled)

Maximum number of bytes received
*

EOI set true (if enabled)
*

IOENTERF

EOI sensed true (if enabled)
Match character (if enabled)
Maximum number of characters received

I0OUTPUTF

EOL added
EOI set true (if enabled)

IOENTERS

EOI sensed true (if enabled)
Match character (if enabled)

Maximum number of characters received
*

IOOUTPUTS

EOL added
EOI set true (if enabled)
*

* For BASIC only, ended by high-priority SRQ during DMA (if enabled).

Using the Command Library for HP-IB Control

1-11

If you want to increase the speed of data transfers, you have several options:

® Use block-data transfers. Arbitrary-block and binary transfers can be 10
times faster than formatted transfers. (Also, string transfers are much faster
than formatted transfers.)

m Use the DMA option. DMA can speed transfers by 15 percent.

m Use high-speed bus timing (output only). High-speed timing can speed
output transfers by 30 percent.

The following topics describe various types of data transfers.

Formatted-Data Transfers

Many HP-IB devices send and receive numeric data as a string of ASCII
characters—digits that represent the value. For example, the value 14.500 can
be represented by the characters “1 4 . 5”—although this string of characters
has no numeric significance to the computer. However, the string of characters
is readily converted to and from a numeric value. Such “formatted data”
provides a convenient method for transferring data.

Operation

A transfer of formatted data necessarily involves converting between ASCII
characters and numeric values. The Command Library builds this conversion
into the IOENTER, IOENTERA, IOOUTPUT, and IOOUTPUTA commands.
If your HP-IB device sends and receives numeric data as ASCII characters,
your program can use these commands to exchange data with the device. The
following diagrams represent these transfers.

1-12 Using the Command Library for HP-IB Control

IOENTER

Memory numeric Number AsSCHI HP-1B
Conversion P Device

|IOOUTPUT
IOENTERA

Memory ~ numetic ! Numbe:r) ASCIi HP-1B
Conversion S

Device

IOOUTPUTA

Formatted-data transfers require the use of the computer’s processor to
convert the data. Therefore, these transfers can’t use direct-memory access
(DMA). The automatic data-conversion process also takes a small amount

of time, making formatted-data transfers slower than block-data transfers.
However, formatted-data transfers are usually satisfactory for all but the most
time-critical of transfers.

A valid number must contain only the allowable characters (0123456789+-.Ee)
in a correct sequence—any other character indicates the end of the number.
Numbers must be 0 or in the range £:107® to 4£10%. For array input,
nonnumeric characters separate the numbers. The following examples illustrate
the conversion from characters to numbers:

1.25 Enters the value 1.25.

-4 .5E3 Enters the value —4.5 x 10°.
.000585abc Enters the value 0.00055.
1,2340567 FEnters three values: 1, 234, and 567.

Using the Command Library for HP-IB Control 1-13

Optional Conditions
Formatted-data transfers support the following options:

m Disabling EOI for input and output. The HP-IB End Or Identify line usually
goes active for the last data byte transferred, but you can disable this
convention—use the IOEQI command.

m Changing the EOL string for output. Data is usually terminated by
carriage-return and linefeed characters, but you can change or eliminate these
characters—use the IOEOL command.

m Setting the HP-IB transfer timing for output. Data is usually output with
standard timing, but you can set high-speed timing—use the IOFASTOUT
command.

Ending Formatted Input

You can use the IOENTER and IOENTERA commands to enter numeric
data—one value or an array of values. The input operation ends when one of
these conditions occurs:

m A data byte is received with the HP-IB EOI line active. You can prevent the

EOI line from ending the transfer by using the IOEQOI command to disable
EOL

m A linefeed character is received (after a valid number has been received
for IOENTER, or after the maximum number of values you specified in
IOENTERA is received).

Ending Formatted Output

You can use the IOOUTPUT and IOOUTPUTA commands to send numeric
data—one value or an array of values. At the end of the output operation these
events occur:

m The EOL string is sent at the end of the data. You can change or eliminate
the EOL string by using the IOEOL command.

m The EOI line is set active for the last data byte (usually the last EOL
character). You can prevent this line from being set by using the IOEOI
command to disable EQI.

1-14 Using the Command Library for HP-IB Control

Example of Formatted Transfers

The following QuickBASIC 4.5 example shows how a program can input and
output formatted data:

DIM READINGS! (49)

DEVICEZ = 723

MAX.ELEMY = 50 : ACT.ELEM) = 0

'Read a maximum of 50 values from device 723

CALL IOENTERA(DEVICEZ,SEG READINGS!(0),MAX.ELEMY, ACT.ELEMY)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

SUM! = 0
FOR I% = 1 TO ACT.ELEMY,

SUM! = SUM! + READING!'(I%)
NEXT IY

DEVICEgZ = 701

’Send the sum to device 701

CALL IOOUTPUT(DEVICE&,SUM!)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

Block-Data Transfers

Some HP-IB devices can send and receive data as a block of bytes—each group
of bytes within the block conveys information in an “internal” form that’s
recognizable to the device and the computer. For example, an integer from
—32,768 to 32,767 may be represented by only two bytes, a real number may
be represented by four bytes, and a string character may be represented by one
byte. The actual number of bytes depends upon the internal designs of the two
devices—and it’s up to your program to ensure the devices are consistent in
interpreting the data.

Block-data transfers are efficient at moving data bytes between a device and
the computer’s memory because the data isn’t interpreted—it’s just moved.
However, the data is not necessarily recognizable to you by reading the bytes.

Note that for string data, the block transfer simply transfers the characters—it
doesn’t access or update the string-length parameter or append a terminating

Using the Command Library for HP-|B Control 1-15

character. Note also that you can’t transfer data to or from a string using

BASIC.

Operation

A transfer of block data involves no conversions—data is moved byte-for-byte
between the two devices. The Command Library provides transfers for two
types of block data:

m Arbitrary-block data. Block data that has two or more bytes of IEEE-488.2
coding added to define the size of the block. For an output transfer, the
size is definite. For an input transfer, the size can be definite, or it can be
indefinite (with a termination byte). (See “Arbitrary-Block Data Coding”
below for a description of the coding.)

m Binary-block data. Block data that has no coding—just data bytes.

If your HP-IB device sends and receives arbitrary-block data (compatible with
IEEE-488.2), your program can use the IOENTERAB and IOOUTPUTAB
commands to exchange data with the device.

If your HP-IB device sends and receives unformatted, uncoded binary data,
your program can use the IOENTERB and IOOUTPUTB commands to
exchange data with the device.

The following diagrams represent these transfers.

IOENTERAB
Memory < data bytes : code + data bytes > l}J-lepwche
IOOUTPUTAB
IOENTERB
Memory < data bytes) S:v-iche

IOOUTPUTB

1-16 Using the Command Library for HP-IB Control

Optional Conditions

Block-data transfers support the following options:

m Disabling EOI for binary-block input and output. The HP-IB End Or
Identify line usually goes active for the last data byte transferred, but you
can disable this convention—use the IOEOI command. (Arbitrary-block
transfers disregard this option.)

m Changing the EOL string for binary-block output. Data is usually
terminated by carriage-return and linefeed characters, but you can change
or eliminate these characters—use the IOEOL command. (Arbitrary-block
transfers disregard this option.)

m Changing the terminating “match” character for binary-block input. The
input of binary data can usually be ended by a linefeed character, but
you can change this character or disable this option—use the IOMATCH
command. (Arbitrary-block transfers disregard this option.)

m Using byte-swapping for input and output. Block data is usually transferred
to and from sequential memory locations, but you can change the order in
which memory locations are accessed. (See “Swapping Bytes” below.)

m Enabling DMA for input and output. Data transfers are usually managed
by the main processor, but you can specify that the DMA controller route
the data directly to and from memory—use the IODMA command. (See
“Direct-Memory-Access Transfers” below.)

m Setting the HP-IB transfer timing for output. Data is usually output with
standard timing, but you can set high-speed timing—use the IOFASTOUT
command.

Ending Arbitrary-Block Input

You can use the IOENTERAB command to enter arbitrary-block data. The
input operation ends when one of these conditions occurs:

® The maximum number of bytes specified in the command is received.

m For input of a definite-length block, the number of bytes indicated by the
block coding is received.

Using the Command Library for HP-IB Control 1-17

m For input of an indefinite-length block, a linefeed character is received with
the EOI line active. (The linefeed character is not stored in memory.) The
EOI option specified by the IOEOI command is disregarded.

a For DMA input in BASIC, a high-priority service request occurs. (See
“Service Requests” later in this chapter.)

Ending Arbitrary-Block Output

You can use the IOOUTPUTAB command to send arbitrary-block data with
a definite length. At the end of the output operation, no events occur because
the coding completely defines the end of the transfer:

m No EOL string is sent. (The EOL string specified by the IOEOL command is
disregarded.)

m The EOI line is not set. (The EOI option specified by the IOEOI command
is disregarded.)

For DMA output in BASIC, the transfer ends immediately if a high-priority
service request occurs. (See “Service Requests” later in this chapter.)

Ending Binary Input

You can use the IOENTERB command to enter binary data. The input
operation ends when one of these conditions occurs:

@ The maximum number of bytes specified in the command is received.

m A data byte is received with the HP-IB EOI line active. (This byte is stored
in memory.) You can prevent the EOI line from ending the transfer by using
the IOEOI command to disable EOI

m The terminating “match” character is received, the EOI option is enabled,
and the HP-IB EOI line is active. (The “match” character is not stored in
memory.) You can prevent the “match” character from ending the transfer
or change the “match” character by using the IOMATCH command—or you
can disable the EOI option by using the IOEOI command. You’ll normally
not use a “match” character because it is likely that within the binary data
stream there will be bytes corresponding to the match character.

m For DMA input in BASIC, a high-priority service request occurs. (See
“Service Requests” later in this chapter.)

1-18 Using the Command Library for HP-IB Control

Computer

Museum

Ending Binary Output

You can use the IOOUTPUTB command to send binary data. At the end of
the output operation these events occur:

m The EOL string is sent at the end of the data. You can change or eliminate
the EOL string by using the IOEOL command.

m The EOI line is set active for the last data byte (usually the last EOL
character). You can prevent this line from being set by using the IOEOI
command to disable EOI.

For DMA output in BASIC, the transfer ends immediately if a high-priority
service request occurs. (See “Service Requests” later in this chapter.)

Swapping Bytes

Whenever your program is transferring block data, you must ensure that you
set up the transfer command to structure the data properly:

m Data size. The sending and receiving devices should treat the data
consistently. For example, if the device sends values as two-byte numbers,
the computer should use this data as two-byte numbers. For the computer,
data size is determined by the variable types used in the program.

m Data order. The sending and receiving devices should access data bytes
in the same order—or else compensate for differences. For example, most
devices send values with the most-significant byte first, and most PC
computers interpret data in memory as least-significant byte first. “Byte
swapping” enables the computer to swap the order of bytes before they’re
stored in memory and before they’re sent on HP-IB.

The IOENTERAB, IOENTERB, IOOUTPUTAB, and IOOUTPUTB
commands provide a flag that specifies byte swapping—the value indicates the
size of the data in bytes, from 1 to 8.

The value 1 means one-byte data—no swapping occurs. This is appropriate for
string data and for DMA transfers.

The value 4 means four-byte data—groups of four bytes are interchanged
before they’re stored in memory or sent out. This is appropriate for four-byte
data, such as single-precision real numbers.

Using the Command Library for HP-IB Control 1-19

For arbitrary-block data, only the data bytes are swapped—the IEEE coding
isn’t involved.

Arbitrary-Block Data Coding

The IOENTERAB and IOOUTPUTAB commands conform to the IEEE-488.2
standard, which defines special coding for arbitrary-block data. This section
describes the coding used by these commands.

IOENTERAB accepts input data called “arbitrary-block program data,” which
can be either definite-length or indefinite-length. The data must be preceded
by either (1) three or more characters that define the number of data bytes
that follow or (2) two characters that indicate an indefinite number of data
bytes (the end is indicated by a linefeed character with the EOI line active).

IOOUTPUTAB sends output data called “definite-length arbitrary-block
response data.” The data is preceded by three or more characters that define
the number of data bytes that follow. (Note that no indefinite-length output is
possible.)

The data sequence for definite-length data contains four parts (the second
character marks the data as definite-length):

1. A # character.

2. One count digit (1 through 9) that indicates how many digits follow to
convey the byte count.

3. One to nine digits (as previously specified) that convey the byte count—the
number of data bytes that follow,

4. The specified number of data bytes.

The data sequence for indefinite-length data contains four parts (the second
character marks the data as indefinite-length):

1. A # character.

2. The count digit 0, which indicates an indefinite-length block.
3. Any number of data bytes.
4

. A linefeed character with the EOI line active, which indicates the previous
data byte was the last data byte.

1-20 Using the Command Library for HP-IB Control

The following examples show how arbitrary-block data is coded:

1 2 byte byte One count digit specifying two data bytes.

3 0 0 2 byte byte Three count digits specifying two data
bytes.

0 byte ... Dbyte linefeed/FOI Unspecified number of data bytes.

Example of Block-Data Transfers

The following QuickBASIC 4.5 example shows how a program can input and
output arbitrary-block and binary data with byte swapping:

DIM READINGS#(49)
DEVICE& = 723
SWAPY, = 8 : MAX.BYTE), = 50 * SWAP), : ACT.BYTE) = O
’Read a maximum of 50 binary 8-byte values from device 723
CALL IOENTERB(DEVICEZ,SEG READINGS#(0) ,MAX.BYTEY,,ACT.BYTEY,,SWAPY)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
SUM# = 0
NUMY, = ACT.BYTE), / SWAPY,
FOR I = 1 TO NUM}
SUM# = SUM# + READING#(I%)
NEXT I
DEVICEg = 701
’Send the sum to device 701 as arbitrary-block data
CALL IOOUTPUTAB(DEVICE%,SEG SUM#,SWAPY,,SWAP))
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

File Transfers

HP-IB devices can transfer data directly to and from a file on your computer.

Operation

The IOENTERF and IOOUTPUTF commands transfer data bytes as shown in
the following diagram:

Using the Command Library for HP-IB Control 1-21

IOENTERF

File data bytes HP'_|B
> Device

IOOUTPUTF

Optional Conditions
File transfers support the following options:

m Disabling EOI for input and output. The HP-IB End Or Identify line usually
goes active for the last data byte transferred, but you can disable this
convention—use the IOEOI command.

m Changing the EOL string for output. Data is usually terminated by
carriage-return and linefeed characters, but you can change or eliminate these
characters—use the IOEOL command.

m Changing the terminating “match” character for input. The input of file
data can usually be ended by a linefeed character, but you can change this
character or disable this option—use the IOMATCH command.

m Setting the HP-IB transfer timing for output. Data is usually output with
standard timing, but you can set high-speed timing—use the IOFASTOUT
command.

Ending File Input

You can use the IOENTERF command to enter file data. The input operation
ends when one of these conditions occurs:

m The maximum number of bytes specified in the IOENTERF command is
received.

m A data byte is received with the HP-IB EOI line active. You can prevent the
EOI line from ending the transfer by using the IOEOI command to disable
EOL

m The terminating “match” character is received. You can prevent the “match”
character from ending the transfer or change the “match” character by using
the IOMATCH command.

1-22 Using the Command Library for HP-IB Control

Note If you are transferring binary files, you should turn off
character match to make sure the transfer does not end

d prematurely, since it is likely there will be a byte in the binary
data stream that will correspond to the match character.

m A file error occurs, usually meaning the disk is full.

Ending File Output

You can use the IOOUTPUTF command to send the contents of a file to a
specified device or interface. After the file is sent, the EOL string is sent and
the EOI line is set, if enabled.

Example of File Transfers

The following QuickBASIC 4.5 example shows how a program can transfer file
data:

DEVE = 723

LENGTH& = 10

FILE.NAME$ = "ENTER.DAT"

APPENDY, = O

CALL IOENTERF(DEVZ,FILE.NAME$,LENGTHZ ,APPENDY)
;F PCIB.ERR NOERR THEN ERROR PCIB.BASERR

String Transfers

Many HP-IB devices send and receive data as a string of ASCII characters—
either digits that represent values, or characters that convey other information.
If your program doesn’t need this data converted into numeric values, the data
can be efficiently transferred as a string of characters.

Operation

The IOENTERS and IOOUTPUTS commands transfer string data and ensure
that the computer treats the data as a string variable (a character array). (If
you're using Pascal or C, the IOENTERAB, IOENTERB, IOOUTPUTAB,

Using the Command Library for HP-IB Control 1-23

and IOOUTPUTB commands can also transfer string data, but they treat

the data as binary data, without accessing or updating the string-length
parameter or appending a termination character.) If your HP-IB device sends
and receives data as ASCII characters, your program can use the IOENTERS
and IOOUTPUTS commands to exchange data with the device. The following
diagram represents these transfers.

IOENTERS

Memory N ASCII HP-1B
—® Device

IOOUTPUTS

Optional Conditions

String-data transfers support the following options:

m Disabling EOI for input and output. The HP-IB End Or Identify line usually
goes active for the last data byte transferred, but you can disable this
convention—use the IOEOI command.

m Changing the EOL string for output. Data is usually terminated by
carriage-return and linefeed characters, but you can change or eliminate these
characters—use the IOEOL command.

m Changing the terminating “match” character for input. The input of string
data can usually be ended by a linefeed character, but you can change this
character or disable this option—use the IOMATCH command.

m Enabling DMA for input and output. Data transfers are usually managed
by the main processor, but you can specify that the DMA controller route
the data directly to and from memory—use the IODMA command. (See
“Direct-Memory-Access Transfers” below.)

m Setting the HP-IB transfer timing for output. Data is usually output with
standard timing, but you can set high-speed timing—use the IOFASTOUT

command.

1-24 Using the Command Library for HP-IB Control

Ending String Input
You can use the IOENTERS command to enter string data. The input

operation ends when one of these conditions occurs:

m A data byte is received with the HP-IB EOI line active. You can prevent the
EOI line from ending the transfer by using the IOEOI command to disable
EOL

m The terminating “match” character is received. You can prevent the “match”
character from ending the transfer or change the “match” character by using
the IOMATCH command.

m The maximum number of characters you specified is received. You specify
the maximum number in the IOENTERS command.

m For DMA input in BASIC, a high-priority service request occurs. (See
“Service Requests” later in this chapter.)
Ending String Output

You can use the [IOOUTPUTS command to send string data. At the end of the
output operation these events occur:

m The EOL string is sent at the end of the data. You can change or eliminate
the EOL string by using the IOEOL command.

m The EOI line is set active for the last data byte (usually the last EOL
character). You can prevent this line from being set by using the IOEOI
command to disable EOI.

For DMA output in BASIC, the transfer ends immediately if a high-priority
service request occurs. (See “Service Requests” later in this chapter.)

Using the Command Library for HP-IB Control 1-25

Example of String Transfers

The following QuickBASIC 4.5 example shows how a program can input and
output string data:

DEVg& = 723 : INFO$ = "1ST1"

LENGTH), = LEN(INFO$)

’Send "1ST1" to device 723.

CALL IOQUTPUTS(DEV&,INFO$,LENGTHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

MAX.LENGTHY = 10 : ACTUAL.LENGTH) = O

INFO$ = SPACE$(MAX.LENGTHY)

’Read a string of 10 characters maximum from device
CALL IOENTERS(DEVZ,INFO$,MAX.LENGTHY,ACTUAL.LENGTHX)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

INFO$ = LEFT$(INFO$,ACTUAL.LENGTHA)

Direct-Memory-Access Transfers

Data transfers are usually managed by the main processor in the computer.

But you can specify that the DMA controller route the data directly to and
from memory. This is often faster for transferring long strings or large blocks of
arbitrary-block data or binary data.

You can use DMA transfers for all types of transfers except formatted transfers
and file transfers. Therefore you can use DMA for arbitrary-block data, binary
data, and string data.

1-26 Using the Command Library for HP-IB Control

The following table summarizes restrictions for DMA transfers. Any restriction
that’s violated causes an EUNKNOWN error.

Command DMA Support DMA Restrictions

Formatted Transfers:

IOENTER Not supported
IOENTERA

IOOUTPUT Not supported
IOOUTPUTA

Block Transfers:

IOENTERAB Supported Byte-swap flag = 1 (no swapping)
IOENTERB Match flag = 0 (disabled)

IOOUTPUTAB Supported Byte-swap flag = 1 (no swapping)
IOOUTPUTB

String Transfers:

IOENTERS Supported Match flag = 0 (disabled)
IOOUTPUTS Supported (None)

File Transfers:

IOENTERF Not supported

IOOUTPUTF Not supported

To set up DMA transfers, use the IODMA command. This command requires
three parameters:

B Select code of the interface.

m DMA size. This specifies the minimum number of bytes for which a DMA
transfer is used. If the transfer involves at least this number of bytes, a
DMA transfer is used. If the transfer involves a smaller number of bytes, a
conventional transfer is used. If this value is 0, DMA transfers are disabled.

m Channel number. This specifies the DMA channel number to use for DMA
transfers. The number must be 2 or 3—channel 3 is recommended because
it’s less likely to conflict with other usage.

Using the Command Library for HP-IB Control 1-27

The IODMA command sets up DMA transfers selectively. That is, you specify
the minimum size of transfers that use DMA. Then “large” transfers use DMA,
and “small” transfers don’t. A typical value for the DMA size is from 10 to

100 bytes, but the performance of your application may be optimum at a very
different DMA size.

Of course you can disable DMA transfers or change the DMA size at any time
using the IODMA command again.

The following QuickBASIC 4.5 example shows how a program can set up and
use a DMA transfer for binary input:

DIM RDGSY(1000)
MAXLENGTHY, = 1000 * 2

ISC& = 7 : ADDR& = 5

DEVICEZ = 100 * ISC& + ADDR%

DMASIZEY, = 10 : CHANNELY, = 3

CALL IODMA(ISC&,DMASIZEY ,CHANNELY,)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
MATCHY, = O : EDL$ = "" : SWAPY = 1

CALL IOMATCH(ISCZ,EOL$,MATCHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

CALL IOENTERB(DEVICE&,SEG RDGSY (0) ,MAXLENGTHY,,LENGTHY, SWAPY)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

For DMA transfers in BASIC, the transfer ends immediately if a high-priority
service request occurs. The BASIC PEN(1) function returns a value that
indicates whether the last transfer was interrupted by a service request: 1
indicates a DMA interrupt, 0 indicates no DMA interrupt. (See “BASIC
Service-Request Interrupts” next.)

1-28 Using the Command Library for HP-IB Control

BASIC Service-Request Interrupts

BASIC languages (except QBasic) support interrupts caused by HP-IB
devices—the interrupts are called “service requests” because the device
essentially requests the attention of the controller. If the controller enables
service-request interrupts, it is automatically notified when such an event
occurs, and it can respond as required. (See “Service Requests” in appendix B
for more information about the operation of HP-IB service requests.)

If you want your program to know “right away” if a device requests service,
you can enable service-request interrupts using the IOPEN Library command.
While service-request interrupts are enabled, the computer automatically
checks for pending service requests at the end of each program line—if

a request is pending, the program immediately branches to the routine

you specify. Thus, by enabling service-request interrupts, your BASIC
program automatically checks for requests without actually branching to a
status-checking routine—it branches only after a request occurs.

You should be aware that the Command Library implements service-request
interrupts using the BASIC functionality of the PEN commands, which were
designed for interaction with a light pen. If your program requires the use of a
light pen, the program shouldn’t enable service-request interrupts—instead, it
can use the IOSTATUS Library command at certain times to find out whether
a request is waiting.

If you want your BASIC program to check HP-IB devices only at a certain part
of the program, you don’t need to use service-request interrupts—you can use
the IOSTATUS Library command to find out whether a device has requested
service since you last checked.

Enabling and Disabling Service-Request Interrupts
To enable service-request interrupts, your program must do the following:

1. Define the interrupt branching. Use the ON PEN command in BASIC to
define the branching to perform when an event occurs.

2. Enable the event to be logged. Use the PEN ON command in BASIC to
allow the program to recognize and respond to service-request interrupts.

Using the Command Library for HP-IB Control 1-29

3. Set up the interrupt event. Use the IOPEN Library command to define the
select code of the HP-IB interface and the priority of the interrupt.

4. Include a service routine. Include commands that perform the desired
action whenever a service-request interrupt occurs. (See “Servicing a
Request” below.)

The following QuickBASIC 4.5 example shows how a program can enable
service-request interrupts and branch to a routine when one occurs:

ISC& = 7 : PRIORITY) = O

ON PEN GOSUB SRQ 'define interrupt branching
PEN ON ’enable SRQ event to be logged
CALL IOPEN(ISC&,PRIORITYY) ’set up interrupt event

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
’:main part of program here

éRQ: ’service routine
%service-request routine here

RETURN

To disable or suspend service-request interrupts, your program can do either of
the following:

m Disable requests. Use the PEN OFF command in BASIC to prevent the
program from logging and responding to service requests. Requests that
occur are discarded.

m Suspend requests. Use the PEN STOP command in BASIC to temporarily
prevent the program from responding to service requests. However, requests
are still logged, and they’re processed when PEN ON is next executed.

Although your program may disable or suspend service-request interrupts,
the IOPEN command has set up the interface to look for service requests—
and this continues to happen, even after PEN OFF or PEN STOP. For this
reason, if the IOPEN command sets service-request interrupts to interrupt
DMA transfers, they’ll be interrupted even though service-request interrupts
are disabled or suspended. (See “Interacting with DMA Transfers” below.)

1-30 Using the Command Library for HP-IB Control

The setup provided by IOPEN remains in effect until one of the following
commands is executed. If you want service-request interrupts to be enabled
after one of these commands, execute IOPEN again.

s Another IOPEN command, which can redefine the priority (the select code
shouldn’t change).

s An IORESET command, which resets the HP-IB interface.

m A SHELL command, which temporarily reverts to MS-DOS, then clears the
interrupt setup.

Servicing a Request

Your service-request routine should take action according to the type of
situation that occurred. (In addition, it should perform some standard
service-request functions described below.)

For example, if your system has only one device and it will request service only
when it has data available, then your service-request routine simply needs to
clear the service request and enter data from the device.

However, if your system has several devices that can request service, or if
service can be requested for several reasons, then your service-request routine
should determine the device and reason, then take the required action.

Your service-request routine should normally include commands to do the
following:

1. Suspend requests. BASIC automatically suspends service-request interrupts
when the interrupt branch occurs—this prevents repeated branching from
a service request. The program automatically performs a PEN STOP.
PEN STOP lets the program remember requests that occur while the
service-request routine is executing. You can include PEN OFF to stop and
not remember incoming requests.

2. Poll devices. Use IOSPOLL to read the status from each device that could
be requesting service. This lets you find the device that’s requesting service.
(Your routine could use IOPPOLL to help find the device faster.) IOSPOLL
also clears the request—the same request won’t be serviced again.

3. Enable requests. If you haven’t stopped service-request interrupts with
PEN OFF, BASIC automatically reenables interrupts when the routine

Using the Command Library for HP-IB Control 1-31

returns—this lets the program resume servicing requests. To do this, the
program automatically performs a PEN ON.

The following QuickBASIC 4.5 example shows how a program can process a
service request (assuming only one device can request service):

IsC& = 7
ADDR&

= 4
DEVICEEZ =

100 * ISC& + ADDR&

SRQ: ’service request routine--auto PEN STOP suspends interrupts
CALL IOSPOLL(DEVICE&,STATUS}) ’clears request

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

PRINT "Status:",STATUSY,

RETURN ’auto PEN ON enables interrupts

Interacting with DMA Transfers

Your program can set up service-request interrupts with one of two priority
levels:

a High priority—they can interrupt DMA data transfers.
m Low priority—they can’t interrupt DMA data transfers.

A program can enable service requests to stop DMA data transfers—for
example, another critical device can receive immediate service even if a DMA
transfer is in progress.

However, if your program wants to interrupt DMA transfers in one section
but not in another section, it must execute IOPEN to change the priority. It
can’t use PEN OFF and PEN STOP to disable service-request interrupts—
they don’t stop the interface from looking for service requests. If the IOPEN
priority is high, a service-request interrupt will interrupt a DMA transfer
regardless of whether requests are processed.

1-32 Using the Command Library for HP-IB Control

The following QuickBASIC 4.5 example shows how a program can set
service-request interrupts active for the first DMA transfer and inactive for the
second transfer:

DIM RDGS&(10000)
ISC& = 7 : ADDR& = 100 * ISC& + 4 . ‘Museum

Computer

SIZE), = 50 : CHAN), = 3 : ENJ = 1

CALL IODMA(ISC&,SIZEY,,CHANY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

ON PEN GOSUB SRQ

PEN ON ’enable SRQ processing
CALL IOPEN(ISC&,EN%) ’allow DMA interrupts
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

MAXY, = 10000 : LENGTHY, = O : SWAP/ = 1

CALL IOENTERB(ADDRZ,SEG RDGS&(0) ,MAXY ,LENGTHY,,SWAPY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

PEN OFF ’disable SRQ processing

ENY, = 0O
CALL IOPEN(ISC&,EN%) ’no DMA interrupts!

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

MAXY, = 1024 : LENGTHY, = O

CALL IDENTERB(ADDR&,SEG RDGS&(0) ,MAXY,LENGTHY,,SWAPJ)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

SRQ: ’service request routine
CALL IOSPOLL(ADDR&,STATUSY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

IF PEN(1) = 1 THEN PRINT "DMA interrupted."

RETURN

The second IOPEN command sets the low interrupt priority. If this command
were omitted, a service request occurring during the second DMA transfer
would interrupt the transfer (although it wouldn’t be processed by the
service-request routine).

Using the Command Library for HP-IB Control 1-33

Your service-request routine can use the PEN(1) function to determine whether
a DMA transfer was ended by the interrupt. If a DMA transfer was ended,
PEN(1) returns the value 1; otherwise, it returns the value 0. (Normally, the
PEN(1) function returns the z coordinate of the light pen.)

Pascal and C Service-Request Interrupts

HP-IB protocol provides that HP-IB devices may request attention from the
controller by issuing a “service request”—a request to interrupt the normal
program flow. Your Pascal or C program can check for service requests at any
time by using the IOSTATUS Library command.

The program should check the interface status as often as necessary to provide
adequate response time. If you need immediate response throughout your
program, you may want to include a branch to a status-check routine between
most program lines.

The status routine should execute IOSTATUS (condition 1). The returned
status value indicates whether service has been requested or not. If service

has been requested, the program can branch to a service-request routine. The
service-request routine can use IOSPOLL to read the status from each device
that could be requesting service. This lets you find the device that’s requesting
service. (Your routine could use IOPPOLL to help find the device faster.)
IOSPOLL also clears the request—the same request won’t be detected again.

1-34 Using the Command Library for HP-IB Control

The following example shows how a Turbo Pascal program can check for a
service request (assuming only one device can request service):

PROCEDURE check_srq;

CONST
isc = 7;
addr = 4;
condition = 1;
VAR

device : LONGINT;
error : INTEGER;
status : INTEGER;
err : INTEGER;
BEGIN
device := isc * 100 + addr
err := IOSTATUS(isc,condition,status);
IF err <> NOERROR THEN errorcheck(err);
IF status = 1 THEN BEGIN
err := IOSPOLL(device,status);
IF err <> NOERROR THEN errorcheck(err);

END;
END;

Processing 1/0 Errors

During program execution, errors may occur as a result of I/O operations. For
example, a device may not respond, a timeout may occur, or you might specify
an incorrect select code or some invalid parameter. Because there is no built-in
error reporting procedure for Library commands, you should include error
handling code in your program. Otherwise, errors go untreated and may cause
unpredictable results. To help you provide the necessary code, this section
explains general error handling. All Command Library errors are described in
appendix A, “Error Descriptions.”

Using the Command Library for HP-IB Control 1-35

Error Message Mnemonics

As an aid to error testing, each error has an associated mnemonic variable.
The mnemonics are declared in the Command Library file appropriate for
your programming language. You can use the mnemonic variables to test for
the occurrence of errors. For example, error 0—no error occurred—has the
mnemonic NOERR.

In BASIC, the following statement would cause program execution to branch to
subroutine ERRCHECK if an error occurred.

IF PCIB.ERR <> NOERR THEN GOSUB ERRCHECK

In Pascal, the following statements would perform the Errcheck routine, which
can compare the error status indicated by err and NOERR, then take action if
an error occurred.

err := IOENTER (709,reading);
Errcheck (err);

All Command Library errors and their mnemonics are listed in appendix A,
“Error Descriptions.”

BASIC Error Variables

To assist you in detecting and handling errors in BASIC programs, the
Command Library provides three error status variables. (These variables are
not available for Pascal or C.)

PCIB.ERR This is a return status variable indicating whether
an error was detected in the last Library CALL
statement. It is good practice to check the value
of PCIB.ERR after every CALL statement. If
PCIB.ERR = 0, the command terminated without

error.
PCIB.ERR$ When PCIB.ERR is nonzero, this string variable
contains an error message corresponding to the value
of PCIB.ERR.
PCIB.GLBERR This variable indicates if an error occurred anywhere

in the program. If PCIB.GLBERR = 0, all preceding

1-36 Using the Command Library for HP-IB Control

Library calls completed without error. Otherwise,
PCIB.GLBERR contains the most recent error value.
To locate the exact statement that caused the error,
you must perform more detailed error checking.

These three status variables reflect some HP-IB—specific errors (106000

to 100009). They do not, however, reflect spelling errors or parameter
passing-errors such as passing the wrong number or type of parameters in the
CALL statement.

Caution Spelling errors and parameter-passing errors are not reflected
by the error status variables. If the wrong number or type of
‘ parameters are passed in a CALL statement, the resulting error

may require the system to be restarted. Since your program
may contain such errors, it is a good idea to always save your
program before you run it.

Error Reporting

Your program should check for errors after each Library command. Since a
program normally has more than one CALL statement, you can write a single
error handling routine to use after all CALLs. Examples are included for each
type of programming language in chapters 2 through 6.

For example, you may want to create an error handling routine that treats
various errors (for example, timeout or invalid select code) differently, or that
resumes program execution after an error is logged or acknowledged. Whether
you use the error handling routine provided or write your own, you will save
time during program testing if you check for errors after each Command
Library command.

Using the Command Library for HP-IB Control 1-37

Addressing Library Commands

The first parameter of each Library command specifies an interface select code
or a device bus address. Some commands allow only a select code (for example,
IOABORT). Some permit only a device address (for example, IOSPOLL). And
some permit either (for example, IOCLEAR). If you specify a select code, the
command is directed to the interface, and no bus addressing is performed prior
to the transfer of data or commands. If you specify a device address, devices
on the bus are first addressed using the following sequences.

For entering data:

1. Unlisten.

2. My Listen Address.

3. Talk Address of the target device.
For outputting data:

1. My Talk Address.

2. Unlisten.

3. Listen Address of the target device.

These sequences conform to the IEEE 488.2 specifications. The addressing is
followed by a data transfer or a bus command, depending on the command.

A select code is a value in the range 0 to 99—only 1 through 16 are valid select
codes, however, and there is only one valid select code for each HP-IB interface
in your computer. If you specify a nonexistent select code, an error results.

Note that the select_code and device_address parameters must be the
appropriate type for your programming language. If an integer variable is
required, it is a “long” or “four-byte” integer—this provides the range required
for extended addressing, described below.

1-38 Using the Command Library for HP-IB Control

Basic Addressing

A basic device address is composed of the select code and the primary bus
address of a device. It is calculated as

(select code x 100) + primary bus address

A valid primary bus address is in the range 0 to 30. Address 30 is reserved as
the address of the controller.

Extended Addressing

You can use extended talker and listener functions of the Library by using
extended addressing. To specify an extended address, calculate the device
address as

(select code x 10000) + (primary bus address X 100) + secondary address

A secondary address may be in the range 0 to 31. You can use extended
addressing with any command in which the first parameter may be a device
address.

As an example, consider a system with select code 7 that has a device with
primary address 9 and secondary address 15. Each of these QuickBASIC 4.5
IOCLEAR commands is valid.

Iscg = 7

CALL IOCLEAR (ISC&) ’Select Code Dnly
DEVICE& = 709

CALL IOCLEAR (DEVICEZ) ’Primary Address
DEVICE& = 70915

CALL IOCLEAR (DEVICE&) ’Secondary Address

Using the Command Library for HP-IB Control 1-39

System and Active Control

If you have an HP 82335 HP-IB interface, you can use the pass control
capabilities of the Command Library. This section describes system and
active control, and how to transfer control. It also describes a DOS program
that controls the system control status, and the capabilities of the Command
Library while it is not a controller. If your HP-IB interface is the older

HP 82990 or HP 27209 board, non-controller capabilities will not function

properly.

Description of System and Active Control

The system controller is the primary controller of an HP-IB system. There can
be only one system controller in a system. The device that is system controller
will always be system controller.

The active controller is the device in the system that currently controls the
ATN line and sends bus commands to all other devices. It is the device
currently in charge of the interface and it controls all bus traffic. There can
be only one active controller at a time in a system, but active control may be
passed from one device to another.

When a system is first started, the device that is system controller is also the
active controller. The active controller can, however, pass on active controller
responsibilities to any other device on the bus capable of being an active
controller.

System Controller

The system controller has exclusive use of the Interface Clear (IFC) line and
the Remote Enable (REN) line of the HP-IB bus.

The IFC line is used to instantly regain active control if it has been passed to
another device, abort all bus activity, unaddress all other devices, and disable
serial poll. It is like a master reset line. The Command Library can assert
IFC using either IORESET, IOABORT, or IOTAKECTL with priority 3.
IORESET has other side effects, such as restoring EQOI, EOL, timeout, and
others to their power on default values.

The REN line is used to place devices in remote programming mode. It can be
set using the Library Command IOREMOTE and cleared using IOLOCAL.

1-40 Using the Command Library for HP-IB Control

Active Controller

The active controller is in charge of controlling all bus traffic and sending all
bus commands to devices. The active controller determines which device will
talk and which device(s) will listen.

Using the Command Library, active control can be passed to another device
using the IOPASSCTL command. When you want the HP 82335 interface
to become the active controller again, use the IOTAKECTL command. If
you want to request service from the currently active controller, use the
IOREQUEST command to assert SRQ and set up a response byte.

Each of these commands is described in the appropriate reference chapter of
this manual.

For your reference, several sample programs are located in an archive file
named PASSEXMP.EXE on the source disks. To unarchive these programs,
use the DOS cd command to change your current directory to where you want
the sample programs copied. Then, if the source disk is in drive A:, type

A :PASSEXMP at the DOS prompt to copy the sample programs to your current
directory.

SYSCTL.EXE Program

This is a DOS program that controls the system controller status of the
HP 82335 interface.

Syntax

C:\ > SYSCTL select_code status

select_code specifies the interface select code.

status specifies if system control should be turned off or on. If this
parameter is a zero, the interface will be made the non-system
controller. If it is non-zero, the interface will be the system
controller.

Using the Command Library for HP-IB Control 1-41

Examples
C:\ > SYSCTL 7 0

This will make the interface at select code 7 a non-system controller.
C:\ > SYSCTL 5 1

This will make the interface at select code 5 a system controller.

Comments When you first turn on your computer, the HP 82335 interface
will be set to system controller.

This utility is located on both the 3.5-inch Disk 1—Install and 5.25-inch Disk
1—Install disks.

See the comment about and in the IOPASSCTL section for

important information.

Do not use the printer/plotter driver (HPIB.SYS) when the HP-IB board is
non-system controller.

When the Command Library is Not Controller

The HP 82335 Command Library and interface can function as system or
non-system controller as well as active or non-active controller.

The HP 82335 Command Library and interface can read and write data using
any of the enter or output statements while non-active controller. They cannot,
however, specify a device address, as this is the responsibility of the active
controller.

The HP 82335 Command Library can respond to a serial poll, but cannot
respond to a parallel poll.

1-42 Using the Command Library for HP-IB Control

Detecting HP-IB Cards Programmatically

The easiest way for your programs to automatically find HP-1B cards is to call
I0STATUS(X,8,status) in a loop. The variable ‘x’ should start at 1 and end at
16. If the return value is NOERR, there is a card at location x. If the return
value is ESEL, there is no card at location x.

Where to Go Next

The general information in this chapter supplements the detailed information
in the following chapters:

m If you're programming with GW-BASIC or a similar language, go to chapter
2, “GW-BASIC Programming.”

m If you're programming with QuickBASIC, QBasic, Compiled BASIC, BASIC
PDS, or a similar language, go to chapter 3, “QuickBASIC Programming.”

m If you’re programming with Pascal, go to chapter 5, “Pascal Programming.”

m If you're programming with the C language, go to chapter 6,
“C Programming.”

m If you're programming with FORTRAN, go to the section named “Using
Microsoft FORTRAN With C” in chapter 6.

Additional information is available in the appendixes:

m A description of Command Library errors is included in appendix A, “Error
Descriptions.”

m A brief description of HP-IB is included in appendix B, “Summary of
HP-IB.”

m A list of reserved names is included in appendix C, “Reserved Names.”

Using the Command Library for HP-IB Control 1-43

GW-BASIC Programming

Introduction

This chapter explains how to use the HP-IB Command Library for GW-BASIC
programming,

Supported versions of GW-BASIC and similar languages are listed on the
Supported Languages sheet included with the Command Library. For example,
you can use certain versions of Vectra BASIC and GW-BASIC on an HP
Vectra computer. For an IBM or compatible PC, you can use certain versions
of BASICA.

Note If you are having difficulties running GW-BASIC on a Vectra
486 (even without loading the HP-IB Command Library), try

‘ turning cache off by running the Easy Config configuration
utility.

This chapter contains several sections describing how you can use the
Command Library with GW-BASIC:

m Copying the necessary Library files to a work disk.

m Writing a sample program using several Library commands. Your HP-IB
Command Library disk contains a similar version of this program. You can
run it on your system to observe the results.

w Processing errors.
m Learning about parameters for Library commands.

m Checking example programs. Two listings at the end of this chapter show
how you can use Library commands in GW-BASIC programs.

Detailed syntax information for the commands as they’re used with
GW-BASIC is included in chapter 4, “BASIC Reference.”

GW-BASIC Programming 2-1

Copying Files

To begin programming in BASIC, you must copy the BASIC Library files to
your work disk.

The HP-IB Command Library disk contains an INSTALL program that copies
the GW-BASIC Library files to your system for you.

To use INSTALL:

1.

Insert the Library disk into your flexible disk drive—if you’re using 5.25-inch
disks, use the disk labeled “Disk 1—Install.”

. Run INSTALL by typing

a:install

. Follow the instructions displayed on your screen. When you have

successfully completed the instructions, the following files are copied:

IBHPIB.LIB
SETUP.BAS
NODOC.BAS
EXAMPLE.BAS
IBAS.BAT
VIBAS.BAT
GWMETER.BAS
GWSCOPE.BAS

. When asked, allow the program to change your AUTOEXEC.BAT file—it

adds a line to define the PCIB environment variable. Press (¥). (If you press
(n), you can edit the file yourself later.)

. Remove the Command Library disk.

. If you allowed INSTALL to change your AUTOEXEC.BAT file, restart your

system by pressing (hold and (An), then press (Det)).

Also make sure you copy all the necessary files from your BASIC interpreter to
your system. Refer to your BASIC manual for details.

2-2 GW-BASIC Programming

Setting the Environment

In preparation for BASIC programming, you must set some environment
characteristics. Follow these steps to assign the PCIB environment variable, set
the search path, and select BASIC:

Note For convenience you can set up your system to automatically
perform the next two steps. Simply edit the AUTOEXEC.BAT
file and add the next two commands to the file. They’ll be

executed the next time you start your system.

1. Assign the PCIB environment variable. It should correspond to the
destination where you copied the Library files earlier. (If you allowed
INSTALL to change the AUTOEXEC.BAT file above, the PCIB variable is
automatically set to the proper value.) For example, type

set pcib=c:\hpib

This variable identifies the location of the Library. If this variable is not
set correctly, you will get a “file not found” error when you run a BASIC
program.

If you get an “out of environment space” message, type set to see your
current environment variables. To create more environment space, reduce

the number of variables and reboot, or use COMMAND.COM with the /E:
option to increase the environment space.

2. In preparation for loading BASIC, set PATH to reflect the location of the
Command Library files and the BASIC files. To find out the current PATH
variable, you can type

path

If the locations of the Library and BASIC are not in the current PATH,
retype the current path and add the Library and BASIC directories.
For example, if BASIC is in the BAS directory on the hard disk and the
Command Library is in the HPIB directory, you can add them to the
current PATH by typing

path=c:\;c:\dos;c:\bas;c:\hpib

GW-BASIC Programming 2-3

3. Load BASIC into memory:
s For GW-BASIC and Vectra BASIC type
vibas (for GW-BASIC or Vectra BASIC on HP Vectra)
m For BASICA type
ibas (for BASICA on IBM or compatible)

If you want to load and run an existing program when you load BASIC into
memory, type the file name after VIBAS or IBAS. For example,

vibas myprog

The language you choose depends on your computer. Refer to your
computer manual for additional language installation instructions.

Note If you try to execute GWBASIC or BASICA to load BASIC
(instead of executing VIBAS or IBAS), you may encounter
problems using the BASICA SHELL command or accessing all

required memory.

Programming in GW-BASIC

For GW-BASIC programming, the Library is implemented as a series of
assembly language subroutine calls. To access the subroutines, your application
program must include the information from the SETUP.BAS Library file. This
file acts as a header for your application program to provide entry points into
the subroutine calls. To save memory, you can use the uncommented version of

SETUP.BAS called NODOC.BAS supplied on the Library disk.

The following diagram shows how your application program merges with the
SETUP.BAS file.

2-4 GW-BASIC Programming

These lines contain the
SETUP.BAS file information
that calls the necessary
command subroutines

et W W N R

998

1000

1001 These lines contain
1002 your application
1003 program

9999

There are several ways to combine your application program with the
SETUP.BAS information:

m Write your program, then merge SETUP.BAS into it.
m Start with SETUP.BAS, then add your program to it.

You can write your program in a separate file, then merge SETUP.BAS into
it. With this method, your program should begin at line 1000. When you are
ready to merge, load your program and type

merge "setup"

Since SETUP.BAS starts at line 5 and your program starts at line 1000, this
merges SETUP.BAS into the beginning of your application program. You can
save the result under your application program name. For example

save "program"

Or you can load SETUP.BAS and write your application program within it.
Again, start line numbering at 1000, after the SETUP.BAS program lines. In
this case, you do not have to merge anything, but you will want to save the
result under a new filename so you don’t overwrite SETUP.BAS. For example

load "setup"

GW-BASIC Programming 2-5

Start your application at line 1000. When you’re finished, save the result

save "program"

In the following example, the BASIC program is written within the
SETUP.BAS file.

Writing a BASIC Program

In an application program, you typically use the Library commands in the
following manner to execute an operation:

1. Set up the required variables.
2. Perform the operation.
3. Test to see if the operation completed successfully.

In this example, you follow these steps to program two instruments—an
HP3325A Synthesizer/Function Generator and an HP3456A Digital Voltmeter.
You program the source to output a 2-V rms signal, swept from 1 kHz to 10
kHz. You program the DVM to take 20 readings from the signal and output
them to an array. Finally, you display the readings on the screen.

From BASIC, begin by loading SETUP.BAS.
load "setup"

Generally, you start line numbering at 1000, after the subroutine calling
information.

auto 1000

Here, the line numbers have been set to coincide with those of the example file
EXAMPLE.BAS on the Library disk.

2-6 GW-BASIC Programming

1. Define some working variables.

1070 OPTION BASE 1

1080 MAX.ELEMENTS = 20

1090 DIM READINGS (MAX.ELEMENTS)
1100 ACT.ELEMENTS = 0

1110 CODES$ = SPACE$(50)

1070 Set the array base to 1 so array element numbering begins with 1
instead of 0.

1080 Define a maximum-readings variable (MAX.ELEMENTS) so you can
easily change this parameter when desired.

1090 Dimension an array (READINGS) to hold the readings taken by the
voltmeter.

1100 Set ACT.ELEMENTS, the actual number of elements read by
IOENTERA, to 0. ACT.ELEMENTS is an array parameter that must
be dimensioned or initialized prior to its use in IOENTERA.

1110 Initialize a string (CODESS$) to hold a sufficient number of instrument
programming codes.

Note If your program chains to other programs, you will need

COMMUON declarations to pass parameters to those programs.
Also, you must call DEF.ERR upon entering a chained
program to set up pointers to the Library error variables. The
SETUP.BAS file in appendix B contains information on these
topics. For more information on chaining, see your BASIC
manual.

GW-BASIC Programming 2-7

2. Initialize the bus and instruments.

1160 ISC = 7

1170 DVM = 722

1200 SOURCE = 717

1230 CALL IORESET (ISC)

1240 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
1250 TIMEOUT = 5

1260 CALL IOTIMEOUT (ISC, TIMEOUT)

1270 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
1280 CALL IOCLEAR (ISC)

1290 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

1150 Set the interface select code variable ISC to 7.

1170 Set the voltmeter address variable DVM to 722.

1200 Set the signal source address variable SOURCE to 717. (This example
assumes select code 7, voltmeter address 22, and source address 17.)

1230 Set the interface to its default configuration.

1260 Define a system timeout of 5 seconds.

1280 Perform IOCLEAR to put all instruments into a known,
device-dependent state.

Note This program includes an error checking line after each Library

command:
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

If there is an error (that is, the error variable PCIB.ERR does
not equal NOERR), this line calls the SETUP.BAS error
handling routine. This routine prints error information and
stops the program. See “Processing I/O Errors” in chapter 1
and “BASIC Error Handling” later in this chapter for more
information.

2-8 GW-BASIC Programming

3. Program the instruments.

1350 CODES$ = "RF2 FU1 ST1KH SP10KH MF1KH AM2VR TISSE"
1360 LENGTH = LEN (CODES$)

1370 CALL IOOUTPUTS (SOURCE,CODES$,LENGTH)

1380 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

1410

1420 CODES$ = "H SM004 F2 R4 FLO Z0 4STG 20STN RS1 T4"
1430 LENGTH = LEN(CODES$)

1440 CALL IOOUTPUTS (DVM,CODES$,LENGTH)

1450 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

1350 Define the programming codes string CODESS$ to hold:

RF2—select the rear panel signal output.
FUl—select the sine wave function.
ST1KH—select a starting frequency of 1 kHz.
SP10KH—select a stopping frequency of 10 kHz.
MF1KH—select a marker frequency of 1 kHz.
AM2VR—select an amplitude of 2 V rms.
TI5SE—select a sweep time of 5 seconds.

. Computer
U Museum

1370 Use the IOOUTPUTS command to send the programming codes to the
source with the proper length parameter.

1420 Define the programming codes string CODESS$ to hold:
H—software-reset the voltmeter.

SM004—set the service request mask to enable the voltmeter to set
the interface SRQ line when it finishes taking readings (when the Data
Ready bit of the serial poll response byte is set).

F2—select the AC volts function.
R4-—select the 10 volt range.
FLO—turn off filtering.

Z0—turn off auto zero.
4STG—select the four-digit display.
20STN—take 20 readings.

GW-BASIC Programming 2-9

RS1—turn on reading storage.
T4—select trigger hold.

1440 Send the programming codes to the voltmeter with the proper length

parameter.

4. Trigger the instruments.

1490
1500
1510
1520
1530
1540

CALL IOTRIGGER(DVM)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
CODES$ = "ss"

LENGTH = LEN(CODES$)

CALL IOOUTPUTS (SOURCE,CODES$,LENGTH)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

1490 Execute the IOTRIGGER command for the voltmeter.

1510 Define the programming codes string to hold the source’s trigger code.
1530 Send the programming codes to the source with the proper length

parameter.

These lines demonstrate that some instruments respond to an HP-IB
trigger command, while others must be triggered with instrument-specific

programming codes.

5. Wait for the voltmeter to finish reading.

1580
1590
1595
1600
1610
1615
1620

SRQ =1

CALL IOSTATUS (ISC, SRQ, STATUS)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
IF STATUS = 0 THEN GOTO 1590

CALL IOSPOLL (DVM, RESPONSE)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
IF (RESPONSE AND 68) <> 68 THEN GOTO 1590

2-10 GW-BASIC Programming

1580

1590
1600

1610

1620

6. Ente

Define the interface condition whose status is being checked. In this
case, check for condition 1—is the SRQ line set?

Execute the status command and return the result in STATUS.

As long as STATUS is 0, the SRQ line is not set, indicating that the
voltmeter is not finished taking readings.

As soon as STATUS changes to 1, perform a serial poll on the voltmeter
to learn which of its conditions, if any, set the SRQ line. The serial poll
also clears the SRQ.

The result of the serial poll is the status byte of the voltmeter, returned
in RESPONSE. Compare RESPONSE and the value 68—the sum of
the Request Service bit (64) and the Data Ready bit (4). If these bits
are set, continue because the voltmeter is finished. If they are not set,
perform the status check again.

r the readings into an array and print them.

1710
1720
1730
1740
1741
1745
1750
1760
1770
1780
1810
1820
1830
1840
1850
1860
1870

CODES$ = "S01 -20STR RER"

LENGTH = LEN(CODES$)

CALL IOOUTPUTS (DVM,CODES$,LENGTH)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
STATE = 0

CALL IOEOQI (ISC,STATE)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
CALL IOENTERA (DVM,READINGS(1),MAX.ELEMENTS,ACT.ELEMENTS)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
PRINT "THE READINGS ARE: "

FOR I = 1 TO ACT.ELEMENTS

PRINT I, READINGS(I)

NEXT I

b

END

GW-BASIC Programming 2-11

1710 Define the programming codes string to direct the voltmeter to output
its stored readings:

SO1—turn on system output mode.
—20STR—unstore the 20 readings from register R.
RER—recall (readout) the 20 readings.

1730 Output the programming codes to the voltmeter with the proper length
parameter.

1750 Disable the EOI mode so reading won’t terminate after entering only
onc value.

1770 Enter the voltmeter readings into the READINGS array starting at the
first element. Include the maximum and actual length parameters.

1840 Print the readings.

Saving the BASIC Program
When you have finished writing the program, save it:

1. Press to end auto line numbering.
2. Save the program as an executable BASIC file in ASCIIL. For example, type

save "program",a

Your program, with the SETUP.BAS material, now resides as an ASCII file in

the Library directory as PROGRAM.BAS. Saving the file in ASCII format (the
“A” parameter) allows you to perform a subsequent MERGE.

Running the BASIC Program

When you’re ready to run the program, connect the SIGNAL output of the
source to the VOLTS input of the DVM. (Include a 50-ohm load in this line to
ensure proper readings.) Use HP-IB cables to connect the instruments to your
computer.

To execute your program from BASIC, load it and type RUN. Watch the
display on the function generator. You will see the various functions (sine
wave, AC volts, sweep time) displayed as they are programmed. The voltmeter
displays its operation as well—you can watch it take readings, store them, and

2-12 GW-BASIC Programming

output them to the READINGS array. As the program ends, it displays the
readings on your screen.

Note If the name of a Library command is misspelled, or if the
number or types of parameters is wrong, system restart may be
i required to recover.

BASIC Error Handling

General information about Command Library errors, BASIC error variables,
and how to process errors are contained in “Processing I/O Errors” in chapter
1 and in appendix A, “Error Descriptions.”

If you don’t need to write a special error-poocessing routine for your program,
you can use the one provided in SETUP.BAS.

385 ’ Error handling routine

390

395 1IF ERR=PCIB.BASERR THEN GOTO 410

400 PRINT "BASIC error #";ERR;" occurred in line ";ERL
405 STOP

410 TMPERR = PCIB.ERR

415 IF TMPERR = 0 THEN TMPERR = PCIB.GLBERR

420 PRINT "HPIB error #";TMPERR;" detected at line ";ERL
425 PRINT "Error: ";PCIB.ERR$

430 STOP

This error handling routine is based on the BASIC function ERROR and its
associated variables ERR and ERL. (If you need more details about ERROR,
ERR and ERL, refer to your BASIC manual.) The variable PCIB.BASERR
(value 255) provides a mechanism for differentiating between a BASIC error
and an HP-IB Command Library error. If ERR = PCIB.BASERR, the error is
generated by the Command Library—otherwise, it’'s a BASIC system error.

The above routine prints the type of error (BASIC or HP-IB), the
error number, the error message, and the line on which the error was
detected. Then, it stops the program. An ON ERROR statement (see

GW-BASIC Programming 2-13

SETUP.BAS) defines a branch to the error handling routine for any BASIC or
program-initiated call to the ERROR function.

Command Library Parameters

This section presents information about Command Library parameters as they
are used with GW-BASIC.

Passing Parameters

In BASIC, all parameters used in CALL statements must be passed by
reference. That is, you must use variable names as parameters—Iliterals or
expressions are not permitted. For example, this statement is valid

1050 ISC = 7
1060 CALL IOCLEAR (ISC)

but this one is invalid

1050 CALL IODCLEAR (7)

Parameter Types

Several types of variables are used to describe parameters to Library command
calls in chapter 4, “BASIC Reference.”

Numeric Variable

A numeric variable is a single-precision real number variable. It is distinguished
from other identifiers either by “!” appended to the variable name, or

by no suffix appended at all. The valid range for numeric variables is
approximately 2 X 10739 to 2 x 10*38 (negative or positive). Single-precision
real numbers have approximately seven digits of accuracy. Note that integers
and double-precision real numbers may not be used as parameters—except

as allowed for data with IOENTERAB, IOENTERB, IOOUTPUTAB, and
IOOUTPUTB (see “Any Type of Array” below).

2-14 GW-BASIC Programming

Valid Numeric Variables: 1SC
DEVICE.ADDRESS
READING!

Invalid Numeric Variables: REASON%
A$
AREA#

String Variable

A string variable is a variable that can contain any valid sequence of 0 or more
ASCII characters. It is identified by a “$” appended to its identifier. The
length of a string variable is not fixed, but may be anywhere from 0 (the null
string) to 255. String variables should be initialized with SPACE$ before data
is entered with an IOENTERS command. Otherwise, if the current length is
zero, no data will be transferred.

Numeric Array

A numeric array is an array of single-precision real numbers. Arrays are
declared using the DIM statement. Although the theoretical maximum size for
a BASIC array is 32,767, the actual limit is approximately 14,000 elements
depending on the length of your program. GW-BASIC does not permit the use
of unsubscripted array names as parameters to CALL statements. Therefore,
when you use arrays in Library function calls, use the first element of the array
to be accessed as the parameter. For example

VALUES(0) Starts at element 0.
VALUES(S5) Starts at element 5.

Be sure the number-of-elements parameter value does not exceed the number
of elements available in the array. For data output, the Library continues
through memory sending the contents of the individual cells. For data input,
the Library continues through memory, writing over existing data or programs.

Any Type of Array

Any type of array can be a numeric array (single-precision real array), an
integer array, a double-precision real array, or other type of numeric array.

GW-BASIC Programming 2-15

(The array can’t be a string.) It indicates the place to start reading or storing
data.

BASIC does not permit the use of unsubscripted array names as parameters to
CALL statements. Therefore, when you use arrays in Library function calls,
use the first element of the array to be accessed as the parameter. For example

VALUES(0) Single-precision real—starts at first element.
DATA#(5) Double-precision real—starts at element 5.
FLAGS%(0) Integer—starts at first element.

Be sure the number-of-bytes parameter value does not exceed the number of
bytes available in the array—the number of elements times the number of bytes
per element. For data output, the Library continues through memory sending
the contents of the individual cells. For data input, the Library continues
through memory, writing over existing data or programs.

Example Programs

Oscilloscope Example

The following program is written in GW-BASIC. The program uses two
devices: HP 54601A digitizing oscilloscope (or compatible scope) and a printer
capable of printing HP Raster Graphics Standard, such as a ThinkJet printer.

The program tells the scope to take a reading on channel 1 and send the data
back to this program. Then it prints some simple statistics about the data.
The program then tells the scope to send the data directly to the printer,
illustrating how the controller does not have to be directly involved in an
HP-IB transaction.

Things to note about this program:

m Note the use of the IOENTERAB command. This command will read an
arbitrary block of data as defined in IEEE-488.2. I[OENTERAB can read
either definite length or indefinite length arbitrary block data.

2-16 GW-BASIC Programming

m If your instrument sends data in some other block data format, you can
use the IOENTERB and IOOUTPUTB commands in conjunction with
IOENTERS and IQOUTPUTS, respectively, to simulate these other formats.

m You should probably disable character matching before executing an
IOENTERB or IGENTERAB because the character in the “match” string is
generally a valid binary value, rather than a termination character.

m The commands that are sent to the scope are device dependent and are
found in the manual for the scope.

m The error checking in the program consists of executing an IF statement
after each call to an HP-IB command.

m Before an IOENTERS statement is executed, space should be allocated for
the string by assigning the string to SPACE$(n) where n is the maximum
length to be entered. If this is not done, the string will be of length 0, and
no characters will be entered. You can then shorten the string to the correct
length (in case less than the maximum number of characters were entered) by
using the LEFT$ function.

The program has three main parts to it:
1. Read the data from the scope.
2. Print some statistics about the data.

3. Have the scope send the data to a printer.

999 rem this file should be appended to setup.bas or nodoc.bas

1050 ’'This program tells the scope to take a reading on channel 1, then
1060 ’sends the data back to this program. We can do anything we want
1070 ’to the data at this time, and we choose to print some simple

1080 ’statistics about the data. The program then tells the scope to
1090 ’send the data directly to the printer, illustrating how the

1100 ’controller doesn’t have to be directly involved in an HP-IB

1110 ’transaction.

1440 °
1450 ISC =
1460 SCOPE
1470
1480 ’reset the HPIB interface
1490

7
= ISC * 100 + 7

GW-BASIC Programming 2-17

1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910

2-18

CALL IORESET(ISC)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’set up a timeout of 5 seconds

H

TIME = 5

CALL IOTIMEOUT(ISC, TIME)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

’clear the scope

)

CALL IOCLEAR(SCOPE)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

>

’lockout the keyboard on the scope so the program has complete
> control of it

)

CALL IOREMOTE(ISC)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’set up some variables

H

DISABLE = 0 : ENABLE =1
EOL$ = CHR$(10)

CRLF$ = CHR$(13) + CHR$(10)

CMD$ = SPACE$(255)

)

)

)

’this is the beginning of part 1 Aok ok ook A koo ok Aok ok sk Kok ok ok
g ~- get the data from the scope
)

)

’setup scope to accept waveform data
)

CMD$ = "*RST"

LENGTH = LEN(CMD$)

CALL IOQQUTPUTS(SCOPE, CMD$, LENGTH)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

CMD$ = ":autoscale"

GW-BASIC Programming

1920 LENGTH = LEN(CMD$)
1930 CALL IOOUTPUTS(SCOPE, CMD$, LENGTH)
1940 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

1950 ’
1960 ’setup up the waveform source
1970 °
1980 CMD$ = ":waveform:format word"

1990 LENGTH = LEN(CMD$)

2000 CALL IOOUTPUTS(SCOPE, CMD$, LENGTH)

2010 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
2020

2030 ’input waveform preamble to controller

2040 ‘Computer
2050 CMD$ = ":digitize channell" ;. Museum
2060 LENGTH = LEN(CMD$) :
2070 CALL IOOUTPUTS(SCOPE, CMD$, LENGTH)

2080 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
2090 ’

2100 CMD$ = ":waveform:preamble?"

2110 LENGTH = LEN(CMD$)

2120 CALL IOOUTPUTS(SCOPE, CMD$, LENGTH)

2130 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
2140

2150 ’read in the preamble

2160 ’

2170 MAX = 10: ACTUAL = O

2180 DIM PRE([10]

2190 CALL IOENTERA(SCOPE, PRE(0), MAX, ACTUAL)
2200 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
2210 °

2220 ’turn off ’1f’ enter terminator, as ’1f’ is a legal binary value
2230

2240 CALL TOMATCH(ISC, EOL$, DISABLE)

2250 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2260 °

2270 ’'make sure EOI is set

2280

2290 CALL IOEOI(ISC, ENABLE)

2300 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2310 °

2320 ’command scope to send data. It is sent in IEEE arbitrary block

GW-BASIC Programming 2-19

2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730

2-20

’>format.

H

CMD$ = ":waveform:data?"

LENGTH = LEN(CMD$)

CALL IOOUTPUTS(SCOPE, CMD$, LENGTH)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2

’enter the data

)

DIM READINGS%(5000): BYTES = 8000: ACTUAL = O: FLAG = 2
CALL IOENTERAB(SCOPE, READINGSY%(0), BYTES, ACTUAL, FLAG)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’use IOGETTERM to see if we entered all the points

H

CALL IOGETTERM(ISC, REASON)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

IF (REASON AND 1) = O THEN PRINT "NOT ALL POINTS FOUND"

’ Read the last byte from the scope. This must always be done
'’ after an IOENTERAB command. If the character read is a

> ’1f’, then the device is done sending data. If the character
’ read is a ’;’ or a ’,’, then the device is waiting to send

’ another block of data.

’ Note also that we can use the select code instead of the device

’ address for the first parameter of this command. This is because
’ the scope is still addressed to talk, and the computer to listen
’ from the IOENTERAB command.

LENGTH = 1: ACTUAL = 0

CMD$ = SPACE$(10)

CALL IOENTERS (ISC, CMD$, LENGTH, ACTUAL)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

CMD$ = LEFT$(CMD$, ACTUAL)

)

IF CMD$ <> CHR$(10) THEN PRINT "scope wants to send more data..."
H

H

’this is the beginning of part 2 ok ok ok ok ook ok ok ok ook ok o ok ok ook ok ok ok oK
! - print some statistics about the data

GW-BASIC Programming

2740 °
2750 °
2760 ’calculate minimum, maximum, and sum of the values in the data
2770

2780 VDIV = 32 * PRE(8)

2790 OFFSET = (128 - PRE(10)) * PRE (8) + PRE (9)
2800 SDIV = PRE(3) * PRE (5) / 10

2810 DELAY = (PRE(3) / 2 ~ PRE(7)) * PRE(5) + PRE(6)
2820 ’

2830 ’Retrieve the scope’s ID string

2840 °’

2850 CMD$ = '"*IDN?"

2860 LENGTH = LEN(CMD$)

2870 CALL IODUTPUTS(SCOPE, CMD$, LENGTH)

2880 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2890

2900 LENGTH = 50: ACTUAL = 0

2910 CMD$ = SPACE$(50)

2920 CALL IOENTERS (SCOPE, CMD$, LENGTH, ACTUAL)

2930 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2940

2950 ’print the stats

2960

2970 PRINT

2980 PRINT ' Oscilloscope ID: ";CMD$

2990 PRINT " -——---- statistics ---—---—- "

3000 PRINT " Volts/Div = "; VDIV; A

3010 PRINT " Offset = '"; OFFSET; " V"

3020 PRINT " S/Div = "; SDIV; "*os"

3030 PRINT " Delay = '; DELAY; " s"

3040 PRINT

3050

3060 °’

3070

3080 ’this is the beginning of part 3 kbbb kR ko
3090 ~ have the scope send the graph directly to the printer
3100

3110 °

3120 ’Next, let’s tell the scope to print directly to a printer.
3130 ’ We must first send the HP-IB commands to make the scope a talker
3140 ’ and the printer a listener. This is done with the IOSEND command.

GW-BASIC Programming 2-21

3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550

2-22

' We will tell the scope to issue a service request when it’s done
> printing, as we need to wait for the printing to complete before
’ continuing the program.

)

’tell the scope to SRQ on ’operation complete’
)

CMD$ = "*SRE 32 ; *ESE 1"

LENGTH = LEN(CMD$)

CALL IOOUTPUTS(SCOPE, CMD$, LENGTH)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

H

’tell scope to print

)

CMD$ = ":print? ; *0QPC"
LENGTH = LEN(CMD$)

CALL IOOUTPUTS(SCOPE, CMD$, LENGTH)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’tell scope to talk and printer to listen

’ the listen command is formed by adding 32 to the device address
’ of the device to be a listener

> the talk command is formed by adding 64 to the device address of
’ the device to be a talker

PRINT.LISTEN$ = CHR$(32 + 1) ’printer is at device address 1
SCOPE.TALK$ CHR$(64 + 7) ’scope is at device address 7
UNLISTEN$ = CHR$(63)

b

’send the command

)

CMD$ = UNLISTEN$ + PRINT.LISTEN$ + SCOPE.TALK$
LENGTH = LEN(CMD$)

CALL IOSEND(ISC, CMD$, LENGTH)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’now, the ATN line must be set to FALSE.
)

COND = 8

STATUS = 0

CALL IOCONTROL(ISC, COND, STATUS)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

GW-BASIC Programming

3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900

)
)

'now wait for SRQ from scope
>

’NOT .DONE:

)

COND = 1: STATUS = 0

CALL IOSTATUS(ISC, COND, STATUS)

IF PCIB.ERR <> NCERR THEN ERROR PCIB.BASERR

)

IF STATUS = 0 THEN GOTO 3600

b

’make sure it was the scope requesting service

}

CALL IOSPOLL(SCOPE, STATUS)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’ 64 = bit 6 set

)

IF (STATUS AND 64) = O THEN GOTO 3600

2

’ Clear the status byte so the scope can assert SRQ again

> if needed

b

CMD$ = "*CLS"

LENGTH = LEN(CMD$)

CALL IOOUTPUTS(SCOPE, CMD$, LENGTH)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’give local control back to the scope
?

CALL IOLOCAL(ISC)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2

SYSTEM

GW-BASIC Programming 2-23

Multimeter Example

998

999

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610

2-24

This program should be appended to SETUP.BAS or NODOC.BAS

This example uses the HP 34401A Multimeter as the primary device.
We will also use the HP 3325A Function Generator as a source for
the multimeter.

This example sets up the meter to take 128 readings, reads the data
into an array, then plots the data on the screen. In effect, it
turns the multimeter into a simple oscilloscope. This program is
also checking other devices that are on the bus to see if they need
service. The SRQ line along with parallel and serial polling is
used to make these checks. The program will continue until the user
presses the F1 key on the PC keyboard.

)’

NUM.READINGS = 128

ISC = 7 'interface select code

SOURCE = ISC * 100+12 ’address of the function generator

DVM = ISC * 100+22 ’address of the digital volt meter

DIM READINGS![128] 'place we will put the readings from the dvm

)’

'the F1 key will end the program
)

ON KEY(1) GOSUB 3730 ’'QUIT
KEY(1) ON

)

'reset the HPIB interface

)

CALL IORESET(ISC)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)’

'set up a timeout of 5 seconds

)

TIME = §

CALL IOTIMEOUT(ISC, TIME)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)’

'clear the devices we are going to use

GW-BASIC Programming

1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020

3

CALL TOCLEAR(SOURCE)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
)

CALL IOCLEAR(DVM)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’we meet the minimum requirements to use IOFASTOUT, so let’s use it
)

CALL IOFASTOUT(ISC, TRUE)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

NULL$ = nn

CALL IOEOL(ISC, NULL$, FALSE)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’We will now configure all devices that can respond to a parallel
’ poll. This example assumes devices at addresses 20 and 7 can

’ respond to a parallel poll. See operators manual of individual
’ devices to see if they can respond to a parallel poll.

)

’configure the device at address 20 for a parallel poll
DEVICE.ADDR = ISC * 100 + 20

CONFIGURATION = &HO8 ’RESPOND WITH A '“1'" ON LINE 0O
CALL IOPPOLLC(DEVICE.ADDR, CONFIGURATION)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’configure the device at address 7 for a parallel poll

)

DEVICE.ADDR = ISC * 100 + 7

CONFIGURATION = &HO9 ’RESPOND WITH A4 "1 ON LINE 1

CALL IOPPOLLC(DEVICE.ADDR, CONFIGURATION)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’configure any other devices that can respond to parallel poll here
)

)

’let’s use dma to send the strings to program the devices
)

COUNT = 40: CHANNEL = 3

GW-BASIC Programming 2-25

2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430

2-26

CALL IODMA(ISC, COUNT, CHANNEL)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

H

’program the function generator

)

CODES$ "RF1 FR30HZ FU1 ST1iKH SP10KH MF1KH AM1VR TIGSE"
LENGTH = LEN(CODES$)

CALL IOOUTPUTS(SOURCE, CODES$, LENGTH)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

H

’program the dvm

)

CODES$ = ":CONF:VOLT:DC 30,.1;"

CODES$ = CODES$ + ":ZERO:AUTO OFF;"

CODES$ = CODES$ + ":TRIG:DELAY MIN;"

CODES$ = CODES$ + ":DISP:STATE OFF;"

LENGTH = LEN(CODES$)

CALL IOOUTPUTS (DVM, CODES$, LENGTH)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

H

’turn dma off again

?

COUNT = O: CHANNEL = 3

CALL IODMA(ISC, COUNT, CHANNEL)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

H

’turn on automatic srq checking

H

ON PEN GOSUB 2530 ’SRQ.HANDLER

PEN ON

H

PRIORITY = O

CALL IOPEN(ISC, PRIORITY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

H
H

’BACK:

H

’can have controller do other work here
)

GOSUB 3170 ’GET.DATA

GW-BASIC Programming

2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840

2

GOTO 2390 ’BACK

b

’end of main program. support routines follow.

2

2

’this is the routine defined by the ’on pen gosub’ statement above.
’ this routine will be called each time an srq comes in.

2

’SRQ.HANDLER:

2

’conduct a parallel poll

’note that the source doesn’t respond to parallel poll’s,
' so we need to poll that device separately.

2

RESPONSE = 0
CALL IOPPOLL(ISC, RESPONSE)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
IF (RESPONSE AND 1) THEN GOSUB 2850 ’POLL.DEVICE.1
IF (RESPONSE AND 2) THEN GOSUB 3010 ’POLL.DEVICE.2

2

’check all devices that were configured to respond to

’ parallel poll

2

’check any other devices on the bus here that weren’t
’ configured to respond to parallel poll by performing

’ a serial poll on each one.
H

CALL IOSPOLL(SOURCE, RESPONSE)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2

’see if we’ve cleared the srq yet
2

STAT = 1: RESPONSE = 0

CALL IOSTATUS(ISC, STAT, RESPONSE)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
IF RESPONSE=1 THEN PRINT '"SRQ LOCKED HIGH": GOTO 3730 ’QUIT

2

RETURN

2

)

GW-BASIC Programming 2-27

2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250

’POLL.DEVICE.1:

2

2

2

’do a serial poll of the device configured to use parallel

’ poll line O

2

DEVICE.ADDR = ISC # 100 + 20

CALL IOSPOLL(DEVICE.ADDR, RESPONSE)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2

’should check RESPONSE here to see if any action needs to be
’ taken. The values that RESPONSE can take are device

’ dependent.

2

RETURN

’POLL.DEVICE.2:

)

)

2

’do a serial poll of the device configured to use parallel

’ poll line 1

2

DEVICE.ADDR = ISC * 100 + 7

CALL IOSPOLL(DEVICE.ADDR, RESPONSE)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2

’should check RESPONSE here to see if any action needs to be
’ taken. The values that RESPONSE can take are device

’ dependent.

)

RETURN

’GET.DATA:

)

’Ask the DVM to send us the data

)

CODES$ ":SAMPLE:COUNT 128;"

CODES$ CODES$ + ":READ?"

LENGTH = LEN(CODES$)

CALL IOOUTPUTS (DVM, CODES$, LENGTH)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2-28 GW-BASIC Programming

3260 ’

3270 ’Read in the data

3280 ’

3290 LENGTH = NUM.READINGS

3300 ACTUAL = 0

3310 CALL IOENTERA (DVM, READINGS! (0), LENGTH, ACTUAL)
3320 IF PCIB.ERR <> NOERR THEN ERRCOR PCIB.BASERR

3330 ’

3340 ’set graphics mode and draw border on screen

3350 ’

3360 CLS: SCREEN 2

3370 WINDOW (0,0)-(639,199)

3380 LINE (0,0)-(639,199),,B

3390 ’

3400 ’calculate min and max values for y-axis

3410 :

3420 YMAX = READINGS!'[0] : YMIN = READINGS![O]

3430 FOR I = 1 TO ACTUAL

3440 IF READINGS![I] < YMIN THEN YMIN = READINGS![I]
3450 IF READINGS'![I] > YMAX THEN YMAX = READINGS![I]
3460 NEXT I

3470 :

3480 ’print graph labels

3490 :

3500 LOCATE 2,2 : PRINT "MAX = ";YMAX;

3510 LOCATE 24,2 : PRINT "MIN = ";YMIN;

3520 :

3530 ’scale ymin and ymax so there is space between graph and border
3540 :

3580 IF YMIN > O THEN YMIN = YMIN#0.6 ELSE YMIN = YMIN*1.4
3560 IF YMAX > O THEN YMAX = YMAX*1.4 ELSE YMAX = YMAX*0.6
3570 :

3580 *graph the data

3590 :

3600 WINDOW (O, YMIN)-(ACTUAL-1,YMAX)

3610 XAXIS = 1

3620 PREV = READINGS'[XAXIS-1]

3630 PSET(XAXIS-1, PREV)

3640 WHILE (XAXIS < ACTUAL)

3650 CURRENT = READINGS![XAXIS]

3660 LINE (XAXIS-1, PREV)-(XAXIS,CURRENT)

GW-BASIC Programming 2-29

3670 PREV = CURRENT

3680 XAXIS = XAXIS + 1

3690 WEND

3700 RETURN

3710 ’

3720 ’

3730 ’QUIT:

3740 ’

3750 ’clear the dvm so we can send the commands to reset it
3760 ?

3770 CALL IOQCLEAR(DVM)

3780 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
3790 ’

3800 ’reset the dvm

3810 ’

3820 CODES$ = ":DISPLAY:STATE ON; *RST"

3830 LENGTH = LEN(CODES$)

3840 CALL IOOUTPUTS (DVM, CODES$, LENGTH)

3850 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
3860 ’

3870 ’unconfigure the parallel poll

3880 ’

3890 CALL IOPPOLLU(ISC)

3900 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
3910 ’

3920 SYSTEM

2-30 GW-BASIC Programming

QuickBASIC and QBasic Programming

Introduction

This chapter explains how to use the HP-IB Command Library with
QuickBASIC, QBasic, and similar BASIC programming languages. Unless
noted otherwise, all references in this chapter to QuickBASIC apply to all
similar BASIC languages including QBasic.

Supported versions of QuickBASIC and similar languages are listed on the
Supported Languages sheet included with the Command Library. For example,
you can use certain versions of Microsoft QuickBASIC and the Microsoft
BASIC Compiler.

This chapter contains several sections describing how you can use the
Command Library with QuickBASIC:

m Copying the necessary Library files to a work disk.

m Creating, compiling, and running a QuickBASIC program.
m Processing errors.

m Learning about parameters for Library commands.

m Checking example programs. Two listings at the end of this chapter show
how you can use Library commands in QuickBASIC programs.

Detailed syntax information for the commands as they’re used with
QuickBASIC is included in chapter 4, “BASIC Reference.”

QuickBASIC and QBasic Programming 3-1

Copying Files

To begin programming in BASIC, you must copy the BASIC Library files to
your work disk.

The HP-IB Command Library disks contain an INSTALL program that copies
the QuickBASIC Library files to your system for you.

To use INSTALL:

1. Insert the Library disk into your flexible disk drive—if you’re using 5.25-inch
disks, use the disk labeled “Disk 1—Install.”

2. Run INSTALL by typing
a:install

3. Follow the instructions displayed on the screen. When you successfully
complete the instructions, the following files are copied:

am For QuickBASIC 4.0 or later:

QBHPIB.LIB
QBHPIB.QLB
QBSETUP.BAS
QEXAMPLE.BAS
QBCL.BAT
QBSCOPE.BAS
QBMETER.BAS

m For Compiled BASIC:

QBHPIB.LIB
QBSETUP.BAS
QEXAMPLE.BAS
CBCL.BAT
QBSCOPE.BAS
QBMETER.BAS

m For QBasic:

QHPIB.LIB
QSETUP.BAS
QCL.BAT

3-2 QuickBASIC and QBasic Programming

m For Microsoft BASIC 7.0 and 7.1 Professional Development System:

QBXHPIB.LIB
QBXHPIB.QLB
QBSETUP.BAS
QBXCL.BAT
QEXAMPLE.BAS
QBSCOPE.BAS
QBMETER.BAS

If you specified invalid drives, or if the system disk is write-protected, no files
will be copied. Also make sure you copy all the necessary files from your
BASIC compiler and linker to your system. Refer to your BASIC manual for
details.

Programming in QuickBASIC

You can create a QuickBASIC program using a text editor, the QuickBASIC
integrated environment, or the interpreted BASIC environment.

If you use the QuickBASIC interactive environment, you will need to load the
HP-IB Quick library with it by invoking QuickBASIC as:

QB /L QBHPIB

This incorporates the HP-IB library into the interactive environment so the
HP-IB routines will work.

The following diagram shows the general structure of your application program.

User-defined COMMON declarations

REM $IECLUDE: °’QBSETUP.BAS’

Your BASIC application program

QuickBASIC and QBasic Programming 3-3

If you will be chaining programs, decide if you need any COMMON
declarations for your application. These must appear before any executable
statements.

User-defined COMMON statements should be followed by a metacommand to
include the QBSETUP.BAS file. For QuickBASIC programming, the Library is
implemented as a set of assembly language subroutine calls. QBSETUP.BAS

is a header for your application program. It sets up the necessary error

status variables, declares some working variables, contains related COMMON
statements and establishes an error handling routine.

Your application programs should start after the statement to include
QBSETUP.BAS.

If you are using multiple modules in QuickBASIC or Compiled BASIC,

we recommend editing the file QBSETUP.BAS to change all COMMON
statements to COMMON SHARED. Then add these COMMON SHARED
statements to the beginning of each module. Refer to your BASIC manual for
more details on how to use the COMMON statement.

Dimensioning Arrays

While the syntax of QuickBASIC allows dynamic arrays, they are not
supported by the HP-IB Command Library. This applies to arrays declared
with the SDYNAMIC attribute as well as arrays declared using variables for
the dimensions. For example:

Correct DIM READINGS(20)

Incorrect MAX .ELEMENTSY, = 20
DIM READINGS(MAX.ELEMENTSY)

Chaining in BASIC

Every chained-to program must include several statements from
QBSETUP.BAS.

3-4 QuickBASIC and QBasic Programming

m Include the three COMMON declarations from QBSETUP.BAS:

COMMON PCIB.BASERR,PCIB.ERR,PCIB.ERR$,PCIB.NAME$,PCIB.GLBERR
COMMON FALSEY,,TRUEY,,NOERR,EUNKNOWN ,ESEL ,ERANGE,ETIME,ECTRL,EPASS
COMMON ENUM,EADDR

These lines should follow your own COMMON statements, and all
COMMON statements must appear before any executable statements.

The order in which COMMON variables are listed is significant. Mismatched
COMMONSs between chained programs can cause execution errors.

m Include the call to DEFERR as shown in QBSETUP.BAS:
CALL DEFERR (PCIB.ERR,PCIB.ERR$,PCIB.NAME$,PCIB.GLBERR)

DEFERR tells the HP-IB Library where in memory your error variables
(such as PCIB.ERR) are located.

If you have sufficient space in your chained-to program, you can simply

include the entire QBSETUP.BAS file (following any user-defined COMMON
statements). Although only the COMMON statements and DEFERR call are
essential for chaining, QBSETUP.BAS also provides an error handling routine,
initializes the error variables, and sets up the error mnemonics (such as ESEL).

The behavior of QuickBASIC programs that use chaining depends on whether
they are linked with the BASIC “run” library or with the “compile” library.
For example, due to a limitation in QuickBASIC, the values of COMMON
variables are not preserved across a chain if the program was compiled to run
as a stand-alone program. To work around this limitation, you should compile
your program to require the file BRUN4x.EXE. To do this, simply add a /E
switch to the DOS command line when compiling. For example, here is how to
compile the program '"HELLO.BAS’:

BC HELLO /E/V/W; P Conputer
LINK HELLO, HELLO,,QBHPIB Aisoum

You can also compile from within the environment and create an executable
that requires BRUN4x.EXE.

If you will be chaining programs, read those portions of your BASIC manual
relating to compiling, linking, and running programs before you link a program.

QuickBASIC and QBasic Programming 3-5

Writing a BASIC Program

In an application program, you typically use the Library commands in the
following manner to execute an operation:

1. Set up the required variables.
2. Perform the operation.
3. Test to see if the operation completed successfully.

In this example, you follow these steps to program two instruments—an HP
3325A Synthesizer/Function Generator and an HP 3456A Digital Voltmeter.
You program the source to output a 2-V rms signal, swept from 1 kHz to 10
kHz. You program the DVM to take 20 readings from the signal and output
them to an array. Finally, you display the readings on the screen.

Use a convenient editor and begin with the SINCLUDE metacommand:
REM $INCLUDE: °’QBSETUP’
Be sure that you leave no spaces between the § and INCLUDE.
Since this example does not chain programs, no extra COMMON statements

are needed.

1. Define main program with working variables.

REM $INCLUDE: ’QBSETUP’

OPTION BASE 1

MAX .ELEMENTSY = 20

DIM READINGS (20)

ACT .ELEMERTSY, = O

CALL INITIALIZE (ISCk, DVM%, SOURCER)
CALL SOURCESETUP (SOURCER)

CALL DVMSETUP (DVMR)

CALL TRIGGER (DVM&, SOURCER)

CALL WAITFORSRQ (ISC&, DVMR)

CALL TAKEREADINGS (ISCk, DVM&, MAX .ELEMENTSY, ACT.ELEMENTSY)
CALL PRINTREADINGS (ACT.ELEMENTSY)
END

3-6 QuickBASIC and QBasic Programming

m Set the array base to 1 so array element numbering begins with 1 instead of
0.

m Define a maximum-readings variable (MAX.ELEMENTS).

m Dimension an array (READINGS) to hold the readings taken by the
voltmeter. This must be dimensioned using a literal, not a variable.

m Set ACT.ELEMENTS, the actual number of elements read by IOENTERA,
to 0.

m Each subprogram is described as it is presented below.

2. Write the initialization subprogram.

SUB INITIALIZE (ISC, DVM, SOURCE)
SHARED PCIB.ERR, PCIB.BASERR, NOERR

IsCk = 7

DVMRE = 722

SOURCER = 717

CALL IORESET (IScC&)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

TIMEQUT! = 5.0

CALL IOTIMEGUT (ISCk, TINEGUT!)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

CALL IOCLEAR (ISCE)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
END SUB

m Set the interface select code variable ISC to 7.
a Set the voltmeter address variable DVM to 722.

m Set the signal source address variable SOURCE to 717. This example
assumes select code 7, voltmeter address 22, and source address 17.

m Set the interface to its default configuration.
m Define a system timeout of 5 seconds.

m Perform IOCLEAR to put all instruments into a known, device-dependent
state.

QuickBASIC and QBasic Programming 3-7

Note This program includes an error checking line after each Library

command:
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

If there is an error (that is, the error variable PCIB.ERR does
not equal NOERR), this line calls the QBSETUP.BAS error
handling routine and passes the error number PCIB.BASERR.
The routine then prints error information and stops the
program. See “Processing I/O Errors” in chapter 1 and
“BASIC Error Handling” later in this chapter for more
information.

3. Generate a subprogram to set up the source.

SUB SOURCESETUP (SOURCE%)
SHARED PCIB.ERR, PCIB.BASERR, NOERR

CODES$ = "RF2 FU1 ST1KH SP10KH MF1KH AM2VR TISSE"
LENGTHY, = LEN(CODES$)
CALL IOOUTPUTS (SOQURCE%,CODES$,LENGTHY)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
END SUB

m Define the programming codes string CODES$ to hold:

RF2—select the rear panel signal output.
FUl—select the sine wave function.
ST1KH-—select a starting frequency of 1 kHz.
ST10KH—select a stopping frequency of 10 kHz.
MF1KH-—select a marker frequency of 1 kHz.
AM2VR—select an amplitude of 2 V rms.
TI5SE—-select a sweep time of 5 seconds.

m Use the IOOUTPUTS command to send the programming codes to the
source with the proper length parameter.

3-8 QuickBASIC and QBasic Programming

4. Generate a subprogram to set up the voltmeter.

SUB DVMSETUP (DVMR)
SHARED PCIB.ERR, PCIB.BASERR, NOERR

CODES$ = "H SMOO4 F2 R4 FLO ZO 4STG 20STN RS1 T4"
LENGTHY, = LER(CODES$)
CALL IOOUTPUTS (DVM&,CODES$,LENGTEY)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
END SUB

m Define the programming codes string CODES$ to hold:
H-—software-reset the voltmeter.

SM004—set the service request mask to enable the voltmeter to set the
interface SRQ line when it finishes taking readings (when the Data Ready bit
of the serial poll response byte is set).

F2—select the AC volts function.
R4—select the 10 volt range.
FLO—turn off filtering.

Z0—turn off auto zero.
4STG—select the 4-digit display.
20STN—take 20 readings.
RS1—turn on reading storage.
T4—select trigger hold.

m Send the programming codes to the voltmeter with the proper length
parameter.

QuickBASIC and QBasic Programming 3-9

5. Define a subprogram to trigger the instruments.

SUB TRIGGER (DVM&, SQURCER)
SHARED PCIB.ERR, PCIB.BASERR, NOERR

CALL IOTRIGGER(DVMR)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

CODES$ = "ss"

LERGTHY, = LEN(CODES$)

CALL IOOUTPUTS (SOURCEX,CODES$,LENGTHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
END SUB

m Execute the IOTRIGGER command for the voltmeter.
a Define the programming codes string to hold the source’s trigger code.
m Send the programming codes to the source with the proper length parameter.

These lines demonstrate that some instruments respond to an HP-IB
trigger command, while others must be triggered with instrument-specific
programming codes.

6. Wait for the voltmeter to finish reading.

SUB WAITFORSRQ (ISCk, DVMR)
SHARED PCIB.ERR, PCIB.BASERR, NOERR

SRQY% = 1
CHECKSTAT: CALL IDSTATUS (ISCk, SRQY%, STATUSY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

IF STATUSY, = O THEN GOTO CHECKSTAT

CALL IOSPOLL (DVMR, RESPONSEY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

IF (RESPONSEY AND 68) <> 68 THEN GOTO CHECKSTAT
END SUB

m Define the interface condition whose status is being checked. In this case,
check for condition 1—is the SRQ line set?

3-10 QuickBASIC and QBasic Programming

m Execute the status command and return the result in STATUS.

m As long as STATUS is 0, the SRQ line is not set, indicating that the
voltmeter is not finished taking readings. As soon as it changes to 1, perform
a serial poll on the voltmeter to learn which of its conditions, if any, set the
SRQ line. The serial poll also clears the request.

m The result of the serial poll is the status byte of the voltmeter, returned
in RESPONSE. Compare RESPONSE and the value 68—the sum of the
Request Service bit (64) and the Data Ready bit (4). If these bits are set,
continue because the voltmeter is finished. If they are not set, perform the
status check again.

m Note that alphanumeric labels (such as CHECKSTAT) may be used.

7. Enter the readings into an array.

SUB TAKEREADINGS (ISCk,DVMk MAX.ELEMENTSY,,ACT.ELEMENTSY)
SHARED PCIB.ERR, PCIB.BASERR, NOERR, READINGS()

CODES$ = "SO1 -20STR RER"

LENGTHY, = LEN(CODES$)

CALL IO0UTPUTS (DVM&,CODES$,LERGTHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

STATEY, = O

CALL IOEOI (ISCk,STATEY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

CALL IOENTERA(DVM&,SEG READINGS(1) ,MAX.ELEMENTSY,ACT.ELEMENTSY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
END SUB

m Define the programming codes string to direct the voltmeter to output its
stored readings:

SOl1—turn on system output mode.
—20STR—unstore the 20 readings from register R.
RER-—recall (readout) the 20 readings.

s Qutput the programming codes to the voltmeter with the proper length
parameter.

QuickBASIC and QBasic Programming 3-11

m Disable the EOI mode so reading won’t terminate after entering only one
value.

m Enter the voltmeter readings into the READINGS array starting at
the first element. Include the maximum and actual length parameters.
READINGS(1) here refers to the first element of READINGS.

8. Print the readings.

SUB PRINTREADINGS (ACTUALY)
SHARED READINGS()

PRINT "THE READINGS ARE: *
FOR I% = 1 TO ACTUALY,
PRINT I%, READINGS(I)
NEXT 1Y%
END SUB

Saving the BASIC Program

When you have finished typing your program, check it for typographical
errors. Then exit your text editor, saving your program with the name
QBPROG.BAS. If you’re using a general text editor or the interpreted BASIC
editor, be sure to save it in ASCI format (most text editors do so by default).

Note If you are using the interpreted BASIC environment to write
i your program, you must use the A option to save it:
ﬁ save "gbprog",a
This saves your program in ASCII format and appends the
suffix “.BAS”.

3-12 QuickBASIC and QBasic Programming

Compiling and Linking the BASIC Program

QuickBASIC provides three methods for compiling and linking a BASIC
program:

m Compiling the program with the /O option, linking the new object file with
the alternate run-time library and the Command Library, and running the
new executable file,

m Compiling the program without the /O option, linking the new object file
with the run-time-module library and the Command Library, and running
the new executable file with the run-time module present.

m Specifying the library when you start the QuickBASIC integrated
environment, then running the program from there.

The method used affects such factors as the size of the executable code
generated, execution speed of your program, and the meaning of any CHAIN
and COMMON statements in your program.

This manual describes use of the HP-IB Command Library with the first and
last methods. For further information, read those portions of your BASIC
manual relating to compiling, linking, and running BASIC programs.

Automatic Compiling and Linking

A batch file in your Command Library automatically compiles and links
a specified BASIC program. The file you use depends upon your BASIC
language.

If you use this method, you should make sure your PATH environment variable
includes the Command Library directory and the BASIC executables directory.
For example, the following command in your AUTOEXEC.BAT file includes
the HPIB and BAS directories in the PATH variable

path=c:\;c:\dos;c:\bas;c:\hpib

To compile and link a program, type the following at the MS-DOS prompt,
where progname is the name of a BASIC program (without the .BAS extension
appended).

m QuickBASIC 4.0 or later (uses file QBCL.BAT)
gbcl progname

QuickBASIC and QBasic Programming 3-13

m Microsoft Compiled BASIC (uses file CBCL.BAT)

cbcl progname
® Microsoft BASIC PDS (uses file QBXCL.BAT)

gbxcl progname

Note If your program includes any ON-event branching (such as
i ON PEN for service requests), you should edit the .BAT
g file named above to include the /V and /W switches in its

commands. This enables end-of-command event checking.

The original .BAT file doesn’t use these switches, but they’re
present in the file as unexecuted lines.

For example, to compile and link the program described above using

QuickBASIC 4.0, type
qbcl gbprog

Compiling and Linking Separately

To only compile a program, type the compiler command followed by the file
name followed by the /E and /O switches and any other compiler switches you
need (see the note below).

For QuickBASIC 4.0 or later, Compiled BASIC, or BASIC PDS:
bc progname /e /o;

The compiler requires the /E switch to process the error routines since
QBSETUP.BAS uses an ON ERROR branch. The /O switch directs the
compiler to assume it will use the alternate run-time library instead of the
run-time-module library.

3-14 QuickBASIC and QBasic Programming

Note If your program includes any ON-event branching (such as
ON PEN for service requests), you should also include the /V
and /W switches to enable end-of-command event checking.

If your program doesn’t use ON-event branching, omit the /V
and /W switches to improve performance.

For example, to compile the example program

bc qbprog /e /o;
This command generates an object listing named QBPROG.OBJ.

The object file produced by the compiler from your program must be linked
with the QuickBASIC HP-IB Library (QBHPIB.LIB) before you run your
program. The linker matches up your HP-IB Library calls with the proper
subroutines from the library. Any compiled program must be linked prior to
execution, even if it does not use the HP-IB Library.

Note Be sure to use the linker distributed with your compiler.
Differences between versions of LINK.EXE can result in
d improper linking if you mix compilers and linkers.

To link your program and libraries, type
link
As linking executes, several prompts appear on the screen:
1. When you are prompted for object modules, type
gbprog

The linker appends the extension .OBJ to the filename and then searches for
QBPROG.OBJ.

2. When you are prompted for a run file, press (Enter). The default
QBPROG.EXE is assumed.

3. When you are prompted for a list file, press (Enter). A listing file is not
required for this example.

QuickBASIC and QBasic Programming 3-15

4. When you are prompted for runtime libraries, type your Command Library
name:

@ QuickBASIC 4.0 and later: QBHPIB.
m Microsoft Compiled BASIC: QBHPIB.
m Microsoft PDS Compiler: QBXHPIB.
For example,

qbhpib

This directs the linker to link the Command Library to your program. The
linker also automatically links the alternative run-time library.

When the linker returns with the operating system prompt, you have an
executable file named QBPROG.EXE that is ready to run.

See your reference manual for more information on the compiler and linker.

Compiling and Linking in the QuickBASIC Environment

To compile, link, and run a program from the QuickBASIC integrated
environment, you should start QuickBASIC 4.0 using the following command
(and the QBHPIB.QLB library):

gb progname /1 qbhpib

This loads the Command Library into the QuickBASIC environment so you
can run your program. See your QuickBASIC manual for more information
about the environment.

Running the BASIC Program

When you are ready to run the program, connect the SIGNAL output of the
source to the VOLTS input of the DVM. (Include a 50-ohm load in this line to
ensure proper readings.) Use HP-IB cables to connect the instruments to your
computer.

To execute your program, type the name of the .EXE file—in this case

QBPROG
qbprog

3-16 QuickBASIC and QBasic Programming

Watch the display on the function generator. You will see the various functions
(sine wave, AC volts, sweep time) displayed as they are programmed.

The voltmeter displays its operation as well—you can watch it take readings,
store them, and output them to the READINGS array. As the program ends,
it displays the readings on your screen.

Note If the name of a Library command is misspelled, or if the
i number or types of parameters is wrong, system restart may be
t required to recover.

BASIC Error Handling

General information about Command Library errors, BASIC error variables,
and how to process errors are contained in “Processing I/O Errors” in chapter
1 and in appendix A, “Error Descriptions.”

If you don’t need to write a special error-processing routine for your program,
you can use the one provided in QBSETUP.BAS.

> Error handling routine

)

ERRORHANDLER:

99 IF ERR = PCIB.BASERR THEN GOTO LIBERROR
PRINT "BASIC error #"; ERR; "occurred on line #"; ERL
STOP

LIBERROR:
TMPERR = PCIB.ERR
IF TMPERR = O THEN TMPERR = PCIB.GLBERR
PRINT "HP-IB error #"; TMPERR; " detected on line #"; ERL
PRIBT “Error: '*; PCIB.ERR$
STOP

This error handling routine is based on the BASIC function ERROR and its
associated variables ERR and ERL. (If you need more details about ERROR,
ERR and ERL, refer to your BASIC manual.) The variable PCIB.BASERR

QuickBASIC and QBasic Programming 3-17

(value 255) provides a mechanism for differentiating between a BASIC error
and an HP-IB Command Library error. If ERR = PCIB.BASERR, the error is
generated by the Command Library—otherwise, it’s a BASIC system error.

The above routine prints the type of error (BASIC or HP-IB), the error
number, the error message, and the line on which the error was detected.
Then, it stops the program. An ON ERROR statement in the QBSETUP.BAS
file defines a branch to the error handling routine for any BASIC or
program-initiated call to the ERROR function.

Note If your program has unnumbered lines, the indicated line
number is the last numbered line encountered—most likely line
99 in QBSETUP.BAS.

3-18 QuickBASIC and QBasic Programming

Programming in QBasic

QBasic programming is very similar to QuickBASIC programming with these
exceptions:

m You must include the file QSETUP .BAS within all QBasic programs. You can
do this using a DOS COPY command:

COPY QSETUP.BAS+MYPROG.BAS FINAL.BAS
At this point, you run the program FINAL in the QBasic environment.
m These commands are not supported in QBasic:
IOPASSCTL
IOTAKECTL
IOREQUEST
IOPEN

If you need to use any of these commands, you must use QuickBASIC
instead of QBasic.

m These commands have a slightly different syntax in QuickBASIC and QBasic:
IOENTERA
IOENTERAB
IOENTERB
IOOUTPUTA
IOOUTPUTAB
IOOUTPUTB

Refer to Chapter 4 for details about the syntax of these commands.

QuickBASIC and QBasic Programming 3-19

Command Library Parameters

This section presents information about Command Library parameters as they
are used with QuickBASIC.

Note that if you are using any DEF statement (such as DEFINT) in
QuickBASIC or compiled BASIC, you must make all HP-IB variables become
real numbers by using the ! suffix (for example, ERANGE!).

Passing Parameters

In QuickBASIC, all parameters used in CALL statements can be passed by
reference. That is, you can use variable names as parameters. However, for
QuickBASIC 4.0 and later and Microsoft Compiled BASIC, you can also use
literals and expressions for simple parameters that provide information to the
command—but not for parameters that return information.

For example, the IOSPOLL command uses two parameters: a device address
and a response value. The address provides information, so it can be a
variable, literal, or expression. The response returns information, so it must be
a variable.

Variables are always valid as parameters. For example

ISCE = 7
CALL IOSPOLL (ISC&,RESPONSE%)

Parameter Types

Several types of variables are used to describe parameters to Library command
calls in chapter 4, “BASIC Reference.”

Integer Variable

An integer variable is distinguished from other identifiers by “%” appended to
the variable name. The valid range for this variable type is integer numbers
from —32,768 to 32,767. Integers are used to specify flags and other discrete
information. For example:

FLAGY,
STATUSY,

3-20 AQuickBASIC and QBasic Programming

Long-Integer Variable

A long-integer variable is distinguished from other identifiers by “&” appended
to the variable name. The valid range for this variable type is integer numbers
from —2,147,483,648 to 2,147,483,647. Long-integer variables are used to
specify select codes and device addresses, including extended addresses. For
example:

ISCDEVICE.ADDRESS%

Single-Precision Real Variable

A single-precision real variable is distinguished from other identifiers either by
“!” appended to the variable name, or by no suffix appended at all. The valid
range for these variables is approximately 2 x 1073% to 2 x 1013 (negative
or positive). Single-precision real numbers have approximately seven digits of
accuracy. They’re used to specify numeric data. For example:

VALUE
READING!

Single-Precision Real Array

A single-precision real array is an array of single-precision real numbers.
Arrays are declared using the DIM statement. Although the theoretical
maximum size for a BASIC array is 32,767, the actual limit is approximately
14,000 elements depending on the length of your program.

The Command Library supports only STATIC arrays. Dynamic arrays must
not be used as parameters to Library calls.

BASIC does not permit the use of unsubscripted array names as parameters to
CALL statements. Therefore, when you use arrays in Library function calls,
use the first element of the array to be accessed as the parameter. In addition,
the SEG keyword must be included with the array name. For example:

SEG VALUES(0) Starts at element 0.
SEG VALUES(5) Starts at element 5.

Be sure the number-of-elements parameter value does not exceed the number of
elements available in the array. For data output, the Library continues through
memory sending the contents of the individual cells until the specified count is

QuickBASIC and QBasic Programming 3-21

satisfied. For data input, the Library continues through memory, writing over
existing data or programs.

String Variable

A string variable is a variable that can contain any valid sequence of 0 or more
ASCII characters. It is identified by a “$” appended to its identifier. The
length of a string variable is not fixed, but may be anywhere from 0 (the null
string) to 32,767 theoretically. However, the actual upper limit ranges from
about 19,000 to 30,000 depending upon your compiler and the amount of code
and data in your program. String variables are used to specify characters and
other ASCII text. For example

COMMANDS$

String variables should be initialized with SPACES$ before data is entered with
an IOENTERS command. Otherwise, if the current length is zero, no data will
be transferred.

Any Type of Array

Any type of array can be a single-precision real array, an integer array, a
double-precision real array, or other type of numeric array. (The array can’t be
a string.) It indicates the place to start reading or storing data.

The Command Library supports only STATIC arrays. Dynamic arrays must
not be used as parameters to Library calls.

BASIC does not permit the use of unsubscripted array names as parameters to
CALL statements. Therefore, when you use arrays in Library function calls,
use the first element of the array to be accessed as the parameter. In addition,
the SEG keyword must be included with the array name. For example:

SEG VALUES(0) Single-precision real; starts at first element.
SEG DATA#(5) Double-precision real; starts at element 5.
SEG FLAGSY(0) Integer; starts at first element.

Be sure the number-of-bytes parameter value does not exceed the number of
bytes available in the array—the number of elements times the number of bytes
per element. For data output, the Library continues through memory sending
the contents of the individual cells until the specified count is satisfied. For

3-22 AQuickBASIC and QBasic Programming

data input, the Library continues through memory, writing over existing data
Or programs.

Example Programs

Oscilloscope Example

The following program is written in QuickBASIC 4.0. The program uses two
devices: an HP 54601A digitizing oscilloscope (or compatible scope) and a
printer capable of printing HP Raster Graphics Standard, such as a ThinkJet
printer.

The program tells the scope to take a reading on channel 1 and send the data
back to this program. Then it prints some simple statistics about the data.
The program then tells the scope to send the data directly to the printer,
illustrating how the controller does not have to be directly involved in an
HP-IB transaction.

Things to note about this program:

m Note the use of the IOENTERAB command. This command will read an
arbitrary block of data as defined in IEEE-488.2. IOENTERAB can read
either definite length or indefinite length arbitrary block data.

m If your instrument sends data in some other block data format, you can
use the IOENTERB and IOQUTPUTB commands in conjunction with
IOENTERS and IOOUTPUTS, respectively, to simulate these other formats.

m You should probably disable character matching before executing an
IOENTERB or IOENTERAB because the character in the “match” string is
generally a valid binary value, rather than a termination character.

m The commands that are sent to the scope are device dependent and are
found in the manual for the scope.

m The error checking in the program consists of executing an IF statement
after each call to an HP-IB command.

m Before an IOENTERS statement is executed, space should be allocated for
the string by assigning the string to SPACE$(n) where n is the maximum

QuickBASIC and QBasic Programming 3-23

length to be entered. If this is not done, the string will be of length 0, and
no characters will be entered. You can then shorten the string to the correct

length (in case less than the maximum number of characters were entered) by
using the LEFT$ function.

The program has three main parts to it:
1. Read the data from the scope.
2. Print some statistics about the data.

3. Have the scope send the data to a printer.

3-24 QuickBASIC and QBasic Programming

’This program tells the scope to take a reading on channel 1, then
’sends the data back to this program. We can do anything we want

’to the data at this time, and we choose to print some simple statistics
’about the data. The program then tells the scope to send the data
’directly to the printer, illustrating how the controller doesn’t have
’to be directly involved in an HP-IB transaction.

)

REM $INCLUDE: ’QBSETUP’

Iscg =7

SCOPE& = ISC& * 100 + 7

)

’reset the HPIB interface

)

CALL IORESET(ISC%)

IF PCIB.ERR <> NOERR THEN ERRDR PCIB.BASERR

)

’set up a timeout of 5 seconds

P

TIME! = b

CALL IOTIMEOUT(ISC%, TIME!)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

b

’clear the scope

b

CALL IOCLEAR(SCOPE%)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

b

’lockout the keyboard on the scope so the program has complete control
> of it

b

CALL IOREMOTE(ISC%)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

b

’set up some variables
OPTION BASE 1

DISABLE/ = O : ENABLEY = 1
EOL$ = CHR$(10)

CRLF$ = CHR$(13) + CHR$(10)
CMD$ = SPACE$(255)

QuickBASIC and QBasic Programming 3-25

)

)

’this is the beginning of part 1 ek e e o o o ke o e o e ke e ke e o ke ek ok ok
) - get the data from the scope

)

)

’setup scope to accept waveform data

)

CMD$ = "*RST"

LENGTHY, = LEN(CMD$)

CALL IOOUTPUTS(SCOPE&, CMD$, LENGTHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
)

CMD$ = ":autoscale"

LENGTHY, = LEN(CMD$)

CALL IOOUTPUTS(SCOPE&, CMD$, LENGTHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’setup up the waveform source

)

CMD$ = ":waveform:format word”"

LENGTHY = LEN(CMD$)

CALL IOOUTPUTS(SCOPE&, CMD$, LENGTHY%)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

>

’input waveform preamble to controller

2

CMD$ = ":digitize channell"

LENGTHY = LEN(CMD$)

CALL IOOUTPUTS(SCOPE&, CMD$, LENGTHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
2

CMD$ = ":waveform:preamble?"

LENGTHY% = LEN(CMD$)

CALL IOOUTPUTS(SCOPE&, CMD$, LENGTHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

‘read in the preamble
>

MAXY = 10: ACTUALY = ©
DIM PRE![10]

3-26 QuickBASIC and QBasic Programming

CALL IOENTERA(SCOPE&, SEG PRE![1], MAXY, ACTUAL%)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’turn off ’lf’ enter terminator, as ’1f’ is a legal binary value
)

CALL IOMATCH(ISC%, EOL$, DISABLEZ)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

‘make sure EOI is set

)

CALL IOEOI(ISC&, ENABLEY%)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

Computer
Museum

’command scope to send data. It will be sent in IEEE arbitrary block
'format.

)

CMD$ = “:waveform:data?"

LENGTHY = LEN(CMD$)

CALL IOOUTPUTS(SCOPE&, CMD$, LENGTHY%)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

’

’enter the data

)

DIM READINGSY%(5000): BYTESY = 8000: ACTUALY% = O: FLAGY = 2

CALL IOENTERAB(SCOPE&, SEG READINGS%(1), BYTESY, ACTUAL’, FLAGY)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

'use IOGETTERM to see if we entered all the points

’

CALL IOGETTERM(ISC&, REASONY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

IF (REASONY AND 1) = O THEN PRINT "NOT ALL POINTS FOUND"

' Read the last byte from the scope. This must always be done
’ after an IOENTERAB command. If the character read is a

' ’1f’, then the device is done sending data. If the character
' read is a ’;’ or a ’,’, then the device is waiting to send

’ another block of data.

! Note also that we can use the select code instead of the device
’ address for the first parameter of this command. This is because

QuickBASIC and QBasic Programming 3-27

’ the scope is still addressed to talk, and the computer to listen
> from the IOENTERAB command.

)

LENGTHY, = 1: ACTUALY = 0

CMD$ = SPACE$(10)

CALL IOENTERS (ISC&, CMD$, LENGTHY%, ACTUALY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

CMD$ = LEFT$(CMD$, ACTUALY)

)

IF CMD$ <> CHR$(10) THEN PRINT "scope wants to send more data..."
)

H

’this is the beginning of part 2 A e o ok ok K

’ - print some statistics about the data
)

H

’calculate minimum, maximum, and sum of the values in the data
)

VDIV! = 32 * PRE(8)

OFFSET! = (128 - PRE(10)) * PRE (8) + PRE (9)
SDIV! = PRE(3) * PRE (5) / 10

DELAY! = (PRE(3) / 2 - PRE(7)) * PRE(5) + PRE(6)

H

’Retrieve the scope’s ID string

)

CMD$ = "*IDN?"

LENGTHY, = LEN(CMD$)

CALL IOOUTPUTS(SCOPE%, CMD$, LENGTHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
?

LENGTHY, = 50: ACTUALY, = 0

CMD$ = SPACE$(50)

CALL IOENTERS (SCOPE%, CMD$, LENGTHY, ACTUALY)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

H

'print the stats

2

PRINT

PRINT " Oscilloscope ID: “;CMD$

PRINT " -~——-— statistics ---——--- "
PRINT " Volts/Div = “; vDIV!; " ¥~

3-28 QuickBASIC and QBasic Programming

PRINT " Offset = ", OFFSET!; " V"

PRINT " S/Div = "; SDIV!; ' s“

PRINT * Delay = "; DELAY!; ' s"

PRINT

2

»

»

’this is the beginning of part 3 Jok ok Rk kR ok okokok ok ok Rk kKK

) ~ have the scope send the graph directly to the printer

»

»

'Next, let’s tell the scope to print directly to a printer.

’ We must first send the HP-IB commands to make the scope a talker and
’ the printer a listener. This is done with the IOSEND command.

> We will tell the scope to issue a service request when it’s done

’ printing, as we need to wait for the printing to complete before

’ continuing the program.

'tell the scope to SRQ on ’operation complete’
)

CMD$ = "*SRE 32 ; *ESE 1"

LENGTHY, = LEN(CMD$)

CALL IOOUTPUTS(SCOPE&, CMD$, LENGTHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

b

'tell scope to print

>

CMD$ = ":print? ; *OPC"

LENGTHY% = LEN(CMD$)

CALL IOOUTPUTS(SCOPE%, CMD$, LENGTHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

'tell scope to talk and printer to listen

’ the listen command is formed by adding 32 to the device address of the
! device to be a listener

' the talk command is formed by adding 64 to the device address of the
’ device to be a talker

1

PRINT.LISTEN$ = CHR$(32 + 1) ’printer is at device address 1
SCOPE.TALK$ CHR$(64 + 7) ’scope is at device address 7

UNLISTEN$ = CHR$(63)

QuickBASIC and QBasic Programming 3-29

)

’send the command

)

CMD$ = UNLISTEN$ + PRINT.LISTEN$ + SCOPE.TALK$
LENGTHY, = LEN(CMD$)

CALL IOSEND(ISC&, CMD$, LENGTHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

‘now, the ATN line must be set to FALSE.

)

CONDY, = 8

STATUSY. = O

CALL IOCONTROL(ISC&, CONDY%, STATUSY%)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)
)

‘now wait for SRQ from scope
)

NOT.DONE:

)

CONDY% = 1: STATUSY = O

CALL IOSTATUS(ISC&, CONDY, STATUS%)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

IF STATUSY = 0 THEN GOTO NOT.DONE

’make sure it was the scope requesting service
)

CALL IOSPOLL(SCOPE%, STATUSY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’ 64 = bit 6 set

)

IF (STATUSY, AND 64) = 0 THEN GOTO NOT.DONE

)

? Clear the status byte so the scope can assert SRQ again

? if needed
)

CMD$ = "*CLS"
LENGTHY, = LEN(CMD$)

3-30 QuickBASIC and QBasic Programming

CALL IOOUTPUTS(SCOPE&, CMD$, LENGTHY)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’give local control back to the scope

)

CALL IOLOCAL(ISCE)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

SYSTEM

Multimeter Example
The following program is written in QuickBASIC 4.5..

’ This example uses the HP 344014 Multimeter as the primary device.
’ We will also use the HP 3325A Function Generator as a source for
’ the multimeter.

’ This example sets up the meter to take 128 readings, reads the data
’ into an array, then plots the data on the screen. In effect, it

’ turns the multimeter into a simple oscilloscope. This program is

’ also checking other devices that are on the bus to see if they need
! service. The SRQ line along with parallel and serial polling is

’ used to make these checks. The program will continue until the user
’ presses the F1 key on the PC keyboard.

REM $INCLUDE: ’QBSETUP’

2

NUM.READINGS = 128

Iscg = 7 ’interface select code

SOURCEZ = ISC& * 100 + 12 'address of the function generator

DVM& = ISC& * 100 + 22 ’address of the digital volt meter

DIM READINGS!'[128] ‘place we will put the readings from the dvm

2

’the F1 key will end the program

>

ON KEY(1) GOSUB QUIT
KEY(1) ON

)

QuickBASIC and QBasic Programming 3-31

’reset the HPIB interface

)

CALL IORESET(ISC%)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

b

’set up a timeout of 3 seconds

)

TIME = 3

CALL IOTIMEOUT(ISC&, TIME)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2

’clear the devices we are going to use

3

CALL IOCLEAR(SOURCE%)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
2

CALL IOCLEAR(DVME)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

b

’we meet the minimum requirements for IOFASTOUT, so let’s use it

)

CALL IOFASTOUT(ISC&, TRUEY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

NULL$ - un

CALL IOEOL(ISC&, NULL$, FALSEX)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’we will now configure all devices that can respond to a parallel poll
’ this example assumes devices at addresses 20 and 7 can respond to a
’ parallel poll. see operators manual of individual devices to see if
> they can respond to a parallel poll.

b

'configure the device at address 20 for a parallel poll
)

DEVICE.ADDR& = ISC& * 100 + 20

CONFIGURATIONY = &HO8 ’RESPOND WITH A "1™ ON LINE O
CALL IOPPOLLC(DEVICE.ADDR&, CONFIGURATIONY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

H

’configure the device at address 7 for a parallel poll

3-32 AQuickBASIC and QBasic Programming

2

DEVICE.ADDR& = ISC& * 100 + 7

CONFIGURATIONY, = &HO9 ’RESPOND WITH A "1" ON LINE 1
CALL IOPPOLLC(DEVICE.ADDR&, CONFIGURATIONY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2

’configure any other devices that can respond to parallel poll here
2

’let’s use dma to send the strings to program the devices
2

COUNTY = 40: CHANNELY, = 3

CALL IODMA(ISC&, COUNTY, CHANNELY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2

'program the function generator

2

CODES$ = "RF1 FR30HZ FU1 ST1KH SP10KH MF1KH AM1VR TISSE"
LENGTHY, = LEN(CODES$)

CALL IOOUTPUTS(SOURCE%, CODES$, LENGTHX)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2

‘program the dvm
2

CODES$ = ":CONF:VOLT:DC 30,.1;"

CODES$ = CODES$ + ":ZERO:AUTOQ OFF;"
CODES$ = CODES$ + ":TRIG:DELAY MIN;"
CODES$ = CODES$ + ":DISP:STATE OFF;"

LENGTHY, = LEN(CODES$)
CALL IOOUTPUTS (DVM&, CODES$, LENGTH%)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2

’turn dma off again

)

COUNTY = 0: CHANNELY, = 3

CALL IODMA(ISC&, COUNTY, CHANNEL)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

2

turn on automatic srq checkin,
q g
?

ON PEN GOSUB SRQ.HANDLER
PEN ON

QuickBASIC and QBasic Programming

3-33

)

PRIORITY% = 0
CALL IOPEN(ISC&, PRIOGRITY%)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

b
3

BACK:

3

’can have controller do other work here
2

GOSUB GET.DATA

3

GOTO BACK

>
’end of main program. support routines follow.
3

3

’this is the routine defined by the ’on pen gosub’ statement above.
’ this routine will be called each time an srq comes in.

3

SRQ.HANDLER:
3
’conduct a parallel poll
‘note that the source doesn’t respond to parallel poll’s, so we
’ need to poll that device separately.
3
RESPONSEY = 0
CALL IOPPOLL(ISC&, RESPONSEX)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
IF (RESPONSE), AND 1) THEN GOSUB POLL.DEVICE.1
IF (RESPONSEY, AND 2) THEN GOSUB POLL.DEVICE.2
3
’check all devices that were configured to respond to parallel
’ poll
3
’check any other devices on the bus here that weren’t configured
’ to respond to parallel poll by performing a serial poll on each

’ one.
3

CALL IOSPOLL(SOURCE&, RESPONSEY)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

3-34 QuickBASIC and QBasic Programming

?

’see if we've cleared the SRQ yet
)
STATY, = 1: RESPONSEY, = O
CALL IOSTATUS(ISC&, STATY%, RESPONSE})
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
IF RESPONSEY, = 1 THEN PRINT "SRQ LOCKED HIGH" : GOTO QUIT
)
RETURN
)
)
POLL.DEVICE.1:
?
’do a serial poll of the device configured to use parallel poll
’ line O
)
DEVICE.ADDR& = ISC& * 100 + 20
CALL IOSPOLL(DEVICE.ADDR&, RESPONSEY)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR
)
’should check RESPONSE), here to see if any action needs to be taken.
’the values that RESPONSE/, can take are device dependent.
)
RETURN
’
)

POLL.DEVICE.2:

’

’do a serial poll of the device configured to use parallel poll

' line 1

’

DEVICE.ADDRE = ISC& * 100 + 7

CALL IOSPOLL(DEVICE.ADDR&, RESPONSEY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

)

’should check RESPONSEY, here to see if any action needs to be taken.
’the values that RESPONSE), can take are device dependent.

)

RETURN

QuickBASIC and QBasic Programming 3-35

GET.DATA:

)

’Ask the DVM to send us the data

)

CODES$ = " :SAMPLE:COUNT 128;"

CODES$ = CODES$ + ":READ?"

LENGTHY = LEN(CODES$)

CALL JOOUTPUTS (DVM&, CODES$, LENGTHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

H

’Read in the data

)

LENGTHY = NUM.READINGS

ACTUALY = 0

CALL IOENTERA (DVM&, SEG READINGS' (0), LENGTHY, ACTUALY%)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

H

’set graphics mode and draw border on screen
)

CLS: SCREEN 2

WINDOW (0,0)-(639,199)

LINE (0,0)-(639,199),,B

H

’calculate min and max values for y-axis
)
YMAX = READINGS'!'[0] : YMIN = READINGS![0]
FOR I = 1 TO ACTUALY
IF READINGS![I] < YMIN THEN YMIN
IF READINGS'[I] > YMAX THEN YMAX
NEXT I

H

READINGS! [1]
READINGS! [1]

’print graph labels

H

LOCATE 2,2 : PRINT "MAX = '";YMAX;
LOCATE 24,2 : PRINT "MIN = '";YMIN;

2

’scale ymin and ymax so there is space between graph and border
)

IF YMIN > O THEN YMIN
IF YMAX > O THEN YMAX

H

1}

YMIN*0.6 ELSE YMIN
YMAX#*1.4 ELSE YMAX

]

YMIN*1.4
YMAX*0.6

1}
i

3-36 QuickBASIC and QBasic Programming

’graph the data
)
WINDOW (0,YMIN)-(ACTUAL%-1,YMAX)
XAXIS = 1
PREV = READINGS!'[XAXIS-1]
PSET(XAXIS-1, PREV)
WHILE (XAXIS < ACTUALY)
CURRENT = READINGS![XAXIS]
LINE (XAXIS-1, PREV)-(XAXIS,CURRENT)
PREV = CURRENT
XAXIS = XAXIS + 1
WEND
RETURN

)
H

QUIT:

H

’clear the dvm so we can send the commands to reset it
)

CALL IOCLEAR(DVM&)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

H

’reset the dvm

)

CODES$ = ":DISP:STATE ON; *RST"

LENGTHY, = LEN(CODES$)

CALL IOOUTPUTS (DVM&, CODES$, LENGTHY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

H

’unconfigure the parallel poll

)

CALL IOPPOLLU(ISC&)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

H

SYSTEM

QuickBASIC and QBasic Programming 3-37

BASIC Reference

This chapter presents a detailed Command Library syntax reference for
GW-BASIC and QuickBASIC languages.

Parameters for Library commands are separated into several groups according
to the types of arguments you must provide. The following table summarizes
these groups. See “Command Library Parameters” in chapters 2 and 3 for
more detail about parameter types for GW-BASIC and QuickBASIC.

Parameter Type

GW-BASIC

QuickBASIC and QBasic

Select Codes and
Addresses

Flags and
Discrete Information
Numeric Data (Single)

Numeric Data (Array)

Binary Data (Array)

String and Character Data

Single-precision real
variable

Single-precision real
variable

Single-precision real
variable
Single-precision real array

Any type of numeric array

String variable

Long-integer variable

Integer variable

Single-precision real
variable

Single-precision real array
passed by far reference

Any type of numeric array
passed by far reference

String variable

For QuickBASIC 4.0 and later, QBasic, and Microsoft Compiled BASIC,
you can also use literals and expressions for simple parameters that provide
information to the command—but not for parameters that return information.

BASIC Reference 4-1

Throughout this chapter, HP-IB terms are listed by abbreviation rather than
by name. For example, “Go To Local” is listed as “GTL.” A complete list of
HP-IB abbreviations is included in appendix B, “Summary of HP-IB.”

4-2 BASIC Reference

IOABORT

IOABORT

This command aborts all activity on the interface. IOABORT will abort
as much as it can depending upon its current system controller and active
controller status.

Syntax
T0ABORT (select_code)
select_code specifies the interface select code.
Examples
For GW-BASIC:
1100 DEV = 7

1200 CALL IOABORT(DEV)
1300 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

For QuickBASIC and QBasic:

DEV& = 7
CALL IOABORT(DEVZ)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

Bus Activity
If the HP 82335 is system controller:

m IFC is pulsed at least 100 microseconds.
m REN is set.
m ATN is cleared.

If the HP 82335 is active, but not system controller:
m UNT is sent.
If the HP 82335 is neither active nor system controller:

m No bus activity.

BASIC Reference 4-3

IOABORT

Comments
Devices in Local Lockout will remain locked out.
Possible errors are NOERR and ESEL.

If the HP 82335 was the system, but not active controller, IOABORT will make
the HP 82335 both system and active controller.

4-4 BASIC Reference

IOCLEAR

IOCLEAR

This command returns a device to a known, device-dependent state. It can be
addressed to the interface or to a specific device.

Syntax

IOCLEAR (device_address)
IOCLEAR (seleci_code)

device_address specifies the address of a device to be cleared.

select_code specifies the select code of the interface on which all devices are
to be cleared.

Examples

For GW-BASIC:
1100 ISC = 7
1110 DVM = 723

1120 CALL IOCLEAR(DVM) ’Clear the device at address 23.

1150 CALL IOCLEAR(ISC) ’Clear all devices on the interface.
For QuickBASIC and QBasic:

ISCg 7
DVMg = 723
CALL IOCLEAR(DVM%) ’Clear the device at address 23.

CALL IOCLEAR(ISCZ) ’Clear all devices on the interface.

BASIC Reference 4-5

IOCLEAR

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
a SDC is sent.

If a select code is specified:

m ATN is set.
m DCL is sent.

Comments
Possible errors are NOERR, ETIME, ECTRL, and ESEL.

4-6 BASIC Reference

IOCONTROL

IOCONTROL

This command directly sets status conditions in the interface. It can be used to
address or unaddress the interface as a talker or listener, or set the interface’s
bus address. IOCONTROL can also change system controller status of the

HP 82335 interface.

Note IOCONTROL should be used with caution since it operates
6 directly on the interface.

Syntax

IOCONTROL (select_code, condition, status)

select_code specifies the interface select code.

condition specifies the status condition that is to be set. Conditions

which can be set are:
Value Description

3 Make the interface the non-system or system
controller.

Address or unaddress the interface as talker.
Address or unaddress the interface as listener.
Set the interface’s bus address.

Clear or set ATN.

o I O

BASIC Reference 4-7

IOCONTROL

status variable into which the condition’s status is placed. It can have
the following values:

Condition 3

Value Meaning

0 [Make interface non-system controller

1 | Make interface system controller

Conditions 5 and 6

Value Meaning

0 |Clear this condition

1 | Set specified condition

Condition 7

Value Meaning

0 to 30 | Bus address of interface

Condition 8
Value Meaning
0 Clear ATN

1 |Set ATN asynchronously
2 |Set ATN synchronously
Other | ERANGE error

4-8 BASIC Reference

IOCONTROL

Examples
For GW-BASIC:

1100 ISC = 7

1110 COND = b

1120 STATUS = 1

1130 CALL IOCONTROL(ISC,COND,STATUS)
1140 ’Address the interface as talker

For QuickBASIC and QBasie:

ISC& = 7

CONDY, = 5

STATUSY = 1

CALL IOCONTROL(ISC&,CONDY,,STATUSY)
*Address the interface as talker

Bus Activity

None.

Comments

The added functionality for changing system controller status of the

HP 82335 is included for completeness in the Command Library. HP
strongly recommends, however, that you do not use this command unless it
is absolutely necessary. The recommended method of using the interface as
a non-system controller is to use the DOS command SYSCTL.EXE in your
AUTOEXEC.BAT file as described in Chapter 1.

Refer to the Comments section of the IOPASSCTL command for important
information about using and (Cul}-(Break).

For condition 8, you can set ATN either synchronously or asynchronously.
Typically, you will set ATN asynchronously. If so, data may get lost if a data
transfer is occurring that does not involve the HP 82335. For example, if a
scope is talking to a printer and ATN is set asynchronously, some data may
have been lost. If you want to avoid this situation, use status 2 to set ATN
synchronously.

BASIC Reference 4-9

IOCONTROL

Possible errors are NOERR, ESEL, ECTRL, ETIME, and ERANGE.

4-10 BASIC Reference

IODMA

IODMA

This command sets up DMA control. Using DMA may decrease the time
required to transfer longer sequences of data using IOENTERAB, IOENTERB,
IOENTERS, IOOUTPUTAB, IOOUTPUTB, and IOOUTPUTS.

Syntax

TODMA (select_code, value, channel)

select_code specifies the interface on which DMA is to be enabled or
disabled.

value specifies one of the following;:
Value Action Taken
zero Disables DMA. This is the default value.

positive value Transfer size. Determines when a DMA read
or write is executed. For example, if value =
100, then DMA will be used when 100 or more

bytes are to be read or written.
negative value Illegal. Will return an error.

channel indicates which channel to use for DMA. If the channel is other
than 2 or 3, an error is returned.

Examples
For GW-BASIC:

1100 ISC = 7

1110 VALUE = 1000

1120 CHANNEL = 3

1130 CALL IODMA(ISC,VALUE,CHANNEL)

BASIC Reference 4-11

IODMA

For QuickBASIC and QBasic:

ISC, = 7
VALUEY, = 1000
CHANNELY, = 3

CALL IODMA(ISC&,VALUEY,,CHANNELY,)

Bus Activity

None.

Comments

DMA channel 3 is the recommended channel. This is least likely to conflict
with established usage.

If character matching is enabled at the time IOENTERAB, IOENTERB, or
IOENTERS using DMA is attempted, the error EUNKNOWN will be returned
for that command and no data will be transferred.

If byte swapping is specified in [OENTERAB, IOENTERB, I0OUTPUTAB,
or IOOUTPUTB using DMA (swapsize is greater than 1), the error
EUNKNOWN will be returned for that command and no data will be
transferred.

Possible errors are NOERR, ESEL, and ERANGE.

4-12 BASIC Reference

IOENTER

IOENTER

This command reads a single real number. Reading continues until one of these
events occurs:

s The EOI line is sensed true, if it is enabled.
s A linefeed is encountered after the number starts.

Numeric characters are the digits 0 through 9, “E”, “e”, “4” “—” and “.” in
the proper sequence for representing a number. Note that “” (space) is not a
numeric character.

Syntax

IOENTER (device_address,data)
ICENTER (seleci_code,data)

device_address specifies a device address.

select_code specifies the interface select code.
data variable into which the reading is placed.
Examples

For GW-BASIC:

1100 DEVICE = 722
1110 CALL IOENTER(DEVICE,READING)
1120 ’Input a number from device 722 and place it in READING

For QuickBASIC and QBasic:

DEVICEZ = 722
CALL IOENTER(DEVICE&,READING!)
'Input a number from device 722 and place it in READING

BASIC Reference 4-13

IOENTER

Bus Activity
If a device address is specified:

m ATN is set.

® UNL is sent.

m MLA is sent.

m TAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Comments

If a select code is to be specified in the command, the interface must first be
addressed to listen (with IOSEND, for example) or an error occurs.

The approximate range of valid values is 10732 to 10%®. The IEEE 754
standard for floating point numbers makes provisions for values less than
1038, however the internal number conversion may not properly handle
values less than 107 2® when entered via HP-IB or used in assignment or print
statements.

Possible errors are NOERR, ETIME, ESEL, EADDR, ECTRL, and ENUM.

4-14 BASIC Reference

I10ENTERA

IOENTERA

This command enters numbers from a device or the interface and places them
into a real array. Reading continues until one of these events occurs:

» The EOI line is sensed true, if it is enabled.
& A linefeed is encountered after the specified number of elements is received.

Numeric characters are the digits 0 through 9, “E”, “¢”, “+7, “~”_and “.” in
the proper sequence for representing a number. Note that “ ” (space) is not a
numeric character.

Syntax
For GW-BASIC:

IOENTERA (device_address, readings, maz.elements, actual.elements)
I0OENTERA (select_code, readings, maz.elements, actual.elements)

For QuickBASIC

IOENTERA (device_address,SEG readings, maz.elements, actual elements)
IDENTERA (select_code,SEG readings, maz.elements, actual.elements)

device_address specifies a device address.
select_code specifies the interface select code.
readings array into which the readings are placed.

maz.elements specifies the maximum number of elements to be read. (An
error occurs if the number is less than 0.)

actual.elements variable returning the number of elements actually read.

BASIC Reference 4-15

IOENTERA

For QBasic:

I0ENTERA (device_address, segment, offset, maz.elements, actual.elements)
I0OENTERA (select_code,segment, offset, maz.elements, actual.elements)

device_address specifies a device address.

select_code specifies the interface select code.
segment segment of the data array (use VARSEG(array)).
offset offset of the data array (use VARPTR(array)).

maz.elements specifies the maximum number of elements to be read. (An
error occurs if the number is less than 0.)

actual.elements variable returning the number of elements actually read.

Examples
For GW-BASIC:

1100 DIM READINGS(49)

1110 DEVICE = 723

1120 MAX.ELEM = 50 : ACT.ELEM = 0

1130 CALL IOENTERA(DEVICE,READINGS(O),MAX.ELEM,ACT.ELEM)
1140 ’Read a maximum of 50 values from device 723 and
1150 ’put them in READINGS.

For QuickBASIC

DIM READINGS! (49)

DEVICE% = 723

MAX.ELEM) = 50 : ACT.ELEMY = O

CALL IOENTERA(DEVICE&,SEG READINGS!'(0),MAX.ELEMY,ACT.ELEMY,)
'Read a maximum of 50 values from device 723 and

’put them in READINGS.

4-16 BASIC Reference

IOENTERA
For QBasic:

DIM READINGS! (49)

DEVICE& = 723

MAX.ELEMY, = 50 : ACT.ELEMY = 0

CALL IOENTERA(DEVICE&,VARSEG(READINGS!' (0)),VARPTR(READINGS! (0),
MAX .ELEMY,,ACT .ELEM},)

’Read a maximum of 50 values from device 723 and

’put them in READINGS.

Bus Activity
If a device address is specified:

a ATN is set. Computer
m UNL is sent. «Museum
ma MLA is sent.

m TAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Comments

You should initialize the actual.elements parameter to zero before you use it in
an IOENTERA command.

If the specified maximum number of elements to read is greater than the size of
the readings array, input data can overrun the array and corrupt existing data
Or programs.

Nonnumeric characters that do not properly belong in a real number are
considered value separators. Thus, the sequence “1,234,567” is entered as three
numbers, not as “1234567”.

BASIC Reference 4-17

IOENTERA

The number of readings available is dependent upon the source device.

The approximate range of valid values is 10738 to 1038, The IEEE 754
standard for floating point numbers makes provisions for values less than
10738 however the internal number conversion may not properly handle
values less than 1073 when entered via HP-IB or used in assignment or print
statements.

If a select code is to be specified in the command, the interface must first be
addressed to listen (with IOSEND, for example) or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ENUM, ECTRL, and
ERANGE.

4-18 BASIC Reference

IOENTERAB

IOENTERAB

This command enters arbitrary-block program data (numeric data with
IEEE-488.2 coding) from a device or the interface. Reading continues until one
of these events occurs:

m The maximum number of bytes specified is received.

m A linefeed is encountered with the EOI line sensed true, if the coding
indicates indefinite length.

m The number of bytes indicated by the coding is received, if the coding
indicates definite length.

Syntax
For GW-BASIC:

IOENTERAB (device_address, data, maz.bytes, actual.bytes, swapsize)
IOENTERAB (select_code,data, maz.bytes, actual. bytes, swapsize)

For QuickBASIC:

IOENTERAB (device_address,SEG data,maz.bytes, actual. bytes, swapsize)
IOENTERAB (select_code,SEG data,maz.bytes, actual bytes, swapsize)

device_address specifies a device address.

select_code specifies the interface select code.

data array into which the readings are placed.

maz.bytes specifies the maximum number of bytes to be read (excluding
the coding bytes). (An error occurs if the number is less than
0.)

actual.bytes variable returning the number of bytes actually read

(excluding the coding bytes).

swapsize specifies how bytes are placed into memory. A value of
1 indicates that bytes are placed in order. Larger values
indicate that bytes are reversed in memory in groups of this
size. The value should correspond to the byte size of the
date variable. (For example, a value of 4 specifies that each

BASIC Reference 4-19

IOENTERAB

group of four bytes is swapped in memory.) Valid values are 1
through 8—other values return an error.

For QBasic:

IOENTERAB (device_address,segment, offset, maz.elements, actual.elements, swap)
IOENTERAB (select_code,segment, offset, maz.elements, actual.elements, swap)

device_address specifies a device address.

select_code specifies the interface select code.
segment segment of the data array (use VARSEG(array)).
offset offset of the data array (use VARPTR (array)).

maz.elements specifies the maximum number of elements to be read. (An
error occurs if the number is less than 0.)

actual.elements variable returning the number of elements actually read.

swap specifies how bytes are placed into memory. A value of
1 indicates that bytes are placed in order. Larger values
indicate that bytes are reversed in memory in groups of this
size. The value should correspond to the byte size of the
data variable. (For example, a value of 4 specifies that each
group of four bytes is swapped in memory.) Valid values are 1
through 8—other values return an error.

Examples
For GW-BASIC:

1100 DIM READINGS#(49) ’Double-precision array (8 bytes/elem)
1110 DEVICE = 723

1120 SWAP = 8 : MAX.BYTE = 50 * SWAP : ACT.BYTE = 0

1130 CALL IOENTERAB(DEVICE,READINGS#(0),MAX.BYTE,ACT.BYTE,SWAP)
1140 ’Read a maximum of 50 values from device 723 and

1150 ’put them in READINGS.

4-20 BASIC Reference

IOENTERAB

For QuickBASIC:

DIM VAL#(49) ’Double-precision array (8 bytes/elem)

DEVICE& = 723

SWAP), = 8 : MAX.BYTE), = 50 * SWAPY, : ACT.BYTE) = O

CALL IOENTERAB(DEVICEZ,SEG VAL#(0),MAX.BYTE),ACT.BYTEY,,SWAPY)
’Read a maximum of 50 values from device 723 and

'put them in VAL,

For QBasic:

DIM VAL#(49) ’Double-precision array (8 bytes/elem)

DEVICEE = 723

SWAPY, = 8 : MAX.BYTE), = 50 * SWAPY : ACT.BYTEJ = 0

CALL IOENTERAB(DEVICE%,VARSEG(VAL#(0)),VARPTR(VAL#(0)),MAX.BYTEY,
ACT .BYTEY,, SWAPY)

’Read a maximum of 50 values from device 723 and

'put them in VAL.

Bus Activity
If a device address is specified:

m ATN is set.

m UNL is sent.

m MLA is sent.

m TAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

BASIC Reference 4-21

IOENTERAB

Comments

IEEE-488.2 coding is described under “Arbitrary-Block Data Coding” in
chapter 1. The coding bytes are not placed into data—this also applies to the
ending linefeed character for indefinite-length data. Leading characters are
ignored until a “#” character is received.

You should initialize the actual .bytes parameter to zero before you use it in an
IOENTERAB command.

If the specified maximum number of elements to read is greater than the size of
the data array, input data can overrun the array and corrupt existing data or
programs.

If DMA is active for the transfer, the swapsize parameter must be 1 and
character matching must be disabled—otherwise, an EUNKNOWN error
occurs.

The number of bytes available is dependent upon the source device.

If a select code is to be specified in the command, the interface must first be
addressed to listen (with IOSEND, for example) or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL, and
EUNKNOWN.

4-22 BASIC Reference

IOENTERB

IOENTERB

This command enters binary data (numeric data with no coding or formatting)
from a device or the interface. Reading continues until one of these events
occurs:

s The maximum number of bytes specified is received.
m The EOI line is sensed true, if it is enabled.

m The termination character set by IOMATCH is received with EOI true.
(Linefeed is the default character.)

Syntax
For GW-BASIC:

IOENTERB (device_address, data, maz.bytes, actual. bytes, swapsize)
IOENTERB (select_code, data, maz.bytes, actual.bytes, swapsize)

For QuickBASIC

IOENTERB (device_address,SEG data, mazx.bytes, actual.bytes, swapsize)
I0OENTERB (select_code,SEG data,maz.bytes, actual.bytes, swapsize)

device_address specifies a device address.

select_code specifies the interface select code.
data array into which the readings are placed.
maz. bytes specifies the maximum number of bytes to be read. (An error

occurs if the number is less than 0.)
actual.bytes variable returning the number of bytes actually read.

swapsize specifies how bytes are placed into memory. A value of
1 indicates that bytes are placed in order. Larger values
indicate that bytes are reversed in memory in groups of this
size. The value should correspond to the byte size of the
data variable. (For example, a value of 4 specifies that each
group of four bytes is swapped in memory.) Valid values are 1
through 8—other values return an error.

BASIC Reference 4-23

IOENTERB

For QBasic:

I0ENTERB (device_address, segment, offset, max.elements, actual.elements, swap)
I0ENTERB (select_code,segment, offset, maz.elements, actual.elements, swap)

device_address specifies a device address.

select_code specifies the interface select code.
segment segment of the data array (use VARSEG(array)).
offset offset of the data array (use VARPTR(array)).

maz.elements specifies the maximum number of elements to be read. (An
error occurs if the number is less than 0.)

actual.elements variable returning the number of elements actually read.

swap specifies how bytes are placed into memory. A value of
1 indicates that bytes are placed in order. Larger values
indicate that bytes are reversed in memory in groups of this
size. The value should correspond to the byte size of the
data variable. (For example, a value of 4 specifies that each
group of four bytes is swapped in memory.) Valid values are 1
through 8 —other values return an error.

Examples
For GW-BASIC:

1100 DIM READINGS#(49) ’Double-precision array (8 bytes/elem)
1110 DEVICE = 723

1120 SWAP = 8 : MAX.BYTE = 50 * SWAP : ACT.BYTE = 0

1130 CALL IOENTERB(DEVICE,READINGS#(0) ,MAX.BYTE,ACT.BYTE,SWAP)
1140 ’Read a maximum of 50 values from device 723 and

1150 ’put them in READINGS.

4-24 BASIC Reference

IOENTERB

For QuickBASIC:

DIM VAL#(49) ’Double-precision array (8 bytes/elem)

DEVICE& = 723

SWAPY, = 8 : MAX.BYTE), = 50 * SWAPJ, : ACT.BYTE) = O

CALL IOENTERB(DEVICE&,SEG VAL#(0),MAX.BYTEJ,ACT.BYTE),SWAPY,)
’Read a maximum of 50 values from device 723 and

’put them in VAL.

For QBasic:

DIM VAL#(49) ’Double-precision array (8 bytes/elem)

DEVICEZ = 723

SWAPY, = 8 : MAX.BYTEY, = 50 * SWAPY, : ACT.BYTEY = O

CALL IOENTERB(DEVICE&,VARSEG(VAL#(0)),VARPTR(VAL#(0)),MAX.BYTE},
ACT.BYTEY,,SWAPY,)

’Read a maximum of 50 values from device 723 and

’put them in VAL.

Bus Activity
If a device address is specified:

m ATN is set.

a UNL is sent.

a MLA is sent.

a TAD is sent.

m OSA is sent if specified.
a ATN is cleared.

a Data is entered.

If a select code is specified:

a If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

BASIC Reference 4-25

IOENTERB

Comments

You should initialize the actual.bytes parameter to zero before you use it in an
IOENTERB command.

If the specified maximum number of elements to read is greater than the size of
the data array, input data can overrun the array and corrupt existing data or
programs.

All data received is stored in memory—except a final “match” character with
EOI true if matching is enabled.

If DMA is active for the transfer, the swapsize parameter must be 1 and
character matching must be disabled—otherwise, an EUNKNOWN error
occurs.

The number of bytes available is dependent upon the source device.

If a select code is to be specified in the command, the interface must first be
addressed to listen (with IOSEND, for example) or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL, and
EUNKNOWN.

4-26 BASIC Reference

IOENTERF

IOENTERF

This command reads from a device and places all received data into a file.
Reading continues until one of these events occurs:

m The EOI line is sensed true, if it is enabled.

m The termination character set by IOMATCH is received (linefeed is the
default). Note: If vou are transferring binary files, you should turn off
character match using IOMATCH to make sure the transfer does not end
prematurely.

m The maximum number of bytes specified is received.

m A file error occurs, usually meaning the disk is full.

Syntax

I0ENTERF (device_address, file_name, length, append_flag)
I0ENTERF (select._code, file_name, length, append_flag)

device_address specifies a device address.

select_code specifies the interface select code.
file_name specifies the file into which the data is written.
length specifies the maximum number of elements to be read. (An

error occurs if the number is less than 0.) The actual number
of bytes read is returned here.

append_flag specifies whether to append to the file or to overwrite it. Zero
overwrites; non-zero appends.

BASIC Reference 4-27

IOENTERF

Examples
For GW-BASIC:

1100 DEV = 723

1200 LENGTH = 10

1300 FILE.NAME$ = "ENTER.DAT"

1400 APPEND = 0O

1500 CALL IOENTERF(DEV,FILE.NAME$,LENGTH,APPEND)
1600 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

For QuickBASIC and QBasic:

DEVE = 723

LENGTH& = 10

FILE.NAME$ = "ENTER.DAT"

APPENDY, = O

CALL IOENTERF(DEV&,FILE.NAME$,LENGTH& ,APPENDY)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

Bus Activity
If a device address is specified:

a ATN is set.

s UNL is sent.

s MLA is sent.

m TAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
» If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

4-28 BASIC Reference

IOENTERF

Comments

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL, and
EFILE.

Ifthe file does not exist, and a valid filename is given, IOENTERF will create
the file regardless of the append flag.

We recommend turning off character matching using the IOMATCH command,
especially if you are transferring a binary file.

Note This command does not transfer files to an HP-IB disk drive,
but rather transfers bytes from the HP-IB bus to a built-in disk
6 drive on your computer.

BASIC Reference 4-29

IOENTERS

This command enters a character string from a device or the interface. Reading
continues until one of these events occurs:

m The EOI line is sensed true, if it is enabled.

m The termination character set by [OMATCH is received (linefeed is the
default).

» The maximum number of characters specified is received.

Syntax

IGENTERS (device_address,data, maz.length, actual.length)
IOENTERS (select_code,data, max.length, actual.length)

device_address specifies a device address.
select_code specifies the interface select code.

maz.length specifies the maximum number of elements to be read. (An
error occurs if the number is less than 0.)

actual.length variable returning the number of elements actually read.

Examples
For GW-BASIC:

1100 DEV = 723

1110 MAX.LENGTH = 10 : ACTUAL.LENGTH = O

1120 INFO$ = SPACE$(MAX.LENGTH)

1130 CALL IOENTERS(DEV,INFO$,MAX.LENGTH,ACTUAL.LENGTH)
1140 ’Read a string of 10 characters maximum from

1150 ’device 723, put in INFO$

1160 INFO$ = LEFT$(INFO$,ACTUAL.LENGTH)

4-30 BASIC Reference

IOENTERS

For QuickBASIC and QBasic:

DEVE = 723

MAX.LENGTHY, = 10 : ACTUAL.LENGTHY = O

INFO$ = SPACE$ (MAX.LENGTHY)

CALL IOENTERS(DEV&,INFO$,MAX.LENGTHY,,ACTUAL.LENGTHY)
’Read a string of 10 characters maximum from

’device 723, put in INFO$

INFO$ = LEFT$(INFO$,ACTUAL.LENGTHY)

Bus Activity

If a device address is specified:

Computer

m ATN is set. Museum
m UNL is sent.

m MLA is sent.

m TAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
w If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Comments

You should initialize the actual.bytes parameter to zero before you use it in an
IOENTERS command.

You should initialize the string into which data is read with the SPACES$
function before you call IOENTERS:

1150 INFO$ = SPACE$(10) for GW-BASIC

INFO$ = SPACE$(10) for QuickBASIC

This prevents early termination if the string was not initialized, or was set to
some other value. If the specified maximum number of elements to read is

BASIC Reference 4-31

IOENTERS

greater than the current length of the data string, the current length is used
instead of the maximum number.

To remove the termination character from the string, use the BASIC LEFTS$
function. For example, to remove CR/LF from the end of your string, you can
use this statement:

1260 INFO$ = LEFT$(INFO$,ACT.LENGTH-2) for GW-BASIC

INFO$ = LEFT$(INFO$,ACT.LENGTHY-2) for QuickBASIC

If a select code is to be specified in the command, the interface must first be
addressed to listen (with IOSEND or a previous IOENTER, for example) or an
error occurs.

The termination character is entered as part of the string.

If DMA is active for the transfer, character matching must be disabled—
otherwise, an EUNKNOWN error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ENUM, ERANGE,
ECTRL, and EUNKNOWN.

4-32 BASIC Reference

IOEOI

IOEOQI

This command enables or disables the End Or Identify (EOI) mode of the
interface. It is used to:

m Enable or disable a write operation to set the EOI line on the last byte of the
write.

m Enable or disable a read operation to terminate upon sensing the EOI line
true.

The default is EOI enabled.

Syntax
I0EOI (select_code, state)
select_code specifies the interface select code.
state enables EOI if nonzero and disables EOI if zero.
Examples
For GW-BASIC:
1100 ISC = 7

1110 STATE = O
1120 CALL IOEOI(ISC,STATE) ’Disable EOI

For QuickBASIC and QBasic:

ISC& = 7
STATE], = O
CALL IDEQI(ISC&,STATE)) ’Disable EODI

Bus Activity

None.

BASIC Reference 4-33

10EOI

Comments

When reading with EOI enabled, receipt of a byte with EOI set causes the
read operation to terminate, regardless of whether you are reading a string,
a real number, or an array of real numbers. (The EOI state is ignored by

IOENTERAB.)

When writing, EOI is set on the last byte of the End Of Line sequence if EOI
is enabled. Note that if the EQL sequence is of 0 length, EOI is set on the last
data byte sent. (The EOI line is not set on the last byte for IOOUTPUTAB.)

When sending a real number array with IOOUTPUTA, the EOL sequence (and
subsequent EOI) is appended after the last element in the array, not after each
element.

Note that IOSEND does not set EOI because this line has a different meaning
in Command mode.

Possible errors are NOERR and ESEL.

4-34 BASIC Reference

IOEOL

IOEOL

This command defines the End of Line (EOL) string that is to be sent

following every IOOUTPUT, IOOUTPUTA, IOOUTPUTB, and IOOUTPUTS
command.

The default is carriage return and linefeed.

Syntax

IDEDOL (select_code,endline, length)

select_code specifies the interface select code.

endline specifies the EOL string that is to be sent following a data

transmission. A maximum of eight characters can be specified.

length specifies the length of the termination string. If zero is
specified, no characters are appended to a data transmission. If
the length is less than 0 or more than 8, an error occurs.

Examples
For GW-BASIC:

1100 ISC = 7

1110 ENDLINE$ = CHR$(13)+CHR$(10)

1120 LENGTH = LEN(ENDLINE$)

1130 CALL IOEOL(ISC,ENDLINE$,LENGTH) ’EOL = CR/LF

For QuickBASIC and QBasic:

1sce = 7

ENDLINE$ = CHR$(13)+CHR$(10)

LENGTHY, = LEN(ENDLINES$)

CALL IOEOL(ISC%,ENDLINE$,LENGTHY) 'EOL = CR/LF

BASIC Reference 4-35

IOEOL

Bus Activity

None.

Comments

With IOOUTPUTA and IOOUTPUTB, the EOL sequence is appended after
all data has been sent, not following each element.

Possible errors are NOERR, ESEL, and ERANGE.

4-36 BASIC Reference

IOFASTOUT

IOFASTOUT

This command enables or disables high-speed bus timing for output transfers
only.

The default is high-speed output disabled (standard speed).

Syntax

IOFASTOUT (select_code, state)

select_code specifies the interface select code.

state enables high-speed output if nonzero and disables high-speed

output if zero.

Examples
For GW-BASIC:

1100 ISC = 7
1110 STATE = 0
1120 CALL IOFASTOUT(ISC,STATE) ’Disable high-speed output

For QuickBASIC and QBasic:

IsC& = 7
STATE), = 0
CALL IOFASTOUT(ISC&,STATEY%) ’Disable high-speed output

Bus Activity

None.

BASIC Reference 4-37

IOFASTOUT

Comments

For proper operation, high-speed output requires the HP-IB system to meet all
of these requirements:

m All HP-IB devices must have tri-state drivers, not open-collector drivers.
(The HP-IB interface meets this requirement.)

m All HP-IB devices must be turned on.

m HP-IB cable length should be as short as possible, but not longer than 15
meters (50 feet). At least one HP-IB device should be connected for each
meter (3 feet) of cable, with a maximum of 15 devices. (The HP-IB interface
counts as one device.)

m Each HP-IB device must have a capacitance of less than 50 pF on each
HP-IB line except REN and IFC. (The HP-IB interface meets this
requirement.)

High-speed output applies only during output transfers (including DMA output
transfers)—but not between transfers and not during input transfers. The
speed of an input transfer depends upon the talker device.

High-speed output decreases the data-settling time from 2.5 microseconds to
840 nanoseconds.

Possible errors are NOERR and ESEL.

4-38 BASIC Reference

IOGETTERM

IOGETTERM

This command determines the reason the last read terminated.

Syntax
IOGETTERM (select_code, reason)

select_code specifies the interface select code.

reason variable to receive the sum of the values for the reasons the
last read terminated. The possible reasons for termination are

Value Description

0 The read was terminated for some reason not
covered by any of the other reasons.

1 The expected number of elements was received.
2 The termination character set by IOMATCH
was encountered.
4 The EOI line was sensed true.
Examples
For GW-BASIC:
1100 ISC = 7

1110 CALL IOGETTERM(ISC,REASON)
1120 IF ((REASON AND 4) = 4) THEN PRINT “EOI ENCOUNTERED"

For QuickBASIC and QBasic:

ISCE = 7
CALL IOGETTERM(ISC&,REASONY)
IF ((REASONY AND 4) = 4) THEN PRINT "EOI ENCOUNTERED"

BASIC Reference 4-39

IOGETTERM

Bus Activity

None.

Comments

Upon return, the reason integer contains the sum of the values for the reasons
for termination. For example, if the last read terminated when the termination
character was encountered and EOI was set, the value of reason would be

24+ 4=06.

Possible errors are NOERR and ESEL.

4-40 BASIC Reference

IOLLOCKOUT

IOLLOCKOUT

This command sends a Local Lockout (LLO) to disable a device front panel. It
is received by all devices on the interface, whether or not they are addressed to
listen.

Syntax
IOLLOCKOUT (select_code)
select__code specifies the interface select code.
Examples
For GW-BASIC:
1100 ISC = 7

1110 CALL IOLLOCKOUT(ISC)
For QuickBASIC and QBasic:

ISC& = 7
CALL IOLLOCKQUT(ISC&)

Bus Activity
m ATN js sent.
m LLO is sent.

Comments

If a device is in Local mode when LLO is received, LLO does not take effect
until the device is addressed to listen.

Possible errors are NOERR, ETIME, ECTRL, and ESEL.

BASIC Reference 4-41

IOLOCAL

This command executes a Go To Local (GTL) or clears the REN line to enable
a device front panel.

Syntax

IOLOCAL (device_address)
IOLOCAL (select_code)

device_address specifies a device address.

select_code specifies the interface select code.

Examples
For GW-BASIC:

1100 DEVICE = 722 _
1110 CALL IOLOCAL(DEVICE) ’Place device 722 in local mode.

For QuickBASIC and QBasic:

DEVICEgZ = 722
CALL IOLOCAL(DEVICE%) ’Place device 722 in local mode.

Bus Activity
If a device address is specified:

m ATN is set.

s MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
s GTL is sent.

If a select code is specified:

m REN is cleared.
m ATN is cleared.

4-42 BASIC Reference

IOLOCAL

Comments

If a device address is specified, the device is temporarily placed in Local
mode—it will return to Remote mode if it is later addressed to listen. If Local
Lockout is in effect, the device will return to the Lockout state if it is later
addressed to listen.

If an interface select code is specified, all instruments on the bus are placed in
Local mode and any Local Lockout is cancelled.

Possible errors are NOERR, ETIME, ECTRL, and ESEL.

BASIC Reference 4-43

IOMATCH

This command defines the character used by IOENTERB and IOENTERS for
termination.

The default character is linefeed.

Syntax

IOMATCH (select_code,character, flag)

select_code specifies the interface select code.

character specifies the character used by IOENTERB and IOENTERS
for termination checking.

flag indicates whether character matching should be enabled or
disabled. Zero disables matching, and any nonzero value
enables it.

Examples

For GW-BASIC:

1100 ISC = 7

1110 MATCH$ = CHR$(10) ’Terminate on a linefeed.
1120 FLAG = 1
1130 CALL IOMATCH(ISC,MATCH$,FLAG)

For QuickBASIC and QBasic:

Isc& = 7

MATCH$ = CHR$(10) ’Terminate on a linefeed.
FLAG/ = 1

CALL IOMATCH(ISC& ,MATCH$,FLAGY)

4-44 BASIC Reference

IOMATCH

Bus Activity

None.

Comments
Only a single match character may be specified in this command.

For IOENTERS, the match character becomes part of the entered string. For
IOENTERB, the match character must be received with EOI true, and the
character does not become part of the data.

IOMATCH does not apply to IOENTER, IOENTERA, or IOENTERAB.
Possible errors are NOERR and ESEL.

BASIC Reference 4-45

IOOUTPUT

This command outputs a real number to a device or to the interface. After the
number is sent, the EOL string is sent and the EOI line is set (if enabled).

Syntax

I00UTPUT (device_address,data)
I00UTPUT (select_code,data)

device_address specifies a device address.

select_code specifies the interface select code.
data specifies the number to be output.
Examples

For GW-BASIC:

1100 INFO = 12.3
1110 DEV = 722
1120 CALL IOOUTPUT(DEV,INFO) ’output " 12.3" to device 722.

For QuickBASIC and QBasic:

INFO! = 12.3
DEVE = 722
CALL IOQUTPUT(DEV&,INFO!) ’output " 12.3" to device 722

Bus Activity
If a device address is specified:

m ATN is set.

ma MTA is sent.

m UNL is sent.

s LAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is output.

m EOL is output.

4-46 BASIC Reference

IOOUTPUT

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent
followed by an EOL.

Comments

Numbers with absolute values between 10~° and 10° are rounded to seven
significant digits and output in floating point notation. If the number rounds
to an integer value, the decimal point is not sent. Numbers outside this range
are rounded to seven significant digits and output in scientific notation.

If the number is positive, a leading space is output for the sign; if it’s negative,
a leading “—” is output.

If a select code is to be specified, the interface must first be addressed to talk
(with IOSEND, for example), or an error occurs.

Possible errors are NOERR, ETIME, ESEL, ECTRL, and EADDR.

BASIC Reference 4-47

IOOUTPUTA

This command outputs an array of real numbers to a specified device or to the
bus. Values output are separated by commas. After the last number is sent,
the EOL string is sent and the EOI line is set (if enabled).

Syntax
For GW-BASIC:

IO0OUTPUTA (device_address, data, elements)
I00UTPUTA (select_code, data, elements)

For QuickBASIC:

IO0UTPUTA (device_address,SEG data, elements)
I00UTPUTA (select_code,SEG data, elements)

device_address specifies a device address.

select_code specifies the interface select code.
data array containing the real numbers to be transmitted.
elements specifies the number of elements in the array to be transmitted.

(An error occurs if the number is less than 0.)
For QBasic:

I00UTPUTA (device_address, segment, offset, elements)
I00UTPUTA (select_code,segment, offset, elements)

device_address specifies a device address.

select_code specifies the interface select code.

segment segment of the data array (use VARSEG(array)).

offset offset of the data array (use VARPTR (array)).

elements specifies the number of elements in the array to be transmitted.

(An error occurs if the number is less than 0.)

4-48 BASIC Reference

IOOUTPUTA

Examples
For GW-BASIC:

1100 DIM INFO(9)

1110 ELEMENTS = 10

1120 DEV = 722

1130 CALL IOOUTPUTA(DEV,INFO(O),ELEMENTS)

1400 ’Dutput array INFD to device 722; begin with element O.

For QuickBASIC:

DIM INFO!(9)

ELEMENTSY = 10

DEVE = 722

CALL IOOUTPUTA(DEV&,SEG INFO!(0),ELEMENTSY)

'Output array INFO to device 722; begin with element O.

For QBasic:

DIM INFO!(9)

ELEMENTSY, = 10

DEVE = 722

CALL IOOUTPUTA(DEV&,VARSEG(INFO!(0)),VARPTR(INFO!(0)),ELEMENTSY)
’Output array INFO to device 722; begin with element O.

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m ATN is cleared.

=m Data is output.

s EOL is output.

BASIC Reference 4-49

IOOUTPUTA

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface'is addressed to talk, ATN is cleared and the data is sent
followed by an EOL.

Comments

If the specified maximum number of elements to output is greater than the
size of the data array, the output transfer can go beyond the array and send
meaningless data.

Numbers with absolute values between 107° and 10° are rounded to seven
significant digits and output in floating point notation. If the number rounds
to an integer value, the decimal point is not sent. Numbers outside this range
are rounded to seven significant digits and output in scientific notation.

If the number is positive, a leading space is output for the sign; if it’s negative,
a leading “—” is output.

If a select code is to be used as a parameter, the interface must first be
addressed to talk (with IOSEND, for example), or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ECTRL, and ERANGE.

4-50 BASIC Reference

IOOUTPUTAB

IOOUTPUTAB

This command outputs arbitrary-block response data (numeric data with
IEEE-488.2 coding) to a specified device or to the bus. After the last data byte
is sent, nothing additional occurs.

Syntax
For GW-BASIC:

I00UTPUTAB (device_address, data, bytes, swapsize)
I00UTPUTAB (select_code, data, bytes, swapsize)

For QuickBASIC:

I00OUTPUTAB (device_address,SEG data, bytes, swapsize)
IOOUTPUTAB (select_code,SEG data, bytes, swapsize)

Computer
- Museum

device_address specifies a device address.

select_code specifies the interface select code.
data array containing the data to be transmitted.
bytes specifies the number of bytes to output (excluding the coding

bytes). This value should be no more than the number of
elements in the array times the number of bytes per element.
(An error occurs if the number is less than 0.)

swapsize specifies how bytes are read from memory. A value of 1
indicates that bytes are read in order. Larger values indicate
that bytes are reversed as read from memory in groups of this
size. The value should correspond to the byte size of the data
variable. (For example, a value of 4 specifies that each group
of four bytes is swapped when output.) Valid values are 1
through 8—other values return an error.

For QBasic:

I00UTPUTAB (device_address, segment, offset, elements, swapsize)
I00UTPUTAB (select_code, segment, offset, elements, swapsize)

device_address specifies a device address.

BASIC Reference 4-51

IOOUTPUTAB

select_code specifies the interface select code.

segment segment of the data array (use VARSEG(array)).

offset offset of the data array (use VARPTR(array)).

elements specifies the number of elements in the array to be transmitted.

(An error occurs if the number is less than 0.)

swapsize specifies how bytes are read from memory. A value of 1
indicates that bytes are read in order. Larger values indicate
that bytes are reversed as read from memory in groups of this
size. The value should correspond to the byte size of the data
variable. (For example, a value of 4 specifies that each group
of four bytes is swapped when output.) Valid values are 1
through 8—other values return an error.

Examples
For GW-BASIC:

1100 DIM INFO#(9) ’Double-precision array (8 bytes/elem)
1110 SWAP = 8

1120 ELEMENTS = 10 * SWAP

1130 DEV = 722

1140 CALL IOOUTPUTAB(DEV,INFO#(0),ELEMENTS,SWAP)

1150 ’0Output array INFO to device 722; begin with element O.

For QuickBASIC:

DIM INFO#(9) ’Double-precision array (8 bytes/elem)
SWAP) = 8

ELEMENTS) = 10 * SWAP),

DEVE = 722

CALL IOOUTPUTAB(DEV&,SEG INFO#(0),ELEMENTSY,SWAPY)
’Output array INFO to device 722; begin with element O.

4-52 BASIC Reference

IOOUTPUTAB
For QBasic:

DIM INFO#(9) ’Double-precision array (8 bytes/elem)

SWAPY, = 8
ELEMENTSY, = 10 * SWAPY,
DEVE = 722

CALL IOOUTPUTAB(DEV&,VARSEG(INFO#(0)),VARPTR(INFO#(0)) ,ELEMENTS),,SWAPY)
'Output array INFO to device 722; begin with element O.

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is output.

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent.

Comments

IEEE-488.2 coding is described under “Arbitrary-Block Data Coding” in
chapter 1. The coding bytes are automatically computed and inserted in front
of the data.

If the specified maximum number of elements to output is greater than the
size of the data array, the output transfer can go beyond the array and send
meaningless data.

If DMA is active for the transfer, the swapsize parameter must be 1—
otherwise, an EUNKNOWN error occurs.

If a select code is to be specified in the command, the interface must first be
addressed to talk (with IOSEND, for example) or an error occurs.

BASIC Reference 4-53

IOOUTPUTAB

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL, and
EUNKNOWN.

4-54 BASIC Reference

IOOUTPUTB

IOCOUTPUTB

This command outputs binary data (numeric data with no coding or
formatting) to a specified device or to the bus. After the last number is sent,
the EOL string is sent and the EOI line is set (if enabled).

Syntax
For GW-BASIC:

I00UTPUTB (device_address, data, bytes, swapsize)
I00UTPUTB (select_code, data, bytes, swapsize)

For QuickBASIC:

I00UTPUTB (device_address,SEG data, bytes, swapsize)
I00UTPUTB (select_code,SEG data, bytes, swapsize)

device_address specifies a device address.

select_code specifies the interface select code.
data array containing the data to be transmitted.
bytes specifies the number of bytes to output. This value should be

no more than the number of elements in the array times the
number of bytes per element. (An error occurs if the number
is less than 0.)

swapsize specifies how bytes are read from memory. A value of 1
indicates that bytes are read in order. Larger values indicate
that bytes are reversed as read from memory in groups of this
size. The value should correspond to the byte size of the data
variable. (For example, a value of 4 specifies that each group
of four bytes is swapped when output.) Valid values are 1
through 8—other values return an error.

For QBasic:

I00UTPUTB (device_address, segment, offset, bytes, swapsize)
I00UTPUTB (select_code, segment, offset, bytes, swapsize)

device_address specifies a device address.

BASIC Reference 4-55

IOOUTPUTB

select_code
segment
offset

bytes

swapsize

Examples

For GW-BASIC:

specifies the interface select code.
segment of the data array (use VARSEG(array)).
offset of the data array (use VARPTR(array)).

specifies the number of bytes to output. This value should be
no more than the number of elements in the array times the
number of bytes per element. (An error occurs if the number
is less than 0.)

specifies how bytes are read from memory. A value of 1
indicates that bytes are read in order. Larger values indicate
that bytes are reversed as read from memory in groups of this
size. The value should correspond to the byte size of the data
variable. (For example, a value of 4 specifies that each group
of four bytes is swapped when output.) Valid values are 1
through 8—other values return an error.

1100 DIM INFO#(9) ’Double-precision array (8 bytes/elem)
1110 SWAP = 8

1120 ELEMENTS = 10 * SWAP

1130 DEV = 722

1140 CALL IOOUTPUTB(DEV,INFO#(0),ELEMENTS,SWAP)

1150 ’Output array INFO to device 722; begin with element O.

For QuickBASIC:
DIM INFO#(9) ’Double-precision array (8 bytes/elem)

SWAPY, = 8

ELEMENTSY = 10 * SWAPY,

DEVE = 722

CALL IOOUTPUTB(DEV&,SEG INFO#(0),ELEMENTSY,SWAPY)
’Output array INFO to device 722; begin with element O.

4-56 BASIC Reference

IOOUTPUTB

For QBasic:

DIM INFO#(9) ’Double-precision array (8 bytes/elem)

SWAPY, = 8
ELEMENTSY, = 10 * SWAPY,
DEVE = 722

CALL IOOUTPUTB(DEV&,VARSEG(INFO#(0)),VARPTR(INFO#(0)) ,ELEMENTS},SWAP})
’Output array INFO to device 722; begin with element O.

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is output.

m EOL is output.

If a select code is specified:

m [f the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent
followed by an EOL.

Comments

If the specified maximum number of elements to output is greater than the
size of the data array, the output transfer can go beyond the array and send
meaningless data.

If DMA is active for the transfer, the swapsize parameter must be 1—
otherwise, an EUNKNOWN error occurs.

If a select code is to be specified in the command, the interface must first be
addressed to talk (with IOSEND, for example) or an EUNKNOWN error

occurs.

BASIC Reference 4-57

I00UTPUTB

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL, and
EUNKNOWN.

4-58 BASIC Reference

I00UTPUTF

IOOUTPUTF

This command outputs the contents of a file to a specified device or interface.
After the file is sent, the EOL string is sent and the EOI line is set (if enabled).

Syntax

I00UTPUTF (device_address, file_name, length)
I00UTPUTF (select_code, file_name, length)

device_address specifies a device address.

select _code specifies the interface select code.
file_name specifies the name of the file to output.
length specifies the maximum number of elements to be written. (An

error occurs if the number is less than 0.)

Examples
For GW-BASIC:

1100 DEV = 723

1200 LENGTH = 10

1300 FILE.NAME$ = "OUTPUT.DAT"

1400 CALL IOOUTPUTF(DEV,FILE.NAME$,LENGTH)

1600 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

For QuickBASIC and QBasic:

DEVE = 723

LENGTH& = 10

CALL IOOQUTPUTF(DEVZ,FILE.NAME$,LENGTHZ)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

BASIC Reference 4-59

IOOUTPUTF

Bus Activity
If a device address is specified:

ATN is set.

MTA is sent.

UNL is sent.

LAD is sent.

OSA is sent if specified.
ATN is cleared.

Data is entered.

EOL is output.

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent
followed by the EOL string.

Comments

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL, and
EFILE.

If you are transferring a binary file, we recommend that you turn off the EOL
string using the IOEOL command. If you do not, the current EOL string will
be appended to the file.

Note This command does not transfer files from an HP-IB disk drive,
i but rather transfers bytes from a built-in disk drive on your
’ computer to the HP-IB bus.

4-60 BASIC Reference

IOOUTPUTS

IOOUTPUTS

This command outputs a string to a specified device or to the interface. After
the string is sent, the EOL string is sent and the EOI line is set (if enabled).

Syntax

I00UTPUTS (device_address,data,length)
I00UTPUTS (select_code,data,length)

device_address specifies a device address.

select_code specifies the interface select code.
data array specifying the string to be sent.
length specifies the length of the output string. (An error occurs if the

number is less than 0.)

Examples
For GW-BASIC:

1100 DEV = 723

1110 INFO$ = "1ST1"

1120 LENGTH = LEN(INFO$)

1130 CALL IOOUTPUTS(DEV,INFO0$,LENGTH)
1140 ’Send "1ST1" to device 723.

For QuickBASIC and QBasic:

DEVZ = 723

INFO$ = "1ST1"

LENGTHY, = LEN(INFO$)

CALL IOOUTPUTS(DEVZ,INFO$,LENGTHY,)
’Send '"1ST1" to device 723.

BASIC Reference 4-61

IOOUTPUTS

Bus Activity
If a device address is specified:

m ATN is set.

s MTA is sent.

s UNL is sent.

s LAD is sent.

OSA is sent if specified.
ATN is cleared.

Data is output.

EOL is output.

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent
followed by an EOL.

Comments

If the specified maximum number of elements to output is greater than the
current length of the data string, the current length is used instead of the
maximum number.

If a select code is to be used in the command, the interface must first be
addressed to talk (with IOSEND, for example), or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ECTRL, and ERANGE.

4-62 BASIC Reference

IOPASSCTL

IOPASSCTL

This command passes active control from the HP 82335 HP-1B card to a device
on the bus. The device must be capable of taking control.

Syntax
IOPASSCTL (device_address)

device_address specifies a device address.

Examples
For GW-BASIC:

1100 KEY 15, CHR$(&HO4) + CHR$ (&H2E) *Trap CTRL-C
1200 ON KEY(15) GOSUB 9000

1300 KEY(15) ON

1400 °

1500 DEV = 723

1600 CALL IOPASSCTL(DEV)

1700 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

9000 SYSTEM
For QuickBASIC:

KEY 15, CHR$(&HO4) + CHR$(&H2E) ’Trap CTRL-C
ON KEY(15) GOSUB THEEND
KEY(15) ON

DEVg = 723
CALL IOPASSCTL(DEV%)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

THEEND: SYSTEM
For QBasic:

This command is not supported with QBasic.

BASIC Reference 4-63

IOPASSCTL

Bus Activity
If a device address is specified:

m ATN is set.

m UNL is sent.

m MLA is sent.

m TAD is sent.

m TCT is sent.

m ATN is cleared.

Comments

If your program does not seem to work properly after passing control, make
sure that you do not have an interrupt (IRQ) conflict with another device. You
can find out what IRQ your HP-IB board is using by running the INSTALL

utility.

The Command Library defaults to address 30. If you need to, you can change
this using the IOCONTROL command.

The IOPASSCTL command passes active control only. This command will not
change the state of the system controller status of the HP 82335.

Any type of shell command will cause the Command Library to stop working
if it is currently non-controller, including the SHELL statement in BASIC
languages.

The Command Library needs to do some cleaning up after running as
non-active or non-system controller. It will do this automatically when you
take control back, or when your program exits normally. It will not, however,
clean up after itself if or is used to exit the program. We
recommend that you use the capabilities of the language you are using to trap
these keys and call a routine which exits normally, possibly with a non-zero
exit code. In BASIC, use on key and system if is pressed. If you do
not, your computer will be left in an unstable state and could lock up.

Possible errors are NOERR, ETIME, ESEL, and ECTRL.

4-64 BASIC Reference

IOPEN

IOPEN

This command enables the HP-IB interface to detect HP-IB service requests
and process them as ON PEN events. It also sets the DM A-interrupt priority.

The default is service-request events disabled.

Syntax

IOPEN (select_code, priority)

select_code specifies the interface select code.

priorily specifies how service requests affect DM A transfers. Valid
values are listed below—other values are illegal and will result
in an error.
Value Description
0 Low priority—a service request won’t interrupt

a DMA transfer. This is the recommended
value for general use.

1 High priority—a service request will end a
DMA transfer.

Examples

For GW-BASIC:
1100 ISC = 7
1110 PRI = O

1120 CALL IOPEN(ISC,PRI) ’Set low priority
For QuickBASIC:

ISC& = 7
PRI% = 0
CALL TOPEN(ISC&,PRI%) ’Set low priority

For QBasic:

This command is not supported with QBasic.

BASIC Reference 4-65

IOPEN

Bus Activity

None.

Comments

The BASIC PEN ON, PEN OFF, and PEN STOP statements are unchanged—
except that they apply to service requests after IOPEN is executed. In
addition, the PEN(1) function returns a value showing whether the service
request ended a DMA transfer:

PEN(1) Meaning
0 No DMA transfer was affected by the last service request.
1 DMA transfer was ended by the last service request.

To disable service requests from causing an ON PEN event, use IORESET. The
SHELL command in BASIC also disables service request events.

Possible errors are NOERR, ERANGE, and ESEL.

4-66 BASIC Reference

{OPPOLL

IOPPOLL

This command performs a parallel poll of the interface. It sets a variable to a
value (0 to 255) representing the response of those instruments on the interface
that respond to a parallel poll.

Syntax

I0PPOLL (select_code, response)

select_code specifies the interface select code.

response variable into which the parallel poll response byte is to be

placed. The allowable range is 0 to 255. The eight bits of the
response byte correspond to the eight HP-IB data lines (DIO1
through DIO8). Thus, a value of 32 would indicate that some
device has responded to the parallel poll with a “1” on DIO6.

Examples
For GW-BASIC:

1100 ISC = 7
1110 CALL IOPPOLL(ISC,RESPONSE)

For QuickBASIC and QBasic:

IsC& = 7
CALL IOPPOLL(ISC&,RESPONSEY)

Bus Activity

m ATN and EOI are asserted for 25 microseconds.
m The poll byte is read.

m EOI is cleared.
m ATN is restored to its previous state.

BASIC Reference 4-67

IOPPOLL

Comments

During a parallel poll, each enabled device may put a “1” on an assigned
HP-IB data line according to its service request status—otherwise, the line is a
“0”. There are eight data lines (though more than one device may be assigned
to one line). Using a parallel poll, several devices can indicate their service
request status simultaneously. The response variable contains the state of the
eight data lines: DIO1 (in bit 0) through DIOS8 (in bit 7).

If the response variable contains a “1” in any bit, a device assigned to the
corresponding HP-IB line has the service request status the device was set up
to report. (See IOPPOLLC.) For example, a device may be set up to report on
line DIO4 when it requests service. If an IOPPOLL command shows a “1” in
bit 3 of response, your program knows the device needs service (assuming no
other device is assigned to that line).

Not all devices are capable of responding to a parallel poll. Consult your
particular device manuals for specifics.

Possible errors are NOERR, ECTRL, and ESEL.

4-68 BASIC Reference

IOPPOLLC

IOPPOLLC

This command performs a Parallel Poll Configure. In preparation for a parallel
poll command, it tells an instrument how to respond affirmatively to the
parallel poll, and on which data line to respond.

In general, it sets a parallel poll response byte to reflect the response of a
desired arrangement of instruments. Typically, you could define the bits to
reflect the responses of particular instruments, or the result of a logical OR
operation on several instrument responses.

Refer to IOPPOLL for more information.

Syntax

IOPPOLLC (device_address, configuration)
IOPPOLLC (select_code, configuration)

device_address specifies the bus address of the device to be configured.
select_code specifies the interface select code.

configuration sent to the specified device indicating how it’s to respond to a
parallel poll. (See “Comments” below.)

Examples
For GW-BASIC:

1100 DEVICE = 723
1110 CONF = 10 ’Respond with a "1" on line DIO3.
1120 CALL IOPPOLLC(DEVICE,CONF)

For QuickBASIC and QBasic:

DEVICEZ = 723
CONFY, = 10 ’Respond with a "1" on line DIO3.
CALL IOPPOLLC(DEVICEZ,CONF%)

BASIC Reference 4-69

IOPPOLLC

Bus Activity
If a device address is specified:

ATN is set.

MTA is sent.

UNL is sent.

LAD is sent.

OSA is sent if specified.
PPC is sent.

PPE is sent.

If a select code is specified:

m PPC is sent.
m PPE is sent.

Comments

The configuration parameter defines both the HP-IB line on which to respond
and the service request status to indicate. It represents an eight-bit byte
described below.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit2 | Bitl | Bit0

0 0 0 0 Response [DIO Line (DIO1 to DIOS)
(0orl)

Bit 3 specifies the meaning of an affirmative response. Bits 2 through 0 specify
the data line (DIO8 through DIO1). The valid range for configuration is 0 to

15—other values cause an error.

4-70 BASIC Reference

IOPPOLLC

Parallel Poll Configuration Bits Value
Affirmative response for service request 00001xxx 8
Affirmative response for no service request 00000xxx 0
Respond on line DIOS 0000x111 7
Respond on line DIO7 0000x110 6
Respond on line DIO6 0000x101 5
Respond on line DIO5 0000x100 4
Respond on line DIO4 0000x011 3
Respond on line DIO3 0000x010 2
Respond on line DIO2 0000x001 1
Respond on line DIO1 0000x000 0

For example, to set up a device to indicate an affirmative response (“1”) on
line DIOS5 if it needs service, the configuration value would be 8 + 4 = 12.
Alternatively, for the device to indicate an affirmative response (“1”) on line
DIO5 when it doesn’t need service, the configuration value would be 0 + 4 = 4.

Not all devices can be configured to respond to a parallel poll. Consult your
particular device manuals for specifics.

Possible errors are NOERR, ETIME, ESEL, ECTRL, and ERANGE.

BASIC Reference 4-71

IOPPOLLU

This command performs a Parallel Poll Unconfigure (PPU). It directs an
instrument to not respond to a parallel poll. It can be addressed to the
interface or a specific device. Refer to IOPPOLLC for more information.

Syntax

TIOPPOLLU {(device_address)
IOPPOLLU (select_code)

device_address specifies a device address.

select_code specifies the interface select code.

Examples
For GW-BASIC:

1100 DEV = 722
1110 CALL IOPPOLLU(DEV)

For QuickBASIC and QBasic:

DEVE = 722
CALL IOPPOLLU(DEV&)

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m PPC is sent.

s PPD is sent.

4-72 BASIC Reference

IOPPOLLU

If a select code is specified:

m ATN is sent.
m PPU is sent.
Comments

Some devices cannot be unconfigured from the bus. Consult your particular
device manuals for specifics.

Possible errors are NOERR, ETIME, ECTRL, and ESEL.

BASIC Reference 4-73

IOREMOTE

This command places a device in Remote mode to disable the device front
panel. It can be addressed to the interface or to a specific device.

Syntax

I0REMOTE (device_address)
IOREMOTE (select_code)

device_address specifies a device address.

select_code specifies the interface select code.
Examples
For GW-BASIC:

1100 ISC = 7

1110 DVM = 723
1120 CALL IOREMOTE(DVM) ’Place the DVM in remote mode.

1150 CALL IOREMOTE(ISC) ’Set the interface REN line.
For QuickBASIC and QBasic:

ISCg T
DVMg = 723
CALL IOREMOTE(DVM&) ’Place the DVM in remote mode.

CALL IOREMOTE(ISC&) ’Set the interface REN line.

4-74 BASIC Reference

IOREMOTE

Bus Activity
If a device address is specified:

a REN is set.

m ATN is set.

a MTA is sent.

a UNL is sent.

m LAD is sent.

m OSA is sent if specified.

If a select code is specified, then REN is set.

Comments

If a select code is specified, a device will not switch into Remote mode until it
is addressed to listen.

Possible errors are NOERR, ETIME, ECTRL, and ESEL.

BASIC Reference 4-75

IOREQUEST

This command sets up a serial poll status byte for the HP 82335 and optionally
asserts the Service Request (SRQ) line.

Syntax

IOREQUEST (select_code, status)

select_code specifies the interface select code.

status specifies the serial poll status byte. If bit 6 in the status byte

is set, the SRQ line will be asserted. If bit 6 is clear, SRQ will
not be asserted.

Examples
For GW-BASIC:

1100 DEV = 7

1200 STATUS = &H42

1300 CALL IOREQUEST(DEV, STATUS)

1400 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

For QuickBASIC:

DEVE = 7

STATUSY, = &H42

CALL IOREQUEST(DEV&, STATUSY)

IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

For QBasic:

This command is not supported with QBasic.

Bus Activity
If bit 6 is set in the status parameter: SRQ is asserted.

If bit 6 is clear in the status parameter: no bus activity.

4-76 BASIC Reference

IOREQUEST

Comments

The HP 82335 interface must not be active controller, or else an ECTRL error
will result.

Possible errors are NOERR, ECTRL, and ESEL.

BASIC Reference 4-77

IORESET

This command sets the interface to its start-up state, in which it is not
listening and not talking.

In addition, it sets the following HP-1B parameters as indicated:

m The interface timeout is set to 0 seconds (the timeout is disabled).
m The interface EOI mode is enabled.

m High-speed data output is disabled.

m Service-request events are disabled.

CR/LF is set as the EOL default.

m LF is set as the IOMATCH default.

m If the interface was system controller, then it will also become active
controller.

Syntax
IORESET (select_code)
select_code specifies the interface select code.
Examples
For GW-BASIC:
1100 ISC = 7

1110 CALL IORESET(ISC)
For QuickBASIC and QBasic:

Iscg = 7
CALL TORESET(ISCZ)

4-78 BASIC Reference

IORESET

Bus Activity
If the interface is system controller:

m IFC is pulsed (at least 100 microseconds).
® REN is cleared (at least 100 microseconds).
m ATN is cleared.

If the interface is non-system controller:

m No bus activity.

Comments
This command returns all devices on the interface to local (front panel) control.

Possible errors are NOERR and ESEL.

BASIC Reference 4-79

IOSEND

This command sends any sequence of user-specified HP-IB commands to the
interface. For example, to send an output command to several instruments
simultaneously, you can establish their talk/listen status with the IOSEND
command, then issue the output command specifying a select code rather than
a device address.

Syntax

I0SEND (select_code, commands,length)

select_code specifies the interface select code.

commands specifies a string of characters, each of which is treated as an

interface command.

length specifies the number of characters in the command string.
(An error occurs if the number is less than 0.)

Examples
For GW-BASIC:

1100 IsC = 7

1110 COMMANDS$ = "?)/4"

1120 ’Specifies unlisten, then listen addresses 9, 15, and 20.
1130 LENGTH = 4

1140 CALL IOSEND(ISC,COMMANDS$,LENGTH)

1150 CALL IOTRIGGER(ISC)

1160 ’Triggers devices at addresses 9, 15, and 20.

For QuickBASIC and QBasic:

IsCg = 7

COMMANDS$ = "7)/4"

’Specifies unlisten, then listen addresses 9, 15, and 20.
LENGTHY, = 4

CALL IOSEND(ISC&,COMMANDS$,LENGTHY)

CALL IOTRIGGER(ISC%)

"Triggers devices at addresses 9,15, and 20.

4-80 BASIC Reference

IOSEND

Bus Activity

m ATN is set.
m Command bytes are sent.

Comments

See appendix B for a list of HP-IB commands and the corresponding data
characters.

All bytes are sent with ATN set. The EOL sequence is not appended, nor is
EOI set.

Possible errors are NOERR, ETIME, ESEL, ECTRL, and ERANGE.

BASIC Reference 4-81

IOSPOLL

This command performs a serial poll of a specified device. It sets a variable
representing the device’s response byte.

Syntax
I0SPOLL (device_address, response)
device_address specifies the bus address of the device to be polled.

response variable into which the response byte is placed.

Examples
For GW-BASIC:

1100 DEVICE = 723

1110 CALL IOSPOLL(DEVICE,RESPONSE)

1120 ’Perform a serial poll on device 723,
1130 ’put the response byte in RESPONSE.

For QuickBASIC and QBasic:

DEVICEZ = 723

CALL IOSPOLL(DEVICE%,RESPONSEY)
’Perform a serial poll on device 723,
’put the response byte in RESPONSE).

4-82 BASIC Reference

Bus Activity

8 ATN is set.

s UNL is sent.
s MLA is sent.
s TAD is sent.

s OSA is sent if specified.

s SPE is sent.

8 ATN is cleared.
m Poll byte is read.
s ATN is set.

s SPD is sent.

s UNT is sent.

Comments

IOSPOLL

If a device is requesting service, it stops requesting service when its response

byte is read.

Some devices are not capable of responding to a serial poll, in which case
polling may result in an error. Consult the instrument manual to determine
if an instrument can respond to a serial poll and how its response byte is

interpreted.

Possible errors are NOERR, ETIME, ECTRL, and ESEL.

BASIC Reference 4-83

IOSTATUS

This command determines the current interface status regarding a particular
condition. It sets a variable representing that status.

Syntax

I0OSTATUS (select_code, condition, status)

select_code specifies the interface select code.

condition specifies the condition being checked, from 0 to 11. The
possible conditions are:
Value Description
0 Is the interface currently in the remote state?

(always no)

1 What is the current state of the SRQ line?
2 What is the current state of the NDAC line?
3 Is the interface currently system controller?
4 Is the interface currently active controller?
5 Is the interface currently addressed as talker?
6 Is the interface currently addressed as listener?
7 What is the interface’s bus address?
8 What is the state of the ATN line?
9 What is the address status of the interface?
10 What is on the DIO lines now?
11 What is the bus status of the interface?
12 What interface card is installed?

4-84 BASIC Reference

status

IOSTATUS

variable into which the condition’s status is placed. It can have

the following values:

Conditions 0 to 6 and 8

Value

Meaning

0 Clear or No

1 Set or Yes
Condition 7
Value Meaning

0 to 30 { Address of card

Condition 9*
Bit | Value | Meaning
0{ 1 |ulpa
1 2 | TADS
2 4 |LADS
3 8 | TPAS
4 16 |LPAS
) 32 |ATN
6 64 |LLO
7 | 128 |REM

BASIC Reference 4-85

IOSTATUS

Condition 10
Value Meaning
0 to 255 | Value of the data lines on the bus

* The actual value returned from conditions 9 and 11 will be the sum of the
values of all true conditions. For example, the value returned if bits 2 and 3

were true would be 12.

To check whether a specific condition is true, use the AND operand

in your language. For example, to check if DAV is true, you could call
I0STATUS(7L,11,&result), then check whether (result AND 32) = 32, then
(DAV is set). Make sure you are using the binary AND in your language and

not the logical AND.

4-86 BASIC Reference

Condition 11*

Bit | Value | Meaning

0 1 }REN

1 2 |IFC

2 4 [SRQ

3 8 |EOI

4 16 |NRFD

5 32 |NDAC

6 64 |DAV

7 1 128 |ATN

Condition 12

Value Meaning

0 |no card
1 | HP 82990 (old)
2 | HP 82335

Examples
For GW-BASIC:

1100 ISC = 7

1110 SELECT = 1

1120 CALL IOSTATUS(ISC,SELECT,STATUS)
1130 ’Determine if SRQ is set.

For QuickBASIC and QBasic:

ISC& = 7

SELECTY, = 1

CALL IOSTATUS(ISC&,SELECTY ,STATUSY)
’Determine if SRQ is set.

Bus Activity

None.

Comments

Possible errors are NOERR, ESEL, and ERANGE.

Status conditions 9 through 11 are rarely used.

IOSTATUS

BASIC Reference 4-87

IOTAKECTL

This command takes active control from the currently active controller back to
the HP-IB card.

Syntax

IOTAKECTL (select_code,priority)

select_code specifies the interface select code.

priority specifies the priority of the request. This parameter can take

one of three values:

1 Wait until the active controller passes control back
to me. It will wait until it receives control or until it
times out as specified by the IOTIMEOUT function.

2 Assert SRQ with bits 1 and 6 set, then wait until the
active controller passes control back to me. It will

wait until either it receives control or until it times
out as specified by the IOTIMEOUT function.

3 Assert the Interface Clear (IFC) line. Asserting the
IFC line immediately makes the HP 82335 the active
controller. The HP 82335, however, must be the
system controller to be able to assert the IFC line. If
it is not the system controller, an ECTRL error will
result.

Examples
For GW-BASIC:

1100 DEV = 7 : PRIORITY =1
1200 CALL IOTAKECTL(DEV, PRIORITY)
1300 IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

For QuickBASIC:

DEVZ = 7 : PRIORITY) = 1
CALL IQTAKECTL(DEV&Z, PRIGRITYY)
IF PCIB.ERR <> NOERR THEN ERROR PCIB.BASERR

4-88 BASIC Reference

IOTAKECTL
For QBasic:

This command is not supported with QBasic. Computer

T Museum:

Bus Activity

Bus activity is controlled by the active controller until IOTAKECTL is
finished.

Comments

The Command Library defaults to address 30. If you need to, you can change
this using the IOCONTROL command.

It may take awhile for the device that has active control to pass control back

to the Command Library. You may want to increase your timeout value
using IOTIMEOUT before calling IOTAKECTL, and decrease it after the
IOTAKECTL call.

Possible errors are NOERR, ETIME, ESEL, ERANGE, and ECTRL.

BASIC Reference 4-89

IOTIMEOUT

This command sets an interface timeout value in seconds for I/O operations
that do not complete (for example, the printer runs out of paper).

The default is timeout disabled.

Syntax

IOTIMEOUT (select_code,timeout)

select_code specifies the interface select code.

timeout specifies the length of the timeout period. A value of 0.0

disables the timeout, while a negative value results in an error.

Examples
For GW-BASIC:

1100 ISC = 7
1110 TIMEQUT.VAL = 2 ’Timeout = 2 seconds.
1120 CALL IOTIMEOUT(ISC,TIMEOUT.VAL)

For QuickBASIC and QBasic:

ISC = 7
TIMEQUT.VAL! = 2 ’Timeout = 2 seconds.
CALL IQTIMEQUT(ISC%,TIMEQUT.VAL!)

Bus Activity

None.

Comments

Timeout is effective for any interface operation that transfers data or
commands.

A timeout error occurs only if timeout is enabled (that is, the timeout is set to
a positive value).

4-90 BASIC Reference

IOTIMEOUT

Timeout should be established early in your program. It provides a way to
recover from I/O operations that are not completed.

The timeout value is a real number specified in seconds, which gets rounded
to the nearest 1/16 second. To timeout after 5 seconds, set timeout to 5.0.
To timeout after 0.5 second, set timeout to 0.5. Note that a timeout of 0.0
effectively disables any timeouts. The maximum allowable timeout is 4096
seconds.

If a transfer times out, the error variable PCIB.ERR returns a value of 100004,
which corresponds to the ETIME error, and the error string PCIB.ERRS$
returns the message “HPIB: timeout”.

Possible errors are NOERR, ESEL, and ERANGE.

BASIC Reference 4-91

IOTRIGGER

This command triggers one or more devices.

Syntax

IOTRIGGER (device_address)
IOTRIGGER (select_code)

device_address specifies a device address.

select_code specifies the interface select code.

Examples
For GW-BASIC:

1100 DEV = 723
1110 CALL IDTRIGGER(DEV)

For QuickBASIC and QBasic:

DEV& = 723
CALL IDTRIGGER(DEV&)

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m GET is sent.

If a select code is specified:

m ATN is set.
m GET is sent.

4-92 BASIC Reference

I0TRIGGER

Comments
Only one device can be triggered at a time if a device address is specified.

If a select code is specified, all devices on the bus that are addressed to listen
(with IOSEND, for example) are triggered.

Possible errors are NOERR, ETIME, ECTRL, and ESEL.

BASIC Reference 4-93

Pascal Programming

Introduction

This chapter explains how to use the HP-IB Command Library for Pascal
programming.

Supported versions of Pascal are listed on the Supported Languages sheet
included with the Command Library. For example, you can use certain versions
of Microsoft Pascal and Borland Turbo Pascal.

This chapter contains several sections describing how you can use the
Command Library with Pascal:

m Copying the necessary Library files to a work disk.
m Creating, compiling, and running a Pascal program.
m Processing errors.

m Learning about parameters for Library commands.

m Checking example programs. Two listings at the end of this chapter show
how you can use Library commands in Pascal programs.

Detailed syntax information for the commands as they’re used with Pascal is
included in chapter 7, “Pascal and C Reference.”

Pascal Programming 5-1

Copying Files

To begin programming in Pascal, you must copy the Pascal Library files to
your work disk.

The HP-IB Command Library disks contain an INSTALL program that copies
the Pascal Library files to your system for you.

To use INSTALL:

1. Insert the Library disk into your flexible disk drive—if you're using 5.25-inch
disks, use the disk labeled “Disk 1—Install.”

2. Run INSTALL by typing
a:install

3. Follow the instructions displayed on the screen. When you successfully
complete the instructions, the following files are copied:

m For Microsoft Pascal:

PHPIB.LIB
IODECL.EX
IOPROC.EX
PASCL.BAT
EXAMPLE.PAS
MSSCOPE.PAS

m For Turbo Pascal:

PunHPIB.TPU *
TIODECL.EX
TPASCL.BAT
TEXAMPLE.PAS
TMETER.PAS

* nn represents the Turbo Pascal version number, such as 60 for version
6.0 or 55 for version 5.5.

If you specified invalid drives, or if the system disk is write-protected, no files
will be copied. Also make sure you copy all the necessary files from your Pascal
compiler and linker to your system. Refer to your Pascal manual for details.

5-2 Pascal Programming

Programming in Pascal

For Pascal programming, the Library is implemented as a series of functions
that execute the commands. The functions always return a value indicating the
error status of the command.

Writing a Pascal Prggram

You can create a Pascal program using a text editor or the Turbo Pascal
integrated environment.

In an application program, you would typically use the commands in the
following manner to execute an operation:

m Set up the required variables.
m Perform the operation.
m Test to see if the operation completed successfully.

In the following Microsoft Pascal example, you follow these steps to program
two instruments—an HP 3325A Synthesizer/Function Generator and an

HP 3456A Digital Voltmeter. You program the source to output a 2-V rms
signal, swept from 1 kHz to 10 kHz. You program the DVM to take 20
readings from the signal and output them to an array. Finally, you display the
readings on the screen.

Use a convenient text editor to write your program. File names in the example
are for Microsoft Pascal—names for Turbo Pascal are given in the comments
below.

Pascal Programming 5-3

1. Define some preliminary information.

PROGRAM example (input, output);

{$INCLUDE: ’IODECL.EX’}

CONST
isc = 7;
source = 717;
dvm = 722;
TYPE

str10 = STRING(10);

VAR
err : INTEGER;

{$INCLUDE: ’IOPROC.EX’}

m Include a compiler directive to access IODECL.EX, which declares constants
and types. For Turbo Pascal, see the note below.

m For error handling, declare a 10-character string type to hold the name of the
command in which an error may occur.

m Declare a variable err to represent the return status of subsequent function
calls.

m Define an interface select code constant isc as 7.
m Define a source address constant source as 717.
m Define a voltmeter address constant dvm as 722.

m Include a compiler directive to access IOPROC.EX, which declares
procedures and functions. For Turbo Pascal, this command isn’t used—see
the following note.

5-4 Pascal Programming

Note Be sure to include the compiler directives in their proper

places:

d m For Microsoft Pascal, {$INCLUDE: ’*IODECL.EX’} after the
program name and {$INCLUDE: ’IOPROC.EX’} at the end of
the declaration section, before any user-defined procedures or
functions that use Library calls.

m For Turbo Pascal, USES PnnHPIB; and {$I TIODECL.EX} after
the program name. (Replace the nn with a 2-digit version
number, such as P6OHPIB for Turbo Pascal 6.0.)

2. Write an error handling procedure.

PROCEDURE Error_handler (error:integer; routine:stri0);

BEGIN

IF error <> noerr THEN BEGIN
WRITELN (’Error in call to ’,routine);
WRITELN (ERROR:6,Errstr (error));
WRITE (’Press <Enter> to continue: ’);
READLN;

END;

END;

m In the procedure header, declare an error variable to hold the error number,
and a routine string to hold the name of the command in which the error

occurred.
m Declare estring to hold the error message string.
m If there is an error (error <> noerr):

o Call the HP-IB Library error handling procedure Errstr. Pass it the
command return variable err and estring to hold the error message. The
Errstr routine returns error message strings. It is explained under “Pascal
Error Handling” in this chapter.

Pascal Programming 5-5

o Print a message telling where the error occurred.

0 Print the error number and the error message string.

o Display a prompt to continue when is pressed.

a Include a READLN statement to accept the (Enter). ((Cit}(c) terminates
the program.)

3. Initialize the bus and the instruments.

PROCEDURE Initialize;

BEGIN
err := IORESET (isc);
Error_handler (err,’IORESET DF
err := IOTIMEOUT (isc, 5.0);
Error_handler (err,’I0TIMEOUT ’);
err := IOCLEAR (isc);
Error_handler (err,’IOCLEAR °’);
END;

m Set the interface to its default configuration.

m Define a timeout of 5 seconds. Note that the timeout parameter, passed by
value, can be expressed as a literal (5.0) in Pascal.

m Return all devices to a known state with IOCLEAR.

m This program calls the Error_handler procedure after each command. Pass
it the command’s return variable (which contains the error number) and the
name of the command. Include enough spaces to set the command name field
to 10 spaces.

5-6 Pascal Programming

4. Program the source.

PROCEDURE source_setup;

VAR
codes : STRING(38);

BEGIN

codes := ’RF2 FU1 ST1KH SP10KH MF1KH AM2VR TISSE?’;
err := IODOUTPUTS (source,codes,38);

Error_handler (err,’IO0QUTPUTS ’);

END;

m Declare the codes string to hold instrument programming codes.
m Assign the necessary source programming codes to the codes string:

RF2—select the rear panel signal output.
FUl-—-=select the sine wave function.
ST1KH—select a starting frequency of 1 kHz.
SP10KH—select a stopping frequency of 10 kHz.
MF1KH—select a marker frequency of 1 kHz.
AM2VR—select an amplitude of 2 V rms.
TI5SE—select a sweep time of 5 seconds.

m Send the programming codes to the source with IOOUTPUTS.

Pascal Programming

5-7

5. Program the voltmeter.

PROCEDURE dvm_setup;

VAR
codes: STRING (38);

BEGIN

codes := ’H SM004 F2 R4 FLO ZO 4STG 20STN RS1 T4’;
err := IOOUTPUTS (dvm,codes,38);

Error_handler (err,’I00UTPUTS ’);
END;

m Declare the codes string to hold instrument programming codes.
m Assign the necessary programming codes to codes:
H—software-reset the voltmeter.

SM004—set the service request mask to enable the voltmeter to set the
interface SRQ line when it finishes taking readings (when the Data Ready bit
of the response byte is set).

F2—select the AC volts function.
R4—select the 10 volt range.
FLO—turn off filtering.

Z0—turn off auto zero.
4STG—select the 4-digit display.
20STN—take 20 readings.
RS1—turn on reading storage.
T4—select hold trigger.

m Send the codes to the voltmeter with IOQUTPUTS.

5-8 Pascal Programming

6. Trigger the instruments.

PROCEDURE Trigger;
VAR
codes : STRING(2);

BEGIN

err := IOTRIGGER (dvm);
Error_handler (err,’IOTRIGGER ’);
codes := ’SS’;

err := IOOUTPUTS (source,codes,2);
Error_handler (err,’IDOUTPUTS ’);
END;

m Declare the codes string to hold instrument programming codes.
m Use IOTRIGGER to trigger the voltmeter.

m Enter the programming code necessary to trigger the source into the codes
string. Send it (with the proper length parameter) to the source with
IOOUTPUTS.

These lines demonstrate that some instruments respond to an HP-IB
trigger command, while others must be triggered with instrument-specific
programming codes.

Pascal Programming 5-9

7. Wait for the voltmeter to finish reading.

PROCEDURE Wait_for_SRQ;

CONST
srqline = 1;

VAR
response : INTEGER;
done : BOOLEAN;

BEGIN
done := FALSE;
REPEAT
REPEAT
err := IDSTATUS (isc,srqline,response);
Error_handler (err,’IOSTATUS ?*);
UNTIL response <> O;
err := IOSPOLL (dvm,response);
Error_handler (err,’I0QSPOLL 'Y,
done := ((response AND 68) = 68);
UNTIL done;
END;

m Assign the interface condition whose status is being checked to srqline. In
this case, check for condition 1—the SRQ line.

m Declare response and done variables for use in status checking.

m Set done to false before the status check.

m Use IOSTATUS with srqline set to 1 to see if the interface SRQ line has
been set. Put the result in response.

m As long as response is zero, repeat the status check because the voltmeter
has not yet set the SRQ line (indicating it is finished). As soon as response
changes to some nonzero value, perform a serial poll of the voltmeter to see

5-10 Pascal Programming

which of its conditions, if any, set the SRQ line. Also, the serial poll clears
the SRQ.

m The result of the serial poll is the status byte of the voltmeter returned in
response. Compare response and the value 68—the sum of the SRQ bit
(64) and the Data Ready bit (4). If these bits are set, done is true and the
program continues. If they are not set, done is false and the status check is
performed again.

8. Enter the readings into an array and print them.

PROCEDURE Readout;

VAR
codes : STRING (14);
length : INTEGER;
readings : REALARRAY(20);
i : INTEGER;
numvalues : INTEGER;

BEGIN

numvalues := 20;

length := 14;

codes := ’S01 -20STR RER’;

err := IOOUTPUTS (dvm,codes,length);
Error_handler (err,’I0QUTPUTS ’);

err := IOEOI (isc,0);

Error_handler (err,’IOEOI Y3

err := IOENTERA (dvm,readings,numvalues);
Error_handler (err,’IOENTERA ’);

WRITELN (’The readings are: ’);

FOR i := 1 TO numvalues DO WRITELN (readings[I]);
END;

m Declare all necessary variables: codes to hold instrument programming
codes; length to define the length of the codes; readings to hold the

Pascal Programming 5-11

voltmeter readings; i for a for/next loop; and numvalues for the number of
values to enter. For Turbo Pascal, readings should be defined as a regular

ARRAY.
m Program the voltmeter to output its stored readings:

SO1—turn on system output mode.
—~20STR—unstore 20 readings.
RER—recall (output) the 20 readings.

m Disable the EOI mode so reading doesn’t terminate after entering only one
value.

m Set the number of readings to 20 and use IOENTERA to enter the readings
from the voltmeter. Put them in the readings array.

= Use a loop to print the readings from the readings array.

9. Assemble the procedures for execution.

BEGIN {main}
Initialize;
Source_setup;
Dvm_setup;
Trigger;
Wait_for_SRQ;
Readout;

END.

Saving the Pascal Program

When you have finished writing the program, save it as PROGRAM.PAS in the
Library directory LIB. (The method by which you save it depends on your text
editor.)

5-12 Pascal Programming

Compiling and Linking with Microsoft Pascal

After the Pascal program is finished, you must compile it and link it. This
example assumes that the necessary compiling and linking programs are on
disk C, as is the Library directory. See the Microsoft Pascal manual for more
details.

Note These instructions may differ for different revisions of Microsoft
1 Pascal.

From MS-DOS, select the Library directory as the current directory. For
example

cd \hpib

You can compile and link a Microsoft Pascal program in two ways:

m Automatically using a Command Library program.

m Separate compile and link steps using Microsoft Pascal commands.

Automatic Compiling and Linking

The batch file PASCL.BAT in your Command Library automatically compiles
and links a specified Microsoft Pascal program. (You should make sure your
PATH environment variable includes the Command Library directory and the
Pascal executables directory.)

To use PASCL.BAT, type at the MS-DOS prompt (where filename is the name
of your program without the .PAS extension)

pascl filename

For example, to compile and link the above program, type

pascl program

Pascal Programming 5-13

Compiling and Linking Separately

From MS-DOS, start pass one of the compiler. You can use the default
compilation by typing (where filename is the name of the program without the
.PAS extension)

pasl filename;
Alternatively, you’ll be prompted for compiler options if you type
pasi
For this example, type
pasl program;
If there are no errors, Pass One No errors detected. is displayed.
To run pass two, type

pas2

Pass two displays no intermediate prompts on the screen. If there are no
errors, pass two displays the following when it is complete:

Code Area Size =
Cons Area Size
Data Area Size

Pass Two No Errors Detected.

Note Pass three is not required for this example.
i

When compilation is successfully completed, link the Microsoft Pascal program.
You can use the default compilation by typing (where filename is the name of
the program without the .PAS or .OBJ extension)

link filename, , ,phpib;
Alternatively, you’ll be prompted for linker options if you type

link

5-14 Pascal Programming

For this example, type

link program,,,phpib;

This directs the linker to link the Microsoft Pascal Command Library file
PHPIB.LIB to your program. It also links the Microsoft Pascal system library
file and all necessary modules in the run-time library. The MS-DOS prompt is
displayed when linking is complete.

Compiling with Turbo Pascal

After the Pascal program is finished, you must compile it. (No separate linking
process is required—compiling and linking occur together.) This example
assumes that the necessary compiling programs are on drive C, as is the
Library directory. See the Turbo Pascal manual for more details.

Note These instructions may differ for different revisions of Turbo

d Pascal.

From MS-DOS, select the Library directory as the current directory. For
example

cd \hpib

You can compile a Turbo Pascal program in three ways:
® Automatically using a Command Library program.
m Using the Turbo Pascal command-line compiler.

By running it from the Turbo Pascal integrated environment.

Using the Command Library Program

The batch file TPASCL.BAT in your Command Library automatically
compiles a specified Turbo Pascal program. (You should make sure your PATH
environment variable includes the Command Library directory and the Pascal
executables directory.)

Pascal Programming 5-15

To use TPASCL.BAT, type at the MS-DOS prompt (where filename is the
name of your program without the .PAS extension)

tpascl filename

For example, to compile the above program, type

tpascl program

Using the Command-Line Compiler

From MS-DOS, type at the MS-DOS prompt (where filename is the name of
your program without the .PAS extension)

tpc filename

Compiling in the Integrated Environment

You can compile and run a program from the Turbo Pascal integrated
environment by selecting those choices from the menus in the integrated
environment.

Running the Pascal Program

When you are ready to run the program, connect the SIGNAL output of the
source to the VOLTS input of the DVM. (Include a 50-ohm load in this line to
ensure proper readings.) Use HP-IB cables to connect the instruments to your
computer. The result of the compiling and linking procedure is an executable
program file called PROGRAM.EXE, which is saved in the current directory.
When you are ready to run it, type

program

Watch the display on the function generator. You will see the various functions
(sine wave, AC volts, sweep time) displayed as they are programmed. The
voltmeter displays its operation as well—you can watch it take readings, store
them, and output them to the “Readings” array. As the program ends, it
displays the readings on your screen.

5-16 Pascal Programming

Pascal Error Handling

General information about Command Library errors and how to process errors
are contained in “Processing I/O Errors” in chapter 1 and in appendix A,
“Error Descriptions.”

If you don’t need to write a special error-processing routine for your program,
you can write one like the following;:

PROCEDURE Checkerror (error : integer; routine : stri2);

VAR
estr: xxstr40;

BEGIN
IF error <> noerr THEN BEGIN
estr := errstr (error);

WRITELN (’Error ’,error:4,estr,’ was encountered’);
WRITELN (’ in call to HP-IB function ’,routine);
WRITELN;
WRITELN (’Press <Enter> to continue: ’);
READLN;

END;

END;

This example uses “errstr”—a function provided in the IOPROC.EX or
TIODECL.EX file that returns an error message string corresponding to the
error value,

The parameter routine in Checkerror gives you an indication of where the
error occurred.

noerr is one of the mnemonic constants established in the IODECL.EX or
TIODECL.EX file that correspond to the possible Command Library errors—
other error mnemonics are listed under “Command Library Errors” in chapter
1.

Pascal Programming 5-17

Checkerror might then be used in your program as follows:

err := IOENTER (709,reading);
Checkerror (err,’IOENTER ’);

Command Library Parameters

This section presents information about Command Library parameters as they
are used with Pascal.

Passing Parameters

In Pascal, you can pass parameters to procedures and functions in two ways:
pass by value and pass by reference. Those passed by reference are indicated
by _REF attached to their designators in the syntax reference later in this
manual.

With pass by value, a copy of the current value of the parameter is made for
the called routine, and the original copy of the data is unchanged. In this
case, you may specify a variable (such as isc), a literal (such as 709), or an
expression (such as, isc * 100 + 9) as the parameter in the call statement.

With pass by reference, only a single copy of the data exists. Therefore,

any changes made to the variable in the subroutine are reflected in both the
called routine and the calling procedure. Whenever a reference parameter is
indicated, you must use a variable—literals and expressions are not allowed.

Parameter Types

Several types of variables are used to describe parameters to Library command
calls in chapter 7, “Pascal and C Reference.”

Integer Expression

An integer expression is any valid combination of integers, integer variables,
integer functions, and integer operators that evaluate to a single integer value.

5-18 Pascal Programming

The valid range for this variable type is integers from —32,768 to 32,767.
Integers are used to specify flags and other discrete information. For example

701
isc
isc * 100 + 9
700 + ord(’$’)

Long/Four-Byte Integer Expression

A long integer (Turbo Pascal) or four-byte integer (Microsoft Pascal) is similar
to an integer expression, except the valid range is from —2,147,483,648 through
2,147,483,647. Anywhere a long/four-byte integer expression is indicated, you
can use an integer expression instead. Long/four-byte integers are used to
specify select codes and device addresses, including extended addresses.

Integer Variable

An integer variable is a variable of type INTEGER that is to be passed by
reference. You may not use long/four-byte variables when an integer variable
is specified, nor may you use a constant, literal, or integer expression. Integer
variables are used for returning meaningful integer values, such as with
IOGETTERM or IOSPOLL.

Real Expression

A real expression is any valid combination of real numbers, real variables,
real functions, and real number operators that evaluates to one real value.
The range of real numbers is limited to approximately 2 x 10739 to 2 x 1038
(negative and positive) and the precision to seven digits. (Turbo Pascal
six-byte real numbers are converted to four-byte numbers internally, so the
range is as stated here.) They’re used to specify numeric data. For example

1.23

data_value
sqrt(data_value)
2 %pisx*r

Pascal Programming 5-19

Real Variable

A real variable is a variable declared to be of type REAL that is to be passed
by reference. You may not use constants, literals, or other expressions. They’re
used to return numeric data from input transfers.

Real Array

A real array is an array of real variables. When you declare arrays for
Microsoft Pascal, use the super type REALARRAY—it’s defined in the
IODECL.EX file. For Turbo Pascal, use arrays of type REAL. Although the
theoretical size limit for arrays is 32,767 elements, the actual limit is smaller
because of memory size limitations. They’re used for numeric data.

Be careful when using very large arrays. Declared globally, they can result
in link-time errors. Declared within subroutines, they may compile and link
without error but cause system problems later when printed or accessed in
computations.

Each of the following examples allocates an array of 20 elements, which can be
accessed as values[1] through values[20]. Each element is a real number.

m For Microsoft Pascal:
VAR values: REALARRAY(20);
TYPE real20 = REALARRAY(20);
VAR values: real20;

m For Turbo Pascal:
VAR values: ARRAY[1..20] of REAL;
TYPE real20 = ARRAY[1..20] of REAL;
VAR values: real20;

String Variable

A string variable is a variable declared to be of type STRING or LSTRING
that is to be passed by reference. You must establish the string size before you
call a Library function that uses the string variable. Valid string sizes are 1
through 32,767. You may not use string literals (such as ’My String’). Be

5-20 Pascal Programming

careful when you use very large strings. String variables are used to specify
characters and other ASCII text.

Each of the following examples declares a string with size 10.

VAR instring: STRING(10);

TYPE stri0 = STRING(10);
VAR instring: STR10;

Character

A character is any variable of type CHAR or a constant, literal, or character
function that represents a single ASCII character. A variable with type
STRING(1) is not compatible with a CHAR variable. In the example above,
instring[1] is a character. For example

ch
3 A 3
chr(10)
Any Type of Array

Any type of array can be a real array, an integer array, a double/eight-byte real
array, a string, or other type of array. It indicates the place to start reading or
storing data.

Each of the following examples allocates an array. (For Microsoft Pascal, use
the four array types defined for binary transfers by the IODECL.EX file:
BININT, BINREAL, BINDOUBLE, and BINCHAR.)

m For Microsoft Pascal:

VAR readings : BINDOUBLE(50);

TYPE int20 = BININT(20);
VAR values: int20;

TYPE stri10 = STRING(10);
VAR instring: strio;

Pascal Programming 5-21

m For Turbo Pascal:
VAR readings : ARRAY[1..50] of REALS;

TYPE int20 = ARRAY[1..20] of INTEGER;
VAR values: int20;

TYPE str10 = STRING(10);
VAR instring: strio;

Example Programs

Oscilloscope Example

The following program is written in Microsoft Pascal. The program uses two
devices: HP 54601A digitizing oscilloscope (or compatible scope) and a printer
capable of printing HP Raster Graphics Standard, such as a ThinkJet printer.

The program tells the scope to take a reading on channel 1 and send the data
back to this program. Then it prints some simple statistics about the data.
The program then tells the scope to send the data directly to the printer,
illustrating how the controller does not have to be directly involved in an
HP-IB transaction.

Things to note about this program:

m Note the use of the IOENTERAB command. This command will read an
arbitrary block of data as defined in IEEE-488.2. IOENTERAB can read
either definite length or indefinite length arbitrary block data.

m If your instrument sends data in some other block data format, you can
use the IOENTERB and IOOUTPUTB commands in conjunction with
IOENTERS and IOOUTPUTS, respectively, to simulate these other formats.

m You should probably disable character matching before executing an
IOENTERB or IOENTERAB because the character in the “match” string is
generally a valid binary value, rather than a termination character.

5-22 Pascal Programming

m The commands that are sent to the scope are device dependent and are
found in the manual for the scope.

m The error checking in the program consists of checking the return value
of each Command Library function after it is called. In this program, a
procedure (error_handle) has been set up to check this value automatically.

m Before an IOENTERS statement is executed, space should be allocated for
the string (if it’s an LSTRING) by assigning the string to ’ *, where the
number of spaces is the maximum length to be entered. If this is not done,
the string will be of length 0, and no characters will be entered. You can
then shorten the string to the correct length (in case less than the maximum
number of characters were entered) by using the DELETE procedure.

The program has three main parts to it:

Computer

1. Read the data from the scope (get_data procedure). < Museum

2. Print some statistics about the data (massage_data procedure).

3. Have the scope send the data to a printer (print_data procedure).

(*
This program tells the scope to take a reading on channel 1, then
sends the data back to this program. We can do anything we want
to the data at this time, and we choose to print some simple
statistics about the data. The program then tells the scope to send
the data directly to the printer, illustrating how the controller
doesn’t have to be directly involved in an HP-IB transaction.

*)
program hpib_sample(input,output);

{$include: ’iodecl.ex’}

const

max_str_len = 200,
type

strtype = lstring(max_str_len);
var

isc,

scope : integer4;

Pascal Programming 5-23

cmd : strtype;

pre : realarray(10);
reason : integer;
status : integer;
length . integer;
bytes : integer;
readings : binint(5000);

{$include: ’ioproc.ex’}

procedure error_handle(error : integer; routine: strtype);

begin
if error <> NOERR then begin
writeln(’Error in call to ’, routine, error:3, errstr(error));
abort (’HPIB error’, 1, 0);
end;
end;

procedure sendcmd (cmd: strtype);
var
length : integer;
begin
length := retype(integer, cmd.len);
error_handle (IOOUTPUTS (scope, cmd, length), ’IOOUTPUTS’) ;
end;

procedure initialize;
begin

isc := 7;

scope := isc * 100 + 7,

(* initialize the hpib interface and scope
*)
error_handle(IORESET(isc), ’IORESET’);
error_handle(IOTIMEOUT(isc, 5.0), ’IQTIMEOUT’);
error_handle(IOCLEAR(scope), ’IOCLEAR’);
error_handle(IOREMOTE(isc), ’IOREMOTE’);

end;

procedure get_data;
var

5-24 Pascal Programming

i : integer;
begin

(* setup scope to accept waveform data
*)

sendcmd (’*RST?) ;

sendcmd (’:autoscale’) ;

(* setup up the waveform source
*)

sendcmd (’:waveform:format word’) ;

(* input waveform preamble to controller
*)

sendemd (’:digitize channell’) ;

sendcmd (’:waveform:preamble?’) ;

length := 10 ;
error_handle (IOENTERA (scope, pre, length), ’IOENTERA’) ;

(* turn off ’1f’ enter terminator and turn on EOI

* This is required, as ’1f’ is a valid binary value.
*)

error_handle(IOMATCH(isc, chr(10), 1), ’IOMATCH’);
error_handle(IOEOI(isc, 1), 'IOEDI’);

(* command scope to send data
*)

sendcmd (’:waveform:data?’) ;

(* enter the data
*)
bytes := 8000;
error_handle(IOENTERAB(scope, readings, bytes, 2), ’IOENTERAB’);

(* use IOGETTERM to see if all points were entered
*)
error_handle(IOGETTERM(isc, reason), ’'IOGETTERM’);

if (reason and 1) = O then
writeln(’Not all points received’);

Pascal Programming 5-25

end;

Read the last byte from the scope. This must always be done
after an IOENTERAB command. If the character read is a

’1f’, then the device is done sending data. If the character
read is a ’;’ or a ’,’, then the device is waiting to send
another block of data.

Note also that we can use the select code instead of the device
address for the first parameter of this command. This is because
the scope is still addressed to talk, and the computer to listen
from the IOENTERAB command.

[R R NN B 2 R R BN I

*
s

cmd = 7 7
length := 1 ;
error_handle (IOENTERS (isc, cmd, length), ’IOQENTERS #1’) ;

(* cmd[1] is the first character of string

*)
if (emd [1] <> chr(10)) then
begin
writeln (’scope wants to send more data...’) ;
end;

procedure massage_data;

var
vdiv : real ;
off . real ;
sdiv : real ;
delay : real ;
i : integer ;
begin
vdiv := 32 * pre [7] ;
off = (128 - pre [9]) * pre [7] + pre [8] ;
sdiv := pre [2] * pre [4] / 10 ;
delay := (pre [2] / 2 - pre [6]) * pre [4] + pre [5] ;

(* retrieve the scope’s ID string
*)
sendcmd (’*IDN?’)

5-26 Pascal Programming

cmd := NULL ;

for i := 1 to max_str_len do
concat (emd, ’ ’);
length := max_str_len ;

error_handle (IDENTERS (scope, cmd, length), ’IDENTERS #2’) ;
delete (cmd, length, upper(cmd) - length);

(* print the statistics about the data

*)
writeln (’Oscilloscope ID: ’, cmd) ;
writeln (° ---——----———- Current settings -----—----—-- M)
.writeln (° Volts/Div = ’,vdiv , ’> V) ;
writeln (° Offset = ’,off , V)
writeln (°’ S/Div = ’,sdiv , ’ S’) ;
writeln (°’ Delay = ’,delay , ’ S’) ;

end;

procedure print_data;
begin

(* tell the scope to SRQ on ’operation complete’
*)
sendcmd (’#*SRE 32 ; #*ESE 1°) ;

(* tell the scope to print
*)
sendcmd (’:print? ; *0PC’)

(* tell scope to talk and printer to listen
* the listen command is formed by adding 32 to the device address

* of the device to be a listener

* the talk command is formed by adding 64 to the device address
* of the device to be a talker

*)

cmd := chr(63) * chr(32+1) * chr(64+7) ;

(* 63 is unlisten *)

(* printer is at address 1, add 32 to get listen cmd *)
(* scope is at address 7, add 64 to get talk command *)

length := retype(integer, cmd.len);

Pascal Programming 5-27

error_handle(IOSEND(isc, cmd, length), ’IOSEND’);

(* now, the ATN line must be set to FALSE.
*)
error_handle(IOCONTROL(isc, 8, 0), ’IOCONTROL’);

(* wait for SRQ before continuing program
*)
status := 0 ;
while status = 0 do begin
while status = 0 do begin
(* stay in this while loop until SRQ is asserted *)
error_handle(IOSTATUS(isc, 1, status), ’IOSTATUS’);
end;

(* make sure it was the scope requesting service
*)
error_handle(IOSPOLL(scope, status), ’IOSPOLL’);
(* 64 = bit 6 set *)
status := status and 64 ;
end;
end;

procedure cleanup;
begin

(* give local control back to the scope
*)
error_handle(IOLOCAL(isc), ’IOLOCAL’);

end;

begin { main }
initialize;
get_data;
massage_data;
pPrint_data;
cleanup;

end.

5-28 Pascal Programming

Multimeter Example

This example uses the HP 344014 Multimeter as the primary device.
We will also use the HP 3325A Function Generator as a source for
the multimeter.

This example sets up the meter to take 128 readings, reads the data
into an array, then plots the data on the screen. In effect, it
turns the multimeter into a simple oscilloscope. This program is
also checking other devices that are on the bus to see if they need
service. The SRQ line along with parallel and serial polling is
used to make these checks. The program will continue until the user
presses a key on the PC keyboard.

}
program main(input, output);
uses Graph, Crt, p60hpib;

{$1 tiodecl.ex}

const
NUM_READINGS = 128 ;

type (* type declarations follow *)
strtype = string[255];
arrtype = array [1..NUM_READINGS] of real;

var
isc :longint;
dvm :longint;
source :longint;

device_addr_1 :longint;
device_addr_2 :longint;

cmd :strtype;
len :integer;
response :integer;
readings rarrtype;

Pascal Programming 5-29

procedure cleanup; forward;

procedure error_handle(error : integer; routine: strtype);
var retval : INTEGER ;
begin

if error <> NOERR then begin

(* we have an error, so let’s abort all activity on the HPIB bus
*)
retval := IOABORT(isc) ;

cleanup;
vriteln(’Error in call to ’, routine, error:3, errstr(error));
halt(1);
end;
end;

procedure cleanup;
var retval : INTEGER ;
begin
(* clear the dvm so we can send the commands to reset it
*)
retval := IOCLEAR(dvm) ;

(* reset the dvm

*)
cmd := ’:DISP:STATE ON; *RST’ ;
len := length(cmd);

retval := I0OUTPUTS(dvm, cmd, len) ;

(* unconfigure the parallel poll
*)
retval := IOPPOLLU(isc) ;

(* restore video mode
*)
CloseGraph;

end;

procedure get_data;

5-30 Pascal Programming

var

i : integer;
ymin,

ymax 1 real;
xaxis,

yaxis : integer;
temp : real;

textout : string;

begin

(* Ask the DVM to send us the data

*)
str (NUM_READINGS:0, cmd) ;

cmd := ’':SAMPLE:COUNT ® + cmd + ’'; :READ?’
len := length(cmd);

error_handle(IDOUTPUTS(dvm, cmd, len), °’IOOUTPUTS #2°);

(* Read the data
*)

len := NUM_READINGS ;

error_handle(IOENTERA(dvm, readings, len), ’IOENTERA #1’);

(* graph the data
*)

(* clear screen, and draw a border around the screen
*)

ClearDevice;

MoveTo(0,0);

LineTo(GetMaxX,0);

LineTo(GetMaxX,GetMaxY);

LineTo(0,GetMaxY);

LineTo(0,0);

(*# find the minimum and maximum values in the data
*)

ymin := readings([1];

ymax := readings[1i];

Pascal Programming

5-31

for i:=1 to len do begin
if (readings[i] < ymin) then ymin := readings[i];
if (readings[i] > ymax) then ymax := readings[il;
end;

(* print some labels

*)
str(ymax:0, textout);
textout := 'MAX = ’ + textout;

OutTextXY(2, 2, textout);

str(ymin:0, textout);
textout := ’MIN = ’ + textout;
OutTextXY(2, GetMaxY-TextHeight(textout), textout);

(* scale the min and max values to give extra space on top & bottom
* of screen

*)
if ymin > O then

ymin := ymin * 0.6
else

ymin := ymin * 1.4;

if ymax > O then

ymax := ymax * 1.4
else

ymax := ymax * 0.6;

(* plot the data
*)
temp := readings[1];
temp := ((temp-ymin) * GetMaxY) / (ymax-ymin);
yaxis := round(GetMaxY-temp);
MoveTo(0, yaxis);
for i := 2 to len do begin

temp := i;

temp := temp * GetMaxX;
temp := temp / (len - 1);
xaxis := round(temp);

§5-32 Pascal Programming

temp := readings[il;
temp := ((temp-ymin) * GetMaxY) / (ymax-ymin);
yaxis := round(GetMaxY-temp);

LineTo(xaxis, yaxis);
end;

end;

procedure poll_device (dev_addr: longint) ;

var
response : integer;
begin
(* do a serial poll of the device configured to use parallel
* poll line 0
*)
error_handle(I0SPOLL(dev_addr, response), ’IOSPOLL #3’);
(* should check RESPONSE here to see if any action needs to be taken.
* the values that RESPONSE can take are device dependent.
*)
end;

procedure check_srq;
var
response : integer;
begin
(* conduct a parallel poll
* note that the source doesn’t respond to parallel poll’s,
* so we need to poll that device separately.
*)
error_handle(IOPPOLL(isc, response), 'IOPPOLL #1');
if ((response and 1) <> 0) then
poll_device (device_addr_1);

if ((response and 2) <> 0) then
poll_device (device_addr_2);

(* check all devices that were configured to respond to
* parallel poll

Pascal Programming 5-33

*)

(* check any other devices on the bus here that weren’t
* configured to respond to parallel poll by performing
* a serial poll on each one.

*)
error_handle(IOSPOLL(source, response), ’'IOSPOLL #2°);

(* see if we’ve cleared the srq yet
*)
error_handle(IOSTATUS(isc, 1, response), ’IOSTATUS #3’);
if (response = 1) then begin
cleanup;
writeln(’SRQ locked high’);
halt(1);
end;
end;

procedure setup;

begin
(* let’s use dma to send the strings to program the devices
*)
error_handle(IODMA(isc, 40, 3), ’IODMA #1°’);

(* program the function generator

*)
cmd := ’RF1 FR30HZ FU1 ST1KH SP10KH MF1KH AM1VR TISSE’ ;
len := length(cmd);

error_handle(IOOUTPUTS(source, cmd, len), ’IOOUTPUTS #1°);

(* program the dvm

*)

cmd := ’:CONF:VOLT:DC 30,.1;’;

cmd := cmd + ’:ZERO;AUTO OFF;’;

cmd := cmd + ’:TRIG:DELAY MIN;’;

cmd := cmd + ’:DISP:STATE OFF;’;

cmd := cmd + ’’;

len := length{(cmd);

error_handle(IOOUTPUTS(dvm, cmd, len), ’ICQUTPUTS #2’);

(* turn dma off again

5-34 Pascal Programming

*)
error_handle(IODMA(isc, 0, 3), *IODMA #2°);
end;

procedure initialize;

var
GraphDriver : integer;
GraphMode : integer;
ErrCode : integer;
TempChar : char ;
begin
isc := 7:
dvm := isc * 100 + 22;
source := isc * 100 + 12;

device_addr_1 :
device_addr_2 :

isc * 100 + 20;
isc * 100 + 7;

(* initialize the hpib interface and scope

*) .

error_handle(IORESET(isc), ’IORESET’);
error_handle(IOTIMEQUT(isc, 3.0), ’IOTIMEOUT’);
error_handle(I0CLEAR(source), ’IOCLEAR #1’);
error_handle(IOCLEAR(dvm), ’IOCLEAR #2’);
error_handle(IOFASTOUT(isc, 1), ’IOFASTOUT’);
TempChar := chr(10);
error_handle(IOEOL(isc, TempChar, 0), ’IOEQL’);

(* We will now configure all devices that can respond to a parallel
* poll. This example assumes devices at addresses 20 and 7 can

* respond to a parallel poll. see operators manual of individual
* devices to see if they can respond to a parallel poll.

*)

(* configure the device at address 20 for a parallel poll
*)
error_handle(I0PPOLLC(device_addr_1, $08), ’IOPPOLLC #1’);

(* configure the device at address 7 for a parallel poll

*)
error_handle(IOPPOLLC(device_addr_2, $09), ’IOPPOLLC #2’);

Pascal Programming 5-35

(* configure any other devices that can respond to parallel poll here

*)

(* set video mode
*)
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ’’);
ErrCode := GraphResult;
if ErrCode <> grOk then
begin
writeln (’Graphics error:’, GraphErrorMsg(ErrCode));
end;

end;
begin { main }
initialize;
setup;
while not keypressed do
begin
error_handle(IOSTATUS(isc, 1, response), ’IDSTATUS #1’);
if response = 1 then
check_srq;
get_data ;

end;

cleanup;
end.

5-36 Pascal Programming

C Programming

Introduction

This chapter explains how to use the HP-IB Command Library with the C
programming language.

Supported versions of C are listed on the Supported Languages sheet included
with the Command Library. For example, you can use certain versions of
Microsoft C, Microsoft QuickC, and Borland Turbo C. This chapter contains
several sections describing how you can use the Command Library with C:

m Using various memory models.

m Copying the necessary Library files to a work disk.
m Creating, compiling, and running a C program.

m Processing errors.

m Learning about parameters for Library commands.

m Checking example programs. Two listings at the end of this chapter show
how you can use Library commands in C programs.

Detailed syntax information for the commands as they’re used with C is
included in chapter 7, “Pascal and C Reference.”

C Programming 6-1

Specifying Memory Models

When used with C, the HP-IB Command Library uses the “large” memory
model. You should ensure that your C program is compatible with the
Command Library by using one of these methods:

m Use the large memory model for your program. However, not all C languages
let you use the large memory model.

m Prototype all Command Library functions as “far” calls in your program
and all parameters passed by reference as “far” references—enabling the
program to use a smaller memory model. The Command Library includes
the CFUNC.H file, which makes these declarations.

Consult your C manual for a discussion of the differences between memory
models.

Copying Files

To begin programming in C, you must copy the C Command Library files to
your work disk.

The HP-IB Command Library disks contain an INSTALL program that copies
the C Library files to your system for you.

To use INSTALL:

1. Insert the Library disk into your flexible disk drive—if you’'re using 5.25-inch
disks, use the disk labeled “Disk 1—Install.”

2. Run INSTALL by typing
a:install

3. Follow the instructions displayed on the screen. When you successfully
complete the instructions, the following files are copied:

m For Microsoft C and QuickC:

CLHPIB.LIB
QCHPIB.QLB
CHPIB.H

6-2 C Programming

CFUNC.H
MSCL.BAT
QCCL.BAT
EXAMPLE.C
MSMETER.C

s For Turbo C:

CLHPIB.LIB
CHPIB.H
CFUNC.H
TCCL.BAT
EXAMPLE.C
TSCOPE.C
TCHHPIB.C

If you specified invalid drives, or if the system disk is write-protected, no files
will be copied. Also make sure you copy all the necessary files from your C
compiler and linker to your system. Refer to your C manual for details.

C Programming 6-3

Programming in C

For C programming, the Library is implemented as a series of function
calls. The functions always return a value indicating the error status of the
command.

Writing a C Program

You can create a C program using a text editor or the QuickC or Turbo C
integrated environment.

In an application program, you typically use the commands in the following
manner:

1. Set up the required variables.
2. Perform the operation.
3. Test to see if the operation completed successfully.

In the following example, you follow these steps to program two instruments—
an HP 3325A Synthesizer/Function Generator and an HP 3456A Digital
Voltmeter. You program the source to output a 2-V rms signal, swept from 1
kHz to 10 kHz. You program the DVM to take 20 readings from the signal and
output them to an array. Finally, you display the readings on the screen.

Use a convenient text editor to write your program. File names in the
example are for Microsoft C and QuickC—names for Turbo C are given in the
comments below each example.

6-4 C Programming

1. Define some preliminary information.

#include "CHPIB.H"
#include "CFUNC.H"

#define 1ISC 7L
#define SOURCE 717L
#define DVM 722L
#define SRQLINE 1
int error;

m Include a compiler directive to access CHPIB.H and CFUNC.H, which
define some constants, an error string procedure, and function prototyping.
CFUNC.H isn’t mandatory for a large memory model program, although
its inclusion helps reveal variable-type problems. If you are compiling C++
programs with Turbo C++, instead of including the files CFUNC.H and
CHPIB.H, you need to add the following statements to your program:

extern "C"

{

#include <cfunc.h>
#include <chpib.h>
}

Note that this does not apply when you are compiling standard C programs
in Turbo C++; only C++ programs using C++ constructs require this.

a Define an interface select code constant ISC as 7.
m Define a source address constant SOURCE as 717.

m Define a voltmeter address constant DVM as 722. This example assumes select
code 7, voltmeter address 22, and source address 17. Also, ISC, SOURCE, and
DVM must all be LONG values.

m Define the constant SRQLINE for use as the condition parameter in calls to
IOSTATUS.

C Programming 6-5

m Declare a variable error to represent the return status of subsequent
function calls.

2. Write an error handling procedure.

error_handler (error, routine)

int error;
char xroutine;
char ch;

if (error != NOERR)
{
printf ("Error in call to %s \n", routine);
printf ("%d %s \n", error, errstr{error));
printf ("Press Enter to continue: ");
scanf ("%c", &ch);
}

m In the procedure header, declare an error variable to hold the error number,
and a routine string to hold the name of the command in which the error
occurred.

m If there is an error (error != NOERR):
o Print a message telling where the error occurred.

o Print the error number and the error message string. (The errstr routine
returns error message strings. It is explained in the “C Error Handling”
section of this chapter.)

o Display a prompt to continue when is pressed.
o Include a scanf statement to accept the (Enter). ((Ctr}(C) terminates the

program.)

6-6 C Programming

3. Initialize the bus and the instruments.

initialize ()
{

error = IORESET (ISC);
error_handler (error, "IORESET");
error = IOTIMEOUT (ISC, 5.0);
error_handler (error, "IOTIMEOUT");
error = IOCLEAR (ISC);
error_handler (error, "IOCLEAR");

® Set the interface to its default configuration.

m Define a timeout of 5 seconds. Note that the timeout parameter, passed by
value, can be expressed as a literal (5.0) in C. Be sure to include the decimal

point—otherwise, the C compiler will assume you are passing an integer
value even though a double value is required.

m Return all devices to a known state with IOCLEAR.

m Call error_handler after each command. Pass it the command’s
return variable (which contains the error number) and the name
of the command. You can combine these operations—for example
error_handler (IORESET (ISC),"IORESET");

4. Program the source.

sourcesetup ()

{
char *codes;
codes = "RF2 FU1 ST1KH SP10KH MF1KH AM2VR TISSE";
error = IOOUTPUTS (SOURCE, codes, 38);
error_handler (error, "IOOUTPUTS ");

C Programming

6-7

m Declare the codes string to hold instrument programming codes.
m Assign the necessary source programming codes to the codes string:

RF2—select the rear panel signal output.
FUl—select the sine wave function.
ST1KH—select a starting frequency of 1 kHz.
SP10KH—select a stopping frequency of 10 kHz.
MF1KH—select a marker frequency of 1 kHz.
AM2VR—select an amplitude of 2 V rms.
TI5SE—select a sweep time of 5 seconds.

m Send the programming codes to the source with IOOUTPUTS.

5. Program the voitmeter.

dvmsetup ()
{
char *codes;
codes = "H SM004 F2 R4 FLO Z0 4STG 20STN RS1 T4";

error = I0OOUTPUTS (DVM, codes, 38);
error_handler (error, "IOOUTPUTS");

m Declare the codes string to hold instrument programming codes.
a Assign the necessary programming codes to codes:
H—software-reset the voltmeter.

SM004—set the service request mask to enable the voltmeter to set the
interface SRQ line when it finishes taking readings (when the Data Ready bit
of the serial poll response byte is set).

F2—select the AC volts function.
R4—select the 10 volt range.
FLO—turn off filtering.

Z0—turn off auto zero.
4STG—select the 4-digit display.

6-8 C Programming

20STN—take 20 readings.
RS1—turn on reading storage.
T4—select trigger hold.

m Send the codes to the voltmeter with I[OOUTPUTS.

6. Trigger the instruments.

trigger ()

{
error = IOTRIGGER (DVM);
error_handler (error, "IOTRIGGER");
error = IOOUTPUTS (SOURCE, "Ss", 2);
error_handler (error, “IO0UTPUTS");

m Use [OTRIGGER to trigger the voltmeter.

m Send the programming code necessary to trigger the source (“SS”) using the
proper length parameter (2) with IOOUTPUTS. Note that a literal string
can be used as a parameter to IOOUTPUTS.

These lines demonstrate that some instruments respond to an HP-IB
trigger command, while others must be triggered with instrument-specific
programming codes.

C Programming 6-9

7. Wait for the voltmeter to finish reading.

wait_for_srq ()
{
int response;
do
{
do
{
error = IOSTATUS (ISC, SRQLINE, &response);
error_handler (error, "IOSTATUS");
}
while (response == 0);
error = I0OSPOLL (DVM, &response);
error_handler (error, "“IOSPOLL");
}
vhile ((response & 68) != 68);
}

m Declare response variable for use in status checking.

m Use IOSTATUS with SRQLINE set to 1 to see if the interface SRQ line has

been set. Put the result in response.

m As long as response is zero, repeat the status check because the voltmeter
has not yet set the SRQ line (indicating it is finished). As soon as response
changes to some nonzero value, perform a serial poll of the voltmeter to see
which of its conditions, if any, set the SRQ line. Also, the serial poll clears
the SRQ. Note that “&” must precede response in order for the poll value

to be properly returned.

m The result of the serial poll is the status byte of the voltmeter returned in
response. Compare response with the value 68—the sum of the SRQ bit
(64) and the Data Ready bit (4). If these bits are set, exit the function—

otherwise, the status check is performed again.

6-10 C Programming

8. Enter the readings into an array and print them.

readout ()

{
char *codes;
float readings([20]; i
. . Computer:
int 1; ZMuseum.
int numvalues;

numvalues = 20;
codes = "S01 -20STR RER";
error = IOQUTPUTS (DVM, codes, 14);
error_handler (error, "IOOUTPUTS");
error = IOEQI (ISC, 0);
error_handler (error, "IOEOI");
error = IOENTERA (DVM, readings, &numvalues);
error_handler (error, "IOENTERA");
printf ("\n The readings are: \n");
for (i = 0; i < numvalues; i++)
printf (“%4f \n", readingsfil);

m Declare all necessary variables: codes to hold instrument programming
codes; readings to hold the voltmeter readings; i for a for/next loop; and
numvalues for the number of values to enter.

s Program the voltmeter to output its stored readings:

SO1—turn on system output mode.
—20STR—unstore 20 readings.
RER—recall (output) the 20 readings.

m Disable the EOI mode so reading doesn’t terminate after entering only one
value.

m Set the number of readings to 20, and use IOENTERA to enter the readings
from the voltmeter. Put them in the readings array. readings does not

C Programming 6-11

need the “&” before it because C always passes a pointer for an array in a
function call.

m Use a loop to print the readings from the readings array. Remember that C
array indices begin at 0.

9. Assembie the procedures for execution in the MAIN function.

main ()

{
initialize ();
sourcesetup ();
dvmsetup ();
trigger O);
vaitforsrq ();
readout ();

Saving the C Program

When you have finished writing the program, save it as PROGRAM.C. It may
be convenient to save it in the Command Library directory (such as LIB). (The
method by which you save it depends on your text editor.)

Compiling and Linking the C Program

After the C program is finished, you must compile and link it. This example
assumes that the necessary compiling and linking programs are on disk C,
along with the Library directory.

From MS-DOS, select the Command Library directory as the current directory.
For example

cd \hpib

6-12 C Programming

You can compile a C program in three ways:
m Automatically using a Command Library program.
m Using the C command-line compiler.

m By running it from the C integrated environment.

Using the Command Library Program

A batch file in your Command Library automatically compiles a specified C
program. The file you use depends upon your C language. (You should make
sure your PATH environment variable includes the Command Library directory
and the C executables directory.) To compile and link a program, type the
following at the MS-DOS prompt (where filename is the name of your program
without the .C extension)

m Microsoft C (uses file MSCL.BAT)

mscl progname
m Microsoft QuickC (uses file QCCL.BAT)

gccl progname
s Turbo C (uses file TCCL.BAT)

tccl progname

Note Each of these programs uses the large memory model.

For example, to compile the above program using Microsoft C, type

mscl program

C Programming 6-13

Using the Command-Line Compiler

The compiler command depends upon your C language. From MS-DOS, type
the following at the MS-DOS prompt (where filename is the name of your
program without the .C extension)

= Microsoft C

cl /AL progname clhpib.lib
m Microsoft QuickC

qcl /AL progname clhpib.lib
m Turbo C

tcc -ml progname clhpib.lib
m Borland C++

bcc -ml progname clhpib.lib

Note Each of these commands specifies the large memory mode]. If
you include the CFUNC.H file in your program, you can omit
ﬁ the memory-model option (/AL or -ml) from the command to

use the default model or specify another memory model.

For example, to compile the example program:

cl /AL program clhpib.lib

Note Turbo C thinks that the library CLHPIB.LIB is a replacement
for its run-time library, CL.LIB. Therefore, if you are compiling
i Turbo C programs from the Turbo C environment, you need to

explicitly-list CL.LIB (or appropriate file, depending on what
memory model you are using) in your .PRJ files so that both
are linked into your program.

If you are compiling Turbo C huge model programs with greater than 64K
of static data, be sure to use the library named TCHHPIB.LIB instead

of CLHPIB.LIB. This file is located in the directory you specified during
installation.

6-14 C Programming

Compiling in the Integrated Environment

You can compile and run a program from the QuickC or Turbo C integrated
environment by selecting those choices from the menus. However, you must
previously specify CLHPIB.LIB as a required library file from the menu.

Note If you’re using QuickC 1.0, you can’t create executable files
on disk from the integrated environment because it ignores
the Command Library, but you can create them in memory.

However, you can create executable files on disk using the
Command Library program or the command-line compiler.

Running the C Program

When you are ready to run the program, connect the SIGNAL output of the
source to the VOLTS input of the DVM. (Include a 50-ohm load in this line
to ensure proper readings.) Use HP-IB cables to connect the instruments to
your computer. The result of the compilation and linking procedures is an
executable program file called PROGRAM.EXE, which is saved in the current
directory. When you are ready to run it, type

program

Watch the display on the function generator. You will see the various functions
(sine wave, AC volts, sweep time) displayed as they are programmed. The
voltmeter displays its operation as well-—you can watch it take readings,

store them, and output them to the readings array. As the program ends, it
displays the readings on your screen.

Using Microsoft FORTRAN With the C Library

Microsoft languages can generally call the Microsoft C versions of functions in
the HP-IB Command Library by following the mixed language programming
guide included with language. For example, the documentation for Microsoft
FORTRAN includes a section titled “FORTRAN Calls to C”.

Here is an example using Microsoft FORTRAN version 4.1. It was compiled
and linked with the command line FL HPIB.FOR CLHPIB.LIB, which compiles
the source file HPIB.FOR and links it with the standard FORTRAN library
and the library CLHPIB.LIB.

C Programming 6-15

HPIB.FOR 82335A FORTRAN Example Program
Declare HP-IB functions the program will use

Note that IORESET is a function returning a 2-byte integer,
and has one 4-byte integer parameter, ISC.

oo

INTERFACE TO INTEGER*2 FUNCTION IORESET
+ [C,ALIAS:’ _IORESET’] (ISC)
INTEGER*4 ISC

END

Q

Note that the timeout value, N, is an 8-byte real.

INTERFACE TO INTEGER*2 FUNCTION IOTIMEOUT
+ [C,ALIAS:’> _IOTIMEOUT’] (ISC, N)
INTEGER*4 ISC

REAL*8 N

END

C Note that parameters that are pointers to data are declared
FAR and REFERENCE

Q

INTERFACE TO INTEGER*2 FUNCTION IOENTERS
+ [C,ALIAS:’_IOENTERS’] (ISC, S, L)
INTEGER*4 ISC

CHARACTER*20 S [FAR, REFERENCE]
INTEGER*2 L [FAR, REFERENCE]

END

INTERFACE TO INTEGER*2 FUNCTION IOOUTPUTS
+ [C,ALIAS:’_IOOUTPUTS’] (IScC, S, L)
INTEGER*4 ISC

CHARACTER*20 S [FAR, REFERENCE]

6-16 C Programming

Q QOO0

Q

Q

INTEGER*2 L
END

MAIN START

INTEGER*2 IORESET
INTEGER*2 IOTIMEOUT
INTEGER*2 IOENTERS
INTEGER*2 I0QUTPUTS

INTEGER*4 ISC
INTEGER*4 DEV_ADDR
INTEGER*2 ERRNO
CHARACTER*20 STR
INTEGER*2 LENGTH

ISC = 7

DEV_ADDR = 702

STR = ’HELLO WORLD’
CALL IORESET(7)

ERRNO = IORESET(ISC)
IF (ERRNO .GT. 0) GOTO 100

CALL IOTIMEOUT(7, 5.0)

ERRNO = IOTIMEOUT(ISC, 5.0)
IF (ERRNO .GT. 0) GOTO 100

CALL IOENTERS(702, STR, 10)

LENGTH = 10

FORTRAN requires functions to be declared here as well.

C Programming 6-17

ERRNO = IOENTERS(DEV_ADDR, STR, LENGTH)
IF (ERRNO .GT. 0) GOTO 100

(9]

CALL IOOUTPUTS(702, ’HELLO WORLD’, 11)
LENGTH = 11

ERRNO = IOOUTPUTS(DEV_ADDR, STR, LENGTH)
IF (ERRNO .GT. O) GOTO 100

GOTO 200

100 CONTINUE
WRITE (*,*) *HP-IB ERROR’, ERRNO

200 CONTINUE

END

6-18 C Programming

C Error Handling

General information about Command Library errors and how to process errors
are contained in “Processing I/O Errors” in chapter 1 and in appendix A,
“Error Descriptions.”

It’s good practice to check for errors after each Command Library call. If you
don’t need to write a special error-processing routine for your program, you can
use the error_handler routine provided in EXAMPLE.C, or you can write one
like the following:

checkerror (error, routine)

int error;
char *routine;
char ch;

if (error '= NOERR)

{ printf (“"\n Error %d %s \n", error, errstr(error));
printf (" in call to HP-IB function %s \n\n", routine);
printf ("Press Enter to continue: ");
scanf ("Yc", &ch);

}

}

This example uses “errstr”, a function contained in CHPIB.H that returns an
error message string corresponding to the error value.

The parameter routine in CHECKERROR gives you an indication of which
Library command produced the error.

NOERR is one of the mnemonic constants established in the file CHPIB.H that
correspond to the possible Command Library errors—other error mnemonics
are listed under “Command Library Errors” in chapter 1.

Checkerror might then be used in your program as follows:
error = IOENTER (709L, &reading);
checkerror (error, "IOENTER");

C Programming 6-19

Command Library Parameters

This section presents information about Command Library parameters as they
are used with the C language.

Passing Parameters

In C, all single-valued function parameters are passed by value. With pass by
value, a copy of the parameter is made for use by the called routine, and the
original data is unchanged. If the parameter only provides information to a
function, you may specify a variable (such as isc), a literal (such as 709), or an
expression (such as isc * 100 + 9) as the parameter in the function call.

Array and structure variables are passed by far reference. When such a
multicomponent variable appears in a parameter list, the address of its first
element is used. Any changes made to the data structure in a called function
are reflected back in the calling function.

When single-value data must be communicated back from a called function
(such as the reading value of an IOENTER), pass by value can be overridden.
This is done by adding the “address of” operator (&) to the front of the
variable name in the parameter list.

Parameters passed by reference are indicated by _REF attached to their
designators in the syntax reference. This applies to arrays and structures as
well as scalar values with the prefix operator “&”.

Parameter Types

Several types of variables are used to describe parameters to Library command
calls in chapter 7, “Pascal and C Reference.”

Integer Expression

An integer expression is any valid combination of integers, integer variables,
integer functions, and integer operators that evaluate to a single (two-byte)
integer value. The range of integers is limited to whole numbers from —32,768
to 32,767. Integers are used to specify flags and other discrete information. For
example (assuming the declaration int numval;)

6-20 C Programming

32
numval
numval%3

Long-Integer Expression

A long-integer expression is similar to an integer expression, except the range
of valid values is —2,147,483,648 through 2,147,483,647 (it evaluates to a
four-byte value). Integer expressions and long-integer expressions are not
compatible in parameter lists. Long-integer expressions are used to specify
select codes and device addresses, including extended addresses. For example
(assuming the declaration long isc;)

701L CO.r71pL:j.’ter
isc
isc * 100 + 9

Museum

Integer Variable

An integer variable is a variable declared to be of type INT (two bytes) that is
to be passed by reference (such as by using the “address of” operator “&”).
You may not use a long-integer variable when an integer variable is specified,
nor may you use a constant, literal, or expression. Integer variables are used for
returning meaningful integer values, such as with [OGETTERM or IOSPOLL.

Float Expression

A float expression is any valid combination of real numbers, real variables, real
functions, and real number operators that evaluates to a single real value. Only
four-byte real numbers are allowed, limiting the range of real numbers from
approximately 2 x 10738 to 2 x 1038 (negative or positive) and the precision
to seven digits. Long float and double variables are not compatible with float
expressions. Float expressions are used to specify numeric data. For example
(assuming the declaration float data_value, pi, r;)

1.23
data_value
2.0 * pi *xr

C Programming 6-21

Float Variable

A float variable is a variable of type FLOAT (four bytes) that is to be passed
by reference, using the “address of” operator “&”. If a float variable parameter
is indicated, you may not use constants, literals, or other expressions. Float
variables are used to return numeric data from input transfers.

Double Expression

A double expression is any valid combination of real numbers, real variables,
real functions, and real number operators that evaluates to a single real value.
Only eight-byte real numbers are allowed, giving a range of real numbers
from approximately 2 x 1073% to 2 x 103%® (negative or positive). Float
variables are not compatible with double expressions. Double expressions are
used to specify numeric data for [OOUTPUT and IOTIMEOUT. For example
(assuming the declaration double timeout;)

timeout
60.0 * timeout

Float Array

A float array is an array of FLOAT values. Although the theoretical size limit
for arrays is 32,767 elements, the actual limit may be smaller, depending

on which memory model you are using. For further details, see your C
manual. Be careful not to violate memory restrictions when you use very

large arrays. Declared globally, they can result in link time errors. Declared
within subroutines, they may compile and link without error, but cause system
problems such as stack overflow during execution. Large arrays should be
declared outside of functions to save stack space.

String Variable

A string variable is a variable declared to hold multiple characters. It can be
either a pointer to a character or a character array. Use caution when using
very large strings because linkage or stack problems may occur. Literals (such
as "My String") may not be used. For example

char *info;
char inbytes([10]

6-22 C Programming

String Expression

A string expression may be a string variable or a literal string such as
"My String".

Character Expression

A character expression is any single CHAR variable, constant, expression,
literal, or character function that represents a single ASCII character.
Any Type of Array

Any type of array can be a float array, an integer array, a double array, a
string, or other type of array. It indicates the place to start reading or storing
data.

Example Programs

Oscilloscope Example

The following program is written in Turbo C. The program uses two devices:
an HP 54601A digitizing oscilloscope (or compatible scope) and a printer
capable of printing HP Raster Graphics Standard, such as a ThinkJet printer.

The program tells the scope to take a reading on channel 1 and send the data
back to this program. Then it prints some simple statistics about the data.
The program then tells the scope to send the data directly to the printer,
illustrating how the controller does not have to be directly involved in an
HP-IB transaction. Things to note about this program:

m Note the use of the IOENTERAB command. This command will read an
arbitrary block of data as defined in IEEE-488.2. IOENTERAB can read
either definite length or indefinite length arbitrary block data.

a If your instrument sends data in some other block data format, you can
use the IOENTERB and IOOUTPUTB commands in conjunction with
IOENTERS and IOOUTPUTS, respectively, to simulate these other formats.

C Programming 6-23

m You should probably disable character matching before executing an
IOENTERB or IOENTERAB because the character in the “match” string is
generally a valid binary value, rather than a termination character.

m The commands that are sent to the scope are device dependent and are
found in the manual for the scope.

m The error checking in the program consists of checking the return value
of each Command Library function after it is called. In this program, a
procedure (error_handle) has been set up to check this value automatically.

The program has three main parts to it:
1. Read the data from the scope (get_data procedure).
2. Print some statistics about the data (massage_data procedure).

3. Have the scope send the data to a printer (print_data procedure).

/*
This program tells the scope to take a reading on channel 1, then
sends the data back to this program. We can do anything we want
to the data at this time, and we choose to print some simple
statistics about the data. The program then tells the scope to send
the data directly to the printer, illustrating how the controller
doesn’t have to be directly involved in an HP-IB transaction.

*/

#include <stdio.h> /* used for printf () */
#include <stdlib.h> /* used for exit () */
#include "CHPIB.H" /* HPIB library constant declarations */
#include "CFUNC.H" /+# HPIB library function prototypes */

/* function prototypes */

void error_handle (int, char *) ;
void initialize (void) ;

void get_data (void) ;

void massage_data (void) ;

void print_data (void) ;

void cleanup (void) ;

void sendcmd (char *) ;

/* global data */

6-24 C Programming

long isc ;

long scope ;
char cmd [50] ;
float pre [10] ;

int reason ;
int status ;
int length ;
int bytes ;
int readings [5000] ;

void main ()

{
initialize () ;
get_data () ;
massage_data () ;
print_data () ;
cleanup () ;
}
void initialize ()
{
isc = 7L ;
scope = isc * 100L + 7L ;
/* initialize the hpib interface and scope
*/
error_handle (IORESET (isc), "IORESET")
error_handle (IOTIMEOUT (isc, 5.0), "IOTIMEOUT")
error_handle (IOCLEAR (scope), "IOCLEAR")
error_handle (IOLLOCKOUT (isc), "IOLLOCKOUT") ;
}

void get_data ()
{
/* setup scope to accept waveform data
*/
sendemd ("*RST")
sendcmd (":autoscale") ;

/* setup up the waveform source

*/

C Programming 6-25

sendcmd (":waveform:format word") ;

/* input waveform preamble to controller
*/

sendemd (":digitize channell")

sendemd (":waveform:preamble?") ;

length = 10 ;
error_handle (IOENTERA (scope, pre, &length), "IOENTERA") ;

/* turn off ’1f’ enter terminator and turn on EOI
* This is required, as ’'1f’ is a valid binary value.
*/
error_handle (IOMATCH (isc, ’\n’, 1), "IOMATCH")
error_handle (IOEOI (isc, 1), "IOEOI #1") ;

/* command scope to send data
*/

sendcmd (":waveform:data?") ;

/* enter the data
*/
bytes = 8000 ;
error_handle (IOENTERAB (scope, readings, &bytes, 2), "IOENTERAB") ;

/* use IOGETTERM to see if all points were entered
*/
error_handle (IOGETTERM (isc, &reason), "IOGETTERM") ;
if ((reason & 1) == 0)
{
printf ("Not all points received\n") ;

}

/* Read the last byte from the scope. This must always be done
after an IOENTERAB command. If the character read is a

’1f’, then the device is done sending data. If the character
read is a ’;’ or a ’,’, then the device is waiting to send
another block of data.

Note also that we can use the select code instead of the device
address for the first parameter of this command. This is because

LR TR SRR BN B

6-26 C Programming

}

* the scope is still addressed to talk, and the computer to listen
* from the IOENTERAB command.

*/

length = 1 ;

error_handle (IOENTERS (isc, cmd, &Zlength), "IOENTERS") ;
if (cmd [0] !'= ’\n?’)

{

printf (“scope wants to send more data...\n") ;

}

void massage_data ()

{

}

float vdiv ;

float
float
float

vdiv
off
sdiv
delay

off ;
sdiv ;

delay ;

"

0

32 * pre [7] ;

(128 - pre [9]) * pre [7] + pre [8] ;

pre [2] * pre [4] / 10 ;
(pre [2] / 2 - pre [6]1) * pre [4] + pre [5] ;

/* retrieve the scope’s ID string

*/

sendcmd ("*IDN?") ;
length = 49 ;
error_handle (IOENTERS (scope, cmd, &length), "IOENTERS") ;

/* print the statistics about the data

*/
printf
printf
printf
printf

("\nOscilloscope ID:
—————————— Current settings

(ll
(u
(n

printf ("

printf

(u

Volts/Div
Offset
S/Div
Delay

void print_data ()

{

%s\n", cmd) ;
%f V\n", vdiv) ;
%f VAn", off) ;
%f S\n", sdiv) ;
%f S\n", delay) ;

C Programming 6-27

/% tell the scope to SRQ on ’operation complete’
*/
sendcmd (“*SRE 32 ; *ESE 1") ;

/* tell the scope to print
*/
sendcmd (":print? ; *0PC")

/* tell scope to talk and printer to listen

the listen command is formed by adding 32 to the device address
* of the device to be a listener

the talk command is formed by adding 64 to the device address

* of the device to be a talker

*/

cmd[0] = 63 ; /* 63 is unlisten */
cmd[1] = 32+1 ; /# printer is at address 1, make it a listener */
cmd[2] = 64+7 ; /* scope is at address 7, make it a talker */
cmd[3] = ’\0’; /* terminate the string x/

length = strlen (cmd) ;
error_handle (IOSEND (isc, cmd, length), "IOSEND") ;

/* now, the ATN line must be set to FALSE.
*/
error_handle (IOCONTROL (isc, 8, 0), "IOCONTROL") ;

/* wait for SRQ before continuing program

*/

status = 0 ;

while (status == 0)

{
while (status == 0)
{

error_handle (IOSTATUS (isc, 1, &status), "IOSTATUS") ;

}

/* make sure it was the scope requesting service
*/

error_handle (IOSPOLL (scope, &status), "IDSPOLL™)

status &= 64 ;

6-28 C Programming

/* clear the status byte so the scope can assert SRQ again
* if needed.

*/

sendcmd ("*CLS")

}
void cleanup ()
{
/* give local control back to the scope
*/
error_handle (IOLOCAL (scope), "IOLOCAL") ;
¥

void error_handle (int error, char *routine)

{
if (error != NOERR)
{
printf ("HPIB error in call to %s: %d, %s\n",
routine, error, errstr (error)) ;
exit (1) ;
}
return ;
}

void sendcmd (char *cmd)

{
error_handle (IODUTPUTS (scope, cmd, strlen (cmd)), "IOOUTPUTS") ;
}

Multimeter Example

/*

* This example uses the HP 344014 Multimeter as the primary device.
* We will also use the HP 33254 Function Generator as a source for
* the multimeter.

C Programming 6-29

L R BEE JER IR R B N

*
~

#include <string.h> /#* used for
#include <graph.h> /#* used for
#include <stdio.h> /#* used for
#include <stdlib.h> /# used for
#include <conio.h> /* used for
#include "CHPIB.H" /#* HPIB cmd
#include "CFUNC.H" /* HPIB cmd

service.
used to make these checks.
presses a key on the PC keyboard.

#define NUM_POINTS 128

/* function prototypes */

void
void
void
void
void
void

initialize (void) ;
setup (void) ;
do_srq (void) ;
get_data (void) ;
poll_device (long) ;
cleanup (void) ;

int check_srq (void) ;

void error_handle (int, char *) ;

/* global data */

long
long
long
long
long
char
int
float

isc ;

dvm ;

source ;

device_addr_1 ;
device_addr_2 ;

cmd [200] ;

length ;

readings [NUM_POINTS] ;

void main ()

6-30 C Programming

This example sets up the meter to take 128 readings, reads the data
into an array, then plots the data on the screen. In effect, it
turns the multimeter into a simple oscilloscope. This program is
also checking other devices that are on the bus to see if they need
The SRQ line along with parallel and serial polling is
The program will continue until the user

strcpy() and strcat() */
graphics routines */

printf() */

exit() */

kbhit() */

library constant declarations */
library function prototypes */

initialize () ;

setup () ;
while (!kbhit ())
{
/* program can do other work here
*/
if (check_srq ())
{
do_srq () ;
}
get_data () ;

}

cleanup () ;

}

void initialize ()

{
isc = 7L ;
dvm = isc * 100L + 22L ;
source = isc * 100L + 12L ;
device_addr_1 = isc * 100L + 20L ;
device_addr_2 = isc * 100L + 7L ;

/* initialize the hpib interface and clear devices
*/
error_handle (IORESET (isc), "IORESET")
error_handle (IOTIMEOUT (isc, 5.0), “IOTIMEQUT")
error_handle (IOCLEAR (source), "IOCLEAR #1") ;
error_handle (IOCLEAR (dvm), "IOCLEAR #2")
error_handle (IOFASTOUT (isc, 1), "IOFASTOUT')
error_handle (IOEOL (isc, "', 0), "IOEOL") ;

/* we will now configure all devices that can respond to a parallel
* poll this example assumes devices at addresses 20 and 7 can
* respond to a parallel poll. see operators manual of individual
* devices to see if they can respond to a parallel poll.

*/

/* configure the device at address 20 for a parallel poll
*/

C Programming 6-31

error_handle (IOPPOLLC (device_addr_1, 0x08), "“IOPPOLLC #1") ;

/* configure the device at address 7 for a parallel poll
*/
error_handle (IOPPOLLC (device_addr_2, 0x09), "IOPPOLLC #2")

/* configure any other devices that can respond to parallel poll here

*/

/* set the video mode
*/
_setvideomode (_HRESBW) ;

}
void setup ()
{
/* let’s use dma to send the strings to program the devices
*/
error_handle (IODMA (isc, 40, 3), “IODMA #i“) ;
/* program the function generator
*/
strepy (cmd, "“RF1 FR30OHZ FU1 STiKH SP10OKH MFiKH AM1iVR TISSE") ;
length = strlen (cmd) ;
error_handle (IOOUTPUTS (source, cmd, length), "IQOOUTPUTS #1") ;
/* program the dvm
*/
strcpy (cmd, ":CONF:VOLT:DC 30,.1 ;™) ;
strcat (cmd, ":ZERO:AUTO OFF ;") ;
strcat (cmd, ":TRIG:DELAY MIN ;") ;
strcat (cmd, ":DISP:STATE OFF ;") ;
length = strlen (cmd) ;
error_handle (IOOUTPUTS (dvm, cmd, length), "IOOUTPUTS #2')
/* turn dma off again
*/
error_handle (IODMA (isc, O, 3), "IODMA #2") ;
}

6-32 C Programming

void do_srq ()
{

int response ;

/* conduct a parallel poll
* note that the source doesn’t respond to parallel poll’s, so
* we need to serial poll that device separately.
*/
error_handle (IOPPOLL (isc, &response), "IOPPOLL #1") ;
if ((response & 1) != 0)
poll_device (device_addr_1) ;

if ((response & 2) != 0)
poll_device (device_addr_2) ;

/* check all devices that were configured to respond to
* parallel poll
*/

/* check any other devices on the bus here that weren’t

* configured to respond to parallel poll by performing
* a serial peoll on each one.

*/

error_handle (IOSPOLL (source, &response), "IOSPOLL #2") ;

/* see if we’ve cleared the srq yet
*/
error_handle (IOSTATUS (isc, 1, &response), "IOSTATUS #3") ;
if (response == 1)
{
printf ("SRQ locked high\n") ;
cleanup () ;
exit (1) ;

}
void get_data ()
{
int i
float ymin, ymax ;

C Programming 6-33

long xaxis, yaxis ;
char buffer [80] ;

/* Ask the DVM to send us the data

*/

sprintf (cmd, ":SAMPLE:COUNT %d ;', NUM_POINTS) ;

strcat (cmd, ":READ?") ;

length = strlen (cmd) ;

error_handle (IOOUTPUTS (dvm, cmd, length), "IOOUTPUTS #2") ;

/* Read in the data
*/
length = NUM_POINTS ;
error_handle (IOENTERA (dvm, readings, &length), "IOENTERA")

/* graph the data
*/

/* set mode, clear screen, and draw a border around the screen
*/

_clearscreen (_GCLEARSCREEN) ;

_moveto (0,0) ;

_lineto (639,0) ;

_lineto (639,199) ;

_lineto (0,199) ;

_lineto (0,0) ;

/* find the minimum and maximum values in the data
*/

ymin = readings [0] ;

ymax = readings [0] ;

for (i=0 ; i < length ; i++)

{
if (readings [i] < ymin) ymin = readings [i] ;
it (readings [il > ymax) ymax = readings [i] ;

}

/* print some labels
*/
_settextposition (2,2) ;

6-34 C Programming

sprintf (buffer, "MAX = %f", ymax) ;
_outtext (buffer) ;

_settextposition (24,2) ;
sprintf (buffer, "MIN = %f", ymin) ;
_outtext (buffer) ;

/* scale the min and max values to give extra space on top & bottom
* of screen
*/
if (ymin > 0.0)
ymin = ymin * 0.6 ;
else
ymin = ymin * 1.4 ;

if (ymax > 0)

ymax = ymax * 1.4 ;
else

ymax = ymax * 0.6 ;

/* plot the data

*/

_moveto (0, (short) (200 - (readings [0] - ymin) * 200 / (ymax - ymin))) ;
for (i=0 ; i < length ; i++)

{
xaxis = (long)i*640L/ ((long)length-iL) ;
yaxis = 200.0 - (readings [i] - ymin) * 200.0 / (ymax - ymin) ;
_lineto ((short) xaxis, (short) yaxis) ;

}

1

void poll_device (long device_addr)
{

int response ;

/* do a serial poll of the device

*/

error_handle (IOSPOLL (device_addr, &response), "IOSPOLL #3") ;

/* should check RESPONSE here to see if any action needs to be taken.
* the values that RESPONSE can take are device dependen

C Programming 6-35

x/

}
void cleanup ()
{
/* clear the dvm so we can send the commands to reset it
*/
10CLEAR (dvm), "IOCLEAR#4" ;
/* reset the dvm
*/
strcpy (cmd, ":DISP:STATE ON ;") ;
strcat (cmd, "#RST") ;
length = strlen (cmd) ;
IOOUTPUTS (dvm, cmd, length), "IOOUTPUTS#5" ;
/* unconfigure the parallel poll
*/
IOPPOLLU (isc), "IOPPOLLU" ;
/* set video mode back to normal
*/
_setvideomode (_DEFAULTMODE) ;
}
int check_srq ()
{
int response ;
error_handle (IOSTATUS (isc, 1, &response), "IOSTATUS #1") ;
return response ;
}

void error_handle (int error, char *routine)
{
if (error '= NOERR)
{
/* we have an error, so let’s abort all activity on the HPIB bus
*/
error_handle (IOABORT (isc), "IOABORT") ;

6-36 C Programming

cleanup () ;
printf ("HPIB error in call to ¥%s: %d, %s\n",
routine, error, errstr (error)) ;
exit (1) ;
}

return ;

C Programming 6-37

Pascal and C Reference

7

This chapter presents a detailed Command Library syntax reference for Pascal

and C languages.

Parameters for Library commands are separated into several groups according
to the types of arguments you must provide. The following table summarizes
these groups. See “Command Library Parameters” in chapters 5 and 6 for

more detail about parameter types for Pascal and C.

Parameter Type

Pascal

C

Select Codes and
Addresses

Flags and
Discrete Information*

Numeric Data (Single)*

Numeric Data (Array)*
Binary Data (Array)*

String Data*

Character Data

Long/four-byte integer
expression

Integer variable or
expression

Real variable or expression

Real array
Any type of array

String variable

Character

Long-integer expression

Integer variable or
expression

Float variable (for
IOENTER)—double
variable or expression (for
IOOUTPUT and
IOTIMEOUT)

Float array
Any type of array

String variable or
expression

Character expression

* Tor parameters marked _REF, a variable or array must be passed by reference.

Pascal and C Reference 7-1

You can use literals and expressions for simple parameters that provide
information to the command—but not for parameters that return information.

Parameters that must be passed by reference are indicated by _REF attached
to their designators in this chapter. For C, all array variables must be passed
by far reference.

Throughout this chapter, HP-IB terms are listed by abbreviation rather than
by name. For example, “Go To Local” is listed as “GTL.” A complete list of
HP-IB abbreviations is included in appendix B, “Summary of HP-IB.”

7-2 Pascal and C Reference

IOABORT

IOABORT

This command aborts all activity on the interface. IOABORT will ab
as much as it can depending upon its current system controller and active
controller status.

Syntax
IDABORT (select_code)

select_code specifies the interface select code.

oomputer
,;ém useum

Examples
For Pascal:
error : INTEGER ;
error := IDABORT(7) (* for Microsoft Pascal %)
if error <> NOERR then writeln(‘an error occurred...’);
For C:
int error ;

error = IDABORT(7L)
if (error '= NOERR) printf ("an error occurred...\n");

Bus Activity
If the HP 82335 is system controller:

m [FC is pulsed at least 100 microseconds.
B REN is set.
m ATN is cleared.

If the HP 82335 is active, but not system controller:
m UNT is sent.
If the HP 82335 is neither active nor system controller:

m No bus activity.

Pascal and C Reference 7-3

IOABORT

Comments
Devices in Local Lockout will remain locked out.
Possible errors are NOERR and ESEL.

If the HP 82335 was the system, but not active controller, IOABORT will make
the HP 82335 both system and active controller.

7-4 Pascal and C Reference

IOCLEAR

IOCLEAR

This command returns a device to a known, device-dependent state. It can be
addressed to the interface or to a specific device.

Syntax

IOCLEAR (device_address)
IOCLEAR (select_code)

device_address specifies the address of a device to be cleared.

select_code specifies the select code of the interface on which all devices are
to be cleared.

Examples
For Pascal:

VAR
err : INTEGER;

err := IOCLEAR (723); {Clear the device at address 23.}

err := IOCLEAR (7); {Clear all devices on the interface.}
For C:

int error;

error = IOCLEAR(723L); /*#Clear the device at address 23.%/

error = IOCLEAR(7L); /*Clear all devices on the interface.*/

Pascal and C Reference 7-5

IOCLEAR

Bus Activity
If a device address is specified:

a ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m SDC is sent.

If a select code is specified:

m ATN is set.
m DCL is sent.

Comments
Possible errors are NOERR, ETIME, ECTRL, and ESEL.

7-6 Pascal and C Reference

IOCONTROL

IOCONTROL

This command directly sets status conditions in the interface. It can be used to
address or unaddress the interface as a talker or listener, or set the interface’s
bus address. JOCONTROL can also change system controller status of the

HP 82335 interface.

Note JOCONTROL should be used with caution since it operates
w directly on the interface.

Syntax

IOCONTROL (select_code, condition, status)

select_code specifies the interface select code.

condition specifies the status condition that is to be set. Conditions

which can be set are:

Value Description

3 Make the interface the non-system or system
controller.

5 Address or unaddress the interface as talker.

6 Address or unaddress the interface as listener.

7 Set the interface’s bus address.

8 Clear or set ATN.

status variable into which the condition’s status is placed. It can have
the following values:

Condition 3

Value Meaning

0 [Make interface non-system controller

1 | Make interface system controller

Pascal and C Reference 7-7

IOCONTROL

Conditions 5 and 6

Value Meaning

0 |Clear this condition

1 | Set specified condition

Condition 7

Value Meaning

0 to 30 | Bus address of interface

Condition 8
Value Meaning
0 ([Clear ATN

1 |[Set ATN asynchronously
2 1Set ATN synchronously
Other [ERANGE error

Examples
For Pascal:

VAR
err : INTEGER;

err := IDCONTROL (7,5,1); {Address the interface as talker.}
For C:

int error;

error = IOCONTROL(7L,5,1); /*Address interface as talker.*/

7-8 Pascal and C Reference

IOCONTROL

Bus Activity

None.

Comments
Possible errors are NOERR, ESEL, ECTRL, ETIME, and ERANGE.

The added functionality for changing system controller status of the

HP 82335 is included for completeness in the Command Library. We
strongly recommend, however, that you do not use this command unless it is
absolutely necessary. The recommended method of using the interface as a
non-system controller is to use the MS-DOS command IOSYSCTL in your
AUTOEXEC.BAT file.

For condition 8, you can set ATN either synchronously or asynchronously.
Typically, you will set ATN asynchronously. If so, data may get lost if a data
transfer is occurring that does not involve the HP 82335. For example, if a
scope is talking to a printer and ATN is set asynchronously, some data may
have been lost. If you want to avoid this situation, use status 2 to set ATN
synchronously.

Refer to the Comments section of the IOPASSCTIL command for important
information about using and (Ctrl}(Break).

Pascal and C Reference 7-9

IODMA

This command sets up DMA control. Using DMA may decrease the time
required to transfer longer sequences of data using IOENTERAB, IOENTERB,
IOENTERS, IOOUTPUTAB, IOOUTPUTB, and IOOUTPUTS.

Syntax

IODMA (select_code, value, channel)

select_code specifies the interface on which DMA is to be enabled or
disabled.

value specifies one of the following:
Value Action Taken
zero Disables DMA. This is the default value.

positive value Transfer size. Determines when a DMA read
or write is executed. For example, if value =
100, then DMA will be used when 100 or more
bytes are to be read or written.

negative value Illegal. Will return an error.

channel indicates which channel to use for DMA. If the channel is other
than 2 or 3, an error is returned.

Examples
For Pascal:

VAR
err : INTEGER;

err := IODMA (7,1000,3); {Enable DMA for string transfers of
1000 characters or more.}

7-10 Pascal and C Reference

IODMA
For C:

int error;

error = IODMA(7L,1000,3); /*Enable DMA for input or output
of 1000 or more characters.*/

Bus Activity

None.

Comments

DMA channel 3 is the recommended channel. This is least likely to conflict
with established usage.

If character matching is enabled at the time IOENTERAB, IOENTERB, or
IOENTERS using DMA is attempted, the error EUNKNOWN will be returned
for that command and no data will be transferred.

If byte swapping is specified in IOENTERAB, IOENTERB, IOOUTPUTAB,
or IOOUTPUTB using DMA (swapsize is greater than 1), the error
EUNKNOWN will be returned for that command and no data will be
transferred.

Possible errors are NOERR, ESEL, and ERANGE.

Pascal and C Reference 7-11

IOENTER

This command reads a single real number. Reading continues until one of these
events occurs:

m The EOI line is sensed true, if it is enabled.
m A linefeed is encountered after the number starts.

” W_”

Numeric characters are the digits 0 through 9, “E”, “e”, “4”, ,and “.” in
the proper sequence for representing a number. Note that “ ” (space) is not a
numeric character.

Syntax

IOENTER (device_address,data_REF)
IOENTER (select_code,data_REF)

device_address specifies a device address.
select_code specifies the interface select code.

data_REF variable into which the reading is placed.

Examples
For Pascal:

VAR
reading : REAL;
err : INTEGER;

err := IOENTER (722,reading); {Input a number from device
722 and place it in READING.}

For C:
float reading;
int error;

error = IOENTER(722L,&reading); /*Input a number from
device 722.%/

7-12 Pascal and C Reference

IOENTER

Bus Activity
If a device address is specified:

w ATN is set.

w UNL is sent.

w MLA is sent.

w TAD is sent.

m OSA is sent if specified.
s ATN is cleared.

s Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Comments

If a select code is to be specified in the command, the interface must first be
addressed to listen (with IOSEND, for example) or an error occurs.

The approximate range of valid values is 1072® to 1038, The IEEE 754
standard for floating point numbers makes provisions for values less than
10738, however the internal number conversion may not properly handle
values less than 1078 when entered via HP-IB or used in assignment or print
statements.

Possible errors are NOERR, ETIME, ESEL, EADDR, ECTRL, and ENUM.

Pascal and C Reference 7-13

IOENTERA

This command enters numbers from a device or the interface and places them
into a real array. Reading continues until one of these events occurs:

m The EOI line is sensed true, if it is enabled.
m A linefeed is encountered after the specified number of elements is received.

Numeric characters are the digits 0 through 9, “E”, “e”, “4”, “=” and “.” in

the proper sequence for representing a number. Note that “ ” (space) is not a
numeric character.

Syntax

I0ENTERA (device_address, readings_REF, elements_ REF)
I0ENTERA (select_code, readings_REF, elements_ REF)

device_address specifies a device address.
select_code specifies the interface select code.
readings_REF array into which the readings are placed.

elements_REF variable that specifies the maximum number of elements to
be read. (An error occurs if the number is less than 0.) Upon
return it indicates the number of elements actually received.

7-14 Pascal and C Reference

IOENTERA

Examples
For Pascal:

TYPE
REALARRAY = SUPER ARRAY([1..x] of REAL; {From IODECL.EX}
{For Turbo Pascal,
real50 = ARRAY[1..50] of REAL;}
VAR
readings : REALARRAY(50); {For Turbo Pascal,
readings : real50;}
elements : INTEGER;
err : INTEGER;

elements := 50;
err := IOENTERA (723,readings,elements); {Read a maximum of
50 values from device 723 and put them in READINGS.}

For C:
float readings[50];
int elements;
int error;

elements = 50;
error = IOENTERA(723L,readings,&elements);
/*Read a maximum of 50 values from device 723.%/

Bus Activity
If a device address is specified:

w ATN is set.

w UNL is sent.

s MLA is sent.

w TAD is sent.

m OSA is sent if specified.
m ATN is cleared.

w Data is entered.

Pascal and C Reference 7-15

IOENTERA

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Comments

If the specified maximum number of elements to read is greater than the size
of the readings array, the size of the array is used as the maximum number for
Microsoft Pascal only—for other languages, input data can overrun the array
and corrupt existing data or programs.

Nonnumeric characters that do not properly belong in a real number are
considered value separators. Thus, the sequence “1,234,567” is entered as three
numbers, not as “1234567”.

The number of readings available is dependent upon the source device.

The approximate range of valid values is 10738 to 10%8. The IEEE 754
standard for floating point numbers makes provisions for values less than
10738, however the internal number conversion may not properly handle
values less than 10738 when entered via HP-IB or used in assignment or print
statements.

If a select code is to be specified in the command, the interface must first be
addressed to listen (with IOSEND, for example) or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ENUM, ECTRL, and
ERANGE.

7-16 Pascal and C Reference

IOENTERAB

IOENTERAB

This command enters arbitrary-block program data (numeric or string data
with IEEE-488.2 coding) from a device or the interface. Reading continues
until one of these events occurs:

m The maximum number of bytes specified is received.

® A linefeed is encountered with the EOI line sensed true, if the coding
indicates indefinite length.

s The number of bytes indicated by the coding is received, if the coding
indicates definite length.

Syntax

IOENTERAB (device_address,data_ REF, bytes_ REF, swapsize)
TIOENTERAB (select_code,data_ RETF, bytes_REF, swapsize)

device_address specifies a device address.

select_code specifies the interface select code.
data_REF array into which the readings are placed.
bytes_REF variable specifying the maximum number of bytes to be read

(excluding the coding bytes). (An error occurs if the number
is less than 0.) Upon return it indicates the number of bytes
actually received (excluding the coding bytes).

swapsize specifies how bytes are placed into memory. A value of
1 indicates that bytes are placed in order. Larger values
indicate that bytes are reversed in memory in groups of this
size. The value should correspond to the byte size of the
data variable. (For example, a value of 4 specifies that each
group of four bytes is swapped in memory.) Valid values are 1
through 8—other values return an error.

Pascal and C Reference 7-17

IOENTERAB

Examples
For Pascal:

TYPE
BINDOUBLE = SUPER ARRAY[1..%*] of REALS;
{Double-precision array (8 bytes/elem) from IODECL.EX}
{For Turbo Pascal,
double50 = ARRAY[1..50] of REALS;}
VAR
val : BINDOUBLE(50); {For Turbo Pascal,
val : doubleS0;}
elements : INTEGER;
swap : INTEGER;
err : INTEGER;

swap := 8;

elements := 50 * swap;

err := IQENTERAB (723,val,elements,swap); {Read a maximum
of 50 values from device 723 and put them in VAL.}

For C:
double val[50]; /*Double-precision array (8 bytes/elem)x*/
int elements;
int swap;
int error;

swap = sizeof (double);
elements = 50 * swap;
error = IOENTERAB(723L,val,&elements,swap);
/*Read a maximum of 50 values from device 723.x%/

7-18 Pascal and C Reference

IOENTERAB

Bus Activity
If a device address is specified:

m ATN is set.

m UNL is sent.

m MLA is sent.

m TAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Comments

IEEE-488.2 coding is described under “Arbitrary-Block Data Coding” in
chapter 1. The coding bytes are not placed into data—this also applies to the
ending linefeed character for indefinite-length data. Leading characters are
ignored until a “#” character is received.

If the specified maximum number of elements to read is greater than the size of
the data array, input data can overrun the array and corrupt existing data or
programs.

For Microsoft Pascal, you can use only one array type with IOENTERAB in a
program. The IOPROC.EX file declares the type as a real array. If you want
to use another type, edit IOPROC.EX to make the appropriate declaration—
other types are included as comments in the file.

For string transfers, only the string elements receiving data are affected. The
string descriptor and other string elements remain unchanged for Pascal—no
null character is appended for C.

If DMA is active for the transfer, the swapsize parameter must be 1 and
character matching must be disabled—otherwise, an EUNKNOWN error
occurs.

The number of bytes available is dependent upon the source device.

Pascal and C Reference 7-19

IOENTERAB

If a select code is to be specified in the command, the interface must first be
addressed to listen (with IOSEND, for example) or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL, and
EUNKNOWN.

7-20 Pascal and C Reference

IOENTERB

IOENTERB

This command enters binary data (numeric or string data with no coding or
formatting) from a device or the interface. Reading continues until one of these
events occurs:

» The maximum number of bytes specified is received.
m The EOI line is sensed true, if it is enabled.

m The termination character set by IOMATCH is received with EQI true.
(Linefeed is the default character.)

Syntax

IOENTERB (device_address,data_REF, bytes_ REF, swapsize)
IOENTERB (select_code,data_REF, bytes_REF', swapsize)

device_address specifies a device address.

select_code specifies the interface select code.
data_REF array into which the readings are placed.
bytes_REF specifies the maximum number of bytes to be read. (An error

occurs if the number is less than 0.) Upon return it indicates
the number of bytes actually received.

swapsize specifies how bytes are placed into memory. A value of
1 indicates that bytes are placed in order. Larger values
indicate that bytes are reversed in memory in groups of this
size. The value should correspond to the byte size of the
data variable. (For example, a value of 4 specifies that each
group of four bytes is swapped in memory.) Valid values are 1
through 8—other values return an error.

Pascal and C Reference 7-21

IOENTERB

Examples
For Pascal:

TYPE
BINDOUBLE = SUPER ARRAY[1..%] of REALS;
{Double-precision array (8 bytes/elem) from IODECL.EX}
{For Turbo Pascal,
double50 = ARRAY[1..50] of REALS;}
VAR
val : BINDOUBLE(50); {For Turbo Pascal,
val : doubleb0;}
elements : INTEGER;
swap : INTEGER;
err : INTEGER;

swap := 8;

elements := 50 * swap;

err := IOENTERB (723,val,elements,swap); {Read a maximum
of 50 values from device 723 and put them in VAL.}

For C:
double val[50]; /*Double-precision array (8 bytes/elem)*/
int elements;
int swap;
int error;

swap = sizeof (double);
elements = 50 * swap;
error = IOENTERB(723L,val,&elements,swap);
/*Read a maximum of 50 values from device 723.%/

7-22 Pascal and C Reference

IOENTERB

Bus Activity
If a device address is specified:

m ATN is set.

m UNL is sent.

m MLA is sent.

m TAD is sent.

m OSA is sent if specified.
a ATN is cleared.

a Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Comments

If the specified maximum number of elements to read is greater than the size of
the data array, input data can overrun the array and corrupt existing data or
programs.

For Microsoft Pascal, you can use only one array type with IOENTERB in a
program. The IOPROC.EX file declares the type as a real array. If you want
to use another type, edit IOPROC.EX to make the appropriate declaration—
other types are included as comments in the file.

- All data received is stored in memory-—except a final “match” character with
EOI true if matching is enabled.

For string transfers, only the string elements receiving data are affected. The
string descriptor and other string elements remain unchanged for Pascal—no
null character is appended for C.

If DMA is active for the transfer, the swapsize parameter must be 1 and
character matching must be disabled—otherwise, an EUNKNOWN error
occurs.

The number of bytes available is dependent upon the source device.

Pascal and C Reference 7-23

|IOENTERB

If a select code is to be specified in the command, the interface must first be
addressed to listen (with IOSEND, for example) or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL, and
EUNKNOWN.

7-24 Pascal and C Reference

IOENTERF

IOENTERF

This command reads from a device and places all received data into a file.
Reading continues until one of these events occurs:

m The EOI line is sensed true, if it is enabled.

m The termination character set by IOMATCH is received (linefeed is the
default). Note: If you are transferring binary files, you should turn off
character match using IOMATCH to make sure the transfer does not end
prematurely.

m The maximum number of bytes specified is received.

m A file error occurs, usually meaning the disk is full.

Syntax Computer

. sMuseum
AT y

IOENTERF (device_address, file_name, length, append_flag)
I0ENTERF (select_code, file_name, length, append_flag)

device_address specifies a device address.

select _code specifies the interface select code.
file_name file into which the data is written.
length specifies the maximum number of elements to be read. (An

error occurs if the number is less than 0.) The actual number
of bytes read is returned here.

append_flag specifies whether to append to the file or to overwrite it. Zero
overwrites; non-zero appends.

Pascal and C Reference 7-25

IOENTERF

Examples
For Pascal:

error : INTEGER ;
length : LONGINT ; (* for Turbo Pascal *)
length : INTEGER4 ; (* for Microsoft Pascal *)

length := 10;
error := IOENTERF(723, ’'ENTERF.DAT’,length, 0)
if error <> NOERR then writeln(‘an error occurred...’);

For C:

int error;
long length;

length = 10;
error = IOENTERF(723L, "ENTERF.DAT", &length, 0)
if (error !'= NOERR) printf ("an error occurred...\n");

Bus Activity
If a device address is specified:

B ATN is set.

m UNL is sent.

m MLA is sent.

s TAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

7-26 Pascal and C Reference

IOENTERF

Comments

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL, and
EFILE.

If the file does not exist, and a valid filename is given, IOENTERF will create
the file regardless of the append flag.

We recommend turning off character matching using the IOMATCH command,
especially if you are transferring a binary file.

Note This command does not transfer files to an HP-IB disk drive,
but rather transfers bytes from the HP-IB bus to a built-in disk
d drive on your computer.

Pascal and C Reference 7-27

IOENTERS

This command enters a character string from a device or the interface. Reading
continues until one of these events occurs:

m The EOI line is sensed true, if it is enabled.

m The termination character set by IOMATCH is received (linefeed is the
default).

m The maximum number of characters specified is received.

Syntax

I0OENTERS (device_address,data_REF,length_ REF)
IDENTERS (select_code,data_ REF,length_REF)

device_address specifies a device address.
select_code specifies the interface select code.
data_REF variable into which the string read is placed.

length_REF variable specifying the maximum number of elements to be
read. (An error occurs if the number is less than 0.) On return
it indicates the number of elements actually received.

Examples
For Pascal:
VAR
info : STRING(10);
length : INTEGER;
err : INTEGER;
length := 10;

err := IOENTERS (723,info,length);
{Read a string of 10 characters maximum from device 723.}

7-28 Pascal and C Reference

IOENTERS

For C:
int error;
int length;

char infofl11]; /#10 characters plus nullx*/

length = 10;
error = IOENTERS(723L,info,&length); /*Read a string of
10 characters maximum from device 723.%/

Bus Activity
If a device address is specified:

s ATN is set.

s UNL is sent.

s MLA is sent.

m TAD is sent.

m OSA is sent if specified.
a ATN is cleared.

m Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Comments

If the specified maximum number of elements to read is greater than the
dimensioned length of the data string:

m For Pascal, the dimensioned length is used instead of the maximum number.

m For C, input data can overrun the string and corrupt existing data or
programs.

If a select code is to be specified in the command, the interface must first be
addressed to listen (with IOSEND or a previous IOENTER, for example) or an
error occurs.

Pascal and C Reference 7-29

I0OENTERS

The termination character is entered as part of the string. For C, a null
character is appended to the string.

If DMA is active for the transfer, character matching must be disabled—
otherwise, an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ENUM, ERANGE,
ECTRL, and EUNKNOWN.

7-30 Pascal and C Reference

IOEOI

I0EOI

This command enables or disables the End Or Identify (EOI) mode of the
interface. It is used to:

m Enable or disable a write operation to set the EOI line on the last byte of the
write.

m Enable or disable a read operation to terminate upon sensing the EOI line
true.

The default is EOI enabled.

Syntax

IOEO0I (select_code, state)

select_code specifies the interface select code.

state enables EOI if nonzero and disables EOI if zero.
Examples

For Pascal:

VAR
state : INTEGER;
err : INTEGER;

state := 0;
err := IOE0I(7,state); {Disable EO0I.}
For C:
int error;

error = IOEOI(7L,0); /*Disable EOI.*/

Pascal and C Reference 7-31

IOEO!

Bus Activity

None.

Comments

When reading with EOI enabled, receipt of a byte with EQI set causes the
read operation to terminate, regardless of whether you are reading a string,
a real number, or an array of real numbers. (The EOI state is ignored by

IOENTERAB.)

When writing, EOI is set on the last byte of the End Of Line sequence if EOI
is enabled. Note that if the EOL sequence is of 0 length, EOI is set on the last
data byte sent. (The EOI line is not set on the last byte for IOOUTPUTAB.)

When sending a real number array with IOOUTPUTA, the EOL sequence (and
subsequent EOI) is appended after the last element in the array, not after each
element.

Note that IOSEND does not set EOI because this line has a different meaning
in Command mode.

Possible errors are NOERR and ESEL.

7-32 Pascal and C Reference

IOEOL

IOEOL

This command defines the End of Line (EOL) string that is to be sent
following every IOOUTPUT, IOOUTPUTA, IOOUTPUTB, and IOOUTPUTS

command.

The default is carriage return and linefeed.

Syntax

I0EOL (seleci_code, endline_REF,length)

select_code

endline_REF

length

Examples
For Pascal:
VAR
length :
endline
err :

length :

endline[1]

endline[2] :
err :

specifies the interface select code.

specifies the EOL string that is to be sent following a data
transmission. A maximum of eight characters can be specified.

specifies the length of the termination string. If zero is
specified, no characters are appended to a data transmission. If
the length is less than 0 or more than 8, an error occurs.

INTEGER;

: STRING(2);

INTEGER;

2;

CHR(13);

CHR(10);

I0EOL(7,endline,length); {EOL = CR/LF.}

Pascal and C Reference 7-33

IOEOL

For C:
int length;
char endline[2];
int error;
length = 2;

endline[0] = 13;
endline[1] = 10;
error = IOEOL(7,endline,length); /#EOL = CR/LF.*/

Bus Activity

None.

Comments

With IOOUTPUTA and IOOUTPUTB, the EOL sequence is appended after
all data has been sent, not following each element.

Possible errors are NOERR, ESEL, and ERANGE.

7-34 Pascal and C Reference

IOFASTOUT

IOFASTOUT

This command enables or disables high-speed bus timing for output transfers
only.

The default is high-speed output disabled (standard speed).

Syntax

IOFASTOUT (select_code, state)

select_code specifies the interface select code.

state enables high-speed output if nonzero and disables high-speed

output if zero.

Examples
For Pascal:

VAR
state : INTEGER;
err : INTEGER;

state := 0;
err := IOFASTOUT(7,state); {Disable high~speed output.}
For C:
int error;

error = IOFASTOUT(7L,0); /#Disable high-speed output.x*/

Bus Activity

None.

Pascal and C Reference 7-35

IOFASTOUT

Comments

For proper operation, high-speed output requires the HP-IB system to meet all
of these requirements:

m All HP-IB devices must have tri-state drivers, not open-collector drivers.
(The HP-IB interface meets this requirement.)

m All HP-IB devices must be turned on.

m HP-IB cable length should be as short as possible, but not longer than 15
meters (50 feet). At least one HP-IB device should be connected for each
meter (3 feet) of cable, with a maximum of 15 devices. (The HP-IB interface
counts as one device.)

m Each HP-IB device must have a capacitance of less than 50 pF on each
HP-IB line except REN and IFC. (The HP-IB interface meets this
requirement.)

High-speed output applies only during output transfers (including DMA output
transfers)—but not between transfers and not during input transfers. The
speed of an input transfer depends upon the talker device.

High-speed output decreases the data-settling time from 2.5 microseconds to
840 nanoseconds.

Possible errors are NOERR and ESEL.

7-36 Pascal and C Reference

IOGETTERM

IOGETTERM

This command determines the reason the last read terminated.

Syntax

IOGETTERM (select_code,reason_REF)

select_code

reason_REF

Examples
For Pascal:

VAR

Yeason :
err

specifies the interface select code.

variable to receive the sum of the values for the reasons the
last read terminated. The possible reasons for termination are

Value Description

0 The read was terminated for some reason not
covered by any of the other reasons.

1 The expected number of elements was received.

2 The termination character set by IOMATCH
was encountered.

4 The EOI line was sensed true.

INTEGER;

INTEGER;

err := IOGETTERM(7,reason);
IF ((reason and 4) = 4) then
WRITELN(®EDI ENCOUNTERED®);

Pascal and C Reference 7-37

IOGETTERM

For C:
int reason;
int error;

error = IOGETTERM(7L,&reason);
if((reason & 4) == 4)
printf("EOI ENCGUNTERED\n") ;

Bus Activity

None.

Comments

Upon return, the reason integer contains the sum of the values for the reasons
for termination. For example, if the last read terminated when the termination
character was encountered and EOI was set, the value of reason would be

2+ 4=6.

Possible errors are NOERR and ESEL.

7-38 Pascal and C Reference

IOLLOCKOUT

IOLLOCKOUT

This command sends a Local Lockout (LLO) to disable a device front panel. It
is received by all devices on the interface, whether or not they are addressed to
listen.

Syntax

IOLLOCKOUT (select_code)

select_code specifies the interface select code.
Examples

For Pascal:

VAR
err : INTEGER;

err := IOLLOCKOUT (7);
For C:
int error;
error = IQLLOCKOUT(7L);

Bus Activity

a ATN is sent.
® LLO is sent.

Comments

If a device is in Local mode when LLO is received, LLO does not take effect
until the device is addressed to listen.

Possible errors are NOERR, ETIME, ECTRL, and ESEL.

Pascal and C Reference 7-39

IOLOCAL

This command executes a Go To Local (GTL) or clears the REN line to enable
a device front panel.

Syntax

IOLOCAL (device_address)
IOLOCAL (select_code)

device_address specifies a device address.

select_code specifies the interface select code.

Examples
For Pascal:
VAR
err : INTEGER;
err := IOLOCAL (722); {Place device 722 in Local mode.}
For C:

int error;

error = IOLOCAL(722L); /*Place device 722 in local mode.*/

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

u LAD is sent.

m OSA is sent if specified.
m GTL is sent.

7-40 Pascal and C Reference

IOLOCAL

If a select code is specified:

m REN is cleared.
m ATN is cleared.

Comments

If a device address is specified, the device is temporarily placed in Local
mode—it will return to Remote mode if it is later addressed to listen. If Local
Lockout is in effect, the device will return to the Lockout state if it is later
addressed to listen.

If an interface select code is specified, all instruments on the bus are placed in
Local mode and any Local Lockout is cancelled.

Possible errors are NOERR, ETIME, ECTRL, and ESEL.

Pascal and C Reference 7-41

IOMATCH

This command defines the character used by IOENTERB and IOENTERS for
termination.

The default character is linefeed.

Syntax

IOMATCH (select_code,character, flag)

select_code specifies the interface select code.

character specifies the character used by IOENTERB and IOENTERS
for termination checking.

flag indicates whether character matching should be enabled or
disabled. Zero disables matching, and any nonzero value
enables it.

Examples

For Pascal:

VAR
match : CHAR;

flag : INTEGER;
err : INTEGER;

match := CHR(10); {Terminate on linefeed.}

flag := 1;
err := IOMATCH (7,match,flag);
For C:
char match;
int flag;
int error;

match = 10; /*Terminate on linefeed.*/
flag = 1;
error = IOMATCH(7L,match,flag);

7-42 Pascal and C Reference

IOMATCH

Bus Activity

None.

Comments
Only a single match character may be specified in this command.

For IOENTERS, the match character becomes part of the entered string. For
IOENTERB, the match character must be received with EQI true, and the
character does not become part of the data.

IOMATCH does not apply to IOENTER, IOENTERA, or IOENTERAB.
Possible errors are NOERR and ESEL.

Pascal and C Reference 7-43

IOOUTPUT

This command outputs a real number to a device or to the interface. After the
number is sent, the EOL string is sent and the EOI line is set (if enabled).

Syntax

I00UTPUT (device_address, data)
I0O0UTPUT (select_code,data)

device_address specifies a device address.

select_code specifies the interface select code.
data specifies the number to be output.
Examples
For Pascal:
VAR
data : REAL;

err : INTEGER;

data := 12.3;
err := IOQUTPUT (722,data); {Output ’ 12.3’ to dev 722.}
For C:
double data;
int error;
data = 12.3;

error = I00UTPUT(722L,data); /*0utput ’> 12.3° to dev T722.%/

7-44 Pascal and C Reference

IO0UTPUT

Bus Activity
If a device address is specified:

w ATN is set.

m MTA is sent.

w UNL is sent.

w LAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is output.

m EOL is output.

If a select code is specified:

w If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent
followed by an EOL.

Comments

Numbers with absolute values between 10~° and 108 are rounded to seven
significant digits and output in floating point notation. If the number rounds
to an integer value, the decimal point is not sent. Numbers outside this range
are rounded to seven significant digits and output in scientific notation.

If the number is positive, a leading space is output for the sign; if it’s negative,
a leading “—” is output.

If a select code is to be specified, the interface must first be addressed to talk
(with IOSEND, for example), or an error occurs.

Possible errors are NOERR, ETIME, ESEL, ECTRL, and EADDR.

Pascal and C Reference 7-45

IOOUTPUTA

This command outputs an array of real numbers to a specified device or to the
bus. Values output are separated by commas. After the last number is sent,
the EOL string is sent and the EOI line is set (if enabled).

Syntax

I00UTPUTA (device_address,data_ REF, elements)
I00UTPUTA (select_code,data_REF, elements)

device_address specifies a device address.

select_code specifies the interface select code.
data_REF array containing the real numbers to be transmitted.
elements specifies the number of elements in the array to be transmitted.

(An error occurs if the number is less than 0.)

Examples
For Pascal:

TYPE
REALARRAY = SUPER ARRAY[1..%] OF REAL; {From IODECL.EX.}
{For Turbo Pascal,
reall10 = ARRAY[1..10] of REAL;}
VAR
info : REALARRAY(10); <{For Turbo Pascal,
info : realil0;}
num_elements : INTEGER;
err : INTEGER;

num_elements := 10;

err := IOOUTPUTA (722, info,num_elements);
{Output the array INFO to device 722.}

7-46 Pascal and C Reference

IOOUTPUTA

For C:
float info[10];
int num_elements;
int error;

num_elements = 10;
error = I0OOUTPUTA(722L,info,num_elements);
/*#0utput elements of ’info’ to device 722.%/

Bus Activity
If a device address is specified:

m ATN is set. :
m MTA is sent. P Computer
m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
s ATN is cleared.

m Data is output.

s EOL is output.

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent
followed by an EOL.

Comments

If the specified maximum number of elements to output is greater than the size
of the data array, the array size is used as the maximum number for Microsoft
Pascal only—for other languages, the output transfer can go beyond the array
and send meaningless data.

Numbers with absolute values between 10> and 106 are rounded to seven
significant digits and output in floating point notation. If the number rounds
to an integer value, the decimal point is not sent. Numbers outside this range
are rounded to seven significant digits and output in scientific notation.

Pascal and C Reference 7-47

IOOUTPUTA

If the number is positive, a leading space is output for the sign; if it’s negative,
a leading “—” is output.

If a select code is to be used as a parameter, the interface must first be
addressed to talk (with IOSEND, for example), or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ECTRL, and ERANGE.

7-48 Pascal and C Reference

IOOUTPUTAB

IOOUTPUTAB

This command outputs arbitrary-block response data (numeric or string data
with IEEE-488.2 coding) to a specified device or to the bus. After the last data
byte is sent, nothing additional occurs.

Syntax

I00UTPUTAB (device_address, data_ REF, bytes, swapsize)
I00UTPUTAB (select_code,data_REF, bytes, swapsize)

device_address
select_code

data_REF
bytes

swapsize

specifies a device address.
specifies the interface select code.
array containing the data to be transmitted.

specifies the number of bytes to output (excluding the coding
bytes). This value should be no more than the number of
elements in the array times the number of bytes per element.
(An error occurs if the number is less than 0.)

specifies how bytes are read from memory. A value of 1
indicates that bytes are read in order. Larger values indicate
that bytes are reversed as read from memory in groups of this
size. The value should correspond to the byte size of the data
variable. (For example, a value of 4 specifies that each group
of four bytes is swapped when output.) Valid values are 1
through 8—other values return an error.

Pascal and C Reference 7-49

IOOUTPUTAB

Examples
For Pascal:

TYPE
BINDOUBLE = SUPER ARRAY[1..%] of REALS;
{Double-precision array (8 bytes/elem) from IODECL.EX}
{For Turbo Pascal,
doublel10 = ARRAY[1..10] of REALS;}
VAR
val : BINDOUBLE(10); {For Turbo Pascal,
val : doublel0;}
num_bytes : INTEGER;
swap : INTEGER;
err : INTEGER;

swap := 8;

num_bytes := 10 * swap;

err := IOOUTPUTAB (722,info,num_elements,swap);
{Output the array INFO to device 722.}

For C:
double info[10]; /*Double-precision array (8 bytes/elem)x*/
int num_bytes;
int swap;
int error;

swap = sizeof(double);

num_bytes = 10 * swap;

error = I00UTPUTAB(722L,info,num_bytes,swap);
/*0utput elements of ’info’ to device 722.%/

7-50 Pascal and C Reference

IOOUTPUTAB

Bus Activity
If a device address is specified:

m ATN is set.

a MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is output.

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent.

Comments

IEEE-488.2 coding is described under “Arbitrary-Block Data Coding” in
chapter 1. The coding bytes are automatically computed and inserted in front
of the data.

If the specified maximum number of elements to output is greater than the
size of the data array, the output transfer can go beyond the array and send
meaningless data.

For Microsoft Pascal, you can use only one array type with [IOOUTPUTARB in
a program. The IOPROC.EX file declares the type as a real array. If you want
to use another type, edit IOPROC.EX to make the appropriate declaration—
other types are included as comments in the file.

If DMA is active for the transfer, the swapsize parameter must be 1—
otherwise, an EUNKNOWN error occurs.

If a select code is to be specified in the command, the interface must first be
addressed to talk (with IOSEND, for example) or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL, and
EUNKNOWN.

Pascal and C Reference 7-51

IOOUTPUTB

This command outputs binary data (numeric or string data with no coding or
formatting) to a specified device or to the bus. After the last number is sent,
the EOL string is sent and the EOI line is set (if enabled).

Syntax

I0DUTPUTB (device_address,data_ REF, bytes, swapsize)
I00UTPUTB (select_code, data_REF, bytes, swapsize)

device_address specifies a device address.

select_code specifies the interface select code.
data_REF array containing the data to be transmitted.
bytes specifies the number of bytes to output. This value should be

no more than the number of elements in the array times the
number of bytes per element. (An error occurs if the number
is less than 0.)

swapsize specifies how bytes are read from memory. A value of 1
indicates that bytes are read in order. Larger values indicate
that bytes are reversed as read from memory in groups of this
size. The value should correspond to the byte size of the data
variable. (For example, a value of 4 specifies that each group
of four bytes is swapped when output.) Valid values are 1
through 8—other values return an error.

7-52 Pascal and C Reference

IOOUTPUTB

Examples
For Pascal:

TYPE
BINDOUBLE = SUPER ARRAY([1..%*] of REALS;
{Double-precision array (8 bytes/elem) from IODECL.EX}
{For Turbo Pascal,
doublel0 = ARRAY([1..10] of REALS;}
VAR
val : BINDOUBLE(10); {For Turbo Pascal,
val : doublelO;}
num_bytes : INTEGER;
swap : INTEGER;
err : INTEGER;

swap := 8;

num_bytes := 10 * swap;

err := IOOUTPUTB (722,info,num_elements,swap);
{Output the array INFO to device 722.}

For C:
double info[10]; /*Double-precision array (8 bytes/elem)*/
int num_bytes;
int swap;
int error;

swap = sizeof(double);

num_bytes = 10 * swap;

error = I0OUTPUTB(722L,info,num_bytes,swap);
/*0utput elements of ’info’ to device 722.x%/

Pascal and C Reference 7-53

IOOUTPUTB

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is output.

m EOL is output.

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent
followed by an EOL.

Comments

If the specified maximum number of elements to output is greater than the
size of the data array, the output transfer can go beyond the array and send
meaningless data.

For Microsoft Pascal, you can use only one array type with IOOUTPUTB in a
program. The IOPROC.EX file declares the type as a real array. If you want
to use another type, edit [OPROC.EX to make the appropriate declaration—
other types are included as comments in the file.

If DMA is active for the transfer, the swapsize parameter must be 1—
otherwise, an EUNKNOWN error occurs.

If a select code is to be specified in the command, the interface must first be
addressed to talk (with IOSEND, for example), or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL, and
EUNKNOWN.

7-54 Pascal and C Reference

IOOUTPUTF

IOOUTPUTF

This command outputs the contents of a file to a specified device or interface.
After the file is sent, the EOL string is sent and the EOI line is set (if enabled).

Syntax

I00UTPUTF (device_address, file_name, length)
I00UTPUTF (select_code, file_name, length)

device_address specifies a device address.

select_code specifies the interface select code.
file_name specifies the name of the file to output.
length specifies the maximum number of elements to be written. (An

error occurs if the number is less than 0.)

Examples
For Pascal:

error : INTEGER ;
length : LONGINT ; (* for Turbo Pascal *)
length : INTEGER4 ; (* for Microsoft Pascal %)

length := 10 ;

error := IOOUTPUTF(723, ’OUTPUT.DAT’, length)

if error <> NOERR then writeln(‘an error occurred...’);
For C:

int error ;
long length ;

length = 10 ;
error = IOOUTPUTF(723L, "OUTPUT.DATY, &length)
if (error !'= NOERR) printf ("an error occurred...\n");

Pascal and C Reference 7-55

IOOUTPUTF

Bus Activity
If a device address is specified:

m ATN is set.

a MTA is sent.

m UNL is sent.

s LAD is sent.

m OSA is sent if specified.
a ATN is cleared.

a Data is entered.

a EOL is output.

If a select code is specified:

a If the interface is not addressed to talk, an error results.
a If the interface is addressed to talk, ATN is cleared and the data is sent
followed by the EOL string.

Comments

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL, and
EFILE.

If you are transferring a binary file, we recommend that you turn off the EOL
string using the IOEOL command. If you do not, the current EOL string will
be appended to the file.

Note This command does not transfer files from an HP-IB disk drive,
but rather transfers bytes from a built-in disk drive on your
d computer to the HP-IB bus.

7-56 Pascal and C Reference

IOOUTPUTS

IOOUTPUTS

This command outputs a string to a specified device or to the interface. After
the string is sent, the EOL string is sent and the EOI line is set (if enabled).

Syntax

I00UTPUTS (device_address,data_REF, length)
I00UTPUTS (select_code,data_REF, length)

device_address specifies a device address.

select_code specifies the interface select code.
data_REF array specifying the string to be sent.
length specifies the length of the output string. (An error occurs if the

number is less than 0.)

Examples
For Pascal:

VAR
info : STRING(4);
length : INTEGER;
err : INTEGER;

info := ?1ST1’;
length := 4;
err := IOOUTPUTS (723,info,length);
{Send the programming code ’1ST1’ to device 723.}

Pascal and C Reference 7-57

IOOUTPUTS

For C:
char *info
int length;
int error;

info = "1ST1";
length = 4;
error = I00UTPUTS(723L,info,length);
/*Send the programming code ’1ST1’ to device 723.*/

Bus Activity
If a device address is specified:

m ATN is set,.

® MTA is sent.

m UNL is sent.

m LAD is sent.

s OSA is sent if specified.
m ATN is cleared.

m Data is output.

s EOL is output.

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent
followed by an EOL.

Comments

If the specified maximum number of elements to output is greater than the
current length of the date string:

s For Pascal, the current length is used instead of the maximum number.

m For C, the output transfer can go beyond the string and send meaningless
data.

7-58 Pascal and C Reference

IOOUTPUTS

If a select code is to be used in the command, the interface must first be
addressed to talk (with IOSEND, for example), or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ECTRL, and ERANGE.

Pascal and C Reference 7-59

IOPASSCTL

This command passes active control from the HP 82335 HP-IB card to a device
on the bus. The device must be capable of taking control.

Syntax
I0PASSCTL (device_address)

device_address specifies a device address.

Examples
For Pascal:

error : INTEGER ;

error := IOPASSCTL(723)
if error <> NOERR then writeln(‘an error occurred...’);
For C:

int error ;
signal (SIGINT, ctrlc_handler) ; /* trap CTRL-C x/

error = IOPASSCTL(723L)
if (error !'=NOERR) printf ("an error occurred...\n");

void ctrlc_handler () /* used for CTRL-C interrupts */

{

exit (1) ; /* exit with error code 1 */

}

7-60 Pascal and C Reference

IOPASSCTL

Bus Activity
If a device address is specified:

m ATN is set.

m UNL is sent.

s MLA is sent.

m TAD is sent.

w TCT is sent.

m ATN is cleared.

Comments

If your program does not seem to work properly after passing control, make
sure that you do not have an interrupt (IRQ) conflict with another device. You
can find out what JIRQ your HP-IB board is using by running the INSTALL

utility.

The Command Library defaults to address 30. If desired, you can change this
using the IOCONTROL command.

The IOPASSCTL command passes active control only. This command will not
change the state of the system controller status of the HP 82335.

Any type of shell command will cause the Command Library to stop working if
it is currently non-controller, including the SYSTEM function in C languages
and the EXEC function in Pascal languages.

The Command Library needs to do some cleaning up after running as
non-active or non-system controller. It will do this automatically when you
take control back, or when your program exits normally. It will not, however,
clean up after itself if or is used to exit the program. We
recommend that you use the capabilities of the language you are using to trap
these keys and call a routine which exits normally, possibly with a non-zero
exit code. In C, use signal and extt if is pressed. In Pascal, use
CheckBreak and halt. If you do not, your computer will be left in an unstable
state and could lock up.

Possible errors are NOERR, ETIME, ESEL, and ECTRL.

Pascal and C Reference 7-61

IOPPOLL

This command performs a parallel poll of the interface. It sets a variable to a
value (0 to 255) representing the response of those instruments on the interface
that respond to a parallel poll.

Syntax
I0PPOLL (select_code,response_REF)
select_code specifies the interface select code.

response_ REF variable into which the parallel poll response byte is to be
placed. The allowable range is 0 to 255. The eight bits of the
response byte correspond to the eight HP-IB data lines (DIO1
through DIO8). Thus, a value of 32 would indicate that some
device has responded to the parallel poll with a “1” on DIOG6.

Examples
For Pascal:

VAR
response : INTEGER;
err : INTEGER;

err := IOPPOLL (7,response);

For C:
int response;
int error;

error = IOPPOLL(7L,&response);

Bus Activity

m ATN and EOI are asserted for 25 microseconds.
m The poll byte is read.

= EOI is cleared.

m ATN is restored to its previous state.

7-62 Pascal and C Reference

10PPOLL

Comments

During a parallel poll, each enabled device may put a “1” on an assigned
HP-IB data line according to its service request status—otherwise, the line is a
“0”. There are eight data lines (though more than one device may be assigned
to one line). Using a parallel poll, several devices can indicate their service
request status simultaneously. The response variable contains the state of the
eight data lines: DIO1 (in bit 0) through DIO8 (in bit 7).

If the response variable contains a “1” in any bit, a device assigned to the
corresponding HP-IB line has the service request status the device was set up
to report. (See IOPPOLLC.) For example, a device may be set up to report on
line DIO4 when it requests service. If an IOPPOLL command shows a “1” in
bit 3 of response, your program knows the device needs service (assuming no
other device is assigned to that line).

Not all devices are capable of responding to a parallel poll. Consult your
particular device manuals for specifics.

Possible errors are NOERR, ECTRL, and ESEL.

Pascal and C Reference 7-63

IOPPOLLC

This command performs a Parallel Poll Configure. In preparation for a parallel .
poll command, it tells an instrument how to respond affirmatively to the
parallel poll, and on which data line to respond.

In general, it sets a parallel poll response byte to reflect the response of a
desired arrangement of instruments. Typically, you could define the bits to
reflect the responses of particular instruments, or the result of a logical OR
operation on several instrument responses.

Refer to IOPPOLL for more information.

Syntax

I0PPOLLC (device_address, configuration)
I0PPOLLC (select_code, configuration)

device_address specifies the bus address of the device to be configured.
select_code specifies the interface select code.

configuration sent to the specified device indicating how it’s to respond to a
parallel poll. (See “Comments” below.)

Examples
For Pascal:

VAR
configuration : INTEGER;
err : INTEGER;
configuration := 10; {Respond with a ’1’ on line DID3.}

err := IOPPOLLC (723,configuration);

7-64 Pascal and C Reference

IOPPOLLC

For C:
int error;
int configuration;

configuration = 10; /*Respond with a ’1’ on line DI03.x*/
error = IOPPOLLC(723L,configuration);

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

u LAD is sent.

w OSA is sent if specified.
s PPC is sent.

m PPE is sent.

If a select code is specified:

m PPC is sent.
u PPE is sent.

Comments

The configuration parameter defines both the HP-IB line on which to respond
and the service request status to indicate. It represents an eight-bit byte
described below.

Bit7 | Bit6 | Bitsh | Bitd | Bit3 | Bit2 | Bitl | Bito

0 0 0 0 Response | DIO Line (DIO1 to DIO8)
(0orl)

Bit 3 specifies the meaning of an affirmative response. Bits 2 through 0 specify
the data line (DIO8 through DIO1). The valid range for configuration is 0 to
15—other values cause an error.

Pascal and C Reference 7-65

IOPPOLLC

Parallel Poll Configuration Bits Value
Affirmative response for service request 00001xxx 8
Affirmative response for no service request 00000xxx 0
Respond on line DIO8 0000x111 7
Respond on line DIOY 0000x110 6
Respond on line DIO6 0000x101 5
Respond on line DIOS 0000x100 4
Respond on line DIO4 0000x011 3
Respond on line DIO3 0000x010 2
Respond on line DIO2 0000x001 1
Respond on line DIO1 0000x000 0

For example, to set up a device to indicate an affirmative response (“1”) on
line DIOS5 if it needs service, the configuration value would be 8 + 4 = 12.
Alternatively, for the device to indicate an affirmative response (“1”) on line
DIO5 when it doesn’t need service, the configuration value would be 0 + 4 = 4.

Not all devices can be configured to respond to a parallel poll. Consult your
particular device manuals for specifics.

Possible errors are NOERR, ETIME, ESEL, ECTRL, and ERANGE.

7-66 Pascal and C Reference

IOPPOLLU

IOPPOLLU

This command performs a Parallel Poll Unconfigure (PPU). It directs an
instrument to not respond to a parallel poll. It can be addressed to the
interface or a specific device. Refer to IOPPOLLC for more information.

Syntax

IOPPOLLU (device_address)
IOPPOLLU (select_code)

device_address specifies a device address.

select_code specifies the interface select code.

Examples
For Pascal:

VAR
err : INTEGER;

err := IOPPOLLU (722);
For C:

int error;

error = IOPPOLLU(722L);

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m PPC is sent.

m PPD is sent.

Pascal and C Reference

7-67

IOPPOLLU

If a select code is specified:

m ATN is sent.
m PPU is sent.

Comments

Some devices cannot be unconfigured from the bus. Consult your particular
device manuals for specifics.

Possible errors are NOERR, ETIME, ECTRL, and ESEL.

7-68 Pascal and C Reference

IO0REMOTE

IOREMOTE

This command places a device in Remote mode to disable the device front
panel. It can be addressed to the interface or to a specific device.

Syntax

IOREMOTE (device_address)
IOREMOTE (select_code)

device_address specifies a device address.

select_code specifies the interface select code.

Computer
»,'S\;Musetllm

Examples

For Pascal:

VAR
err : INTEGER;

err := IOREMOTE (723); {Places device 723 in Remote.}

err := IOREMOTE (7); {Set the interface REN line.}
For C:

int error;

error = IOREMOTE(723L); /*Place device 723 in Remote.*/

error = IOREMOTE(7L); /*Set the interface REN line.*/

Pascal and C Reference 7-69

IOREMOTE

Bus Activity
If a device address is specified:

m REN is set.

m ATN is set.

8 MTA is sent.

s UNL is sent.

s LAD is sent.

a OSA is sent if specified.

If a select code is specified, then REN is set.

Comments

If a select code is specified, a device will not switch into Remote mode until it
is addressed to listen.

Possible errors are NOERR, ETIME, ECTRL, and ESEL.

7-70 Pascal and C Reference

IOREQUEST

IOREQUEST

This command sets up a serial poll status byte for the HP 82335 and optionally
asserts the Service Request (SRQ) line.

Syntax

IOREQUEST (seleci_code, status)

select_code specifies the interface select code.

status specifies the serial poll status byte. If bit 6 in the status byte

is set, the SRQ line will be asserted. If bit 6 is clear, SRQ will
not be asserted.

Examples
For Pascal:

error : INTEGER ;

error := IOTAKECTL(7, $042) (* for Turbo Pascal *)
error := IOTAKECTL(7, #042) (* for Microsoft Pascal *)
if error <> NOERR then writeln(‘an error occurred...’);

For C:

int error ;

error = IOTAKECTL(7L, 0x42)
if (error !'=NOERR) printf ("an error occurred...\n");

Bus Activity
If bit 6 is set in the status parameter: SRQ is asserted.

If bit 6 is clear in the status parameter: no bus activity.

Pascal and C Reference 7-71

IOREQUEST

Comments

The HP 82335 interface must not be active controller, or else an ECTRL error
will result.

Possible errors are NOERR, ECTRL, and ESEL.

7-72 Pascal and C Reference

IORESET

IORESET

This command sets the interface to its start-up state, in which it is not
listening and not talking.

In addition, it sets the following HP-IB parameters as indicated:

» The interface timeout is set to 0 seconds (the timeout is disabled).
m The interface EOI mode is enabled.

m High-speed data output is disabled.

m CR/LF is set as the EOL default.

m LF is set as the IOMATCH default.

m If the interface was system controller, then it will also become active
controller.

Syntax

IORESET (select_code)

select_code specifies the interface select code.
Examples

For Pascal:

VAR
err : INTEGER;

err := IORESET (7);
For C:

int error;

error = IORESET(7L);

Pascal and C Reference 7-73

IORESET

Bus Activity
If the interface is system controller:

m IFC is pulsed (at least 100 microseconds).
m REN is cleared (at least 100 microseconds).
m ATN is cleared.

If the interface is non-system controller:

m No bus activity.

Comments
This command returns all devices on the interface to local (front panel) control.

Possible errors are NOERR and ESEL.

7-74 Pascal and C Reference

IOSEND

IOSEND

This command sends any sequence of user-specified HP-IB commands to the
interface. For example, to send an output command to several instruments
simultaneously, you can establish their talk/listen status with the IOSEND
command, then issue the output command specifying a select code rather than
a device address.

Syntax
IOSEND (select_code,commands_REF,length)
select_code specifies the interface select code.

commands_REF specifies a string of characters, each of which is treated as an
interface command.

length specifies the number of characters in the command string.
(An error occurs if the number is less than 0.)

Examples
For Pascal:

VAR
commands : STRING[4];
length : INTEGER;
err : INTEGER;

commands := ’?)/4’; {Specifies unlisten, then
listen addresses 9, 15, and 20.}
length := 4;
err := IOSEND (7,commands,length);
err := IOTRIGGER (7);
{Triggers devices at addresses 9, 15, and 20.}

Pascal and C Reference 7-75

I0SEND

For C:
char *commands;
int length;
int error;
commands = "?7)/4"; /*Specifies unlisten, then
listen addresses 9, 15, and 20.*/
length = 4;

error = I0SEND(7L,commands,length);

error = IOTRIGGER(7L);
/*Triggers devices at addresses 9, 15, and 20.%/

Bus Activity

s ATN is set.
m Command bytes are sent.

Comments

See appendix B for a list of HP-IB commands and the corresponding data
characters.

All bytes are sent with ATN set. The EOL sequence is not appended, nor is
EOI set.

Possible errors are NOERR, ETIME, ESEL, ECTRL, and ERANGE.

7-76 Pascal and C Reference

IOSPOLL

IOSPOLL

This command performs a serial poll of a specified device. It sets a variable
representing the device’s response byte.

Syntax
I0SPOLL (device_address, response..REF)
device_address specifies the bus address of the device to be polled.

response_REF variable into which the response byte is placed.

Examples
For Pascal:

VAR
response : INTEGER;
err : INTEGER;

err := IOSPOLL (723,response); {Performs a serial poll on
device 723 and puts the response byte in RESPONSE.}

For C:
int response;
int error;

error = IOSPOLL(723L,&response); /*Perform a serial poll on
device 723 and put the response byte in response.*/

Pascal and C Reference 7-77

I0SPOLL

Bus Activity

a ATN is set.

m UNL is sent.

m MLA is sent.

a TAD is sent.

m OSA is sent if specified.
m SPE is sent.

m ATN is cleared.
m Poll byte is read.
m ATN is set.

m SPD is sent.

m UNT is sent.

Comments

If a device is requesting service, it stops requesting service when its response
byte is read.

Some devices are not capable of responding to a serial poll, in which case
polling may result in an error. Consult the instrument manual to determine
if an instrument can respond to a serial poll and how its response byte is
interpreted.

Possible errors are NOERR, ETIME, ECTRL, and ESEL.

7-78 Pascal and C Reference

IOSTATUS

IOSTATUS

This command determines the current interface status regarding a particular
condition. It sets a variable representing that status.

Syntax

I0STATUS (select_code, condition, status_REF)

select_code

condition

specifies the interface select code.

specifies the condition being checked, from 0 to 11. The
possible conditions are:

Value
0

=TEe JREEN B L B . e N

—
N = O

Description

Is the interface currently in the remote state?
(always no)

What is the current state of the SRQ line?
What is the current state of the NDAC line?
Is the interface currently system controller?
Is the interface currently active controller?

Is the interface currently addressed as talker?
Is the interface currently addressed as listener?
What is the interface’s bus address?

What is the state of the ATN line?

What is the address status of the interface?
What is on the DIO lines now?

What is the bus status of the interface?

What interfaced card is installed?

Pascal and C Reference 7-79

IOSTATUS

status_REF variable into which the condition’s status is placed. It can have
the following values:

Conditions 0 to 6 and 8

Value| Meaning

0 [Clear or No
1 Set or Yes
Condition 7

Value Meaning

0 to 30 { Address of card

Condition 9*
Bit | Value { Meaning
0 1 Julpa
1 2 | TADS
2 4 |LADS
3 8 |TPAS
4 16 |LPAS
5 32 |ATN
6 1 64 |LLO
7 | 128 |REM
Condition 10
Value Meaning

0 to 255| Value of the data lines on the bus

7-80 Pascal and C Reference

Condition 11*

Bit { Value | Meaning
0 1 (REN
1 2 [IFC
2 4 ISRQ
3 8 1EOI
4| 16 |NRFD
5| 32 |NDAC
6 | 64 [DAV
7 | 128 JATN
Condition 12
Value Meaning
0 |no interface card

1
2

HP 82990 (old)
HP 82335

|OSTATUS

* The actual value returned from conditions 9 and 11 will be the sum of the
values of all true conditions. For example, the value returned if bits 2 and 3

were true would be 12.

To check whether a specific condition is true, use the AND operand

in your language. For example, to check if DAV is true, you could call
IOSTATUS(7L,11,&result), then check whether (result AND 32) = 32, then
(DAV is set). Make sure you are using the binary AND in your language and

not the logical AND.

Pascal and C Reference 7-81

IOSTATUS

Examples
For Pascal:

VAR
condition : INTEGER;
status : INTEGER;
err : INTEGER;

select := 1;
err := IOSTATUS (7,condition,status);
{Determine if SRQ is set.}
For C:
int select;
int status;
int error;

select = 1;
error = IOSTATUS(7L,select,&status);
/*Determine if SRQ is set.*/

Bus Activity

None.

Comments
Status conditions 9 through 11 are rarely used.

Possible errors are NOERR, ESEL, and ERANGE.

7-82 Pascal and C Reference

I0TAKECTL

IOTAKECTL

This command takes active control from the currently active controller back to

the HP-IB card.

Syntax

IOTAKECTL (select_code, priority)

select_code specifies the interface select code.

priority specifies the priority of the request. This parameter can take

one of three values:

1

Examples

For Pascal:

error : INTEGER ;

error := IOTAKECTL(7, 1)

Wait until the active controller passes control
back to me. It will wait until it receives
control or until it times out as specified by the
IOTIMEOUT function.

Assert SRQ with bits 1 and 6 set, then wait
until the active controller passes control back
to me. It will wait until either it receives
control or until it times out as specified by the
IOTIMEOUT function.

Assert the Interface Clear (IFC) line.
Asserting the IFC line immediately makes the
HP 82335 the active controller. The HP 82335,
however, must be the system controller to be
able to assert the IFC line. If it is not the
system controller, an ECTRL error will result.

if error <> NOERR then writeln(‘an error occurred...’);

Pascal and C Reference 7-83

IOTAKECTL
For C:
int error ;

error = IOTAKECTL(7L, 1)
if (error != NOERR) printf ("an error occurred...\n");

Bus Activity

Bus activity is controlled by the active controller until IOTAKECTL is
finished.

Comments

The Command Library defaults to address 30. If necessary, you can change
this using the IOCONTROL command.

It may take awhile for the device that has active control to pass control back
to the Command Library. You may want to increase your timeout value
using JOTIMEOUT before calling IOTAKECTL, and decrease it after the
IOTAKECTL call.

Possible errors are NOERR, ETIME, ESEL, ERANGE, and ECTRL.

7-84 Pascal and C Reference

IOTIMEOUT

IOTIMEOUT

This command sets an interface timeout value in seconds for I/O operations
that do not complete (for example, the printer runs out of paper).

The default is timeout disabled.

Syntax

IOTIMEOUT (seleci_code,timeout)

select_code specifies the interface select code.

timeout specifies the length of the timeout period. A value of 0.0

disables the timeout, while a negative value results in an error.

Examples
For Pascal:

VAR
timeout_val : REAL;
err : INTEGER;

timeout_val := 1.23; {Timeout after 1.23 seconds.}

err := IOTIMEOUT (7,timeout_val);
For C:
int error;
double timeout_val;

timeout_val = 1.23; /*Timeout after 1.23 seconds.*/
error = IOTIMEOUT(7L,timeout_val);

Pascal and C Reference 7-85

IOTIMEOUT

Bus Activity

None.

Comments

Timeout is effective for any interface operation that transfers data or
commands.

A timeout error occurs only if timeout is enabled (that is, the timeout is set to
a positive value).

Timeout should be established early in your program. It provides a way to
recover from 1/O operations that are not completed.

The timeout value is a real number specified in seconds, which gets rounded
to the nearest 1/16 second. To timeout after 5 seconds, set timeout to 5.0.
To timeout after 0.5 second, set timeout to 0.5. Note that a timeout of 0.0
effectively disables any timeouts. The maximum allowable timeout is 4096
seconds.

If a transfer times out, the incompleted transfer function returns the value 4,
which corresponds to the ETIME error.

Possible errors are NOERR, ESEL, and ERANGE.

7-86 Pascal and C Reference

IOTRIGGER

IOTRIGGER

This command triggers one or more devices.

Syntax

IOTRIGGER (device_address)
IOTRIGGER (select_code)

device_address specifies a device address.

select_code specifies the interface select code.

Examples
For Pascal:
VAR
err : INTEGER;
err := IOTRIGGER (723);
For C:

int error;

error = IOTRIGGER(723L);

Bus Activity
If a device address is specified:

m ATN is set.

s MTA is sent.

® UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m GET is sent.

Pascal and C Reference 7-87

IOTRIGGER

If a select code is specified:

m ATN is set.
m GET is sent.

Comments

Only one device can be triggered at a time if a device address is specified.

If a select code is specified, all devices on the bus that are addressed to listen
(with IOSEND, for example) are triggered.

Possible errors are NOERR, ETIME, ECTRL, and ESEL.

7-88 Pascal and C Reference

Error Descriptions

~Computer A

This appendix describes the Command Library errors. Error numbers depend
upon the programming language, as shown in the first column of the table that

follows.
Error Number Mnemonic Description
BASIC / Pascal or C
0/0 NOERR No error occurred.
100001 / 1 EUNKNOWN Unknown error occurred. Check for

malfunctioning equipment or incorrect
hardware configuration. This error can
also occur under these conditions:

= [OENTERAB, IOENTERB. While
using DMA, character matching must
be disabled, and the swap size must be
1.

m [OENTERS. While using DMA,
character matching must be disabled.

n [OOUTPUTAB, IOOUTPUTB. While
using DMA, the swap size must be 1.

Error Descriptions A-1

Error Number Mnemonic Description
BASIC / Pascal or C
100002 / 2 ESEL Invalid select code or device address was

specified. This error would most likely
occur under these conditions:

m The first parameter of a call should
have been a valid select code, but a
device address or an invalid select code
was specified instead.

m A device address was expected, but a
select code was given or a primary
address outside the range 0 to 31 was
specified.

w The device address of the HP-IB
interface was specified as a parameter
in commands such as IOSPOLL,
IOREMOTE, or IOCLEAR.

A-2 Error Descriptions

Error Number Mnemonic Description
BASIC / Pascal or C
100003 / 3 ERANGE* A command parameter was specified

outside its allowable range. This error can
occur under these conditions:

s IOENTERA, IOENTERS. The
specified length must be positive.

m IOENTERAB, IOENTERB. The
specified length must be positive. The
swap size must be from 1 to 8.

m IOEOL. The specified length must be
from 0 to 8.

m IOCONTROL. The specified value
must be from 5 to 7. If 7 is selected,
the valid address values are 0 to 30.

m IOOUTPUTA, IOOUTPUTS. The
specified length must be positive.

» IOOUTPUTAB, IOOUTPUTB. The
specified length must be positive. The
swap size must be from 1 to 8.

m IOPEN. The interrupt priority must be
Oor 1.

m IOPPOLLC. The configuration value
must be from 0 to 15.

m IOSEND. The length must be positive.

m IOSTATUS. The status specified was
outside the range 0 to 7.

m IOTIMEOUT. The specified timeout
value must be greater than or equal to

0.

Error Descriptions A-3

Description

The time specified by IOTIMEQUT has
elapsed since the last byte was
transferred.

The HP-IB interface must be the active
controller or the system controller.

This error is obsolete.

Either no digit or an improperly formed
number was received during real number
input using IOENTER or IOENTERA. In
this case, 0 is returned as the data value.

Improper talker or listener addressing
occurred. An attempt was made to input
or output data when the interface was not
addressed to listen or talk. This error is
likely to occur if a select code was
specified instead of a device address, and
the interface was not properly addressed
to talk or listen.

A file error has occurred while reading,
writing, or creating a file. This error
could indicate either a disk full condition
or a file does not exist for IOOUTPUTF.

Error Number Mnemonic
BASIC / Pascal or C
100004 / 4 ETIME
100005 / 5 ECTRL
100006 / 6 EPASS
100007 / 7 ENUM
100008 / 8 EADDR
100009 / 9 EFILE
* Potential conflict for C languages. See the following paragraph.

A-4 Error Descriptions

For C languages, ERANGE is defined to a different value by the MATH.H

file. If MATH.H is included by a program, the compiler gives a warning and
sets ERANGE to the last value defined. In this case, change one of the define
statements so the names are different. For example, you could change two lines
in the CHPIB.H Command Library file to

#define ERNGE 3
case ERNGE: return (" Value out of range ");

and then use ERNGE for the Command Library error name (instead of
ERANGE).

Error Descriptions A-5

Summary of HP-IB

HP-IB Abbreviations

The following list defines the standard HP-IB abbreviations (mnemonics) used

in this manual:

Mnemonic Definition

ATN Attention

DCL Device Clear

EOI End or Identify

EOL End of Line

GET Group Execute Trigger
GTL Go To Local

IFC Interface Clear

LAD Listen Address

LLO Local Lockout

MLA My Listen Address
MTA My Talk Address

OSA Other Secondary Address
PPC Parallel Poll Configure
PPD Parallel Poll Disable
PPU Parallel Poll Unconfigure
REN Remote Enable

SDC Selected Device Clear
SPD Serial Poll Disable
SPE Serial Poll Enable
SRQ Service Request

TAD Talk Address

TCT Take Control

UNL Unlisten

UNT Untalk

Summary of HP-IB

B-1

HP-IB Description

The Hewlett-Packard Interface Bus (HP-IB) is HP’s implementation of the
IEEE-488 communication interface. It is used by a variety of instruments and
peripherals manufactured by Hewlett-Packard and other companies. HP-IB is a
16-line bus that connects up to 15 devices in parallel on a communication link.

The following figure shows the HP-IB connector.

B-2 Summary of HP-IB

SHOULD BE
GROUNDED NEAR

TERMINATION OF 4

OTHER WIRE OF
TWISTED PAIR

THE HP-IB LOGIC LEVELS

SIGNAL GROUND 24
[P/O TWISTED PAIRWITH 11 23
P/O TWISTED PAIR WITH10 22
P/O TWISTED PAIRWITH9 21
P/O TWISTED PAIRWITHS8 20

P/OTWISTED PAIRWITH?7 19

P/O TWISTED PAIRWITH6 18

REN 17
DIO8 16
DIO7 15
DIO& 14
DIO5 13

ARE TTL COMPATIBLE:

TRUE STATE £ 0.8V DC,

FALSE STATE 2+2.0VDC
FOR A POWER SOURCE

THAT DOES NOT EXCEED
+5.25 V DC AND REFERENCED
TO LOGIC GROUND.

O\

/‘w\

~J

O

12
11

10

CONNECT TO
EARTH GROUND

SHIELD
ATN
SRQ
IFC
NDAC
NRFD
DAV
EOI
DI04
DiO3
DIo2

DIO1

TYPE 57 MICRORIBBON CONNECTOR

Summary of HP-IB

B-3

Of the 16 signal lines, 8 are data lines, 3 are for handshake purposes, and
the remaining 5 are control lines. Information is transferred across the eight
data lines in a bit-parallel, byte-serial fashion. Briefly, the eight control and
handshake lines are used as follows:

ATN

EOI

IFC

REN

SRQ

DAV

NRFD

NDAC

Attention is used primarily to differentiate between Command mode
and Data mode. When ATN is true, information on the data lines is
interpreted as a bus command; when ATN is false, the information is
treated as a data byte.

End Or Identify has two uses. EOI is asserted on the last byte of a
data transfer—this signals all listening devices that no more data
should be expected on the transfer. EOI is used in combination with
ATN to perform a parallel poll.

Interface Clear is under the exclusive control of the system controller.
When it is pulsed true, all device interfaces are returned to an idle
state and the state of the bus is cleared.

Remote Enable may be set by the system controller to permit devices
to operate in Remote mode—that is, under programmed HP-IB
control instead-of via the device’s front panel.

Service Request can be set by a device on the interface to indicate it
is in need of service. SRQ might be set at the completion of a task
such as taking a measurement, when an error is detected during device
operation, or when requesting to be active controller.

Data Valid is a handshake line indicating that the active talker has
placed data on the data lines (DIO1 through DIOS8).

Not Ready For Data is a handshake line indicating that one or more
active listeners is not ready for more data, and the active talker should
wait before sending new data on the bus.

Not Data Accepted is a handshake line indicating that one or more
active listeners has not accepted the current data byte, and the active
talker should leave the current byte asserted on the data lines.

B-4 Summary of HP-IB

The following illustration shows the design of the bus.

DEVICEA

BUS STRUCTURE
TO OTHER DEVICES

TALKS, LISTENS,

AND CONTROLS

(Example: computer)

DEVICEB

TALKS AND

LISTENS

DATA INPUT OUTPUT

(8 signai lines)

(Example: digital voltmeter)

DEVICEC

LISTENS ONLY

HANDSHAKE

; . (Date transfer)

(3 signal lines)

(Example: signal generator)

BUS
MANAGEMENT

—

DEVICED

TALKS ONLY

(5 signal lines)

: } DIO1--DIO8

(Example : tape reader)

NOTES:
1. All signals are low-true.
2. Signals from devices

are logically ORed.

DAV
NRFD
NDAC

IFC

ATN

SRQ

REN

EO!

Summary of HP-IB

Commands and Data

There are two modes of communication on HP-IB: Command mode and Data
mode.

In Command mode, information transmitted across the eight data lines is
interpreted as talk or listen addresses, or universal address or unaddress
commands (explained later). In this mode, only seven of the data lines are
used. Some devices use the eighth line as a parity check for certain protocols.

In Data mode, any eight-bit value can be transmitted. The HP-IB can
therefore be used for transmission of binary data as well as ASCII characters.

The three-line handshake scheme has several advantages. First, data transfer
is asynchronous—the data rate is limited only by the speed of the devices
actively involved in the transfer. A second, related advantage is that devices
with different I/O speeds can be interconnected without need for other
synchronization mechanisms. Also, multiple devices can be addressed
concurrently.

Controllers, Talkers, and Listeners

To understand communication among devices, you should be familiar with the
concepts of controller, talker, and listener.

Controller

Two types of controllers are defined within an HP-IB system: system controller
and active controller.

There must be a single system controller capable of taking control of the
interface at any time. The system controller has exclusive control over the IFC
and REN lines.

Each system also has one or more devices capable of being active controlier
(sometimes referred to as controller-in-charge), although there may be only

one active controller at any given time. The active controller has the ability to
perform tasks such as establishing listeners and talkers, sending bus commands,
and performing serial polls.

B-6 Summary of HP-IB

In most systems, a single computer will be both the system controller and
the only active controller. Some non-system controller devices may request
service indicating their desire to be active controller in order to perform some
operation such as plotting data or directly accessing disk drives. The current
active controller may “pass control” to a requesting device to make it the
active controller. In other systems, a system controller may not be capable of
operating as non-active controller, and therefore no pass-control capabilities
will exist. Note that system controller capabilities may not be transferred.

An HP-IB system can be configured in one of three ways, and it affects the
transfer of data as described:

m No controller. This mode of data transfer is limited to a direct transfer
between one device manually set to talk only, and one or more devices
manually set to listen only.

m Single controller. In this configuration, data transfer can be from controller
to devices (Command or Data mode), from a device to controller (Data mode
only), or from a device to other devices (Data mode only).

w Multiple controllers. This mode of data transfer is similar to that of a single
controller, with the requirement that active controller status be passable
from one controller to another. In this configuration, one controller must be
designated as the system controller. This controller is the only one that can
control the IFC and REN lines.

Control is passed to another controller by addressing it as a talkeges

commanding it to “take contral” (TCT). Computer
~ Museum

Talker

In each system there can be at most one device addressed as talker at any
given time. A device becomes addressed as talker by receiving its talk address
from the active controller. Each device on the bus must have a unique bus
address. This address is usually set at the manufacturing site, but it may be
set by switches on the instrument.

The addresses are in the range 0 to 30. A talk address is formed by adding the
primary bus address to the talk address base value of 64 and transmitting that
value across the data lines while ATN is asserted. For example, talk address 9

Summary of HP-IB B-7

would be formed by asserting ATN and transmitting a byte whose value is 73
(64 + 9 = 73, ASCII character “I”).

Listener

Listen addresses are formed in a similar manner to talk addresses, except that
listen addresses use a base of 32. For example, listen address 9 is sent as value
41 transmitted with ATN true (32 + 9 = 41, ASCII character “)”).

Multiple devices may be addressed to listen at any time, and data bytes will be
received by all listeners in parallel. However, most devices cannot be addressed
to both talk and listen at the same time. (See the table at the end of this
appendix for talk and listen address codes.)

Extended Addressing

The descriptions of talk address and listen address refer to a device’s

primary address. Some devices also have extended talker or extended listener
capabilities, sometimes used as secondary addresses or as device-dependent
commands. With extended addressing, talk and listen addresses are
represented by two command bytes. The first byte is the primary talk or listen
address as described above. The second byte is a secondary address command.

Secondary addresses may be in the range 0 to 31. The secondary commands
transmitted are formed by adding the secondary address to the base value 96
and transmitting the byte with ATN true.

Extended addresses can be used, for example, to access a specific I/O card
within an instrument that allows multiple I/O cards.

B-8 Summary of HP-IB

Bus Commands

Five types of information are transmitted when the bus is operating in
Command mode (that is, when ATN is asserted):

m Talk addresses.

m Listen addresses.

m Universal commands.
m Addressed commands.
m Unaddress commands.

Talk addresses and listen addresses are discussed above. The other categories
are described below.

Universal Commands

Universal commands are received by all responding devices on the bus whether
addressed to listen or not. The commands are listed below.

Mnemonic Command Description

LLO Local Lockout Disables the front panel of the responding device. The
REN line must be asserted in order for LLO to have any
effect. If the instrument is already in Remote mode, the
lockout will be immediate. Otherwise, the lockout will
commence when the device receives its listen address.

DCL Universal All devices capable of responding are returned to some
Device Clear known, device-dependent state. In some cases a device
will perform a self-test in response to a Universal Device
Clear.
PPU Parallel Poll Directs all devices on the HP-IB that have parallel poll
Unconfigure configure capabilities to not respond to a parallel poll.
SPE Serial Poll Enables Serial Poll mode on the interface.
Enable
SPD Serial Poll Disables Serial Poll mode on the interface.
Disable

Summary of HP-1B B-9

Addressed Commands

Addressed commands are executed only by those devices that are currently
addressed as listeners. They allow the controller to initiate a simultaneous

action by a selected group of devices on the bus, such as triggering them to
take readings at the same time. The commands are listed below.

Mnemonic Command Description
SDC Selected Device Similar to a Universal Device Clear (DCL) with only
Clear those devices addressed to listen responding.

GTL Go To Local Returns devices that are addressed to listen to Local
mode (re-enables front panel programming). REN stays
asserted when a GTL is sent, and devices will be
returned to Remote upon receipt of their listen address.

GET Group Execute Initiates some preprogrammed action by listening
Trigger devices. This may be used to simultaneously start action
in a group of devices that are addressed to listen.

PPC Parallel Poll Configures a device to respond to a parallel poll on a
Configure specified data line with either a positive or negative
signal. A secondary command sent after PPC contains
the data that configures the device.

TCT Take Control Transfers active controller status to the device that is
currently addressed to talk.

Unaddress Commands

The two unaddress commands can be considered as extensions of talk and
listen addresses.

UNL (Unlisten) causes all devices on the bus (except those that have a built-in
switch set to Listen Only) to stop being listeners. UNL is equivalent to listen
address 31.

UNT (Untalk) directs any device on the interface to no longer be addressed

as talker. Since there may only be one device addressed to talk at any time,
receipt of another device’s talk address is equivalent to receiving a UNT. UNT
is equivalent to talk address 31.

B-10 Summary of HP-IB

Service Requests

Some devices that operate on the interface have the ability to request

service from the system controller. A device may request service when it has
completed a measurement, when it has detected a critical condition, or under
many other circumstances.

A service request (SRQ) is initiated when the device sets the SRQ line true.
The controller, sensing that SRQ has been set (typically either by polling the
status of the line or by enabling an SRQ interrupt), can poll devices in one of
two ways: serial poll or parallel poll.

Serial Poll

A typical sequence of events in performing a serial poll is:

= Establish a device as a talker.

m Send SPE to set up Serial Poll mode.

m Wait for the addressed device to send its serial poll response byte.

m Send an SPD and UNT to disable the Serial Poll mode.

The meaning of the serial poll response byte depends upon the individual
device. However, if bit 6 of the response byte (bit value 64) is 1, the device
is indicating it has requested service. If bit 6 is 0, the polled device is not
the one that requested service. Individual device manuals provide additional
information on the meanings of serial poll response bytes.

Parallel Poll

Parallel polling permits the status of multiple devices on HP-IB to be checked
simultaneously. Each device is assigned a data line (DIO1 through DIO8) that
the device sets true during the parallel poll routine if it requires service.

More than one device can be assigned to a particular data line. If a shared
line is sensed true, a serial poll can typically be performed to determine which
device set the line. A parallel poll is started when the controller asserts ATN
and EOI together. After a short period of time the controller reads the poll
byte and begins its interpretation thereof.

Summary of HP-IB B-11

Some devices can be configured (by the PPC command) to respond on specific
data lines. Other devices may respond on lines selected by switches or jumpers
in the devices. Some devices do not have parallel poll capability.

ASCII Codes

The following table lists ASCII codes, characters, and corresponding HP-1B
commands. You can used these characters with the IOSEND Library command
to send HP-IB commands.

B-12 Summary of HP-IB

Code Char Cmd |Code Char Cmd|Code Char Cmd |Code Char Cmd
0 NUL 32 SP L0 64 @ To 96 ¢
1 SOH GTL) 33 I 65 A Ti 97 a
2 STX 34 * L2 66 B T2 98 b
3 ETX 35 # L3 67 C T3 99 c
4 EOT SDC}{ 36 $ L4 68 D T4 100 d
5 ENQ PPC| 37 % L5 69 E T5 101 e
6 ACK 38 & L6 70 F T6 102 f
7 BEL 39 > L7 71 G T7 103 g
8 BS GETj| 40 (L8 72 H T8 104 h
9 HT TCT| 41) L9 73 I T9 105 i
10 LF 42 * L10 | 74 J Ti0 | 106 j
11 VT 43 + Ll 75 K Ti1 | 107 %k
12 FF 44 , L12 | 76 L Ti2 j 108 1
13 CR 45 - L13 | 77 M Ti13 [109 m
14 SO 46 . L4 | 78 N Ti4 | 110 n
15 SI 47 / Ll5 | 79 O Tis | 111 o
16 DLE 48 0 Li16 | 80 P Ti6 | 112 »p
17 DC1 LLO| 49 1 L17 | 81 Q Ti7 | 113 g
18 DC2 50 2 L18 | 82 R Ti8 | 114 r
19 DC3 51 3 L19 | 83 S Ti19 § 115 s
20 DC4 DCL| 52 4 L20 | 84 T T20 | 116 t
21 NAK PPU| 53 5 L21 85 U T21 [117 u
22 SYN 54 6 122 | 86 vV T2 | 118 v
23 ETB 55 7 L23 | 8% W T23 | 119 w
24 CAN SPE | 56 8 L24 | 88 X T24 | 120 x
25 EM SPD | 57 9 L2565 | 89 Y T25 | 121 y
26 SUB 58 : L26 | 90 Z T26 § 122 z
27 ESC 59 ;o L2191 [T27] 123 {
28 FS 60 < L28 | 92 \ T28 | 124 |
29 GS 61 = L29 | 93] T29) 125 }
30 RS 62 > L30 | 94 A T30 | 126 ~
31 US 63 ? UNL| 95 _ UNT| 127 DEL

Summary of HP-IB B-13

C

Reserved Names

The following pages list reserved names that are used internally by the
Command Library. You should avoid using these names in your programs.

GW BASIC, Vectra BASIC, and BASICA:

(No reserved names for the Command Library)

QuickBASIC 4.0 and later, Microsoft Compiled BASIC, and BASIC PDS:
DEFERR HPIBLIB_PEN PENRESTORE
PENSETUP

(Plus next page)

Pascal Languages:
(See next page)

C Languages:

(See next page)

Reserved Names C-1

A_GETBYTE
HPIBLIB_ABORT
HPIBLIB_ADDRESS
HPIBLIB_ATNCTL
HPIBLIB_CHECKADDR
HPIBLIB_CHECKLINES
HPIBLIB_CHECKSTATE
HPIBLIB_CHIPRESET
HPIBLIB_CLEAR
HPIBLIB_CONTROL
HPIBLIB_DMAREAD
HPIBLIB_DMAWRITE
HPIBLIB_DOPPOLL
HPIBLIB_ENTERA
HPIBLIB_ENTERAB
HPIBLIB_ENTERB
HPIBLIB_ENTERF
HPIBLIB_ENTERS
HPIBLIB_EOICTL
HPIBLIB_EOL
HPIBLIB_FASTOUT
HPIBLIB_GETBIN
HPIBLIB_GETBYTE
HPIBLIB_GETSTR
HPIBLIB_IOABORT

HPIBLIB_IODMA
HPIBLIB_LISTENCTL
HPIBLIB_LOCAL
HPIBLIB_LOCKOUT
HPIBLIB_MATCH
HPIBLIB_OUTPUTA
HPIBLIB_OUTPUTAB
HPIBLIB_OUTPUTB
HPIBLIB_OUTPUTF
HPIBLIB_OUTPUTS
HPIBLIB_PASSCTL
HPIBLIB_PPOLL
HPIBLIB_PPOLLC
HPIBLIB_PPOLLU
HPIBLIB_READREG
HPIBLIB_RELEASERFD
HPIBLIB_REMOTE
HPIBLIB_RENCTL
HPIBLIB_REQUEST
HPIBLIB_RESET
HPIBLIB_SEND
HPIBLIB_SENDFILE
HPIBLIB_SENDBIN
HPIBLIB_SENDBYTE

All Languages (except GW BASIC, Vectra BASIC, and BASICA):

HPIBLIB_SENDCMD
HPIBLIB_SENDSTR
HPIBLIB_SETADDR
HPIBLIB_SETTIMEOUT
HPIBLIB_SHORTT1
HPIBLIB_SPOLL
HPIBLIB_STATUS
HPIBLIB_TAKECTL
HPIBLIB_TALKCTL
HPIBLIB_TERMREASON
HPIBLIB_TIMEOUT
HPIBLIB_TRIGGER
HPIBLIB_GETFILE
HPIBTOOL_SYSCTL
HPLIBGET
HPLIBPUT
INSTVECT
ISCTERMREASON
NEW_IRQ
PASSRESTORE
PASSSETUP
REQUEST
RESTOREVECT
WAITTCT

C-2 Reserved Names

index

A

active control, 1-40
addresses
basic, 1-39
extended, 1-39, B-8
HP-IB interface, 4-7, 4-84, 7-7, 7-79
specifying, 1-38
arbitrary-block data
coding, 1-20
description, 1-16
arrays
in Microsoft Pascal, 7-19, 7-23, 7-51,
7-54
in QuickBASIC, 3-4, 3-21, 3-22
transferring, 1-9
variable types, 2-15, 3-21, 3-22, 5-20,
5-21, 6-22, 6-23
ASCII characters
as data, 1-23
converted to numbers, 1-12, 1-13
list of, B-12
AUTOEXEC.BAT
automatic revision, 2-2
for GW-BASIC, 2-3
for QuickBASIC, 3-13

B

BASICA, 1-2, 2-1

binary data, 1-16

block data, 1-16

block transfers
byte-swapping, 1-19

ending input, 1-17, 1-18
ending output, 1-18, 1-19
faster, 1-12

operation, 1-15

options, 1-17

byte-swapping

Cc

data transfer summary, 1-10

description, 1-10, 1-19

with block transfers, 1-17

with DMA transfers, 1-19, 1-27, 4-12,
4-22, 4-26, 4-53, 4-57, 7-11, 7-19,
7-23, 7-51, 7-54, A-1

CFUNC.H file

in C program, 6-5
prototypes, 6-2

chaining programs, 2-7, 3-4
channels

DMA, 1-27, 4-12, 7-11

character data, 5-21, 6-23
CHPIB.H file

C

ERANGE conflict, A-5

error function, 6-19

in C program, 6-5

languages

compiling, 6-12, 6-13, 6-14, 6-15
error processing, 6-6, 6-19
example programs, 6-4, 6-23, 6-29
Library files, 6-2

Library parameter types, 6-20, 7-1
linking, 6-12, 6-13, 6-14, 6-15

index-1

memory models, 6-2, 6-14

programming, 6-4

program structure, 6-5

reserved names, C-1

using, 6-1, 7-1
COMMAND.COM, 2-3
Command Library

BASIC parameters, 3-20

C error processing, 6-6, 6-19

C files, 6-2

command summary, 1-4

compatibility, 1-6

C parameters, 6-20, 7-1

error names, 1-36, A-1

error processing, 1-35, 1-37

error summary, A-1

error variables, 1-36, 2-8, 3-8

GW-BASIC error processing, 2-8,

2-13

GW-BASIC files, 2-2

GW-BASIC parameters, 2-14, 4-1

HP-IB capability codes, 1-3

installing, 2-2

operation, 1-1

overview, 1-2

Pascal error processing, 5-5, 5-17

Pascal files, 5-2

Pascal parameters, 5-18, 7-1

QuickBASIC error processing, 3-8,

3-17

QuickBASIC files, 3-2

QuickBASIC parameters, 4-1

reserved names, C-1

specifying devices, 1-38

system requirements, 1-1

with C, 6-1, 7-1

with GW-BASIC, 2-1, 4-1

with Pascal, 5-1, 7-1

with QBasic, 3-1

with QuickBASIC, 3-1, 4-1
Compiled BASIC, 1-2, 3-1

Index-2

compiling programs
C, 6-12, 6-13, 6-14, 6-15
Pascal, 5-13, 5-14, 5-15, 5-16
QuickBASIC, 3-13, 3-14, 3-16
control
active, 1-7, 1-40
system, 1-40, 1-41, 4-7
control passing, 1-7

D

data formats
data transfers, 1-8, 1-9
internal, 1-15
data transfers
ASCII numbers, 1-12
binary, 1-15
block, 1-15
byte-swapping summary, 1-10
command summary, 1-9, 1-10
device formats, 1-8, 1-9
DMA operation, 1-26
DMA summary, 1-10
ending input, 1-10, 1-14, 1-17, 1-18,
1-25, 4-39, 7-37
ending output, 1-10, 1-14, 1-18, 1-19,
1-25
formatted, 1-12
six types, 1-8
speeds, 1-8, 1-9, 1-12
string, 1-16, 1-23
timeout, 4-90, 7-85, A-4
variable types, 1-8, 1-9
DEF.ERR, 2-7
DEFERR, 3-5
definite-length data, 1-20
disk drives
during installation, 2-2; 3-2, 5-2, 6-2
DMA
channels, 1-27, 4-12, 7-11
data transfer summary, 1-10
description, 1-10, 1-26

disabling, 1-27

enabling, 1-27

faster, 1-12

interrupted transfers, 1-28, 1-30, 1-32,
1-34, 4-65

no byte-swapping, 1-19, 1-27, 4-12,
4-22, 4-26, 4-53, 4-57, 7-11, 7-19,
7-23, 7-51, 7-54, A-1

no matching, 1-27, 4-12, 4-32, 7-11,
7-30, A-1

not for formatted transfers, 1-13

reference, 4-11, 7-10

restrictions, 1-27

transfer size, 1-27

with block transfers, 1-17, 1-18

with string transfers, 1-24, 1-25

E

environment variables
PATH, 2-3, 3-13, 5-13, 5-15, 6-13
PCIB, 2-3
EOI line
control line, B-4
in arbitrary-block data, 1-20
reference, 4-33, 7-31
with block transfers, 1-17, 1-18, 1-19
with formatted transfers, 1-14
with string transfers, 1-24, 1-25
EOL string
reference, 4-35, 7-33
with block transfers, 1-17, 1-18, 1-19
with formatted transfers, 1-14
with string transfers, 1-24, 1-25
ERANGE conflict, A-5
ERL variable
error line, 2-13, 3-18
ERROR function
GW-BASIC, 2-13, 3-18
errors
BASIC variables, 1-36, 2-8, 3-8
C processing, 6-6, 6-19

GW-BASIC processing, 2-8, 2-13
names, 1-36, A-1
Pascal processing, 5-5, 5-17
processing, 1-35, 1-37
QuickBASIC processing, 3-8, 3-17
summary, A-1
errstr
error function, 5-5, 5-17, 6-6, 6-19
ERR variable
error number, 2-13, 3-18
EXAMPLE.BAS file, 2-6
extended addresses
specifying devices, 1-39

F

file transfers, 1-7
operation, 1-21
formatted transfers
ending input, 1-14
ending output, 1-14
operation, 1-12
options, 1-14
slower, 1-12
FORTRAN
using with C libraries, 6-15

G

GW-BASIC
error processing, 2-8, 2-13
example programs, 2-6, 2-16, 2-24
Library files, 2-2
Library parameter types, 2-14, 4-1
programming, 2-4
program structure, 2-4
starting, 2-4
using, 2-1, 4-1

GW BASIC

reserved names, C-1

index-3

H

high-speed timing
faster output, 1-12
with block output, 1-17
with formatted output, 1-14
with string output, 1-24
HP 82990A compatibility, 1-6
HP-IB cables, 4-38, 7-36
HP-IB control
operation, 1-1
system requirements, 1-1
HP-IB controller, 4-78, 4-84, 7-73, 7-79,
A-4, B-6
HP-IB devices
addressing, 1-38, 1-39
clearing, 4-5, 7-5
data formats, 1-8, 1-9, 1-12, 1-15,
1-23
modes, 4-41, 4-42, 7-39, 7-40
triggering, 4-92, 7-87
HP-IB interface
aborting activity, 4-3, 7-3
address, 4-7, 4-84, 7-7, 7-79
cabling, 4-38, 7-36
capability codes, 1-3
clearing, 4-5, 7-5
compatibility, 1-6
resetting, 4-78, 7-73
status, 4-7, 4-84, 7-7, 7-79
with Command Library, 1-2
HP-IB standard
abbreviations, 1-3, B-1
command numbers, B-12
commands, 1-3, 1-6, 4-80, 7-75, B-9,
B-10
connector, B-2
controllers, B-6
control lines, 1-3, 1-6, B-4
listeners, B-8
summary, B-1
talkers, B-7

Index-4

HP-IB timing

reference, 4-37, 7-35

selecting, 1-12, 1-14, 1-17, 1-24
HP-IB Tools

disks, 1-1

IBAS program, 2-4
IBM BASICA 1-2, 2-1
IBM PCs

using with Command Library, 1-1
IEEE-488.2 data standard, 1-16, 1-20
IEEE-488 standard, 1-3, B-2
INCLUDE metacommand, 3-6, 5-5, 6-5
indefinite-length data, 1-20
INSTALL program

C, 6-2
GW-BASIC, 2-2
Pascal, 5-2
QuickBASIC, 3-2
interrupts

BASIC service requests, 1-29

C service requests, 1-34

Pascal service requests, 1-34
IOABORT

reference, 4-3, 7-3
IOCLEAR

reference, 4-5, 7-5
IOCONTROL

reference, 4-7, 7-7
IODECL.EX file

in Pascal program, 5-5
IODMA

parameters, 1-27

reference, 4-11, 7-10

with block transfers, 1-17, 1-18

with string transfers, 1-24, 1-25
IOENTER

ending transfers, 1-14

numeric conversion, 1-12

reference, 4-13, 7-12

summary, 1-9, 1-10, 1-11
IOENTERA
ending transfers, 1-14
numeric conversion, 1-12
reference, 4-15, 7-14
summary, 1-9, 1-10, 1-11
IOENTERAB
arbitrary-block data, 1-16
byte-swapping, 1-19
ending transfers, 1-17
reference, 4-19, 7-17
string data, 1-24
summary, 1-9; 1-10, 1-11
IOENTERB
binary data, 1-16
byte-swapping, 1-19
ending transfers, 1-18
reference, 4-23, 7-21
string data, 1-24
summary, 1-9, 1-10, 1-11
IOENTERF
file transfer, 1-21
reference, 4-27, 7-25
summary, 1-9, 1-10, 1-11
IOENTERS
ending transfers, 1-25
reference, 4-30, 7-28
string data, 1-24
summary, 1-9, 1-10, 1-11
IOEOI
reference, 4-33, 7-31

with block transfers, 1-17, 1-18, 1-19
with formatted transfers, 1-14
with string transfers, 1-24, 1-25

IOEOL
reference, 4-35, 7-33

with block transfers, 1-17, 1-18, 1-19
with formatted transfers, 1-14
with string transfers, 1-24, 1-25

I/0O errors
C processing, 6-6, 6-19

GW-BASIC processing, 2-8, 2-13

Pascal processing, 5-5, 5-17
processing, 1-35

QuickBASIC processing, 3-8, 3-17

IOFASTOUT
reference, 4-37, 7-35
with block output, 1-17

with formatted output, 1-14

with string output, 1-24
IOGETTERM

reference, 4-39, 7-37
IOLLOCKOUT

reference, 4-41, 7-39
IOLOCAL

reference, 4-42, 7-40
IOMATCH

reference, 4-44, 7-42

with block transfers, 1-17, 1-18
with string transfers, 1-24, 1-25

IOOUTPUT
ending transfers, 1-14
numeric conversion, 1-12
reference, 4-46, 7-44
summary, 1-9, 1-10, 1-11
IOOUTPUTA
ending transfers, 1-14
numeric conversion, 1-12
reference, 4-48, 7-46
summary, 1-9, 1-10, 1-11
IOOUTPUTAB
arbitrary-block data, 1-16
byte-swapping, 1-19
ending transfers, 1-18
reference, 4-51, 7-49
string data, 1-24
summary, 1-9, 1-10, 1-11
IOOUTPUTB
binary data, 1-16
byte-swapping, 1-19
ending transfers, 1-19
reference, 4-55, 7-52

Index-5

string data, 1-24

summary, 1-9, 1-10, 1-11
IOOUTPUTF

file transfer, 1-21

reference, 4-59, 7-55

summary, 1-9, 1-10, 1-11
IOOUTPUTS

ending transfers, 1-25

reference, 4-61, 7-57

string data, 1-24

summary, 1-9, 1-10, 1-11
IOPASSCTL

reference, 4-63, 7-60
IOPEN

compatibility, 1-6

priorities, 1-30, 1-32, 1-33

reference, 4-65

select codes, 1-30

setting up service requests, 1-29
IOPPOLL

indicates device status, 1-31, 1-34

reference, 4-67, 7-62
IOPPOLLC

reference, 4-69, 7-64
IOPPOLLU

reference, 4-72, 7-67
IOPROC.EX file

error function, 5-17

in Pascal program, 5-5
IOREMOTE

reference, 4-74, 7-69
IOREQUEST

reference, 4-76, 7-71
IORESET

disables service requests, 1-31

reference, 4-78, 7-73
IOSEND

command numbers, B-12

reference, 4-80, 7-75
IOSPOLL

clears service requests, 1-31, 1-34

Index-6

indicates deviee statug, 1-31, 1-34

reference, 4-82, 7-77
IOSTATUS

indicates service requests, 1-29

reference, 4-84, 7-79
IOTAKECTL

reference, 4-88, 7-83
IOTIMEOUT

reference, 4-90, 7-85
IOTRIGGER

reference, 4-92, 7-87

L

languages
supported, 1-2, 6-1
system requirements, 1-1
LEFT$ function, 4-32
linefeed character
in arbitrary-block data, 1-20
with block transfers, 1-18
with formatted transfers, 1-14
linking programs
C, 6-12, 6-13, 6-14, 6-15
Pascal, 5-13, 5-14, 5-15, 5-16
QuickBASIC, 3-13, 3-14, 3-16
Local Lockout mode, 4-4, 4-41, 4-43,
7-4, 7-39, 7-41
Local mode, 4-42, 4-79, 7-40, 7-74

match character
reference, 4-44, 7-42
with block transfers, 1-17, 1-18, 4-26,
7-23

with DMA transfers, 1-27, 4-12, 4-32,

7-11, 7-30, A-1
with string transfers, 1-24, 1-25
memory models
for C, 6-2, 6-14
Microsoft C, 1-2, 6-1
Microsoft Pascal, 1-2, 5-1

mixed-language programming reserved names, C-1

using FORTRAN and C, 6-15 supported, 1-2, 5-1
MS-DOS using, 5-1, 7-1 g
PATH variable, 2-3, 3-13, 5-13, 5-15, PATH variable, 2-3 ,_mgﬂfgr
6-13 for C, 6-13 5 -
PCIB variable, 2-2, 2-3 for Pascal, 5-13, 5-15
requirements, 1-1 for QuickBASIC, 3-13
PC-DOS
N requirements, 1-1
number conversion, 1-12 PCIB.BASERR
numeric data Library error number, 2-13, 3-18
transferring, 1-9 PCIB.ERR
variable types, 2-14, 2-15, 3-20, 3-21, error number, 1-36, 2-8, 3-8
3-22, 5-18, 5-19, 5-20, 5-21, 6-20, PCIB.ERR$
6-21, 6-22, 6-23 error message, 1-36
PCIB.GLBERR
o global error number, 1-37
ON ERROR PCIB variable, 2-2, 2-3
error processing, 2-14, 3-18 PC Instruments System, 1-7
ON PEN PEN
with service requests, 1-29 used for service requests, 1-29
PEN(1) function
P with service requests, 1-34, 4-66
parallel poll PEN OFF
indicates device status, 1-31, 1-34, with service requests, 1-30, 1-31, 4-66
4-67, 7-62, B-11 PEN ON
setting up, 4-69, 7-64 with service requests, 1-29, 1-32, 4-66
parameter types PEN STOP
C, 6-20, 7-1 with service requests, 1-30, 1-31, 4-66
GW-BASIC, 2-14, 4-1 PHPIB.LIB file
Pascal, 5-18, 7-1 in Turbo Pascal program, 5-5
Quick BASIC, 3-20, 4-1 PHPIB.LIB file in Microsoft Pascal
Pascal program, 5-5
compiling, 5-13, 5-14, 5-15, 5-16 primary addresses
error processing, 5-5, 5-17 specifying devices, 1-39
example programs, 5-3, 5-22, 5-29 programming languages
Library files, 5-2 supported, 1-2
Library parameter types, 5-18, 7-1 system requirements, 1-1
linking, 5-13, 5-14, 5-15, 5-16 programs
programming, 5-3 chaining, 2-7, 3-4
program structure, 5-5 compiling in C, 6-12, 6-13, 6-14, 6-15

index-7

compiling 1n Pascal, 5-13, 5-14, 5-15,
5-16

compiling in QuickBASIC, 3-13, 3-14,
3-16

C structure, 6-5

examples, 2-6, 2-16, 2-24, 3-6, 3-23,
3-31, 5-3, 5-22, 5-29, 6-4, 6-23,
6-29

GW-BASIC structure, 2-4

linking in C, 6-12, 6-13, 6-14, 6-15

linking in Pascal, 5-13, 5-14, 5-15,
5-16

linking in QuickBASIC, 3-13, 3-14,
3-16

Pascal structure, 5-5

QuickBASIC structure, 3-3

running in C, 6-15

running in GW-BASIC, 2-12

running in Pascal, 5-16

running in QuickBASIC, 3-16

saving in C, 6-12

saving in GW-BASIC, 2-12

saving in Pascal, 5-12

saving in QuickBASIC, 3-12

writing in C, 6-4

writing in GW-BASIC, 2-6

writing in Pascal, 5-3

writing in QuickBASIC, 3-6

Q
QBasic

programming, 3-19

using, 3-1
QBHPIB.LIB file, 3-15, 3-16
QBSETUP.BAS file

error processing routine, 3-17

in chained programs, 3-4

in QuickBASIC program, 3-3
QBXHPIB.LIB file, 3-16
QuickBASIC

compiling, 3-13, 3-14, 3-16

Index-8

error processing, 3-8, 3-17
example programs, 3-6, 3-23, 3-31
Library files, 3-2
Library parameter types, 3-20, 4-1
linking, 3-13, 3-14, 3-16
programming, 3-3
program structure, 3-3
reserved names, C-1
using, 3-1, 4-1

QuickC, 1-2, 6-1

R

READ.ME file, 1-2
REALARRAY
for Microsoft Pascal, 5-20
rebooting computer
Library conditions, 2-2
Remote mode, 4-43, 4-74, 7-41, 7-69

S

secondary addresses
specifying devices, 1-39
SEG keyword
in QuickBASIC, 3-21, 3-22
select codes
specifying, 1-38
serial poll
indicates device status, 1-31, 1-34,
4-82, 7-77, B-11
service requests
BASIC, 1-29
C, 1-34
clearing, 4-83, 7-78
compatibility, 1-6
compiling in QuickBASIC, 3-14, 3-15
disabling, 1-30, 4-65
enabling, 1-29, 4-65
HP-IB standard, B-11
interrupting DMA transfers, 1-18,
1-19, 1-25, 1-28, 1-30, 1-32, 1-34
logging, 1-29, 1-30

Pascal, 1-34

priorities, 1-30, 1-32, 1-33, 4-65

processing, 1-30, 1-31

SRQ line, B-4

status, 4-84, 7-79
SETUP.BAS file

in GW-BASIC program, 2-4
SHELL

disables service requests, 1-31, 4-66
SPACES function

initializing strings, 2-15, 3-22, 4-31
string data

as binary data, 1-16

in BASIC, 1-16

initializing, 2-15, 3-22, 4-31

transferring, 1-9

variable types, 2-15, 3-22, 5-20, 5-21,

6-22, 6-23

string transfers

ending input, 1-25

ending output, 1-25

operation, 1-23

options, 1-24
Supported Languages sheet, 1-2

SYSCTL program, 1-41
system control, 1-40

T

timeout

1/0 operations, 4-90, 7-85, A-4

TIODECL.EX file

error function, 5-17
in Pascal program, 5-5

triggering devices, 4-92, 7-87
Turbo C, 1-2, 6-1
Turbo Pascal, 1-2, 5-1

U

USES metacommand, 5-5

v

variables

for data transfers, 1-8, 1-9

Vectra BASIC, 1-2, 2-1
Vectra computer

using with Command Library, 1-1

VIBAS program, 2-4

Index-9

PACKARD

[/7) HEWLETT ,

ChsaaTsoone " IR
82335-90006

Printed in U.S.A. E1291 82335-90606 Manufacturing Number

