[’5/0 HEWLETT

PACKARD

USin the -]B Instrument Tools for
:[Iltxe Elcxa ‘Afltl]_ Windows.
Microsoft-Windows.

—Lik | SRkl . ‘ §:
b]

It e b b e b UBEl

& i b b b b

A ———————

= o - g - ia - " —

e~ a = e —

|) -

| e i o

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any, errors contained
in this document. HP MAKES NO WARRANTIES OF ANY KIND WITH
REGARD TO THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED.
HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Copyright (© Hewlett-Packard Company 1991

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.
Vectra® is a U.S. registered trademark of Hewlett-Packard Company.

Printing History

First Edition - December 1991

Contents

1. Introduction
System Requirements 1-2

2. Using the Interactive HP-IB Environment

Introduction oL 0oL . 2-1
Installing the Interactive HP-IB Environment C 2-1
Getting Started with the Interactive HP-IB Environment . . . 2-2
More About the Interactive HP-IB Environment 2-3
FileMenu o000 - 2-4
Edit Menuo oo L0 oo 2-5
Setup Menu00 2-5
OQutput Menu 2-7
Enter Menu 000000 - 2-9
MiscMenuo .. 2.1
Window Menuo, 2-13
Help 000 s s .. 2-14
About the Configuration File 214
Using the Windows Recorder oo .. 216
3. Using the HP-IB Dynamic Data Exchange Server
Introductiono oL . 3-1
Installing the DDE Server 3-2
Using DDE Macros o 3-2
DDE Terminology e e e 3-3
An Analogyo Lo oL 3-3
Excel Exampleo oL, . 3-4
Microsoft Word BASIC Example 3-6
Macro Commands oL L, 3-9
DDE Identifiers L. 3-9
Debugging DDE Macros 3-12

Contents-1

Error Handling 3-12

Referenceo oL oL 000 3-13
Abort L. Lo 3-13
Clear Lo 3-14
EnterABo oo o0 s e 3-14
EnterS.o e 3-16
EOL e e e 3-16
EOL o s 3-17
Erroro 0oL 3-18
Llockouto 3-18
Localo ... 319
Match00 ... 319
OpenConfig 3-20
OutputSo 3-21
Remoteo 0o 3-21
Reset Lo 3-22
ReturnMsgo o 0oL, 3-22
SerialPollo Lo . 3-23
Status Lo Lo e 3-23
Timeout00 .. 324
Trigger oL Lo 3-24
4. Using the Windows Dynamic Link Library

Introductiono .. 4-1
Installing the Dynamic Link Library 4-1
Differences Between the DLL and the DOS Command lerary . 4-2
Writing Applications L. 4-3
Visual BASIC Programming 4-4
Visual BASIC Example 4-4
Visual BASIC Example - Event Procedures 4-7
Turbo Pascal Programming 41
Turbo Pascal Example 412
Referenceo 000, 4-19
HpibAbort 421
HpibClear 423
HpibClose 4-25
HpibControl 4-27
HpibEnter 4-31

Contents-2

HpibEntera« 4-34

HpibEnterab00 4-37
HpibEnterb00 000 4-40
HpibEnterfo o000 4-43
HpibEnterso 4-46
HpibEoi o L0 4-49
HpibEolo 4-51
HpibFastout 4-53
HpibGettermo 0oL 4-55
HpibGetVersion 4-57
HpibLlockout 4-58
HpibLocal o000 4-60
HpibMatcho 4-62
HpibOpen oo L L0 4-64
HpibOutput o .. 4-66
HpibOutputa00 4-68
HpibOutputab 4-71
HpibQutputbo oL L 4-74
HpibOutputf00 4-77
HpibOutputs 4-79
HpibPassctl 4-82
HpibPpollo 4-84
HpibPpollc00 4-86
HpibPpollu 4-90
HpibRemote 4-92
HpibRequest 0. 4-94
HpibReset 4-96
HpibSendo o0 4-98
HpibSetWaitHook 4-101
HpibSpollo 4-104
HpibStatuso 0oL 4-106
HpibTakectl0 4-111
HpibTimeout 4-113
HpibTriggero 4-115

A. Error Descriptions

Index

Contents-3

Introduction

Hewlett-Packard’s Windows tools for HP-IB provide you, a Microsoft®
Windows user, with everything you need to access and operate HP-IB
instruments using your Windows development tools and applications. Using the
HP-IB Interface with Microsoft Windows describes the three methods available
to you for accessing instruments with Windows:

m Using the Interactive HP-IB Environment to interactively control the HP-IB
bus.

m Using an application that has Dynamic Data Exchange (DDE) capabilities.

m Using the HP-IB Dynamic Link Library (DLL), which can be used in
conjunction with Windows programming languages and other development
tools.

Each method is distinct from the others, providing a selection to accommodate
your needs and experience level.

The Interactive HP-IB Environment is for those who want to perform
unrepetitive tasks such as simple instrument control, program debugging, or
finding out how an instrument will respond to certain commands. It is also
used to generate configuration files for the HP-IB DDE Server described in
chapter 3. Chapter 2 describes the Interactive HP-IB program and summarizes
the menu selections.

The HP-IB Dynamic Data Exchange Server is for novice or experienced users
who want to use their favorite application, such as Microsoft Excel, to control
instruments. Chapter 3 describes the use of the HP-IB DDE server.

The HP-IB Dynamic Link Library (DLL) is for programmers who want to use
a programming language or other Windows development tool to create their
own Windows application. The Supported Languages sheet includes a list of
programming languages supported by the DLL. Chapter 4 describes the DLL.

Introduction 1-1

Additional background information about the HP-IB interface and HP-IB
communications is available in chapter 1 and appendices A-C of the Using the
HP-IB Interface and Command Library with DOS manual.

System Requirements

You must have the following components to set up and use these software tools
for HP-IB:

m An HP Vectra® PC or IBM PC/XT/AT (or compatible) computer with
Windows 3.0 or later installed.

m The HP 82335 HP-IB Interface, which should be installed in your PC. (See
the Installing the HP-IB Interface booklet for instructions.)

m The master disks, which contain the software described on the previous page.

We also suggest that you read chapter 1 of Using the HP-IB Interface and
Command Library with DOS for general information about the capabilities of
your software tools for HP-IB.

1-2 Introduction

Using the Interactive HP-IB Environment

Introduction

The Interactive HP-IB Environment enables you to interactively control the
HP-IB bus. You can use it for such purposes as simple instrument control,
debugging, and finding out how an instrument responds to commands.

It also provides you with the environment to define the configuration of
your instrument system for use with the HP-IB DDE Server and macro
programming described in chapter 3.

Installing the Interactive HP-IB Environment

To begin using the Interactive HP-IB Environment, named HPIBINT.EXE, you
must first install it on your hard disk. Your master disks contain an install

program named WINSTALL, which copies all necessary files for you. To use
WINSTALL:

1. Insert the master disk into your flexible disk drive.
2. Run Windows, since WINSTALL is a Windows application.

3. From the Program Manager, select File, then Run. In the dialog box, type
A:WINSTALL and choose OK. If your master disk is not in drive A:, enter the
appropriate drive letter.

4. Follow the instructions displayed on the screen to complete the installation
process.

When WINSTALL is complete, you will have a new program group named
HP-IB, which will contain all of the installed programs.

Using the Interactive HP-IB Environment 2-1

Getting Started with the Interactive HP-IB Environment
To begin using the Interactive HP-IB Environment, follow these steps:

1. Open the HP-IB program group and select the Interactive HP-IB icon by
double clicking it with your mouse.

2. At the main window of the HP-IB Interactive Environment, select Setup and
Add Device. At the Add Device dialog box, enter the name of the device,
such as “Scope”, up to 10 characters. Choose OK.

3. The Setup Device Address dialog box appears, showing all valid HP-IB
Interface Select Codes (ISC), a Virtual Device box, and a Device Address
box. Select the correct Interface Card number if it is not already selected for
you. Then, if you want to simulate a conversation with a device (e.g., if you
don’t have a device or HP-IB interface available), select the Virtual Device
box. Then type the address of your device (0 through 31). Choose OK. A
box displays the default characteristics of the added device.

Notice that a full menu is now displayed across the top of the window.

4. If you want to change any default settings for the instruments, click on the
gray box that shows the current settings. A dialog box appears, in which
you can set the new values. For example, you may want to disable the
Match character if you are entering a binary file.

5. Repeat steps 2 through 4 until you have added as many instruments as you
want, up to 14.

Now that you have at least one device available, you can use the other features
of the Interactive HP-IB Environment to interactively control it. Refer to the
following section for an explanation of each menu item.

You will want to save your setup information to use again without re-entering
it. This configuration file that you save will also be used if you run the DDE
server application described in chapter 3.

You can save your current configuration to disk by choosing Save or Save

As from the File menu. Likewise, when you exit the Interactive HP-IB
Environment, you are asked if you want to exit and save the configuration. If
you choose Yes, the program exits and saves your current configuration to a
file with the name you enter. More information about the configuration file is
provided later in this chapter.

2-2 Using the Interactive HP-IB Environment

More About the Interactive HP-1B Environment

i I co R so |

New -gopy Add Device . . . String . . .

Open... Device Name . . . Number as ASCII . ..
Device Address . . . FromaFile . ..

Save Timeout . .. Binary Data . . .

Save As . .. EOI... Arbitrary Block Data . . .

— EOL... ,
Exit Match Char. . .
= High Speed Timing . . .

1

2

3

4

‘ Send Bus Commands . . . | Tile |

String . . . T
Number as ASCII . . . Abort Activity Cascade
ToaFile. .. Clear Bus Arrange lcons
Binary Data . . . Reset Bus Device Close All
Arbitrary Block Data . . . Serial Poll]
Trigger Bus DDE View Window . . .
SRQ Status Device
1
Close Cards 2
3
4

This section summarizes all of the possible menu picks for using the Interactive
HP-IB Environment, HPIBINT.EXE.

An ellipsis (...) after a menu item indicates that a dialog box will appear
when you select that item.

Using the Interactive HP-IB Environment 2-3

File Menu

New

Closes the current configuration and instrument windows so you can create

a new configuration. If you have made any changes since saving the current
configuration, a dialog box appears, asking if you want to save the changes to
your current configuration.

Yes—Saves the current configuration. If you have not yet named the
configuration, enter a file name up to 8 characters. A .IBC suffix is
automatically appended unless you specify a different suffix. If you specify a
different suffix, the interactive environment will not automatically identify
it as a configuration file. This means that it will not appear on the list of
choices shown when you select File Open. See “About the Configuration
File” later in this chapter for more information about the configuration file.

No—Clears the window without saving your changes.

Cancel—Returns to the program without saving your changes.

Open ...

Opens a saved configuration file. If you have not saved your current
configuration, a dialog box prompts you to save it or cancel. At the File Open
dialog box, type a name in the File Name box or select from the list of files. If
the file you want has a different suffix than .IBC, you will need to specify that
extension.

Save
Saves the current configuration using its current name. The current
configuration remains open so you can continue working with it.

Save As ...

Saves the current configuration, using options you select in the File Save dialog
box. Type a new name in the Filename box.

OK-—Accepts the new file name.

Cancel—Returns to the program without saving the configuration.

2-4 Using the Interactive HP-IB Environment

Exit

Exits the Interactive HP-IB Environment. If you have made any changes since
saving the current configuration, a dialog box is displayed.

Yes—Saves the current configuration. If you have not yet named the
configuration, enter a file name up to 8 characters. A .IBC suffix is
automatically appended unless you specify a different suffix. If you specify a
different suffix, the interactive environment will not automatically identify
it as a configuration file. This means that it will not appear on the list of
choices shown when you select File Open. See “About the Configuration
File” later in this chapter for more information about the configuration file.

No—Exits the program without saving the configuration.

Cancel—Returns to the program without saving the configuration.

1,2,3,4

Lists the last four configurations you opened or saved so that you can quickly
open them again without searching for them and without changing directories.
If a file has been deleted, it may still appear on the list.

Edit Menu

Copy

Copies the data from the active Enter window to the clipboard, leaving the
original data intact.

Setup Menu

Add Device ...

Brings up a dialog box in which you enter the name of a device to add. The
name can be up to 10 characters. When you enter a name and choose OK, the
Device Address dialog box appears. (See “Device Address”, below.)

Device Name ...

Brings up a dialog box which enables you to change the name of the device.

Using the Interactive HP-IB Environment 2-5

Device Address ...

Brings up a dialog box which identifies all valid HP-IB Interface Select Codes
(ISC) and a Device Address box. The valid select codes are highlighted, with
the first valid code selected as the default. The ISC is determined by the
switch settings on the interface card. The Device Address should be in the
range 0 through 31, and is typically determined by switch settings on the
instrument.

OK—Accepts the new device and displays a window that shows default
values for commonly used settings.

Cancel--Cancels your selection.

Timeout ...

Allows you to set up a timeout value in seconds for I/O operations that do not
complete (for example, the printer runs out of paper). This selection applies
to the currently active instrument. Refer to the HpibTimeout command in
chapter 4 for more information.

OK—Accepts the new timeout value.

Cancel—Cancels your selection.

EOI ...

Allows you to enable or disable EOI (End Or Identify) for the currently active
instrument. Refer to the HpibEoi command in chapter 4 for more information.

OK—Accepts the selection you made.

Cancel—Cancels your selection and returns to the program.

EOL ...

Allows you to select one of four predefined EOL (End Of Line) strings (carriage
return and linefeed, carriage return, linefeed, or semicolon), and to enable

or disable the EOL string for the currently active instrument. You can also
define your own EQL string using the Options button. Refer to the HpibEol
command in chapter 4 for more information.

OK—Saves the selection.

2-6 Using the Interactive HP-IB Environment

Cancel—Returns EOL to its previous setting.
Default—Sets the EOL string to carriage return and linefeed, and enables it.

Options—Displays more information which lets you enter an arbitrary EOL
string, up to a maximum of 8 ASCII characters.

Match Character ...

Allows you to set the termination character for the currently active instrument,
and to enable or disable the match. Refer to the HpibMatch command in
chapter 4 for more information.

OK—Accepts the termination character.
Default—Returns the termination character to 10 (linefeed), and enables it.

Cancel—Cancels your selection.

High Speed Timing ...

Allows you to enable or disable high speed timing when sending data on the
bus. This selection applies to the currently active instrument. Refer to the
HpibFastout command in chapter 4 for more information.

OK—Accepts the new high-speed timing selection.

Cancel-—Cancels your selection.

Computer

Output Menu _Museum

String . ..

Outputs a string to the currently active instrument. Bus addressing can be
enabled (Yes) or disabled (No). This window remains open until you choose
Cancel, enabling you to select another instrument and send a string to it
without having to reselect Output and String. Refer to the HpibOutputs
command in chapter 4 for more information.

OK—Accepts your selection.

Cancel—Returns you to the main menu.

Using the Interactive HP-IB Environment 2-7

Number as ASCHI . ..

Outputs a real number in its ASCII representation to the instrument defined
by the currently active window. For example, if you output -6.234, first the
ASCII negative sign is sent, then a 6, then a period, then 2, 3, and 4. Bus
addressing can be enabled (Yes) or disabled (No). This output window remains
open until you choose Cancel, enabling you to output data several times and
to several instruments without having to reselect Output and Number as
ASCII each time. Refer to the HpibOutput command in chapter 4 for more
information.

OK—Accepts your selection.

Cancel—Cancels your selection.

From a File ...

Outputs the contents of a file to the currently active instrument. Bus
addressing can be enabled (Yes) or disabled (No). This output window remains
open until you choose Cancel, enabling you to output data several times and

to several instruments without having to reselect Qutput and From a File each
time. Refer to the HpibOutputf command in chapter 4 for more information.

OK—Accepts your selection.
Cancel—Cancels your selection.

Browse—Opens a dialog box to allow you to find a file easily.

Binary Data ...

Outputs binary data (numeric data with no coding or formatting) to the
currently active instrument. Bus addressing can be enabled (Yes) or disabled
(No). You can select string (up to 40 characters), int (2-byte signed integer),
long (4-byte signed integer), float (4-byte real), or double (8-byte real) to
output. You can also select whether to turn byte swapping off or on.

This output window remains open until you choose Cancel, enabling you to
output data several times and to several instruments without having to reselect
Output and Binary Data each time. Refer to the HpibOutputb command in
chapter 4 for more information.

OK—Accepts your selection.

2-8 Using the Interactive HP-IB Environment

Cancel—Cancels your selection.

Arbitrary Block Data ...

Outputs arbitrary-block response data to the currently active instrument; the
data has a header appended to the beginning as defined by the IEEE 488.2
arbitrary block format. Bus addressing can be enabled (Yes) or disabled (No).
You can select string (up to 40 characters), int (2-byte signed integer), long
(4-byte signed integer), float (4-byte real), or double (8-byte real) to output.
You can also select whether to allow byte swapping.

This output window remains open until you choose Cancel, enabling you to
output data several times and to several instruments without having to reselect
Output and Arbitrary Block Data each time. Refer to the HpibOutputab
command in chapter 4 for more information.

OK-—Accepts your selections.

Cancel—Cancels your selections.

Enter Menu

String ...

Enters a string from the currently active instrument. Bus addressing can be
enabled (Yes) or disabled (No). This window remains open until you choose
Cancel, enabling you to enter data several times and from several instruments
without having to reselect Enter and String each time. Refer to the HpibEnters
command in chapter 4 for more information.

OK—Accepts your selections.

Cancel—Cancels your selections.

Number as ASCII ...

Enters an ASCII number from the currently active instrument, and converts

it to a real number. Bus addressing can be enabled (Yes) or disabled (No).
This window remains open until you choose Cancel, enabling you to enter data
several times and from several instruments without having to reselect Enter
and Number as ASCII each time. Refer to the HpibEnter command in chapter
4 for more information.

Using the Interactive HP-IB Environment 2-9

OK—Accepts your selections.

Cancel—Cancels your selections.

To a File ...

Reads data from the currently active instrument and outputs it directly to

a file with no conversion. Bus addressing can be enabled (Yes) or disabled
(No). The file can be appended to; if the Append to File box is not checked,
any existing file will be overwritten. This window remains open until you
choose Cancel, enabling you to enter data several times and from several
instruments without having to reselect Enter and To a File each time. Refer to
the HpibEnterf command in chapter 4 for more information.

OK—Accepts your selections.
Cancel—Cancels your selections.

Browse—Opens a dialog box to allow you to find a file easily.

Binary Data ...

Reads binary data (numeric data with no coding or formatting) from the
currently active instrument. Bus addressing can be enabled (Yes) or disabled
(No). You can choose how the data is to be interpreted by selecting string
(up to 40 characters), int (2-byte signed integer), long (4-byte signed integer),
float (4-byte real), or double (8-byte real). You can also select whether to
allow byte swapping.

This window remains open until you choose Cancel, enabling you to enter data
several times and from several instruments without having to reselect Enter
and Binary Data each time. Refer to the HpibEnterb command in chapter 4
for more information.

OK-—Accepts your selections.

Cancel—Cancels your selections.

Arbitrary Block Data ...

Reads arbitrary block data from the currently active instrument, and reads
and interprets a header that is defined in IEEE 488.2 arbitrary block format.
Bus addressing can be enabled (Yes) or disabled (No). You can select how the

2-10 Using the Interactive HP-IB Environment

data is to be interpreted by choosing string (up to 40 characters), int (2-byte
signed integer), long (4-byte signed integer), float (4-byte real), or double
(8-byte real). You can also select whether to allow byte swapping. -

This window remains open until you choose Cancel, enabling you to enter data
several times and from several instruments without having to reselect Enter
and Arbitrary Block Data each time. Refer to the HpibEnterab command in
chapter 4 for more information.

OK—Accepts your selections.

Cancel—Cancels your selections.

Misc Menu

Send Bus Commands ...

Allows you to send arbitrary HP-IB bus commands to the bus. You can
specify arbitrary talk or listen addresses (TA and LA); Unlisten (UNL); Untalk
(UNT); My Talk Address (MTA), My Listen Address (MLA), or neither; and
the universal commands Device Clear (DCL), Group Execute Trigger (GET),
Go To Local (GTL), Local Lockout (LLO), Selected Device Clear (SDC), and
Take Control (TCT). You can also use the User Specific area to send any other
arbitrary command. Refer to the HpibSend command in chapter 4 for more
information.

OK-——Accepts your selections.

Cancel—Cancels your selections.

Abort Activity

Aborts bus activity. Refer to the HpibAbort command in chapter 4 for more
information.

Clear Bus

Sends a device clear message to all devices. Refer to the
HpibClear(select_code) command in chapter 4 for more information.

Using the Interactive HP-IB Environment 2-11

Clear Device

Sends a device clear message to the selected device. Refer to the
HpibClear(device_address) command in chapter 4 for more information.
Reset Bus

Resets the bus to its start-up state. If it is system controller, it becomes active
controller; if it is not system controller, the active controller status does not
change. Refer to the HpibReset command in chapter 4 for more information.
Reset Bus does not change the settings of any devices.

Serial Poll

Performs a serial poll on the currently active instrument and displays the
response. Refer to the HpibSpoll command in chapter 4 for more information.
Trigger Bus

Triggers all devices on the interface select code. Refer to the
HpibTrigger(select_code) command in chapter 4 for more information.

Trigger Device

Triggers the selected device. Refer to the HpibTrigger(device_address)
command in chapter 4 for more information.

SRQ Status

Returns the status of the SRQ (Service Request) line in a message box.

Close Cards

Closes all HP-IB cards. This is useful when you are using the DLL and you
wish to force all cards to be closed.

2-12 Using the Interactive HP-1B Environment

Window Menu

Tile

Arranges all of the non-icon instrument windows so that all are visible and
none overlap.

Cascade

Arranges all of the instrument windows that are not currently icons. They will
be overlapped in such a way that all title bars are visible.

Arrange Icons

Arranges all of the icons in a neat row at the bottom of the main window.

Close All

Closes all of the instrument windows.

DDE View Window

Displays a box of information that reflects the server’s interpretation of what
the program is doing. This information is useful for debugging DDE programs.
Use DDE View Window while running a macro and stepping through it. See
chapter 3 for more information on using DDE.

This menu is available only in the DDE Server application; it is not available in
the Interactive Environment application.

1,2,3,4

Lists the current instrument windows, up to nine. If more than nine
instruments are current, the message “More Windows” is displayed at the end
of the list.

Using the interactive HP-IB Environment 2-13

Help

Index

Displays the index for help topics about the HPIBINT program. Choose any of
the underlined items to get further information.

Getting Started
Lists the steps to follow when using the HPIBINT program for the first time.

Commands

Provides descriptions of each of the menu commands.

Using DDE
Provides help on using the Dynamic Data Exchange capabilities.

Using Help

Provides basic information on using Windows Help.

About . ..

Brings up a dialog box displaying version information about the Interactive
HP-IB Environment. Choose OK when finished viewing.

About the Configuration File

When you save a file, it is saved as an HPIB configuration file. The format of
the saved file is described here.

There will always be an [HPIB] section that lists each of the configured
instruments. The first instrument will be INSTR1, the second will be INSTR2,
and so on. The values these instruments are set to are the names of the
instruments.

All other sections in the configuration file are the settings for each instrument.
There will be one section for each instrument, and each will contain the

2-14 Using the Interactive HP-1B Environment

following entries: Address, Timeout, DDETopic, EOI, Virtual, EOLLength,
EOLEnable, EOLPick, EOLString, MatchEnable, MatchChar, and Timing.

The left column in the following table shows a sample HPIB configuration file,

with explanations in the right column (the explanations are not part of the

file):

[HPIB]
INSTR1=SCOPE
[SCOPE]
Address=702
Timeout=30.00
DDETopic=SCOPE
EOI=1

Virtual=0
EOLLength=2

EOLPick=1

EOLEnable
EOLString=13,10,0,0,0,0,0,0
MatchEnable=1
MatchChar=10

Timing=0

Device address of the first instrument

HP-IB address of this device

Timeout value in seconds

1 = EOI enabled, 0 = disabled
0 = real device, 1 = virtual device
Length of the EOL string

0 = user-defined EOL, 1 = CRLF,
2 = CR, 3 = LF, 4 = semicolon

1 = enabled, 0 = disabled

ASCII value of the EOL string

1 = enabled, 0 = disabled

ASCII value of the match character

1 = high-speed timing enabled, 0 = disabled

You

can edit these settings with any text editor (such as NOTEPAD).

Using the Interactive HP-IB Environment

2-15

Using the Windows Recorder

As you become more familiar with the Interactive HP-IB Environment you may
find yourself frequently repeating the same sequence of steps. In that case, you
may want to use the Windows application named Recorder, which enables you
to record a macro (a sequence of keystrokes and mouse actions) to automate
the steps you frequently repeat. Refer to Microsoft Windows User’s Guide for
details on writing a macro with Recorder.

2-16 Using the Interactive HP-IB Environment

Using the HP-IB
Dynamic Data Exchange Server

Introduction

Dynamic Data Exchange (DDE) is a standard method for Windows
applications to communicate and exchange data with each other. Because
an application must be written to take advantage of DDE, not all Windows
applications necessarily support the use of DDE. However, many, such as
Microsoft Excel and Microsoft Word for Windows, do support DDE.

The HP-IB DDE program provided with your HP 82335 HP-IB interface—
along with other Windows applications that support DDE through their

macro language —enables you to control instruments and acquire data. To
communicate with the HP-IB DDE Server you need to write a macro, using the
macro language provided by your application. In turn, the HP-IB DDE Server
controls the instruments you have configured on your computer, and returns
the requested data.

HP recommends that you familiarize yourself with the DDE capabilities of your
application before you continue reading this chapter.

This chapter provides a few simple examples, and describes how to use an
application’s macro language to talk to the HP-IB DDE Server. By referring
to the examples, you can develop your own macros. Although you may be
using an application other than Microsoft Excel or Microsoft Word, which the
examples use, you can get an idea of how to structure macros for instrument
control through DDE.

Following the examples is further reference information about DDE, including
tables showing valid syntax for your macros using the HP-IB DDE Server. At
the end of the chapter is a reference section which describes each of the DDE
items.

Using the HP-IB DDE Server 3-1

Installing the DDE Server

To begin using the HP-IB DDE Server, named HPIBDDE, you must first
install it on your hard disk. Your master disks contain an install program
named WINSTALL, which copies all necessary files for you.

To use WINSTALL:
1. Insert the master disk into your flexible disk drive.
2. Run Windows, since WINSTALL is a Windows application.

3. From the Program Manager, select File, then Run. In the dialog box, type
A:WINSTALL and choose OK. If your master disk is not in drive A:, enter the
appropriate drive letter.

4. Follow the instructions displayed on the screen to complete the installation
process.

When WINSTALL is complete, you will have a new program group named
HP-IB, which will contain all of the installed programs.

Using DDE Macros

HP’s HP-IB DDE Server application does not provide a macro language itself;
it is a server for clients. You use the macro notation provided by the client,
such as Excel, and fill in the values that are valid for the HP-IB DDE Server.

There is not yet a standard macro language for Windows applications, so
notation may vary from one application to another. Fortunately, however, a
limited number of DDE commands exist, and the syntax for these commands is
similar in each macro language.

If you are familiar with any application’s macro language, you will find the
DDE capabilities of this application reasonably easy to learn. You can use

DDE commands in macros to start the HP-IB DDE Server, set up a device,
send data to a device, and get data from a device.

The configuration file required to operate the DDE Server is described in
chapter 2.

3-2 Using the HP-IB DDE Server

Computer
. Museum

DDE Terminology

Several terms are defined here to help clarify the concepts described in this
chapter.

Two applications participating in dynamic data exchange are having a DDE
conversation. The application that initiates the conversation is the client
application (such as Excel); the application responding to the client is the
server application. (HP-IB DDE is always the server.)

A DDE conversation takes place between two windows, one for each of the
participating applications. The window may be the main window of the
application, a window associated with a specific document, or a hidden window
whose only purpose is to process DDE messages. The HP-IB DDE Server is
generally iconized because none of its input or output needs to be visible to the
user outside of the client application.

An Analogy

As an introduction to macro commands and DDE identifiers, let’s look at an
analogy between a telephone call and DDE:

Phone Call DDE Excel Word BASIC

Macro Commands | Macro Commands
Dial a number INITIATE DDElnitiate
Hang up the phone |TERMINATE DDETerminate
Ask for information | REQUEST DDERequest
Provide information | POKE DDEPoke
Give a command EXECUTE DDEExecute

Similarly, the DDE identifiers can be related to a phone call:

Phone Call DDE Identifiers
Place you called Application

Person there you want to talk to | Topic

Subject you want to talk about |Item

Using the HP-1B DDE Server 3-3

More information on the specifics of DDE identifiers and macro commands
follows the examples below. Check the documentation for your application to
identify its macro command syntax and use of identifiers.

Excel Example

The following DDE macro example illustrates the use of DDE to communicate
with instruments using a Microsoft Excel spreadsheet.

Before running a macro such as this, you must use the Interactive Environment
to define the configuration of your system, the default operating characteristics,
and the name of each instrument to use. Refer to chapter 2 for information on
generating the configuration file.

Note that all command names and identifiers are case-insensitive. You may use
uppercase or lowercase letters.

xlexample AUTOSCALE
=ECHO({FALSE) WAVEFORM:FORMAT WORD
=INITIATE("HPIBDDE" "MAIN") :DIGITIZE CHANNEL1
=EXECUTE(A3,"[OPENCONFIG(setup1)]" ‘WAVEFORM.DATA?
=TERMINATE(A3J)

=INITIATE("HPIBDDE","SCOPE")

=EXECUTE(AB,"[Abor]")

=EXECUTE(AB,"[Clear(device)]"
=POKE(AB,"Output3(30)".B1)

=POKE (Ab,"QutputS(30)",B2)

=POKE (AB,"OutputS(30)".B3)

=POKE(AB,"OutputS(30)".54)
=SET.VALUE(D1:D4000,REQUEST (AB,"EnterAB(8000, int)")
=TERMINATE(AB)

=SELECT(D1:D4000)

=NEW(2)

=GALLERY.LINE(2,FALSE)

=RETURN(

3-4 Using the HP-IB DDE Server

10.

11.

12.

13.

. Indicates the name of the macro.
. Turns off screen updates in the macro to increase speed.

. Opens a channel with the Main topic in HPIBDDE. This returns a number,

or handle, that identifies the link with Main. This handle must be used in
all subsequent Excel cells that talk to Main. In the phone call analogy, the
INITIATE command is like dialing the phone and beginning a conversation
with Main.

. Opens the configuration file named SETUP1.IBC. This is the file generated

using the Interactive HP-IB Environment described in chapter 2.

Closes the channel to Main. This is similar to hanging up the phone.

. Opens a channel to the device named SCOPE, which is defined in the

configuration file SETUP1.IBC, and returns a handle that Excel will use
to talk through that channel. Note that any further instructions regarding
this device need to refer to the handle in this cell, which contains the
handle for SCOPE—usually as the instruction’s first parameter.

This is similar to dialing the number (INITIATE) to someplace (the
HPIBDDE application) and asking to speak to someone (SCOPE).

. Aborts all activity on the interface.
. Clears the device named SCOPE (identified by cell A6).
. Takes the string from cell B1 (:AUTOSCALE) and sends it to the scope.

The string has a maximum length of 30 bytes.

Takes the string from cell B2 (:WAVEFORM:FORMAT WORD) and sends
it to the scope. The string has a maximum length of 30 bytes.

Takes the string from cell B3 (:DIGITIZE CHANNEL1) and sends it to the
scope. The string has a maximum length of 30 bytes.

Takes the string from cell BA:WAVEFORM:DATA?) and sends it to the
scope. The string has a maximum length of 30 bytes.

Brings all of the data into the spreadsheet. Cells D1 through D4000 are
loaded with the 4000 integer values resulting from the DDE request to the
DDE server. REQUEST tells HPIBDDE to do an “arbitrary block enter”
of 8000 bytes from SCOPE, and return them to the SET.VALUE macro

command as 4000 integer values separated by carriage returns. (Carriage

Using the HP-IB DDE Server 3-5

return is the default separator for data.) The macro command then stores
the data in cells D1:D4000.

14. Closes the communication channel between Excel and the scope. Similar to
hanging up the phone.

15. Selects the data that was stored in cells D1 through D4000.
16. Makes a new chart.
17. Changes the format of the chart to be a line chart.

18. Ends the macro and returns control to whatever called the macro.

Microsoft Word BASIC Example

The following example illustrates a conversation between HPIBDDE and three
instruments, using a Word BASIC program.

Sub MAIN

Dim dlg As Dialog UserDialog

b

’Initiate a link with ’Main’ to open up the configuration file,
‘which contains 3 instruments: "SCOPE", "METER'", and "FUNCGEN".
b

MainChannel = DDEInitiate("HPIBDDE'", "Main")

DDEExecute MainChannel, "[OpenConfig(WordSamp)]"

DDETerminate MainChannel

b

’Now that three devices exist in HPIBDDE, initiate links with them
b

ScopeChannel = DDEInitiate("HPIBDDE", "SCOPE")
Meter = DDEInitiate("HPIBDDE", '"METER")
FuncGenChannel = DDEInitiate("HPIBDDE'", "FUNCGEN")

?

’Do some initial setup
)

DDEExecute ScopeChannel, "Reset"
DDEExecute ScopeChannel, "Abort"

3-6 Using the HP-IB DDE Server

DDEExecute ScopeChannel, "Clear(bus)"

)

'Configure the Function Generator
b

DDEPoke FuncGenChannel, "OutputS(30)", "FU3AM2VQ"

)

'Configure the Scope
)

DDEPoke ScopeChannel, "OutputS(30)", ":AUTOSCALE"

DDEPoke ScopeChannel, "OutputS(30)", ":WAVEFORM:FORMAT WORD"
DDEPoke ScopeChannel, "OutputS(30)", ":DIGITIZE CHANNEL1"
DDEPoke ScopeChannel, "OutputS(30)", " :WAVEFORM:DATA?Z"

)

'Get data from the scope

ScopeReturn$ = DDERequest$(ScopeChannel, "EnterAB(8000, int)")
B$ = Left$(ScopeReturn$, 100)

b

'Print some data from the scope

b

Begin Dialog UserDialog 400, 70
0KButton 170, 50, 70, 14
GroupBox 3, 20, 394, 22, ""
Text 6, 27, 390, 12, B$

End Dialog

Dialog dlg

b

'Configure the VoltMeter

b

DDEPoke Meter,"OutputS(30)", "INBUF ON;DCV 30,.1;NPLC O;AZERD OFF"
DDEPoke Meter,"DutputS(30)", "DELAY O;DISP OFF;LDCK ON;EMASK 2047"
DDEPoke Meter,"OutputS(30)", "RQS 105;TARM HOLD;MSIZE 1000,150"
DDEPoke Meter,"ODutputS(30)", "MEM FIFO;MFORMAT SINT;OFORMAT ASCII"
DDEPoke Meter,"OutputS(30)", "TRIG AUTO;NRDGS 50,AUTO;SUB 1"
DDEPoke Meter,"OutputS(30)", "TARM SGL,10;BEEP ONCE;SUBEND"
DDEPoke Meter,"OutputS(30)", "CALL 1"

)

’Wait for the VoltMeter to set SRQ

Using the HP-IB DDE Server 3-7

1

SrqStatus$ = DDERequest$(Meter, "Status(SRQ)")
While Asc(SrqStatus$) <> Asc("1")

SrqStatus$ = DDERequest$(Meter, "Status(SRQ)")
Wend

1

>Serial Poll the VoltMeter

1

SrqResponse$ = DDERequest$(Meter, "SerialPoll")
b

’Read the data from the VoltMeter and print some of it
b
MeterReturn$ = DDERequest$(Meter, "EnterS(1000)")
B$ = Left$(MeterReturn$, 100)
Begin Dialog UserDialog 400, 70
OKButton 170, 50, 70, 14
GroupBox 3, 24, 394, 22, "

Text 6, 32, 390, 12, "Data = " + B$

GroupBox 3, 3, 394, 22, "!

Text 6, 11, 390, 12,"Serial Poll Response = " + SrqResponse$
End Dialog
Dialog dlg

1

*Terminate the links with all devices
b

DDETerminate ScopeChannel
DDETerminate FuncGenChannel
DDETerminate Meter

3

End Sub

3-8 Using the HP-IB DDE Server

Macro Commands

To successfully use DDE, you must become familiar with the macro language
of the application you are using. In every macro language, there are only five
commands to implement DDE support:

INITIATE Initiate a DDE conversation

TERMINATE Terminate a DDE conversation

POKE Send data to another application
REQUEST Acquire data from another application
EXECUTE Execute commands in the other application

The parameters to these commands tell Windows the application, topic, and
item that you want to use.

DDE Identifiers

Each DDE conversation has three identifiers to tell Windows which application
you are talking to and what you want to talk about. The identifiers are:

m Application

m Topic

m [tem

Application The name of the program you want to talk to (always
HPIBDDE)

Topic What you want to talk about

Item The information within a topic

HP’s DDE server application is always HPIBDDE. There is initially only one
topic, Main, which enables you to add new topics. These new topics are the
actual devices on the HP-IB bus. The item parameter indicates what you

want to do to the device, such as output a string (OutputS) or clear the bus
(Clear(bus)).

Using the HP-IB DDE Server 3-9

The following tables list all possible applications, topics, and items that HP’s
DDE Server recognizes. The access method refers to the macro commands used
to access the capabilities of the server. Macro commands are described in the
next section.

Applications for HPIBDDE

Application Description
HPIBDDE | HP’s HP-IB DDE Server

Topics for HPIBDDE

Topic Description
System Gives information about the state of the DDE
Server
Main Affects the DDE Server
Device names (e.g., Scope) Affects the HP-IB bus

Items for the System Topic

Item Description Access Method

Sysltems Returns a list of all items for the System |REQUEST
topic

Topics Returns a list of all topics defined for the | REQUEST
DDE server

ReturnMessage Returns the last error message from the |REQUEST
DDE server

Status Returns a status message from the DDE |REQUEST
server

Formats Returns a list of all formats supported by | REQUEST
the DDE server

3-10 Using the HP-IB DDE Server

Items for the Main Topic

Item Syntax Access Method
OpenConfig [OpenConfig(d:\path\ filename)] EXECUTE
Items for Device Topics
Item Syntax Access Method

Abort [Abort] EXECUTE
Clear [Clear(bus|device)] EXECUTE
EnterAB Enter AB(length,type,separator) REQUEST
EnterS EnterS{length) REQUEST
EOI [EOI(truelfalse)] EXECUTE
EOL EOL POKE

Llockout [Llockout) EXECUTE
Local [Local(bus|device)] EXECUTE
Match Match(truelfalse) POKE

OutputS OutputS(length) POKE

Remote [Remote(bus|device)] EXECUTE
Reset [Reset] EXECUTE
Serial Poll Serial Poll REQUEST
Status Status(SRQ) REQUEST
Timeout Timeout POKE

Trigger [Trigger(bus|device)] EXECUTE

Each of the items for the device and main topics is described in more detail in
the reference section later in this chapter.

Using the HP-IB DDE Server 3-11

Debugging DDE Macros

To aid in the debugging of your macros, a DDE View window is available in
the HP-IB DDE Server. You can open this window by choosing Window and
DDE View from the menus in the server. This window displays information
about what your macro is sending to the server. It will display only valid
commands that are sent, so if nothing shows up in this window, something is
wrong with your macro.

If nothing appears in the window, check to make sure that you have initiated
a link with the device. If you are using Excel, make sure that the first
parameter to all of your DDE commands is the name of the cell containing the
=INITIATE command. Also, make sure that all of the parameters sent to the
server are valid.

If the INITIATE command fails, make sure that HPIBDDE is running, and
that it contains the devices you are trying to control. For example, if you are
trying to initiate a link to the device named SCOPE, make sure that SCOPE is
available in the HP-IB DDE Server.

You can bring devices into HPIBDDE by using the OpenConfig() command.
You can then verify the availability of a device by opening up the DDE Server
icon, and looking at the device windows.

Error Handling

After each command is sent to the HP-IB DDE Server, an error status

is available to your application. Two items are updated: [Error] and
[ReturnMessage]. The [Error] item will contain an error number, with zero
indicating that no error occurred. The [ReturnMessage] item will contain a
string that corresponds to the [Error] error number. (For example, if [Error]
= 0, [ReturnMessage] will be "No Error".)

3-12 Using the HP-IB DDE Server

The following Microsoft Excel example shows how to retrieve this information
from the HP-IB DDE Server:

=INITIATE("HPIBDDE", "Scope")
=EXECUTE(A2, "[ABORT]")
=REQUEST(A2, " [Exror]")
=REQUEST (A2, " [ReturnMsg]")
=JF(A4=0,TRUE, ALERT(AS,3))

Always include error checking after each command is sent to the HP-IB DDE
Server.

Reference

This section presents a detailed DDE Library syntax reference for Microsoft
Excel and Microsoft Word BASIC.

Abort

This command aborts all activity on the interface.

Syntax
[Abort]

Examples
Excel: =EXECUTE(A2,"[abort]")
Word BASIC: DDEExecute ScopeChannel," [Abort]"

Using the HP-IB DDE Server 3-13

Clear

This command returns a device to a known, device-dependent state. It can be
addressed to the interface or to a specific device.

Syntax

[Clear (bus_or_device)]

bus_or_device specifies whether to clear the bus or device. Can take one of
two values: bus or device.

Examples
Excel: =EXECUTE(A2," [clear(device)]")
Word BASIC: DDEExecute ScopeChannel, "[Clear(bus)]"

EnterAB

This command enters arbitrary-block program data (numeric or string data
with IEEE-488.2 coding) from a device or the interface. This command also
can convert binary data into a string representation of the data, making it
usable by most Windows applications. Reading continues until one of these
events occurs:

m The maximum number of bytes specified is received.

m A linefeed is encountered with the EOI line sensed true, if the coding
indicates indefinite length.

m The number of bytes indicated by the coding is received, if the coding
indicates definite length.

3-14 Using the HP-IB DDE Srrv er

Syntax

EnterAB (length, type, separator)

length
type

separator

Examples

specifies the maximum number of bytes to enter.

specifies the type of data to enter: string, int (2-byte signed
integer), long (4-byte signed integer), float (4-byte real), or
double (8-byte real).

defines the character that separates the data items in the
string representation of the binary data. Many Windows
applications cannot use binary data directly; therefore, the
EnterAB command has the ability to convert the binary data
into a string representation of the data. Valid separators are:

CR carriage return

LF linefeed

CRLF carriage return/linefeed

Tab tab character

comma comma

space space

bin don’t convert to string; keep as binary data

The default separator is CR if the separator parameter is
omitted.

Excel: =REQUEST(A2,"EnterAB(55,string,tab)")

Word BASIC: A$ = DDERequest$(ScopeChannel, "EnterAB(8000, int,LF)")

Using the HP-IB DDE Server 3-15

EnterS

This command enters a character string from a device or the interface. Reading
continues until one of these events occurs:

m The EOI line is sensed true, if it is enabled.
m The termination character set by Match is received (linefeed is the default).

m The maximum number of characters specified is received.

Syntax

EnterS (length)

length specifies the maximum length of the string.
Examples

Excel: =REQUEST(C14,"EnterS(70)")
Word BASIC: C$ = DDERequest$ (ScopeChannel, "EnterS(8000)")

EOI

This command enables or disables the End Or Identify (EOI) mode of the
interface. It is used to:

m Enable or disable a write operation to set the EOI line on the last byte of the
write.

m Enable or disable a read operation to terminate upon sensing the EOI line
true.

The default is EOI enabled.

3-16 Using the HP-IB DDE Server

Syntax

[EOI (status)]

status specifies whether to enable or disable EOI. Can take one of two
values: true enables EOI; false disables EOI.

Examples

Excel: =EXECUTE(A2,"[E0OI(true)]")
Word BASIC: DDEExecute ScopeChannel, "[E0I(false)]"

EOL

This command defines the End Of Line (EOL) string that is to be sent
following every OutputS command. The default is carriage return and linefeed.
The maximum EOL length is 8 characters. You can disable EOL by setting
EOL to a string containing only a comma.

Syntax

EOL

Examples

Excel:
=SET.VALUE(B5,"10,13") set the EOL string to CR/LF
=POKE(A2,"EOL",B5) B5 contains the EQL string

Word BASIC:

Rem Disable EOL
DDEPoke FuncChan, "EOL", ","

Using the HP-IB DDE Server 3-17

Error

The [Error] item returns an error number corresponding to the last error that
occurred in the HP-IB DDE Server. Check this item after each call to the DDE
Server to ensure that no errors have occurred; a value of zero indicates that
there are no errors.

Syntax
(Error]

Examples
Excel: =REQUEST(A2," [Error]"
Word BASIC: A$=DDERequest$ (ScopeChannel," [Error]")

Llockout

This command sends a Local Lockout (LLO) to disable a device front panel. It
is received by all devices on the interface, whether or not they are addressed to
listen.,

Syntax
[Llockout]

Examples
Excel: =EXECUTE(A2,"[Llockout]")
Word BASIC: DDEExecute MeterChannel, " [Llockout]"

3-18 Using the HP-IB DDE Server

Local

This command executes a Go To Local (GTL) or clears the REN line to enable
a device front panel.

Syntax
[Local (bus_or_device)]

bus_or_device specifies whether to clear the REN line on the bus the device is
connected to or to send a GTL command to the device. Can
have one of two values: bus, which clears the REN line; or
device, which sends a GTL command to the device.

Examples
Excel: =EXECUTE(A2,"[Local(bus)]")
Word BASIC: DDEExecute ScopeChannel, "[Local(device)]"

Match

This command defines the character used by EnterS for termination. The
default character is linefeed.

Syntax

Match (status)

status specifies whether to enable or disable Match. Status can take
one of two values: true enables Match, false disables Match.

Using the HP-IB DDE Server 3-19

Examples
Excel:

=SET.VALUE(BS,"10")
=POKE (A2, "Match(true)",B5) B5 contains the Match character

Word BASIC:

Rem Disable Match character
DDEPoke ScopeChannel, '"Match(false)", "10"

OpenConfig

This command opens a configuration file that was created using the Interactive
HP-IB Environment.

Syntax

[0penConfig(drive:\path\ filename.ext)]

drive: the letter of the drive that contains the configuration file. (The
default is the current drive.)

path the full path to the configuration files. (The default is the
current directory.)

filename the name of the configuration file.

.ext the extension on the configuration file. (The default is IBC.)

Examples

Excel: =EXECUTE(A2," [OpenConfig(C:\HPIB\myconfig)]"
Word BASIC: DDEExecute MainChannel, "[OpenConfig(myconfig)]"

3-20 Using the HP-IB DDE Server

OutputS

This command outputs a string to a specified device or to the interface. After
the string is sent, the EOL string is sent and the EOI line is set (if enabled).

Syntax

OutputS (length)

length specifies the maximum length of the string.
Examples

Excel: =POKE(C14,"0utputS(30)",C9) (C9 contains the string to be sent)
Word BASIC: DDEPoke FuncChan, "OutputS(30)", " :AUTOSCALE"

Remote

This command places a device in Remote mode to disable the device front
panel. It can be addressed to the interface or to a specific device.

Syntax
[Remote (bus_or_device)]

bus_or_device specifies whether to set the REN on the bus or on the device.
Can have one of two values: bus sets the REN line on the
bus the device is attached to; device sets the REN line on the
device, and addresses the device.

Examples
Excel: =EXECUTE(A2," [Remote(bus)]")
Word BASIC: DDEExecute ScopeChannel, "[Remote(device)]"

Using the HP-IB DDE Server 3-21

Reset

This command sets the interface to its start-up state, in which it is not
listening and not talking,.

In addition, if the interface was system controller, then it will also become
active controller.

Syntax

[Reset]

Examples
Excel: =EXECUTE(C14,"[Reset]")
Word BASIC: DDEExecute ScopeChannel, "[Reset]"

ReturnMsg

The [ReturnMsg]| item returns a string that corresponds to the last error that
occurred in the HP-IB DDE Server.

Syntax
[ReturnMsg]

Examples
Excel: =REQUEST(A2," [ReturnMsg]")
Word BASIC: A$=DDERequest$(Scopechannel, "[ReturnMsg]")

3-22 Using the HP-IB DDE Server

SerialPoll

This command performs a serial poll of a specified device and returns the
device’s serial poll response byte. \

Syntax
SerialPoll

Examples
Excel: =REQUEST(A2,"SerialPoll")
Word BASIC: A$ = DDERequest$(ScopeChannel, "SerialPoll")

Status

This command determines the current interface status regarding a particular
condition. It sets a variable representing that status.

Syntax

Status(condition)

condition specifies what condition to get the status of. Currently, only
one value can be used: SRQ.

Examples

Excel: =REQUEST(C14,"Status(SRQ)")
Word BASIC: A$ = DDERequest$(ScopeChannel, "Status(SRQ)")

Using the HP-IB DDE Server 3-23

Timeout

This command sets an interface timeout value in seconds for I/O operations
that do not complete (for example, the printer runs out of paper).

Syntax

Timeout

Examples
Excel: =POKE(AS5,"Timeout",C7) (C7 contains the timeout value)
Word BASIC: DDEPoke FuncGenChannel, "Timeout", '"30"

Note Setting the timeout value to zero disables timeouts.

v

Trigger

This command triggers one or more devices.

Syntax
[Trigger (bus_or_device)]

bus_or_device specifies whether to trigger the bus the device is connected to
or trigger the device. Can take one of two values: bus triggers
the bus; device triggers the device.

Examples
Excel: =EXECUTE(AS," [Trigger(bus)]")
Word BASIC: DDEExecute ScopeChannel, "[Trigger(device)]"

3-24 Using the HP-IB DDE Server

Using the Windows Dynamic Link Library

Introduction

This chapter describes the Windows Dynamic Link Library (DLL) for HP-IB,
which enables programmers to access HP-IB instruments using general-purpose
Windows software development tools. This chapter assumes that you have
purchased a program development environment for Microsoft Windows and
that you are familiar with writing Windows applications.

Installing the Dynamic Link Library

To begin using the Windows Dynamic Link Library, you must first install
it on your hard disk. Your master disks contain an install program named
WINSTALL, which copies all necessary files for you.

To use WINSTALL:
1. Insert the master disk into your flexible disk drive.
2. Run Windows, since WINSTALL is a Windows application.

3. From the Program Manager, select File, then Run. In the dialog box, type
A:WINSTALL and choose OK. If your master disk is not in drive A:, enter the
appropriate drive letter.

4. Follow the instructions displayed on the screen to complete the installation
process.

Using Windows DLL 4-1

Differences Between the DLL and the DOS Command
Library

The Windows DLL is similar to the DOS Command Library, with only three
differences in functionality:

m The Windows DLL does not support DMA. The DOS command libraries
have the IODMA function.

m The Windows DLL has two additional commands, HpibOpen and HpibClose,
which allow the Windows DLL to function in the multi-tasking environment
of Windows 3.0.

m The Windows DLL has an additional function, HpibSet WaitHook, which
defines a function to be called when the user application is waiting for
devices to finish handshaking the HP-IB bus. It enables Windows to function
normally despite a timeout condition in progress on the HP-IB bus.

In addition and more specifically, using the Windows DLL is similar to using
the C library, CLHPIB.LIB, with three differences:

m All Windows DLL functions begin with Hpib instead of IO, with only the
first letter after Hpib capitalized. For example, the IORESET command in
the DOS library is named HpibReset in the Windows DLL.

m All Windows DLL functions have an added parameter. The first
parameter in every function is the handle returned by HpibOpen, with
all other parameters the same as their IO counterparts. For example,
where the DOS library would call HpibReset (7L), the DLL would call
HpibReset (hHpib, 7L).

m All Windows DLL functions have four error return values in addition to the
error values returned by the DOS library commands. The new error return
values are:

EOPEN Indicates that an error occurred during a call to HpibOpen.
ENOOPEN Indicates that the card has not been opened.
ECLOSE Indicates that an error occurred during a call to HpibClose.
EHANDLE Indicates that an invalid handle was received.

4-2 Using Windows DLL

Writing Applications

The HpibOpen command, described in detail in the next section, must be
called before any other library routines are used. It returns a handle to the
HP-IB interface, which must be used as the first parameter to all other library
routines. HpibOpen locks out all other applications that are using the DLL
from using that HP-IB interface until the application closes the interface with
the HpibClose command. It can return error values of NOERR (no error),
ESEL (invalid select code), and EOPEN (card already open).

The HpibClose command, also described in the next section, has one
parameter—the handle that HpibOpen returned. It unlocks an interface,

enabling other applications to access the interface. It can return error values of
NOERR (no error) and ECLOSE (cannot close the card).

Note If you want exclusive use of a card, keep it open. Make sure,
however, that you eventually close the card, to let other
i applications have a chance to use it. If you do not want

exclusive use of the card, encapsulate all function calls with
HpibOpen and HpibClose calls.

Note that it is possible to have a single application or multiple applications
controlling a single or multiple interfaces.

Your application development environment should include a method to call
functions in a DLL. You should become familiar with your development
environment to find out how to call DLL functions. For example, in C, you
need to use #include to include the file hpib.h, and link with the file hpib.lib to
create your applications. In Visual BASIC, however, you need only to include a
new global.BAS file.

Refer to the Supported Languages sheet for a complete list of Windows
application development environments that are supported with include files. If
you are using an environment that is not supported, you can create your own
include file by following the instructions in your environment’s manuals.

Using Windows DLL 4-3

Visual BASIC Programming

To write a Visual BASIC program, you first design the interface, which involves
adding controls to a form. Typical controls are pushbuttons, labels, textboxes,
and pictureboxes. When the program runs, the user, another application, or
Windows itself can generate events associated with the various controls. For
example, if a user clicks on one of the pushbuttons, a click event occurs for that
particular button. You write BASIC code called an event procedure for that
particular pushbutton; the event procedure executes each time the click event
occurs.

To use the HP-IB DLL with Visual BASIC, create your application in the
usual way and perform these steps within Visual BASIC before running the
application:

1. Add the file HPIBGLBL.TXT to the GLOBAL.BAS module of your program.

To do this, double-click on GLOBAL.BAS in the project window, then select
Code, Load Text ... , select HPIBGLBL.TXT, and click on the Merge button.

2. Include the error handling routine, HpibErrStr$, in your project.

To do this, select File, Add File ... , then select the file HPIBERR . TXT.
You now have access to all the functions in the DLL, as well as the error
handling function HpibErrStr$.

Visual BASIC Example

The following example demonstrates the use of the HP-IB DLL as well as the
error handling routine.

4-4 Using Windows DLL

Wavef
E‘ﬂ HP 54601A OSCILLOSCOPE svolom _|
Integral l
Print Form l
Exit |
ViIDiv
Offset
| SiDiv |
Visual BASIC Example - The Form
Visual BASIC Example - Properties and Events
Control Property Settings Significant Events
Form FormName=Forml
Caption=Hewlett-Packard
AutoRedraw=True
Command Button |CtlName=Commandl Click
Caption=Waveform [see Sub Command1_Click ()]
Command Button |CtIName=Command4 Click
Caption=Integral [see Sub Command4_Click ()]
Command Button |CtlIName=Command5) Click
Caption=Print Form [see Sub Command5_Click ()]
Command Button |[CtlName=Command2 Click
Caption=Exit [see Sub Command2_Click ()]

Using Windows DLL 4-5

Visual BASIC Example - Properties and Events (continued)

Control

Property Settings

Significant Events

Picture Box

CtlName=Picturel
Picture=hp.bmp

Label

CtlName=Label4
Caption=HP 54601A
OSCILLOSCOPE
BackColor=&H00FFFF00&
ForeColor=&H00FF0000&
FontSize=13.5
Alignment=Center

Label

CtlName=Labell
Caption=V/Div
FontSize=12
BackColor=&H00FFFF00&
ForeColor=&H00FF0000&

Label

CtlName=Label2
Caption=0ffset
FontSize=12
BackColor=&HO0FFFF00&
ForeColor=&H00FF00004&;

Label

CtlName=Label3
Caption=S/Div
FontSize=12
BackColor=&H00FFFF00&
ForeColor=&H00FF00004&

Text Box

CtlName=Text1
Text=

Text Box

CtlName=Text2
Text=

Text Box

CtlName=Text3
Text=

Text Box

CtlName=status
Text=

4-6 Using Windows DLL

Visual BASIC Example - Event Procedures

Sub

Rem

Rem

Rem

Commandi_Click ()

set up some variables
isc& = 7

device& = isc& * 100 + 7
swaphk = 2

max’% = 4000 * swap’
acth = 0

maxi% = 50
TimeVal# = 3#

Make sure text boxes are clear
texti.text = ""
text2.text = ""
text3.text = ""

Set up the scope

errnum, = HpibOpen(isc&, hHpib¥)
status.text = "Open - " + HpibErrStr$(errnum¥)

errnum), = HpibReset (hHpib), isc&)
status.text = "Reset - " + HpibErrStr$(errnum¥)

errnum’, = HpibTimeout (hHpib%, isc&, TimeVal#)
status.text = "TimeOut - " + HpibErrStr$(errnumy)

wave$ = ":AUTOSCALE"
length% = Len(wave$)

errnum) = HpibOutPutS(hHpib’, device&, wave$, lengthl)
status.text = "OutPutS - " + HpibErrStr$(errnum¥)
wave$ = ":WAVEFORM:FORMAT WORD"

length), = Len(wave$)

errnum), = HpibOutPutS(hHpib%, device&, wave$, length’,)
status.text = "OutPutS - " + HpibErrStr$(errnumy)

Using Windows DLL

4-7

Rem

Rem

Rem
Rem
Rem
Rem

Rem

4-8

wave$ = ":DIGITIZE CHANNEL1"

length% = Len(wave$)
errnum’ = HpibOutPutS(hHpib%, device&, wave$, length’l)
status.text = "QutPutS - " + EpibErrStr$(errnum)

read the preamble

wave$ = ":WAVEFORM:PREAMBLE?"

lengthy, = Len(wave$)

errnumy, = HpibOutPutS(hHpib%, device&, wave$, lengthl)
status.text = "OutPutS - " + HpibErrStr$(errnumy)

errnumy, = HpibEnterA(hHpib%, device&, preamble!(0), maxi%)
status.text = "EnterA- " + HpibErrStr$(errnumy,)

read the data

wave$ = ":WAVEFORM:DATA?"

length’ = Len(wave$)

errnum’, = HpibOutPutS(hHpib%, deviceg, wave$, length)
status.text = "OutPutS - " + HpibErrStr$(errnumy)

errnumy, = EpibEnterAB(hHpibJ, device&, waveform’4(0), max%, swapi)
status.text = "EnterAB - " + HpibErrStr$(errnumy)

read the last character in manually. If this character is
a linefeed, then the scope is done sending data. If this
character is a semicolon or comma, then the scope wants
to send more data...

lastchar$ = "

max¥% = 1

errnum), = HpibEnterS(hHpib%, device&, lastchar$, max’)
status.text = "EnterS - " + HpibErrStr$(errnum’)

If Left$(lastchar$, 1) <> Chr$(10) Then
status.text = "more data"
End If

errnumy = HpibClose(hHpib})
status.text = "Close - " + HpibErrStr$(errnum)

Deal with the preamble

Using Windows DLL

VpD (32 * preamble!(7))

0ff = (128 - preamble!(9)) * preamble!(7) + preamble!(8)
SpD = preamble!(2) * preamble!(4) / 10

textl.text = Str$(VpD)

text2.text = Str$(0ff)
text3.text = Str$(SpD)
Cls

Rem Set up the screen coordinate system
ScalelLeft = 0
ScaleTop = 330
ScaleWidth = 6000
ScaleHeight = -330

Rem Draw the Grid
Rem Main Border

Line (100, 10)-(4100, 10), RGB(O, 128, 0)
Line -(4100, 266), RGB(0, 128, 0)

Line -(100, 266), RGB(0, 128, 0)

Line -(100, 10), RGB(O, 128, 0)

Rem Y-axis grid

Line (500, 10)-(500, 266), RGB(0, 128, 0)

Line (900, 10)-(900, 266), RGB(0, 128, 0)

Line (1300, 10)-(1300, 266), RGB(0, 128, 0)
Line (1700, 10)-(1700, 266), RGB(0, 128, 0)
Line (2100, 10)-(2100, 266), RGB(255, 0, 0)
Line (2500, 10)-(2500, 266), RGB(0, 128, 0)
Line (2900, 10)-(2900, 266), RGB(0, 128, 0)
Line (3300, 10)-(3300, 266), RGB(0, 128, 0)
Line (3700, 10)-(3700, 266), RGB(0, 128, 0)

Rem X-axis grid

Line (100, 42)-(4100, 42), RGB(0, 128, 0)
Line (100, 74)-(4100, 74), RGB(0, 128, 0)

Using Windows DLL 4-9

Line (100, 106)-(4100, 106), RGB(0, 128, 0)
Line (100, 138)-(4100, 138), RGB(255, 0, 0)
Line (100, 170)-(4100, 170), RGB(O, 128, 0)
Line (100, 202)-(4100, 202), RGB(0, 128, 0)
Line (100, 234)-(4100, 234), RGB(0, 128, 0)

Rem Draw the waveform

CurrentX = 100
CurrentY = waveform’(0) + 10
For Xaxis% = 1 To 3999
Line -(Xaxis% + 100, waveform’%(Xaxis%) + 10)
Next XaxisY

End Sub

Sub Command2_Click ()
End
End Sub

Sub Command4_Click ()

? first, make sure that there is a waveform in memory...
If preamble!(2) = O Then

MsgBox ("Must retrieve waveform first...")

Exit Sub
End If

’ calculate the integral
ReDim math! (preamble!(2))
math!(0) = 0
For i% = 1 To preamble!(2) - 1
math!(i%) = math!(i¥% - 1) + (waveforml(ij) - preamble!(9)) =*
preamble! (7) + preamble!(8)
Next i%

’calculate the min and max of the integral

4-10 Using Windows DLL

max! math! (0)
min! math!(0)
For i% = 1 To preamble!(2) - 1
If math!(i%) > max! Then max!
If math!(i%) < min! Then min!
Next i%

math!(i%)
math! (i%)

’ plot the integral
ScaleVal = 256 / (max! - min!)
AddVal! = (-min! * ScaleVal) + 10
For i% = 0 To preamble!(2) - 1
PSet (i% + 100, math!(i%) * ScaleVal + AddVal!), RGB(0, 0, 255)
Next i%
End Sub

Sub Command5_Click ()
forml.PrintForm
End Sub

Turbo Pascal Programming

With Turbo Pascal for Windows, you need to add one statement to your
program to access the HP-IB DLL functions. Immediately following the uses
statement, add the following program line:

{$I TPWDECL.EX}

You will now have access to all of the functions in the DLL and the error
handling routine Hpiberrstr.

Using Windows DLL 4-11

Turbo Pascal Example

The following Turbo Pascal for Windows program demonstrates the use of the
DLL as well as the error handling routine.

This example uses the HP 34401A Multimeter as the primary device.
We will also use the HP 3325A Function Generator as a source for
the multimeter.

This example sets up the meter to take 128 readings, reads the data
into an array, then prints some simple statistics about the data.
This program is also checking other devices that are on the bus to
see if they need service. The SRQ line along with parallel and
serial polling is used to make these checks. The program will
continue until the user presses a key on the PC keyboard.

}

program HpibDemo(input, output);
uses WinCrt;

{$1 TPWDECL.EX}

const
NUM_READINGS = 128 ;

type (* type declarations follow *)
strtype = string[255];
arrtype = array [1..NUM_READINGS] of single;

var
isc :longint;
dvm :longint;
source :longint;
device_addr_1 :longint;
device_addr_2 :longint;
cmd :strtype;
len :integer;
response :integer;
readings rarrtype;

4-12 Using Windows DLL

hHpib :integer;

procedure cleanup; forward;

procedur
var retv
begin

e error_handle(error : integer; routine: strtype);
al : INTEGER ;

if error <> NOERR then begin

end;
end;

(* we have an error, so let’s abort all activity on the HPIB bus

*)
retval := HpibAbort(hHpib, isc) ;

cleanup;
writeln(’Error in call to ’, routine, error:3, errstr(error));

halt(1);

procedure cleanup;

var

retval : INTEGER ;

begin

(* clear the dvm so we can send the commands to reset it

*)

retval := HpibClear(hHpib, dvm) ;

(* reset the dvm

*)
cmd
len

:= ’:DISP:STATE ON; *RST’
:= length(cmd);

retval := HpibOutputs(hHpib, dvm, cmd[1], len) ;

(* unconfigure the parallel poll

*)

retval := HpibPpollu(hHpib, isc) ;

(* We are done with HP-IB...

*)

retval := HpibClose (hHpib);

Using Windows DLL 4-13

end;

procedure get_data;

var
i : integer;
ymin,
ymax ! real;
sum . real;
begin

(¥ Ask the DVM to send us the data
*)

str (NUM_READINGS:0, cmd) ;

cmd := ?:SAMPLE:COUNT ’ + cmd + ’; :READ?’

len := length(cmd);

error_handle(HpibOutputs(hHpib, dvm, cmd[1], len), ’HpibOUTPUTS #2°’);

(¥ Read the data
*)

len := NUM_READINGS ;
error_handle(HpibEntera(hHpib, dvm, readings[i], len), ’HpibENTERA #1');

(* find the minimum and maximum values in the data

*)
ymin := readings[1];
ymax := readings[1];
sum := 0;

for i:=1 to len do begin

if (readingsfi] < ymin) then ymin := readings[i];
if (readings[i] > ymax) then ymax := readings[i];
sum := sum + readings[i];

end;

(* print some information about the data

*)
CursorTo (0,0);
writeln(’MAX = ’, ymax);
writeln (’MIN = ’, ymin);

4-14 Using Windows DLL

writeln (’MEAN = ’, sum/len);
end;

procedure poll_device (dev_addr: longint) ;

var
response : integer;
begin
(* do a serial poll of the device configured to use parallel
* poll line O
*)
error_handle(HpibSpoll(hHpib, dev_addr, response), ’HpibSPOLL #3’);
(* should check RESPONSE here to see if any action needs to be taken.
* the values that RESPONSE can take are device dependent.
*)
end;

Computer

procedure check_srq; Museum

var
response : integer;
begin
(* conduct a parallel poll
* note that the source doesn’t respond to parallel poll’s,
* so we need to poll that device separately.
*)
error_handle(HpibPpoll(hHpib, isc, response), ’HpibPPOLL #1’);
if ((response and 1) <> 0) then
poll_device (device_addr_1);

if ((response and 2) <> 0) then
poll_device (device_addr_2);

(* check all devices that were configured to respond to
* parallel poll
*)

(* check any other devices on the bus here that weren’t
* configured to respond to parallel poll by performing

Using Windows DLL 4-15

*# a serial poll on each one.
*)
error_handle(HpibSpoll (hHpib, source, response), ’HpibSPOLL #2’);

(* see if we’ve cleared the srq yet
*)
error_handle(HpibStatus(hHpib, isc, 1, response), ’HpibSTATUS #3’);
if (response = 1) then begin
cleanup;
writeln(’SRQ locked high’);
halt(1);
end;
end;

procedure setup;

begin
(* program the function generator
*)
cmd := ’RF1 FR10HZ FU1 ST1KH SP10KH MF1KH AM1iVR TISSE’ ;
len := length(cmd);

error_handle(HpibOutputs(hHpib, source, cmd[1], len), ’HpibOUTPUTS #1’);

(* program the dvm

*)

cmd := ’:CONF:VOLT:DC 30,.1;’;

cmd := cmd + ’:ZERO:AUTO OFF;’;

cmd := cmd + ’:TRIG:DELAY MIN;?’;

cmd := cmd + ’:DISP:STATE OFF;’;

cmd := cmd + ’’;

len := length(cmd);

error_handle(HpibOutputs(hHpib, dvm, cmd[1], len), 'HpibOUTPUTS #2’);
end;

procedure initialize;

var
ErrCode : integer;
TempChar : pchar ;
begin
isc := 7;
dvm := isc * 100 + 22;
source := isc * 100 + 12;

4-16 Using Windows DLL

device_addr_1 :
device_addr_2 :

isc * 100 + 20;
isc * 100 + 7;

InitWinCrt;
(* initialize the hpib interface and scope
*)
ErrCode := HpibOpen(isc, hHpib);
if (ErrCode <> NOERR) then
begin

writeln (’Could not open the HP-IB card...’);

halt(1);
end;
error_handle(HpibReset (hHpib, isc), ’HpibRESET’);
error_handle(HpibTimeout (hHpib, isc, 2.0), ’HpibTIMEOUT');
error_handle(HpibClear (hHpib, source), ’'HpibCLEAR #1');
error_handle(HpibClear(hHpib, dvm), ’HpibCLEAR #2’);
error_handle(HpibFastout (hHpib, isc, 1), ’'HpibFASTOUT’);
TempChar := chr(10);
error_handle(HpibEol(hHpib, isc, TempChar, 0), ’HpibEOL’);

(* We will now configure all devices that can respond to a parallel
* poll. This example assumes devices at addresses 20 and 7 can

* respond to a parallel poll. see operators manual of individual
* devices to see if they can respond to a parallel poll.

*)

(* configure the device at address 20 for a parallel poll

¥

erior_handle(ﬂpiprollc(thib, device_addr_1, $08), ’HpibPPOLLC #1’);
(* configure the device at address 7 for a parallel poll

*
erior_handle(ﬂpiprollc(thib, device_addr_2, $09), ’HpibPPOLLC #2’);

(* configure any other devices that can respond to parallel poll here

*)
end;

begin { main }

Using Windows DLL 4-17

initialize;
setup;

while not keypressed do
begin
error_handle(HpibStatus(hHpib, isc, 1, response), ’HpibSTATUS #1’);
if response = 1 then
check_srq;
get_data ;
end;

cleanup;
end.

4-18 Using Windows DLL

Reference

This section presents a detailed HP-IB Dynamic Link Library syntax reference
for Pascal, C, and Visual BASIC languages. Parameters for Library commands
are separated into several groups according to the types of arguments you must
provide. The following table summarizes these groups. See “Command Library
Parameters” in chapters 5 and 6 of Using the HP-IB Interface and Command
Library for more detail about parameter types for Pascal and C.

(Single)*

Numeric Data
{Array)*

Binary Data
(Array)*

String Data*

Character Data

HpibEnter)—double
{for HpibOutput
and HpibTimeout)

Real array

Any type of array

String variable

Character

HpibEnter)—double
variable or
expression (for
HpibOutput and
HpibTimeout)

Float array

Any type of array

String variable or
expression

Character
expression

Parameter Type Pascal C Visual BASIC
Select Codes and LonglInt Long-integer Long&
Addresses expression
Flags and Discrete |Integer Integer variable or {Integer%
Information* expression
Numeric Data Real (for Float variable (for | Single! (for

HpibEnter)—
Double# (for
HpibOutput and
HpibTimeout)

Single! array

Any type of array

String$

String$

* For parameters marked _REF | a variable or array must be passed by reference.

You can use literals and expressions for simple parameters that provide
information to the command—but not for parameters that return information.

Using Windows DLL 4-19

Parameters that must be passed by reference are indicated by _RFEF attached
to their designators in this section. For C, all array variables must be passed
by far reference. '

Throughout this section, HP-IB terms are listed by abbreviation rather than
by name. For example, “Go To Local” is listed as “GTL.” The following list
defines the standard HP-IB abbreviations (mnemonics) used in this section:

Mnemonic Definition

ATN Attention

DCL Device Clear

EOI End or Identify

EOL ¥nd of Line

GET Group Execute Trigger
GTL Go To Local

IFC Interface Clear

LAD Listen Address

LLO Local Lockout

MLA My Listen Address
MTA My Talk Address

OSA Other Secondary Address
PPC Parallel Poll Configure
PPD Parallel Poll Disable
PPU Parallel Poll Unconfigure
REN Remote Enable

SDC Selected Device Clear
SPD Serial Poll Disable
SPE Serial Poll Enable
SRQ Service Request

TAD Talk Address

TCT Take Control

UNL Unlisten

UNT Untalk

4-20 Using Windows DLL

HpibAbort

HpibAbort

This command aborts all activity on the interface. HpibAbort will abort
as much as it can depending upon its current system controller and active

controller status.

Syntax

HpibAbort (hHpib, select_code)

hHpib specifies the handle returned by HpibOpen.
select_code specifies the interface select code.
Examples

For Pascal:

error : INTEGER ;
hHpib : INTEGER ;

error := HpibAbort(hHpib,7)

if error <> NOERR then writeln(‘an error occurred..
For C:

int error ;

HANDLE hHpib ;

error = HpibAbort(hHpib,7L)

if (error != NOERR) /#Do error handling */
For Visual BASIC:

devg = 7
errnum), = HpibAbort (hHpib) ,DEV&)
if errnum), <> NOERR then ’Do error handling

22

Using Windows DLL 4-21

HpibAbort

Bus Activity
If the HP 82335 is system controller:

m IFC is pulsed (at least 100 microseconds).
m REN is set.
m ATN is cleared.

If the HP 82335 is active, but not system controller:
m UNT is sent.
If the HP 82335 is neither active nor system controller:

m No bus activity.

Comments
Devices in Local Lockout will remain locked out.
Possible errors are NOERR, ESEL, ENOOPEN, and EHANDLE.

If the HP 82335 was the system, but not active controller, HpibAbort will make
the HP 82335 both system and active controller.

4-22 Using Windows DLL

HpibClear

HpibClear

This command returns a device to a known, device-dependent state. It can be
addressed to the interface or to a specific device.

Syntax

HpibClear (hHpib,device_address)
HpibClear (hHpib,select_code)

hHpib specifies the handle returned by HpibOpen.
device_address specifies the address of a device to be cleared.

select_code specifies the select code of the interface on which all devices are
to be cleared.

Examples
For Pascal:
VAR

err : INTEGER;
hHpib : INTEGER;

err := HpibClear (hHpib,723); {Clear the device at address 23.}
err := HpibClear (hHpib,7); {Clear all devices.}

For C:
int error;

HANDLE hHpib;

error = HpibClear(hHpib,723L); /*Clear device at address 23.%/

error = HpibClear(hHpib,7L); /*Clear all devices.*/

Using Windows DLL 4-23

HpibClear

For Visual BASIC:
isc& = 7
dvm& = 723

errnum), = HpibClear(hHpibJ,,dvm&) ’Clear the device at address 23.

errnum), = HpibClear(hHpib),isc&) ’Clear all devices.
if errnum) <> NOERR then MsgBox (HpibErrStr$(errnumy))

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m SDC is sent.

If a select code is specified:

m ATN is set.
m DCL is sent.

Comments

Possible errors are NOERR, ETIME, ECTRL, ENOOPEN, EHANDLE, and
ESEL.

4-24 Using Windows DLL

HpibClose

HpibClose

This command closes an interface, making it available to other applications.
Once an interface is closed, no other HP-IB functions can be called (except
HpibOpen). The state of the interface is not stored, so when an application
calls HpibOpen again, you need to reset conditions such as EOL, EOI,
TIMEOUT, MATCH, and FASTOUT.

While developing and debugging a program, an HP-IB card may be incorrectly
left open. You can use the Interactive Environment to manually close all cards
by selecting Close Cards from the Misc menu.

Syntax
HpibClose (HANDLE)

HANDLE specifies the handle returned by HpibOpen (the second
parameter).

Examples
For Pascal:
err : INTEGER;

hHpib : INTEGER;

err := HpibClose (hHpib);
For C:

int err;

HANDLE hHpib;

err = HpibClose(hHpib);
For Visual BASIC:

errnumy, = HpibClose(hHpib%);

Using Windows DLL 4-25

HpibClose

Bus Activity

None.

Comments

Possible errors are ECLOSE if the handle is invalid, usually meaning that the
interface was not open; and NOERR if successful.

4-26 Using Windows DLL

HpibControl

HpibControl

This command directly sets status conditions in the interface. It can be used to
address or unaddress the interface as a talker or listener, or set the interface’s
bus address. HpibControl can also change system controller status of the

HP 82335 interface.

Caution HpibControl should be used with caution since it operates
' directly on the interface.

Syntax

HpibControl (hHpib,select_code,condition, status)

hHpib specifies the handle returned by HpibOpen.

select_code specifies the interface select code.

condition specifies the status condition that is to be set. Conditions

which can be set are:
Value Description

3 Make the interface the non-system or system
controller.

Address or unaddress the interface as talker.

5

6 Address or unaddress the interface as listener.
7 Set the interface’s bus address.

8

Clear or set ATN.

status variable into which the condition’s status is placed. It can have
the following values:

Using Windows DLL 4-27

HpibControl
Condition 3

Value Meaning

0 |Make interface non-system controller

1 |Make interface system controller

Conditions 5 and 6

Value Meaning

0 |Clear this condition

1 | Set specified condition

Condition 7

Value Meaning

0 to 30 [Bus address of interface

Condition 8
Value Meaning
0 Clear ATN

1 |Set ATN asynchronously
2 | Set ATN synchronously
Other | ERANGE error

4-28 Using Windows DLL

HpibControl

Examples
For Pascal:
VAR

err : INTEGER;
hHpib : INTEGER;

err := HpibControl(hHpib,7,5,1);{Address interface as talker.}
For C:

int error;
HANDLE hHpib;

error = HpibControl(hHpib,7L,5,1);/*Address interface as talker.*/
For Visual BASIC:

isc& = 7

cond), = 5§

status), = 1

errnum), = HpibControl (hHpib¥,isc&,cond),,statusi)

if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumi))
'Address the interface as talker

Bus Activity

None.

Comments

Possible errors are NOERR, ESEL, ECTRL, ETIME, ENOOPEN, EHANDLE,
and ERANGE.

The functionality for changing system controller status of the HP 82335

is included for completeness in the HP-IB DLL. We strongly recommend,
however, that you do not use this command unless it is absolutely necessary.
The recommended method of using the interface as a non-system controller is

to use the IOSYSCTL DOS command in your AUTOEXEC.BAT file.

Using Windows DLL 4-29

HpibControl

For condition 8, you can set ATN either synchronously or asynchronously.
Typically, you will set ATN asynchronously. If so, data may get lost if a data
transfer is occurring that does not involve the HP 82335. For example, if a
scope is talking to a printer and ATN is set asynchronously, some data may
have been lost. If you want to avoid this situation, use status 2 to set ATN
synchronously.

4-30 Using Windows DLL

HpibEnter

HpibEnter

This command reads a single real number. Reading continues until one of these
events occurs:

m The EOI line is sensed true, if it is enabled.
B A linefeed is encountered after the number starts.

Numeric characters are the digits 0 through 9, “E”, “e”, “4+”, “~”,and “.” in

the proper sequence for representing a number. Note that “ ” (space) is not a
numeric character.

Syntax

HpibEnter (hHpib,device_address,data_REF)
HpibEnter (hHpib,select_code,data_REF)

hHpib specifies the handle returned by HpibOpen.
device_address specifies a device address.
select_code specifies the interface select code.

data_REF variable into which the reading is placed.

Examples
For Pascal:
VAR
reading : SINGLE;

err : INTEGER;
hHpib : INTEGER;

err := HpibEnter (hHpib,722,reading); {Input a number from device
722 and place it in READING.}

Using Windows DLL 4-31

HpibEnter

For C:
float reading;
int error;

HANDLE hHpib;

error = HpibEnter(hHpib,722L,&reading); /*Input a number from
device 722.%/

For Visual BASIC:

device& = 722

errnum), = HpibEnter (hHpib),,device&,reading!)

if errnum), <> NOERR then MsgBox(HpibErrStr$(errnumy))
'Input a number from device 722 and place it in reading

Bus Activity
If a device address is specified:

m ATN is set.

m UNL is sent.

m MLA is sent.

m TAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Comments

If a select code is to be specified in the command, the interface must first be
addressed to listen (with HpibSend, for example) or an error occurs.

The approximate range of valid values is 10738 to 10®®. The IEEE 754
standard for floating point numbers makes provisions for values less than
10738, however the internal number conversion may not properly handle

4-32 Using Windows DLL

HpibEnter

values less than 1073 when entered via HP-IB or used in assignment or print
statements.

Possible errors are NOERR, ETIME, ESEL, EADDR, ECTRL, ENOOPEN,
EHANDLE, and ENUM.

Using Windows DLL 4-33

HpibEntera

This command enters numbers from a device or the interface and places them
into a real array. Reading continues until one of these events occurs:

m The EOI line is sensed true, if it is enabled.
m A linefeed is encountered after the specified number of elements is received.

Numeric characters are the digits 0 through 9, “E”, “e”, “4”, “~” and “.” in
the proper sequence for representing a number. Note that “ ” (space) is not a
numeric character.

Syntax

HpibEntera (hHpib, device_address,readings_ REF, elements_REF)
HpibEntera (hHpib,select_code,readings_ REF, elements_ REF)

hHpib specifies the handle returned by HpibOpen.
device_address specifies a device address.

select_code specifies the interface select code.
readings_REF array into which the readings are placed.

elements_ REF variable that specifies the maximum number of elements to
be read. (An error occurs if the number is less than 0.) Upon
return it indicates the number of elements actually received.

4-34 Using Windows DLL

HpibEntera

Examples

For Pascal:

TYPE
real50 = ARRAY[1..50] of SINGLE;
VAR
readings : real50;
elements : INTEGER;
hHpib : INTEGER;
err : INTEGER;

elements := 50;
err := HpibEntera (hHpib,723,readings,elements); {Read a maximum
of 50 values from device 723 and put them in READINGS.}
For C:
float readings([50];
int elements;
int error;

HANDLE hHpib;

elements = 50;
error = HpibEntera(thib,723L,readings,&elements);
/*Read a maximum of 50 values from device 723.%/

For Visual BASIC:

dim readings!(50)

deviceg = 723

max} = 50

errnum), = HpibEntera(hHpib),device&,readings! (0) ,max’)
if errnum) <> NOERR then MsgBox(HpibErrStr$(errnum}))
’Read a maximum of 50 values from device 723 and

’put them in readings.

Using Windows DLL 4-35

HpibEntera

Bus Activity
If a device address is specified:

m ATN is set.

m UNL is sent.

m MLA is sent.

m TAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Comments

If the specified maximum number of elements to read is greater than the size of
the readings array, input data can overrun the array and corrupt existing data
Or programs.

Nonnumeric characters that do not properly belong in a real number are
considered value separators. Thus, the sequence “1,234,567” is entered as three
numbers, not as “1234567”.

The number of readings available is dependent upon the source device.

The approximate range of valid values is 10732 to 103%, The IEEE 754

standard for floating point numbers makes provisions for values less than
10738 however the internal number conversion may not properly handle
values less than 10732 when entered via HP-IB or used in assignment or print

statements.

If a select code is to be specified in the command, the interface must first be
addressed to listen (with HpibSend, for example) or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ENUM, ECTRL,
ENOOPEN, EHANDLE, and ERANGE.

4-36 Using Windows DLL

HpibEnterab

HpibEnterab

This command enters arbitrary-block program data (numeric or string data
with IEEE-488.2 coding) from a device or the interface. Reading continues
until one of these events occurs:

m The maximum number of bytes specified is received.

m A linefeed is encountered with the EOI line sensed true, if the coding
indicates indefinite length.

m The number of bytes indicated by the coding is received, if the coding
indicates definite length.

Syntax

HpibEnterab (hHpib,device_address,data_REF, bytes_REF, swapsize)
HpibEnterab (hHpib, select_code,data_REF,bytes_ REF, swapsize)

hHpib specifies the handle returned by HpibOpen.

device_address specifies a device address.

select_code specifies the interface select code.

data_RFEF array into which the readings are placed.

bytes_REF variable specifying the maximum number of bytes to be read

(excluding the coding bytes). (An error occurs if the number
is less than 0.) Upon return it indicates the number of bytes
actually received (excluding the coding bytes).

swapsize specifies how bytes are placed into memory. A value of
1 indicates that bytes are placed in order. Larger values
indicate that bytes are reversed in memory in groups of this
size. The value should correspond to the byte size of the
data variable. (For example, a value of 4 specifies that each
group of four bytes is swapped in memory.) Valid values are 1
through 8—other values return an error.

Using Windows DLL 4-37

HpibEnterab

Examples

For Pascal:

TYPE
doubleS50 = ARRAY[1..50)} of REALS;
VAR
val : double50;
elements : INTEGER;
swap : INTEGER;
err : INTEGER;
hHpib : INTEGER;

swap := 8;

elements := 50 * swap;

err := HpibEnterab (hHpib,723,val,elements,swap); {Read a maximum

of 50 values from device 723 and put them in VAL.}
For C:

double val[50]; /*Double-precision array (8 bytes/elem)*/
int elements;
int swap;
int error;

HANDLE hHpib;

swap = sizeof(double);

elements = 50 * swap;

error = HpibEnterab(hHpib,723L,val,&elements,swvap);
/*Read a maximum of 50 values from device 723.%/

For Visual BASIC:

dim val#(50) ’Double-precision array (8 bytes/elem)
device& = 723

swap) = 8 : max), = 50 * swap),

errnum), = HpibEnterab(hHpib’,,device&,val#(0) ,max),swap))
if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumi))
’Read a maximum of 50 values from device 723 and

'put them in VAL.

4-38 Using Windows DLL

HpibEnterab

Bus Activity
If a device address is specified:

m ATN is set.

m UNL is sent.

m MLA is sent.

m TAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Comments

IEEE-488.2 coding is described under “Arbitrary-Block Data Coding” in
chapter 1 of Using the HP-IB Interface and Command Library. The coding
bytes are not placed into data—this also applies to the ending linefeed
character for indefinite-length data. Leading characters are ignored until a “#”
character is received.

If the specified maximum number of elements to read is greater than the size of
the data array, input data can overrun the array and corrupt existing data or
programs.

For string transfers, only the string elements receiving data are affected. The
string descriptor and other string elements remain unchanged for Pascal—no
null character is appended for C.

The number of bytes available is dependent upon the source device.

If a select code is to be specified in the command, the interface must first be
addressed to listen (with HpibSend, for example) or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL,
ENOOPEN, EHANDLE, and EUNKNOWN.

Using Windows DLL 4-39

HpibEnterb

This command enters binary data (numeric or string data with no coding or
formatting) from a device or the interface. Reading continues until one of these
events occurs:

m The maximum number of bytes specified is received.
m The EOI line is sensed true, if it is enabled.

m The termination character set by HpibMatch is received with EOI true.
(Linefeed is the default character.)

Syntax

HpibEnterb (hHpib, device_address,data_ REF, bytes_ REF, swapsize)
HpibEnterd (hHpib, select_code,data_REF ,bytes_REF, swapsize)

hHpib specifies the handle returned by HpibOpen.

device_address specifies a device address.

select_code specifies the interface select code.

data_REF array into which the readings are placed.

bytes_REF specifies the maximum number of bytes to be read. (An error

occurs if the number is less than 0.) Upon return it indicates
the number of bytes actually received.

swapsize specifies how bytes are placed into memory. A value of
1 indicates that bytes are placed in order. Larger values
indicate that bytes are reversed in memory in groups of this
size. The value should correspond to the byte size of the
data variable. (For example, a value of 4 specifies that each
group of four bytes is swapped in memory.) Valid values are 1
through 8—other values return an error.

4-40 Using Windows DLL

HpibEnterb

Examples

For Pascal:

TYPE
doubleS50 = ARRAY[1..50] of REALS;
VAR
val : doubleS0
elements : INTEGER;
swap : INTEGER;
err : INTEGER;
hHpib : INTEGER;

swap := 8;

elements := 50 * swap;

err := HpibEnterb (hHpib,723,val,elements,swap); {Read a maximum
of 50 values from device 723 and put them in VAL.}

For C:
double val[50]; /#Double-precision array (8 bytes/elem)*/
int elements;
int swap;
int error;

HANDLE hHpib;

swap = sizeof(double);

elements = 50 * swap;

error = HpibEnterb(hHpib,723L,val,&elements,swap);
/*Read a maximum of 50 values from device 723.%/

For Visual BASIC:

dim val#(50) ’Double-precision array (8 bytes/elem)
devicek = 723

swap/ = 8 : max) = 50 * swap),

errnumy, = HpibEnterb(hHpib%,device&,val#(0) ,max},swapi)
if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumi))
"Read a maximum of 50 values from device 723 and

'put them in val.

Using Windows DLL 4-41

HpibEnterb

Bus Activity
If a device address is specified:

w ATN is set.

m UNL is sent.

m MLA is sent.

m TAD is sent.

m OSA is sent if specified.
® ATN is cleared.

m Data is entered.

If a select code is specified:

w If the interface is not addressed to listen, an error results.
w If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Comments

If the specified maximum number of elements to read is greater than the size of
the data array, input data can overrun the array and corrupt existing data or
programs.

All data received is stored in memory—except a final “match” character with
EOI true if matching is enabled. For string transfers, only the string elements
receiving data are affected. The string descriptor and other string elements
remain unchanged for Pascal—no null character is appended for C.

The number of bytes available is dependent upon the source device.

If a select code is to be specified in the command, the interface must first be
addressed to listen (with HpibSend, for example) or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL,
ENOOPEN, EHANDLE, and EUNKNOWN.

4-42 Using Windows DLL

HpibEnterf

HpibEnterf

This command reads from a device and places all received data into a file.
Reading continues until one of these events occurs:

m The EOI line is sensed true, if it is enabled.

m The termination character set by HpibMatch is received (linefeed is the
default). Warning: If you are transferring binary files, you should turn off
character match using HpibMatch to make sure the transfer does not end
prematurely.

m The maximum number of bytes specified is received.

m A file error occurs, usually meaning the disk is full.

Syntax

HpibEnterf (hHpib, device_address, file_name,length, append_flag)
HpibEnterf (hHpib,select_code, file_name,length, append_flag)

hHpib specifies the handle returned by HpibOpen.

device_address specifies a device address.

select_code specifies the interface select code.

file_name file into which the data is written.

length specifies the maximum number of elements to be read. (An

error occurs if the number is less than 0.) The actual number
of bytes read is returned here.

append_flag specifies whether to append to the file or to overwrite it. Zero
overwrites; non-zero appends.

Using Windows DLL 4-43

HpibEntert

Examples
For Pascal:

error : INTEGER ;
length : LONGINT ;
hHpib : INTEGER;

length := 10;

error := HpibEnterf (hHpib,723, ’ENTERF.DAT’,length, 0)

if error <> NOERR then writeln(‘an error occurred...’);
For C:

int error;

long length;
HANDLE hHpib;

length = 10;
error = HpibEnterf(hHpib,723L, "ENTERF.DAT", &length, O)
if (error !'= NOERR) /*Do error handlingx/

For Visual BASIC:

devk = 723

length& = 10

file.name$ = "enter.dat"

append), = 0

errnum), = HpibEnterf (hHpib},,dev&,file.name$,length&,append’)
if errnum), <> NOERR then MsgBox(HpibErrStr$(errnum}))

4-44 Using Windows DLL

HpibEnterf

Bus Activity
If a device address is specified:

m ATN is set.

@ UNL is sent.

m MLA is sent.

m TAD is sent.

m OSA is sent if specified.
m ATN is cleared.

a Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Comments

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL,
ENOOPEN, EHANDLE, and EFILE.

If the file does not exist and a valid filename is given, HpibEnterf will create
the file regardless of the append flag.

We recommend turning off character matching using the HpibMatch command,
especially if you are transferring a binary file.

Note This command does not transfer files to an HP-IB disk drive,
but rather transfers bytes from the HP-IB bus to a built-in disk
d drive on your computer.

Using Windows DLL 4-45

HpibEnters

This command enters a character string from a device or the interface. Reading
continues until one of these events occurs:

m The EOI line is sensed true, if it is enabled.

m The termination character set by HpibMatch is received (linefeed is the
default).

m The maximum number of characters specified is received.

Syntax

HpibEnters (hHpib,device_address,data_ REF,length_REF)
HpibEnters (hHpib, select_code,data_REF,length_ REF)

hHpib specifies the handle returned by HpibOpen.
device_address specifies a device address.

select_code specifies the interface select code.
data_REF variable into which the string read is placed.

length_REF variable specifying the maximum number of elements to be
read. (An error occurs if the number is less than 0.) On return
it indicates the number of elements actually received.

Examples
For Pascal:
VAR
info : STRING(10);
length : INTEGER;
err : INTEGER;

hHpib : INTEGER;
length := 10;

err := HpibEnters (hHpib,723,info,length);
{Read a string of 10 characters maximum from device 723.}

4-46 Using Windows DLL

HpibEnters

For C:
int error;
int length;

char info[11]; /%10 characters plus null¥/
HANDLE hHpib;

length = 10;
error = HpibEnters(hHpib,723L,info,&length); /*Read a string of
10 characters maximum from device 723.%/

For Visual BASIC:

dev& = 723

max.len)% = 10

info$ = space$(max.len),)

errnum), = HpibEnters(hHpibj,,dev&,info$,max.len))

if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumj))
’Read a string of 10 characters maximum from

’device 723, put in info$

info$ = left$(info$,max.len)

Bus Activity
If a device address is specified:

m ATN is set.

m UNL is sent.

m MLA is sent.

m TAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is entered.

If a select code is specified:

m If the interface is not addressed to listen, an error results.
m If the interface is addressed to listen, ATN is cleared and the data is read
from the interface.

Using Windows DLL 4-47

HpibEnters

Comments

If the specified maximum number of elements to read is greater than the
dimensioned length of the data string, then input data can overrun the string
and corrupt existing data or programs.

If a select code is to be specified in the command, the interface must first be
addressed to listen (with HpibSend or a previous HpibEnter, for example) or an
error occurs.

The termination character is entered as part of the string. A null character is
appended to the string.

Possible errors are NOERR, ETIME, ESEL, EADDR, ENUM, ERANGE,
ENOOPEN, EHANDLE, ECTRL, and EUNKNOWN.

4-48 Using Windows DLL

HpibEoi

HpibEoi

This command enables or disables the End Or Identify (EOI) mode of the
interface. It is used to:

a Enable or disable a write operation to set the EOI line on the last byte of the
write.

m Enable or disable a read operation to terminate upon sensing the EOI line
true.

The default is EQI enabled.

Syntax

HpibEoi (hHpib, select_code, state)

hHpidb specifies the handle returned by HpibOpen.
select_code specifies the interface select code.

state enables EOI if nonzero and disables EOI if zero.
Examples

For Pascal:

VAR
state : INTEGER;
err : INTEGER;
hHpib : INTEGER;

state := 0;
err := HpibEoi(hHpib;7,state); {Disable EOI.}
For C:
int error;

HANDLE hHpib;
error = HpibEoi(hHpib,7L,0); /*Disable EOI.*/

Using Windows DLL 4-49

HpibEoi

For Visual BASIC:

isck = 7

state), = 0

errnum}, = HpibEoi(hHpibl,,isck,statel)) ’Disable E0I

if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumi))

Bus Activity

None.

Comments

When reading with EOI enabled, receipt of a byte with EOI set causes the
read operation to terminate, regardless of whether you are reading a string,

a real number, or an array of real numbers. (The EOI state is ignored by
HpibEnterab.)

When writing, EOI is set on the last byte of the End Of Line sequence if EOI
is enabled. Note that if the EOL sequence is of 0 length, EOI is set on the last
data byte sent. (The EOI line is not set on the last byte for HpibOutputab.)

When sending a real number array with HpibOutputa, the EOL sequence (and
subsequent EOI) is appended after the last element in the array, not after each
element.

Note that HpibSend does not set EOI because this line has a different meaning
in Command mode.

Possible errors are NOERR, ENOOPEN, EHANDLE, and ESEL.

4-50 Using Windows DLL

HpibEol

HpibEol

This command defines the End of Line (EOL) string that is to be sent
following every HpibOutput, HpibOutputa, HpibOutputb, and HpibOutputs

command.

The default is carriage return and linefeed.

Syntax

HpibEol (hHpib,select_code,endline_REF,length)

hHpib
select_code

endline_REF

length

Examples
For Pascal:

VAR
length :
endline :
err :
hHpib :

length :

endline(1]
endline([2]

err

specifies the handle returned by HpibOpen.
specifies the interface select code.

specifies the EOL string that is to be sent following a data
transmission. A maximum of eight characters can be specified.

specifies the length of the termination string. If zero is
specified, no characters are appended to a data transmission. If
the length is less than 0 or more than 8, an error occurs.

INTEGER;
STRING(2);
INTEGER;
INTEGER;

2;

= CHR(13);

= CHR(10);

HpibEol(hHpib,7,endline,length); {EOL = CR/LF.}

Using Windows DLL 4-51

HpibEol

For C:
int length;
char endline[2];
int error;

HANDLE hHpib;

length = 2;

endline{0] = 13;

endlinel1] = 10;

error = HpibEol(hHpib,7,endline,length); /*#EOL = CR/LF.*/

For Visual BASIC:

isck = 7

endline$ = chr$(13)+chr$(10)

length), = len(endline$)

errnum), = HpibEol (Hhpib}),,isc&,endline$,length))’eol = cr/1f
if errnum) <> NOERR then MsgBox(HpibErrStr$(errnum}))

Bus Activity

None.

Comments

With HpibOutputa and HpibOutputb, the EOL sequence is appended after all
data has been sent, not following each element.

Possible errors are NOERR, ESEL, ENOOPEN, EHANDLE, and ERANGE.

4-52 Using Windows DLL

HpibFastout

HpibFastout

This command enables or disables high-speed bus timing for output transfers
only.

The default is high-speed output disabled (standard speed).

Syntax

HpibFastout (AHpib,select_code, state)

hHpib specifies the handle returned by HpibOpen.

select_code specifies the interface select code.

state enables high-speed output if nonzero and disables high-speed

output if zero.

Examples

For Pascal:
. Lomputer
,,ﬁ Museum

VAR
state : INTEGER;
err : INTEGER;
hHpib : INTEGER;

state := 0;
err := HpibFastout(hHpib,7,state); {Disable high-speed output.}

For C:

int error;
HANDLE hHpib;

error = HpibFastout(hHpib,7L,0); /*Disable high-speed output.*/

Using Windows DLL 4-53

HpibFastout
For Visual BASIC:

isc& = 7

statel, = 0

’Disable high-speed output

errnum}, = HpibFastout (hHpib},isc),statell)

if errnum), <> NOERR then MsgBox(HpibErrStr$(errnumy))

Bus Activity

None.

Comments

For proper operation, high-speed output requires the HP-IB system to meet all
of these requirements:

m All HP-IB devices must have tri-state drivers, not open-collector drivers.
(The HP-IB interface meets this requirement.)

m All HP-1B devices must be turned on.

m HP-IB cable length should be as short as possible, but not longer than 15
meters (50 feet). At least one HP-IB device should be connected for each
meter (3 feet) of cable, with a maximum of 15 devices. (The HP-IB interface
counts as one device.)

m Each HP-IB device must have a capacitance of less than 50 pF on each
HP-IB line except REN and IFC. (The HP-IB interface meets this
requirement.)

High-speed output applies only during output transfers—but not between
transfers and not during input transfers. The speed of an input transfer
depends upon the talker device.

High-speed output decreases the data-settling time from 2.5 microseconds to
840 nanoseconds.

Possible errors are NOERR, ENOOPEN, EHANDLE, and ESEL.

4-54 Using Windows DLL

HpibGetterm

HpibGetterm

This command determines the reason the last read terminated.

Syntax

HpibGetterm (hHpib,select_code,reason_ REF)

hHpib specifies the handle returned by HpibOpen.
select_code specifies the interface select code.

reason_REF variable to receive the sum of the values for the reasons the
last read terminated. The possible reasons for termination are

Value Description

0 The read was terminated for some reason not
covered by any of the other reasons.

1 The expected number of elements was received.

2 The termination character set by HpibMatch
was encountered.

4 The EOI line was sensed true.

Examples
For Pascal:

VAR
reason : INTEGER;
err : INTEGER;
hHpib : INTEGER;

err := HpibGetterm(hHpib,7,reason);

IF ((reason and 4) = 4) then
WRITELN(’E0I ENCOUNTERED’);

Using Windows DLL 4-55

HpibGetterm

For C:
int reason;
int error;

HANDLE hHpib;

error = HpibGetterm(hHpib,7L,&reason);
if((reason & 4) == 4)
/*Do error checkingx/

For Visual BASIC:

isck = 7

errnum), = HpibGetterm(hHpiby,, isc&,reason’,)

if errnumj <> NOERR then MsgBox(HpibErrStr$(errnumj))
if ((reason), and 4) = 4) then print "eoi encountered"

Bus Activity

None.

Comments

Upon return, the reason integer contains the sum of the values for the reasons
for termination. For example, if the last read terminated when the termination
character was encountered and EQI was set, the value of reason would be
2+4=6.

Possible errors are NOERR, ENOOPEN, EHANDLE, and ESEL.

4-56 Using Windows DLL

HpibGetVersion

HpibGetVersion

This command returns an integer representing the version of the installed
HP-IB DLL. The major revision is returned in the high byte and the minor

revision is returned in the low byte.

Syntax
HpibGetVersion ()

Examples
For Pascal:

VAR
version: INTEGER;

version:=HpibGetVersion;
For C:

int version;

version=HpibGetVersion();
For Visual BASIC:

versiony,=HpibGetVersion()

Bus Activity

None.

Using Windows DLL 4-57

HpibLlockout

This command sends a Local Lockout (LLO) to disable a device front panel. It
is received by all devices on the interface, whether or not they are addressed to
listen.

Syntax
HpibLlockout (hHpib,select_code)
hHpib specifies the handle returned by HpibOpen.

select_code specifies the interface select code.

Examples
For Pascal:
VAR
err : INTEGER;
hHpib : INTEGER;
err := HpibLlockout (hHpib,7);
For C:
int error;
HANDLE hHpib;
error = HpibLlockout (hHpib,7L);
For Visual BASIC:

isc& = 7
errnumy, = HpibLlockout (hHpib%,isc&)
if errnum), <> NOERR then MsgBox(HpibErrStr$(errnum’,))

Bus Activity

m ATN is sent.
m LLO is sent.

4-58 Using Windows DLL

HpibLlockout

Comments

If a device is in Local mode when LLO is received, L1.O does not take effect
until the device is addressed to listen.

Possible errors are NOERR, ETIME, ECTRL, ENOOPEN, EHANDLE, and
ESEL.

Using Windows DLL 4-59

HpibLocal

This command executes a Go To Local (GTL) or clears the REN line to enable
a device front panel.

Syntax

HpibLocal (hHpib,device_address)
HpibLocal (hHpib, select_code)

hHpib specifies the handle returned by HpibOpen.
device_address specifies a device address.
select_code specifies the interface select code.
Examples
For Pascal:

VAR

err : INTEGER;
hHpib : INTEGER;
err := HpibLocal (hHpib,722); {Place device 722 in Local mode.}
For C:

int error;
HANDLE hHpib;

error = HpibLocal(hHpib,722L);/*Place device 722 in local mode.x*/

For Visual BASIC:

device& = 722

’Place device 722 in local mode.

errnum), = HpibLocal (hHpib%,device&)

if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumy))

4-60 Using Windows DLL

Bus Activity

If a device address is specified:

@ ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
s GTL is sent.

If a select code is specified:

m REN is cleared.
m ATN is cleared.

Comments

HpibLocal

If a device address is specified, the device is temporarily placed in Local
mode—it will return to Remote mode if it is later addressed to listen. If Local
Lockout is in effect, the device will return to the Lockout state if it is later

addressed to listen.

If an interface select code is specified, all instruments on the bus are placed in

Local mode and any Local Lockout is cancelled.

Possible errors are NOERR, ETIME, ECTRL, ENOOPEN, EHANDLE, and

ESEL.

Using Windows DLL 4-61

HpibMatch

This command defines the character used by HpibEnterb and HpibEnters for
termination. The default character is linefeed.

Syntax

HpibMatch (hHpib, select_code, character, flag)

hHpib
select_code

character

flag

Examples
For Pascal:

VAR

match :
: INTEGER;
: INTEGER;
hHpib :

flag
err

match :
flag :
err :

specifies the handle returned by HpibOpen.
specifies the interface select code.

specifies the character used by HpibEnterb and HpibEnters for
termination checking.

indicates whether character matching should be enabled or
disabled. Zero disables matching, and any nonzero value
enables it.

CHAR;

INTEGER;

CHR(10); {Terminate on linefeed.}
1;
HpibMatch (hHpib,7,match,flag);

4-62 Using Windows DLL

HpibMatch

For C:
char match;
int flag;
int error;

HANDLE hHpib;

match = 10; /*Terminate on linefeed.*/
flag = 1;
error = HpibMatch(hHpib,7L,match,flag);

For Visual BASIC:

isc& = 7

match) = 10 ’Terminate on a linefeed.

flag/ = 1

errnum), = HpibMatch(hHpibY,isc&,match’,,flagi)

if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumy))

Bus Activity

None.

Comments
Only a single match character may be specified in this command.

For HpibEnters, the match character becomes part of the entered string. For
HpibEnterb, the match character must be received with EQI true, and the
character does not become part of the data.

HpibMatch does not apply to HpibEnter, HpibEntera, or HpibEnterab.
Possible errors are NOERR, ENOOPEN, EHANDLE, and ESEL.

Using Windows DLL 4-63

HpibOpen

This command opens up an interface for use by an application. An application
must call HpibOpen before any other HP-IB functions can be used. An
interface remains open for use until the application calls HpibClose.

While developing and debugging a program, an HP-IB card may be incorrectly
left open. You can use the Interactive Environment to manually close all cards
by selecting Close Cards from the Misc menu.

Syntax

HpibOpen (long, HANDLE_RFEF)

long specifies the Interface Select Code (ISC) of the card to
be opened. Valid ISCs range from 1 through 16.

HANDLE_REF points to a handle that HpibOpen will return. This
handle must be used as the first parameter in all
subsequent HP-IB calls.

Example

For Pascal:

err : INTEGER;
hHpib : INTEGER;
err := HpibOpen (7,hHpib)
For C:
int err;
HANDLE hHpib;
err = HpibOpen(7L,&hHpib)
For Visual BASIC:

errnum), = HpibOpen(7,hHpib%)
if errnum) <> NOERR then MsgBox(HpibErrStr$(errnum}))

4-64 Using Windows DLL

HpibOpen

Bus Activity

None.

Comments

Possible errors are EOPEN if the first parameter is out of range, or if another
application has already allocated this card; ESEL if no card exists at that ISC;
and NOERR if successful.

Using Windows DLL 4-65

HpibOutput

This command outputs a real number to a device or to the interface. After the
number is sent, the EOL string is sent and the EOI line is set (if enabled).

Syntax

HpibOutput (hHpib,device_address,data)
HpibOutput (hHpib, select_code, data)

hHptb specifies the handle returned by HpibOpen.
device_address specifies a device address.

select_code specifies the interface select code.

data specifies the number to be output.
Examples

For Pascal:

VAR
data : SINGLE;
err : INTEGER;
hHpib : INTEGER;

data := 12.3;
err := HpibOutput (hHpib,722,data); {Output ’ 12.3’ to dev 722.}
For C:

double data;
int error;
HANDLE hHpib;

data = 12.3;
error = HpibOutput(hHpib,722L,data);/*0utput ’12.3° to dev 722.%*/

4-66 Using Windows DLL

HpibOutput

For Visual BASIC:

info! = 12.3

devg = 722

’Qutput " 12.3" to device 722

errnum), = HpibOutput(hHpib),,dev&,info!)

if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumi))

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
B ATN is cleared.

®m Data is output.

= EOL is output.

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent
followed by an EQOL.

Comments

Numbers with absolute values between 10~° and 108 are rounded to seven
significant digits and output in floating point notation. If the number rounds
to an integer value, the decimal point is not sent. Numbers outside this range
are rounded to seven significant digits and output in scientific notation.

If the number is positive, a leading space is output for the sign; if it’s negative,
a leading “—” is output.

If a select code is to be specified, the interface must first be addressed to talk
(with HpibSend, for example), or an error occurs.

Possible errors are NOERR, ETIME, ESEL, ECTRL, ENOOPEN, EHANDLE,
and EADDR.

Using Windows DLL 4-67

HpibOutputa

This command outputs an array of real numbers to a specified device or to the
bus. Values output are separated by commas. After the last number is sent,
the EOL string is sent and the EOI line is set (if enabled).

Syntax

HpibOutputa (hHpib,device_address,data_REF,elements)
HpibOutputa (hHpib, select_code,data_REF,elements)

hHpib specifies the handle returned by HpibOpen.

device_address specifies a device address.

select_code specifies the interface select code.

data_REF array containing the real numbers to be transmitted.

elements specifies the number of elements in the array to be transmitted.

(An error occurs if the number is less than 0.)

Examples
For Pascal:

TYPE
reali0 = ARRAY[1..10] of SINGLE;
VAR
info : realll;
num_elements : INTEGER;
err : INTEGER;
hHpib : INTEGER;

num_elements := 10;

err := HpibOutputa (hHpib,722,info,num_elements);
{Output the array INFO to device 722.}

4-68 Using Windows DLL

HpibOutputa

For C:
float info[10];
int num_elements;
int error;

HANDLE hHpib;

num_elements = 10;
error = HpibOutputa(thib,722L,info,num_elements);
/*0utput elements of ’info’ to device 722.%/

For Visual BASIC:

dim info!(10)

elements) = 10

devg& = 722

errnum), = HpibOutputa(hHpib),dev&,info!(0),elements})
if errnum), <> NOERR then MsgBox(HpibErrStr$(errnumij))
’Output array info to device 722; begin with element O.

Bus Activity

If a device address is specified:

m ATN is set.

= MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is output.

® EOL is output.

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent
followed by an EQOL.

Using Windows DLL 4-69

HpibOutputa

Comments

If the specified maximum number of elements to output is greater than the
size of the data array, the output transfer can go beyond the array and send
meaningless data.

Numbers with absolute values between 1075 and 10° are rounded to seven
significant digits and output in floating point notation. If the number rounds
to an integer value, the decimal point is not sent. Numbers outside this range
are rounded to seven significant digits and output in scientific notation.

If the number is positive, a leading space is output for the sign; if it’s negative,
a leading “—” is output.

If a select code is to be used as a parameter, the interface must first be
addressed to talk (with HpibSend, for example), or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ECTRL, ENOOPEN,
EHANDLE, and ERANGE.

4-70 Using Windows DLL

HpibOutputab

HpibOutputab

This command outputs arbitrary-block response data (numeric or string data
with IEEE-488.2 coding) to a specified device or to the bus. After the last data
byte is sent, nothing additional occurs.

Syntax

HpibOutputab (hHpib,device_address,data_REF, bytes, swapsize)
HpibOutputab (hHpib, select_code,data_REF, bytes, swapsize)

hHpib specifies the handle returned by HpibOpen.

device_address specifies a device address.

select_code specifies the interface select code.

data_REF array containing the data to be transmitted.

bytes specifies the number of bytes to output (excluding the coding

bytes). This value should be no more than the number of
elements in the array times the number of bytes per element.
(An error occurs if the number is less than 0.)

swapstze specifies how bytes are read from memory. A value of 1
indicates that bytes are read in order. Larger values indicate
that bytes are reversed as read from memory in groups of this
size. The value should correspond to the byte size of the data
variable. (For example, a value of 4 specifies that each group
of four bytes is swapped when output.) Valid values are 1
through 8—other values return an error.

Using Windows DLL 4-71

HpibOutputab

Examples

For Pascal:

TYPE

doublel10 = ARRAY[1..10] of REALS;

VAR

val : doubleiO;

num_bytes : INTEGER;

swap : INTEGER;

err : INTEGER;

hHpib : INTEGER;

swap := 8;
num_bytes := 10 * swap;
err := HpibOutputab (hHpib,722,info,num_elements,swap);
{Output the array INFO to device 722.}
For C:
double info[10]; /*Double-precision array (8 bytes/elem)*/
int num_bytes;
int swap;
int error;
HANDLE hHpib;
swap = sizeof(double);

num_bytes = 10 * swap;

error

HpibOutputab(hHpib,722L, info,num_bytes,swap);
/*0utput elements of ’info’ to device 722.%/

For Visual BASIC:

dim info#(10) ’Double-precision array (8 bytes/elem)

swapl, =

8

elements), = 10 * swap,

devg =

722

errnum), = HpibOutputab(Hhpib),dev&,info#(0),elements’,,swap))
if errnum), <> NOERR then MsgBox(HpibErrStr$(errnumy))
’Output array info to device 722; begin with element O.

4-72 Using Windows DLL

HpibOutputab

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m ATN is cleared.

® Data is output.

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent.

Comments

IEEE-488.2 coding is described under “Arbitrary-Block Data Coding” in
chapter 1 of Using the HP-IB Interface and Command Library. The coding
bytes are automatically computed and inserted in front of the data.

If the specified maximum number of elements to output is greater than the
size of the data array, the output transfer can go beyond the array and send
meaningless data.

If a select code is to be specified in the command, the interface must first be
addressed to talk (with HpibSend, for example) or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL,
ENOOPEN, EHANDLE, and EUNKNOWN.

-Using Windows DLL 4-73

HpibOutputb

This command outputs binary data (numeric or string data with no coding or
formatting) to a specified device or to the bus. After the last number is sent,
the EOL string is sent and the EOI line is set (if enabled).

Syntax

HpibOutputb (hHpib,device_address,data_REF, bytes, swapsize)
HpibOutputb (hHpib, select_code,data_ REF, bytes, swapsize)

hHpib specifies the handle returned by HpibOpen.

device_address specifies a device address.

select_code specifies the interface select code.

data_REF array containing the data to be transmitted.

bytes specifies the number of bytes to output. This value should be

no more than the number of elements in the array times the
number of bytes per element. (An error occurs if the number
is less than 0.)

swapsize specifies how bytes are read from memory. A value of 1
indicates that bytes are read in order. Larger values indicate
that bytes are reversed as read from memory in groups of this
size. The value should correspond to the byte size of the data
variable. (For example, a value of 4 specifies that each group
of four bytes is swapped when output.) Valid values are 1
through 8—other values return an error.

4-74 Using Windows DLL

HpibOutputb

Examples
For Pascal:

TYPE
doublel0 = ARRAY[1..10] of REALS;
VAR

val : doubleilO;
num_bytes : INTEGER;

swap : INTEGER;

err : INTEGER;

hHpib : INTEGER;

swap := 8;

num_bytes := 10 * swap;

err := HpibOutputb (hHpib,722,info,num_elements,swap);
{Output the array INFO to device 722.}

For C:
double info[10]; /*Double-precision array (8 bytes/elem)x*/
int num_bytes;
int swap;
int error;

HANDLE hHpib;

swap = sizeof(double);

num_bytes = 10 * swap;

error = HpibOutputb(hHpib,722L,info,num_bytes,swap);
/*Qutput elements of ’info’ to device 722.%/

For Visual BASIC:

dim info#(10) ’Double-precision array (8 bytes/elem)

swap), = 8

elements), = 10 * swap},

devg = 722

errnumy, = HpibOutputb(hHpib¥,,dev&,info#(0),elmentsy,swap’)
if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumj))
’Output array info to device 722; begin with element 0.

Using Windows DLL 4-75

HpibOutputb

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m ATN is cleared.

= Data is output.

= EOL is output.

If a select code is specified:

m If the interface is not addressed to talk, an error results.
= If the interface is addressed to talk, ATN is cleared and the data is sent
followed by an EOL.

Comments

If the specified maximum number of elements to output is greater than the
size of the data array, the output transfer can go beyond the array and send
meaningless data.

If a select code is to be specified in the command, the interface must first be
addressed to talk (with HpibSend, for example) or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL,
ENOOPEN, EHANDLE, and EUNKNQOWN.

4-76 Using Windows DLL

HpibOutputt

HpibOutputf

This command outputs the contents of a file to a specified device or interface.
After the file is sent, the EOL string is sent and the EOI line is set (if enabled).

Syntax

HpibOutputf (hHpib,device_address, file_name,length)
HpibOutputf (hHpib, select_code, file_name,length)

hHp:b specifies the handle returned by HpibOpen.

device_address specifies a device address.

select_code specifies the interface select code.

file_name specifies the name of the file to output.

length specifies the maximum number of elements to be written. (An

error occurs if the number is less than 0.)

Examples

For Pascal:
error : INTEGER ;
length : LONGINT ;
hHpib : INTEGER;
length := 10 ;

error := HpibOutputf (hHpib,723, ’OUTPUT.DAT’, length)
if error <> NOERR then writeln(‘an error occurred...’);

For C:

int error ;
long length ;
HANDLE hHpib;

length = 10 ;

error = HpibOutputf (hHpib,723L, "OUTPUT.DAT", &length)
if (error != NOERR) /*Do error handling herex/

Using Windows DLL 4-77

HpibOutputf

For Visual BASIC:

dev& = 723

length& = 10

file.name$="0UTPUT.DAT"

errnum), = HpibOutputf (hHpib),dev&,file.name$,length&)
if errnum) <> NOERR then MsgBox(HpibErrStr$(errnum}))

Bus Activity
If a device address is specified:

m ATN is set.

m MTA is sent.

a UNL is sent.

LAD is sent.

OSA is sent if specified.
ATN is cleared.

Data is entered.

EOL is output.

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent
followed by the EOL string.

Comments

Possible errors are NOERR, ETIME, ESEL, EADDR, ERANGE, ECTRL,
ENOOPEN, EHANDLE, and EFILE.

If you are transferring a binary file, we recommend that you turn off the EOL
string using the HpibEol command. If you do not, the current EOL string will
be appended to the file.

Note This command does not transfer files from an HP-IB disk drive,
but rather transfers bytes from a built-in disk drive on your
d computer to the HP-IB bus.

4-78 Using Windows DLL

HpibOutputs

HpibOutputs

This command outputs a string to a specified device or to the interface. After
the string is sent, the EOL string is sent and the EQI line is set (if enabled).

Syntax

HpibOutputs (hHpib, device_address,data_ REF,length)
HpibOutputs (hHpib,select_code,data_REF,length)

hHpib

specifies the handle returned by HpibOpen.

device_address specifies a device address.

select_code

specifies the interface select code.

data_REF array specifying the string to be sent.
length specifies the length of the output string. (An error occurs if the
number is less than 0.)
Examples
For Pascal:
VAR
info : STRING(4);
length : INTEGER;
err : INTEGER;
hHpib : INTEGER;
info := ?1ST1’;
length := 4;

err := HpibOutputs (hHpib,723,info,length);
{Send the programming code ’1ST1’ to device 723.}

Using Windows DLL 4-79

HpibOutputs

For C:
char *info
int length;
int error,;

HANDLE hHpib;

info = "1ST1";
length = 4;
error = HpibOutputs(hHpib,723L,info,length);
/*Send the programming code ’1ST1’ to device 723.%/

For Visual BASIC:

devd = 723

info$ = "1sti"

length) = len(info$)

errnum), = HpibOutputs(hHpib),dev&,info$,lengthl)

if errnum) <> NOERR then MsgBox(HpibErrStr$(errnum}))
’Send "1st1" to device 723.

Bus Activity
If a device address is specified:

u ATN is set.

m MTA is sent.

s UNL is sent.

s LAD is sent.

m OSA is sent if specified.
m ATN is cleared.

m Data is output.

m EOL is output.

If a select code is specified:

m If the interface is not addressed to talk, an error results.
m If the interface is addressed to talk, ATN is cleared and the data is sent
followed by an EOL.

4-80 Using Windows DLL

HpibOutputs

Comments

If the specified maximum number of elements to output is greater than the
current length of the data string, the output transfer can go beyond the string
and send meaningless data.

If a select code is to be used in the command, the interface must first be
addressed to talk (with HpibSend, for example), or an error occurs.

Possible errors are NOERR, ETIME, ESEL, EADDR, ECTRL, ENOOPEN,
EHANDLE, and ERANGE.

' Computer

Using Windows DLL 4-81

HpibPassctl

This command passes active control from the HP 82335 HP-IB interface to a

device on the bus. The device must be capable of taking control.

Syntax
HpibPassctl (hHpib,device_address)
hHpib specifies the handle returned by HpibOpen.

device_address specifies a device address.

Examples
For Pascal:

error : INTEGER ;
hHpib : INTEGER ;

error := HpibPassctl(hHpib,723)

if error <> NOERR then writeln(‘an error occurred..
For C:

int error ;

HANDLE hHpib ;

error = HpibPassctl(hHpib,723L)

if (error !=NOERR) /+#Do error checking here*/
For Visual BASIC:

dev& = 723
errnum}, = HpibPassctl (hHpib},,devk)

.Y

if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumj))

4-82 Using Windows DLL

HpibPassctl

Bus Activity
If a device address is specified:

m ATN is set.

m UNL is sent.

m MLA is sent.

m TAD is sent.

m TCT is sent.

m ATN is cleared.

Comments

If your program does not seem to work properly after passing control, make
sure that you do not have an interrupt (IRQ) conflict with another device. You
can find out what IRQ your HP-IB board is using by running the INSTALL
utility.

The HP-IB DLL defaults to address 30. If desired, you can change this using
the HpibControl command.

The HpibPassctl command passes active control only. This command will not
change the state of the system controller status of the HP 82335.

Possible errors are NOERR, ETIME, ESEL, ENOOPEN, EHANDLE, and
ECTRL.

Using Windows DLL 4-83

HpibPpoll

This command performs a parallel poll of the interface. It sets a variable to a
value (0 to 255) representing the response of those instruments on the interface
that respond to a parallel poll.

Syntax

HpibPpoll (hHpib,select_code, response.REF)

hHpib specifies the handle returned by HpibOpen.
select_code specifies the interface select code.

response_ REF variable into which the parallel poll response byte is to be
placed. The allowable range is 0 to 255. The eight bits of the
response byte correspond to the eight HP-IB data lines (DIO1
through DIO8). Thus, a value of 32 would indicate that some
device has responded to the parallel poll with a “1” on DIOG6.

Examples
For Pascal:

VAR
response : INTEGER;
err : INTEGER;
hHpib : INTEGER;

err := HpibPpoll (hHpib,7,response);

For C:
int response;
int error;

HANDLE hHpib;

error = HpibPpoll (hHpib,7L,&response);

4-84 Using Windows DLL

HpibPpoll
For Visual BASIC:

isc& = 7
errnumy, = HpibPpoll (hHpib¥%,isc&,response})
if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumj))

Bus Activity

m ATN and EOI are asserted for 25 microseconds.
a The poll byte is read.

m EOI is cleared.

m ATN is restored to its previous state.

Comments

During a parallel poll, each enabled device may put a “1” on an assigned
HP-IB data line according to its service request status—otherwise, the line is a
“0”. There are eight data lines (though more than one device may be assigned
to one line). Using a parallel poll, several devices can indicate their service
request status simultaneously. The response variable contains the state of the
eight data lines: DIO1 (in bit 0) through DIOS8 (in bit 7).

If the response variable contains a “1” in any bit, a device assigned to the
corresponding HP-IB line has the service request status the device was set up
to report. (See HpibPpollC.) For example, a device may be set up to report on
line DIO4 when it requests service. If an HpibPpoll command shows a “1” in
bit 3 of response, your program knows the device needs service (assuming no
other device is assigned to that line).

Not all devices are capable of responding to a parallel poll. Consult your
particular device manuals for specifics.

Possible errors are NOERR, ETIME, ECTRL, ENOOPEN, EHANDLE, and
ESEL.

Using Windows DLL 4-85

HpibPpolic

This command performs a Parallel Poll Configure. In preparation for a parallel
poll command, it tells an instrument how to respond affirmatively to the
parallel poll, and on which data line to respond.

In general, it sets a parallel poll response byte to reflect the response of a
desired arrangement of instruments. Typically, you could define the bits to
reflect the responses of particular instruments, or the result of a logical OR
operation on several instrument responses.

Refer to HpibPpoll for more information.

Syntax

HpibPpollc (hHpib, device_address, configuration)
HpibPpollc (hHpib, select_code, configuration)

hHpib specifies the handle returned by HpibOpen.
device_address specifies the bus address of the device to be configured.
select_code specifies the interface select code.

configuration sent to the specified device indicating how it’s to respond to a
parallel poll. (See “Comments” below.)

Examples
For Pascal:

VAR
configuration : INTEGER;
err : INTEGER;
hHpib : INTEGER;
configuration := 10; {Respond with a ’1’ on line DID3.}

err := HpibPpollc (hHpib,723,configuration);

4-86 Using Windows DLL

HpibPpolic

For C:
int error;
int configuration;

HANDLE hHpib;

configuration = 10; /*Respond with a ’1’ on line DIO3.*/
error = HpibPpollc(hHpib,723L,configuration);

For Visual BASIC:

device& = 723

conf’ = 10 ’Respond with a "1" on line DIO3.

errnumj), = HpibPpollc(hHpib/,device&,conf))

if errnum) <> NOERR then MsgBox(HpibErrStr$(errnum}))

Bus Activity
If a device address is specified:

m ATN is set.

a MTA is sent.

m UNL is sent.

a LAD is sent.

m OSA is sent if specified.
s PPC is sent.

m PPE is sent.

If a select code is specified:

m PPC is sent.
m PPE is sent.

Using Windows DLL 4-87

HpibPpolic

Comments

The configuration parameter defines both the HP-IB line on which to respond
and the service request status to indicate. It represents an eight-bit byte
described below.

Bit7 | Bit6 | Bits | Bit4 | Bit3 | Bit2 | Bitl | Bit0

0 0 0 0 Response | DIO Line (DIO1 to DIO8)
(0 or 1)

Bit 3 specifies the meaning of an affirmative response. Bits 2 through 0 specify
the data line (DIO8 through DIO1). The valid range for configuration is 0 to
15—other values cause an error.

Parallel Poll Configuration Bits Value
Affirmative response for service request 00001xxx 8
Affirmative response for no service request 00000xxx 0
Respond on line DIO8 0000x111 7
Respond on line DIO7 0000x110 6
Respond on line DIO6 0000x101 5
Respond on line DIOS 0000x100 4
Respond on line DIO4 0000x011 3
Respond on line DIO3 0000x010 2
Respond on line DIO2 0000x001 1
Respond on line DIO1 0000x000 0

For example, to set up a device to indicate an affirmative response (“1”) on
line DIOS if it needs service, the configuration value would be 8 + 4 = 12.
Alternatively, for the device to indicate an affirmative response (“1”) on line
DIOS5 when it doesn’t need service, the configuration value would be 0 + 4 = 4.

Not all devices can be configured to respond to a parallel poll. Consult your
particular device manuals for specifics.

4-88 Using Windows DLL

HpibPpolic

Possible errors are NOERR, ETIME, ESEL, ECTRL, ENOOPEN, EHANDLE,
and ERANGE.

Using Windows DLL 4-89

HpibPpollu

This command performs a Parallel Poll Unconfigure (PPU). It directs an
instrument to not respond to a parallel poll. It can be addressed to the
interface or a specific device. Refer to HpibPpollc for more information.

Syntax

HpibPpollu (hHpib, device_address)
HpibPpollu (hHpib, select_code)

hHpib specifies the handle returned by HpibOpen.
device_address specifies a device address.
select_code specifies the interface select code.
Examples
For Pascal:

VAR

err : INTEGER;

hHpib : INTEGER;

err := HpibPpollu (hHpib,722);
For C:

int error;

HANDLE hHpib;

error = HpibPpollu(hHpib,722L);
For Visual BASIC:

devg& = 722
errnum), = HpibPpollu(hHpib%,dev&)
if errnum), <> NOERR then MsgBox(HpibErrStr$(errnum?))

4-90 Using Windows DLL

Bus Activity

If a device address is specified:

® ATN is set.

w MTA is sent.

m UNL is sent.

m LAD is sent.

m OSA is sent if specified.
m PPC is sent.

m PPD is sent.

If a select code is specified:

m ATN is sent.
a PPU is sent.

Comments

HpibPpollu

Some devices cannot be unconfigured from the bus. Consult your particular

device manuals for specifics.

Possible errors are NOERR, ETIME, ECTRL, ENOOPEN, EHANDLE, and

ESEL.

Using Windows DLL 4-91

HpibRemote

This command places a device in Remote mode to disable the device front
panel. It can be addressed to the interface or to a specific device.

Syntax

HpibRemote (hHpib,device_address)
HpibRemote (hHpib, select_code)

hHpib specifies the handle returned by HpibOpen.
device_address specifies a device address.
select_code specifies the interface select code.
Examples
For Pascal:

VAR

err : INTEGER;
hHpib : INTEGER;

err := HpibRemote (hHpib,723); {Places device 723 in Remote.}

err := HpibRemote (hHpib,7); {Set the interface REN line.}
For C:

int error;

HANDLE hHpib;

error = HpibRemote(hHpib,723L); /*Place device 723 in Remote.*/

error = HpibRemote(hHpib,7L); /*Set the interface REN line.x*/

4-92 Using Windows DLL

HpibRemote
For Visual BASIC:
isc} = 7

dvm& 723
errnum} = HpibRemote(hHpib),,dvm&) ’Place the dvm in remote mode.

errnum), = HpibRemote(hHpib%,isc&) ’Set the interface REN line.
if errnum), <> NOERR then MsgBox(HpibErrStr$(errnumi,))

Bus Activity
If a device address is specified:

® REN is set.

m ATN is set.

m MTA is sent.

a UNL is sent.

m LAD is sent.

m OSA is sent if specified.

If a select code is specified, then REN is set.

Comments

If a select code is specified, a device will not switch into Remote mode until it
is addressed to listen.

Possible errors are NOERR, ETIME, ECTRL, ENOOPEN, EHANDLE, and
ESEL.

Using Windows DLL 4-93

HpibRequest

This command sets up a serial poll status byte for the HP 82335 and optionally
asserts the Service Request (SRQ) line.

Syntax

HpibRequest (hHpib, select_code, status)

hHpib specifies the handle returned by HpibOpen.

select_code specifies the interface select code.

status specifies the serial poll status byte. If bit 6 in the status byte

is set, the SRQ line will be asserted. If bit 6 is clear, SRQ will
not be asserted.

Examples

For Pascal:
error : INTEGER ;
hHpib : INTEGER ;

error := HpibTakectl(hHpib,7, $042)

if error <> NOERR then writeln(‘an error occurred...’);
For C:
int error ;

HANDLE hHpib ;
error = HpibTakectl(hHpib,7L, 0x42)
if (error !'=NOERR) /* Do error checking x/

For Visual BASIC:

devk = 7
status’ = &h42
errnum), = HpibRequest(hHpib%,dev&,status))

if errnum) <> NOERR then MsgBox(HpibErrStr$(errnum}))

4-94 Using Windows DLL

HpibRequest

Bus Activity
If bit 6 is set in the status parameter: SRQ is asserted.

If bit 6 is clear in the status parameter: no bus activity.

Comments
Possible errors are NOERR, ECTRL, ENOOPEN, EHANDLE, and ESEL.

Using Windows DLL 4-95

HpibReset

This command sets the interface to its start-up state, in which it is not
listening and not talking. In addition, it sets the following HP-IB parameters
as indicated:

m The interface timeout is set to 0 seconds (the timeout is disabled).
m The interface EOI mode is enabled.

m High-speed data output is disabled.

m CR/LF is set as the EOL default.

m LF is set as the HpibMatch default.

» If the interface was system controller, then it will also become active
controller.

Syntax

HpibReset (hHpib, select_code)

hHpib specifies the handle returned by HpibOpen.
select_code specifies the interface select code.
Examples

For Pascal:

VAR
err : INTEGER;
hHpib : INTEGER;

err := HpibReset (hHpib,7);
For C:

int error;
HANDLE hHpib;

error = HpibReset(hHpib,7L);

4-96 Using Windows DLL

HpibReset

For Visual BASIC:

isck = 7
errnum), = HpibReset (hHpib%,isc&)
if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumj))

Bus Activity
If the interface is system controller:

m IFC is pulsed (at least 100 microseconds).
m REN is cleared (at least 10 microseconds).
m ATN is cleared.

If the interface is non-system controller:

m No bus activity.

Comments

This command returns all devices on the interface to local (front panel) control.

Possible errors are NOERR, ENOOPEN, EHANDLE, and ESEL.

Using Windows DLL 4-97

HpibSend

This command sends any sequence of user-specified HP-IB commands to the
interface. For example, to send an output command to several instruments
simultaneously, you can establish their talk/listen status with the HpibSend
command, then issue the output command specifying a select code rather than
a device address.

Syntax

HpibSend (hHpib, select_code,commands_REF,length)

hHpib specifies the handle returned by HpibOpen.
select_code specifies the interface select code.

commands_REF specifies a string of characters, each of which is treated as an
interface command.

length specifies the number of characters in the command string.
(An error occurs if the number is less than 0.)

Examples
For Pascal:

VAR
commands : STRING[4];
length : INTEGER;
err : INTEGER;
hHpib : INTEGER;

commands := ’7)/4’; {Specifies unlisten
and listen addresses 9, 15, and 20.}
length := 4;

err := HpibSend (hHpib,7,commands,length);
err := HpibTrigger (hHpib,7);
{Triggers devices at addresses 9, 15, and 20.}

4-98 Using Windows DLL

HpibSend

For C:
char *commands;
int length;
int error;

HANDLE hHpib;

commands = "?)/4"; /*Specifies unlisten

and listen addresses 9, 15, and 20.%*/
length = 4;
error = HpibSend(thib,7L,commands,1ength);

error = HpibTrigger (hHpib,7L);
/*Triggers devices at addresses 9, 15, and 20.*/

For Visual BASIC:

isck = 7

commands$ = "7)/4"

'Specifies unlisten, then listen addresses 9, 15, and 20.
length) = 4

errnumj), = HpibSend(hHpib),,isc&,commands$,length,)

errnumj, = HpibTrigger(hHpib},isc&)

if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumj))
'Triggers devices at addresses 9, 15, and 20.

Bus Activity

® ATN is set.
m Command bytes are sent.

Comments

See appendix B in Using the HP-IB Interface and Command Library for a list
of HP-IB commands and the corresponding data characters.

All bytes are sent with ATN set. The EOL sequence is not appended, nor is
EOI set.

Using Windows DLL 4-99

HpibSend

Possible errors are NOERR, ETIME, ESEL, ECTRL, ENOOPEN, EHANDLE,
and ERANGE.

4-100 Using Windows DLL

HpibSetWaitHook

HpibSetWaitHook

HpibSetWaitHook sets up a function that the Windows DLL calls when it

is waiting for devices to finish handshaking the HP-IB bus. If this function
returns zero, the library continues normally. If it returns a non-zero value, the
library halts as though a timeout error had occurred, but returns with the error
value that the hook function returned.

HpibSetWaitHook has two main uses:

m An HP-IB transaction can be aborted manually even if the transaction was
working properly.

m This hook function can call a PeekMessage loop to yield to windows, allowing
the window to run normally even during long HP-IB transactions.

Syntax

HpibSetWaitHook (hHpib,select_code, FARPROC)

hHpib specifies the handlep1179XrethyridgibOpen.
select_code specifies the interface select code.

FARPROC points to the Abort function that the Windows DLL will call.

Examples

Before HpibSetWaitHook is called, a far pointer to the procedure should be
created using MakeProclnstance. For example:

FARPROC lpfnMyAbortProc ;

lpfnMyAbortProc = MakeProcInstance (MyAbortProc, hlnst) ;
hpiberror = HpibSetWaitHook(hHpib, select_code, lpfnMyAbortProc) ;

Using Windows DLL 4-101

HpibSetWaitHook

In its simplest form, the abort proc looks like this:

int FAR PASCAL MyAbortProc (void)
{

if /* you want to abort the HP-IB transaction */
return MY_ERROR ;

else
return O ;

}

If you want your abort proc to yield to windows, use the following function:

void FAR PASCAL PeekYield (void)

{

MSG msg ;

if (PeekMessage (&msg, NULL, O, O, PM_REMOVE))
{
TranslateMessage ((LPMSG) &msg) ;
DispatchMessage ((LPMSG) &msg) ;
}

return ;

}

Comments

This function is supported with C languages only.

The error values you use should be in the range 0x20 through 0xFF. An
error value of 2, for example, is the same as ESEL, and the program would
think that an invalid select code was given. You can take advantage of
this restriction by setting up your own timeout routines instead of using
HpibTimeout(), and returning ETIME if a transaction times out.

The abort proc should be exported in your .DEF file. Or, if you are using
Microsoft C 6.0, you can use the _export keyword.

4-102 Using Windows DLL

HpibSetWaitHook

Caution If your abort proc yields to Windows, or calls any function that
yields, make sure that you cannot close the application when an
‘ Hpib function is called. You should not be able to close your

application when a .DLL function is being executed. Make sure
that you do not call any functions in the HP-IB DLL if the
DLL is currently yielding.

Using Windows DLL 4-103

HpibSpoll

This command performs a serial poll of a specified device. It sets a variable
representing the device’s response byte.

Syntax

HpibSpoll (hHpib, device_address,response_REF)

hHpib specifies the handle returned by HpibOpen.
device_address specifies the bus address of the device to be polled.

response_ REF variable into which the response byte is placed.

Examples

For Pascal:

VAR
response : INTEGER;
err : INTEGER;
hHpib : INTEGER;

err := HpibSpoll (hHpib,723,response); {Performs a serial poll
on device 723 and puts the response byte in RESPONSE.}

For C:
int response;
int error;

HANDLE hHpib;

error = HpibSpoll(hHpib,723L,&response); /*Perform a serial poll
on device 723 and put the response byte in response.*/

4-104 Using Windows DLL

HpibSpoll
For Visual BASIC:

device& = 723

errnumj, = HpibSpoll(hHpib%,device&,responsel,)

if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumj))
'Perform a serial poll on device 723,

‘put the response byte in responsej,.

Bus Activity

m ATN is set.

m UNL is sent.

m MLA is sent.

m TAD is sent.

m OSA is sent if specified.
s SPE is sent.

m ATN is cleared.
m Poll byte is read.
m ATN is set.

m SPD is sent.

s UNT is sent.

e Lomputer
- Vluse
iw iSeum

Comments

If a device is requesting service, it stops requesting service when its response
byte is read.

Some devices are not capable of responding to a serial poll, in which case
polling may result in an error. Consult the instrument manual to determine
if an instrument can respond to a serial poll and how its response byte is
interpreted.

Possible errors are NOERR, ETIME, ECTRL, ENOOPEN, EHANDLE, and
ESEL.

Using Windows DLL 4-105

HpibStatus

This command determines the current interface status regarding a particular
condition. It sets a variable representing that status.

Syntax

HpibStatus (hHpib, select_code, condition, status_REF)

hHpib specifies the handle returned by HpibOpen.

select_code specifies the interface select code.

condition specifies the condition being checked, from 0 to 11. The

possible conditions are:

Value
0

NeZRNNe R =T) S N - -

— = =
N = O

4-106 Using Windows DLL

Description

Is the interface currently in the remote state?
(always no)

What is the current state of the SRQ line?
What is the current state of the NDAC line?
Is the interface currently system controller?
Is the interface currently active controller?

Is the interface currently addressed as talker?
Is the interface currently addressed as listener?
What is the interface’s bus address?

What is the state of the ATN line?

What is the address status of the interface?
What is on the DIO lines now?

What is the bus status of the interface?

What interface is installed?

status_REF

HpibStatus

variable into which the condition’s status is placed. It can have

the following values:

Conditions 0 to 6 and 8

Value

Meaning

0
1

Clear or No

Set or Yes

Co

ndition 7

Value

Meaning

0 to 30 | Address of card

Condition 9*
Bit | Value | Meaning
0 1 |ulpa
1 2 | TADS
2 4 |LADS
3 8 | TPAS
4 16 |LPAS
51 32 {ATN
6 | 64 [LLO
7 | 128 |REM
Condition 10
Value Meaning

0 to 255§ Value of

the data lines on the bus

Using Windows DLL 4-107

HpibStatus

Condition 11*

Bit | Value | Meaning
0 1 |REN
1 2 |IFC
2 4 |SRQ
3 8 | EOI
4 16 |NRFD
5 | 32 [NDAC
6 | 64 |DAV
7 | 128 |ATN
Condition 12
Value Meaning

2 |HP 82335

0 |no interface

1 | HP 82990 (old) or HP 27209

* The actual value returned from conditions 9 and 11 will be the sum of the
values of all true conditions. For example, the value returned if bits 2 and 3

were true would be 12.

To check whether a specific condition is true, use the AND operand

in your language. For example, to check if DAV is true, you could call
HpibStatus(7L,11,&result), then check whether (result AND 32) = 32, then
(DAV is set). Make sure you are using the binary AND in your language and

not the logical AND.

4-108 Using Windows DLL

Examples
For Pascal:

VAR
select

select :=
err :

For C:
int
int
int
HANDLE

i}

HpibStatus

: INTEGER;
status :

err :
hHpib :

INTEGER;
INTEGER;
INTEGER;

1;
HpibStatus (hHpib,7,select,status);
{Determine if SRQ is set.}

select;
status;
error;
hHpib;

select = 1;

error =

HpibStatus (hHpib,7L,select,&status);
/*¥Determine if SRQ is set.*/

For Visual BASIC:

isc& = 7

select) = 1

errnumj), = HpibStatus(hHpib¥%,isc&,select),status’)

if errnum) <> NOERR then MsgBox(HpibErrStr$(errnumy))
'Determine if SRQ is set.

Bus Activity

None.

Using Windows DLL 4-109

HpibStatus

Comments
Possible errors are NOERR, ESEL, ENOOPEN, EHANDLE, and ERANGE.

Status conditions 9 through 11 are rarely used.

4-110 Using Windows DLL

HpibTakectl

HpibTakectl

This command takes active control from the currently active controller on the

bus back to the

Syntax
HpibTakectl (
hHpib
select_code

priority

1

controller holding the HP 82335 HP-IB interface.

WHpib, select_code, priority)
specifies the handle returned by HpibOpen.
specifies the interface select code.

specifies the priority of the request. This parameter can take
one of three values:

Wait until the active controller passes control
back to me. It will wait until it receives
control or until it times out as specified by the
HpibTimeout function.

Assert SRQ with bits 1 and 6 set, then wait
until the active controller passes control back
to me. It will wait until either it receives
control or until it times out as specified by the
HpibTimeout function.

Assert the Interface Clear (IFC) line.
Asserting the IFC line immediately makes the
HP 82335 the active controller. The HP 82335,
however, must be the system controller to be
able to assert the IFC line. If it is not the
system controller, an ECTRL error will result.

Using Windows DLL 4-111

HpibTakectl

Examples

For Pascal:
error : INTEGER ;
hHpib : INTEGER ;

error := HpibTakectl(hHpib,7, 1)

if error <> NOERR then writeln(‘an error occurred...’);
For C:
int error ;

HANDLE hHpib ;
error = HpibTakectl(hHpib,7L, 1)
if (error '= NOERR) /*Do error handlingx/

For Visual BASIC:

devg = 7 : priority/ =1
errnum), = HpibTakectl(hHpib’,,dev&,priority’)
if errnum), <> NOERR then MsgBox(HpibErrStr$(errnumj))

Bus Activity
Bus activity is controlled by the active controller until HpibTakectl is finished.

Comments

The Windows DLL defaults to address 30. If necessary, you can change this
using the HpibControl command.

It may take awhile for the device that has active control to pass control back
to the Windows DLL. You may want to increase your timeout value using
HpibTimeout before calling HpibTakectl, and decrease it after the HpibTakectl
call.

Possible errors are NOERR, ETIME, ESEL, ERANGE, ENOOPEN,
EHANDLE, and ECTRL.

4-112 Using Windows DLL

HpibTimeout

HpibTimeout

This command sets an interface timeout value in seconds for I/O operations
that do not complete (for example, the printer runs out of paper).

The default is timeout disabled.

Syntax

HpibTimeout (hHpib, select_code,timeout)

hHpib specifies the handle returned by HpibOpen.

select_code specifies the interface select code.

timeout specifies the length of the timeout period. A value of 0.0

disables the timeout, while a negative value results in an error.

Examples
For Pascal:

VAR
timeout_val : DOUBLE;
err : INTEGER;
hHpib : INTEGER;

timeocut_val := 1.23; {Timeout after 1.23 seconds.}

err := HpibTimeout (hHpib,7,timeout_val);
For C:
int error;
double timeout_val;

HANDLE hHpib;

timeout_val = 1.23; /*Timeout after 1.23 seconds.*/
error = HpibTimeout (hHpib,7L,timeout_val);

Using Windows DLL 4-113

HpibTimeout
For Visual BASIC:

isc& = 7

timeout.val# = 2.0 ’Timeout = 2 seconds.

errnumy, = HpibTimeout (hHpibl,,isc&,timeout.valk)

if errnum} <> NOERR then MsgBox(HpibErrStr$(errnumy))

Bus Activity

None.

Comments

Timeout is effective for any interface operation that transfers data or
commands.

A timeout error occurs only if timeout is enabled (that is, the timeout is set to
a positive value).

Timeout should be established early in your program. It provides a way to
recover from I/O operations that are not completed.

The timeout value is a real number specified in seconds, which gets rounded
to the nearest 1/16 second. To timeout after 5 seconds, set timeout to 5.0.
To timeout after 0.5 second, set timeout to 0.5. Note that a timeout of 0.0
effectively disables any timeouts. The maximum allowable timeout is 4096
seconds.

If a transfer times out, the incompleted transfer function returns the value 4,
which corresponds to the ETIME error.

Possible errors are NOERR, ESEL, ENOOPEN, EHANDLE, and ERANGE.

4-114 Using Windows DLL

HpibTrigger

HpibTrigger

This command triggers one or more devices.

Syntax

HpibTrigger (hHpib,device_address)
HpibTrigger (hHpib,select_code)

hHpib specifies the handle returned by HpibOpen.
device_address specifies a device address.
select_code specifies the interface select code.
Examples
For Pascal:

VAR

err : INTEGER;

hHpib : INTEGER;

err := HpibTrigger (hHpib,723);
For C:

int error;

HANDLE hHpib;

error = HpibTrigger (hHpib,723L);
For Visual BASIC:

dev& = 723
errnum), = HpibTrigger (hHpib},,dev&)
if errnum) <> NOERR then MsgBox(HpibErrStr$(errnum¥))

Using Windows DLL

4-115

HpibTrigger

Bus Activity
If a device address is specified:

a ATN is set.

m MTA is sent.

m UNL is sent.

m LAD is sent.

a OSA is sent if specified.
m GET is sent.

If a select code is specified:

a ATN is set.
m GET is sent.

Comments
Only one device can be triggered at a time if a device address is specified.

If a select code is specified, all devices on the bus that are addressed to listen
(with HpibSend, for example) are triggered.

Possible errors are NOERR, ETIME, ECTRL, ENOOPEN, EHANDLE, and
ESEL.

4-116 Using Windows DLL

Error Descriptions

N

This appendix describes the Windows Command Library errors.

Error Number Mnemonic Description
0 NOERR No error occurred.
1 EUNKNOWN Unknown error occurred. Check for malfunctioning
equipment or incorrect hardware configuration.
2 ESEL Invalid select code or device address was specified.
This error would most likely occur under these
conditions:

® The first parameter of a call should have been a
valid select code, but a device address or an
invalid select code was specified instead.

m A device address was expected, but a select code
was given or a primary address outside the
range 0 to 31 was specified.

s The device address of the HP-IB interface was
specified as a parameter in commands such as
HpibSpoll, HpibRemote, or HpibClear.

Error Descriptions A-1

Description

Error Number Mnemonic
3 ERANGE*
4 ETIME
5 ECTRL

A command parameter was specified outside its
allowable range. This error can occur under these
conditions:

s HpibEntera, HpibEnters. The specified length
must be positive.

u HpibEnterab, HpibEnterb. The specified length
must be positive. The swap size must be from 1
to 8.

u HpibEol. The specified length must be from 0 to
8.

m HpibControl. The specified value must be from
5 to 7. If 7 1s selected, the valid address values
are 0 to 30.

m HpibOutputa, HpibOutputs. The specified
length must be positive.

m HpibOutputab, HpibOutputb. The specified
length must be positive. The swap size must be
from 1 to 8.

m HpibPpollc. The configuration value must be
from 0 to 15.

m HpibSend. The length must be positive.

m HpibStatus. The status specified was outside
the range 0 to 12.

a HpibTimeout. The specified timeout value must
be greater than or equal to 0.

The time specified by HpibTimeout has elapsed
since the last byte was transferred.

The HP-IB interface must be the active controller
or the system controller.

A-2 Error Descriptions

v Computer
X '.Museum

Error Number Mnemonic Description
6 EPASS Obsolete.
7 ENUM Either no digit or an improperly formed number

was received during real number input using
HpibEnter or HpibEntera. In this case, 0 is
returned as the data value.

8 EADDR Improper talker or listener addressing occurred.
An attempt was made to input or output data
when the interface was not addressed to listen or
talk. This error is likely to occur if a select code
was specified instead of a device address, and the
interface was not properly addressed to talk or
listen.

9 EFILE A file error has occurred while reading, writing, or
creating a file. This error could indicate either a
disk full condition or a file does not exist for
HpibOutputf.

10 EOPEN An error occurred during a call to HpibOpen. The
first parameter could be out of range, or another
application may have already allocated the card.

11 ENOOPEN A card has not been opened.
12 ECLOSE An error occurred during a call to HpibClose.
13 EHANDLE An invalid handle was received.

* Potential conflict for C languages. See the following paragraph.

For C languages, ERANGE is defined to a different value by the MATH.H
file. If MATH.H is included by a program, the compiler gives a warning and
sets ERANGE to the last value defined. In this case, change one of the define

statements so the names are different. For example, you could change two lines
in the HPIB.H Command Library file to

#define ERNGE 3
case ERNGE: return (" Value out of range ");

and then use ERNGE for the Command Library error name (instead of
ERANGE).

Error Descriptions A-3

Index

A

Abort command, 3-13
aborting activity, 2-11
adding devices, 2-5
addresses
HP-IB interface, 4-27, 4-106
application identifier, 3-9
applications, writing, 4-3
arbitrary block data
outputting, 2-9
reading, 2-11
ASCII representation of number, 2-8,
2-9

binary data
outputting, 2-8
reading, 2-10

bus
clearing, 2-11
resetting, 2-12
triggering, 2-12

bus commands
sending, 2-11

Cc

C languages
Library parameter types, 4-19
using, 4-19

Clear command, 3-14

client, 3-3

closing a configuration, 2-4

configuration file, 2-14
conversation, DDE, 3-3
copying data to clipboard, 2-5

D

data transfers
ending input, 4-55
timeout, 4-113
DDE, 3-1
Excel example, 3-4
Word BASIC example, 3-6
debugging macros, 3-12
device
clearing, 2-12
triggering, 2-12
device address, 2-6
device name
changing, 2-5
DLL, 1-1, 4-1
C parameters, 4-19
Pascal parameters, 4-19
with C, 4-19
with Pascal, 4-19
Dynamic Data Exchange, 3-1
Dynamic Link Library, 4-1
installing, 4-1

E

ECLOSE error, 4-2, 4-3
EHANDLE error, 4-2
ENOOPEN error, 4-2
EnterAB command, 3-14

Index-1

Enter menu, 2-9
EnterS command, 3-16
EOI
enabling or disabling, 2-6
EOI command, 3-16
EOI line
reference, 4-49
EOL command, 3-17
EOL string
reference, 4-51
selecting, 2-6
EOPEN error, 4-2, 4-3
Error item, 3-18
ESEL error, 4-3
EXECUTE command, 3-9

F

file
outputting contents, 2-8
reading contents, 2-10
File menu, 2-4

H

help, on-line, 2-14
high speed timing

enabling or disabling, 2-7
HpibAbort command, 4-21
HpibClear command, 4-23
HpibClose command, 4-3, 4-25
HpibControl command, 4-27
HP-IB controller, 4-96, 4-106
HPIBDDE, 3-2
HP-IB devices

clearing, 4-23

modes, 4-58, 4-60

triggering, 4-115
HpibEnterab command, 4-37
HpibEntera command, 4-34
HpibEnterb command, 4-40
HpibEnter command, 4-31
HpibEnterf command, 4-43

Index-2

HpibEnters command, 4-46
HpibEoi command, 4-49
HpibEol command, 4-51
HpibFastout command, 4-53
HpibGetterm command, 4-55
HpibGetVersion command, 4-57
HP-IB interface, 1-2

aborting activity, 4-21

address, 4-27, 4-106

clearing, 4-23

resetting, 4-96

status, 4-27
HPIBINT.EXE, 2-3
HpibLlockout command, 4-58
HpibLocal command, 4-60
HpibMatch command, 4-62
HpibOpen command, 4-3, 4-64
HpibOQutputab command, 4-71
HpibOutputa command, 4-68
HpibQutputb command, 4-74
HpibOutput command, 4-66
HpibOQutputf command, 4-77
HpibQutputs command, 4-79
HpibPassctl command, 4-82
HpibPpollc command, 4-86
HpibPpoll command, 4-84
HpibPpollu command, 4-90
HpibRemote command, 4-92
HpibRequest command, 4-94
HpibReset command, 4-96
HpibSend command, 4-98

HpibSet WaitHook command, 4-101

HpibSpoll command, 4-104
HP-IB standard

commands, 4-98
HpibStatus command, 4-106
HpibTakectl command, 4-111
HpibTimeout command, 4-113
HP-IB timing

reference, 4-53
HpibTrigger command, 4-115

| parameter types

IBC suffix, 2-4 C, 419

identifiers, 3-9 Pascal, 4-19

INITIATE command, 3-9 Pascal

Interactive HP-IB Environment, 1-1, Library parameter types, 4-19

2-1 using, 4-19

exiting, 2-5 POKE command, 3-9
installing, 2-1 R

ISC box, 2-2

item identifier, 3-9 Remote command, 3-21

Remote mode, 4-61, 4-92
L REQUEST command, 3-9

Reset command, 3-22

Llockout command, 3-18
ReturnMsg item, 3-22

Local command, 3-19
Local Lockout mode, 4-22, 4-58, 4-61

Local mode, 4-60, 4-97 S
saving a configuration, 2-4
M separators, 3-15
macro commands, 3-9 serial .POH, 2-12.
macros, 3-1 indicates device status, 4-104
debugging, 3-12 SerialPoll command, 3-23
Main topic, 3-9 server, 3-2
match character service ‘requests
reference, 4-62 clearing, 4-105
setting, 2-7 status, 4-106
with block transfers, 4-42 Setup Device Address box, 2-2
Match command, 3-19 Setup menu, 2-5
Misc menu, 2-11 SRQ status, 2-12
Status command, 3-23
N string
NOERR error, 4-3 entering, 2-9
outputting, 2-7
o Supported Languages sheet, 1-1
OpenConfig command, 3-12, 3-20 T

opening a configuration, 2-4

Output menu, 2-7 TERMINATE command, 3-9

OutputS command, 3-21 termination character, 2-7
’ timeout
P I/0 operations, 4-113

Timeout command, 3-24

parallel poll .
timeout value

indicates device status, 4-84

Index-3

setting, 2-6 w
topic identifier, 3-9 Window menu, 2-13
Tr.iggel" comm'a.nd, 3-24 windows, arranging, 2-13
triggering devices, 4-115 Windows Recorder application, 2-16
WINSTALL
using, 2-1, 3-2, 4-1

Vv
Virtual Device box, 2-2

Index-4

(,ﬁﬂ HEWLETT

PACKARD

o saTssons T e TR TL O
82335-90007

Printed in U.S.A. E1291 82335-90607 Manufacturing Number

