APRIL/JUNE 1983

VOL. 6, NO. 2

CONTENTS

Editor’s Note
John Ray, Editor
University of Tennessee

The MPE Memory Dump; or
How to Make a Statue of an Elephant
Jason M. Goertz
Hewlett-Packard Company
Bellevue, Washington

- Security Issues: How Secure is Your System
Doug Claar
Hewlett-Packard Company

MPE Programming
Eugene Volokh
VESOFT Consultants

* 15 Ideas on Improving
MPE Security
Norman B. Wright

* Advanced Techniques Using VPLUS
Michael A. Casteel
Computing Capabilities Corporation

OF THE HP 3000 INTERNATIONAL
USERS GROUP. INCORPORATED

OF THE HP 3000 INTERNATIONAL
USERS GROUP., INCORPORATED

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

OF THE HP 3000 INTERNATIONAL

J
J
J
J
J
J
J

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

J

.,

OURNA],

USERS GROUP, INCORPORATED

PUBLICATIONS COMMITTEE MEMBERS

Dr. John Ray, Chairman

Editor

College of Education

Dept. of Curriculum & Instruction

The University of Tennessee at Knoxville
Knoxville, Tennessee 37996-3400 USA

Lloyd D. Davis

Associate Editor

Director of Academic Computing Services
The University of Tennessee at Chattanooga
Chattanooga, Tennessee 37402 USA

Mr. Gary H. Johnson

Brown Data Processing

9229 Ward Parkway

Kansas City, Missouri 64114 USA

Mr. Ragnar Nordbert

Department of Clinical Chemistry
University of Gothdenburg
Sahigren’s Hospital

S$-41345

Gothdenburg, Sweden

Ms. Marjorie K. Oughton
Supervisor of Data Processing
Alexandria City Public Schools
3801 Braddock Road
Alexandria, Virginia 22302 USA

Mr. Douglas Swallow

Baltimore Sunpapers

501 N. Calvet St.

Baltimore, Maryland 21278 USA

John M. Knapp
Publisher

Art Production:
John Bird, Anne West

Typesetting
LARC Computing Inc.

HP 3000 international Users Group
289 S. San Antonio Road, Suite 205
Los Altos, California 94022 USA
415/941-9960

Mr. Michael J. Modiz

Hayssen Manufacturing Company
Highway 42 North

Sheboygan, Wisconsin 53081 USA

The information in this publication may be reproduc-
ed without the prior written consent of the HP 3000
International Users Group, provided that proper re-
cognition is given to HP 3000 IUG.

OF THE HP 3000 INTERNATIOMAL

JOURNA]

USERS GROUP, INCORPORATED

HP 3000
INTERNATIONAL USERS GROUP
BOARD OF DIRECTORS

Chairman

Sandra S. Bristow

Liberty Communications, Inc.
2225 Coburg Road

Eugene, Oregon 97401 USA
503/485-5611

Vice-Chairman

John True

Computer Center

Universtiy of Tennessee at Chattanooga
Chattanooga, Tennessee 37402 USA
615/755-4551

Secretary

Lana D. Famery

Quasar Systems Ltd.

275 Slater Street, 10th Floor
Ottawa, Ontario K1P 5H9 Canada
613/237-1440

Treasurer

Michael Lasley

Hinderliter Industries, Inc.
4524 E. 67th, Bldg. #9
Tulsa, Oklahoma 74135 USA
918/494-0992, ext. 303

Jane A Copeland

Tymlabs

211 East 7th Street

Austin, Texas 78701 USA
512/378-0611 (Austin)
512/340-6101 {(San Antonio)

N.M. (N ck) Demos

Demos Computer Systems, Inc.
12 Hillsview Drive

Catonsville

Baltimore, Maryland 21228 USA
301/468-5693

Association Manager (ex officio)
Bill Crow

HP 3000 International Users Group
289 S. San Antonio Road, Suite 205
Los Altos, California 94022 USA
415/941-9960

Hewlett-Packard Representatives
(ex officio)

Jan Stambaugh

Hewlett-Packard Company
Cupertino, California USA

J

OF THE HP 1000 INTERNATIONAL

OURNA],

USERS GROUP INCORPORATED

Editor’s Note

The second issue of the HP3000 International Users
Group Journal features articles on Systems
Management and Systems Security. These two issues
are paramount for many of our users, and the articles
included in this issue represent a cross section of the
most recent work in these areas. As always the editor
of the Journal is interested in your comments about
the quality of these articles and about suggestions
that you may have for other issues.

The third issue of the 1983 Journal will be devoted to
Education and Educational Applications. Dr. Lloyd
Davis, Associate Editor of the Journal and
Chairperson of the Special Interest Group on
Education will be guest editor for that issue. The
fourth issue of the Journal will be devoted to HP3000
applications in Medicine. Dr. Ragnar Nordbert of the
Department of Clinical Chemistry, The University of
Gothenburg, Sahlgren’s Hospital in Sweden, member
of the Publications Committee and Chairperson of the
Medical Special Interest Group will be guest editor for
this issue.

JOURNAL

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

Qhe MPE Memory Dump; or How to
Make a Statue of an Elephant

Jason M. Goertz
Hewlett-Packard
Bellevue, Washington

Introduction

In the past several years, the number of HP3000 sites
has increased in number dramatically. The 3000 has
been called into service to perform more and more
complex and demanding applications. Applications
that use Privileged Mode, Process Handling, Message
files and other advanced features and capabilities are
becoming almost commonplace. Along with this in-
creasing application sophistication there has devel-
oped, necessarily, an increasingly sophisticated user
community, who require more complex debugging
aids and tools to facilitate development of these ap-
plications. It is for this class of user that this paperis
written.

While developing this type of application, particularly
ones using Privileged Mode, MPE integrity is some-
times compromised. Many times this results in some
kind of system interruption, usually a system failure

hang. In almost all cases, in order to determine the

use of the problem, the MPE memory dump is the
most concise, economical, and easy tool available.
However, informatiorn on how to read and interpret the
mountain of paper produced is virtually non-existent.
Even within Hewlett-Packard, only recently has organ-
ized training on the subject been available.

This paper is an attempt to fill this information gap.
Please note that MPE dump reading and (especialiy)
interpretation requires in-depth knowledge of MPE
and subsystem internals, not to mention a lot of prac-
tice and experience. This point cannot be stressed
enough. This paper is not intended to replace any of
these things, but to give a capsule summary of some
of the more basic and important facts and methods.

An Explanation

Before beginning, the title of this paper must be ex-
plained. In the two years, and particularly the last
year, that | have been reading dumps on a regular
basis, | have evolved an answer to the two questions
most often asked by people in my office, namely
“What do all those ones and zeros mean?’’ and “‘What
do you look for?” (The answer to the third question,
“Do you really enjoy doing that?” is worthy of another
paper, or at least a few hours of discussion accom-
panied by several doses of liquid refreshment.) The
dialog which ensues after either of the above queries

‘something like:

I: Do you remember elephant jokes?
They: Sure.
I: Remember the one about the statue?
They: No

Gomputer
4 Museum -

I: Well, its like this: How do you make a statue of an
elephant?

They: | give. How?

I: You take a hammer, a chisel, and a block of mar-
ble, and you knock away everything that doesn't
look like an elephant. Reading a dump is basically
the same idea. You take the dump, a Tables Manual,
and PMAP’s, and you find the part of the dump that
doesn’t look like MPE. At that point, you’ve found
the probtem.

It’s then that the poor sod who “had to ask” usually
walks away shaking his head in bewilderment. With
this thought in mind, let us proceed.

Fundamentals

Before starting to read and interpret a Memory dump,
it is necessary to understand exactly what one is.

When the system stops, for whatever reason, the con-
tents of memory are “frozen’ at that instant. in addi-
tion, the microcode of the machine dumps the value
of the CPU registers (DB, Q, S etc.) into a special area
of low memory. A serial medium, usually tape, is
mounted and the contents of memory, starting at fow
addresses and proceeding through the highest word,
are dumped serially to the medium. This is accom-
plished by either microcode (Series Il/lll, herewith
referred to generically as SIO machines) or by soft-
ware (SDFLOAD on Series 30/33/40/44/64 machines,
herein referred to generically as HP-IB machines).
After the machine is brought up, a program called
DPAN4 is run under MPE control that reads the tape
and formats the contents in a meaningful form. The
resulting listing is what is commonly referred to as
“the dump’.

Itis important to realize what this listing represents. It
is basically a “‘picture” of MPE in memory. In essence,
it is MPE, as much as any physical thing can “be”
software. In order to interpret this “picture’” of MPE it
is critical that the interrelationships of the various
parts be understood. Therefore, the very first thing
that must be acquired to read a dump is a thorough
understanding of the workings of MPE. This is not
possible to do in the scope of this paper, but a few key
facts and concepts will be presented.

The memory of the HP3000 is divided into sections or
“banks’ of 64KW each. Banks of memory are treated
equally within MPE, with one exception, and that is
bank 0. This is where MPE (specifically INITIAL)

OF THE HP 3000 INTERNATIONAL
USERS GROUF, INCORPORATED

JOURNAJ,

places most of its critical system tables. The reason
for this is that, originally, the HP3000 was a 64KW
machines, and all of MPE and user code were in this
memory. All of the memory resident (nonswappable)
tables are in this bank, especially the Code Segment
Table, Data Segment Table, Process Control Block, 10
and Disc Request Queues, and Memory Allocation
Manager (MAM) tables. A great deal of information
can be gained from understanding just the first 5
above, plus the format of the user stack.

Code and data is separated in memory, and are ac-
cessed in variable length “chunks” called segments.
It is necessary that MPE, as well as the hardware
(microcode) keep track of where in memory or on disc
these segments are located. The CST and DST are
used for this purpose. The Code Segment Table is
really divided into two parts, the CST and the XCST
(Extended Code Segment Table). The latter was intro-
duced in the Series Il when the increased memory
size necessitated a larger storage of Code segment
information. Each entry is four words of memory, and
contains information on location (either bank and
offset or disc address), whether it is in memory or not,
and its length. Other data is also stored, such as
whether it is memory resident, or (in the case of a Data
segment), whether or not the segment is a
processes’s stack.

The CST is used to point to Code segments that are
resident in an SL file. Program file segments are kept
in the XCST. For each process, there is a bank of
XSCST entries, each entry with the same format as
the CST. CST's currently are numbered from 1-%277,
and XCST’s from %301 to %377. It is this numbering
range that is used by the microcode to represent logi-
cally contiguous code space, as well as by DPAN4 and
the dump reader to determine the origin of the seg-
ment. These tables provide data to determine exactly
what was executing during and prior to the failure.

The Process Control Block (PCB) is used by the dis-
patcher to keep track of the various processes on the
machine, and which one will run (be dispatched) next.
(A process is defined as a unique execution of a pro-
gram at a point in time.) A process will always have at
least one Code and Data segment, plus a PCB entry
which ties the whole thing together. The PCB also
contains extremely valuable information to the dump
reader, such as why a process was waiting (and what
event it was waiting for), as well as whether the
process was attempting to abort, where the DB
register was, etc.

The primary 10 tables, the 10Q and the DRQ, are a list
of those I0’s that are waiting to occur or have just
occurred. The structure of the two tables is aimost
identical, although there is a bit more information in
the DRQ. In order to fully interpret the IOQ it is neces-
sary to have a good understanding of ATTACHIO (the
software interface to the 10 system), and the individ-
ual device driver. However, these two tables can be

invaluable to the dump reader who is facing the anal-
ysis of a system hang.

The data structure which gives the best “history” of
what lead to a failure is the process’s stack. The stack
data area is delimited at various places by the CPU
registers DL, DB, Q,S, and Z. Below DL is the PCBX
(PCB Extension) which is used by MPE to store non-
critical scheduling information and is not accessable
to user code. This area contains some relevant data
structures and information, most notably file control
block pointers, as well as pointers to two other impor-
tant process tables, the Job Directory Table and Job
Information Table (JDT and JIT).

When the program executes, it issues PCAL instruc-
tions which cause control to be transferred to another
procedure, most often to a system segment, such as
IMAGE or the filesystem. The PCAL instruction, as
part of its normal operation, places a four word marker
on the stack (at the current S pointer). This marker
contains data which allows the environment at the
time of the call to be preserved so that a proper return
can be executed. The data includes the current value
of the X, P, and Status registers, as well as the number
of words between that marker and the previous one.
We can see that if we start at the topmost marker and
work backward, we would have a history of what cod
the process had executed until the time of the failu
(if the process in question was the cause of the fail-
ure), or what the process was doing before it gave up
the CPU. This is called a Stack Marker Trace. and
DPAN4 formats it twice, once by itself in the format-
ted portion, and again when the whole stack is format-
ted.

A similar structure to the process stack is the Inter-
rupt Control Stack. This is a stack that resides in low
memory, and is used primarily by the 10 drivers and
the dispatcher. In the case of a Memory Manager or 10
system failure, the ICS is examined the same way a
normal stack is to determine what code was executed
before the failure. Typically, if this data structure is
involved in the examination of a dump, the problem is
most likely an MPE problem, and therefore up to HP to
analyze.

The formats for most of these tables can be found in
the System Reference guide, in addition to a very de-
tailted description of the interrelationships of the
tables. The MPE tables manual (PN 32002-90003) pro-
vides a detailed description of the formats of the
various tables, and a description of the various data
elements stored in them.

Dump Format

The actual dump listing is divided roughly into tw

parts, commonly called the *formatted’” portion a@
“unformatted” portion. In reality, both portions are
formatted, the first part more elaborately and with
more detail and intelligence than the second. The for-
matted portion consists of selected tables which

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNAJ,

.PAN4 prints with the various fields labeled. Addi-
tionally, most of the various fields are printed with
mneumonics (such as C for Core-resident, or S for
Stack). The unformatted portion is just an octal dump
of memory, starting at bank 0. The various tables are
labeled if DPAN4 can determine their identity. All
tables used for memory management that are in
memory, such as the region trailers and headers, are
printed in such a manner as to allow the reader to
separate them from the corresponding segment. For
each segment, the left hand side has not only the
bank relative address, but the segment relative
address also. For most data segments, the right hand
side has the ASCII equivalent of the contents printed,
with periods representing nonprintable characters.
We will now discuss how DPAN4 formats the various
tables mentioned above.

The first page (Figure 1) is called the Register Page.
This gives a listing of all the CPU registers at the time
of the system halt. The stack registers are on the left,
followed by the Code Segment registers. Next are the
X, Current Instruction Register (CIR), and other regis-
ters that vary among the different hardware types. An
interpretation of the various bits and fields in the Sta-
tus Register formatted in the next column, followed
by the other hardware dependent registers. While the

tter is sometimes of interest, especially when diag-
‘)sing hardware diagnosing hardware problems, the
first three are more commonly used. Below the box
containing the registers are contents of low memory.
These words of memory are used by the microcode to
mark the beginning of the various critical tables, such
as the CST, DST, XCST, and the PCB. The ICS limits
are stored here also.

One very useful piece of data stored in low memory is
a pointer to the PCB entry for the currently running
process. If this is nonzero, then a process was run-
ning, and it is usually the process which caused the
failure, although it is possible to have a current pro-
cess and also have something, such as an |0 driver,
running on the ICS. Code running on the ICS is indi-
cated by several things on the register page. On all
machines except the Series 64, the DL register (far
left) being set to -1 (%177777) indicates that the cur-
rent stack being used was the ICS. On the Series 64,
as well as the other machines, there is a bit in the
CPX1 register which DPAN4 formats in the last
column of the register box. DPAN4 labels this the ICS
FLAG, and is either on or off.

Following this, the CST (Figure 2) is formatted. When
DPAN4 runs, it interrogates the file LOADMAP.PUB.
SYS to determine the names of the segments. These
are printed out on the line, along with all of the other
ta from the CST. Next is the XCST (Figure 3), which
formatted by groups, each group representing the
XCST entries for a particular process.

The DST (Figure 4) is listed in almost identical format
to the CST, with the names of the various sytem tables

being printed on the appropriate lines.

Next is the PCB. This is divided into two halves, as
there is too much data in each entry to be formatted
on one line. The first half of the PCB (Figure 5) shows
the process tree information, the wake and event
masks (used by the suspend and activate mechanism
within MPE), plus the psuedo interrupts that the pro-
cess has accumulated, such as from a break, control-
y, or an :ABORTJOB executed on that process’s job/
session. The second half (Figure 6) has scheduling
information, used primarily by the dispatcher, bits
which show what resources (SIRs, SETCRITICAL) the
process holds. In addition, various pointers and other
data are formatted.

The 10Q and DRQ (Figures 7 and 8) are similar in for-
mat. DPAN4 formats each in two parts, an “‘in-use”’ list
and an “available” list. The inuse list for the DRQ is
additionally divided into a list for each disc config-
ured on the system. For the dump reader, the available
list is a recent history of 1O activity on the system,
sometimes giving a clue to the cause of the failure, or
at least to what the failing process was doing. The
inuse list can give invaluable data as to what 10’s
were pending and why they had or had not completed,
as well as the relative order in which they had been
queued.

The data structure which DPAN4 does the most work
on is probably the data stack. As DPAN4 is dumping
main memory, (the ‘“‘unformatted” portion of the
dump), it checks each data segment that it encount-
ers to see whether or not it is a data stack. If it is, it
formats several pieces of data from the bottom of the
stack, an area known as the PXGLOB area. This datais
very useful to quickly identify several things about the
process, such as what $STDIN/$STDLIST device was
assigned, what Job/Session number was assigned,
and what the JIT and JDT dst numbers are for that
process. After this, the stack markers are repeated,
and the PXGLOB, PXFIXED, and PXFILE areas are
printed. (See Figure 9). DPAN4 delimits and labels the
various file control blocks, in the PXFILE area. When a
location of memory is reached which is pointed to by
a CPU register (for that process), DPAN4 prints a line
of asterisks and labels this register. This is also done
for each stack marker as it is encountered. Alongside
the marker, the segment name is printed, just as it
was in the stack marker trace, above.

Additionally, DPAN4 prints a ‘‘table of contents” at
the beginning of each bank of memory. At the end of
the dump, it produces a list of the main tables, and the
page numbers on which that table appears in both the
formatted and unformatted portions.

We now have at least a passing familiarity with the for-
mat of the dump and with the functions of the tables
that the dump represents. Let us now discuss how to
use this information.

JOURNA]

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

System Interruptions

There are five types of system interruptions, and are
defined as follows:

1. System Failure. This is caused when some code,
usually MPE, detects some error condition, and calls
a procedure called SUDDENDEATH. This procedure
prints the all too famitiar system failure banner, and
halts the machine. These failures can be caused by a
hardware problem which the software detects at a
later time, a system table that has been altered in a
way that causes integrity loss in MPE, or sometimes
by an invalid parameter passed to a system primitive.

2. System Hang. This is when the system is in a pause
state, but no response can be obtained from termin-
als. Many times, the system will hang when users try
to logon or logoff, or run a program. In the case of a
hang, the hardware is running, but the software
cannot run for some reason. It is important that the
exact symptoms of the hang be known. Without this
knowledge, it is often difficult to know where to start
looking in the dump for the cause.

3. System Loop. This occurs when a high priority pro-
cess, such as a system process or datacomm monitor
process (or user process in linear queue) gets into a
tight loop, and does not allow another process to run.
Another possible cause is a process which
PDISABLE’d (turned off process dispatching), and has
not PENABLE’d properly.

4. Silent Halt. This occurs when the microcode
detects an “impossible” condition, such as an ICS
overflow. These types of halts are silent only on SIO
and Series 30/33 machines. On SIO machines, this
usually will cause the System Halt light to come on.
Other HP-IB machines will print a HALT n message,
where n is a number which indicates the type of halt
encountered. Most often, this indicates a hardware
problem.

5. Port lockout. A particular port will not respond.
Usually, this is an application problem. Most often,
this is associated with a process handling
application, or a problem with a specific peripheral.

We will examine each of these dump types, and sum-
marize what to look for in the dump.

Some Tools

Before delving into the actual analysis of the dump, it
is necessary to accumulate a few tools which make
the dump reading process easy. Besides the dump, it
is necessary to have the PMAPs of the various MPE
modules, and a current MPE Tables Manual. The
Tables manual can be ordered from HP, PN
32002-90003. A true PMARP listing of the MPE modules
is only attainable by doing a PREP on the various MPE
modules. Since this is not possible for most users,
besides being very difficult and time consuming, an
easier method is necessary. A program is available
called SLPMAP, which reads an SL file (usually the
system SL) and produces a PMAP-like listing for each

segment of the SL, in alphabetical order. While tr‘
segment locations are not totally accurate, they are
close enough to locate the procedure which was exe-
cuting from a stack marker trace. If a particular appli-
cation is involved, especially one that utilizes Privi-
leged Mode, the source code and PMAPS for the code
involved needs to be gathered as well.

Analysis

The first thing that must be done when analyzing a
dump is to determine if the dump was even valid.
Sometimes the contents of memory is so corrupt that
DPAN4 cannot determine where certain tables are in
memory. When this occurs, a diagnostic message is
printed out, and a list of the exact tables that could
not be formatted is given. DPAN4 will then say that it
is suspending the formatted portion of the dump, and
that memory will be printed in an unformatted
manner. At this point, DPAN4 prints an octal dump of
memory starting at bank 0 and proceeding to the end
of the data that was on the tape. This dump is virtually
worthless. It would be extremely tedious and time
consuming to try to analyze this dump, and it is even a
waste to print it.

The next thing that must be done is to determine what
type of failure occurred. Typically, if a user is analyz-
ing a dump that occurred on his or her system, th
the type of failure will be painfully known. Assumin
the type is not known, or the type is uncertain, the fol-
lowing analysis should be done:

1. Look at the current CST number, and determine if
the segment HARDRES was executing. This can be
determined by checking the formatted CST table or
the file LOADMAP.PUB.SYS. If so, then SUDDEN-
DEATH was probably called. The PMAP can be check-
ed to confirm this. Then check the Current Process
Pointer. If non-zero (and the other CPU registers do
not indicate that some code was running on the ICS)
then the failure was most likely caused by a particular
process. If the registers indicate that something was
on the ICS, then an 1O driver or the dispatcher/Memory
Manager probably caused the failure.

2. If the Current Process Pointer is non-zero and the
current CST register is not HARDRES, or if it is and
the current P register is not in SUDDENDEATH, then
the dump is probably a system loop. Information from
the site is invaluable in this case.

3. If there is no current process and the CIR register
contains the PAUS instruction, then the dump is
either a hang or a port lockout. Information from the
site makes the analysis much easier for this type of
dump.

4. If the CIR register contains an instruction other
than a HALT or PAUS, then this is most likely a sile
halt. It is very difficult, however, to tell this dump frore
a system loop. Halts are usually caused by a few ma-
chine instructions, and analysis of the specific in-
struction is necessary in this case. Site specific infor-

JOURNAJ

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

ation, such as configuration, is usually necessary to
analyze this type of failure.

Determining whether the problem is hardware or soft-
ware is sometimes very difficult, since hardware pro-
blems can often manifest themselves as software.
There are a few failures which are readily identified as
hardware just from the description. For example,
SF15 is typically caused by a nonresponding
hardware module, such as memory controller or GIC
on HP-IB machines. SF201 is the same thing on SIO
machines. Many types of hangs are caused by the
disc sub-system or perhaps by communications
boards. In any case, there are no hard and fast rules
for determining whether something is hardware or
software. The common types of hardware failures will
be mentioned in the following discussion.

Figures 1 and 10-12 show an example of the first type
of failure. The System Failure number is 311, which
indicates process aborting while critical. In this case,
the program is one calied BADLABEL. The source
code was modified to produce this failure. Figure 1 is
the register page from the corresponding dump.
Notice that the current process pointer is non-zero,
and the DST registers are pointing to a stack, and that
the DL registeris not -1(%177777). All of these things
point to the fact that a specific process was the cause

the failure. Figure 10 shows the stack markers from

at DPAN4 found to be the current process. If the
process’s name was not known, a simple technique
can be used to find the name. The PCB entry is found,
and the father’'s pin number determined. Assuming
the father is a UMAIN (Command Interpreter) process,
and that its stack is in memory, the :RUN or subsys-
tem command can be found at DB + 1 in that stack.
We see from the current stack markers that the last
user segment to execute was %301 at address
%1510. Looking at the PMAP for this “application”
(Figure 11) we see that the procedure that was
executing was PROCESS’ENTRY. Subtracting the
address of %1510 from the starting address in the
PMAP of %1024 we get a net result of %464 which
points to the actual line of code that caused the
failure. Looking at the source (Figure 12), we see that
the problem was that the QUIT intrinsic was called.
Notice that the call to RESETCRITICAL is commented
out. (We contrived the failure, remember?) Thus, the
problem. The process was still SETCRITICAL when
the process quit, hence the SF311.

For the user with an application problem that directly
causes a failure, the above steps summarize the basic
steps necesary to diagnose this failure from a dump.
As long as the application source is available, it
should be relatively simple to find the exact line of
‘)de which is causing the problem.

gures 13 and 6 show an example of the second type
of problem, a system loop. This dump was generated
by writing a simple program which entered the linear
queue, then went into an infinite loop. The halt button

was pressed. Notice on the register page that the Cur-
rent Process pointer is non-zero, the current CST is
%301 (program segment), and the current instruction
(CIR register) is % 140000, which is a BR P-O instruc-
tion. (You can't get a loop much tighter than that!)
Looking at the PCB (Figure 6), we see the current (star-
red) PCB is at priority %30, indicating a linear queue.
From there, all that would be necessary would be to
fook at the stack markers to determine the exact
nature of the loop.

The third example was generated by starting several
programs doing disc 10’s, then taking the disc offline.
This simulated a hardware disc hang. The CIR on the
register page (Figure 14) is %030020 which is the
PAUS instruction. If this instruction is present, then
that means the hardware was not being asked to per-
form any work. If it is known that the application was
indeed trying to run, then the obvious problem was
that it could not for some reason. Determining the
reason is sometimes very difficult, but there are a few
things that can be checked:

1. Check the PCB. Check what wait bits are set. If the
SW bit is on for several processes (Short Wait) then
they were trying to perform disc 10’s, and the DRQ
and disc subsystem should be checked.

2. Check the SIR tables for SIR deadlocks. If this is so,
then the problem is most likely an involved MPE bug,
unless PM code is involved.

3. If the PCB shows the processes to be waiting for
Giobal Rins (RG bit on) then the problem is most likely
a file locking deadlock. This occurs when multiple
files are being locked. (MR capability granted).

If we examine the Disc Request Queue (Figure 15) we
see that there are several processes waiting to per-
form disc IO’s to LDEV 1. Looking at the Device Infor-
mation Table for that LDEV (Figure 16), we can see
that the device is offline. This is determined by
examining the hardware status words and interpreting
them from the CE handbook.

The port lockout is considered a subset of the hang. A
separate example will not be given.

The fourth and last example shows what happens
when Priv Mode Debug is used to modify absolute
memory location 0 to the value 0. (This was used to
generate this failure). This particular memory location
is used by the microcode to delimit the beginning of
the CST table. If this points to a place that does not
look like the CST, the microcode will halt the system.
The main thing to look for in this type of durnp is the
CIR value. The type of instruction being executed
would indicate what exactly was wrong. This is done
by understanding exactly what the particular
instruction does, and knowing what data in memory is
used by that instruction. This tells what the actual
instruction was that halted the system. Here, in
Figure 17, we see that the current instruction was
%31051, which is a PCAL 51. The PCAL instruction

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNAJ,

must examine the CST in order to determine the
location in memory to branch to. We can see on the
register page that low memory location for the CST
pointer was zero. If we were to further examine the
TBUF’'s (not shown), we would see the MAO
command, plus the DEBUG PRIV ... message. This
would be a sure fire tipoff as to the exact source of the
problem.

Summary

This paper has attempted to give a very simple de-
scription of a very complex area of the HP3000. It

Figure 1.

should be apparent that the most important attribu‘
that one can have when attempting to read and inter-
pret a memory dump is a great understanding of the
workings of MPE. The greater the understanding, the
easier the dump is to read. Beyond this, familiarity
with the exact format and listings produced by DPAN4
is an invaluable aid. Finally, a great deal of experience
must be acquired before one can truly be considered
an effective dump reader and interpreter.

M#3000 II1 mMEMORY CUMPC Q) 0S5 OF SYS VER C UPDATE EO FIX 20 OuMP TIME 2,08/83 S Q1AM
Qi HEWLETT-PACAARD I3 .380
cencee REGISTERS aeae
OATA SEGMENT SO0E SEGMENT ¢+ STATUS = 1013C33 « ISR « (00000 SERIES 32.13
. . . '

08 BAMK s« 00C004 * P8 « 073020 * X * 0Q000QC * mOOE PRIV « RUN/HALT « RUN STACK Qvr « OFF

ol -] « 0108623 * P = 103674 * CIR o 030377 * INTERRUPTS « OFF * IRQ . ON BNOS OVR/UNF « OFF

S BANK « 3QCQO04 - P e 15347 * NIR « 000C0C * TRAPS CFF + CSRO * OFF VICL S20€E * NONE

oL e Q10487 = PBBANK« 300000 * * STACK CP LEFT = PaARITY » OFF DISABLE ATN e OFF

o] « Q18525 * (P-PB)« 310854 ° ¢ OVERFLOW OFF * POWERFAIL « OFF

H . 018534 * CARRY OM * POWERCN * OFF

Z * 021208 * * CONDO CODE CCE * DISP FLAG « OFF

* SEGMENT 33t ICS FLAG « OFF

.. €T eaadeceeensiaananaetnacnntnasactateannacacnrasnaasrasas
......... WALt 17

ADOR - Q1 C0E SEGMENT TABLE POINTER Q30110
(ADOR 11 EXTENDED CODE SEGMEMT TABLE POINTER 1000C0
- Yelol BN DATA SEGMENT TABLE PQINTER 024110
(AD0R 1) PROCESS CCONTROL SLOCK BASE 037510
LACDR 4 CURRENT 2C3 PQINTER Q40210
VACDR S} INTERRUPT STACA BASE o41610
LADOR 8} INTERRUPT STACK LIMIT Q42808
LADOR 7)) INTERRUPT mASK Q87800
{ADDR 10] DORT SANK Qoogoo
+ACDR 11} ORT ADOR Qo0QQ0

FIXED LOW MEMORY

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA]

.gure 2.

m?3000 III MEMORY DUMPC 30 05 OF SYS VER C UPDATE €0 FIX 20 OUMP TIME 2/08/33. 2.28AM
|Ci MEWLETT-PACXARD C2 1980
seendn csT TABL[LEERER}
¢
Rz SR
SEGMENT REFEREMCE SEGeENMT A8SOLUTE BANK / 343+ o™ Y E
NUMBE R SEGMENT NAME mODE 317 TRACE LENGTH ADDRESS /LDEV ADDRESS ¢ I s S
I3 ININ PRIV CN QFF 4874 184%24 Q sc
2 FILESYSL (0) PRIV ON oF F 10774 006623 7 s
1 FILESYSS (1) PRIV oN OF F 3874 166623 1 S
4 FILESYSS (2) PRIV on OF F 4470 162021 1 S
S FILESYSS (1) PRIy cl CFF 5430 154223 1 H
§ FILESYSEA (4 PRIV ON OFF 12504 034023 7 s
7 FILISYST (%) PRIV ON CFF 6100 157223 7 s
L0 CIALTZRG (6 PRIV ON OF F 10870 104023 5 H
L CITCIMSYS 17y paIv OFF OFF 4220 1 38%73 s
12 CIER .0 PRIy on OFF 2700 113023 1 s
3 ¢ il PRIV OFF OFF 10750 141623 7 s
14 C L pR 1Y oM OFF 3304 174223 1 H
15 ¢ bl PRIV CN OFF 7644 157623 5 H
1§ ¢ { PRIV OFF OFF 8500 017423 2 s
JE S 5 PRIV OFF oF ¢ 4304 1 37084 H
20 ¢ | PRIV ON OFF 8310 044423 b] H
21 C PRIV CN QOF F 8424 188423 e S
22 ¢ PRIV ON OF F 4520 142023 H s
P B pPRIY OFF OFF 7624 1 37240 S
24 ¢ PRIV cN oFf 4540 06%023 H 5
s C PRIV OF F OF F 8440 062623 bl H
35 # PRIV SFF OF F 8840 02%223 1 S
27 pPelv QFF CFF 11744 000023 H] S
10 PRIV ON OFF 7810 046623 7 H
11 PRIV oN oF ¢ 84%4 125023 5 s
12 pely L] OF F 8434 Qooao23 7 S
2 PRIV ON OF F 22330 073020 0 s ¢c
Ja PRIV on OFF 200%0 115350 0 s C
3% PRIV ON OFF 7060 012223 5 H
38 PRIV CN OF F 5000 021423 s S
1”7 palyv ON oF ¢ 7670 024022 7 s
40 PRIV OF F OF F 20260 1 40287 S
41 Palyv CN CFF la864 137222 1 S
42 PRIV ON OFF 10140 152223 5 s
43 PRTY CN QOFF 4800 155422 7 S
44 PRIV ON CFF 1524 152823 ? s
15 PRIV oN CFF 11710 042422 5 s
a6 PRIV oM OFF 1764 127823 s s
47 PRIV oN OF F 501¢ 132023 1 s
S \ LL A& CFF QFF 5684 1 40717 S
Sl T PRV CN QFF 3644 Q20022 7 S
2 JCBTABLE ,52) PR IY CN CFe 5150 105623 4 H
$1 DE3LS r52) PRIy oN CFF 20554 921423 H H
S4 NURSERY 184 paty CFF CFF 7570 1 41171 s
Y SPOCLING L t71 PRIV CFF QF F 22159 105423 [S
<8 SPOCLIIm™S] 183} PeIv OFF CFF 10250 183221 s s
57 SPOOLCImS2 (61 PRIV OFF CFF 12¢10 1 41513 s
§0 PVCIMSES (823 PRIV OFF QFF 1610 1 41586 S
Figure 3.
NPI000 IIT MEMORY JUMPC 00 05 OF SYS VER C UPDATE EO FIX 20 OumP TIME 2/08/83. 2:28aM
(C) MEWLETT-PACAARD CC 1980
326 14 USER oF ¢ OFF 820 1 11237%4
127 14 USER oF F oF f 4100 1 1124004
330 i4 uSER CFF CFF $704 1 1124028
331 14 USER CFF OFF 11610 1 1124058
132 14 USER OF F OFF 13230 1 1124125
333 14 USER oFF OFF £870 1 1124203
334 14 USER CFF OFF 12510 1 1124237
318 14 USER OF F CFF 15780 1 1124312
338 14 USER OF F OFF 4704 1 1124402
[
Rl S R
SECMENT CSTBLR/PROCESS REFERENCE SEGMENT ABSOLUTE BANK/ oIsC oM Y £
NUMSER INOX MOOE T TRACE LENGTH ADORESS /LOEV ADDRESS [ss
301 15 usER CFF OFF 17734 1 1102187
302 15 USER oFF CFF 17%20 1 1102287
103 15 USER OF F OFF 17714 1 1102356
304 15 usER oFF CFF 17740 1 1102456
308 is USER CFF OFF 17700 1 1102556
106 15 USER OFF OFF 5424 1 1102856
107 15 USER OFF OFF 18544 1 110270%
110 15 USER OFF OFF 17010 1 1103000
11 15 USER CFF OFf 16644 1 1103078
312 1S USER OFF OFF 16714 1 1103171
113 15 USER CFF OF F 14744 1 1103288
314 15 USER OF F OFF 17104 1 1103381
319 1S USER OFF OF F 16030 1 1103446
3.6 15 USER OFF OFF 15420 1 1103537
237 LS USER OFF OFF 15514 1 11038268
320 L5 USER OFF OFF 176804 1 1103721
321 15 USER OF F OFF 17424 1 1104021
322 18 USER QFF CFF 167%4 1 1104120
2] 1 USER OFF OFF 17434 1 110¢214
324 15 USER OFF OFF 17714 1 1104313
128 18 USER OF F OF F 17350 1 1104413
128 15 USER OFF OFF 17524 1 1104812
327 i USER oFF CFF 18434 1 1104611
330 15 USER OFF OFf 12504 1 1104704
c
R : SR
SEGMENT CSTEBLK/PROCESS REFERENCE SEGMENT 48SOLUTE BANK/ o1SC o™ Y E
NUMEE R INOX MOOE 384 TRACE LENGTH ADDRESS /\DEV ADORESS ct s S
301 18 USER OF F OF F 17314 2 454708
202 18 USER CFF CFF 17824 2 45500¢
302 18 USER CFF CFF 17410 2 455104
304 16 USER CFF CFF 17534 2 455203
308 18 USER CFF OF F 17%10 2 4551302
208 16 USER CFF OF F 17584 2 485401
107 15 USER OF F OF F 17474 2 458500

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNAJ,

Figure 4.
MP3000 II1 MEMORY JUMPC 30 25 QF SYS VER C UPDATE EQ FIX 20 Dump TIME 2/06/33] 2 28AM
(C1 mEWLETT-PACKARD C3 1980
seaaas DST TABLE “esaaa
£ <
ORI S Mw S5 %
SEGMENT REFERENCE SEGMENT ABSOLUTE BANK / oIsc C oM T3 Y EW
MUMBE R SEGMENT DESCRIPTION B17 LENGTH ADORESS JLQEY ADDRESS vyZIxd?2ss?d
1 [CCOE SEGMENT TABLE) QFF 1400 Q3aQ1i0) s c o}
2 (CaTa SEGMENT "A8LE) GFF 4000 024119] s cC Q
3 (PRCCEISS CCONTRCL 3LOCK) CFF 2000 037310 o) s <]
4 (CST £XTENSICN) CFF 4000 0J1%i0 9 s < 9
S {SYSTEM GLIBAL AREA) QFF 200 001000 Q s C o}
6 {(FIXED (Ow Z3ZRE aN 4000 Q00000 9 s < 3
7 [INTERRUAT CONTROL STACK) OF F 1100 041533 Q s cC 9
10 (SYSTEM 3UFFERS, on 2020 0S7514 Q s < 9
1l (UCOP RESUEST CUELE:! ON 64 1776823 7 S 4
12 (PROCESS-7ROCESS COMMUMICATION TABLE) ON 200 141423 s S N
13 (1/0 JUEUE) oF F 1310 042810 Q S C 2
14 (TERMINAL 3UFFERS) OF F 177%8 002130] s <)
1% (LOGICAL-P4YSIZAL DJEVICE TABLE) CN 154 0702:0 Q 5C S
18 {LOGICAL DEVICE ANQ CLASS TaBLE) CN 1234 172522 1 S 2
17 (DRIVER LINKAGE TABLEL} OFF 230 000440 3 s ¢ el
20 (1/0 RESCURCE TABLES; OF F 14 000670 Q s C 2
21 (SECCNDARY MSS TABLE) OFF 200 085329 9 s < 2
22 [LOADER SEGMENT TAGLE) ON 1744 103222 2 S Eie)
23 {TImER AETUEST LIST) OFF 144 070364 2 s ¢C 2
24 |DIRECTCRY) [el,] 2000 103223] s 3
2% 1DIRCLTCRY SPACK) N 600 177023 $ S 4
28 (RIM TaABLE: oM 504 030621 2 2
27 ([SwAPTABLE) QOF F 2400 Q81534 0 s ¢ [
JO (JCB PRCCESS COUNT) ON 20 000739 a s < Q
JI (308 =ASTER TABLL; ON 200 182423 H S 14
312 {TAPE LABEL TABLE} Oon 710 176223 4 3 i
33 [LCG TAaBLE: QOF F £%0 ! 8116 2 S o)
14 (REPLY [MFCRMATION TABLE) OfF F 2000 1 8237 o S b)
3% (VOLUME TABLE) OoN 144 377023 Q S i
18 [BREAKPOINT TABLE] OFF $50 ' 1 7117 ° s i
37 (LSG L) CFF 400 173023 3 s B
40 (LG i oM 400 087023 4 S i
4L (LOG € OF F $80 1 6132 o H S
42 (AS TABLE) CFF 564 173823 [3 ‘
41 (CS OFF 120 0654134] s < 9
a8 (.0 Fe TABLE] OF F T4 970530 g s cC 3
4 {SY 2ITi oM 100 912023 H] S L
46 [SPECIAL RECUEST TABLI) QF F 144 084234 3 s < 2
4 IVIRTUAL DI3K SPACE TABLE} oF ¥ YY) 065640 3 s ¢ c
S1 [ARSBM TABLE} OFF 44 000754 a s ¢ 2
$2 1L CFF 11354 Q48140 g s ¢ a
$3 (SIR TaBLEf) IFF 179 Q70624] s c o
$4 (FILE mMyL"1-ACCESS VECTOR) N 200 177223 4 S 2
59 [INPUT QJEVICE DIRECTIAY: CN 400 174823 s s 40
86 (CUTPUT ZEVICE DIRECICAY! CN 4C0 133823 5 S 49
ST (WELCOME mMESSAGE 81 Of F 17%0 1 87687 o N H
Figure 5.
#PILO00 II: mEMCRY DJUMPC 20 0% OF SYS VER C UPDATE £0 FIXx 20 OUMP TIME 2/06/33 2 23AM
(Cl HEWLETT-PACKARD CJO 1980
sasere PROCESS CONTROL BLOCK [1ST WALF) srecan
waATlT ST ATE
TATA
~SEGMENTS == <FAMILY TREf-= ~occcececeoWAKERASK-ncaeeceanas =—me=e--c=s EVENTFLAGS--e=vecawax -#SEUDQ INTERRUAYS-- --™IS5C---
o] T F T T F T ()
v Ul A » uJit A bl 11 o
A A 8 CUMMS T IS OM] CUMMS T IS O~ To R 3
2 L FTH® SCN 8RO O R R M I 1 0%ESSHMI]IUE R R ™I I CNESOHMIYE 4 552C833V [
L] A0S 8 STX € PIN PINPIN A MG L AJOPKRGNRZDP2 T MGLAODIPKRGNRPRTM PSIMXXx T8 Y x xR Pyl 72
1 10% 2 H I NOR™ SYST
H A T4 1 3 3 NORM SYST
3 7% 1 4 1 T oM MO §YST
4 TE 4 5 F J NCRM SYST
s 17 ! & F I NOAM sYs® 2
£ 100 1 TF J NCR - SYST
7 11 i01 ! 37 10 F J WCR ™ SYSTS
i 102 1 11 J L} NCRM SYST
11 101 1 12 I J NORM $TST
L2 1G4 1 14 J NOR™ S5YST
14 132 1 15 s S F NORM SYST
15 117 1 S S F MQR M SYST
37 121 7 64 5 H NOR M UMA IN
64 123 7 F NCR™ USChM

10

OF THE HP 3000 INTERNATIONAL

JOURNAT,

.igure 6.

MPI00Q IIT MEMORY DUMPC 00 0S5 COF SYS VER C UPOATE EOQ FIX 20 OUMP TIME 2/06/83 2.23AM
(C; mEWLETT-PACKARC CO 19380
resaes PROCESS CONTROL BLOCK (2MD WALF | casnea
svess SCHEDUL I NG INFORMATION - --c-a «-<RESOQUACES-=-- {IFE/ cececa-- “c==e-c MISCELLANEQUS cemmmcawecnaaan
OEATH
° 1c¢ XU I ™
I N0 s P s cn L0
s TR PET €PsSsS RS AREV NEXT 1 E°r SYSTEM
PLCDE f ¢t ROR S LMPIXRAQ I 1 IMPO IMPD S V A A 8pT pECC
PIN NOPIN PQPIN QS QA3 R RPRI I QWWWPCPIRY TR PIN PIN C EDC BMS PPC pPCST PBAPTR SLLPTR LMK NAmE
1 L 81 L SNF NUL 10 806873 PRCGEN
2 sa oL 82 L SNF MUL 8054l $YS:I2
3 L 170 L SNF NUL 860552
4 L 82 L SNF NUL 1 60585
$ L 175 [4 L SNF NUL 2 80877
6 L 175 L SNF NUL 3 806(.
7 L 178 L SNF MU 4 80823
10 L 12 H L SNF NUL % 8063S
i L 178 L SNF NUL 8 60547
12 L 218 L SNF NUL T 80661
14 L 230 L L SNF NUL 81513
] L 230 L L SNF AUl - 1337
17 [T plnol L s L SNF UL 62152
L4 a IS T L F_SNF_NUL 26 s07:2
100 ENTRYS
6] UMASSIGNED ENTRYS
17 ASSIGNED ENTRYS
.lgure 7.
HPIQQQ III MEMORY DUMPC 38 0% OF SYS VER O UPDATE €0 FIlx 20 OuMP TIME 2,09/13. 8 12am
(Ci MEWLETT-PACKARD CO (380
TABLE LOGICAL ADOR sysrer
INDEX DQEVIZE PCB REL OST ACDRESS FUNC COUNT BamM] pARM2 MISC FLAGS STATUS DESCRIPTION STATUS
187 29 23 -08 134 448 wRITE lw 0000%] 000004 000000 007000 W BL CO NORMAL COMPLETION 1
J44 20 10 -08 141 445 READ Ow 000001 0Q0000 000043 23730C !w BL CO NORMAL 1
131 20 Jjo «CB L4l 443 wRITE LW 000051 0000C4 0Q0Q20 J0700C Iw 3L CC NORMAL 1
3is 20 28 -08 137 445 READ OW 000001 000000 JC0Q043 307CC0 (W 3L CO MORMAL C 1
19) 20 25 08 137 445 wRITE lw 000053 000004 000000 307000 & 3L CO NORMAL 1
270 20 39 -8 141 445 READ ¥ 000CC1 Q00000 30043 307000 Iw BL SO NORMAL L
19 0 30 «08 141 4aS wRITE Iw 000081 000004 000000 9007000 [w BL CO NORMAL L
242 a9 23 .08 i34 443 READ Ow 0000C! 000000 000043 007C0Q W 3L C NORMA | i
227 20 23 +0B 134 445 wRIT lw C000S] 000004 00CB00 QO7CCO [W 2L I NORMAL 1
2.4 20 Jo -8 141 445 AEAD OW 300001 000000 000043 007300 Iw 3L CO NORMAL 1
153 20 30 -G8 L4l 445 wAIT iWw 500053 009004 900GJ0 Q9G7CCC W AL £J NOAMAL L
140 2 Ja -8 182 2 Q00013 OW 000000 000000 00G000 007000 iw 3L CO NOAMAL 1
7 22 J4 $BUF i0 0 Q0000S Ow C000:7 000000 0Q00CO 017230 S8 W BL NORMAL N 1
125 22 34 -08 182 0 00002i Ow 0C0000 000000 000000 007200 W BL CO NORMAL LETICN 1
12 22 34 -08 182 9 2000!s Ow 000000 000000 000000 0073G0 W BL C3 MORMAL COMPLITICHN i
84 22 J4 -08 152 237 wAITE 138 000320 900004 000000 007000 Iw AL C3 NOAMAL COMPLETION 1
21 22 J4 -C8 182 410 wRITE 1168 000320 000004 000032 007000 Iw 3L CO NORMAL COMPLEITICH Iy
sl 20 30 «08 14 445 READ Ow 000001 0000CO 000042 007000 Iw 3L CO NORMAL COMPLETION ¥
18 20 30 +08 141 448 WRITE Iw 0000$3 000004 (C0QC0C Q07200 Iw 3L CO NORMAL COMPLETICN 1
1282 22 Ja «38 182 337 wRITE 1228 000320 000004 QQ0000 007C00 W BL CO NCRMAL COMPLETION L
1275 22 34 +08 152 $32 wWRITE 238 000320 Q00004 000000 Q07000 Iw BL CO NORMAL COMPLETISN 1
nennan 1/0 REQUEST TABLE (IN USE LIST) eunanas
TABLE LOGICAL ADOR SUFFER
INDEX DEVICE PCB REL OST 40DRESS FUNC COUNT PARM] PARMZ MISC FLAGS STATUS DESCRIPTION STATUS
4275% 22 J4 <08 152 137 READ 18 100001 000000 G000D2 008000 Iw 8L PENDING =]

11

OFf THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNAL

Figure 8.

MPI00C III mMeMCRY JuMPC JC 0S5 COF SYS VER C UPCATE EOQ FIX 20 DUMP TIME 2,/09/83 §:32AM
iC) MEWLETT-PACKARD CC (980

tesaesss DISC REQUEST TABLE seseae=e (AVAILABLE LIST)

STATUS O XX -> PENMOING
1 XX -» SUCCESSFUL
2 XX -» END OF FILE
3 XX +> UNUSUAL CINOITICN
4 1x <> [RRECOVERABLE IRRCR
S OST/ OFFSET/ XFER - F L AG -
LDEV UNIT PCS S BANK ADORESS FUNC CNT PARML PARM2 MISC SEG IDENT SEGDSP NXTAVL MAIN AUX STATUS
2 ol 26 S 137 000C2] wAITE 1 000000 080847 000COL 0 007910 20333 13
2 Q 23 s 134 000CI3 wAITE 1 0000CO CE0§17 2Q000C! 2000 207010 001432 PO
2 ol S 117 200023 wRITE 1 000000 060648 Q00001 12C 307010 303073 PO
N 3 21 s 134 300027 wRITE 1 000000 060616 2300CCl 1560 2¢TJ1d 20:578 PR
2 a 25 S 13T 200023 wRITE 1 000000 360645 J000C: 260 307010 201358 [
2 0 33 S 134 300023 WRITE 1 00000C 060815 G5O0CO! 40 307319 J0186:3 PR
2 0 28 S 137 000C22 wALTE L 000000 060644 0000G1 300 307810 902473 L0
2 Q 23 S i34 Q00021 walTE 1 00000C 060614 000001 1150 307010 001573 L0
2] 6 S 137 00G02) wRITE 1 000000 260643 0QC0&! J§0 3C7C10 GO0221] 19
H o 23 S 13a 000023 wRITE 1 000000 J606i3 000001 700 007010 00J05¢C PR
2 Q 6 S 137 000022 wRITE 1 000000 260642 Q00CO! 1540 507010 0032:< I 0
2] 23S 134 Q00021 wRITE L 000CCO 060521 Q0COO: 1700 J070L0 002450 12
2 qQ 5 S 137 000022 wRITE L 000000 060641 $0COOL 1140 007010 Q03238 PR
2 Q 23 s 134 000023 wAITE L 000000 060622 J000C! 1729 0C7010 00303¢ PR
2 0 26 S 117 900023 wARITE L 000000 060651 J000C: 1520 207010 002313 P2
2 9 21 s 134 $000I3 wRITE i 000000 060623 Q00001 1000 007010 803::2 1 ¢
2 o 5 s 137 000021 wAITE | 000000 C€6C650 0000QC1 1600 2067010 $G22390 PO
2] 23 s 114 00CCI] WRITE 1 000000 060620 200301 1020 307210 0622358]
2 ol 26 S 137 000021 wAlTE 1 000000 080647 J0000: 720 307310 001558 R
2 Q 23§ 134 000022 wRITE 1 000000 C60817 300001 240 £C?310 002512 1 0
2 q 26 S 137 000012 wRITE 1 000000 060646 3000C! 1200 007010 20:730 19
2] 23 S 134 000023 wRITE 1 000000 060616 2000Gi 420 0073:0 Q02022 . 0
2] 6 S 137 0000231 wRITE I 000000 08C645 QO000! $20 007010 202738 1 O
2] 23 S 134 000023 wRITE 1 000000 08061% Q00GGI 1420 007210 30177¢ 12
2 Q 26 S 117 000023 wAITE 1 000000 260644 000CCI 48Q 007010 002372 L0
2 o] 2] S 134 000023 wRITE 1 000000 060614 200GO! 106C JCTOL1C 0C1510 PO
2] 26 S 137 0000213 wARITE L 000000 05C643 230000L 280 007310 002258 & 2
2] 22§ 134 SCCCI) wRITE 1 000CQ0 060613 QGOO0O0: 740 007010 003273 4 2
2 3 28 S 137 000033 wRITE 1 000000 080647 J0C05. 1750 207010 9022°C PR
2 S 13 0s i34 000022 wRITE 1 000000 0606231 3G000! 780 007210 0025%Q .0
2] 25 S i37 000021 wRITE 1 000000 060641 00C0CI 1240 00710 00131¢ PO
2] 23§ 134 000021 wRITE 1 000000 060622 4QC0SCI 10 207910 2020:¢ O]
2 Q 5 S 127 000CT] wRITE 1 000000 080651 3JcAa3Ci $00 307312 0017%0 P90
2 3 23 S 134 Q00023 =RITE 1 000000 96062i 000CQ1 440 007210 002850 PO
2 ol R 137 006321 wRITE 1 000000 060653 QGCcol 1340 0QC7010 001453 L0
2 Q 3 s 134 300C1] wRITE L 000000 26G6I3 0C00QO01 140 207310 301470 Ia
N 9 25 S 137 00CCI3 wRITE 1 0CCQ00 CsG647 2000C! 180 0072.0 0021sC PR
2 Q 708 1J4 CCCO21 wAITE 1 000000 0606.7 00030} §42 207310 002530 PO
2 3 s S 137 000023 wRITE L 000000 06C646 0C0QJ1L 132 207010 002370 PR
2 ol s 134300623 wRI L 000CGO0 060616 300CJ: $60 397019 8G27ss P
2] 5 S 137 9C0J23 =&l 1 CO00C00 06C645 000001 1440 QC7C1J Q02113 L O
2 ol 21 s 134 Q00012 wRIT L 000000 363615 00CJ0! §00 0073010 002573 1 e
2 0 s s 137 Q000023 wAl | 000000 06C644 0C000} 1280 007010 002410 i 0
Figure 9.
#PJO00 Il ™EMORY JUMPC Q0 CS5 OF SYS VER C UPDATE EO0 FIX 20 Dump TIME 2/08/33 2:28AM BANMK 1
1) MEWLETT-2aCKARD CO 1310
eescns PCBX AND STACK WMARKERS FGR DST 104 (PCB 12 | emmace
SEG REL SEG REL IMAT JPCNT JO8 INPUT JO® QUTPUT JDT OST JIT OST Jeut
08 INGEX INOEX LOG JEVE LOG CEV 8 INDE X IMOEX JOB TYPE DUPLICAT INTERACT INIT 3 INOE X
uQO“‘ 0Cl4ad 0 0 20 20 53 45 UMDEF TES T€S 00114$ Bl
ACORESS BANK x DELTA P STATUS DELTA Q SEGMENT OFFSET/PROCEDURE MO0 /PROOUCT
375390 L 17717155 020214 102078 200012 75 KERNELC (100)
375256 1 Q37473 017521 1018798 000014 79 KERNELC (100}
075282 ‘ 90ca13 000757 141301 000012 301 USER SEGMENT
375240 . 000000 000000 140041 000C04 4] MORGUE (42)
53353538 DST 104 (STACK) $S53TSTS

s e B g Nt easeeeIEEeeEl N e ees e IN0eNNEeteeited Nuata00at EI10ee1000000aa0000000NONtc et AT A ETatda0sasissasacnantTanRuTS

ST PYGLCBAL
372425 S00444 CQLl444 177777 200024 000024 Q00063 008045 DOOOCOQ

ssedxF IXED

072413 QOCL120 Q01213 Q203474 001145 Q01C00 177777 000000 000000 Q72443 000000 900000 000000 000000 000000 240000 200000 0C0CHO0
2724%) CCCCOQ JCQOCCI 20CCC2 JCO000 043380 J0C000 00COCO 0Q7874 Q72483 200005 915)C2 Q00000 000000 J00000 S0CCCO 0600QQ0 3582223
372473 £00C00 SCCOCCO CC003J0 2390000 90CCO0 000COQ CQCCOC 000000 072503 Q00000 00Q000C 000000 000000 Q00000 J00000 3J000CO J0G0CT
LINES Q728513 - Q72532 SAME AS ABOVE

072533 000000 J00CCO 000000 200300 Q00000 J00000 Q0QOCOO0 0QOROQ (072%543 000000 00000Q 000000 000000 Q00000 200000 000000 J0CCO0
e+ OXFILE 1 2ERC TABLE INTRIES ARE NOT PRINTED)

072553 QQ03.C 20CQC0O 0C0000 COOO0CO 0000CO JQ0Q14 Q00000 Q0Q00Q00 072883 Q00000 000000 000000 900000 00000 000000 J00000 2000C0O
Q72973 000248 30Ci:04 2COL1CO 00C000 200CO0

------- FILE VECTCR TaABLE ENTRY ADDRESS (OCK BRK LOCK COUNT/PIN HIPRI TAIL HWIPRI MEAD LOPRI TAIL LOPRI HEAD
072800 OOulOS CCC0CY 008000 J00000 o i08 Q ¢]

CHTRCL 8LOCXS
O7Z7C0(”001u51 SOCCOL 100C60 000001 251514 C€20040 020C40 020040 000001 000756 200400 Q00200 000000 Q72700 o st
C727.4¢000:213 CQ00CCO CO4CQ0 uODOOO S00000 QcCacC J20CCO 300002 CQO000 Q0C00C 200000 015%52] 200300 Q37774 S
J72720iG0013%) QLSE2I L777T7 L77TTT Q00141 JC0CCO 203C00 3090001 9QO00Q! 200000 J0C0CC 200000 000000 Q72720 S I
727441000151} 20C5CC0 0000} 000000 J0000: 2090CCO0 300000 00CC00 Q00QCC 203000 200000 200000 0COQQJ0 QJ721744
3727801 $H o J0CO00J 243505 CS2il0 CSiill 0SCQ40 2502CQ1 Q00787 200400 000200 0QJ000 QJ?727%5C 0 GETPRIP
Qr2774¢ L) 300000 J0000C 00J4CO 200CCO 000002 J00000 002000 200000 QAQ00LQ0 000000 Q72772
3730101 S 172777 Q06111 J00CCO CO00C00 Q014Q) SCO00! Q00003 200000 700000 005CSO 973012 !
C;]CZ‘(i 000000 3200Q02 J0CC00 CQOCO000 000000 000000 CO0CCO0 Q000000 000000 Q00000 3730124
Q73C40(< Q73040
37]04% cocs J00000 000000 300003
------- LE FIy Tvee §NMULL PACE V LACE V 109x
373083 322112 3C0000 2 ‘ILE o il2 Q 3
073057 Q00CCC TO04C4 300020 T0J0CO i FILg 0 104 Q 9
«*PYPCINTERS
Q72082 QOCCTCO 200114 0004354 000444
TeneO REGISTER 44meserauasasaeeneraasesensnneareseaeereeeetsnenessesiarenstaeaseruinaceaseeaeaaneaesniaoaassnasanasonsnssnsoonsnaanas
J73J06711773C0° 3CS5Q7 Q42524 O0S0L122 0445[7 Qsil1] JOB041 03C001 J01C00 JI00COC 44517 0S111) 092111 3067 GETRRICRI 9 ITRITY
C72102(1177C141 CJJCCTC: C20iCCC 200CCO 305837 J4Zs2a JSJLI2 J445.7 25:i.11 357031 J5000!1 S0LC00 000000 73123 ¢ GETPRISRITYS
373i17(17703Q) 305800 2Q0CCTO Q00Q00 J000CQ J0CQIC CCO000 000000 COOCOC 00000C JCQ0CQ 0Q0000 30Q000 3117

12

OF THE HP 3000 INTERNATION.
USERS GROI INCORPOI

JOURNAJ,

‘igure 10.

~P3ICCY Il MEMGRY DUMPC 20 29 OF SYS VER C UPDATE EQ FIX 20 Oump TIME 2,/09/83 S5 Ctam
S MEWLETT-PACKARD S0 (980
esssas PRESENT STACKS tome=e
serran PCBX AND STACK WARKERS FOR DST 130 (PCB 24) ssases
esee CURRENT PROCESS
SEG REL SEG REL IMAT JBCNT JOB INPUT JOB QUTPUT JOT DST JIT OST Jeur
oo ce INDEX INOEX LOG DEVs LOG DEV 8 INOE X INOEX JOB TYPE OUPLICAT INTERACT INIT O INDEX
culdda SCSCs02 S 20 20 123 122 8556 YES YES 304575]
A00RESS BANK x DELTA 2 STATUS DELTA Q SEGMENT OFFSET/PROCEDURE OO / PRODUC T
316828 4 JC0s 11 004706 140038 000144 35 ABORTOUMP (34}
lis3e: 4 J00cgl 304178 14003% 000co7 35 ABCRTDUMP (34)
RN aReretat! SAL g A paman Apmo A 111 ISED SroMENT
315043 ¢ 201310 140433 Q00054 30 OIRC 125
3i5.¢7 4 golIle 142430 200021 30 DIRC (16)
216368 4 Go..04 140422 30ccl7 30 OIRC (25)
316G27 4 000635 142430 300013 30 DIRC (25)
CLlsGC7a 4 qC4017 140301 [elelopiee] 301 USER SEGMENT
3136C4 4 201310 140430 000034 J0 OIRC (251
c15%%0 4 001224 142430 000021 30 OIRC (26)
218527 4 001:04 140430 000027 30 CIRC (26)
isegg 4 00,274 142120 aggo2! 30 DIRC (26
Q18487 4 00CS14 14cadc 308013 JO OIRC (6]
J1s4dd 4 350247 1ag3C1 000020 301 USER SEGMENT
3154318 4 200060 000000 140043 000004 4] MORGUE (42
Figure 11.

PROGRAM FILE BAQOLABEL PUB GOERTZ
BADLABEL Q

MAME $TT CO0E ENTRY SEG

8ADLABEL t 0 0

PEN 14]

XCONTRAP 1S ?

DIRECSTAN 16 4

FCONTRGL 17 ’

PRINTFILEINFO 20 ?

SORTINITIAL 2L 4

ASCII 22 ?

SCRTOUTPUT 23 4

1T 22 4

SCRTEND 25 ?

PRINT 25 ’

FCLOSE a7 M

TERMINATE " 30 ’

NQTAPE H [b

Jencree ey-ay U RSl

EXCHANGEDS 3. T

LUN 32 ’

ATTACHID 33 M

RELSIR 34 M

RESETCRITICAL 15 ?

OAsCll 38 ?

FWRITE 7 ?

SETCRITICAL 40 ’

GET VOLUME TABL 4 344% 3445

GETSIR 4l ’

GET GROUP S 3634 3634

“OUNT 42 M

OISHMOUNT 43 ’

CHMECK FSPACE TA 8§ 4203 4293

CHECK OF S™ 74337 4337

L0AD DSEGS 10 4741 4751

GETOSEC 44 ?

LCADPROC 45 ?

GETUSERMQOE 48 ’

LCAD OSEGS AGAI 11 4T4t 4737

CONTROL ¥ 12 8030 8030

RESETCONTROL a7 ?

MINSTACK 13 8043 5043

SEGMENT LEMGTH 5120
PRIMARY D8 130 INITIAL STACK 1440 CAPABILITY 700
SEZSNCARY D8 44233 INTTIAL OUL 0 TOTaL CIDE !120
TOTAL 08 4873 MaAxIMUM CATa 11810 TQTAL RECOROS
ELAPSED TIME 00 ¢0 04 $44 PRCCEISSOR TImE 00.02. 503

13

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA]

Figure 12.

PAGE 2026 BAOLABEL BAOLABEL <2 0» Procedure PROCESS EMTRY

* LAST FILE IS 3.2
ASSEMBLE (DUP wOP
MQVE 2 v FILE NﬂH[(28).
SCAM ¥ UNTIL °
LEM « 70S - ﬂﬂBUf‘
®INT(BUFF -LEN 3401
ERRORS FOUND » TRUE
END
MOVE FILE MaME » * ° 2 MOVE %« FILE NAME {29).
MOVE FILE MAME « BENT (3]
SCTANM FILE NAME UNTIL ° i
MOVE x = * °
ASSEMBLE {DUP NOP)
HMOVE X e GROUP NAME (8).
SCAM X unYIL R W
VE T .
ASSEHELE(DUV NOFV
VE =« ACCOUNT NAME (8],

1,

MOVE ADISC"ACOR o ENT{4d) {2}
VTAaB INOX s DAL {0 8}
1F VTAR INOX > 2%5 THEN LDEV2 = 0

ELSE LDEVZ s LUMIVTAB INOX MVTABX)
IF <(NOT>» CWECK'LDEV(LDEV2) THEM BEGIN
TOS SIR
RELSIRIZ x)
¢ RESETCRITICALION.)

MOVE 3BUFF = "INVALID VTABINOX FOR ° 2,
ASSEMBLI(OUP NOP!

mWOVE &« FILE WAME, [21).

SCAN X UNTIL ° t ol

LEN « TOS - @BBUFF

PRINT(BUFF -LEN X101

ERRQORS " FOUMD ¢« TRUE
i 20 "7 qETCASST > QulTi1012)

b b b d b b R OOLOUIULD LG GO UL G b b bbb b b

LABEL DLV« LDEV2
ATTRET o ATTACHIOILOEVZ 9 0 @FLABEL O 129 DAL.($ 3).DAZ 1)
IF ATTL (8 8] « I THEN GO TO GOQD ATTACHIO.

IF ATTL 8 1) » X84 THEN BEGIN
CLEARBUFF .
mOVE 38BUFF o “INVALID DIRECTORY ADORESS FOR .2,
ASSEMBLE IDUP NGP 1
HOVE £ s FILE NAME (23}
SCAM X UNTIL ° tL
LEN « TOS - BBBUFF
PRINT(BUFF -LEN X40),
70§+ SIR
RELSIR'X x1i
PESETCRITICALION

[P I A e s

Figure 13.

MP3000 TII mEMORY CTUMPC ’JO 5 OF SYS VER C UPDATE £Q FIX 20 OumMp TIME 2/,08/13 2 231Am
(Ci MEWLETT-2aCXARD T 19

asmans REGISTERS sasean

DATA SEGMENT ¢ COOE SEGMENT

: a8 8AMK » £20CCS : 28 o 114623 ; X « 03JQ00C0O * mODE : « MALT STACK OvR « OFF :
: 29 « 1733223 E 14 « 114840 * CIR - @J INTERRUPTS = OM : iRQ = OFF BNDS QJVR/UNF « OFF :
: S BANK = 2CQQ0S : L o 11485%2 E NIR s 000000 * TRAPS - ON : CSRQ =« OFF vIOL CO0E « MONE .
: oL « i728587 * PBBANKe 3000Q7 : : STACK QF « LEFT : PARITY s QFF DISABLE ATN « ON ‘
: Q = 173034 : {P-P8)a 200015 : : JVERFLOW « QFF : POWERFAIL « OFF :
: 732314 ' . : CARRY = QFF E POWERCN « OFF :
L782%83 E E E COND CQOE s CCE : DISP FLAG « QFF :

S U ORUU RS S UURRUURUUPRURIE Lt 1L S8 DU FET8 BN LAY SR L4 :

naasne FIXED LOW ™EMORY aaceas
tACDR 0} COOE SEGMENT TABLE POINTER Ql0110
L AQCDR L EXTENDED COOE SEGMENT TABLE POINTER 200300
VADOR 2 OATA SEGMENT TABLE POINTER Q2410
(ADDR]t PROCELSS CONTROL 8LOCK 3AST 0317%510Q
LAQDR 4 CURRENT PC8 PQINTER Q41210
(AZCR % INTERRUPT STACK 8ASE 041810
LACOR 8 INTEARUPT STACK LIMIT 042808
LAQOR T INTERRUPT mMASK 87800
1ADDR 1Q) CRT 8BANK Qooooo
JAGDR L. 2RT ADCR 300000

14

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA]

igure 14.
RAPICO0 III MEMORY JUMPC 20 2% OF SYS VER C UPDATE E0 FIX 20 Oump TIME 2/10/33
(€l MEwLETT-PACKARD IO 13%0

REGISTIRS

AT RGN LLILSTRE RN LVIsTRnuANeQus L RMIviLL oLl
1 5B GANK + 000000 ¢ #8 + 135114 - X+ 177758 ¢ MOOE . PRIV
- e « 01000 - # . ia002: - cIn [@ INTERRUPTS « OM

© 5 sANK .+ 000000 PL .« 183733 NIR + 000000 * TRAPS . oFF
© oL « 177777 + s@BANKs 00000 Y STacK 0P e LEFT
3 v 0aiS54 + (P-PG}e 302705 : QVERFLOW = OFF

< s . oarse - < canry - oFF
<2 . oazss2 - . *+ COND CoDE » cCf

. . s SEGMENT 8

PAUSE INSTRUCTION IN

3.}

FIXED LOW MEMORY

ERER]

LS L PP, 5 - BE - S J
RUN/HALT o HALT STACK OVR . OFF
13 « OFF BNDS OVR/UNF « OFF .
csRQ « OFF vIOL cooE + NONE :
PARITY « OFF DISABLE ATN + ONM :
POWERFAIL = OFF :
POWERON = OFF :
DISP FLAG + ON :

{ADOR Q) COOE SEQMENT TABLE POINTER 030054
|ACOR 1} EXTENDED COOE SEGMENT TABLE POINTER ¢0G103
| ACOR =2 DATA SEGMENT TABLE POINTER 0244354
[ADOR *.3J) PROCESS CONTROL SLOCK BASE Q37454
[ACOR 4] CURRENT PCB POINTER 000000
(ACOR =5} INTERRUPT STACKX 9ASE 041554
{ADDR 8 INTERRUPT STACX LIMIT Q42552
{ACOR =7 INTERRUPT MASK 083810
(ADOR 2101 ORT 8ANMX 000000
(ACD® 11] DRT ADDR Q00000
‘lgure 15.
WPJ000 T11 EMORY OUMPC 00 3% CF SYS VER C UPDATE EQ FIX 20 OUmMP TIME 2,09/83. 8 32am
(S MEWLETT-PACKARD T2 .330
asasssar OISC RECQUEST TABLE "sessess (SipgaaRyY INFO)
vaTAL ENTXIES IN TABLE 190
exTRY 51I¢ 20
61
520
r 2000
MAX JMUM NUMSER N USE 13
ILPRENT FUMBER IN USE i3
SVERFLOWS
TCTAL REQUESTS 11254
STSBASE MDEX CFf ZISABLID Q HEAD
SYSBASE INOEx CF CISABLED Q Tali
stasaassne DISC lEausF.’ TABLE roaanzen [‘CTIVE LISTS]
LDEV i
STATUS O XX -
LOXX -
2 xx >
3 XX -» JUNUSLAL CINDITION
4 XX -> [RRECOVERABLE ERROR
TABLE S JST/ OFFSET/ XFER FLAGS -
INDEX LDEV UNIT PCB S BANK DRILS FUNC CNT PANML PARMZ MISC SEG IDENT SEGDSP URGCLS A TN AUX STATUS
L0120 1 Q 25 138 000023 WwRITE 1 000000 107240 0JGQO000 240 0Q0CBL10 002430 0 |
2C1460Q 1 c 3 1.8 003200 READ 1200 000000 062223 9Q000CC 170 Q0 2
piviex Yolel 1 Q 27 S 140 200023 wRITE 1 COCOO0l Q04405 2008382 240 3 0
Soisco i G 32 35 143 0CCO2] wRITE 1 CCocol 0076313 Q00000 240 22
€31340 1 0 22 s {33 000023 wRITE 1 Q00C00 [Q7105 QQCOQQ 240 o 3
sC1223 1 0 30 s 141 0000274 wRITE L 000001 J07617 000C0C 240 2 3
Pelsieigs) 1 0 24 S 115 QGG022 REAS | 000CscQ 107124 90000Q0C 242 g 3
351628 1 Q 21 s 132 Q00323 WwRITE 1 000000 107070 0QO000CO 242 [s -]

15

J

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

DURNA],

Figure 16.

MP2CO0 [2I MEMCRY SUMPC 30 2% OF SYS VER C LPOATE EC FIX 20 DUMP TIME 2/09/33 8 3-amM
(C, mEWLETT-JACKARD 2C 1310
1021787 o 222757 00CCCC 3909C3 3C0SC3 OCSICS 300090 300120 000000 323000
(0217871 9 222787 900400 305000 60000 990200 dsocce
ORT NO 4L © CONTROLLER ERROR STATUS « (2CC00
{MAGNETIZ TAPL UNIT) TYPE 24 SUBTY®PE Q
UNIT O LOGIZAL DEV 7 FLAGS « 002000 NEXT DIT « 000000 DLTP » 1774%C ILTP = 254%47 100% = 300563
Q022774 002900 2000CH C00C00 Q40807 177450 034547 J0000C CQ000Q
¢ 023004 000000 30CCGO 200000 000Ca0
[MAGNETIC TAPE UNIT: TYPE 24 SUBTYPE O
UNIT 1 LOGICAL ZEV 8 FLAGS = C02C00 MEXT DIT « 000000 OLTP = [77450 ILTP + 354547 I0CP « 200008
DIt
13329191 0 917019 002000 30C00Q0 200000 240410 [77450 254547 Q0QUCC 20C000
1622828 9 023020 000000 000CO0 000000 200000
[MAGNETIC TAPE UNIT) TYPE 24 SUBTYPE Q
UNIT 2 LOGICAL DEV 9 FLAGS « co20C0 NEXT DIT » Q00000 OLTP « |774%0 ILTP « 354547 IDQP . 2000C3
o7
18720241 9 523024 002000 303¢CC 0000CQ Q4101 177450 054547 000GOG 00000C
{G2I034) 9 023034 0GC0CO 200000 000000 0C00QC
(MAGMETIC TAPE UNIT) TYPE 24 SUBTYPE O
UNIT 3 LOGICAL D€V 10 FLAGS = 002000 NEXT DIT o 000000 DLTP « 77450 [LTP o 054547 (OGP » 3.2000
o
1832¢4C) 0 J23040 002CQC JCQCO0 2CCO0Q Q414 17745Q Q%4547 200000 Q0coGe
(C223s3: 2 923880 3G000C 300032 950000 £00CO0
ORT NO 43
ISYSTEM DISC) TYPE 9 SUBTYPE 3
UNIT 3 LOGICAL JEV | FLAGS « 040010 MEXT DIT « 0QOOCO OLTP » 17460 ILTP « 554727 1007 « 044240
o1t
Q 254748 CCCOTO 30CCCSC
2 3C.443 324246 OZGIT:
s 361437 322032 Igilic
3 3caces 206088 33068
0
Figure 17.
HPI000 117 MEWORY DumPC 20 2% OF SYS YER C UPCATE €0 FIX 20 OUMP TIME 2/09/83. 3 L83AM
;C) MEWLETT-2ACKARD O L9480
casean REGISTERS ceenen
D T S
= DATA SEGMENT * CODE SEGMENT ¢ WISCELLANECUS * STATUS o 14245) + ISR « 00000Q
fee e etuesaetaceassaasaitetacate s anaamttantanecaatearanntraanasaeanatesantotedsanaaatateatavartanoanauan
+ 28 BANK = J000G0 * P8 * 017423 * X » 000003 ¢ MOOE « PRIV * RUN/HALT « RUN STACK SVR . OFF .
L1 « Jogoco + @ = 037643 - CIR INTERRUPTS » OGN ¢ IRQ .« OFF BNOS CVR/UNF « OFF .
. B
© S BANK s 300004 * PL = 040175 * NIR « 300C3S - TRAPS « CFF s C3SRQ . OFF VIOL 220€ o NONE N
.
« oL = 310487 * P9BANK. 000005 ¢ * STACKX OP =« LEFT * paARITY - OFF DISABLE ATN o OFF .
. . . . ' .
- e 312014 * (P-PB)e 020220 * * OVERFLOW « OFF + POWERFAIL « OFF .
.
- s . 212014 - . < CARRY * ON * POWERON « OFF .
.
-2 « 021473 - . * COND CCDE « CCL * DISP FLAG = OFF .
.
. . . ¢ SEGMENT 0 « S3 = ICS FLAG . OFF N
T T T T T R R T

caanea FIXED LOW WEMORY esanan
(ACOR "0 CODE SEGMENT TABLE POINTER 300C0Q
| ACOR " 1) EXTENDED COOE SEGMEMT TABLE POINTER 200000
[ACDR .2) OATA SEGMENT TABLE POINTER Q24110
ADCR 31 PRCCESS CONTRCL BLOCK BASE 37510
[ACOR 4} CURRENT PCS POINTER 40070
tACOR 95} INTERRUPT STACK BASE 041410
{ADDR 8] INTERRUAT STACK LIMIT 0124086
{ACOR .7 INTERRUPT MASK 087800
| AQOR 101 ORT BanX 300000
[AQDR 141 ORT agor €ogoaQ

16

JOURNA],

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

@sccurity Issues: How secure is YOUR
system?

Doug Claar, programmer analyst
Hewlett Packard, Computer Systems Div.

Many new computer users implicitly expect that the
computer which they are using is private and secure.
System managers understand that this is a fallacious
assumption, as they are able to to access everything
on the system. What system managers often do not
understand is that they are not always the only one
with access to the entire system. Unless a system
manager consistently stays on top of system security,
that security quickly evaporates, but if typical security
breaching techniques are known and understood,
appropriate steps can be taken to foil takeover
attempts and restore secure status to the system. it is
essential, then, to first understand what a system
invader has to go through in order to take over a sys-
tem to be able to effectively combat security viola-
tions. Reformed burglars are said to make the best
security experts, and the same might be expected of
computer security experts: those who have broken
into systems are best able to specify the
countermeasures that would have worked against
them.

efore discussing some typical security breaching
techniques, a disclaimeris in order: neither the author
nor Hewlett Packard (especially Hewlett Packard!)
condone any unauthorized access of computer sys-
tems or of any data thereon. The breakin techniques
are described strictly in order to discuss the appro-
priate counter-measures.

To better understand the techniques described later,
it is helpful to present the EDP environment in the
Computer Systems (CSY) R&D lab: Although the atti-
tude is perhaps not universal throughout Hewlett
Packard, in the Computer Systems (CSY) R&D area
everyone is encouraged to utilize the computers as
much as possible. Employees using the 3000 (even for
personal projects) inevitably benefit the company.
People are allowed to use the 3000 (to write papers, do
homework or whatever) on their own time, and are en-
couraged to look for ways to use it on the job. HP
benefits from more sophisticated users, and from the
programs written by those users. It is a natural out-
growth of this attitude to not have strict security, but
as more sensitive information makes its way onto the
lab 3000s, this attitude is changing.

A 3000 can be as secure or as insecure as it’s manage-
ment desires. In the past it was argued that lab sys-
tems should be low in security, since the machines

ere strictly R&D—no accounting, payroll, or
‘wnagement functions. It is only recently that the
realization has begun to dawn that security is as
important for us as it is for our customers. The
installation of about fifty dial-in lines has been the

17

impetus for tightening security on the R&D timeshare
machines. In addition, as CSY’s computer literacy
push bears fruit, more people are using the systems
for more sensitive data. As an example, several
secretaries are beginning to type employee
evaluations on the system. EDP has assumed the
responsibility of providing the greater degree of
security that such users require and expect and of
educating them about any requirements placed on
them for security of their data. The job is not nearly
complete (especially in the area of user re-education),
but work is progressing steadily on providing a secure
environment for all users.

Although most lab systems have traditionally had low
security, there have always been one or two secure
lab systems: those whose system manager or other
responsible person was individually concerned with
security. The system managers on these systems
have made it their job to try to get past each other’s
security schemes, and most of the techniques cover-
ed come from that source. Today, their solutions are
finally beginning to be put into use lab-wide.

Security solutions must deal with the question of
what system security is. From the unauthorized user’s
point of view, system security is “what is in the way”’.
To get around security, this user must accomplish
three key objectives, which are to get onto the
system, to work into a position of power, and finally,
to leave the system in place to facilitate re-entry.
From the System Manager’s point of view, security
must consist of making each of these objectives as
difficult as possible to attain. Let’s look at some
techniques for achieving the unauthorized user’s
objectives, and then at ways to block these
techniques.

The first requirement for getting “into’’ a system is to
get “‘onto” it. There are several potential weak spots,
with perhaps the most obvious being facility, com-
pany or MPE common user IDs. For example, at CSY,
almost every system has, in addition to standard MPE
IDs, a DS user ID ({for DSing through to another sys-
tem), an 1/O utility ID (for transferring spool files to a
system with an EPOC on it), and an electronic mail ID
(for remote HPMAIL users). It is likely that many if not
most computing centers also have some type of com-
mon user ID—perhaps even for demonstrations. Al-
though these accounts may not have any special
abilities, they provide a foothold (or beach-head) from
which to launch an assault.

A second potential weak spot is user IDs from adja-
cent systems, especially if those systems are DSed to

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA]

the target system. Often, iegitimate users will have
the same user IDs and passwords on adjoining sys-
tems for their own convenience. Assuming the user’s
ID and password can be discovered on one system,
the adjacent system can also be penetrated.

Should both of the aforementioned methods prove
fruitless, there are still other techniques available to
the determined intruder. One time-honored technique
is to look for user IDs among the discarded listings or
at unattended terminals. An example of this is when
one of the college students we hired for the summer
came back the following summer and found all his
capabilities gone and his terminal hooked to one of
the more secure lab 3000s. After challenging him to
get back the capabilities, | was called away from my
desk. While | was gone, he simply walked over and
upped his capabilities from my terminal. The moral is:
people are the weakest link in any security scheme.
User carelessness must be combatted by education
as well as top level techniques. Users, especially
those who require special capabilities, must be con-
vinced that leaving terminals logged on is like leaving
a car running, and should be accompanied by close
supervision. (If connect time is billed, this point is
probably easy to make).

Because any user must first get onto the system in
order to do anything, an obvious first administrative
step in combatting unauthorized use is to limit access
to only those who should be on the system. There are
several thing that can be done to limit access:
eliminating or severely limiting common user IDs is a
good first move. For example, the three common CSY
user IDs mentioned earlier can all be restricted so that
they are able to perform no other function than their
intended one. Looking at a specific example, it can be
seen that, in the case of the DS ID (which is intended
only for people using DS to get to another system on
which they have an account), that systems which are
at the end of a DS line do not need this ID, and that
those which do require it could limit it to DSLINE,
REMOTE, and perhaps FILE commands. The
limitations can be accomplished with a UDC that
aliases all other MPE commands to either a no-op ora
logoff, with operator and system log identification. (If
CONSOLE logging is turned on, a simple TELLOP witl
notify the operator and be recorded in the log).

Other common logons can be analyzed and controlled
in the same manner: decide what the logon was de-
signed to accompiish, and disallow everything else.
Be aware, however, that some programs and subsys-
tems, such as TDP, allow the user almost full MPE
functionality without the restrictions of UDCs. These
programs are more troublesome to control, and
should thus be disallowed to common (transient)
users whenever possible. In general, it is not a good
idea to allow any form of the run command in this
environment: In the case of electronic mail at CSY,
having users type “HPMAIL”, a UDC in which the

18

break key won’t work, is much simpler—ano
safer—than having them type “Run
HPMAIL.HPMAIL.SYS",

MPE common users need not be a problem either,
even if operators are not on duty at all times. At CSY,
all .SYS users have a UDC which prevents their use
from any location other than certain specified termin-
als. In addition, the Operator.Sys UDC disallows
STORE, RESTORE and many other functions (includ-
ing SETCATALOG!). Because engineers must be able
to bring a system back up on the weekend (instruc-
tions are posted on each system), Operator.Sys had
no password: its home group has, however, been
changed to LOGON, a group created with virtually no
capabilities. Because passwords tend to “leak” out,
the passwords for Manager.Sys and the pub.sys group
are changed frequently. To facilitate this, a program
has been written that changes the password, if any,
contained in the first record of a group of files
specified by the program user. Surprisingly fast, this
program makes password changing much less trau-
matic and time consuming. (This program, named
NEWPASS, will be available on the swap tape,
but—like everything on the tape—it is not
guaranteed).

Assuming that an intruder had been able to log ontc
the system, their next objective is to move to a pos
tion of power. There is no (known) way to bypass
security using only standard user capabilities, but
that does not mean that the person breaking in needs
higher capabilities: only that someone else has “left
the keys in the ignition”. In fact, the ideal situation for
the interloperis to find, or leave behind, a ‘‘'superman”
program (one that gives ‘‘super” capabilities) in some
innocuous place, and then in the future only log on as
a mild-mannered, common user. To plant such a pro-
gram, (if one can’t be found) what capabilities are
needed? Obviously, either System Manager (SM) or
Privileged Mode (PM) would work quite nicely, but
since those capabilities are usually guarded very well,
what else might help? System Supervisor (OP)
capability will also work, since a user with capability
can restore any file anywhere and can also dump the
account structure. Account Manager is useful only if
the account has OP (system supervisor), SM (system
manager) or PM (privileged mode). A .sys logon is use-
ful because files can be restored into .pub from any
user.sys, even with only standard capabilities. By the
same token, any user within an account can restore to
any group in that account, allowing non-privileged
users to restore a file to (someone else’s) privileged
group. Of course, the other user will wonder where the
file came from, so it is a good idea eventually leave
the program in a group with loads of files, or in
pub.sys with a name like “HIOCARD2".

There are several ways to conduct the search for
power. The most obvious (and usually the most fruit-
ful) begins with alist and a knowledge of what people

JOURNA],

OFf THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

.tend to call things. It is amazing the number of people
who will call a capability program ‘‘CAPS",
“GETCAPS”, “SM”, “SUPERMAN", “PRIVS”, or the
like. In addition, people tend to identify stream jobs
with a J or S, and since MPE requires the passwords
be in the file, access to the stream job files can be
very ‘“‘helpful” to the intruder. A third group of
“useful” files that tend to be named similiarly are
UDC files, although these file names can often be
found more directly from command.pub.sys. The key
point is that meaningful file names can be a two-
edged sword: both users and abusers can benefit.
Programs that store user and account information on
disk are especially dangerous: meaningful file names
here can be disasterous if the program accidently (or
purposely) leaves the files behind. For example, a
programmer at CSY wrote a utility program that read
the account structure from one 3000 and formatted it
onto a stream tape so that another 3000 could have
the same structure. The program worked fine, with
one minor flaw: it left three files—TACCT, TUSER and
TGROUP—on PUB.SYS with account, user, and group
information (including passwords) in them. This
program made it all the way to Boise and Fort Collins
before its “feature’” was realized. Taking advantage of
mnemonic names is simply one example of a way to
get into a position of power. There are doubtless

.many others.

System managers must of course be responsible for
their own logon, but also ultimately much more: the
entire system. The System Manager must administer
all data pertaining to the system, all access paths to
the system, and all capabilities on the system. The
most critical data pertaining to the system can be
found on the SYSDUMP tapes: a complete sysdump
tape set is the system—in terms of everything but
physical hardware {(which plant security hopefully
monitors). Sysdump tapes should not be available to
general public: they should be locked up and, if a file
needs restoring, EDP should do it.

The access paths to the system should also be con-
trolled as much as possible. Although hardwired ter-
minals may requires monitoring, phone and DS lines
are probably more of a concern. Analysis of these
paths should include the identification of who uses
them, and why. If, for example, a DS line’s purpose is
to allow the users of one system to access a central
resource, then the DS line should be made one-way by
eliminating the virtual terminals DS users need in
order to log onto the system. If there is occasional
two way access, then steps should be taken to insure
that communication is limited to those who should be
using the line.

‘System logging, along with some type of data format-
ter to print appropriate parts of the log, can be used to
monitor those who log on to either phone of DS lines.
There are several contributed library programs that
crunch log files, and if those aren’t suitable, the sys-

19

tem manager manual provides log file format informa-
tion for do-it-yourselfers. (A rather inelegant but
simple program used on one of the CSY systems will
again be available on the swap tape as LISTLOGF
(with the standard ““no support’” proviso).

To control those who log on by either phone or DS
lines requires some way of knowing what LDEV is
being used. A popular way to do this is to set up a
UDC that executes every time anyone iogs on. This
logon UDC, which should not allow the user to break,
or to see the UDC definition, can simply execute a
security program and log the potential user off if all is
not kosher. Because a program has access to MPE
intrinsics, it can determine if the user is coming from
an LDEV this is defined as DS or dial-up, and can then
ask for a password, or just deny access altogether.
Besides testing for phone or DS lines, the program
can also test for many other conditions: CSY’s pro-
gram also tests Operator.Sys and LDEV 20 (they must
occur together). Once again, this program (and assoc-
iated LIDC) will be made available on the swap tape as
“STARTUP".

Finally, capabilities of legitimate users of the system
must be monitored and controlled, as those users will
also often see how far they can get on their own sys-
tem. Thus, after dealing with the outside world, it is
time to look inward at protecting users from each
other and themselves. Although this is an area in
which most system managers have much expertise, it
will not hurt to point out several things to watch for. If
any users with privileged mode are allowed, they
should reside in an account separate from non-
privileged users, with user, group and account pass-
words. Treat privileged mode as if it were radioactive
or highly explosive—it is! Remember that OP
capability allows unlimited store, restore and
sysdump capability. Also, why create .SYS users who
can then restore into PUB.SYS? There has to be
another place for that user to go. Be constantly on the
lookout for new privileged mode programs, user,
groups or accounts. Use the list of standard MPE files
provided in the communicator to verify which files
should be in the SYS account. Use LISTDIRZ2 to verify
that LISTDIR2 has not been released: secure it if it
has.

Two programs used at CSY to keep tabs on privileged
mode are included on the swap tape. Neither are fan-
tastically elegant, but they both work. The first,
LISTFPM, looks for files that require PM capability to
run. At CSY, we stream a job, included on the swap
tape as LISTFPM.JOB, which runs LISTFPM, lists the
secure/released status of LISTDIR2, and runs the log
file analyzer program (LISTLOGF). The second pro-
gram, LISTUSRS, prints a formatted listing of per-
tinent user and account information, with or without
passwords. This program and its output are as dan-
gerous as dynamite, should be handled accordingly.
Don’t leave the listing on the printer, in a spool file, or

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA],

on a desk. Don’t even throw it away without shred-
ding— remember, people do look through discarded
listings. If the listing is left unattended, even while
waiting in a spooler queue, someone might copy it.
And no one really wants the visibility of having to tell
users that they have to change all their passwords
because EDP blew it, or the chore of changing all the
passwords EDP is responsible for.

It takes some time and effort to ensure a secure sys-
tem, but thankfully, there are tools available to help
do the job. Although no computer system can ever be
one hundred percent secured, the steps outlined here
should make the security fence high enough to keep

the vast majority of trouble-makers at bay, to trip up
the few who get by, and to give users the level of
protection they want from all computers.

(The author is interested in exchanging security
ideas, horror stories, problems etc. with other 3000
users).

(Reviewer’'s comment: TDP has the facility to disable
the “dangerous’ features for all users, or for all users
within a specific group oraccount. The BREAK can be
disabled, as can the RUN command, the STREAM
command, and/or access to all MPE commands.)

20

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA],

| . MPE Programming

by Eugene Volokh
VESOFT Consultants

Three Examples of MPE Programming in Action

Recently, in my capacity as systems consultant to a
large HP installation, | encountered the following
situation:

There is a large system that can operate in one of two
modes—ONLINE or BATCH. Which mode it operates
in is indicated by the presence or absence of a certain
file called HOL100. If this file exists, this means that
the system is operating in an ONLINE mode; if it does
not, the system is operating in a BATCH mode.

It is desirable to print at logon time which mode the
system is running in.

Obviously, since something is to be done at logon
time, we should use a logon UDC. The simplest solu-
tion is to have one of the form:

LOGONUDC
OPTION LOGON
RUN CHKSTAT

where CHKSTAT is a program that checks whether
HOL100 exists and prints out an appropriate mes-
sage. However, this is not the best solution. For one, |
QOn’t feet tike writing a custom SPL program every

ime a rather simple systems programming task com-
es around; those who are not familiar with FOPEN will
find this even harder to do. Furthermore, even if | did
write a custom program for this, either the program or
the source file is virtually guaranteed to get lost. And
finally, running a program is a rather long and re-
source-consuming task.

But, if not a program, then what? After all, MPE does
not even have a DISPLAY command to print a mes-
sage, much less a command that will check whether a
file exists and display one message if it does and
another if it doesn’t.

At this point, | must make a confession; despite what |
said of the possibilities of MPE as a systems program-
ming language, it was by no means created to be a
systems programming language. In fact, you will find
that most of the techniques that will be described are
actually methods of subverting MPE commands to do
tasks that they were never intended to do in the first
place. However, they work, and that’s what counts.

Returning to the problem at hand, let us attack it one
step at a time. For one, as | said, MPE does not pro-
vide us with a DISPLAY command. So, we’'ll make one!

UDCs are permitted to have a number of options. One
of these options, LIST, instructs MPE to list out the
‘ommands in the UDC as they are executed. Further-

more, there is an MPE command called :COMMENT
that does absolutely nothing. So, what do we get
when we cross an OPTION LLIST and a command that

21

does nothing?

DISPLAY !STRING
OPTION LIST
COMMENT !STRING

When the above UDC is invoked via a command of the
form ‘DISPLAY “string’”’, it will execute the command
‘COMMENT string’ (which in and of itself will do
nothing), but also list this command as it is being
executed! Thus, if we don’t mind seeing ‘COMMENT’
on the screen, we now have a way of displaying any-
thing we want to on the terminal from within a UDC.

Thus, we've licked one of our problems—we can now
display a message to the terminal. However, this still
does not solve the other problem—determining
whether a file exists or not and printing one message
if it does and another if it doesn't.

Here, we must introduce a very important MPE con-
struct (in fact, its only control structure)—the :IF com-
mand. With the :IF command its two sidekicks, :ELSE
and :ENDIF, we can, depending on the value of a
logical expression, execute one of two sets of
commands.

Thus, our task can be expressed as follows:

LOGONUDC
OPTION LOGON
Check if HOL100 exists
IF it exists THEN

DISPLAY "USING THE ONLINE SYSTEM"
ELSE

DISPLAY "USING THE BATCH SYSTEM"
ENDIF

However, even before you start to furiously leaf
through your MPE commands manual, you will prob-
ably begin to suspect that neither ‘Check if HOL100
exists’ nor ‘it exists’ is valid MPE syntax. In fact, there
is no check-if-a-file-exists command in MPE. Or is
there?

Well, if there is no command that will explicitly check
whether a file exists, we ought to look for a command
that, as a side effect, yields different results depend-
ing on whether a file exists or not. Furthermore, we
would be able to differentiate these results using an
:!IF command.

Let us consider the :LISTF command. If we do a
“LISTF filename’, the filename will be listed if the file
exists, and a Cl error 907 will be generated if it does
not. Since we want as little output to the terminal as
possible, we actually want to do a :LISTF filename;
$NULL’, which will do nothing if the file exists, and
print a Cl error 907 if it does not. Furthermore, it turns
out that the value of the last CI error is stored in a
JCW (Job Control Word) called CIERROR, which can

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA]J,

be interrogated via the :IF command. Thus, instead of
‘Check if HOL100 exists’ we should say “LISTF
HOL100; $SNULL’ and instead of ‘it exists’ we should
say ‘CIERROR < >907’. Thus, the solution to our pro-
blem is:

LOGONUDC
OPTION LOGON
SETJCW CIERROR=0
CONTINUE
LISTF HOL100;$NULL
IF CIERROR<>907 THEN
DISPLAY "USING THE ONLINE SYSTEM"
ELSE
DISPLAY
ENDIF

"USING THE BATCH SYSTEM"

A few comments: ‘SETJCW CIERROR =0’ makes sure
that CIERROR is cleared before the :LISTF command.
Since this is an OPTION LOGON UDC, it is guaranteed
to be zero anyway, but in general it is conceivable that
it was already 907 before the :LISTF command. More
importantly, a :CONTINUE command was added
before the :LLISTF command to avoid the UDC aborting
on the first error; a :CONTINUE (either in a UDC or a
job stream) instructs MPE not to abort if the next
command fails.

One other point: in addition to the appropriate mes-
sage, this method leaves some junk on the screen,
namely the LISTF command and the error message if
the file does not exist (and thus the LISTF command
failed) and in either case a ‘COMMENT’ from the
DISPLAY UDC. This is actually rather easy to take care
of—merely embed in the DISPLAY string some
escape sequences to move the cursor and delete the
unwanted lines and characters on the screen. If you're
using printing terminals, though, you're out of luck.
Thus, we have seen how using MPE alone we can per-
form some fairly complex tasks easily and efficiently.

So, from this, we can derive a sort of MPE program-
ming methodology:

1. If you see no direct way of performing a given task,
try to find a way that yields the desired effect as a side
effect, with little or no other direct effects or side
effects.

2. If you wish to do two different things depending on
some condition that can not be straightforwardly ex-
pressed with JCWs, try to find a command or se-
quence of commands that yields two different JCW
values depending on the condition.

Let us take another example:

One of VESOFT's products, MPEX, is an extended
MPE user interface that provides many desirable fea-
tures, and is often “lived in” by its users i.e.—they run
it once when they sign on, and stay in it until they are
done, when they exit it and immediately sign off.

Some of our users decided to set up an option logon

22

UDC of the form

MPEX

OPTION LOGON

RUN MPEX.PUR.VESCFT
BYE

This way, they would be automatically dropped into
MPEX when they sign on, and will automatically be
:BYEd off when they exit it. However, they do not want
this to be done for jobs, but rather only for sessions.
Thus, the task is to determine within a UDC whether
one is in a job or a session.

In my opinion, in addition to the already existing sys-
tem-defined JCWs such as JCW and CIERROR, HP
should have provided us with JCWs such as MODE (to
indicate whether we are a session or a job), FSER-
ROR, etc. However, the fact remains that it did not,
and we have to determine this for ourselves.

Let us apply our rule #2—is there a command that
yields somewhat different resuits for job mode and
session mode? In fact, there is. The :RESUME com-
mand, when executed from within session mode (but
not from break mode, since the UDC will never be exe-
cuted from within break mode) yields a CIWARN 1686
(COMMAND ONLY ALLOWED IN BREAK); however,
when executed from within job mode, it issues a
CIERR 978 (COMMAND NOT ALLOWED IN JOB
MODE). Furthermore, since thisisan OPTION LOGO
UDC and will thus never be executed from brea
mode, the RESUME command has no other effects!
Thus, our solution would be:

MPEX

OPTION LCGON

SETJCW CTIKRROR=0

CONTINUE

RESUME

IF CIERRCR<>978 THEN

RUN MPEX,PUB.VESCFT

EYFE
ENDIF

As an additional nicety, we may wish to do something
like a ‘DISPLAY “PLEASE IGNORE THE FOLLOWING
MESSAGE'" before the RESUME command so that
the user will not be puzzled by the warning that the
RESUME command issues in session mode.

So, score another point for UDC programming.

To round out this section, consider one more
example:

Before performing a given task, we wish to find out
whether a given file is in use or not. If it is not in use,
we should perform the task; if it is in use, we should
print an error message.

Solving this problem requires a substantial amount of
knowledge file system. What we really want to dois to
try to open the file with EXCLUSIVE, INPUT access: i
the open succeeds, we want to close the file with
SAVE disposition; if it fails, we want to set a flag.

However, we can not explicitly open and close files in

JOURNA]

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

‘VIPE. Rather, we have to find acommand to subvert so
that it would do this task for us. This command’s oper-
ation should be essentially similar to our target opera-
tion (i.e. it should do an open followed by a close).
One command that pops to mind is the :PURGE
command. Unfortunately, it opens a file with OUT
access and closes it with DEL disposition.

But, via the :FILE command, we can force it to open
and close the file with whatever options we please!
Thus, our task may be achieved by doing the follow-
ing:

FILE F=filename;EXC;ACC=IN;SAVE
SETJCW CIERROR=0
CONTINUE
PURGE *F
IF CIERROR=384 THEN

DISPLAY "ERROR: FILE IS IN USE"
ELSE

the file is not ir use;
ENDIF
RESET F

do what is necessary

Note that any open failure (except ‘nonexistent file’)
during a :PURGE command causes a CIERR 384; fur-
thermore, the last file system error is not accessible
as a JCW, so we have to assume that no other open

'ailure will occur.

Advanced MPE Programming
Consider the following problem:

VESOFT distributes its products on a tape along with
an instaliation job stream. When a user wishes to
install the products, he :RESTOREs the job stream
and streams it. The job stream creates the appropriate
accounting structure, and then :RESTOREs all the
relevant files off the installation tape. However, it is
possible that some files can not be restored; in this
case, we want to send an appropriate message to the
console.

The obvious thing to do here would be to check
CIERROR to see if :RESTORE failed, and if so, do a
:TELLOP. But, :RESTORE does NOT set CIERROR if
not all files were restored! It merely prints the file-
names and the count of the files that were not re-
stored to its list file, and terminates just like all files
were restored.

We have run into a problem that we can’t really solve
with the techniques outlined above because no MPE
command can examine the contents of a file for us.
However, there is one HP utility that is made explicitly
for examining the contents of files—EDITOR!

‘Our plan of attack will be as follows: we will redirect
the listing of the :STORE command to a disc file (by
setting a file equation for SYSLIST), massage it with
EDITOR, somehow cause EDITOR to set a JCW de-
pending on the number of files not stored, and then,

23

when we’re back in MPE, examine that JCW.

So, our “program’ will ook like this:
¢:FILE SYSLIST,NEW; TEMP
:RESTORE *VESOFT;
:RESET SYSLIST
:SETJCW FILESNOTRESTORED=0
:EDITOR

TEXT SYSLIST

LIST ALL

CHANGEQ "FILES NOT RESTORED",
DELETEQ 1/*-1,*+1/LAST

KEEP SNEWPASS, JNNUMBERED

USE SOLDPASS

EXIT

+IF FILESNOTRESTORED<>0 THEN
: TELLOP SOME FILES NOT RESTORED,
: ENDIF

DEV=DISC;
@.@.VESOFT,

REC=~80,16,F,ASCII;
2.@.SECURITY; SHOW;

NOCCTL;
OLDDATE

*:SETJCW FILESNOTRESTORED"™ IN ALL

CHECK SPOOL FILE!

What does this mess do? Well, the first three lines do
a :RESTORE, redirecting this listing to a disc file.
Then, we enter EDITOR and text in the list file. Now,
we have to make EDITOR set a JCW depending on the
number of files not restored. The way that we do this
is by changing the ‘FILES NOT RESTORED = xxx’ line
to “SETJCW FILESNOTRESTORED = xxx’ with the
CHANGE statement, deleting all the other lines in the
file, keeping this as a temporary file, and USEing this
file! The USE command will read the file and execute
the :SETJCW command that we put in it; now, when
we exit EDITOR, the FILESNOTRESTORED JCW is
equal to the number of files not restored, and can now
be interrogated.

This kind of trick is a very valuable one, and should be
added to our methodology:

3. If the parameters of an MPE command (in this case
:SETJCW) depend on the result of another MPE com-
mand (in this case :STORE), redirect the listing of the
latter into a disc file, and use EDITOR to create and
execute the former. Similarly, if the input of a program
depends on the result of another program or com-
mand, redirect the listing of the latter into a disc file,
and use EDITOR to create the input file for the former.

This point is best explained by another example:

VINIT, an HP utility, has a ‘>PDTRACK ldev’ com-
mand, which prints the addresses of all the defective
disc tracks on the disc device indicated by Idev. How-
ever, VINIT has no ‘>PDTRACK ALL’ command.
Implement it.

Applying our methodology, our strategy should be:

A. Find a command that lists all the disc devices in
the system, and redirect its output to a disc file.

B. Using :EDITOR convert this output into input for
VINIT.

C. Run VINIT using this newly-generated input file.

For step A, one command that seems to fit the bill is
:DSTAT ALL. This little-known command produces

JOURNAJ

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

output of the form:
LDEV-TYPE STATUS VOLUME (VOLUME SET-GEN)

1-7925 SYSTEM MH7925U0
2-7925 SYSTEM MH7925U1
3-7925 SYSTEM MH7925U2

As you see, this command displays, among other
things, the logical device numbers of all the discs in
the system. However, one problem comes up immedi-
ately: unlike the :STORE command, whose output can
easily be redirected to a disc file, :DSTAT ALL’s output
always goes to $STDLIST.

So, how are we to redirect the output of a command
that can only send its output to $STDLIST? The
answer is simple: redirect $STDLIST! Although we
can not redirect the $STDLIST of a job or of a
command, we can redirect the $STDLIST of a
program. So, all we need to do is to issue the
following commands:

:FILE LISTFILE,NEW;

:RUN FCOPY.PUB.SYS;

:DSTAT ALL

EXIT
:RESET LISTFILE

REC=-80,,F,ASCII;
STDLIST=*LISTFILE

NOCCTL; TEMP

What we do is run FCOPY with its $STDLIST
redirected to a disc file, and cause it to do a :DSTAT
ALL. :DSTAT ALL will obediently print its output to
$STDLIST, which has been redirected!

So, we have the :DSTAT ALL listing (along with some
other stuff printed by FCOPY) in a temporary disc file
called LISTFILE. Now, it is time for step
B—converting this :DSTAT ALL list fife to a VINIT
input file:

:FILE INFILE;TEMP
:EDITOR
TEXT LISTFILE
DELETE 1/6,LAST << delete the various headers >>
FIND FIRST
WHILE
FIND "-" <<delete everything after the "-", >>
DELETE *(*)/* (LAST) <<leaving only the ldev >>
CHANGE 1, "PDTRACK" ,ALL << insert PDTRACKsS before the ldevs >>
ADD << add an EXIT command >>
EXIT
//
KEEP *INFILE
EXIT

We now have the VINIT input file; all we need to do is

¢FILE INFILE,OLDTEMP :RUN PVINIT,PUB.SYS;STDIN=*INFILE

and we’re done!
We finish off this section with one more example:

VESOFT's installation stream signs on as MANAGER.
SYS, builds the VESOFT and SECURITY accounts and
streams two jobs, which sign on as MANAGER.
VESOFT and MANAGER.SECURITY and build the
VESOFT and SECURITY accounts. It is also the duty

of the MANAGER.SYS job stream to restore th&
VESOFT and SECURITY files. However, it can not do
this until the other two jobs finish. How can we make
the MANAGER.SYS job stream wait for the others to
terminate?

The key word in this problem is “wait”. Again, on the
surface it seems that MPE has no comand that per-
mits one to wait for a certain event to occur. Again,
however, a trick exists that saves the day. This trick
uses MESSAGE FILES.

Message files are a kind of file (introduced in MPE IV)
that have the property that if a reader tries to read an
empty message file, he does not get an immediate
end of file, but rather suspends until the message file
is no longer empty.

So, even before the two job streams are streamed, we
build two message files in PUB:SYS: MSGVESOF and
MSGSECUR. Furthermore, in each of the two internal-
ly streamed job streams, after we are all done, we
write arecord (via FCOPY) to the appropriate message
file. And, in the main (MANAGER.SYS) job stream,
right after we stream the two other job streams but
before we do the :RESTORE, we read the two message
files (again, via FCOPY). The resultant job stream
goes like this:

1JOB MANACGER.SYS

!NEWACCT VESOFT

INEWACCT SECURITY

'BUILD MSGVESOF

IRELEASE MSGVESQOF <<sn the
'BUILD MSEGSECUR

IRELEASE MSGSECUR

!STREAM ,# << stream the two other
#JOB MANAGER.VESOFT

job stream can write tn it >,
jcb streams >>

#FCOPY FROM; TO=MSGVESOF.PUB.SYS

VESOFT ACCOUNTING STRUCTURE BUILT! << any message will da >>
#E0J

#J0B MANAGER.SECURITY

$FCOPY FROM;TO=MSGSECUR.PUB,SYS

SECURITY ACCOUNTING STRUCTURE BUTLT!

$#E0J

FCOPY FROM=MSGVESOF;T0 << wait for the VESOFT stream >>
IFCOPY FROM=MSGSECUR;TO << wait for the SECURITY stream -
!RESTORE ...

LEQJ

The message file reads cause the job stream to sus-
pend until the message files are non-empty, i.e. until
the other job streams have written something to them.
Thus, when the :RESTORE is executed, we are
assured that the VESOFT and SECURITY accounting
structures have been built.

Conclusion

| have presented some examples and some guidelines
that should give the reader an idea of what MPE pro-
gramming can do and how it can do it. It is my belief
that with this knowledge and some ingenuity, the
reader can use the art of MPE programming t
advantage.

24

JOURNA]

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

.15 Ideas on Improving MPE Security

Norman B. Wright

A few years ago, when the number of Hewlett Packard
3000 sites was somewhat less than one thousand, it
used to be sufficient to put a few passwords and lock-
words on key accounts and files. We could then take
refuge from our worried management behind the
mythical “technically knowledgeable user”. “The sys-
tem is secure,” we would say, “‘except from the tech-
nically knowledgeable user who is intent upon
breaking its security”. For many installations, this
provided a moderate degree of safety. We could be
relatively certain who the few technically
knowledgeable users were who would be capable of
breaking security. We could also take steps to assure
that these users were not maliciously intent on
circumventing security. At worst, we could keep a
very close eye on them.

No more! The user community at most Hewlett Pack-
ard 3000 sites has outgrown the ability of one system
or security manager to be personally in touch with
each member. Furthermore the sophistication and
knowledge of even casual users has grown to such a
point that very few of us can take refuge in the myth of
the “knowledgeable user’. Most users can be assum-
d to have had previous exposure to computers, and
o0 be in some degree aguainted with operating sys-
tems and utilities. The widespread use of microcom-
puters is proliferating this knowledge to a point where
most of us have users who are not professional pro-
grammers, but who nonetheless know enough to
attempt disk dumps, system crashes, and security
breaches of considerable ingenuity. Since the movie
TRON, every system can be said to be fair game for
this sort of attempt.

The following ideas are offered, not as an exhaustive
checklist of security measures, but as a list of work-
able ideas which you may wish to consider in setting
up or improving the security of your HP3000 installa-
tion.

1. Establish control over the physical security of the
computer itself. While the advent of the minicomputer
brought a breath of fresh air to the large “closed
shop” environment, the growth to ‘‘super’” minis has
brought us back full circle. We have met the enemy
and he is us. Most HP3000 installations now deal with
information which is far too valuable or sensitive to
afford the luxury of the “open shop”. At a minimum
the computer and its tape and disk library should be in
a secured environment with only those persons
absolutely required for its operation able to enter.

. Appoint a security manager. Have this person
pend a certain amount of time thinking about secur-
ity each month, in proportion to the amount of poten-
tial loss at stake. One of the key points in your secur-
ity program should be that it is always changing, and

25

continually improving. The security manager shouid
carry on a continuing risk analysis, pinpointing cur-
rent vulnerabilities of the installation. He or she
should be inventive enough to consider all potential
motivations: financial gain, malicious sabotage, cor-
porate embarassment, and mischievous fun. Your
best source of what is vuinerable on your system will
always be your own in-house technically
knowlegeable users. Keep them thinking regularly
about security problems on your system. There are
always going to be holes and weak points.
Concentrate on the ones that are the most obvious
with the highest potential loss to the installation.

3. Make your personnel security conscious. Make cer-
tain that they understand the sensitivity of certain
data and are following established procedures in deal-
ing with it. The greatest security risks, of course, in-
volve your own personnel who must have day-to-day
contact with sensitive or valuable information. Fortun-
ately, this is also your first line of defense. Make cer-
tain that the need for security is known and under-
stood by all employees. Check frequently to see that
established procedures are being foliowed, not being
pushed aside in the crush of day-to-day business.
Make sure that your employees feel free to report
even accidental or casual security violations to the
security manager.

4. Establish manual or automated cross-checking
procedures for information which is particularly valu-
able or sensitive. As with money, it is usually better to
have at least two people involved in the handling of
sensitive data so that collusion between them would
be necessary for fraud or theft to be perpetrated.

5. Pay particular attention to the movement of mag-
netic tape, disk, and other media. Regardless of how
elegant and effective your online security techniques
might be, they could always be rendered useless by
the theft of a single system dump or backup tape from
your installation. The only way to protect against this
(short of data encryption) is to establish very tight
controls on the removal of such media. Dump tapes in
particular may need to be kept under lock and key and
bulk erased after they have expired. If you have tape or
disk media which are routinely shipped or taken from
the site, you may want to establish a program of cross
checking their contents. At any rate, insist upon
accurate logs for all information on magnetic media
which leaves your computer room, including a record
of what was taken, who took it, where it went, and for
what purpose.

6. Store sensitive data separately. Due to the storage
and handling problems with dump tapes, you may
wish to consider backing up and storing particularly
sensitive or critical data separately from your

JOURNA],

OF THE HP 3000 INTERMATIOMAL
USERS GROUP, INCORPORATED

SYSDUMP procedures. Backup media for the
sensitive data can then be subjected to additional
cross checking, perhaps even placed in custody of
someone who will take overall responsibility for its
security. Since it is on independent media, it can be
placed under seperate lock and key, and purged from
the system prior to all SYSDUMP procedures. If you
wish to make doubly sure the data is destroyed from
the disk, overwrite it instead of purging it. The
program “BLATFILE” in the User's Group Library
performs this function.

7. Lock up the key capabilities of the system and
check them frequently. It is well known on the
Hewlett Packard 3000 system that users with
privileged mode capability (PM) or with system
manager (SM) can easily break almost all security
mechanisms. Reserve the use of these capabilities to
a few users and make certain that extra precautions
are exercised over them. if your system account
structure is highly volatile, you may wish to set up
auditing procedures to check, at periodic intervals, to
make certain that these capabilities have not
“leaked” out to other users. Privileged mode is
notorious for doing this since it is also, by some quirk
of MPE, required for restoring data bases. The CS
capability for using the distributed systems lines, is
another one which you should consider restricting if
your installation uses this facility.

8. Use the MPE password system or a good alterna-
tive. MPE password protection at both the account
and user levels has some excellent advantages, if
used correctly. Making your passwords randomly
generated strings of letters and numbers affords a
measure of increased security which is highly recom-
mended. You should plan on changing passwords
periodically, at irregular intervals, perhaps to coincide
with the departure of key personnel such as program-
mers or operators. Remember that these personnel
frequently gain privity to passwords other than those
authorized to them. Using MPE’s double password
system allows you to change the global account pass-
words and leave the user passwords the same. Chang-
ing passwords has the twofold advantage of requiring
the security manager to keep up-to-date records of the
user population and requiring the user population to
keep in close touch with the security manager. Users
who no longer have current need for access to the
system, but who have failed to notify the security
manager, will be automatically excluded by these
periodic changes.

8. Get the passwords out of your streams. In order to
change passwords easily and painlessly, you must
develop methods for removing them from job stream
files used as a regular part of development and pro-
duction. There are a variety of packaged programs and
utilities available to help with accomplishing this.
They include the extended stream facility of Vesoft's
MPEX, and at least two programs available free in the

26

Users Group Library—JES and STREAMER. All o
these programs depend upon programmatic insertion
of the passwords into the job stream file before it is
streamed. The password is usually obtained from a
password file or from the system itself at run time. If
one of these packages does not have enough flexi-
bility for your installation, it will pay you to write a
simple one yourself. The requirement for passwords
in the job stream file is a major security problem in
MPE which will also make changing passwords
regularly a forbiddingly burdensome task.

10. Use the LOGON ,NOBREAK UDC to control users.
This is particularly applicable for users who are dedi-
cated to only a few different functions on the system,
such as payroll or inventory clerks. A properly con-
structed UDC can tightly restrict what such a user
could do on the system, allowing him or her to access
only those functions which are authorized. The UDC
can be set to automatically log off the user upon com-
pletion of the specific function. Setting the UDC on an
account-wide basis ((ACCOUNT) will alleviate the
time-consuming task of having to log on to each
newly created user id. For those few users whom you
wish to allow privileged access on the account. you
can set UDC’s with an overriding commanConsider
writing your own security screening program. This
program could be used in conjunction with a syste
or account-wide UDC to check for a variety of use
defined security violations. Many installations may
wish to restrict certain users to specific terminals
(logical devices), or to specific time periods during
the day or week. In designing such a program you may
find the seldom-used LOCATTR attribute of the user id
useful for further screening and restricting user
capabilities. A user-written security screening pro-
gram can also do additional password or protection
prompting, and logging for installations where several
users are using the same user id. An interesting
example of this type of program is found in the KMGR
program in the Users Group Library which provides
extra logon security for privileged accounts A
security screening program, coupled with the LOGON
UDC provides good capability for customized sign-on
protection.

12. Consider disabling the :LISTF command entirely.
MPE’s :LISTF command has been faulted frequently
because it gives all users the capability of listing the
file directory contents of the entire system. Thus, for
example, when the user sees the program DISKED2.
PUB.SYS, the temptation to experiment can prove
almos : overpowering. Particularly on college cam-
puses, where some of the most severe security pro-
blems of this kind exist. locking up the :LISTF
capability and a variety of other capabilities based on
it (LISTDIR2, PURGEFILE, etc) seems to be a goo g
precaution. Alternative commands for listing the’
user’s group and account fileset can, of course. be
provided. AImost any use of the UDC in a security pro-
gram, it should be added, will mean that the ‘SET-

JOURNAJ,

OF THE HP 1000 INTERNATIONAL
USERS GROUP, INCORPORATED

‘ATALOG command itself will also have to be dis-
abled at the user level. Otherwise the user will easily
learn to circumvent the UDC commands with an over-
riding UDC. A good program of system and account
UDC'’s can frequent!y alleviate the need for numerous
user UDC’s anyway. You may wish to abandon the
many problems of MPE's UDC facility entirely, in favor
of a programmatic capability designed as an integral
part of the security screening program.

13. Consider using private volumes to enhance your
security. Much has been written about the use of the
private volume capability in terms of increased data
handling flexibility and backup. However, private vol-
umes also provide one of the best methods for tightly
restricted access to key data on the system. Data
such as a payroll account or other critical information
can be physically removed from the system when not
in use on line. When the information is required on
line, it is protected from unauthorized tampering by
the necessity of UV (use private volumes) capability
which can be granted only to the authorized users.

14. Program security into your applications. Regard-
less of what measures you take to restrict access to
the system, you are also going to have to protect
against the inside job—the authorized user who uses
the data in unauthorized ways. As we mentioned ear-
.er, your best line of defense will always be other per-

sonnel and system cross checks designed to prevent
this. However, most users find they must also look at
the applications programs or packages themselves to
further identify restrictive mechanism which can be
implemented. A key feature to all sensitive applica-

tions should be some form of logging facility to track
what transactions were made and by whom. The log-
ging capability could be a built-in one, such as
IMAGE'’s transaction logging, or it might be one which
is designed into the application. Logging capabilities
frequently serve a variety of useful functions in addi-
tion to the security function.

15. Establish a vigorous random auditing program.
Your entire security edifice will collapse without con-
stant monitoring to determine if and when security
breaches are being attempted. The security manager
should bring into play everything that he knows about
the system to periodically monitor activity. Use the
log files and programs which manipulate them (LIST-
LOG2, READLOG, CENSOR, etc.); use online monitors
(OPT3000, SO0IV); use programmatic or manual
checks on other logs such as DBAUDIT for IMAGE
data base logging, or monitoring your own set of logs
from security or transaction screening programs. The
auditing program should check for application-
defined “unusual”, “excessive”, or “special” condi-
tions. Try to make the programmatic definitions of
these terms parameterized so that they can be varied.
One crucial element of the auditing program is that it
must be constantly changing and improving. As
quickly as one check or audit is permanently installed
and performed on a regular basis it can be assumed
that another way will be found to circumvent the exist-
ing checks. Only by constantly changing and improv-
ing the security system faster than the sophistication
of your average user—a sophistication which is itself
constantly increasing—can you hope to offer any
assurance of a secure system.

27

Cohpate{
i Muse»um_.
: o

28

W

JOURNAJ,

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

.Advanced Techniques Using VPLUS

Michael A. Casteel

Vice President

Computing Capabilities Corporation
Mountain View, California

Introduction

This paper is intended to cover two particular topics
of interest to a number of VPLUS users. It will cover
procedures for alternating between VPLUS block
mode, using formatted screens, and conversational
mode such as used with MPE and utilities. This tech-
nique may be used to integrate existing conversation
mode dialogues with new VPLUS applications.
Perhaps more generally, it can be of tremendous value
when debugging VPLUS applications, especially
when two terminals are not available within arm’s
reach.

Also presented are procedures for printing the screen
contents, either to an attached or integral printer or to
the system printer. Of course, these procedures are
not specific to VPLUS applications and as such may
be of even broader utility.

Both of the particular topics of this paper involve com-
munication with and control of the terminal. It is im-

‘ortant, therefore, to cover some background material

rst, in order to understand the terminal configuration
and communications protocol in effect in the VPLUS
environment. Printing the screen or switching from
block/format to conversational mode are not particu-
larly difficult, once the VPLUS operating mode is
understood. Happily, all VPLUS-supported CRT ter-
minals are basically compatible. There are some sig-
nificant differences between point-to-point and multi-
point (MTS) operation, which will be covered in the
discussion.

Terminal and I/O Configuration

The information in this section has been deduced
from assorted terminal and software manuals, obser-
vations and conversations. It can’t all be guaranteed
correct, but has so far proven out in those cases
where it was needed.

Basic Terminal Configuration

A few of the Keyboard Interface straps (optional) must
be set in a particular way for VPLUS operation. For
2640B or 2644 terminals you must do this manually, by
opening the terminal and setting switches. VPLUS
sets the others automatically during VOPENTERM or
VGETNEXTFORM with $SREFRESH. Special point-to-

qoint options are:
- open (Line/Page) Establishes Page mode, where-

by the ENTER key transmits the entire
screen instead of only a single field or line.

29

E - open (2640B) Allows the terminal function keys
(f1-f8) to be used without holding the
CNTL key. (Optional)

F - open (2640B) Provides for 2645-compatible
handshake protocol (DC1/DC2/DC1).

G - open (InhHndShk) Provides that computer-re-

quested block transfers (e.g. terminal
status, cursor sense, printer command
response) observe the DC1/DC2/DC1
protocol.

The main strap of interest in multipoint (MTS) is:

J - closed (Auto Term) MTS opens this strap, which
has the effect of limiting data transmis-
sion to data on the screen above the cur-
sor position at the time the ENTER key is
pressed. VPLUS closes this strap to allow
transmission of all data in the form.

There are other straps which are important to VPLUS
operation, but the ‘““normal” setting is the appropriate
one.

In addition, VPLUS requires that the terminal be set
for block mode. This is the normal mode in MTS. In
point-to-point, VPLUS will set the terminal in block
mode automatically (except 2640/44).

Terminal File Configuration

VPLUS controis and communicates with the terminal
through the MPE file system using the standard set of
intrinsics. Some special file system parameters are
set for the pcint-to-point and multipoint device drivers
under VPLUS, generally via the FCONTROL intrinsic.
Significant FCONTROL functions for point-to-point
operation are:

13 - Echo is turned off (if it isn’t already)

25 - Set alternate terminator to RS

31 - Enable VPLUS driver control

38 - Set terminal type to 10 (if it isn’t already).

Character Echo (FCONTROL 12/13)

Normal full-duplex point-to-point operation requires
the HP3000 to echo each character it receives back to
the terminal to be displayed. In block mode, under
VPLUS, each character is displayed on the screen as
you type it, and nothing is sent to the computer until
you press ENTER. Since everything you type is
already shown on the screen, a computer echo of the

JOURNAJ,

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

block transmission would only confuse matters.
Therefore, FCONTROL 13 (disable echo} is used.

Alternate Terminator (FCONTROL 25)

VPLUS uses the “ultimate” form of block mode on HP
terminals, i.e. Block/Page mode. This allows the ter-
minal to send the whole screen at once, the most effi-
cient form of block transmission. However, full page,
block mode inputs do not end in the usual carriage
return (CR) code which terminates other inputs; in
fact, there may be a number of carriage returns in the
midst of the input. Instead, HP terminals send a con-
trol code called “Record Separator” (RS) to signal the
end of the block. VPLUS accommodates this by set-
ting the RS code as the “alternate terminator” in
point-to-point operation, using FCONTROL 25.

Terminal Type (FCONTROL 38)

Terminal ports used by HP CRT terminals are usually
configured as Terminal Type 10, which signals the /O
driver to observe certain protocols which are appropri-
ate to such terminals. For example, the driver will
send a control code, ENQ, after every 80 characters
output. HP terminals will answer with an ACK when
they are ready for the next 80 characters. This is the
famous ENQ/ACK handshake. When you use VPLUS
you must be using an HP compatible terminal; so
VPLUS sets the Terminal Type to 10 using FCONTROL
38, in order to activate these protocols.

VPLUS Driver Mode (FCONTROL 30/31)

FCONTROL 31 is more puzzling, since HP has so far
neglected to document it. When reading from the ter-
minal under this option, a DC2 code as the first char-
acter received causes the MPE device driver to set up
a block read. This is necessary since, when you press
ENTER, the terminal doesn’t just send the screen con-
tents as a big block of data. It only sends the single
control code, DC2, and waits for a DC1. VPLUS used
to handle the DC2 itself but now uses the new Driver
Mode. Now, on receipt of the DC2, the MPE device
driver (not the program, not VPLUS) responds with:

<esc>c<esc>H<DC1>

where <esc> stands for the ASCI| ‘ESCAPE’ control
code, and <DC1> for the DC1 code. These control
codes lock the keyboard, home the cursor, and trigger
the block data transfer. The driver times the block
read, in case the terminator characteris lost. The read
terminates by character count, timeout or receipt of
an RS code (the VPLUS alternate terminator, i.e. the
Block/Page Mode terminator character). It is natural to
assume that the block read functions armed with
FCONTROL 31 have been moved into firmware on the
ATP.

30

MTS Unedited Input (FCONTROL 41)

The above functions are applicable to point-to-point
terminals. For multipoint terminals, the MTS driver
can handle block transmissions pretty much as usual.
The only important difference to the driver is one
FCONTROL:

41 - Set unedited mode (with parameter % 137)

This option is used to stop MTS from placing a block
delimiter everywhere VPLUS puts the cursor. Block
delimiters set by MTS (or the ENTER key with the
terminal's strap J open) would prevent the transmis-
sion of the full screen to the computer.

User Read Time-out (FCONTROL 4)

For point-to-point or multipoint, VPLUS will aiso use
FCONTROL:

4 - Enable read time-out

when OPTIONS (word 56 of the Comarea) has bits
9-10 set to 01. USER' TIME (word 58) gives the number
of seconds to allow for input.

Conversation vs. VPLUS Mode

There are occasions in many applications where it is
desirable to remove the terminal from VPLUS opera-
tion for a while, then resume VPLUS. For example, yor
may wish to run another program which doesn't us
VPLUS, or just engage in a conversational dialogue.
Debugging, with DISPLAYs and ACCEPTs or PRINTs
and READs, or using MPE Debug or Toolset, is an
almost universal occasion for conversation mode.

Normally, a program resumes conversation mode with
a call to VCLOSETERM when it terminates. This sug-
gests an approach to switching modes: To change
from VPLUS mode to conversation mode, call
VCLOSETERM. To switch back, call VOPENTERM.
Since VCLOSEFORMEF isn't called, a lot of valuable
information is preserved:

Current form name

Data buffer contents
Next form name
Repeat/Next form options
Screen label settings
Save field contents

This may be the best approach to use when you wish
to switch modes in order to run another program.
There's no telling in what state the other program will
leave the terminal and I/O configuration, but VOPEN-
TERM should be able to sort it out. In fact, the un-
documented intrinsics VTURNOFF and VTURNON
should have about the same effect, without taking/ ™
quite such drastic steps as closing and re-opening the ™
terminal file, clearing the screen, and so on.
Parameters are the same as VCLOSETERM and
VOPENTERM, respectively.

JOURNA],

OF THE HP 3000 INTERNATIOMAL
USERS GROUP, INCORPORATED

.you take this approach, you will discover a few com-
plications which may (or may not) affect your applica-
tion:

1. Your screen remains empty.

VOPENTERM clears the display, but VSHOWFORM
doesn’t know it. This means that your next call to
VSHOWFORM may not write any data to the screen,
since VPLUS believes the last form to be still there.
This is a result of VSHOWFORM optimization, which
you can correct by moving 7 to word 34 of the Com-
munications Area (SHOWCONTROL) before calling
VSHOWFORM. Don’t forget to reset SHOWCONTROL
afterward (New requirement with the Q MIT). Or, you
may call VGETNEXTFORM with Next Form name
$REFRESH.

2. Your screen is still empty.

VOPENTERM reconfigures workspaces on a 2626
using local form storage, but VSHOWFORM doesn’t
know it. In this case, moving the 7 to SHOWCONTROL
might just cause VSHOWFORM to try to redisplay the
form from the workspace where it used to be. You
need to use $REFRESH in this case, or perhaps
VLOADFORMS with SHOWCONTROL. As of this writ-
ing, it is too early to tell the effect on 2624B Local
Forms Storage.

Your screen labels are missing.

CLOSETERM removes your screen labels from the
terminal, but VOPENTERM doesn’t put them back. It
is anticipated that you can use $REFRESH to correct
this problem in the Q MIT. We can only hope that
VOPENTERM will also be corrected. To solve this pro-
blem prior to the Q@ MIT, follow VOPENTERM with
VSETKEYLABELS, for global or form labels,
whichever is appropriate. | use VGETKEYLABELS to
retrieve the needed values, so they don’t need to be
coded into the program.

You may actually have to do two VSETKEYLABELS,
due to VPLUS optimization. If you simply set them to
the same value they had, VSHOWFORM will not
bother to put them on the screen. | get around this by
first setting the labels to a different value, then set-
ting them back.

Note: As of VPLUS B.02.02, you must do your VGET-
KEYLABELS before calling VCLOSETERM, since the
latter destroys the values in the VPLUS label buffer.

Switching Modes Yourself

Most often all you want to do is switch modes quickly
in order to display a message or allow some form of
debugging dialogue. For example, the VPLUS debug-

ing facilities in INSIGHT il and RADAR (two Comput-
dg Capabilities Corporation products) keep the ter-

inal in conversation mode except during VPLUS out-
put or input. As a result, Debug breakpoints, abort
messages and VPLUS screens are all accommodated
on a single terminal.

31

This is not a difficult task, a it turns out, made easier
since the addition of FCONTROL 30/31 (VPLUS Driver
Mode) for point-to-point terminals. Appendix 1 in-
cludes a listing of a short SPL procedure, VSET-
MODE, which performs the necessary functions. This
procedure has two parameters: The VPLUS Com-
munications Area (just like VPLUS intrinsics) and an
integer mode. Mode zero calls for VPLUS operation,
and one calls for conversational mode.

This routine operates outside the bounds of docu-
mented VPLUS operations. This means it is possible
that HP could change things around in such a way
that it won't work. This is not highly likely, since the
operations performed are so fundamental.

VSETMODE Comarea Usage

You will see that VSETMODE uses three words in the
VPLUS Comarea. The first two are the terminal file
number and the terminal model as determined by
VPLUS. Both are documented in the current edition of
the VPLUS Reference Manual.

The third word used is not doucmented in the VPLUS
manual. Bits 4-9 of this word contain the original MPE
Terminal Type. We need this to learn if the terminal is
an MTS terminal, designated by Terminal Type 14. This
(MTS) information could also be obtained using
FCONTROL 39 on the terminal file, without reference
to this word.

Bit 1is used to determine whether character echo was
on before VOPENTERM. Half-duplex connections, for
example, should not have echo turned on. The
essential information could be obtained without
reference to this word by using FGETINFO to check
for a half-duplex subtype.

VSETMODE Operation

To enter conversational mode, VSETMODE first condi-
tions the terminal by writing a sequence of control
commands. This begins by turning off Format Mode,
moving the cursor to the bottom of memory, and
unlocking the keyboard:

<esc>X<esc>F<esc>b

On terminals which support this operation, VSET-
MODE also .urns off block mode:

<esc>&kOB
On the new line of terminals, the aids and modes keys
will be unlocked:

<esc> &jR
When returning to VPLUS mode, these operations are

reversed, although the keyboard, aids and modes keys
are not locked.

If character echo was on before VOPENTERM, it will
be turned on again by VSETMODE when entering con-
versation mode and off when resuming VPLUS mode
(FCONTROL 12 and 13, respectively).

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNAJ,

Since the introduction of VPLUS Driver Mode for
point-to-point terminals, it is no longer necessary to
change other MPE file parameters. Your terminal will
operate normally unless you both:

1) Read input using the terminal file number in the
VPLUS Comarea.

2) Send a DC2 code to the computer (for example,
press ENTER or a function key).

If you do both these things you may find that your ter-
minal locks up. This is because the MPE device driver
locks your keyboard when it receives the DC2. To free
up the terminal you will have to:

1) Unlock the keyboard, e.g. soft reset.

2) Type an RS control code (control--) to end the
read.

If your terminal is connected via MTS rather than
point-to-point, VSETMODE has to change another file
parameter. In order to enter conversational mode,
Unedited Mode (FCONTROL 41) set by VOPENTERM
must be turned off. This is done by FCONTROL 41
with a parameter of zero. When resuming VPLUS
mode, Unedited Mode must be turned on (parameter
octal 137), and the terminal’s J strap must be reset.

Printing the Screen Contents

There are many occasions when it would be useful to
print the screen contents. There is a VPLUS intrinsic,
VPRINTFORM, whose purpose is to print a copy of the
current form and its contents. However, since this
intrinsic only prints to a file, it is mainly useful for
obtaining listings on a system printer.

If the screen to be printed consists of several forms,
one call to VPRINTFORM will not print the entire
screen. Instead, you must have the foresight to call
VPRINTFORM as each form is displayed, thus piecing
together a screen image in the print file at the same
time it is being assembled on the terminal.

Printing to a Terminal Printer

A more direct approach is to perform a full screen
print operation. The simplest way is to equip your ter-
minals with local printers, either integrated or
attached. It then becomes a matter of commanding
the terminal to copy the screen to the printer. This
produces a true hard copy of what was actually dis-
played. Also, the only foresight you need is to provide
a routine which will issue the right command when
needed. Appendix 2 includes a listing of an SPL pro-
cedure, VPRINTLOCAL, which will print the terminal
screen to a terminal printer. This procedure requires
only one parameter, the VPLUS Comarea.

My usual practice is to assign one of the terminal
function keys as a PRINT key. Whenever the program
accepts input through VREADFIELDS, | check word 6
(LASTKEY) in the VPLUS Communications Area. If the

user pressed the PRINT key, call the Print routine, an
when finished loop back to call VSHOWFORM and
VREADFIELDS once more. VSHOWFORM is called to
unlock the terminal keyboard which was left locked
by VREADFIELDS. It also serves to display any
message sent to the window by the Print routine.

VPRINTLOCAL Operation

VPRINTLOCAL uses two different approaches to per-
forming its function. This is because there are two
forms of print command recognized by HP terminals:
a simple “dump the screen’ available on 2640B and
262X terminals, and the more complicated device con-
trol sequence needed for the 2645-based terminals.
Except on the latter, all it takes to “dump the screen”
is to command the terminal to:

1) Turn off Format Mode
2) Copy the screen to the printer
3) Turn on Format Mode

This is a matter of sending six characters to the
terminal:

<esc>X<esc>0<esc>W

The actual “screen print” command is the <esc>0
(that’s the numeral zero). You need to turn Format
Mode off in order to copy the protected areas of the
form. If Format Mode is on when using an attache
printer, the terminal assumes that the printer contain
a preprinted form matching the screen. Only the data
in unprotected fields will be printed.

VPRINTLOCAL sends this command using FWRITE to
the terminal file number in the Comarea (word 49,
FILEN). This takes advantage of the VPLUS Driver
Mode in effect on this file, and will work even if the
terminal is not the job/session logon device. This
FWRITE includes carriage control code %320 (octal
320, decimal 208) as its fourth parameter. This vaiue
suppresses the carriage return and line feed which
normally follow every output.

Printing on a 2645 is more complicated in two ways:
first, the command sequence is longer; worse. the ter-
minal insists on talking back. You have to program a
dialogue with the terminal. VPRINTLOCAL staris by
sending the operative command:

<esc>X<esc>H<esc>b<esc>&p3s4dM
This means,

<esc>X Turn off Format Mode
<esc>H Home the cursor
<esc>b Unlock the keyboard. This ailows

the user to cancel the print operation by pressing
the Return key.

<esc> &p3s4dM Copy everything (M) tromm
the display (3s) to the printer (4d) starting frof =2
the cursor position.

Note: This command will also work on the 262X ter-
minal family. The '4d’ code normally specifies the

JOURNA],

OF THE HP 3OO0 INTERNATIONAL
USERS GROUP, INCORPORATED

.xternal (attached) printer. To use the integral printer,
use ‘6d’ or specify ‘DeviceCoded’ on the terminal’s
Configuration Menu as the INT printer.

This starts the printing process, if the terminal has an
attached printer and the firmware to support it. Once
the terminal has completed printing, or determined
that it couldn’t print, it will want to send a single
character response:

S - Print operation completed.
U - Operation aborted by the user.
(User pressed Return)
F - Print not completed (out of paper, etc.).

VPRINTLOCAL must read this response, or the next
VREADFIELDS will read it as if the user sent it with
the ENTER key. This is done in the subroutine RE-
SPONSE, using a timed FREAD (FCONTROL 4 before
FREAD) in case something goes wrong. 60 seconds
are allowed, which should be enough to print a screen
unless you're using a very siow printer.

Note: Under VPLUS Driver Mode (FCONTROL 31), the
terminal’s response will cause the MPE device driver
to lock the keyboard. You will need to call VSHOW-
FORM in order to unlock it before the next VREAD-
FIELDS.

.inally, after receiving the terminal’s response, turn
ormat mode back on:

<esc>W

In order to determine which type of terminal it is deal-
ing with, VPRINTLOCAL looks at VPLUS Communica-
tions Area word 59 (IDENTIFIER). Values of 1,8,9,11 or
13 signify 2640B or 262X terminals.

Screen Copy on 2626

Users with 2626 terminals may wish to use the
‘Screen Copy’ device control operation. This function
is performed using the device control sequence:

<esc > &p4dE

Like the device control sequence on a 2645, this com-
mand produces a response which must be processed
by the computer. The 2626 Screen Copy includes the
screen labels on the printed output.

Application Notes

VPRINTLOCAL uses the more complicated device
control sequence on everything but a 2640, which
doesn’t support it. This is because | want the printer
to do a page eject after printing the screen, but this
doesn’t happen on my 2624 terminal if | just give it an

esc>0. The page eject results from the command
‘ esc > &p4u5C.

My Direct 825 terminal pretends that it is a 2622, but
does not recognize the device control sequence.
Since VPRINTLOCAL sends the device control

33

sequence to 2622s, the 825 gets confused. It’s easy to
command the terminal PRINT function from the
keyboard on the 825, though: just Function/Print (9 on
the numeric keypad). No need to take the terminal out
of format mode, and it does a page eject, too.

Printing to a System Printer

It takes more work than printing to a terminal printer,
but you can copy the screen to a file or system printer
if you wish. The well-known program PSCREEN per-
forms such a function. Appendix 3 includes a listing
of a procedure, VPRINTSCREEN, which has been tail-
ored to perform this function in the VPLUS environ-
ment, for both point-to-point and MTS terminals. This
procedure accepts two parameters: The VPLUS Com-
area and an integer carriage control code, which will
be written after the screen has been printed. The value
49, for example, will produce a form feed.

Like VPRINTFORM, VPRINTSCREEN will print to any
file if you place its MPE file number in word 36 of the
VPLUS Comarea (PRINTFILNUM). If this word is zero,
VPRINTSCREEN will open a file named FORMLIST on
device LP, print the screen and close the file.

VPRINTSCREEN Operation

There are two operations of special interest in
VPRINTSCREEN: Reading the screen contents and
stripping control codes from the data before printing.
These operations are performed in the subroutines
READ'SCREEN and PRINT'LINE, respectively.

Reading the Screen

Reading the screen is a simple matter since the addi-
tion of VPLUS Driver Mode for point-to-point ter-
minals. In order to read the entire screen, the terminal
must first be removed from format mode. All that is
required is the command string:

<esc>X<esc>d

After format mode has been turned off, the <esc>d
commands the terminal to transmit the contents of its
memory to the computer. The data is then read using
FREAD. Note that VPRINTSCREEN uses the terminal
file number in the VPLUS Comarea. This takes advant-
age of the VPLUS Driver Mode in effect on this file,
and will support terminals which are not the job/ses-
sion logon device.

The last character read is the block terminator charac-
ter, RS for point-to-point or GS for MTS. The subrou-
tine replaces this by a Carriage Return followed by RS
for consistency.

Stripping Control Codes
The characters received from the terminal include not

JOURNAJ,

OF THE HP 1000 INTERNATIONAL
USERS GROUP, INCORPORATED

only form and field data but display control codes,
such as:

<S50> Shift to alternate character set
<esc>[Start field

<esc>&d<«letters> Display enhancement

Each screen line is terminated by a Carriage Return.

The PRINT'LINE subroutine scans the characters in
the line, skipping control codes, such as <so>, and
escape sequences (starting with <esc>). There are
two kinds of escape sequences: Standard (two
characters), such as <esc>[, and generic, such as
<esc>&d<letters>. If the character following
<esc> signifies a generic escape sequence,
PRINT'LINE skips to the terminator character, which
is either an ‘@’ or uppercase letter. During the scan,
PRINT'LINE moves the printable characters to the
start of the buffer, to ensure that the print line begins
on a word boundary for FWRITE.

VPRINTSCREEN does not suppress printing
Security Video fields, which do not display or the
screen. If you wish, you may add the logic yourself
(send me a copy). In general, characters displaved in
an alternate character set (i.e. following <so>:
should not be printed either.

Acknowledgments

Thanks to Ross Scroggs for first documenting the
precise effects of FCONTROL 30/31, and tc Mark
Cousins of CCC for the original version of VPRINT-
SCREEN. VSETMODE and VPRINTLOCAL have heen
lifted, almost bodily, from INSIGHT i, a VPLUS trans-
action processor.

Should the reader discover any improvements cr cor-
rections to any of these routines, in any environment
(DS/10007), the author would appreciate hearing from
you.

Appendix 1. VSETMODE Procedure.

The SPL procedure will switch the user's terminal between
VPLUS block/format mode and MPE conversational mode.

PROCEDURE VSETMODE (COMAREA, MODFE}; VALUE MODE;
INTEGER MODE;

INTEGER ARRAY COMAREA;
BEGIN

<< 0=VPLUS ; 1=CONVERSATIUN >>

ARRAY BUF (0:19); << LOCAL QUTPUT BUFFER >
BYTE ARRAY BBUF (*)=BUF;
INTEGER LEN;

DEFINE CONV (MODE=1)#,

COM'TERM = COMAREA/48}4, << TERMINAL FILF NUMBER >>
COM'IDENT= COMARER (58)#, << TERMINAL MODFL >»
COM'TYPE = COMARFA{49).(4:6)¢, << MPF TEEM TYPE >>
COM'ECHO = COMAREA(49).(1:1)#; << WAS ECHU ON >

INTRINSIC FWRITE, FCONTROL;
<< FIRST, CONDITTON THE TERMINAL >>

IF COM'IDENT > 2 THEN << PROGRAMMABLE STRAPC >>

IF CONV THEN MOVE BBUF := (27,"X",27,"F",27,"b",
27,"&k08B") , 2
ELSE MOVE BRUF := (27,"W",27,"&k1B"),?2
ELSE CCODTREN AL s>
IF CONV THEN MOVE BBUF := (27,"x",27,"F",10,
27,"BUNLATCH RLNCK MODE") »
ELSE MOVE BBUF := ("LATCH BLOCK MGDE",27,"W":,?2;
IF CONV AND COM'IDENT >= 8 THEN MOVE * := (27,"&1R"}, 2;
LEN := TOS - LOGICAL(®BBUF);

FWRITE (COM'TERM, BUF, ~LEN, %220);
<< NEXT, RESET CHARACTFR ECHO >>

IF COM'ECHO = 0 THEN
FCONTROL (COM'TERM, (TF CONV THEN 17 ELSE 13), LEN);

<< FINALLY, TAKE CARE OF MTS »>

IF COM'TYPE = 14 THEN BEGIN < M5 Dy
LEN := IF CONV THEN 0 ELSFE $137;
FCONTROL (COM'TERM, 41, LEN};
MOVE BBUF := (27,"&¢s01"),2;
LEN := TOS - LOGICAL(@BRUF);
IF NOT CONV THEN FWRITE (COM'TERM, BUF, -LEN, %320);
END;

END;

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA]

‘PENDIX 3. VPRINTSCREEN Procedure, SUBROUTINE END'FILE;
BEGIN
This procedure prints the screen contents to a file named FWRITE (COM'PRINTFILNUM, BUF, 0, PAGECTL); << DO PAGECTL >>
FORMLIST on a device LP. Escape sequences and control IF <> THEN FILE'ERROR;
characters are stripped out of the data before printing. IF LOCAL'FILE THEN << CLOSE IF OPENED HERE >>
BEGIN
PROCEDURE VPRINTSCREEN (COMAREA, PAGECTL); FCLOSE (COM'PRINTFILNUM, 0, 0);
INTEGER ARRAY COMAREA; COM'PRINTFILNUM := 0;
INTEGER PAGECTL; END;
BEGIN END;
ARRAY BUF(0:2047); << LOCAL I/0 BUFFER >> <<
BYTE ARRAY BBUF(*) = BUF; HERE IS THE MAIN LOGIC OF VPRINTSCREEN
LOGICAL LOCAL'FILE := FALSE; >
BYTE POINTER BUFCHAR,
LINECHAR; IF COM'STATUS <> 0 THEN RETURN; << JUST LIKE VPLUS >>
INTEGER LEN;
START'FILE; << OPEN COM'PRINTFILNUM >>
EQUATE LF = 10, IF COM'STATUS <> 0 THEN RETURN;
CR =13, READ'SCREEN; << READ SCREEN CONTENTS >>
RS = 18, IF COM'STATUS <> 0 THEN RETURN;
ESC = 27;
ALINECHAR := ®BBUF;
DEFINE COM'STATUS = COMAREA#,
COM'PRINTFILNUM = COMAREA(3S)#, DO PRINT'LINE << CLEAN AND PRINT LINES >>
COM'FILERRNUM = COMAREA(3€)#, UNTIL COM'STATUS <> 0 OR LINECHAR = RS;
COM'TERM = COMAREA(4E)#;
END'FILE; << CLOSE FILE IF OPENED HERE >>
INTRINSIC FOPEN, FREAD, FWRITE, FCHECK, FCLOSE; END;
SUBRQUTINE READ'SCREEN; << READ SCREEN CONTENTS >> END.
BEGIN
MOVE BBUF := (27,"Xx",27,"d")
LEN := T0S - LOGICAL(®BBUF);
FWRITE (COM'TERM, BUF, -LEN, %320)/
LEN := FREAD(COM'TERM, BUF, -4094:;
IF <> THEN
BEGIN
FCHECK (COM'TERM, COM'FILERRNUM: ;
IF COM'FILERRNUM <> 31 THEN CCM'STATUS := 160;
END;
IF LEN > 0 THEN LEN := LEN - 1; << STRIP TERMINATOR >>
BUF(2047) := [8/27,8/"W"] << RESTORE FORMAT MODE >>

RITE (COM'TERM, BUF(2047), -2, %320);
VE BBUF (LEN) := (CR, RS); << SET STANDARD TERMINATOR >>

D;

SUBROUTINE FILE'ERROR;

BEGIN

IF COM'STATUS <> 0 THEN RETURN;

FCHECK (COM'PRINTFILNUM, COM'FILERRNUM);

COM'STATUS := IF COM'PRINTFILNUM = 0 THEN 190 ELSE _91;
END;
SUBROUTINE START'FILE; << OPEN COM'PRINTFILNUM >>
BEGIN
IF COM'PRINTFILNUM <> 0 THEN RETURN;
MOVE BBUF := "FORMLIST LP ";
COM'PRINTFILNUM := FOPEN(BBUF, %5(7, %4, -251, BBUF(9));
IF COM'PRINTFILNUM = 0 THEN FILE'ERROR
ELSE LOCAL'FILE := TRUE;
END;
SUBROUTINE PRINT'LINE; << STRIP CONTROLS AND PRINT >>
BEGIN
@BUFCHAR := RQBBUF;
WHILE LINECHAR <> CR DO

IF LINECHAR = ESC THEN << ESCAPE SEQUENCE >>

IF "&" <= INTEGER(LINECHAR(1)) <= "*" THEN
CO @QLINECHAR := @LINECHAR(1)

UNTIL "@" <= INTEGER(LINECHAR{-1}) <= "Z" OR
LINECHAR = CR
ELSE @LINECHAR := QLINECHAR(Z)

ELSE

IF LINECHAR < "™ “ THEN 4LINECHAR := @LINECHAR(l)

ELSE
BEGIN
MOVE BUFCHAR := LINECHAR, (1l},1;
@LINECHAR := TOS;
RBUFCHAR := TOS;
END;

LINECHAR := @LINECHAR(1l); << SKIP CR >>
LEN := LOGICAL(@BUFCHAR) - LOGICAL(BBBUF);

FWRITE (COM'PRINTFILNUM, BUF, -LEN, %40);
IF <> THEN FILE'ERROR;
END;

35

Journal
Administrative Offices

HP 3000 International Users Group, Inc.

289 South San Antonio Road
Los Altos, California 94022
U.S.A.

BULK RATE
U.S. POSTAGE
PAID

Permit No. 656
Los Altos, Calif. 94022

