(-

MATERIAL
AEQUIRMENTS
PLANKNING

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Volume V
Issue 5

EDITOR'S DESK

BIT BUCKET

BULLETINS

HEWLETT-PACKARD
COMPUTER SYSTEMS

COMMUNICATOR/1000

o=

Departments

3
4

6

12
18
21
25
28
32
36

40
51
57
59

72

74
78

86

ABOUT THIS ISSUE

BECOME A PUBLISHED AUTHOR IN THE
COMMUNICATOR/1000...

LETTERS TO THE EDITOR

WHO’S LOGGED ON

WHO AM I?

HOW LONG HAVE | BEEN HERE?

EXECUTING A PROCEDURE AFTER LOGOFF
FAST FORTRAN — AN UPDATE

ACCESSING PHYSICAL MEMORY

MORE NOTES ON THE USE OF

UNDECLARED MEMORY

SHORT FORMATTED IO FOR LU’S IN PASCAL/1000
PASCAL ERROR TRAPPING AND REPORTING
MVDIR — THE CASE OF THE MOVING DIRECTORY
HOW TO BUILD SYSTEM UTILITIES USING A

DISC DIRECTORY AND EDIT/1000 SUBSYSTEM
RESTART SPOOLED PRINTING

SET UP YOUR 2608 LINE PRINTER

1351A GRAPHICS GENERATOR WITH A 21MXM
COMPUTER IN RTE-IVB

JOIN AN HP 1000 USER GROUP!

3/4

EDITOR’S DESK

ABOUT THIS ISSUE

Vol. 5, Issue 5 is a departure from our normal format of centering around feature articles. Due to a lack of feature-length articles,
but a building catalog of bit bucket contributions, we decided to print an “all Bit-Bucket” issue. The tips included are rather
wide-ranging in subjects. | hope most of you can find something useful in at least one of these areas.

And for those of you who are not happy with this format, don't complain! Take some action and write a feature for a future issue.

Thanks for your support.

Best Regards,

Ms. Editor

EDITOR’S DESK

BECOME A PUBLISHED AUTHOR IN THE COMMUNICATOR/1000. ..

The COMMUNICATOR is a technical publication designed for HP 1000 computer users. Through technical articles, the direct
answering of customers’ technical questions, cataloging of contributed user programs, and publication of new product
announcements and product training schedules, the COMMUNICATOR strives to help each reader utililize their HP 1000’s
more effectively.

The Feature Articles are clearly the most important part of the COMMUNICATOR. Feature Articles are intended to promote a
significant cross-fertilization of ideas, to provide in-depth technical descriptions of application programs that could be useful to
a wide range of users, and to increase user understanding of the most sophisticated capabilities designed into HP software.
You might think of the COMMUNICATOR as a publication which can extend your awareness of HP 1000’s to include that of

thousands of users worldwide as well as that of many HP engineers in Data Systems factories at Cupertino, California and
Grenoble, France.

To accomplish these goals, editors of the COMMUNICATOR actively seek technical articles from HP 1000 customers, HP
Systems Engineers in the Field, and Marketing and R&D Engineers in the factories. Technical articles from customers are most
highly valued because it is customers who are closest to real-world applications.

WIN AN HP-32E CALCULATOR!

Authoring a published article provides a uniquely satisfying and visible feeling of accomplishment. To provide a more tangible
benefit, however, HP gives away three free HP-32E hand-held calculators to Feature Article authors in each
COMMUNICATOR/1000 issue! Authors are divided into three categories. A calculator is awarded to the author of the best
Feature Article in each of the author categories. The three author categories are:

1. HP 1000 Customers;
2. HP field employees;

3. HP division employees.

Each author category is judged separately. A calculator prize will be awarded even if there is only one entry in an author
category.

Feature Articles are judged on the following bases: (1) quality of technical content; (2) level of interest to a wide spectrum of
COMMUNICATOR/1000 readers; (3) thoroughness with which subject is covered; and, (4) clarity of presentation.

What is a Feature Article? A Feature Article meets the following criteria:
1. lis topic is of general technical interest to COMMUNICATOR/1000 readers;
2. The topic falls into one of the following categories —

OPERATING SYSTEMS

DATA COMMUNICATIONS
INSTRUMENTATION
COMPUTATION
OPERATIONS MANAGEMENT
LANGUAGES

EDITOR’S DESK

3. The article covers at least two pages of the COMMUNICATOR/1000, exclusive of listings and illustrations (i.e., at least 1650
words).

There is a little fine print with regard to eligibility for receiving a calculator; it foliows. No individual author will be awarded more
than one calculator in a calendar year. In the case of multiple authors, the calculator will be awarded to the first listed author of
the winning article. An article which is part of a series will compete on its own merits with other articles in the issue. The total of
all articles in the series will not compete against the total of all articles in another series.

All winners of calculators will be announced in the issue of the COMMUNICATOR/1000 in which their articles appear. Again, all
Feature Articles are judged by an impartial panel of three DSD Technical Marketing Engineers.

A SPECIAL DEAL IN THE OEM CORNER

When an HP 1000 OEM writes a Feature Article that is not only technically detailed and insightful but also application-oriented
as opposed to theoretical, then that OEM may ask that the article be included in THE OEM CORNER. A Feature Article included
in THE OEM CORNER may contain up to 150 words of pure product description as well as a picture or illustration of the OEM'S
product or its unique contribution. HP's objective is twofold: (1) to promote awareness of the capabilities HP 1000 OEMs’
products among all HP 1000 users; and, (2) to publish an article of technical interest and depth.

IF YOU’'RE PRESSED FOR TIME ...

If you are short of time, but still have that urge to express yourself technically, don't forget the COMMUNICATOR/1000 BIT
BUCKET. It's the perfect place for a short description of a routine you've written or an insight you've had.

THE MECHANICS OF SUBMITTING AN ARTICLE

If at all possible please submit an RTE File containing the text of your article recorded on a Minicartridge (preferrably) or on a
paper tape along with the line printer or typed copy of your article. This will help all of us to be more efficient. The Minicartridge
will be returned to you promptly. Please include your address and phone number along with your article.

All articles are subject to editorship and minor revisions. The author will be contacted if there is any question of changing the
information content. Articles requiring a major revision will be returned to the author with an explanatory note and suggestions
for change. We hope not to return any articles at all; if we do, we would like to work closely with the author to improve the article.

HP does, however, reserve the right to reject articles that are not technical or that are not of general interest to
COMMUNICATOR/1000 readers.

Please submit your COMMUNICATOR/1000 article to the following address:
Editor, COMMUNICATOR/1000
Data Systems Division
Hewlett-Packard Company
11000 Wolfe Road

Cupertino, California 95014
USA

The Editor looks forward to an exciting year of articles in the COMMUNICATOR/1000.
With best regards,

The Editor

EDITOR’S DESK

LETTERS TO THE EDITOR

Dear Ms. Editor:

John Pezzano’s article “Using Memory behind your FORTRAN Program” (Vol. 5, Issue 2) gave me the idea of trying a solution
on my own.

My proposition is to place the extendable memory at the end of the program during the loading process. This can be done as
shown in the LOADR-Comand-File. The supported routine LIMEM returns the available memory in LEN, which can be added to
the dimension of your variable.
Variations of this procedure could be applied to load any type of program, even segmented programs.
Yours truly,
Ernst Stelzer
AG GRELL
Max-Planck-Institut fur Biophysik
Heinrich-Hoffmann-StraBe Nr. 7

D-6000 Frankfurt am Main 71
West - Germany (BRD)

Dear Mr. Stelzer,

Thanks for your input. For a related bit bucket article, see the contribution from George Wynne of the U.S. Naval Ordnance
Station.

Regards,

Ms. Editor

4PROG T=00004 IS ON CRO0031 USING 00003 BLKS R=0000

0001 FTN4X,L

0002 PROGRAM PROG()

0003 COMMON /MEM/ MEM(C10)

0004 INTEGER FWAM

000S LU = LOGLUCI)

0006 CALL LIMENCO,FWAM,LEN)

0007 WRITECLU,S5010) LU, FWAM, LEN
0008 DO 10 I = 1, LEN + 10

0009 MEMCI) = 32767 - 1

0010 10 CONTINUE

0011 DO 20 I = LEN + 10, 1, -5
0012 WRITECLU,5030) I, (MEM(I+J), J = 0, 4)

0013 20 CONTINUE

0014 5010 FORMAT("LU™I3"™ FWAM"I7" LEN"I7)
0015 S030 FORMAT(6(IS,2X))

0016 END

EDITOR’S DESK

4PROGD T=00004 IS ON CR00002 USING 00002 BLKS R=0000

0001
0002
0003
0004

FTN4X,

L

BLOCK DATA

COMMON /MEM/ MEM(10)

END

/PROG T=00004 IS ON CR00031 USING 00002 BLKS R=0000

0001 SZ2,22

0002 REL,%PROG

0003 SEARCH

0004 REL,%PROGD

0005 V/E

What to do !
- Compile each element
- RUN,LOADR,/PROGD
- RUN,PROG

See what happens !

PROG 26042
LOGLU
.EIO.
FMTIOD
.FMCV
. 10ER
.UFMP
LEXIT
PNAME
.10CL
.10CHM
.F10I
L IMEM
REIO

ERO.E
.0OPN?
PAU.E
MEM

26234
26312
27527
30761

33224
33340
33353
33427
33475
33577
33643
33731

33752
34077
34100
34124
34125

S PAGES REL
LINKS:BP
/LOADR : PROG

/LOADR: $END

26233

26311

27526
30760
33223
33337
33352
33426
33474
33576
33642
33730
33751

34076
34077
34123
34124
34136

OCATED

PROGRAM:BG

92067-1X%297
24998-1X329
24998-1X328
24998-1X333
24998-1X321

24998-1X296
24998-1X320
92068-1X035
24998-1X305
24998-1X327
24998-1X322
92067-1X477
92067-1X275
24998-1X249
24998-1X325
24998-1X254

22 PAGES REQ‘D
LOAD:TE

REV.
REV.
REV.
REV.
REV.
REV.
REV.
REV.
REV.
REV.
REV.
REV.
REV.
REV.
REV.
REV.

2013
2101
2101
2101
2101
2101
2101
2013
2101
2101
2126
2013
2013
2001
2101
2001

READY AT 9:55 AM WED.,

790228
800929
800929
800709
800731
800731
800731
771121
800731
801007
810326
790126
790316
750701
800803
750701

NO PAGES EMA
COMMON:NC
14 0OCT.,

NO PAGES MSEG

1981

EDITOR’S DESK

Dear Ms. Editor:

I read with interest the article by the group in Pisa in Volume 5, Issue 3 regarding user written /O routines for HP 1000
computers. We have been using similar techniques at Stanford for many years and have found them to be most useful. There
are a class of devices which operate asynchronously on a demand-response basis for which this technique can be slightly
modified and used in a multiprogramming environment. Instead of disabling the operating system (by a call to $LIBR) for the
duration of the entire transaction, we do so only long enough to exchange some unit of information such as a byte or line.
Careful programming is necessary to assure that no interrupts will occur when the operating system is re-enabled. Under such
circumstances, it is possible to overlap /0 from/to a specialized device with system I/O to/from discs, etc. This allows the user
to take advantage of system facilities such as the file manager, as well as providing protection of the other system resources. If
real-time requirements are not stringent, multi-user operation of the system also is still possible.

An example application of this technique is the the optimum usage of the Versatec printer/plotter which we use extensively in
several of our systems. When operated with a driver, the Versatec operates at approximately one-half speed while plotting due
to the system overhead entailed in processing interrupts. We discovered that by turning off RTE via a call to $LIBR and
outputting directly to the printer/plotter, we could operate it at close to full speed. If one is careful to make sure that no interrupts
are left pending at the time $LIBX is called to complete a unit of input/output processing, then the device can be operated in a
full system context.

We have also used this technique to operate real-time devices such as a Summagraphics digitizing tablet and a DeAnza image
array processor. These devices preclude multiprogramming but full operating system resources are used, which simplified the
programming task necessary to interface these special devices.

The principal discovery which | would like to report is a way to greatly decrease the overhead incurred when using this
technigue. The call from a user program to $LIBR requires the system to process a memory protect interrupt with the associated
overhead. The call to $LIBR results in several changes in system status including the disabling of interrupts and memory
protect which in turn allows input/output instructions to be executed by the user’'s program. If it were possible to execute
input/output instructions in the user program without calling $LIBR, then direct input/output could be accomplished with
absolutely no overhead.

In this regard, the 12892B Memory Protect Module Installation and Service manual makes extremely interesting reading. There
is a jumper labelled "SEL 1” which is normally absent from the board. In this condition, input/output instructions are only allowed
to select code 1 when memory protect is enabled. By inserting a jumper in this position, input/output instructions to all select
codes are allowed, even when memory protect is enabled. The net result of installing this jumper is the possibility to do
input/output from a user program without drivers and without the overhead of calling $LIBR.

Certain caveats need to be observed unless the interrupt system is explicitly disabled (which is perfectly feasible using a CLF 0
command). It will be necessary to prevent interrupts for some input/output interfaces. This is possible by never issuing an STC
command. Sometimes it is necessary to use an STC to strobe data to or from the interface board (e.g., the microcircuit interface
board). If the STC is immediately followed by a CLC command no interrupt will be generated because the hardware prevents an
interrupt immediately following the STC command. In reading data from the 12966 board, it is necessary to check for the flag
being set with control also set. In this circumstance, | programmed a short loop which turned off the entire interrupt system for a
few microseconds each time this test was performed.

10

EDITOR’S DESK

The uses of this technique are only limited by the programmers imagination. We have used it on several systems with quite
different applications over a period of two years with absolutely no problems. | hope that it will be useful to some of your
readers.

Sincerely,

William Sanders
Cardiology Division
Stanford University Medical Center

P.S. 1 also have a simple hardware modification that can be performed to a board in the 2100 computer that accomplished the
same result. | will be happy to communicate it to any intrested readers.

Dear Mr. Sanders,
Thank you for the additional information.

Regards,

Ms. Editor

11

EDITOR’S DESK

Dear Ms. Editor:

The following is a solution to a probiem concerning use of 2 or more HP 2240A Measurement and Contro! Processors on the
same HP-IB interface card using DVR37 W/SRQ.

Program to initialize one of the 2240's to its power on state would intermittently hang up on the call to SRQ (dummy interrupt
handler).

The hung up program could be simulated by:
1. Turn power OFF on 2240 not to be initialized.
2. Turn power ON on 2240 not to be initialized.
3. Run Program (ABORX)
The solution to this problem seems to be provided mostly by HP SE Todd Field as follows:;
1. Initialize HP-IB 2240 LUs as follows:
:CN,LU,157000B
2. Set up dummy interrupt handler program that does nothing but has an ID segment.
3. Run following initialization program (see attachment for listing).

The key to the solution seems to be the call to (STATS) which is part of the HP-1B library. This subroutine is mentioned in passing
but not documented in the 2240 User's Manual (P/N 2240-93001 Dec 1979).

Very truly yours,

Lewis J. Metzger
Abex Corporation
Mahwah, New Jersey

12

EDITOR’S DESK

LISTING OF 2240 POWER ON INITIALIZATION PROGRAM

FTN4X,L

PROGRAM ABORX
INTEGER HPIB,MACS1,MACS2,INTPG

DATA
c

CALL
c

CALL

cAaLL
c

CALL

caLL
c

CALL

CALL

END

Dear Mr. Metzger,

INTPG/S, *INTPG ‘/
ABRT(HPIB, 2)

CLEAR(MACS1,1)
CLEAR(MACS2,1)

STATS(MACS1,ISTAT)
STATS(MACS2,ISTAT)

SRQ(MACS1,16, INTPG)
SRQ(MACS2,16, INTPG)

YABORT ALL ACTIVITY ON THIS HP-IB

'TERMINATE ANY PENDING
tREQUEST ON EACH 2240

VSERIAL POLL EACH 2240
1FOR INTERRUPT

ISET UP DUMMY
!t INTERRUPT HANDLER PROGRAM

Thank you for your solution and thanks to HP System Engineer Todd Field, Woodbury, New York.

Sincerely,

Ms. Editor

13

BIT BUCKET

WHO’S LOGGED ON?

by Dan Wagner/E. I. Dupont,
New Cumberland, PA

Listed below is a FORTRAN utility used to determine who is logged on to the system in a Session environment. The information
that is reported is retrieved from the system accounts file (+ @CCT!). The program will default to the local node number, but it
can also list the users logged on to a remote node using DS/1000-1V.

Compile using FTN4X:
FTN4X, &WHO,1 ,XWHO

Loader command must include SSGA:
LDADR, ,XWHO, , ,SS

Programmer. Dan Wagner
E. |. Dupont
Berg Electronics Div.
515 Fishing Creek Road
New Cumberland, Pa. 17070

REVISION LIST:

--DATE-- --BY-- -~- DESCRIPTION--

11/26/81 D.A.W. -ADD REMOTE CAPABILITY USING DS/1000-1V

FTN4X
PROGRAM WHO () ,Who is logged on the system,.
C=-...I=-..I'III='=.II==.-.==IIII=IIIIIISIIII-S.IIIII===IIIII-IIII-=.IIC
(o C
C WW WW HH HH 000000000000 c
C WKW WW HH HH 000000000000 c
C WW WW HH HH 00 00 c
C WW WW HH HH 00 00 c
C WW WW HH HH 00 00 c
C WKW WW HHHHHHHHHHHH 00 (a]a] (o
C WW W WW HHHHHHHHHHHH 00 00 (o
C WW WWWW WW HH HH 00 oo c
C WW WiW WW WW HH HH 00 00 c
C W Wi HH HH 00 00 c
C WKW WWW HH HH 000000000000 c
C W WW HH HH 000000000000 c
(o (o
C'-..-"..-:..---3-------..--=-..-:-.----'--..-------.--'---..---...--.C
(o C
c
(o
(o
(o
c
(o
(o
(o

c
c
c
c
C 10/14/81 D.A.W. -ORIGINAL VERSION-
c
c
c

14

BIT BUCKET

This program will display a brief report of the users
logged on the system. This is done by accessing the system
accounts file (+8CCT!). The program will default to a local
DS/1000 node, but will also report the users on a remote node.
The syntax for executing the program is as follows:

:WHO [,LILU [,NODE 11

where:
LILU - List LU which defaults to 1.
NODE - DS/1000 node # which defaults
to -1 (local node).

The program has a few items in the code which each
user might want to customize for their particular system.

1). Line 74 : ICR(C1) /2/ - This is the CRN where
the system accounts file (+@CCT!)
resides.

2). Lines 82 & 83 : These are the valid node numbers
in the network.

The format of the output is as follows:
SESSION USER LOG-ON TIME

S0 USER.GROUP 12:31:12 PM S 0OcCT

leXeXkeXeXesXeXsXeXvEksXsXs s Xe e XeRes e ies e s R e s R o N o N No N NoNe N e

eXeXeXeRe Ko Xe Ko ke ks Xe X2 X2 XeKkeXe v R R X2 EvEs e i e s N s Eo R oo N o N o/

c
IMPLICIT INTEGER (A-2)
c
INTEGER=»4 LOGON
c
REAL MONTH
c
DIMENSION IDCB(144),INAM(3),IBUF(128),IDIR(128)
DIMENSION UNAM(S),GNAM(S5),XLOG(2),ICR(C2),IPARM(S)
DIMENSION 10UT1¢6),10UT2(¢16),10UT(28),ERBF(24)
c A
EQUIVALENCE (XLOG(C1),LQGON) ,CIPARMC1),ILU)
EQUIVALENCE (IPARM(2),INODE)
c
DATA ICRC1) /2/, ICRC2) /-1/
DATA ISC /-31178/, INAM /6H+@CCT!/, SPACE /2H /
DATA AM /2HAM/, PM /2HPM/
c
CALL RMPAR (IPARM)
c

C === CHECK FOR VALID NODE FOR DS/1000

15

BIT BUCKET

IF (INODE .EQ. 1) ICR(2) = 1
IF (INODE .EQ. 2) ICR(2) = 2

(o
C === (Open the accounts file.
(o

CALL DOPEN (IDCB,IERR,INAM,1,ISC,ICR)
IF CIERR .LT. 0> GO TO 90

c
C === Read the account file header.
c

CALL DREAD (IDCB,IERR,IBUF,128,LEN,1)
IF C(IERR .LT. 0) GO TO 90

c
C === Get beginning and end of active session table.
c
BACT = IBUF(C1)
EACT = IBUF(2)
c
C === Get directory location.
c

DREC = IBUF(5)
(o
C === Write out heading.
(o

WRITE (ILU,5)

5 FORMAT ¢//,"SESSION",4X,"USER",20X,"LOG-0ON TIME"™,/ ,7"~-*",4X,20"-*,

+ 4X,22ll_ll)
c
C = Read 128 words of active session table.
C === Each session uses 4 words.
c
10 CALL DREAD (IDCB, IERR,IBUF,128,LEN,BACT)

IF CIERR .LT. 0) GO TO 90

c
C === There are 32, 4-word entries in each 128 word buffer.
c

DO 60 I=1, 32
c
C === Step through the buffer 4 words at a time.
c

IPTR = (I-1)#4 + 1
(o
C === Word 1 of each 4-word eniry is the session LU or 0 if free.
(o

IF (IBUFCIPTR) .EQ. 0) GO TO 60

Cc
SESLU = [BUF(CIPTR)
c
C === XLOG is the account logon time packed into two integer words.
c The packing is explained later in this program.
c
XLOGC1) = IBUF(IPTR+1)
XL0OG(2) = IBUF(IPTR+2)
C
C === JLOC is the record pointer for the user account file directory.
c

ILoC = [BUFCIPTR+3) + 1
XREC = DREC

16

BIT BUCKET

ONOOOOOOO

OO0 OO0 WO oo

OO0

C ===

17}
o

OO0 OOOOOO0O

There are 8, 16-word entries per 128-word record.

ILOC is decremented by 8 and XREC is incremented by 1
until ILOC is less than or equal to 8. XREC is then
pointing to the proper record & ILOC is pointing to the
proper entry in that record.

IF (ILOC .LE. 8) GO TO 30
XREC = XREC + 1

ILOC = TLOC - 8

GO TO 20

Read the record which contains the user account file directory.

CALL DREAD (IDCB,IERR,IDIR,128,LEN,XREC)
IF CIERR .LT. 0) GO TO 90

IPTR points to the specific 16-word entry in the 128-word buffer.
IPTR = (ILOC-1)#16 + 1
Get the number of characters in the user name.
ULEN = (IDIRCIPTR) .AND. 177400B) / 256
Retrieve the user name and group name.
DO 40 J=1, S
UNAM(J) = IDIRCIPTR+J)
GNAM(J) = IDIRCIPTR+J+5)
CONTINUE
Convert SESLU to ascii and store in I0UT1.

ENCODE (11,50,I0UT1) SESLU
FORMAT (14, ")

Unpack XLOG into year, julian day of the year,
hours, minutes, and seconds.
XLOG is packed as follows:

(YEAR -

1978) MINUTES SECONDS
L S Yo o _ _ _ !
XLOGC1) N N N N U U N U N N
1 I B T '

JULIAN DAY OF YEAR HOURS
Yoo '\ !
XLOG(2) SO O B S S D R D N S D B B B

Strip off year.

17

BIT BUCKET

OO0
"
"
"

OO0
"
]
(]

OO0
"
(]
"

nooo
"
]
]

56

[s¢]

ooouno

o

[eNeoNeN:) Ne

JYEAR = ((XLOGC1) .AND. 170000B) / 4096) + 1978

Strip off julian day of the year.
JDAY = (XLOG(2) .AND. 177740B) / 32

Convert year + julian day of year into year, month, date.

CALL JDATE (JYEAR,JDAY,MONTH,DAY)
AMPM = AM

Strip off the hours in 24-hour format.
HOURS = (XLOG(2) .AND. 37B)
Convert to 12-hour format using A.M. and P.M,
IF (HOURS .LE. 12) GO TO 53
AMPM = PM
HOURS = HOURS - 12

Strip off seconds and minutes.

SEC
MIN

(XLOGC1) .AND. 77B)
(XLOGC1) .AND. 7700B) / 64

Manipulate all the information into one buffer CIOUT).

ENCODE (32,54,10UT2) GNAM,HOURS,MIN,SEC,AMPM DAY ,MONTH

FORMAT (*."™,GA2,12,":",12,":",12," ", A2, ", I2,»
CALL SMOVE ¢I10UT1,1,11,10UT,1)
CALL SMOVE (UNAM,1 ,ULEN,IOUT,12)
START = ULEN + 12
CALL SMOVE ¢I0UT2,1,11,I0UT,START)
START = START + 11
IF (START .GE. 36) GO TO 58
CALL SPUT (CIOUT,START,SPACE)
START = START + 1
GO TO 56
CALL SMOVE (¢10UT2,12,32,10UT,36)
Write the buffer.
CALL EXEC ¢2,ILU,I0UT,28)
CONTINUE

Read the next 128 words of active session table.

BACT = BACT + 1
IF (BACT .LT. EACT) GO TO 10

18

“,A4)

BIT BUCKET

WRITE CILU,B80)
80 FORMAT (' ™)
GO TO 110

=== DISPLAY ERROR MESSAGE

0 CALL DSERR (IERBF)
WRITE CILU,100> IERBF

100 FORMAT (24A2)
C
C === Close account file.
C
110 CALL DCLOS (IDCB,IERR)
C
END
C
C
C
C==C
C C
SUBROUTINE JDATE (JYEAR,JDAY,MONTH,IDAY),Convert Julian to year, m
+onth, day.
C C
C==== =E==== ===C
C
C
C === Change year + julian day of year to a year, month, day.
C
INTEGER LENC12)
C
REAL MONTH ,MNTH(12)
C
DATA LEN /31,28,31,30,31,30,31,31,30,31,30,31/
DATA MNTH /4HJAN ,4HFEB ,4HMAR ,4HAPR ,4HMAY ,4HJUNE,
+ 4HJULY ,4HAUG , 4HSEPT,4HDCT ,4HNDV ,4HDEC /
C
C
C === If JYEAR is not divisable by 4 then it is a leap year
C === and February is changed to 29 days.
C
ILEAP = MOD(JYEAR,4)
IF (ILEAP .EQ. 0) LENC2) = 29
c
DO 100 I=1, 12
C
JDAY = JDAY - LENCI)
IF (JDAY .GT. 0> GO TO 100
C
MONTH = MNTHCI)
IDAY = JDAY + LENCI)
C
GO TO 200
C
100 CONTINUE
C
200 RETURN
END

19

BIT BUCKET

WHO AM |?

by J.L. DeSchutter/DISTRIGAZ
Brussels, Belgium

The objective of this routine is to give information about the session you are running under. Application programs may wish to
know capability, user and group name. This is very useful for personalized prompting or for logging the use of a key program.

With a simple Fortran call, the routine provides user name, group name and capability level. This routine uses information
described in Appendix J of the RTE-IVB System Manager's Manual (92068-20006). Note that this subroutine can easily be
extended to provide additional information (e.g. group and user ID).

Lines 33-35 contain the name, location and security code of the Accounts file (+@CCT!). Future revisions of software or
specific configurations may require that those lines be changed.

ASMB, L
NAM IDENT,7 IDENTIFY USER & GROUP (ASCII) REV. 2026
ENT IDENT
EXT OPEN, LOGLU,CLOSE,READF,.ENTR
EXT .MVW,ICAPS

IR R A AR RS R R AR AR RS R AR RS R AR R RS R R R R R R R AR R R R R R R RN X J

CALL IDENTCIUSN,IGRN,ICAP)

* IGRN 5 WORDS BUFFER

* IUSN S5 WORDS BUFFER

* ICAP INTEGER

*

* GRN = GROUP NAME (ASCII)

* USN = USER NAME (ASCII)

* ICAP= CAPABILITY LEVEL C(INTEGER)>

*

. IF CALL FAILS ALL PARAMETERS SET TO -1
IR X R R R X R EEEE R R R AR EEE SRR R R R AR R R R RS R R R RS RR AR R R X R X 3
A EQU 0

B EQU 1

D128 DEC 128

DS DEC S

D4 DEC 4

D16 DEC 16

oPT 0CT 1 NON EXCLUSIVE OPEN

DCB BSS 144
BUF BSS 128

LV NOP MY TERMINAL LU
GROU NOP
LEN NOP
OFSET NOP
[ER NOP
DUMMY NOP

NAM ASC 3,+&CCT! «ACCOUNT FILE NAME
SEC DEC -31178 «SECURITY CODE

CAR DEC 2 +CARTRIGE LABEL
.USN NOP
.GRN NOP
.CAP NOP

*

20

BIT BUCKET

[EEZEZEEEEEE R X]

L]

IDENT

E1

NOP
JSB .ENTR
DEF .USN
JSB OPEN
DEF E1
DEF DCB
DEF IER
DEF NAM
DEF OPT
DEF SEC
DEF CAR
LDA IER
SSA

JMP ERROR
CLA,INA
STA BLOC
JSB READ
JSB LOGLU
DEF #+2
DEF LU

HERE WE START #2328 saassstaasstassssssssstnsass

GET PARAMETERS ADDRESSES

OPEN ACCT FILE NON EXCLUSIVE

MUST BE POSITIVE

CURRENT RECORD TO BE READ
READ ONE BLOC

SESSION LU #

*SEARCH FOR MY ACCT IN SESS TABLE

BauU

NEWBL

FIND

LDA BUF +4
STA GROU
LDA BUF
STA BLOC
JSB READ
CLA

STA OFSET
LDB .BUF
ADB OFSET
LDA B,1
CPA LU
JMP FIND
LDA B,I
INB

ADA B,]I
INB

ADA B, I
INB

ADA B,I
S2A,RSS
JMP ERROR
LDA D4
ADA OFSET
CPA D128
JMP NEWBL
STA OFSET
JMP BOU
1SZ BLOC
CLA

STA OFSET
JSB READ
JMP BOU
INB

INB

INB

LDA B,I

RECORD ADDRESS OF ACCT DIRECTORY
RECORD # OF ACTIVE SESSION TABLE

READ SESSION TABLE

SEARCH FOR MY AST
IS FIRST WORD = TO MY LU

YES, WE FOUND IT
CALCULATE SUM OF FOUR ACB WORDS

IF THE SUM IS = TO ZERO
END OF INFO AND SESS NOT FOUND

DO WE REACH END OF CURRENT RECORD
YES READ A NEW ONE

READ NEXT DISC RECORD

RESET OFSET

THE LAST WORD OF OUR ASB
IS OUR ENTRY
IN ACCT DIRECTORY

21

BIT BUCKET

MPY
STA
DIV
STB
ADA
STA
JSB
LDA
ADA
INA
LDB
JSB
DEF
NOP
LDB
JSB
DEF
NOP

D16
QFSET
D128
OFSET
GROU
BLOC
READ
OFSET
.BUF

.USN
MV
DS

.GRN
.MV
D5

EACH ENTRY IS 16 WORDS LONG

AND FIRTS ENTRY HAS NUMBER ZERO
CALCULATE THE CORRESOPNDING RECORD #
USE THE REMAINDER AS OFSET

THE 2ND WORD IS USER NAME
MOVE IT

MOVE GROUP NAME

#ssss+ READ CAPABILITY LEVEL WITH ICAPS CALL #ssssssnsssnnsanss

JSB
DEF
DEF
STA

I1CAPS
2
DUMMY
.CAP,I

FRHBRRRRRRRLBBRRRRBRRRARRRRRRRBRRRRRRRRRBRRRRRRRRRBRRRRRRRRRRRES

CLO JSB
DEF
DEF

JMP IDENT,I

* 8

CLOSE
s+ 2
DCB

THE END

+ READ ONE 128 WORDS RECORD
+ RECORD # IS IN BLOC

* 8

BLOC NOP

READ NOP
JSB
DEF
DEF
DEF

.BUF DEF
DEF
DEF
DEF

EE LDA
SZA
JMP
JMP

* 8

* %

ERROR NOP
cCA
STA
STA
STA
JMP
END

READF
EE
DCB
1ER
BUF
D128
LEN
BLOC
IER

ERROR
READ, !

.GRN, I
.USN, I
.CAP, 1
CLO

PUT -1 IN ALL PARAMETERS

RETURN IMMEDIATELY

22

BIT BUCKET

HOW LONG HAVE | BEEN HERE?

by William J. Loye/Buckbee-Mears,
St. Paul, MN

The program ACTTI was written to facilitate user and group time reporting in the RTE file manager environment. The program
opens the accounts file in a shared read-only mode and accesses the user CPU and connect time, writing to any output lu
(default=6). The most common use will probably be to write to a file that can be post-processed by a separate user program or
by IMAGE. (e.g.).

:SL,6,TIME: :MN,BO

:RU,ACTTI, ,6

:CS,6,RW

:RU,TRACK (a user pgm to condense and store on monthly basis)
:CS,6,EN

: TR

Because this program opens and reads the accounts file, it would not take much modification to get it to print all sorts of
information, including passwords. Therefore, it should be kept on a private cartridge or cassette.

The program works by first reading word 5 of the accounts header. This is the pointer to the location of the accounts file
directory. The program then reads the account file directory sequentially keeping the record in an 128 word buffer (IBUF). Each
16 word logical record of the account file directory is checked to see if it is a valid user (word 12 .GT. 0). If it is, the user entry
record number (as pointed to by word 15 of IBUF) is used to read the user entry record into a 128 word buffer (JBUF). The CPU
and connect time will be pulled from either the first or second half of this buffer, depending on bit 15 of the record number
pointer (word 15). User times will be double integer in words 25, 26, 27,and 28 of the entry.

Originally, the program used arrays to store entry record pointers thus minimizing the reads from the disk. However, because
this needed arrays, maximum checks, and other fooling around, and because the accounts file is a type 1 file, that method was
dropped in favor of the present one. | make no effort to see if the desired entry record is already read and stored because the
overhead in doing this is more expensive than just reading (or rereading) each record.

All of the information needed to write (modify, enhance, etc.) this program will be found in Appendix J of the System Manager's
manual (92068-90006).

This program can be compiled with either FTN4 or FTN4X. It will [oad in about 9K.

FTN4X,Q
PROGRAM ACTTI(3,80), 10/26/81 BL REV 1.10

1)
I 4

PGM TO READ USER/GROUP TIME FROM ACCT FILE
AND PUT OUTPUT TO LU6, OR OPTIONALLY, ANY LU.
IF LU IS SL’ed TO A FILE, FILE MAY BE READ BY
ANY OTHER PGMS TO KEEP RUNNING TOTALS OF
USER/GROUP USAGE.

THIS PROGRAM OPENS AND READS THE ACCOUNT FILE,
AND CAN BE MODIFIED TO OUTPUT PASSWORDS, ETC.
IT IS POTENTIALLY A STOOL-PIDGEON PGM.

PLEASE SEE PAGES J-3 THRU J-12 OF SYS. MNGR. MANUAL.
FOR ASSOCIATED DOCUMENTATION.

OO0 O00O0O0OO0O000

23

BIT BUCKET

10/26/81 BILL LOYE
BUCKBEE-MEARS CO.
245 EAST SIXTH ST.
ST.PAUL MN. 55101

11/ 2/81 BL 1.10 ADD JGRP OPTION TO SUPPRESS GROUP PRINTING

OUTPUT: USER CcPU CONNECT USER GROUP GROUP JULIAN
ID MINUTES NAME NAME ID DATE
(16) (F13.1) (F13.1) 2X (5A2) (5A2) (1) (16)

Ly 1 INPUT/OUTPUT USER CONSOLE
6 QUTPUT DEFAULT PRINTER
FMP +@CCT!:-31178 ACCOUNTS FILE

RU,ACTTI,,LUQUT
WHERE LUOUT IS THE LU OF THE OUTPUT FILE
(DEFAULT IS &)
(note luout is second parameter !)

OP SYS: RTE IVB
COMPILES: FTN4X,FTN4
LOADS: STANDARD LOAD

OO0 OOOO0OO0

DIMENSION IDCB(144),IBUF(128),JBUF(128),IPRM(5)
DATA ITERM/1/,ILST/6/,IWRD1/32000/

c
C + » » USER DEFINABLE: JGRP IS USED TO TURN GROUP ACCOUNT PRINTING
c ON (JGRP=1) O0OR OFF (JGRP=0)
DATA JGRP/0/
c
CALL RMPAR(CIPRM)
IFCIPRM(2).EQ.6.0R.IPRM(2).LT.1) GO TO 5
ILST=IPRM(2)
WRITEC1,3) ILST
3 FORMAT(’ OUTPUT LIST LU=’,I3)
c
C OPEN ACCOUNT FILE (NAME AND SEC. CODE MAY BE DIFFERENT FOR YOUR SYSTEM)
c NAME=+®CCT!, IOPTN=5B (BITO0=0OPEN SHARED, BIT2=FORCE TYPE 1) pp. 3-29 pgmr re
5 CALL OPENCIDCB,IER,G6H+8CCT!,5,-31178)
IFCIER.EQ.1) GO TO 10
WRITEC1,7) IER
7 FORMAT(’ COULDNT OPEN ACCOUNTS FILE. IER=‘,13)
STOP 7
c
c
c
c READ HEADER RECORD AND GET IMPORTANT POINTERS
10 CONTINUE
CALL READF(IDCB,IER,IBUF,128,IL,1)
IFCIER.EQ.0) GO TO 15
WRITEC1,12) IER
12 FORMAT(’ ERROR ON HEADER READ. IER=‘,I5)
JER= 12
60 TO 900
c

24

BIT BUCKET

OO0 OOOO0

o o NoNoNeNe]

OO0

15 LUSER=4096-1BUF(23)
LGRP=IBUF(24)
LOCDIR=IBUF(5)
WRITE(1,17) LUSER,LGRP
17 FORMAT(IS8,’ USERS,’,I18,’ GROUPS. ‘)
CALL EXECC11,IPRM)
JDATE=[PRM(S5)

READ ACCOUNT FILE DIRECTORY (J-11)

16 WORD LOG REC

LOOP THROUGH ACCOUNT FILE DIRECTORY (J-11) STORING ONE PHYSICAL

RECORD (128 WORDS).
EIGHT 16 WORD LOGICAL RECORDS.
CIWRD1
20 CONTINUE
IWRD1=IWRD1+16
IFCIWRD1.LE.126) GO TO 30
read next account file

IFCIER.EQ.0) GO TO 25
WRITE(1,23) IER,LOCDIR
FORMAT(* ERROR’,IS,”
JER= 23
GO TO 900
25 CONTINUE

[WRD1=1

LOCDIR=LOCDIR+1

23

read account entry

ON READ OF ACC.DIR.

NOTE THAT EACH PHYSICAL RECORD CONTAINS

IS USED AS POINTER TO WORD 1 OF CURRENT LOGICAL RECORD)

hysical record
CALL READF(IDCB,IER,IBUF,128,IL,LOCDIR)

RECORD #‘,15)

(64 words per logical block)
logical record may be in first or second half of 128 word phys.

rec.

if so, record pointers will be negative

30 CONTINUE

directory ends at when ibuf(iwrd1) =0, ignored when less than 0

IFCIBUFCIWRD1)) 20,100, 31
user (IUSER=1-4095)
31 IGRP=IBUFCIWRD1+12)
IUSER=IBUFCIWRD1+11)
IFCIUSER.LT.1) GO TO 40
user account
IREC=IANDCIBUF(IWRD1+14),7777B)
I0OFFST=25
IFCIBUFCIWRD1+14).LT.0) IOFFST=89
GO TD S0

roup account
40 IFCJGRP.EQ.0) GO TO 20
IREC=IANDCIBUF(IWRD1+13),7777B)
I0FFST=2
IFCIBUFCIWRD1+13).LT.0) IOFFST=66

25

or group (IUSER=0)

BIT BUCKET

oNoNoNoNeNe

oNoNoNoNoNoNe N

O0OOO0OO0

50

53

READ DIRECTORY ENTRIES AND PULL CPU,CONNECT TIMES
store 128 word logical record in array jbuf

ioffst is used to point to first or second log. rec. of phys.

CONTINUE
CALL READF(IDCB,IER,JBUF,128,IL,IREC)
IFCIER.EQ.0) GO TO 55
WRITE(1,53) IER,IREC
FORMAT(’ ERROR’,I5,’ ON READ OF ENTRY. RECORD #’,I5)
JER=53
GO TO 900
CALCULATE CPU AND CONNECT MINUTES. NOTE DOUBLE INTEGER

55 CPU=FLOATC IANDCJBUFCIOFFST+2),77777B)) » 65536. +

FLOATC IANDCJBUFCIOFFST+3),77777B)) +
(FLOATC IANDCJBUFCIOFFST+3),100000B))*(-1.))
CONNCT=FLOATC IANDCJBUFCIOFFST),77777B)) + 65536. +
FLOATC IANDCJBUFCIOFFST+1),77777B)) +
(FLOATC IANDCJBUFCIOFFST+1),100000B))*(-1.))
CONNCT=CONNCT/60.
CPU=CPU/6000.
M=IWRD1+1
N=IWRD1+10

#« » » » QUTPUT SECTION. MAY BE MODIFIED TO SUIT USER » » » » »

iuser,igrp are user,group numbers.
iuser,igrp are user,group numbers.
cpu,connct are cpu and connect minutes
ibuf(¢i),i=m,n prints out user and group name (5A2 each)
jdate is julian date.
note present format is image/1000 compatable
WRITECILST,S8) IUSER,CPU,CONNCT,(IBUF(CI),I=M,N),IGRP,JDATE

S8 FORMAT(IG6,2F13.1,2X,10RA2,216)

GO TO 20

100

900

901

END OF LOOP

ALL DONE. CLOSE UP FILE AND GO HOME.
CONTINUE
CALL CLOSECIDCB)
STOP
ERRORS.
CONTINUE
WRITEC1,901) IER,JER
FORMATC’ FATAL ERROR. IER,JER=’,215)
STOP 777
END

26

rec.

BIT BUCKET

EXECUTING A PROCEDURE AFTER LOGOFF

by Bob Desinger/Hewlett Packard
Data Systems Division

Session Monitor controls access to the system and, under normal use, prevents you from using the system after you log off.
Occasionally, however, you want to do something just after logoff, such as clearing your CRT screen. The program that follows
shows how this can be done; its principles can be used to perform less trivial after-logoff functions.

At logoff, if Session Monitor finds any active programs invoked by your session, it prevents normal automatic logging off. To find
these active programs, Session Monitor examines the last word of each ID segment. This session word identifies the session
that invoked the program, or indicates that the system has started the program up.

This word can be changed with a subroutine that overwrites it. Jack Sadubin's DEATS subroutine from Volume IV, issue 5 of The
Communicator does this by finding the ID segment address and overwriting the 32nd word past it. Or, alternatively, a supported
subroutine DTACH alters the session word to indicate that the system (not a session) owns a program. This allows you to log off
while your program is running, since Session Monitor won't find your session identifier in the active program's session word.

To execute the procedure, a transfer file runs a program which finds out the invoking terminal LU number, detaches from
session, and then delays itself. During the delay, FMGR executes the next line of the transfer file to log you off. After logoff has
completed and all logoff lines have appeared on the screen, the program wakes up and sends a screen-clearing string of
escape codes to your CRT.

Call the transfer file EX. To log off and clear the screen from FMGR, simply enter TR,EX or :EX.

Your FMGR clone should not run the program, since it would wait for the program to finish (leaving active programs at logoff).
RTE can run a program, bypassing FMGR, with its own RU command. RTE commands are issued through FMGR by prefixing
them with SY, so the command in the transfer file to run the program is :SYRU. Running the program using RTE allows your
FMGR clone to execute the next line of the transfer file and log off.

ID SEGMENT CONSIDERATIONS

Every program needs an assigned ID segment to run. FMGR automatically assigns one (if necessary) to the programs that it
schedules, releasing it when the program terminates. RTE neither assigns nor releases. An ID segment must be previously
assigned with the FMGR RP command in order to run a program from RTE.

LOADR assigns an ID segment to a program upon successful loading, which is released by Session Monitor at logoff if the
program is dormant. Remember, though, that the clearing program is detached at logoff; its ID segment has no associated
session and will not be released. It remains assigned until the system is rebooted or a FMGR OF command (or the RTE
command OF,progName,8) is issued.

If an ID segment remains assigned to a program, the system is saved much overhead: searching for the type 6 file, opening,
reading, closing, and other disc-dependent processes. An informal, unofficial guicde is that any program run more than 10 times
a day should have its own assigned ID segment (using the RP command). Inserting such a command in the WELCOM file
ensures that an ID segment is allocated to the program at all times.

If ID segment supply is not critically short, leave the ID segment assigned to the program: put the RP command in WELCOM,
and don't OF the program after its loading.

If ID segments are in critically short supply, each invocation of the clearing process should RP the program and then release its

ID segment so another program can use it. The invoking transfer file can RP, but it cannot perform the OF since this would abort
the program before it cleared the screen.

27

BIT BUCKET

The program can release its own ID segment by issuing an RTE OF command with a MESSS call. The buffer passed to MESSS
should be at least 14 words long, since RTE returns messages in this buffer. Of course, if the program releases its own ID
segment, put the RP in the transfer file EX instead of in WELCOM and do your own OF after a successful load and SP of the
program.

The destination CRT LU for the screen-clearing escape codes can be another obstacle. A standard EXEC/REIO write has only
six bits for the destination LU in the control word. Six is not enough if a terminal's system LU number is greater than 63 (77
octal). Normal I/O goes through the Session Switch Table (SST), which maps system LU numbers into session LUs of 63 or less.
The SST is part of Session Monitor, from which the program has detached. So using the SST and normal EXEC/REIO are off
limits for this application.

The “extended EXEC" subroutine XLUEX accepts a two-word control parameter. The first word is the destination LU: bit 16
indicates whether the word contains a system LU or a session LU. If set, the local SST is bypassed and the message is sent to
the system LU,

CUSTOMIZATION AND CAVEATS

This version moves the cursor to the bottom of the screen before clearing. Thus it completely clears the screen even when
invoked from the middle of a biock of text. An HP 2640/driver DVROO terminal doesn’t recognize the Home Down (escape F)
sequence, so invoke this procedure from the last line of text on a 2640. Logoff is normally executed from the last line anyway, so
this should be no hardship.

Different versions of output are possible. The version below rolls lines off the visible portion of the screen rather than clearing
them. This allows you to later read any logoff lines, such as MESSAGES WAITING. Also, you might be able to tell who just used
the terminal even after the screen is clear, assuming the terminal has enough memory.

If some accounts on your system release private cartridges at logoff, create two exiting transfer files. One, called EXRP, would
exit with an :EX,RP line, while EXSP would exit with an :EX,SP line. Other situations might call for other files named, for example,
EXRG or some other permutation of EX; each user can invoke the one appropriate for his account. [f some users log off with
EX,SP and others use just EX, the logoff file can be named simply EX and contain the exit command with the largest number of
parameters. FMGR ignores any extra parameters (like “,SP") if it only needs EX to exit.

Further information on DTACH and Session Monitor's logoff handier LGOFF is in Chapter 14 of the RTE-IVB Technical
Specifications Reference Manual (92068-90013). A description of the XLUEX call is in Chapter 3. Specific FMGR and RTE
command syntax is explained in Chapters 3 and 4 of the RTE-IVB Terminal User's Reference Manual (92068-90002).

FTN4X,L,C,d
PROGRAM CLR (4,51),BD Clear the 26xx Screen After Logoff

pgrmr: Bob Desinger, HP Data Systems Division
date: 82.02.16
purpose: Cleans the CRT screen after logoff.
Used under RTE-IVB and RTE-6/VM for 264x and 262x CRTs.

design: Get the system LU number of the terminal (for 1/0).
Detach from session, allowing logoff.
Wait so logoff messages can appear,
then clean off the CRT screen.
Depending on the compiling option, it either releases its
ID segment or keeps it allocated for the next invocation.

® & ® & & %= % % % & * =

28

BIT BUCKET

*
*+ It‘s typically invoked thru a transfer file containing:
*
* :Sv,1,,IH #+ don’t show anything unless errors
* :RP,CLR ## give it an ID segment (optional)
» :SYRU,CLR #+ have RTE run it so FMGR is free to
* +EX,SP " execute the next line to log off
. ..
*
Call this transfer file EX s0 you can enter just ‘:EX’ to log off.
*
Use the Large or Extended Background loading option (0OP,LB or OP,EB).
*
If this program will be run many times a day, do an ‘RP,CLR’ from FMGR
or the WELCOM file after reboot (unless ID segments are critical).
1f you RP it, be sure to:
*
* 1. Compile it WITHOUT the ‘d‘’ option
» 2. Remove the RP line from the transfer file
*
IMPLICIT INTEGER Ca-2)
DIMENSION cntlWd(2), cursUp(23) ! for CRT 1/0 control
DIMENSION Hdown(2), scroll(21)
d DIMENSION mss(14) ! MESSS message to off 1D
d DATA mss /‘’0F,CLR ,8 ‘/ ! ID segment clean-up

DATA scroll /21 = 6412B/ ! 21 CRLFs to scroll the chars off screen
DATA Hdown /15555B, 15506B/ ! mem lock off (esc m) & home down (esc F)

DATA cursUp /23 # 15501B/ ! 23 cursor ups (esc A)
! EXEC call parameters to delay execution:
DATA delay /12/, s=self /0/, =secs /2/, once /0/, write /2/

junk = LOGLU (sysLU) ! get system LU of invoking terminal
entliWd(1) = 100000B + sysLU ! set bit 16 for SYSTEM LU number
entliWd(2) = 0 ! no special driver instructions
CALL DTACH (junk) ! now detach from session so that

! LGOFF won‘t stop the :EX,SP
CALL EXEC (delay, self, secs, once, -5) ! sleep for 5 seconds

#+ the rest of the code executes once, 5 seconds later
CALL XLUEX (write, cntlWd, Hdown, 2) ! put cursor at screen bottom
CALL XLUEX C(write, cntlWd, scroll, 21) ' scroll info off screen
CALL XLUEX Cwrite, cntlWd, cursUp, 23) ' put cursor at top of screen

d junk = MESSS (mss, 10) ! release the ID segment
END

29

BIT BUCKET

FAST FORTRAN — AN UPDATE

by John Pezzano/HP El Paso, Texas

In the Vol. 4 Issue 4 of the Communicator | wrote an article entitled “FAST FORTRAN" which contained rules and examples for
writing efficient FORTRAN programs.

With the introduction of the FORTRAN 4X compiler, some of these rules and examples need to be modified. FORTRAN 4X
(FTN4X) is much more efficient than FTN4 generating different code. So here are my modified rules:
1. KNOW WHAT IT TAKES TO COMPILE AN EQUATION FOR MINIMUM COMPILATION
The example shown :
X=24(2+1.0)
was more efficient as well as shorter than
X=Z222+2
in FTN4. The FTN4X compiler generates the same efficient code for both versions, converting the equations to
X=222+2

The rule is still valid, but the example is not.

2. REMOVE INVARIANT FROM A DO LOOP

This rule is still valid as is the example. However, the gain is not as great. By removing the part of the loop that does not change
within the loop itself, considerable speed can still be gained. To illustrate the difference in the compilers,

ORIGINAL CODE INVARIENT REMOVED
DO 10 I=1,100 R=SIN(X##2+Y222)
ZCI)=SINCX#22+Yna2)+2(1)#2 DD 10 I=1,100
10 CONTINUE 2C¢1)=R+2(1)»2
10 CONTINUE
FTN4 FTN4X FTN4 FTN4X
loop size 38 24 18 17
savings of
instructions --- 1400 2000 2100
in 100X ioop
SIN calis 100 100 1 1
.RTOR 'calls 200 0 0 0

30

BIT BUCKET

3. MAKE SURE CONSTANTS AGREE IN TYPE WITH VARIABLES

Neither the rule nor the example are required in FTN4X although this is still a good programming technique. FTN4X would
automnatically convert the example

X=Y+1
to the better

X=Y+1.0

4. COMBINE CONSTANTS

The rule and example are both valid. Use

DATA POVER2/1.570796/
X=POVER2 + Y

for

DATA PI1/3.14159/
X=Pl/2.0 + Y

5. DON'T CALL LIBRARY ROUTINES UNNECESSARILY

No change. The rule is still valid as are the examples.

6. NOW HOW TO USE ARRAYS

The rule is valid but the examples are not. Unlike FTN4, FTN4X calculates fixed array elements at compilation, rather than at run
time. Therefore,

A, The example
Y=X(1) 222+ X(2)#22+X(3)us2
in FTN4X takes no more instructions than

EQUIVALENCE (XC1),X1),(X(C2),X2),(X(3),X3)
YaX1e82 + X2#22 + X32a2

whereas it took 15 more words in FTN4.

31

BIT BUCKET

B. The example
DIMENSION A€20,20)
DO 10 I=1,20

DO 10 J=1,20
10 ACI,J)=0.0

took 4400 more executing instructions and was 15 words longer than
DIMENSION AC20,20),B(400)
EQUIVALENCE (AC1,1),BC(1))

DO 10 I=1,400
10 BCI)=0.0

In FTN4X, the numbers are 1320 and 6 respectively. While it is still a considerable improvement, the numbers are not as
dramatic.

C. The example
XCId)=ACI)/BCD)
YCI)=ACI)/C+W
2¢1)=R/2.0+AC]1)
costs 6 words/loop in FTN4X vs. 19 words/loop in FTN4 over
Al=ACD)
XCI)=AI/B(I)
YCI)=AT/C+W
2(¢1)=R/2.+Al
which may not be worth the effort.
D. Knowing what the use of the array name without subscript means is still important but not in this example. In FTN4X,
ARRAY=X
and

ARRAY(1)=X

generate the same code.

32

BIT BUCKET

7. AVOID FORMATTER LIKE THE PLAGUE!

This is still true since the FORMATTER is much slower and takes more space than EXEC and REIO calls. However, the flexibility
in getting status, jumping on errors, and checking EOF's now exist in FTN4X formatted /O calls. This, combined with the
transportability of FORMATTED I/O must be weighed against the speed/size cost.

CONCLUSION

FTN4X can offer dramatic improvement both in code size generated as well as execution efficiency for a typical FORTRAN
program. As a person who started on FORTRAN I in pre-RTE environment and who worked with the original pre-release (1974)
FTN4 compiler, | can heartily recommend FTN4X. However, one can still “beat” even the best compilers by good coding.

What about FTN7X on RTE-6VM? While | have not completely tested all the above on FTN7X, preliminary testing has shown it to

be similar to FTN4X but with some slight improvement in the number of loop instructions (2 fewer) when doing DO LOOPS in
FORTRAN 77 mode (vs FORTRAN 66 mode).

33

BIT BUCKET

ACCESSING PHYSICAL MEMORY

by Stephen Botzko/Hewlett Packard
Waltham Division

In a recent Communicator/1000 article (“Accessing Physical Memory in FORTRAN and PASCAL”, Larry W. Smith, Vol. V, Issue
1), a technigue for accessing physical memory was presented. We have also found that direct user management of physical
memory is an efficient method for sharing large data structures among several user programs. The technigue presented in the
article has the disadvantage that the mapping mechanism restricts the maximum size of the application programs.

The foliowing subroutines (MXGET,MXPUT) overcome this drawback. They allow the user to transter up to 1024 consecutive
words, starting from any location in physical memory.

The routines maintain maximum logical address space by mapping the physical memory through the user's driver partition map
registers. (All types of user programs have two map registers reserved for driver partitions). Protection from RTE interactions is
provided by using $LIBR to turn off nonpriviledged interrupts during the transfer, and by restoring the user map to its original
state after the transfer completes (but before the call to $LIBX!).

The use of $LIBR and $LIBX make MXGET and MXPUT somewhat slower than the MEMGT routine provided by Larry Smith.
(They execute at about 400 microseconds for a one-word transfer). However, the maintenance of the user's full logical address
space will more than offset this slower running time in many applications.

ASMB,R,L
NAM MXGET,7
*
]
*
*
*
*
*
*
*
*
E
L e il *
*
*
) NAME: MXGET
* FUNCTION: TRANSFER WORDS FROM/TO PHYSICAL MEMORY
*
» CALLING SEQUENCE:
*
» CALL MXGET(PAGE ,ADDR,BUFF ,NWORD)
» CALL MXPUTC(PAGE ,ADDR,BUFF ,NWORD)
*
* INPUTS:
*
» PAGE PAGE IN PHYSICAL MEMORY
. ADDR PAGE OFFSET
* BUFF PROGRAM BUFFERCINPUT FOR MXPUT)
* NWORD NUMBER OF WORDS TO TRANSFER
*

34

BIT BUCKE)

OUTPUTS:

BUFF USER BUFFER INTO WHICH DATA TRANSFERRED(MXGET)
PAGE ,ADDR PHYSICAL MEMORY (MXPUT)

ERROR CONDITIONS:
NONE
PROCESS:

GO PRIVILEGED
ADJUST USER MAP (USE DRIVER PARTITION)

TRANSFER WORDS FROM TO USER BUFFER (MXGET)
(OR VICE VERSA FOR MXPUT)

RESTORE USER MAP
RESTORE INTERRUPTS

® % % % & & & %k % k% % ¥k %k %k k x x *®x *x &

*

ENT MXGET ,MXPUT
EXT .ENTR,$LIBR,$LIBX,$DVPT

JSB .ENTR

DEF PAGE

XLA $DVPT

MPY =B2000 #+ CONVERT DRIVER PARTITION PAGE INTO LOGICAL ADDR
STA BASE

LDA ADDR,I

STA TEMP

AND =B1777

ADA BASE

STA ADDR

COMMON CODE FOR MXGET,MXPUT STARTS HERE

X * = % % »

X.0 LDA TEMP
CLB
LSR 10
STA TEMP + TEMP HOLDS PAGE OFFSET OF ADDRESS
XLA $DVPT
ADA =D32
STA DPBAS

*

+ NOW FIND PAGE TO MAP INTO DRIVER PART’N (PERMITS PAGE OFFSET > 1023

*

35

BIT BUCKET

LDA PAGE
ADA TEMP
AND =B1777
STA PAGE

SAVE OFF DRIVER PARTITION PAGES

*

JSB $LIBR
NOP
LDX =D-2
LDA DPBAS
LDB SAVE
XmMM

*

NOW REMAP INTO DRIVER PARTITION AREA

LDX =D1
LDA DPBAS
LDB PAGE
XMs

LDX =D1
LDA DPBAS
INA

LDB PAGE
INB

XMs

NOW MOVE THE DATA

* *

LDA ADDR
LDB BUFF
MVIWW NWORD, I

RESTORE USER MAP

*

LDX =D2
LDA DPBAS
LDB SAVE
XMM

TURN OFF INTERRUPTS

*

JSB $LIBX
DEF #+1

DEF #+1

JMP MXGET, I

BIT BUCKET

*

* ENTRY POINT FOR MXPUT

*
PAGE1
ADDR1
BUFF1
NWRD1
MXPUT

NOP
NOP
NOP
NOP
NOP
JSB
DEF
LDA
STA
XLA
MPY
STA

LDA
STA
AND
ADA
STA

LDA
STA

LDA
STA

LDA
STA

JMP

BSS
BSS
DEF
DEC
DEC
DEF
BSS
END

.ENTR
PAGE1
MXPUT
MXGET
$DVPT
=B2000
BASE

ADDR1,1
TEMP
=B1777
BASE
BUFF

BUFF 1
ADDR

NWRD1
NWORD

PAGE1
PAGE

MX.0

+ TWO WORD SAVE AREA

37

BIT BUCKET

MORE NOTES ON THE USE OF UNDECLARED MEMORY

by Jeff Wynne/Naval Ordnance Station,
Indian Head, MD

Readers are referred 10 the article on this subject by John Pezzano which appeared in the Communicator, Volume 5, Issue 2
(1981). Suggested uses for undeclared memory and linking techniques are discussed in some detail.

EDITOR'S NOTE: see also letter from Ernst Stelzer in this issue.

REDUCED DISK STORAGE REQUIREMENTS FOR TYPE-6 FILES

Arrays in undeclared memory (UDCM) are not included in the object image of the program on disk. This is true with RTE-IVB for
both permanently loaded programs and for type-6 object code program files. Just consider the following code:

PROGRAM EXMPL

COMMON IAC20000)

DO 10 T = 1, 20000
10 IACI) = 1

END

The above program requires very little disk storage in an RTE-2 system since temporary COMMON is not included in the object
program space. However, RTE-IVB does put temporary COMMON in the program space and the RTE-IVB type-6 file for this
program requires 159 blocks of disk storage. At our site, where we started with an HP-2100 and a single 5 MByte disk, this
waste is unacceptable (even though we now have 80 MBytes of disk storage on some systems). The same program, with the
array |A in undeclared memory requires 4 blocks for its RTE-IVB type-6 file.

ALL-FORTRAN LINKING TECHNIQUES

In addition to the assembly link described in Mr. Pezzano's article, there are several ways to get around the problem of passing
the address of undeclared memory as an array reference in a FORTRAN program. If desirable, it can be done with
“all-FORTRAN" code.

The problem was:

PROGRAM MAIN

CALL LIMENCO, IBUF, LEN)
CALL SUB(IBUF, LEN)

etc.

SUBROUTINE SUBCIBUF, LEN)
INTEGER IBUF(1)

etc.

Of course this won't work. As pointed out by Mr. Pezzano, the problem is that the address passed in the call to SUB is an
address where the address of undeclared memory is stored rather than the address itself.

38

BIT BUCKET

Consider the following modifications to the above code.

PROGRAM MAIN

DIMENSION IA(C1)

CALL UDC (lA,

IELT, LEND

CALL SUB (IACIEL1), LEN)

etc.

SUBROUTINE SUBCIBUF, LEN)
INTEGER IBUF(LEN)

etc.

SUBROUTINE UDC(CIA, IEL1, LEN)
IADD = IGETACIA)

CALL LIMEM (0, IFWAM, LEN)
IELY = IFWAM - 1ADD + 1

CALL EXEC(22,3)

END

Here the subroutine UDC(IA,IEL1 LEN) is used to find the index of the first element of IA that is in UDCM and the number of
words in UDCM. The CALL EXEC(22,3) is for systems like RTE-2 which do not swap the entire partition unless this call is made.
It is not required for RTE-IVB (i.e. it has no apparent effect.).

The key to the solution is function subprogram {GETA which may be coded in either FORTRAN or ASSEMBLY. IGETA(IARG)
returns the direct address of |ARG in the A-register. In the above code, IADD = [GETA(IA) stores the address of |A in variable
IADD. IADD and IFWAM are then used to calculate the index of IA which corresponds to the first word of UDCM. Of course
IGETA may be used to obtain other addresses also; see subroutine SUB in the example program at the end of this article.

FORTRAN VERSION OF IGETA:

100

FUNCTION IGETACIA), RETURN ADDRESS OF ARGUMENT IN A-REGISTER
ASSIGN 100 TO N

N =N+ 2

K = IDMY(IA)

IGETA = [GET(N)

IFCIGETA.GE.0)> RETURN

IGETA = IGET(IGETA.AND.077777B >

GO 70 110

END

FUNCTION IDMYCIA), DUMMY FUNCTION SUBPROGRAM
IDMY = 0

END

39

BIT BUCKET

ASSEMBLY VERSION OF FUNCTION IGETA:

NAM IGETA,7 ROUTINE RETURNS ADDRESS OF ARGUMENT 810929.0842

ENT IGETA
IGETA NOP
LDA IGETA,I SAVE RETURN ADDRESS
STA RETRN
I1SZ IGETA ADVANCE IGETA TO POINT TQ ADDRESS OF ARGUMENT.
LDA IGETA,I GET ADDRESS OF THE ARGUMENT.
TEST SSA,RSS IS IT INDIRECT 2
JMP DONE NO, 1T7°S DIRECT. ALL DONE.
AND MASK YES, MASK BIT 15 AND TRY AGAIN.
LDA 0,1 GET NEW ADDRESS.
JMP TEST GO BACK AND TES AGAIN,
DONE JMP RETRN,I
RETRN NOP
MASK OCT 077777
END

Note that the FORTRAN version is dependent on the HP-1000 linking convention and on the compiler implementation of the
ASSIGN statement. At this point, HP is committed to supporting the linking convention. implementation of the ASSIGN
statement is fairly standard and one would not expect that to change with future compilers. This technique works with FTN4 REV
1442 part# 24177-60001, RTE-FTN4 and FTN4X. The sample program which foliows has been tested with RTE-FTN4 and with
FTN4X

At this installation, we generate the assembly version of IGETA into the system disk resident library. However, there are a
number of reasons for wanting to stay “all-FORTRAN", not the least of which is the rather awkward requirements for compiling,
assembling and loading mixed FORTRAN and ASSEMBLY code.

The following program uses the techniques described above. it is “all-FORTRAN". To run it, just compile, load and go. In
RTE-IVB, if you want more UDCM than that between the end of code and the end of the current page, use the system SZ
command to increase the program space after loading the program (this is the usual thing to do). With RTE-2, you automatically
get the entire background or real-time partition.

EXAMPLE FORTRAN PROGRAM

PROGRAM ICOR (3,99), DEMO ON USE OF UNDECLARED CORE 820203.1030

c

C The main program and subroutine UDC are used to find the number of
C elements and the starting element of array [A which are available
C for use in undeclared memory. The main body of the program is in
C subroutine SUB.

C

DIMENSION IAC1)

c
CALL UDCCIA, IEL1, NELS)
c
c Now call SUB and pass along the first array address in undeclared
C memory and the number of words available.
c

CALL SUBCIACIEL1), NELS)
END

SUBROUTINE SUB (ARRAY, N)
INTEGER ARRAY(N), TLU

40

BIT BUCKET

88
100

OO0OO0O0OO0OOOO0OOOOOO0OO0

-0
n
o

OO0

100

TLU = LOGLUCIDMMY)

IFCTLU.LT.1)> TLU = 1

DO 100 I = 1, N

IFCI.GT.10.AND.I.LT.N-10) GO TO 100

K = IGETACARRAY(I))

WRITE(TLU,88) I, K, ARRAY(I)

FORMAT(" ELEMENT o« I6 * ADDRESS=" K8 ** VALUE =" K8)
CONTINUE

RETURN

END

SUBROUTINE UDC(ARRAY, ELEM1, NELMS), FIND 1ST AND NUMBER IN UDC
IMPLICIT INTEGER (A-2)

This subroutine calculates the element (ELEM1) of integer array
ARRAY that corresponds to the first word of available memory at
memory address FWAM. It also calculates NELMS the number of
words from FWAM to the end of the partition.

Note that NELMS could be zero if the program had no undeclared
memory. This technique employs subroutine IGETA to get the
address of the array ARRAY.

An EXEC(22,3) call is made so that the entire partition is
swapped (required for RTE-2, etc.).

IADD = IGETACARRAY)

IWW = 0
CALL LIMEMCIWW, FWAM, NELMS)
ELEM1 = FWAM - IADD + 1

Set swapping to get entire partition.
CALL EXECC(22,3)

RETURN

END

FUNCTION IGETA(CIA), RETURN ADDRESS OF ARGUMENT IN A-REGISTER
ASSIGN 100 TO N

N=N=+2

CALL IDMYCIA)

IGETA = IGET(N)

IFCIGETA.GE.0) RETURN

IGETA = IGETC IGETA.AND.077777B)
GO TO 110

END

SUBROUTINE IDMY(CIA)

CONTINUE

END

41

BIT BUCKET

SHORT FORMATTED 10 FOR LUS IN PASCAL/1000

by Dave Redmond/HP Aibuquerque, NM

When new users are introduced to Pascal/1000 they are usually impressed with the ability to specify either files or LUs for 10,
especially at run time. This is particularly useful for determining how a developing program outputs to a file; merely direct that
output to your terminal instead. The next impression new users get is typically that 10 programs seem to be quite large. For
example, the following program is nine pages long when loaded:

PROGRAM S ¢ OUTPUT);
BEGIN
WRITELN ¢ “Hello!!’)
END.

A look at the loader listing reveals that many of the relocated modules create, open, and generally manipulate files. All these
mecdules allow the user the file/LU versatility with formatted 10, but also add to the size of his programs, proving the old adage
“You don’t get something for nothing!”

Assume, though, that a particular application requires 1O to/from LUs only. In this case the added modules buy nothing, yet still
cost space. The use of Exec reads and writes are fine for ASCIt data, but inappropriate for numbers. The need for procedures
specialized for formatted 10 to/from LUs is obvious.

This article presents one attempt to satisfy this need in a fashion similar to the way Pascal/1000 does formatted 10. The
presented procedures are meant to be used instead of the standard Pascal/1000 files (e.g. READs, WRITEs, INPUT, OUTPUT),

and, should allow the programmer most of the primitives required for formatted |O. This is a first step, one that is easily modified
by the reader.

FORMATTED OUTPUT

The following is a table of calling sequences for the relevant output procedures and their Pascal/1000 equivalents:

CALL EQUIVALENT

WrtA (O WRITE (O

WrtB (Buf, Length) FOR I := 1 TO Length DO WRITE (BuflI1)
Wrtl ¢I, N) WRITE CI:N)

WrtR (R, N, M) WRITE (R:N:M)

Wrtln WRITELN

For all of the above procedures the output is to the LU Out__ Lu. This LU must be set by the programmer. With these primitives
one can output data in any of the generally required formats. (Note: Neither E nor L formats are used.)

These procedures work much the same as the Pascal/1000 procedures. There is an output buffer, Out__Buf, into which the
appropriate characters are appended by all of the output procedures except WrtlLn. An index, Out__Index, indicates the

position in Out__Buf where the next character should go: Out__Buf[Out__Index]. WrtLL.n does an Exec write to Out__LU and
resets Out__Index to 1.

WrtA and WrtB are fairly obvious. Wrtl and WrtR, however, are a bit more complex. In an effort to simplify things, an additional
procedure, Wrtl0, was written to determine the appropriate characters for the represention of a signed integer in a given length,
with or without leading zeros. Wrtl calls Wrtl0 without leading zeros. WrtR calls WrtlO without leading zeros for the digits to the
left of the decimal point, and with leading zeros for those to the right. If the ASCII representation of the number will not fit in the

desired length (due to the absolute value being too large or there being no room for a negative sign) the first character will be an
asterisk.

42

BIT BUCKET

FORMATTED INPUT

The following is a table of the calling sequences for the relevant input procedures and their Pascal/1000 equivalents:

CALL EQUIVALENT

RdA (C) READ (C)

RdB (Buf, Length) FOR I := 1 TO Length DO READ (BuflI1)
RAl (1) Skip_to_Digit; READ CI)

RdR (R) Skip_to_Digit; READ (R)

RdLn

where Skip__to__Digit is equivalent to

WHILE NOT CINPUT~ IN [“0°..79', ‘+’, “-7)) DO READ (C)

Again for the above procedures, the input is from the LU In__Lu, set up by the programmer. (This sure seems familiar.) With
these primitives one can input data in any of the general formats (once again, neither E nor L formats are used).

There is an input buffer, In__Buf, from which the appropriate characters are read by all of the preceding procedures except
RdlLn. An index, In__Index, indicates the last character of In__Buf that was read. That last character read is in the global Ch,
and the next character to be read is in the global Next__Ch (the equivalent to INPUT?). Another global, the BOOLEAN Eoln, is
set TRUE by RdLn and when the last character input is read. In both cases the next read will, at least temporarily, set Eoln
FALSE.

RdJA and RdB are quite easily implemented. Rdl and RdR, however, require an additional function, R__Int, which returns the
LONGREAL value converted from the next string of integer characters ('0'..'9"). (Note that R__Int returns a LONGREAL value.
This is so that both Rd! and RdR can use it. Rdl will correctly convert integers over 7 places long only with LONGREAL.) Rdi and
RdR function quite differently from their Pascal/1000 logical equivalents READ (1) and READ (R), as indicated in the preceding
table. Rdl and RdR actually skip characters from the input stream until a number or a sign (+ or —) is encountered. Only then
does the conversion process begin. This allows more freedom upon input. For instance, RdR (X) will be satisfied by the
following input string:

X should get
the value -6.42

The advantages are obvious, so are some disadvantages (error checking, etc.).

SUGGESTED USAGE

It is recommended that these procedures (with the reader's modifications, of course) be compiled as a separate SUBPRO-
GRAM so that the resulting relocatable can be searched during loading. This way only the procedures required will be loaded,
thus saving some space. An inclusion file is also recommended (here called &IOINC) for the declarations. All of your own
declarations should be included, as well as all of the following:

TYPE
Char_Set = SET OF CHAR;
CONST
User_Buffer_Length = nnn; (* Typically 80 *)
10_Buffer_Length = mmm; (+ Typically the same as above #)

Numeric_Set = Char_Set [‘0’..797, 7+, -]
Digit_Set = Char_Set [’0’..79’);

43

BIT BUCKET

TYPE
Int = -32768..32767; (+ One word integers *)
User_Buffer = PACKED ARRAY ([1..User_Buffer_Length] OF CHAR;
10_Buffer = PACKED ARRAY [1.. 10_Buffer_Length] OF CHAR;
VAR
Out_Buf, (* The output buffer *)
In_Buf (+ The input buffer *)
I0_Buffer;
Ch, (* The last char read *)
Next_Ch (+* The next char to be read *)
CHAR;
Eoln
BOOLEAN;
Out_LU, (+ The output LU *)
In_LU, (+ The input LU *)
Out_Index, (+ The next position to write +)
In_Index (» The last position read *)
Int;

To initialize the output, the programmer must set Out__ LU to the appropriate output LU and set Out__Index to one. To initialize
the input, In__LU should be set appropriately and a call should be made to RdLn.

The actual code should answer many specific questions. Immediately following the code is an example of its use.

$ SUBPROGRAM,RECURSIVE OFF ,RANGE OFF ,HEAP 0,AUTOPAGE ON,VISIBLE ONS$

(»
Note : Any time size is a factor, the programmer should
avoid the added expense of RECURSIVE ON,
RANGE ON, and HEAP n with n <> 0.
See the Pascal/1000 Ref Man for more info.
+)
PROGRAM I0 ;
(»
This subprogram contains the following visible procedures:
WrtA to write a single character
WrtB to write a string of characters
Wrtl to write a signed integer
WrtR to write a signed real number
Wrtln the WRITELN equivalent
RdA to read a single character
RdB to read a string of characters
RdI to read a signed integer
RdR to read a signed real number
RdLn the READLN equivalent
*)

44

BIT BUCKET

CONST
Asterisk = ‘a2’
Blank = 7
Zero = ‘07,
Minus = -1
Plus = ‘47
Decimal_Point = “.’;

$INCLUDE ‘&IOINC’S

PROCEDURE Reent_ID $ALIAS ‘REID‘S

C ICode,
ICnwd : Int;
VAR Buf : 10_Buffer;

Length : Int

); EXTERNAL;

PROCEDURE Get_Xmit_Len $ALIAS ‘ABREG’S
(VAR A_Reg,
Length : Int

); EXTERNAL;
1 $PAGES
(»
BIRBEIBISISEINEINSRIREINNNIE WNrLLn SRS SRS SRBEINIRININSRIINSNIINININS
*)
PROCEDURE Wrtln;

(»
Equivalent to WRITELN
*)
BEGIN
Reent_I0 (2, Out_LU, Out_Buf, 1 - Out_Index);
Out_Index := 1;
END;
(»

PRPERBOSROOONOIRISRNSNNINNIE WrLA SR80 0S00SRSRRESNIRIIONINNIRSNIIINS
*)
PROCEDURE WrtA (C : Char);

(»
Equivalent to WRITE (C);
*)
BEGIN (* Proc WrtA «)
Out_Buf(Out_Index] := C;
(»
Check output line length
*)
IF Out_Index = I0_Buffer_Length THEN Wrtln
ELSE Out_Index := Out_Index + 1;
END;
(»

SRBRSSEISINIRIRNISININIRINIS UriD S20800000008000000880808080828088080808208
*)
PROCEDURE WrtB (Buf : User_Buffer; Length : Int);

45

BIT BUCKET

(»
Equivalent to FOR I := 1 TDO Length DO WRITE (BuflI))
*)
VAR
I : Int;

BEGIN (* Proc WrtB)
FOR I := 1 to Length DO WrtA(BufllIl);

END; (+ Proc WriB)
1
(»
BERBEIRGERERPRRRRA NP SR n st n s Urt]Q 2000008000008 0880000008t itsssnise
*)
$VISIBLE OFFs$

PROCEDURE Wrt10 (N : INTEGER; Length : Int; Leading_Zeros : BOOLEAN);
(»

This procedure is used by the other output procedures in this
subprogram and is not designed for general user use.

This procedure has an effect equivalent to WRITE(N:Length)
except that if the integer requires more space than Length
the first char will be an asterisk.
Also, if Leading_Z2eros is TRUE then leading zeros will be
included (Note: This works only for positive N; remember that
this is not for general use).

*)
VAR
Index : Int;
Negative : BOOLEAN;
Buf : PACKED ARRAY [1..20]1 DF CHAR;

BEGIN (# Proc WrtI0)
Buf := Blank;

Negative := N < 0;
N := ABS(N);
Index := Length;

(»
Put ASCI! representation of N in Buf
*)
WHILE (N > 0) AND (Index > 0) DO
BEGIN
Bufl{Index] := CHR(ORD(Zero) + N MOD 10);
Index := Index - 1;
N := N DIV 10;
END;
(»
Check for overflow, sign and leading zeros
*)
IF (N > 0> DR ((Index = 0) AND Negative) THEN Buf(1] := Asterisk
ELSE IF Negative THEN Bufl[Index] := Minus
ELSE IF Leading_Zeros THEN
FOR Index := Index DOWNTO 1 DO Buf{Index] := Zero;
(»

Output the buffer

46

BIT BUCKET

*)
Wrtb (Buf, Length);

END; (* Proc Wrtl0 «)
1
$VISIBLE (ON$

:Ellllllllllllllllllllllllll WRtR #2288 888000000880880088088888080808008004
*
PROCEDURE WrtR (R : REAL; Width, Right : Int);
“ Equivalent to WRITE(R:Width:Right)
" VAR
I : Inty
BEGIN
IF Right > 8 THEN Right := 8; (+ Not required +)
¢ Wrt digits to left of decimal point without leading zeros
" WrtI0 (TRUNC(R), Width - Right - 1, FALSE);
WrtA (Decimal_Point);
¢ Wrt digits to right of decimal point with leading zeros
" R := ABS(R - TRUNC(R));
FOR I := 1 70 Right DO R := 10.0 # R;
Wrt10 (ROUND(R), Right, TRUE);
END; (# Proc WrtR #)
<

PEBSEPIEESLOENREIEREORNRN0E Urt] #R80888 8880800 P000 8088880088808 8088
*)
PROCEDURE Wrtl (N : INTEGER; Length : Int);

“ Equivalent to WRITE (N:Length)
" BEGIN (» Proc Wrtl #)
Wrtl10 (N, Length, FALSE);
END; (# Proc Wrtl)
1 $PAGES
(+

EEESEEREERESERORRRLLIIIS0008 Get _Ch #4000008080 0008808000888 00808888884844
#)
PROCEDURE Get_Ch;
(=
This procedure "reads' the next character from the input stream.

That character is put into the global Ch, and the next character
to be “read” is put into the global Next_Ch.
Eoln is checked before and set after.

47

BIT BUCKET

*)
CONST
Echo = 256;
VAR
A_Reg,
Chars_Read : Int;
BEGIN (s Proc Get_Ch within ID +)
IF Eoln THEN
BEGIN
Reent_I0 (1, In_LU + Echo, In_Buf, -User_Buffer_Length);
Get_Xmit_Len (A_Reg, Chars_Read);
In_Index := 0;
Ch := Blank; Next_Ch := In_Bufl11; (* As in Pascal/1000 =)
END
ELSE BEGIN
In_Index := In_Index + 1;
Ch := In_Buflin_Indexl; Next_Ch := In_BuflIn_Index + 11;
END;
Eoln := (In_Index >= Chars_Read);
END; (s Proc Get_Ch #)
(»
PESELESIRELOPRPRORIRSLSLSE88F RAA FEFERESETIF SR SN ELERESERELESIRERE SRS
*)
PROCEDURE RdA (VAR C : CHAR);
(»
Equivalent to READ (C);
)
BEGIN (#* Proc RdA within I0)
Get_Ch;
C := Ch;
END; (+ Proc RdA)
1
(s

BEBERRRRSPERR P PSSR PRS0 8288 RO #8288 8808888808888 8 8888888888000 0028
*)
PROCEDURE RdB (VAR Buf : User_Buffer; Length : Int);
(»
Equivalent to READ (Buf), but, terminate read after
either Length chars being read, or Eoln TRUE,

48

BIT BUCKET

*)
VAR
N : Int;

BEGIN (+ Proc RdB within 10 #)

N := 13
Buf := Blank; (+ Blank fill to start +)

REPEAT
Get_Ch;

Buf (Nl := Ch;

N := N + 13
UNTIL (N > Length) OR Eoln;

END; (* Proc RdB #)
1
(»
FEREESOSSRINNNSRNNRNISNIIRIS R_INL FRF0080 0885088080088 50808 85880800808
*)
$VISIBLE OFFSs
FUNCTION R_Int : LONGREAL;

VAR
R : LONGREAL;

Sign : CHAR;
BEGIN (# Func R_Int within [0 #)

R := 0.0; Get_Ch;

(»
Skip to digit or sign
*)
WHILE NOT (Next_Ch IN Numeric_Set) DO Get_Ch;
(»
If it is a sign, read and save it.
*)
IF (Next_Ch = Plus) OR (Next_Ch = Minus) THEN
BEGIN
Get_Ch;
Sign := Ch;
WHILE Next_Ch = Blank DO Get_Ch;
END;
(»
Convert to REAL
*)
WHILE Next_Ch IN Digit_Set DO
BEGIN
Get_Ch;

R := 10.0 + R + 1.0 » (ORD(Ch) - ORD(Zero));
END;

49

BIT BUCKET

IF Sign = Minus THEN R := -R;
R_Int := R;

END; (* Func R_Int =)
$VISIBLE ONS$

(=
FEEPEREORERREN SRR RSN O dn sy RAL FRERSEVREREOVR SRR SRR SRSV RSN ISV RSN S S
*)

PROCEDURE RdI (VAR I : INTEGER);

(=
Equivalent to Skip_to_Digit; READ (I)
*)
BEGIN (* Proc RdI within I0 =)
I := ROUNDC R_Int);
END; (* Proc RdI =)
1
(€]
FEERPERER PR IR OR PR E PR SR r sy RAR FRENFSF RSN SEVRENIENR SR RSV IR ORISR 2 S
*)
PROCEDURE RdR (VAR R : REAL);
(=
Equivalent to Skip_to_Digit; READ (R)
®)
VAR
Divisor : REAL;
BEGIN (*# Proc RdR within I0)
R := R_Int; (* Get the integer portion #)
IF Next_Ch = Decimal_Point THEN
BEGIN
Get_Ch;
IF R < 0.0 THEN Divisor := -10.0 ELSE Divisor := 10.0;
(=
Now add the fractional portion
*)
WHILE Next_Ch IN Digit_Set DO
BEGIN
Get_Ch;

R := R + (ORD(CCh) - ORD(Zero)) / Divisor;
Divisor := Divisor * 10.0;
END;
END;

END; (* Proc RdR =)

50

BIT BUCKET

::I!Il#!l##l#l!l##l######### RALN #4482 8080800 FSFFREEFREEENSFR R RSN RS
')PRUCEDURE RdLn;
“ Equivalent to READLN
" BEGIN (* Proc RdLn within I0 +)
Eoln := TRUE; (* Get_Ch does the work on next call)

END; (* Proc RdLn #)

(+ END SUBPROGRAM 10 =)

An example is worth 1024 words. The following program shows a typical use of the procedures. It loads in 3 pages.

$RECURSIVE OFF, HEAP 0, RANGE OFFs
PROGRAM T;
(»

This program is an example of the use of the presented I0
scheme.

The user is prompted for two real numbers. The sum and
difference of the two numbers is output. This process
is repeated until the first number is zero.

*)

$INCLUDE “&IO0INC’S$ (+* Includes all suggested and REAL A and B)
PROCEDURE WrtB (Buf : 10_Buffer; Length : Int); EXTERNAL;
PROCEDURE WrtR (R : REAL; Left, Right : Int); EXTERNAL;

PROCEDURE Wrtln; EXTERNAL;

PROCEDURE RdR (R : REAL); EXTERNAL;

PROCEDURE RdLn; EXTERNAL;

BEGIN
In_LU := 1; OQut_LU := 1; (+ Initialize the 10 *)
RdLn; Out_Index := 1;
REPEAT (* Request and display #)

WrtB (/ Please enter 2 numbers: _’, 26); Wrtln;
RdR (A); RdR (B);
WrtR (A); WrtR (B); MWrtln;

WrtB (/ The sum is ‘, 12); WrtR (A+B, 15, 6); Wrtln;

51

BIT BUCKET

WrtB ¢’ The difference is ’, 19); WrtR (A-B, 15, 6); MWrtln;
Wrtlng
UNTIL A = 0.0

END.

After &0 and &T have been compiled, creating %!0 and %T, the loader is run with the following commands:

LI,%I10
REL ,XT
EN

A sample run follows:

:RU,T

Please enter 2 numbers: 123.0 456.0
123.000000 456.000000

The sum is 579.000000

The difference is -333.000000

Please enter 2 numbers: Let’s try -144.6 and 144.6, ok?
-144.6000006 -144.600006

The sum is -289.200012

The difference is .000000

Please enter 2 numbers: How about 123456789 and
the number 3.14159

-123456784.000000 -3.141590

The sum is #3456784.000000

The difference is #3456784.000000

Please enter 2 numbers: - 50 and +16
-50.000000 16.000000

The sum is -34.000000

The difference is -66.000000

Please enter 2 numbers: 0.0 , 456
.000000 456.000000

The sum is 456.000000

The difference is -456.000000

With these procedures and the reader’'s own modifications, programs can be written which do formatted 10 to LUs only
resulting in programs which are about six pages smaller than if the standard Pascal/1000 procedures had been used. This size
reduction could easily make the difference between running on an L-Series or not. It is hoped that the trade-offs will be
adventageous and that these procedures will be put to good use. Happy Pascalling!!

52

BIT BUCKET

PASCAL ERROR TRAPPING AND REPORTING

by Jeffrey Hirschl/HP, Systems Technology
Organization, Fort Collins, CO

A problem facing the PASCAL applications programmer is how to trap FMP (File Management Package) errors which occur
when opening or otherwise accessing a file. Normally the Pascal run-time system handles errors by printing an error message
and terminating the program. This is fine if the error is not an FMP error, since a programming error is usually the cause. But an
FMP “error” in many cases is really a file status indication rather than an error. Where this is the case, aborting the program may
not be desirable at all!

Suppose, for example, we have a program that uses a sequential access file to store its control information. If the file doesn’t
exist, we want the program to create and place some initial values into it. But opening the file with a RESET (to read it) will result
in a program abort if the file doesn't exist (FMP error —~6). Using the FMP error trapping subroutine described below, the
program can trap the error and determine that it occurred. It can then issue a REWRITE to initialize the file.

In another case we may have a program which uses several files. If a file is unavailable because another program has opened it
exclusively, we may want to make an orderly cleanup and terminate. We may even want to delay and then try to open it again.
Here again, the FMP error trapping subroutine will inhibit Pascal normal error abort action and will inform the program that an
error (FMP error -8 in this case) occurred.

The FMP error trapping subroutine maintains a storage iocation where the error number of the last Pascal FMP error is kept. This
location contains zero if no error has occurred. The user's Pascal program obtains this error number by calling subroutine
ERTST (see the program listing for calling details). Each time ERTST is called, the FMP error storage is set back to zero so that
subsequent calls will send back a zero (no error) result until the next error occurs. ERTST is easy to call, requiring just one
external procedure definition and one variable definition. Therefore its impact on the user Pascal program is minimal.

The subroutine allows handling of non-FMP errors by printing a Pascal error message. Then if the error is not a “warning'”, the
program is terminated. Using the provided subroutine as a guide and the information from Appendix B of the Pascal/1000
Reference Manual, the subroutine may easily be modified to trap and report other errors.

The package is designed to work on an “F” series processor and may require some modification to work on others.
A Pascal program showing examples of usage is provided. The program deliberately terminates with an error to demonstrate
how non-FMP errors are handled. Note the loading instructions given in this program as well as the subroutine package listing

very carefully. The error trapping package must be relocated before the Pascal library or system library are searched. If this is
not done, no error will be produced at load time, but the trapping routine will not work.

53

BIT BUCKET

ASMB,R,L,T

*

® % & % % % % & ¥ % ® * x x & & & & * * % % % % ® % # * & & ¥ ¥ * & ¥ &k % * ¥ 5 ¥ ¥ ¥ % *

* & & ® % % & *

NAM PSFMP Pascal FMP Error Handler 811007
HED Pascal FMP Error Trapping and Reporting

FRBBBRRRRRRRRRRRRRRRRRRRBERRRRRRERRRRRRRRRN

+ Pascal FMP Error Trapping and Reporting +

I XX EEEEESEEREERER NS RERRE AR RS R RERRY R X X
Author: Jeffrey S. Hirschl, STO, HP Fort Collins

Designed for "F'" Type Processor

This subroutine package provides a means to trap and report FMP
errors arising out of Pascal file handling system calls.

If an FMP type error occurs, no error message is printed. A note
is made of the error for reporting to the user Pascal program upon
request.

If a non-FMP-type error occurs, a Pascal error message is printed,
just as would normally be done. Then if the error is not a "warning"
the program is terminated. If the error is a "warning", control
returns to the user Pascal program.

The package consists of two subroutines: @PREP, which replaces

the @PREP subroutine in the Pascal run-time library. ERTST, which
is called by the user Pascal program to determine if any FMP errors
have occurred. .

Further information on error handling can be found in Appendix B
of the Pascal/1000 Reference Manual, HP 92832-90001.

CAUTION - This routine must be loaded BEFORE the Pascal library is
searched when running LOADR. A loading example is:

RU LOADR

RE, XMYPROG Load user Pascal program
RE ,%PSFMP Load error trapping routine.
SE Search libraries.
END

SKP

[XXX XX K X]

+ @PREP »

[EX XXX R XX]

This routine replaces the OPREP error handler in the Pascal run-time
library. It should never be called by the user Pascal program.

54

BIT BUCKET

Computer

Museum

#+ The calling sequence for this routine may be found in Appendix B
+ of the Pascal/1000 Reference Manual.

*
*

8PRER, .ENTR, EXEC

ENT @PREP
EXT

*

*

*

+ by .ENTR).

*

ARTYP BSS 1

ARNUM BSS 1

ARLIN BSS 1

ARFIL BSS 1

ARLEN BSS 1

*

*

*

@PREP NOP

*
JSB .ENTR
DEF ARTYP

*
LDA ARNUM, I
STA ERNUM

*
LDA ARTYP, 1
CPA FMPER
JMP @PREP, I

*

*

*

+ 50 that we can call @PRER.

*
LDA ARTYA
LDB PRNTA

*
MVW =D5

*
JSB @PRER
DEF *+6

*

PRNTE BSS 5

*

*

If the error is a warning,

*
LDA ARTYP, I
CPA WARN
JMP OPREP, I

*
JSB EXEC
DEF 42
DEF EXIT

*

Storage for addresses of calling parameters (will be filled in

“ERR TYPE'" PARA ADDR.

“ERR NUMBER" PARA ADDR.

“ERR LINE' PARA ADDR.
“FILENAME'" PARA ADDR.
"“FILENAME LENGTH*" PARA ADDR.

SUBROUTINE ENTRY POINT.

GET PARA ADDRS AND SET
ENTRY POINT FOR RETURN.

STORE ERROR NUMBER.
GET ERROR TYPE.

IS IT FMP?
YES, RETURN.

Here if we don’t have an FMP error. Copy calling parameters

This will print a Pascal error message.

SET UP ADDRS FOR
“MOVE WORDS*™.

MOVE 5 PARAS.

PRINT Pascal
ERR MSG.

PARAS FOR OPRER CALL.

return. Else terminate the program.

GET ERROR TYPE.
WARNING?
YES, RETURN.

NO, TERMINATE.

Constants and local storage.

55

BIT BUCKET

#*
EXIT DEC 6 “EXIT* EXEC CODE.
FMPER DEC 3 FMP Pascal ERR CODE.
WARN DEC S WARN Pascal ERR CODE.
ARTYA DEF ARTYP ADDR OF ARTYP,
PRNTA DEF PRNTE ADDR OF PRNTE.
#*
ERNUM DEC 0 ERR NUM STORAGE.

SKP

FEBERRERERREERERERRERES

+ Error Test Routine +»
I X REZI RS RS E Y RN}

This routine is called by the user Pascal program to determine if
an FMP error occurred.

Pascal calling sequence:

TYPE
Single_Int: -32768..32767;

PROCEDURE Error_Test $ALIAS ’‘ERTST’
(VAR lerr: Single_Int); EXTERNAL;

Error_Test (lerr);

If an FMP error has not occurred, zero will be returned in IERR.
Otherwise, the FMP error number will be returned in IERR.

When this routine is called, any FMP error is reported and then
cleared. Subsequent calls will yield a zero IERR result until
the next error actually occurs.

If the Pascal program is to be a restartable program, a dummy call
must be made to this routine at the beginning of the Pascal program
(after any calls to RMPAR) to initialize the FMP error storage to
zero. If this is not done, any error remaining from a previous

run of the program will yield incorrect results.

® % % % & % % % ®* x * &k %x * % % & ¥ % % k x & % % & & ¥ x ¥ ¥ £ ®x * ¥

ENT ERTST
*
+ Storage for IERR parameter address.
*
AIERR BSS 1 “IERR"” PARA ADDR.
*
*
ERTST NOP ENTRY POINT.
*
JSB .ENTR GET PARA ADDR AND
DEF AIERR SET UP RETURN.
*
LDA ERNUM GET ERROR NUMBER
STA AIERR,I INTO IERR PARA.

56

BIT BUCKET

CLA CLEAR ERROR STORAGE.
STA ERNUM
*
JMP ERTST,I RETURN.
*
END

$Pascal ‘Pascal FMP Error Example’s
$RECURSIVE ODFFs$

PROGRAM TSFMP (QUTPUT);

{This routine provides an example of how the Pascal FMP Error trapping
and reporting routine is used.}

{The routine tries to open a file #*XYZ. If successful, it reads
the message in the file and prints it. If not successful and the
error indicates the file doesn’t exist, the routine creates it and
writes a message into it. If not successful for any other reason,
an error message is printed.}

{To demonstrate the action with an error message other than "file
doesn’t exist, after the file is created try holding it open with
an editor while you run this routine.}

{NOTE: This program demonstrates what happens in the case of a non-FMP
error by trying to access file Ffile after it is closed. Thus it
deliberately exits in error.}

{To load:
RU,LOADR
RE,XTSFMP Relocate this program.
RE, XPSFMP Relocate error trapper and reporter.
END
To run: RU,TSFMP,1 }
TYPE

Single_Int = -32768..32767;

VAR
Ierr: Single_Int;
Ffile: TEXT;
Fbuf: PACKED ARRAY ([1..40]1 of CHAR;

PROCEDURE Error_Test $ALIAS ‘ERTST’S (VAR Ierr: Single_Int);
EXTERNAL;

57

BIT BUCKET

BEGIN
Error_Test (lerr); {This is a dummy call to
Error_Test to ensure program
restartability.}
RESET (Ffile, ’22XYZ’); {Try to reset file.}
Error_Test (lerr); {Check for FMP error.}
IF Ierr ¢ 0 THEN
BEGIN
WRITELN (’Error opening *#XYZ, FMP error ‘, lerr);
IF Ierr = -6 THEN {If FMP error is "nonexistant
file”, create the file.}
BEGIN

REWRITE (Ffile, ‘22XYZ');
Error_Test (lerr); {Test for error during REWRITE}
IF (lerr < 0) THEN
WRITELN (’Error creating **XYZ, FMP error ‘, lerr)
ELSE
BEGIN
WRITELN (’Successfully created ~2XYZ');
WRITELN (Ffile, ‘This is a test file’)
END
END {IF lerr = -6}
END {IF lerr < 0}

ELSE
BEGIN
WRITELN (’No FMP error opening Ffile’);
READLN (Ffile, Fbuf);
WRITELN (’Contents of file: /, Fbuf);
END;
CLOSE (Ffile);
Error_Test (lerr);
IF (lerr ¢ 0) THEN
WRITELN (‘’Error closing Ffile, FMP error ’, lerr);

{Here we show what will happen with a non-FMP error. Note that
Ffile is no longer open so we will have a Pascal 1/0 type error.}

WRITELN (Ffile, ‘This will cause error exit’)

END. {Program}

58

BIT BUCKET

MVDIR — THE CASE OF THE MOVING DIRECTORY

by John McCabe/HP Stanford Park Division

HOW WE CREATED THE PROBLEM

1.

2.

We had a 256 track disc LU in the pool
We allocated it as 250 tracks long.
AC,cr,G,250
We loaded lots of data on the disc. Everything seemed fine. The directory track was track number 248.
We added the disc LU to the group’s session switch table, as we planned to use it for a while.
We did a new system generation. We did not redefine the disc track map.
After we switched to the new system we did a mount cartridge to the disc LU.
MC,lu,G
The system, knowing that the LU size was 256 tracks, used an old directory in track 255.

Since the system didn’t know about the directory on track 249, we could not access any of our files. Things looked very
bad.

HOW WE SOLVED OUR PROBLEM

The following solution may not be the best one, but it worked. It does not require the use of any special utilities. It takes
advantage of the following:

The directory of cartridges contains the last track, and is on LU 2, not the cartridge LU. (The disc directory of files on the
cartridge is at the end of the cartridge LU).

LSAVE and RESTR dumps disc LUs to tape track by track, regardiess of the location of the directory.

WRITT and READT backs up LUs treating the directory as something special.

1.

We did an LSAVE to store a copy of the disc to tape.
LSAVE, ,lu,,VE,title
We dismounted the disc.
DC,cr,RR
We reallocated the cartridge with the old number of tracks, 250.
AC,cr,G,250,if
This wiped out all the data on the disc. This was ok.

59

BIT BUCKET

4. We restored the disc from the tape saved in step 1.
RESTR, ,lu

This restored everything as it was before the switch to the new system. Our old directory on track 249 accessed ail our old
files.

We wanted to move the directory from track 249 to track 255 so we could utilize the last 6 tracks on the disc and so this
same thing would not happen when we switched to another new system.

5. We used WRITT to back up the disc to tape.
WRITT,cr

6. We released the disc back to the pool.
DC,cr,RR

7. We used READT to restore the disc and move the directory from track 249 to track 255. We used the tape from step 5.
READT,cr,,G,256

This moved the directory property and everything is as it should be.

60

BIT BUCKET

HOW TO BUILD SYSTEM UTILITIES USING A DISC DIRECTORY AND
EDIT/1000 SUBSYSTEM

by Bob Gordon/Boeing Computer Services

Manipulating large numbers of disc files can be tedious and subject to errors. The traditional method is to construct a transfer
file or execute FMGR commands, one at a time, from the keyboard.

The disadvantages of this method are:
e Building transfer files is time consuming and tedious.

e QOld transfer files are kept taying around consuming valuable disc space because the user feels they can be re-used and/or
re-editted. After saving a half-dozen or so, the user forgets why the files were saved.

e Files are purged because the user needs to save disc space.

Our objective is to design and develop a utility from information provided by the system. It has to be easy to use, save disc
space, be able to be reused, and be available to all users.

Using the information contained in a disc directory, one could develop a whole family of utilities to manipulate disc files. The
question is, how can we do this automatically with minimal user intervention? By examining the characteristics of the Edit/1000
sub-system, one will note that Edit/1000 will perform automatic editing when used in the batch mode. This means the editor
receives its commands from a “command file” or from the edit "run string”. Hence, the editor does not have to stop between
each command. The command files are user developed, oriented for a specific task, written only once, and are reusable. The
result of this technique is a "back door” compiler. Every time one of the utilities is executed it compiles a set of FMGR
commands in the form of a transfer file. When the transfer file completes its execution it is purged from the system.

The advantages to this method are:

e |t's available to all users (placed on LU 2/3 or any global cartridge).

e New utilities can be developed from existing utilities.

e Disc space is not consumed by unwanted transfer files.

e Has to be developed only once.

e Easy to use.

e Re-usable

¢ Nospecial FORTRAN or ASSEMBLY LANGUAGE programs are required. (They could be used for more flexibility or special
applications)

e Al software is designed around the disc directory.
The limitations are:
e More effective on large number of files.

e Limited to disc files.

61

BIT BUCKET

¢ Requires a reasonable knowledge of Edit/1000.

e All files must come from the same LU.

¢ File names cannot be re-named during the transfer process.

e Files with security codes may require more than one pass.

In outline form, the utilities are structured as follows:
e Request information from the user, e.g. LU.

e Create a temporary scratch file.

e Assign the scratch file as the list device.

e List the directory into the scratch file.

e User manually edits directory entries in scratch file.

e Edit/1000 converts contents of scratch file into FMGR commands.

e Executes “edited” transfer file.

e At termination the transfer file is purged from the system.

e List result/trail on terminal.

In reviewing the utilities below, one will see that various embellishments can be made. This is the whole idea of the concept,

building off existing software to fit your needs.

REFERENCES:

HP Edit/1000 User's Guide part # 92074-90001 pages 2-35 through 2-44. EXTENT Utility written by Dave Markwald, Hewlett

Packard, Bellevue, WA.

FLOW CHART:
CARTRDGE | | EDIT/
DIRECTORY 1000
\
Y y Y Y i Y
DISC TO DISC TO DISC TO PURGE COMPRESS OTHER
MAG TAPE CASSETTE DISC FILES FILE EXT USES

62

BIT BUCKET

The STORE FILES ON TAPE utility has been augmented with comments to explain the various steps. The other utilities are left
uncommented but are structured in a similar manner.

R AR R AR R R R AR R R R R RN R R R R R R R R R R R AR RN R R R R R R RN R R R R R R R R R R R AR R R R R R RRR AR RRERR
snnnnnnnnnnnnnnnrnnannnnnant U T I L I TIEG S #aasantansassttaatnttinttsntenssns
Iy Yy e Y Y Y Y NS)

RRRERRRRRRERRRRRRR S TORE FILES ON T AP E #saasnassasnnstsns

--- operator instructions-
:DP,> THE NAME OF THIS UTILITY IS “aSTT",
:DP,> WRITE DISC FILES ON MAGNETIC TAPE.

:DP,> TWO TRANSFER FILES ARE GENERATED FROM THIS UTILITY.

:DP,> THESE TRANSFER FILES ARE DERIVED FROM A USER SELECTED CARTRIDGE
:DP,> DIRECTORY. ONE TRANSFER FILE IS USED TO WRITE THE OTHER TRANSFER
:DP,> FILE ON TAPE AS FILE ONE, FOLLOWED BY THE USER FILES.

:DP,> THE FIRST FILE ON TAPE IS USED AS A DIRECTORY WHICH WHEN READ IN
:DP,> AND EXECUTED AS TRANSFER FILE WILL READ IN THE REMAINING FILES
:DP,> FROM TAPE. EACH FILE TRANSFERRED HAS THE SAME NAME AS ITS SOURCE
:DP,> FILE. THE CONTENTS OF FILE ONE ARE DISPLAYED ON LU 1.

:DP,> THIS UTILITY CAN TRANSFER DATA TO ANY CONVENTIONAL NON-DISC LU.
:DP,> NOTE THAT THIS UTILITY WAS DESIGNED FOR MAGNETIC TAPE.

:DP,> THE TAPE FORMAT IS WRITTEN USING FMGR ‘ST’ COMMAND AND
:DP,> USES THE DEFAULT FORMAT OF THE ‘ST’ COMMAND.

:DP,>

:DP,> CALLING SEQUENCE:

DP,>

:DP,> STEP 1 (TYPE) ::#STT (RETURN)
:DP,>» STEP 2 :SE,lu1,1lu2 (RETURN)
:DP,> STEP 3 : : (RETURN)

DP,>

:DP,> Where LU1 is the SOURCE LU, the cartridge containing the directory
:DP,> 1list. LU2 is the DESTINATION lu, usually set to a non-disc lu,
:DP,> such as LU 4,5,8,....

DP,>

:DP,> EXAMPLE:

:DP,> ::#STT (RETURN)

:DP,> :SE,:12,8 (RETURN)

:DP,> :: (RETURN)

DP,>

:DP,> ASSUMPTION: USER IS FAMILIAR WITH THE PAGE EDITOR.
DP,>

:DP,> THIS UTILITY WILL STAY IN THE EDITOR TO ALLOW THE USER TO
:DP,> CUSTOM EDIT THE “TRANSFER FILE"™, USUALLY DELETING THOSE
:DP,> DIRECTORY ENTRIES THAT YOU DO NOT WISH TO TRANSFER TO MAG

:DP,> TAPE.

:DP,>

:DP,> YOU MUST HAVE CAPABILITY OF 40 OR MORE TO EXECUTE THIS UTILITY.
DP,>

:DP,> MOUNT TAPE WITH WRITE RING.

63

BIT BUCKET

PAUSE

_________________ =

:CN, 16 !

:PU,X::12 {---> housekeeping to make sure temporary file doesn’t exist.
:PU,Y:z12 i

_________________ '

:CR,Y::12:4:256 ----> create a temporary scratch file.

sLL, VY12 ----> declare Y as the list device.

:DL, 26 ----> copy directory into scratch file,

:LL,1

:DP,> CUSTOM EDITING CAN NOW BE DONE,IF DESIRED,
:DP,> TYPE A COLON AND (RETURN) TO PROCEED.

:PAUSE

:RU,EDIT,Y::12,TR,STTO/ ----> edit command file STTO0 deletes BLKS &EXTENTS
:RU,EDIT,Y::12,1/1LN9999{1/ --> list directory, let user edit file.

:DP,>

:DP,> #ssssssss END OF CUSTOM EDITING s#sssnssszsnnns

:DP,>

:ST,Y::12,X::12 --> create second transfer file (used to copy files to tape).
:RU,EDIT,Y::12,TR,S5TT1/ --> creates tape xfer file 1. STT1 is the command file
:RU,EDIT,X::12,TR,STT2/ --> creates xfer file to write files on tape with STT2

:RU,EDIT,Y::12,8/1CI1:TRIER 1}---> housekeeping to close transfer files.
:RU,EDIT,X::12,8/1CII:TRJER |

:ST,Y¥::12,26 ----> write tape directory as file one on tape.
:SE,26,16,3G ----> set up the globals for X transfer file.
:X:.12 -=---> write files on tape.

:LI,Y::12 ---> list the contents of file one on terminal.
----------- H

:PU,X::12 3}----> purge temporary files from tape.
:PU,Y::12 1

:CN,26G ----> rewind tape.

;DP,> sssssnnsnsnnsnsss END OF TRANSFER #ssssnnsssnnnns
:Sv,0,,IH

64

BIT BUCKET

I I I R R I R Iy Y e e Y Y R YRR Y Y)
snnnnannnnnnnnnnnns E DI T C OMMAND F I LES S #2800 aastatnsastttsntsnsnns
AR R R AR R R R AR R R AR R R R R R R AR R AR R R AR R R AR R AR R R R R R R AR R AR R R R R BN R R AR R R AR R B RARRARR RN

IT IS ASSUMED THAT THE READER IS FAMILIAR WITH THE DIRECTORY FORMAT.

sxsnnss STTO DELETES ALL OCCURANCES OF ‘BLKS’ AND EXTENTS ssassssssssnssnss

SEREON ----> set reqular expression mode.

1¢ D/BLKS/AQ/ ----> deletes all occurances of the string "BLKS".

1¢ D/\+[0-9]1+ *$/AVQ/ ---> deletes all occurances of any extents lines.
ER

#ssss STT1 COMPILES TRANSFER FILE OF ‘ST’ COMMANDS, FOR TAPE DIRECTORY. ##ss

SEREON ----> set reqular expression mode
1 ----> go to line 1
1:5v,4,,IH ----> insert this command at line 1 in transfer file.

1¢ X/ «{[» 1#} »0<4>{[1-7)+}8/:5T7,16G,81::26:82:-1/Q/ ---> create FMGR commands
from directory. Name, length, and type are substituted into ST string.
:SV,4,,IH
1

MSTT3 ----> merge operator instruction into transfer file
$ ----> go to end of edit file.
_____________ =

:CN,1G6 H

:SE i---> insert these files at end of file.
:Sv,0,,IH H

#a#+ STT2 COMPILES TRANSFER FILE OF ‘ST’ COMMANDS,WRITES FILES ON TAPE. ##ss

SEREON ----> set regular expression mode.
1¢ X/ #{["» J#} 20<4>{[1-7)2} #0+{[”» 1#}8/:5T7,81::2G:82:83,16/Q/ ----> create
the FMGR ST commands from directory using the name, length, and type.

ER

#2ns STT3 USERS INSTRUCTIONS FOR FILE ONE ON TAPE. s#ssssssanssssnassatsass
THIS IS THE OPERATOR INSTRUCTIONS ON HOW TO READ FILES FROM
TAPE. IT CAN BE MODIFIED TO USERS NEEDS.

65

BIT BUCKET

:DP,> THIS UTILITY WILL TRANSFER FILES FROM SOURCE LU (I.E. MAG TAPE)
:DP,> TO DESTINATION LU (¢I.E. DISC),THEREFDRE THE USER MUST ENTER
:DP,> THE SOURCE AND DESTINATION LU.

:DP,> EXAMPLE: ASSUME THE MAG TAPE LU IS 8 AND THE DISK LU TO RECEIVE
:DP,> THE TAPE FILES IS 12. THEN ENTER AS FOLLOWS:

:DP,> :SE,8,12(RETURN)

:DP,> ::(RETURN)

: PAUSE

:CN,1G

:CN,1G,FF

:6v,0,,IH

sssass PRS1 CREATES A TRANSFER FILE TO COMPRESS FILES WITH EXTENTS #s#s

SEREON -~--> set regular expression mode..
1¢,D/BLKS/AQ/IER ~----> delete all occurances of the string “BLKS".
1¢$,D/\+001+ #$/AQ/}ER ----> deletes all extent lines.

1¢,X/ #{[» Ja} «{[~ J#} ={[”]} #{[~]J#} #{[~]+}@/::#EXTS,81,45,3G6/Q/-->
create a transfer file to compress extents using a nested utility.

ER

L E R R R R R R AR R R R R R R R R R R R R R R AR R R R RS R R R R R R R R R R R AR R R R R N R K]

snannnnnnnnannens END OF COMMAND F I LES #ssssnasnssssassssnsnns

I EEEEEEEERRERERRERREREREEERREEREREERERRRERERERERREREERREREREEERRRRRRERRERERRRERRRREEREE XN X J

66

BIT BUCKET

snsnnnnnsre TR ANGSFER FI1LES FROM crnT0O crn #srsssrassssnsnns

:1SVv,4,,IH
:DP,> THE UTILITY NAME 1S *»«STORE"™.
:DP,>

:DP,> THIS UTILITY WILL GENERATE A TRANSFER FILE WHICH WILL COPY
:DP,> SELECTED FILES FROM ONE DISC CARTRIDGE TO ANOTHER DISC
:DP,> CARTRIDGE. THE TRANSFER FILE IS COMPILED FROM THE DIRECTORY
:DP,> ENTRIES AND CONVERTED TO FMGR STORE COMMANDS (ST).

:DP,>

:DP,> CALLING SEQUENCE

:DP,>

:DP,> :#STORE Followed by :SE,lul,lu2 followed by :(RETURN).
:DP,>

:DP,> EXAMPLE: :#STORE

:DP,> :SE,12,13,sc

:DP,> : : (RETURN)

:DP,> Where 12 is source LU, and 13 is the destination LU.
:DP,> sc is the security code to be written on lu2.
:DP,> ASSUMPTION: USER IS FAMILIAR WITH PAGE EDITOR.

:DP,>

:DP,> YOU MUST HAVE A CAPABILITY LEVEL OF 40 OR MORE TO EXECUTE THIS
:DP,> UTILITY.

:DP,>

:DP,> THIS UTILITY WILL STAY IN THE EDITOR TO ALLOW THE USER
:DP,> TO CUSTOM EDIT THE TRANSFER FILE. DELETING THOSE

:DP,> DIRECTORY ENTRIES THAT YOU DO NOT WISH TO TRANSFER.

: PAUSE

:PK, 26

:PU,S....G::12

:CR,S....6::12:4:256

:LL,S....G::12

«DL,16G

L, 1

:DP,> CUSTOM EDITING CAN NOW BE DONE,IF DESIRED.
:DP,> TYPE A COLON AND (RETURN) TO CONTINUE.

: PAUSE

:RU,EDIT,S....G::12,TR,STTO/
:RU,EDIT,S....G::12,1/1LN9999} 1/

:DP,> sssvsnvns END OF CUSTOM EDITING w#eswvevesns
:RU,EDIT,S....G::12,SEREON{ 18 ,X/ «{(* 1+)8/:5T7,41::16,41:36G:2G,/Q/}ER
:RU,EDIT,S....G::12,8/1CII:TRIER

£:5....6::12

:PU,S....G::12

:DL, 26

:SE

:DP, #sssvssssssssss END OF FILE TRANSFER #*ssasssssssasvsus
:1SV,0,,IH

67

BIT BUCKET

LE X X X J

sansansass P URGE FROM CARTR I DGE #ssssssvssssnatasganss

:5v,4,,IH
:DP,> THE NAME OF THIS UTILITY IS *“»*PURGE"™
:DP,)>
:DP,> THIS UTILITY WILL PURGE A SET OF USER SELECTED FILES, FROM DISC,
:DP,> BY EDITING THE DIRECTORY, CONVERTING THE DIRECTORY ENTRIES TO
:DP,> A TRANSFER FILE CONTAINING PURGE COMMANDS. AFTER THE TRANSFER FILE
:DP,> IS EXECUTED THE DISC CARTRIDGE IS PACKED.
:DP,>
:DP,> CALLING SEQUENCE
:DP,>
:DP,> :+PURGE Followed by :SE,lu,SC followed by :(RETURN).
:DP,>
:DP,> EXAMPLE: ::+PURGE
:DP,> :SE,23,5¢ Where 23 is cartridge containing the files to
:DP,> be purged, SC IS THE SECURITY CODE IF REQUIRED.
:DP,> : : {RETURN)
:DP,>
:DP,> ASSUMPTION: USER IS FAMILIAR WITH PAGE EDITOR.
:DP,>
:DP,> THIS UTILITY WILL STAY IN THE EDITOR TO ALLOW THE USER
:DP,> TO CUSTOM EDIT THE "“TRANSFER FILE*. DELETING THE DIRECTORY ENTRIES
:DP,> OF THE FILE YOU DO NOT WISH TO PURGE.
:DP,>
:DP,> YOU MUST HAVE CAPABILITY QOF 40 OR MORE TO BE ABLE TO EXECUTE
:DP,> THIS UTILITY.
: PAUSE
:PU,S....P::12
:CR,S....P::12:4:256
:LL,S....P::12
:DL,16
sLL,1
:DP,> ANY CUSTOM EDITING CAN BE DONE NOW,IF DESIRED,
:DP,> IF NOT,0R TO RESUME, ENTER "“ER".
:RU,EDIT,S....P::12,TR,STTO/
:RU,EDIT,S....P::12,1/1LN9999}1/
:DP, #ssssssss END OF CUSTOM EDITING #esssnusse
:RU,EDIT,S....P::12,SEREONI1$,X/ #{[~ 1+}®/:PU,&1:2G:1G//ER
:RU,EDIT,S....P::12,$/4Ct1:PK,1G{1:TRIER
:+:S....P::12
:PU,S....P;::12
+DL,1G,XX ----> WHERE XX IS YDUR MASTER SECURITY CODE.
:DP, #sssnsssnnsvene END OF PURGE s#svsssnunnssssnnnns
: SE
»»IH

:5Vv,0

68

BIT BUCKET

Computer
Musetin

snnnnnnnnnnnnnsr C OMPRESS EXTENTS T I I s I YI YY)

+SVv,4,,IH
:DP,> THE NAME OF THIS UTILITY IS *"«PRESS".
:DP,>

:DP,> THIS UTILITY WILL COMPRESS EXTENTS IN A SPECIFIED CARTRIDGE. USES
:DP,> CARTRIDGE DIRECTORY LISTING TD BUILD A SET DOF COMMANDS TO COMPRESS
:DP,> ANY OR ALL EXTENTS THAT MAY APPEAR IN A GIVEN CARTRIDGE. THIS PROCESS
:DP,> ALLOWS THE SYSTEM TO RECLAIM UNUSED SPACE ON THE SPECIFIED

:DP,> CARTRIDGE.

:DP,>

:DP,> CALLING SEQUENCE:

:DP,>

:DP,> STEP 1 (TYPE) :+PRESS (RETURN)

:DP,> STEP 2 :SE,lu1l (RETURN) (CARTRIDGE TO COMPRESS EXTENTS)
:DP,> STEP 3 : (RETURN)

:DP,>

:DP,> Where lul is the LU to compress EXTENTS.

:DP,>

:DP,> EXAMPLE:

:DP,> 1 :#PRESS (RETURN)

:DP,> ::SE,12 (RETURN)

:DP,> :: (RETURN)

:DP,>

:DP,> ASSUMPTION: USER IS FAMILIAR WITH THE PAGE EDITOR.
:DP,>

:DP,> YOU MUST HAVE CAPABILITY DF 40 OR MDRE TO EXECUTE THIS UTILITY.
:DP,>

:DP,> IF THERE ARE NO EXTENTS IN THE CARTRIDGE, THEN THE UTILITY
:DP,> WILL STOP IN THE EDITOR; ENTER * ER AND return’ TO CONTINUE.
:DP,> THE CONTENTS OF THE CARTRIDGE ARE NOT CHANGED IF THIS CONDITIDN
:DP,> EXISTS. THIS IS AN EDIT CDONSTRAINT.

:DP,>

:PAUSE
tPU,Y::12
:CR,Y::12:4: 256
sLL,Y::12
:DL,1G, XX

:LL,1

:RU,EDIT,Y::12,TR,PRS1/
tRU,EDIT,Y::12,8/iCI1:TRIER

:CA,3,16G

t:Y::12

:18V,4,,1IH

:PK, 36

1PU,Y::12

:DL, 3G

:SE

:DP,> RRARRRERRRARRRRNS END OF COMPRESSION #assasnssnansnas

:Sv,0,,IH

69

BIT BUCKET

shannnnsnnnnnnnnant DELETE E X TENTS #a8atatantastatatasssnssnrsnsstas

(This is nested into utility #PRESS)

:SV,4,,IH,*+ FILE EXTENTS DELETE FEB. 1982 D. MARKWALD NSR-BELLEVUE
MR R

1ee TR,+EXTS,FILE NAME,SC,CRNI,NEW SC1]
c22 0OR teEXTS, ittt i it it i it s e e
XY

:#+ GLOBAL USAGE

e 1G - FILE NAME

Y 26 - ORIGINAL FILE SECURITY CODE

HE X 3G - CRN(C+) OR LUC-)

e 4G - OPTIONAL NEW FILE SECURITY CODE
1 6P - CURRENT FMGR ERROR

o2 -24P - 4G’S TYPE

XY

:IF,-24P,GT,0,1

:CA,4,26

:+2 DP,1G,26,36G,4G,-24P

:CA,6:P,0

:PU,)TMPEX: 2G: 3G

:1F,6P,EQ,0,1

:IF,6P,NE,-6,9

:CA,6:P,0

:PU,)TMPEX: 4G: 3G

:1F,6P,EQ,0,1

:1F,6P ,NE,-6,4

:CA,6:P,0

:8T7,16:26:3G,)TMPEX:4G:3G:: -1
:1F,6P,EQ,0D,4

:PU,)TMPEX: 4G: 3G

:PU,)TMPEX: 2G: 3G

:DP,#EXTS FMGR ERROR

:CA)G:P,O
:PU,16G:26G: 3G
:IF,6P,NE,0,-7
:RN,)TMPEX:4G: 36,16
:SE

:Sv,0,,IH

70

BIT BUCKET

AR R R R R R R B R R R R R R R R RN R R R R R AR R R R R R R R R R R R R R R R BB R AR R R RN R RN AR R R RN AR RBRRRRRNR S
sngnnnnnnnnnnnnnnnnsnnnst EXAMPLE TRAIL OF "#4PRESS! #4442t 4285850888550 808088
R BN R R R R R AR RN R RN R R R R R B R R B R AR R R AR R R RRBRBRRRS

The following text is what one would see on the CRT during execution of
this utility.

: #+PRESS
THE NAME OF THIS UTILITY IS "«PRESS".

THIS UTILITY WILL COMPRESS EXTENTS IN A SPECIFIED CARTRIDGE. USES
CARTRIDGE DIRECTORY LISTING TO BUILD A SET OF COMMANDS TO COMPRESS
ANY OR ALL EXTENTS THAT MAY APPEAR IN A GIVEN CARTRIDGE. THIS UTILITY
ALLOWS THE SYSTEM TO RECLAIM UNUSED SPACE ON THE SPECIFIED

CARTRIDGE.

CALLING SEQUENCE:

STEP 1 (TYPE):+PRESS (RETURN)
STEP 2:SE,lul (RETURN) (CARTRIDGE TO COMPRESS EXTENTS)
STEP 3:(RETURN)

Where lutl is the LU to compress EXTENTS.

EXAMPLE:
:: #PRESS (RETURN)
::SE,12 (RETURN)
: 1 (RETURN)

ASSUMPTION:USER IS FAMILIAR WITH THE PAGE EDITOR.

YOU MUST HAVE CAPABILITY OF 40 OR MORE TO EXECUTE THIS UTILITY.
IF THERE ARE NO EXTENTS IN THE CARTRIDGE, THEN THE UTILITY
WILL STOP IN THE EDITOR; ENTER ’ ER AND return’ TO CONTINUE.

THE CONTENTS OF THE CARTRIDGE ARE NOT CHANGED IF THIS CONDITION
EXISTS.

VVVVVVVFVVVVYVYVVVVVVYyVVVVVVVYVVVYY

v

: PAUSE
:SE, 32

71

BIT BUCKET

SET UP YOUR 2608 LINE PRINTER

by Linnea L. Fort/Central lowa Power
Co-op, Cedar Rapids, ID

This program deals with the HP 2608 line printer using driver DVB12 and is run on an HP 1000 computer.

SETPR PROGRAM

This program sets up the 2608A line printer to the operator's specifications. It will:

set or clear “auto page eject”
set lines per inch (6 or 8)

set paper length (in inches)
set vertical margin

set horizontal margin

set normal or double size print

S

The program lists defaults at beginning of program. To default any parameter, hit return key.
To inhibit top-of-page on your 2608A printer, clear “auto page eject”.

The printer will remain set to the specified parameters, until:

power on switch on 2608A printer is turned off

baot-up

reset button on 2608A printer is pushed
re-run SETPR program

B -

This program comes in handy for legal sized forms or any form that is not 11 inches in length. Inhibiting T7-O-P comes in handy
for printing labels. Resetting horizontal margins comes in handy for vertically perfed paper where your 1st column starts to the
left of that perforation. The applications are merous.

This program can be put in your WELCOM file, if it is to be used a lot.

FTN4,L
c
PROGRAM SETPR
c
c
c 05/07/81 RTE-IVB LINN FORT - CIPCO
c REVISED /7
c
c SOURCE - SETPRS::CR
c RELO - SETPRR::CR
c
c COMPILE: RU,FTN4,SETPRS::CR,6,SETPRR::CR
c LOAD: RU,LOADR, ,SETPRR::CR, ,NL

76

BIT BUCKET

c
c THIS PROGRAM SETS UP THE PRINTER TO OPERATOR’S SPECIFICATIONS.
c
c (1) SETS OR CLEARS AUTO PAGE EJECT
c (2) SETS LINES PER INCH
c (3) SETS PAPER LENGTH
c (4) SETS VERTICAL MARGIN
c (5) SETS HORIZONTAL MARGIN
c (6) SETS DOUBLE SIZE PRINT
c
c TO RESET PRINTER TURN POWER SWITCH OFF, THEN ON OR RE-BOOT
c
DIMENSION IBUFAC127),MARG2(16)
c
DATA MARG2 /00B,
1 01B,
1 02B,
1 03B,
1 04B,
1 0SB,
1 0eB,
1 07B,
1 10B,
1 11B,
1 12B,
1 13B,
1 148,
1 15B,
1 16B,
1 17B/
c
ILU=6
ILPI=6
ALNGTH=11.0
MARGIN=6
IMARG=1
c
C-----.-----..------.-----.'--...--.-----:-.--....'.......'..
WRITEC1,1)
1 FORMAT(//"THIS PROGRAM SETS PARAMETERS ON THE 2608A LINE",
1 PRINTER",//,5X,"DEFAULTS ARE:",//,
1 7X, M"PRINTER LUV = &",/,
1 7X, ™"AUTD PAGE EJECT = SET*»,/,
1 7X, “LINES PER INCH = 6",/,
1 7X, “PAPER LENGTH = 11 INCHES",/,
1 7X, "“WERTICAL MARGIN = B6",/,
1 7X, "HORIZONTAL MARGIN = 1%,/,
1 7X, “PRINT SIZE = NORMAL')
c ...
S WRITE(1,10)
10 FORMATC//,"ENTER PRINTER LU ? _*")
c
READC1,#) ILU
c ...
15 WRITE(C1,20)
20 FORMAT(*AUTO PAGE EJECT (SET OR CLEAR) ? _")
c

READ(1,25) I1AUTD
25 FORMAT(A2)

77

BIT BUCKET

c
IFCIAUTO.EQ.2H) [AUTO=2HSE
c
IFCIAUTO.NE.2HSE .AND. TAUTO.NE.2HCL) GO TO 15
cC ...
30 WRITEC1,35)
35 FORMAT(™ENTER LINES PER INCH (6 OR 8) 2?2 _")
c
READ(1,+) ILPI
(o
IFCILPI.EQ.8) ILINE=000B
IFCILPI.EQ.8) ILINE=200B
(o
IFCILPI.NE.6 .AND. ILPI.NE.8) GO TO 30
C
IFCIAUTO.EG.2HSE)Y WRITE(1,40)
40 FORMAT(™ENTER PAPER LENGTH C(IN INCHES) 2 _*)
o
IFCIAUTO.EQ. 2HSE) READC1,+) ALNGTH
cC .
IFCIAUTO.EQ.2HSE)Y WRITEC1,50)
50 FORMAT("ENTER VERTICAL MARGIN LINES 2?2 _*)
c
IFCIAUTO.EQG.2HSE)Y READ(1,#*) MARGIN
c ...
75 WRITEC1,80)
80 FORMAT('"ENTER HORIZONTAL MARGIN (1-16) ? _™)
c
READ(1,+) IMARG
c
IFCIMARG.LT.1 .0OR. IMARG.GT.16) GO TO 75
cC ...
85 WRITE(C1,90)
90 FORMAT('NORMAL OR DOUBLE SIZE PRINT 2?2 _'™)
c
READ(C1,25) ISIZE
IFCISIZE.EQ.2H) ISIZE=2HNO
IFCISIZE.NE.2HNO .AND. ISIZE.NE.2HDO)Y GO TO 85
C
Y T T T T T T O g O O O G R G R G Gl e R S e
o) »
c COMPUTE ALL FACTORS »
o) .
Gt R R R R R R R R R R R AR R R R R R R AR AR RN RN R RN RN RN RN R AR RN RN RN
c
c
c COMPUTE LINES PER PAGE
c
LPPAG1 = ALNGTH » ILPI
c
c LINES PER PAGE CANNOT EXCEED 127
c
IFCLPPAG1.GT.127) GO TO S
C
c COMPUTE PRINTABLE LINES
c
LPPAG2 = ALNGTH » ILPI - MARGIN
c
c MAKE SURE PRINTABLE LINES IS = QR < 0

78

BIT BUCKET

OO0 e Ne Nyl OO0 e XNeNoNeNel OO0

OO0

100

200

Computer
Museum

IFC(LPPAG2.LE.1)> GO TO S5
FIGURE I[BUFL
IBUFL = ILINE + LPPAGH
SET UP IBUFA BUFFER FOR PRINTER

"“TOP-0F-PAGE' SWITCH
IBUFAC1) = 5B

“PRINT ON THIS LINE" SWITCH
DO 100 I=2,LPPAG2-1
IBUFACI) = 4B
CONTINUE

"BOTTOM LINE"™ SWITCH
IBUFACLPPAG2) = 6B

“DON’T PRINT ON THIS LINE* SWITCH
DO 200 I=LPPAG2+1,LPPAG1
IBUFACI) = 0B
CONTINUE

SET UP 2608A PRINTER

CALL EXEC(2,1000B+ILU,IBUFA,IBUFL)
CALL EXEC(3,2100B+ILU,MARG2CIMARG))
IFCISIZE.EQ.2HDO) CALL EXEC(3,3000B+ILU,1)
IFCISIZE.EQ.2HNO) CALL EXEC(3,3000B+ILU,0)
IFCIAUTO.EQ.2HCL) CALL EXEC(3,1100B+ILU,65)
IFCIAUTO.EQ.2HSE) CALL EXEC(3,1100B+ILU,64)

END
ENDs

79

BIT BUCKET

1351A GRAPHICS GENERATOR WITH A 21MXM COMPUTER IN RTE-IVB

K.H. Kitching, J. Robinson/Canadian Forces Maritime
Nanoose, British Columbia

The first introduction to any graphics system is to draw something on the screen to establish communication with the device. In
our case it consisted of a Mexican hat containing 740 vectors. Our first experience was extremely disappointing since although
the control language is relatively simple and easy to learn, and the commands do exactly what the book says they should do, it
took 15.8 seconds to draw the picture. The following article outlines procedures which have been adopted to improve this
performance to the point where even an M series computer can draw the picture in .6 seconds.

The most important thing to learn is that groups of instructions should be pre-packaged into an array in computer memory and
then transmitted as a block to the graphics generator. This reduced the time consumed from 15.8 to 6.3 seconds. The time
saved was entirely consumed in handshakes between the graphics generator and the computer. The next major step forward is
to use the sub-routine "CNUMD” to convert numbers to ASCII in lieu of the formatter. This further reduced the time required to
draw the picture from 6.3 seconds to 2.0 seconds. The final maneuver which can only be used for static information is to
pre-package the ASCIl command string in a disc file. The total time required to open the file and transmit the picture to the
screen was .6 seconds.

One final point to remember is that the graphics generator receives its information on the IEEE-488 interface bus and the
configuration of this bus can affect the presentation and the time consumed. When transmitting the picture from an ASCII disc
file, the visual presentation is instantaneous if the bus is configured for direct memory access. The picture takes a visible
fraction of a second to appear if the bus is configured without direct memory access. Configuring the bus for DMA can be
accomplished from the file manager as follows:

:CN,LU,25B,37000B

Further experimentation showed that the bus should not be configured for DMA when the vectors are being transmitted
individually. In this case it raised the total time from 15.8 to 18.4 seconds, obviously considerably complicating the transmission
protocols.

DESIGN OBJECTIVES OF A FILE SYSTEM

Our computer system is used to control a real time test environment using 3 electronic counters, a signal synthesizer, an
arbitrary waveform generator and a 96-channel multiplex A/D converter. It aiso uses a 5451B Fourier Analyzer as a satellite.
Displays on the graphics generator are scheduled by event, by time, by operator control, and by request from the satellite. The
variety of displays is evolving rapidly. It soon became apparent that some system was required to make the file structure of the
graphics translator transparent to the operator and the programmer. The best approach would be to allow the system manager
to experiment with different file configurations without requiring any of the display generating programs to be recompiled. All of
these objectives were achieved by use of a program which is scheduled by each program desiring to display on the graphics
generator. The calling program defines by parameters what it requires and the "son” returns a parameter string defining the file
number, the number of files in the group assigned and the start location of each file assigned. In our current system the file
structure is related to the functions by the system manager. A fairly simple extension of this system would allow the computer to
make dynamic allocations similar to the current RTE partition allocations.

A control program has been written for the operator which allows him to define which pattern will be displayed on any or all
graphics screens. This control program determines the file structure by scheduling the “son” and displays, inhibits, or erases
the appropriate file or group of files by an operator function definition without the operator being aware of the file structure or
even necessarily that there is a file structure.

80

BIT BUCKET

A FAST SUBROUTINE

To illustrate these principles first is a subroutine for plotting a prescaled array. This subroutine transmits a prepackaged array
without using the formatter. The integer array to be plotted consists of NUM points each defined by a prescaled x and y pair.

FTN,L

CaKK#
C
C
C
C
C
C
c
c
c
C
C
C

5
c
c
C

10

20
c
C
C

SUBROUTINE VLINCIFL,IAR,NUM), PLOT LINE VECTOR GRAPHICS 811209.1308
PLOT AN ARRAY ON THE 13S1A GRAPHICS GENERATOR

IFL DEFINES THE START LOCATION IN GRAPHICS TRANSLATOR MEMORY

IAR IS A PRESCALED ARRAY OF XY POINTS

NUM IS THE NUMBER OF VECTORS IN THE ARRAY LIMITED BY I0UT TO 100
DIMENSION IAR(C2,NUM),IBUF(6),IBF(3),10UT(613),IFMT(19)

DATA IFMT/’:FL ,:PEQ,:PA » s 1PE1,:PA‘/

ENCODE THE START LOCATION

CALL CNUMDCIFL,IBF)
IFMT(3)=1BF(2)
[FMT(4)=1BF(3)

ENCODE THE FIRST POINT TO BE PLOTTED WITH PEN UP

CALL CNUMD(CIAR(C1,1),IBF)
IFMTC10)=1BF(2)
IFMTC11)=1BF(3)
CALL CNUMD(CIAR(2,1),1BF)
IFMTC13)=1BF(2)
IFMTC14)=1BF(3)

STORE THE ENCODED STRING IN THE ARRAY FDR LATER OUTPUT

DO S N=1,19
IOUTCN) =TFMTCN)
KK=19

ENCODE THE REST OF THE ARRAY TO BE PLOTTED WITH PEN DOWN

IBUF(3)=2H,

IBUF(B)=2H;

DO 20 N=2,NUM

CALL CNUMD(CIARC1,N)>,I1BF)
IBUF(1)=1BF(2)
IBUF(2)=1BF(3)

CALL CNUMDCIARC2,N),IBF)
IBUF(4)=1BF(2)
IBUF(S)>=IBF(3)

DO 10 M=1,6

[OUTCM+KK) =1BUF (M)
KK=KK+6

CONTINUE

PASS THE ENCODED ARRAY TO THE GRAPHICS TRANSLATOR FOR PLOTTING

CALL EXEC(2,23,I10UT,KK)
END

81

BIT BUCKET

A TRANPARENT FILE SYSTEM

Next we present the program VFL which on a menu basis allows initialization and control of the graphics transtator.

FTN4,L
PROGRAM VFL(3,99), 811209.1308
C++JR+ CONTAINS VECTOR GRAPHICS FILE STRUCTURE AND ALLOCATION

C PERIPHERALS. VECTOR GRAPHICS SYSTEM 1351A WITH TWO DISPLAYS.
c 1317A AND 1311B.
c
c
C PARAMETERS. 1. -1 FOR NO OUTPUT IEX
c 2. MENU ITEM 1VM
c 3. DISPLAY MENU 1DM
c 4
c S. SEARCH VALUE
c
C FILE CONFIGURATION IS LODADED INTO COMMON 201 AT INITIALIZATION
c
C DATA IVF PARAMETERS. FILE NUMBER, STARTING LOCATION, MENU ITEM, MNEMONIC
C IvM IS POSITION IN THE MENU LIST
C IDM IF THE FUNCTION MENU ITEM
c
c
DIMENSION IVF(68),IP(5),1ARC1000)
DATA IVF/1, 1, 1,2HSS,
2 2,1001, 2,2HHD,
3 3,1601, 3,2HI1,
4 4,2601, 3,2HI2,
5 §,3201, 6,2HWF,
6 6,7201, 4,2HD1,
7 7,7401, 4,2HD2,
8 8,7501, 4,2HD3,
9 9,7601, 5,2HF1,
A 10,7801, 5,2HF2,
B 11,7901, S,2HF3,
c 12,8001, 9,2HT1,
D 13,8046, 9,2HT2,
E 14,8091, 9,2HT3,
F 15,8136,10,2HC1,
G 16,8181,10,2HC2,
G 0,8121,0,-99 /
CALL RMPARCIP)
LU=LOGLUCIDUMMY)
IETX=1400B
IEX=1PC1)
IFCIPC2).6T.0) GO TO S0
c

C INTERACTIVE

82

BIT BUCKET

20 WRITECLU,25)

25 FORMAT(4X ,"VECTOR GRAPHICS MENU“,/,
1 10X,"1, SYSTEM STATUS ", /,
2 10X,"2. DATA HISTORY “,/,
3 10X,"3. 3D IMAGES ./,
4 10X,"4. DIRECTION FINDERS ",/,
s 10X,"5. SPECTRA ",/,
e 10X,"6. WATERFALL DISPLAY *,/,
9 10X,%9. TIMERS ",/
A 9Xx,"10. CLOCKS ",/
B 9X,"11. ALL FUNCTIONS v,/
c 9x,"12. INITIALIZATION DATA",/,
D 9X,"13. INITIALIZATION v,/
e 9X,"14. DEMONSTRATION FILES"™,/,
F 9X,"15. SEARCH FOR A MNEMONIC*,/,
G 9Xx,"99. EXIT PROGRAM®™)
30 WRITECLU,’(2X,"ENTER THE DISPLAY MENU ITEM REQUIRED - _")")

CALL INPUTCO,IPC2),1,LU,=30)

S0 IVM=]P(2)
IFCIVM.EQ.99)

GO TO 8000

IFCCIVM.LT.1).0R.CIVM.GT.15)) GO TO 7000
IFCIVM.EQ.12) GO TD 1200
IFCIVM.EQ.13) GO TO 1300
IFCIVM.EQ.14) GO TO 1400
IFCIVM.EQ.15) GO TO 1500
IFCIPC3).GT.0) GO TO 100

60 WRITE(LU,65)

65 FORMAT(15X,"1.
15X,%2.
18X,"3.
18X,m4,
15X,"5.

nswn -~

14X,%99,
70 WRITECLU,’C10X,"ENTER THE ONE REQUIRED - _*")“)

LARGE DISPLAY ONLY"™,/,
SMALL DISPLAY ONLY",/,
BOTH DISPLAYS",/,
NONE™,/,

ERASE THE FILE"™,/,
RETURN TOQ MAIN FILE™

CALL INPUT(O0,IP(3),1,LU,»70)

100 IDM=IP(3)

IFCIDM.EQG.99) GO TO 7000
IFCCIDM.LT.1).0R.CIDM.GT.S)>) GO TO 60

IFCIDM.EQ.1) JDM=2

IFCIDM.EG.2) JDM=1

IFCIDM.EQ.3) JDM=0
IFCIDM.EQ.4) JDM=3

IFCIVM.EQ.11) GO TO 1100
IFCIDM.EQ.5) GO TO S00

WRITECLU, *C*:FF",12,%,:BF,:WX*,I1,%,:UF",12,",:SX,:")’)

WRITEC23,’(":FF",12,", :BF,:WX",I1,",:UF",[2,",:5X,:")’)

c
C CHECK FILE FOR MNEMONIC
c
DO 150 1=0,15
IFCIVF(I#4+3) . NE.IVM) GO TO 150
1IVF(I#4+1),JDM, IVF(I#4+1)
1IVF(I#4+1) ,JDM,IVF(I#4+1)
150 CONTINUE
GO TO 7000
c

C ERASE A FILE

83

BIT BUCKET

c
S00 DO 510 I=0,1S
IFCIVF(I*4+3).NE.IVM) GO TO 510
WRITEC23, (":EF"™,12,",:")’) IVF(I#4+1)
510 CONTINUE
G0 TO 7000
c
C HANDLE ‘ALL FILES”
c

1100 IFCIDM.EQ.S) GO TO 1150
1120 DO 1130 I=0,15
WRITEC23, (":FF", 12, ,:BF, : WX, I1,*,;UF*",12,",:SX,:*)’)
1IVFCI#4+1) ,JDM,IVF(I#4+1)
1130 CONTINUE
GO TO 7000
1150 DO 1160 1=0,15
WRITEC23, (" EF*",12,%",:%)*) IVF(I#»4+1)
1160 CONTINUE

GO TO 7000
c
C INITIALIZATION DATA
c

1200 DO 1210 I=0,15
WRITECLU,“C4X,"“FILE ",I2," INITIALISED FROM *,14, TO *",14)’)
1IVFCI#4+1) ,IVF(I#4+2) ,IVF(I#*4+6)-1

1210 CONTINUE

GO TO 7000
c
C INITIALIZATICN
c

1300 CONTINUE
CALL LURQGC1,23,1)
CALL CNFG(23,1,37000B)
WRITEC23,’CA2,":EM,:EN,:EX,:SN,:SX,:UM,:*)’) 1424B
DO 1310 N=1,1000,4
IAR(N)=2H:P
IARCN+1)=2HAD
IAR(N+2)=2H,0
1310 IAR(N+3)=2H;
DO 1340 I1=0,15
WRITEC23, (" :FL",[4,",:NF",12,",:PEQ,")’) IVF(I#4+2),IVF(Ix4+1)
N=CIVF(I#4+6)-IVF(124+2))+4
1320 IFC(N.GT.1000)THEN
CALL EXEC(2,23,IAR,1000)
ELSE
CALL EXEC(2,23,IAR,N)
ENDIF
N=N-1000
IF(N.GT.0)GO TO 1320
WRITE(C23, “(*:SN,")>")
1340 CONTINUE
CALL LURQCO0,23,1)
G0 TO 7000

84

BIT BUCKET

c
C DEMONSTRATION FILES
c
1400 CALL LURG(C1,23,1)
WRITE(C23,/(":CS1,:"))
DO 1450 IVM=1,10
DO 140S I=0,15
IFCIVF(I+4+3).EQ.IVM) GO TO 1406
1405 CONTINUE
WRITECLU,’("THERE IS NO FILE FOR ITEM *,12)’) IVM
1406 IFN=IVF(I#4+1)
IVP=800-1VM#75
GO TO (1411,1412,1413,1414,1415,1416,1450,1450,1419,1420) IVM
1411 WRITE(C23,’("FF",12,",:PE0,:PA200,",13,";:PE1,:TX 1. ",
1w SYSTEM STATUS*,A1,*,:')’) IFN,IVP,IETX
GO TO 1450
1412 WRITE(23,’("FF",12,",:PE0,:PA200,",13,";:PE1,:TX 2. *
1" DATA HISTORY ",A1,",:")>’) IFN,IVP,IETX
GO TO 1450
1413 WRITEC23, ' ("“FF",12,",:PE0,:PA200,",13,";:PE1,:TX 3.
1* 3D IMAGES",A1,",:")’) IFN,IVP,IETX
GO TO 1450
1414 WRITE(23,(""FF*",12,",:PE0,:PA200,",13,";:PE1,:TX 4. *
1" DIRECTION FINDERS"™,A1,*,:")’) IFN,IVP,IETX
GO TO 1450
1415 WRITEC23,’("FF*,12,",:PEO,:PA200,",I3,";:PE1,:TX 5. *
1 SPECTRA"™,A1,"”,:")’) IFN,IVP,IETX
GO TO 1450
1416 WRITE(23,’("“FF",12,",:PE0,:PA200,",I3,";:PE1,:TX 6.
1" WATERFALL DISPLAY*™,A1,",:")‘) IFN,IVP,IETX
GO TQ 1450
1419 WRITE(23,’/("FF*»,12,",:PEO0,:PA200,",13,";:PE1,:TX 9. *
1" TIMERS"™,A1,",:")’) IFN,IVP,IETX
GO TO 1450
1420 WRITEC23,’(*"FF",12,",:PED,:PA200,",13,";:PE1,:TX10. *
1 CLOCKS*,A1,",::PE0,:")’) IFN,IVP,IETX
1450 CONTINUE
CALL LURQ(0,23,1)
GO TO 7000
c
C RETURN THE BUFFER
c
1500 NUM=0
DO 1510 I=15,0,-1
IFCIANDCIP(5),177400B) .NE. IANDCIVF(1#4+4),177400B))G0 TO 1510
NUM=NUM+ 1
INUM=]
1510 CONTINUE
IVF(67)=NUM
IFCNUM.NE.O) IVF(68)=1NUM
CALL EXEC(14,2,IVF,68)
GO TO 7000
7000 IFCIEX.EQ.-1) GO TO 8000
IP(3>=0
GO TO 20
8000 CALL EXEC(6,0)
END

85

BIT BUCKET

Next we present a simple program using this system.

FTN,L
PROGRAM TVLIN

C#KK#+ ILLUSTRATE USE OF VLIN AND VFL
DIMENSION IBUF(2,100),NVFL(3),IVF(68)
DATA NVFL/‘’VFL '/
LU= LOGLUCID)

c
c RUNP SCHEDULES VFL WITH WAIT AND ASKS FOR AREA KK
c
CALL RUNPCLU,9,NVFL,-1,15,0,0,2HKK,N,0)
CALL EXECC(14,1,IVF,68)
I=IVF(68) 'l IS THE LINE IN IVF CONTAINING KK
IFCI.EQ.-99)THEN !THE AREA ASKED FOR IS NOT DEFINED
WRITECLU, *("VECTOR GRAPICS AREA ',A2,'" IS NOT DEFINED")’)IVF(67)
GO TO 100
ENDIF
IFL=IVF(I#4+2) 'IFL IS THE START LOCATION
c
c SET UP SOME DEMO DATA
c
DO 10 N=1,100
IBUFC1,N)=N#10
10 IBUF(2,N)=600+N
c
c PLOT THE ARRAY IBUF
c
CALL VLINCIFL,IBUF,100)
100 END

86

BIT BUCKET

And finally a handy little subroutine which schedules the program even if it is not memory resident.

FTN4,L

SUBROUTINE RUNP(LU,ICODE,NAME,IP1,I1P2,IP3,1P4,IPS,IST,NST), PROGRA
1M SCHEDULER 811209.1308

C++JR#+ROUTINE TO RUN A PROGRAM WHICH MAY NOT BE AVAILABLE

e NoNoRNoNesNoNoNoNoNo NN/

IT SHOULD REPLACE A PROGRAM NOT IN THE ID LIST
ERROR MESSAGES PRINTED ON THE GIVEN LU

LV - LOGICAL UNIT NUMBER OF THE CALLING TERMINAL

ICODE - THE EXEC SCHEDULING CODE. 9,10,23,249 ALLOWED

NAME - PROGRAM NAME. A THREE WORD ARRAY

IP1 TO IPS5 ARE S5 INPUT PARAMETERS

IST - THE ASCII STRING TO BE PASSED. DO NOT DEFAULT TO 0 USE IST
NST - NUMBER OF WORDS IN THE STRING IST

WARNING. DO NOT DEFAULT ANY PARAMETERS. USE ZERO EXCEPT FOR IST.

DIMENSION NAME(3),IST(1),IDCB(144),IDT1¢17),IDT2(15),1DT3(12),
1LERC(D)
DATA IDT1/’RUNP ERROR MESSAGE NAME 1AIB’/
DATA IDT2/’/RUNP - OPEN ERROR IERR NAME 7 /
DATA IDT3//RUNP - IDRPL ERROR IER”/
10 CALL EXECCICODE+100000B,NAME, IP1,IP2,IP3,1P4,IP5,IST,NST)
GO TO 100
20 CONTINUE
RETURN

100 CALL ABREG(IA,IB)

IFCCIA.EQ.2HSC) .AND.(IB.EQ.2H05)) GO TO 200
IDT1C11)=NAMEC1)

IDT1(12)=NAME(2)

IDT1C(13)=NAME(3)

IDT1¢16)=1A

IDT1(17)=1B

CALL EXEC(1,LU+400B,IDT1,17)

RETURN

200 CALL OPENCIDCB, IERR,NAME)

IFCIERR.GE.O0) GO TO 220

CALL CNUMDCIERR,LER)
IDT2¢10)=LER(C2)
IDT2C¢11)=LER(3)
IDT2C¢13)=NAME(1)
IDT2¢14)=NAME(2)
IDT2¢(15)=NAMEC3)

CALL EXEC(C1,LU+400B,IDT2,15)
RETURN

220 CALL IDRPLCIDCB, IER,NAME)

IFCIER.NE.O) GO TO 220
CALL CLOSECIDCB)
GO 70 10

240 CALL CNUMDCIER,LER)

IDT3C11)=LER(2)
IDT3(12)=LER(3)

CALL EXEC(1,LU+400B,IDT3,12)
RETURN

END

87

BULLETINS

JOIN AN HP 1000 USER GROUP!

Here are the groups that we know of as of December 1980. (If your group is missing, send the Communicator/1000 editor all of
the appropriate information, and we'll update our list.)

NORTH AMERICAN HP 1000 USER GROUPS

Area User Group Contact

Arizona Jim Drehs
7120 E. Cholla
Scottsdale, Arizona 85254

Boston LEXUS
P.O. Box 1000
Norwood, Mass. 02062

Chicago David Qlson
Computer Systems Consultant
1846 W. Eddy St.
Chicago, lllinois 60657
(312) 525-0519

Greenville/S. C. Henry Lucius Il
American Hoechst Corp.
P.O. Box 1400
Greer, South Carolina 29651
(803) 877-8471

Huntsville/Ala. John Heamen ED35
George C. Marshall Space Flight Ctr.
Nasa
Marshall Space Flight Ctr., AL. 35812

Montreal Erich M. Sisa
Siemens Electric Lid.
7300 Trans Canada Highway
Pointe Claire, Quebec
HIR 1C7

New Mexico/El Paso Guy Gallaway
Dynalectron Corporation
Radar Backscatter Division
P.O. Drawer QO
Holloman AFB, NM 88330

New York/New Jersey Paul Miller
Corp. Computer Systems
675 Line Road
Aberdeen, N.J. 07746
(201) 583-4422

88

BULLETINS

NORTH AMERICAN HP 1000 USER GROUPS (CONTINUED)

Area

Phitadelphia

Pittsburgh

San Diego

Toronto

Washington/Baitimore

General Electric Co.
(GE employees only)

User Group Contact

Dr. Barry Perliman
RCA Laboratories
P.O. Box 432
Princeton, N.J. 08540

Eric Belmont

Alliance Research Ctr.
1562 Beeson St.
Alliance, Ohio 44601
(216) 821-9110 X417

Jim Metts
Hewlett-Packard Co.
P.0. Box 23333

San Diego, CA 92123

Nancy Swartz

Grant Hallman Associates
43 Eglinton Av. East
Suite 902

Toronto M4P1A2

Mal Wiseman
Hewlett-Packard Co,
2 Choke Cherry Rd.
Rockviile, MD. 20850

Stu Troop

Special Purpose Computer Ctr.
General Electric Co.

1285 Boston Ave.

Bridgeport, Conn. 06602

OVERSEAS HP 1000 USER GROUPS

Belgium

89

J. Tiberghien

Vrije Universiteit Brussel
Afdeling Informatie
Pleinfaan 2

1050 Brussel

Belgium

Tel. (02) 6485540

BULLETINS

OVERSEAS HP 1000 USERS GROUPS (CONTINUED)

Area User Group Contact

France Jean-Louis Rigot
Technocatome TA/DE/SET
Cadarache
BP.1
13115 Saint Paul les Durance
France
Tel. (042) 253952

Germany Hermann Keil
Vorwerk + Co Elektrowerke
Abt. TQPS
Rauental 38-40
D-5600 Wuppertal 2
W. Germany
Tel. (0202) 603044

Netherlands Albert R. Th. van Putten
National Institute of Public Health
Antonie van Leeuwenhoeklaan 9
Postbox 1
3720 BA Bilthoven
The Netherlands
Tel. (030) 742344

Singapore W. S. Wong
Varta Private Ltd.
P.O. Box 55
Chai Chee Post Office
Singapore
Tel. 412633

Switzerland Graham Lang
Laboratories RCA Ltd.
Badenerstrasse 569
8048 Zurich
Switzerland
Tel. (01) 526350

United Kingdom Mike Bennett
Riva Turnkey Computer Systems
Caroline House
125 Bradshawgate
Bolton
Lancashire
United Kingdom
Tel. (0204) 384112

90

