
HEWLETT-PACKARD

VOL. 3 NO. 3

HP Computer Museum www.hpmuseum.net

For research and education purposes only.

TO HEWLETT-PACKARD KEYBOARD READERS

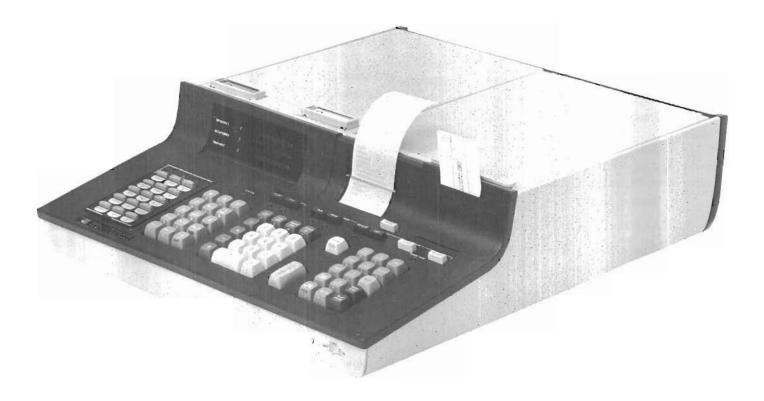
Hewlett-Packard is constantly striving to provide its customers with the electronic equipment that best meets their needs without costly excess capability. The Series 9800, Model 10 Calculator announced in July and featured in this issue was designed in response to the expressed needs of many calculator users.

With a choice of memory options, plug-in ROM's and with or without the column printer, marked card reader, and x-y plotter, at least 288 Model 10 system configurations are now possible. The addition of future peripherals will significantly increase the number of possible configurations. A system can be specified for any desired combination of applications.

Support of existing 9100 systems will continue in the form of peripheral equipment, programs, supplies, service, repairs, and information in KEYBOARD. You are invited to continue sending in your programming tips, programs, and other interesting information on all HP calculating systems for possible publication. See the announcement in this issue regarding the free Calculator Products Program Catalog, which lists all programs and libraries currently available.

TABLE OF CONTENTS

Features


The New HP Series 9800 Model 10 page	1
Graphic Output for the Model 10page	
Programs	
Histogram Generation with Printer	
Plotpage	5
Passive RLC Network Analysis	
Programpage	11
Teacher's Corner	
Student Records Programpage	29
Programming Tipspage	28

COVER

The cover of this KEYBOARD illustrates a few of the many details of the new HP Model 9810A Calculator, including the built-in thermal printer, keyboard, and display. Further information is given in the feature articles on the following pages.

the NEW HP Series 9800 Model 10

THE NEW HP SERIES 9800/Model 10

Hewlett-Packard's new Series 9800 Model 10 Programmable Calculator has a modular design so that the user can tailor it to his specific problem-solving needs. Plug-ins and other options can expand its memory, customize its keyboard functions, extend its input/output capability, and provide problem solutions in words, numbers, drawings or a combination of all three.

All the basic arithmetic functions such as addition, subtraction, multiplication, division, and square root are performed by the basic Model 10. Only one keystroke is required to square a number or get its reciprocal. Plug-in function blocks allow the user to customize other keys for specific problem-solving needs.

Many problems can be solved with a single keystroke on the keyboard of the Model 10. More complex problems are handled by recording data and program steps on magnetic cards. As an illustration of its increased computational "horsepower", the Model 10 can solve 17 simultaneous equations.

CUSTOM KEYBOARDS

The Model 10 allows the user to select from special keyboard plug-in blocks to personalize problem-solving. This unique HP feature vastly extends computing power, simplifies programming, and reduces computing time.

The function blocks are completely interchangeable and require absolutely no modification to the calculator or any special tools or skills to install. To install the math functions for example, the user merely inserts the math memory block in the left slot at the top of the calculator and places the key identification template over the lefthand block of keys. All math functions are now only a keystroke away.

MATHEMATICS

The mathematics function block allows single-key control of powerful mathematics operations and additional capability for subroutine control and peripheral control. In addition to all the log, trig, and transcendental functions

2

normally found on an engineering slide rule, $\frac{TABLE}{N}$ followed by keys 1, 2, 3, ...9 or FMT gives the user access to ten more functions.

Functions 1-9 are: SET DEGREES; SET RADIANS; SET GRADS; $\log_{10}x$; 10^{x} ; degrees/minutes/seconds to decimal degrees conversion; decimal degrees to degrees/ minutes/seconds conversion; X!; and Round. $\frac{\text{TABLE}}{\text{N}}$, FMT is an automatic scaling control for use with the new Model

is an automatic scaling control for use with the new Model 62 X-Y Plotter which saves the user from manual data scaling routines.

Another feature of the Model 10's Math Block is the availability of performing a "DO LOOP", found before only on large computers. This allows the user to cycle through a subroutine or function a specified number of times.

A user definable key is also included. It can be programmed to perform any function, or it can define one program which can call other programs.

No programming is required for any of the functions in the Math block (with the exception of $\frac{\text{DEFINABLE}}{\text{f}()}$). These functions have a separate (ROM) memory block dedicated to them so that they do not draw upon the main calculator memory.

STAT/STICS

The Statistics block offers powerful statistical computations commanded by a single keystroke. Its primary function is to carry out the summations of variables, cross products and squares needed as fundamental quantities in a variety of commonly used statistical analyses. A Variables key defines the number of variables to be treated, from one to five.

A Summation key accumulates the data summations of variables, cross products and squares. The Mean key computes (from the collected summations) the arithmetic mean of up to three variables. Other keys include Variance, Regression (least squares curve fitting), Max/Min to collect the maximum and minimum values of variables, t-paired, chi-squared and log keys, both natural logs and logs to the base 10.

A Random key generates a sequence of psuedorandom numbers. In addition, erroneous data can be removed by the use of the exclusive Correct key. No programming or addressing is required for any of these functions. More statistics functions are included in the Model IO's Stat block than are available in any other presently available programmable calculators, including the specially designated "statistics" calculators.

A separate (ROM) memory block is dedicated to the statistics functions so that they do not draw upon the main calculator programming memory.

For the ultimate in keyboard personalization, the User Definable function block allows the user to customize each of the nine keys labeled f_1 through f_9 to perform his specific functions at the touch of a single key.

The user may, for example, program a single key to calculate amortization. Or the Bessel function of the number in the X display register could be computed with a single keystroke. Any subroutine or function may be keyed in, then executed.

All functions are fully protected by the Model 10's automatic "bookkeeping" system - until the user wants to change them. Any time a function is getting less use than anticipated and the user would like another in its place, it's a simple matter to delete the old function and add the new one without disturbing any other functions or programs.

EXPANDABLE MEMORIES

A data memory of 51 registers and a program memory of 500 steps, enough to solve 10 simultaneous equations, come with the basic Model 10. Both the data storage memory and the program memory can be expanded.

A Model 10 can thus be configured with 51 or 111 data storage registers and with 500, 1000, or 2000 program steps. Both the read/write (R/W) and read-only memories (ROM) use the newest in MOS/LSI technology which allows this increased capability at a lower cost.

Dividing the memory into separate program and data units has some advantages. The user can now perform more complex problems with larger amounts of data since data and program do not impinge upon each other. Detailed program "bookkeeping" is eliminated and replaced by a more efficient symbolic addressing.

Each data storage register is an "accumulating" register. Mathematical operations can be performed on data directly in the storage registers, without recalling it to a "working" register. Indirect addressing and indirect arithmetic save innumerable programming operations.

ALPHANUMERIC PRINTING

Labeling computer data as it is printed out is an obvious advantage. It is not necessary to interpret code numbers or abbreviated symbols. Medical data, payroll figures, and statistical data of all kinds can be labeled while printed out so that anyone can read the results from the tape with no danger of misinterpretation. The printout may be used directly as a report of results.

User instructions in a program may also be printed out to eliminate the need to refer to instruction manuals.

Generating a message is quite simple. The user plugs in the alpha block in the right-hand slot at the top of the calculator. Each key in the left-hand block has an alpha character. The remaining letters of the alphabet and punctuation symbols are stamped on the front of other keys. For instance, $x \leftarrow ()$ has a "y" on the front, and " $x \heartsuit y$ " a "TAB" on the front. To print the word "average", the user would push FMT, FMT, A, V, E, R, A, G, E, FMT, PRINT.

Front of keys shows alpha mode function.

Alphanumeric characters may be printed directly from the keyboard, or automatically via programmed request. Alpha capability greatly simplifies programming and program editing. A list of keystrokes may be printed as the keys are depressed using the new KEYLOG key. Or a list of program steps may be printed out by pressing the LIST key. With the Alpha block in place, each step is listed by its numeric symbol - - - and by easy mnemonics such as CLR for CLEAR. Errors are thus easy to spot and correct.

PRINTER

Exceptionally quiet, the new Hewlett-Packard designed thermal printer is an option that can be quickly installed. It prints a 16 character line; each of the 16 characters is formed by a 5 by 7 matrix. Inexpensive heat-sensitive paper is used and loading is simple. The roll is simply dropped in; the paper threads itself automatically.

Line spacing is set at six lines per inch vertically, which matches typewriter spacing. The printed out data can thus be taped directly onto a typed report.

LED DISPLAY

For the first time in a large calculator, a solid state (LED) display is used. In the Model 10, segmented characters display the X, Y and Z registers. There is a total of 45 characters.

Advantages of the LED display include their small size, good readability, long life and high reliability. They

require only a single 5-volt supply for the entire display. Built into the display circuitry is a fail-safe feature -- should a failure occur in the calculator, the display will turn off to avoid burnout of a single character.

Solutions and intermediate results are displayed in the three registers to ten significant digits, with a two digit exponent. Display can be either fixed or floating point. Should the registers overflow in fixed point, the display automatically switches to floating point. The dynamic range of the Model 10 is 10^{-98} to 10^{98} .

MAGNETIC CARD READE

Programs in the calculator can be recorded on magnetic cards, and likewise entered into the calculator from the cards. A new feed-through card reader accepts magnetic cards to 6 inches long. Cards may be linked automatically for longer programs. A punch-out tab on the leading edge of the magnetic card can be removed to prevent accidental erasure of the recorded program.

POWER SUPPLY

Power supplies within the Model 10 are modular for easy servicing. No adjustments are required. All supplies are crowbar protected against overvoltage.

The Model 10 is designed to conform to IEC (International Electrotechnical Commission) Standards. It has a common line filter to reduce RFI in both directions, one fuse for the entire machine, IEC approved power cord and outlets, and a double pole on-off switch to switch both sides of the line.

Screwdriver-actuated switches on the rear panel are operated to select a variety of line voltages. The Model 10 will operate on 100 volts (Japan). 115 volts, 200 volts (European low voltage) and 230 volts (Europe) and from 48 to 66 Hz. Three convenience outlets (non-switched) are on the back.

PERIPHERALS

Output peripherals for the Model 10 will include an electric typewriter with formatted output capability and a fast, continuous-line X-Y plotter. A marked card reader that reads cards marked with a soft lead pencil, and paper tape reader capable of reading a variety of ASCII formatted tapes will be introduced later.

Additional information and demonstrations can be obtained by contacting any Hewlett-Packard sales office.

Keeping track of data storage in the various registers of the Model 10 is facilitated by the new memory map pad, part number 09810-90018, shown below. One sheet shows the contents of all 111 possible storage registers. This pad is available through your local Hewlett-Packard sales office.

£.G 1.M	CONTENTS	ME 15 T.M.	CONTENTS	REGIN	CONTENTS.
ь	3	35		72	
	24	36		73	
0	ť	31		74	
1		38		75	
2		30		76	
3		40		77	
4		41		78	
5		42		79	
6	2011 I.I.	43		80	
7		4.8		81	
8		45		82	-
3		46		87	
10		47		84	
13		48.		85	
12		49		86	
13		50		117	
14		51		58	
15		52		88	
16		53		10	
17		54		87	
tir		55		92	
59		56		43	
20		\$2		94	
21		58		95	
22		5.9		- 56	-
23		60		- 97	
24		62		98	
25		62		199	
26		63		100	
27		65		101	
28		65		102	
29		86		103	
30		67		104	
37		100		\$05	
32		69		106	
33		70		103	
34		71		108	

Model 10 Storage Map

CAN YOU TOP THIS?

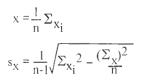
Soeren Olsson of the Hewlett-Packard sales office in Stockholm reports a *new* record for the most northern sale of an HP calculator. His customer in Kiruna, Sweden, is the Swedish Department of Roadbuilding. Kiruna is located at 68 degrees north latitude, compared to 67.1 degrees for the previous record reported in *KEYBOARD* Vol. 3 No. 1.

The Model 9100B calculator and 9120A printer will be used in calculations for projecting a road between Kiruna and Narvik, in the Swedish Alps. The unit will be powered by a mobile generator.

Can you top this? Send any information about applications of the HP calculator in unusual locations or conditions to the nearest editor, *HP KEYBOARD*.

The following short program is for busy calculator owners who may wish they could have a telephone answering service. This program is offered as a vicarious device.

STEP	KEY	CODE
00	•	21
0 1	0	00
02	7	07
03	7	07
04	3	03
05	4	04
06	UP	27
07	UP	27
08	PNT	45
09	PNT	45
0a	PNT	45
0b	PNT	45
0c	PNT	45
0 d	PNT	45
- 0		2.0
10	CLR	20
11	END	46



HISTOGRAM GENERATION WITH PRINTER PLOT

MODEL 10 MATH-PAC V-3

This program generates a 20-cell histogram (frequency distribution) for a set of data values (x_i) . In addition, various basic statistics of the set (x_i) are determined; these being:

n = number of observations

^xmax

x_{min}

Range = $x_{max} - x_{min}$

The program permits a constant value x_0 to be removed from the data set such that the 20 histogram cells can be optimally distributed over the data range.

The program outputs:

Cell no. No. of observations in cell % relative frequency of cell

The computed histogram can optionally be plotted on the printer. The histogram plot via the printer can be run *only* if the Printer Alpha ROM is available. If more than 15% of the observations occur in a cell, that cell will be filled with 0's (zeros).

Editor's Note:

The Model 10 Math Pac, HP Part Number 09810-70000, contains 25 popular mathematics programs for the new Model 10 Calculator. It is supplied at no charge with the purchase of a Model 9810A.

This library is also available as a separate complete item, although programs from it are not sold individually.

PRINTER	REGISTERS	PROGRAM STEPS	ROM'S	
9860A MARKED CARD READER	51	500	1	Statistics*
9861A TYPEWRITER	111	1012	2	
9862 A PLOTTER		2036		Printer Alpha

	Press: FMT, GO TO			
	LOAD Program 1	0	0	0
1.	Enter: W (cell width)	W		
	Press: CONTINUE	0	0	0
	Enter: x ₀	x ₀		
	Press: CONTINUE	0	i	0
2.	Enter: x _i	×i		

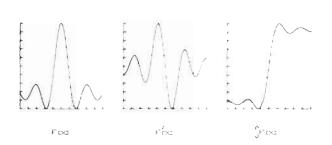
Press: CONTINUE If all x_i have been entered, go to Step 3; otherwise repeat Step 2.

3. Press: SET FLAG

4.	Press: CONTINUE (Display or Print) Repeat Step 4 for all cells	% relat. freq.	No. in Cell	Cell No.	
	Press: CONTINUE (Display or Print)	n	x	^S x	
	Press: CONTINUE (Display or Print)	Range	× _{min}	x _{max}	
	Press: CONTINUE (Display or Print)	0	off-scale below	off-scale above	
	a. To plot histogram:				
	Press: SET FLAG	1	1	1	
	Press: CONTINUE				
	LOAD Program 2				

b. To run another case: Press: CONTINUE

*If the Statistics ROM is not available, place CONTINUEs in program steps: 0021,


0022, 0023, 0024, 0099, 0284 through 0319.

Input Da	ata	EXAMPLE	
ENTER CELL WI	DTH 1.88*	2.00 0.00 0.00	14.00 2.00 6.67
ENTER "X0"	5.00*	3.00 0.00 0.00	15.00 1.00 3.33
	9.10 11.50 15.60	4.00 9.00 0.00	16.00 0.00 0.00
	15.00 12.20 14.10 15.30	5.00 1.00	17.00 1.00 3.00
	17.90 10.50 26.30	3.33 6.00 1.00	18.00 0.00 0.00
	14.20 15.60 16.10 18.40	3.33 7.00 2.00	19.00 6.00 8.00
	21.60 11.20 13.10	6.67 8.00 2.00	20.00 0.00 0.00 Standard dev.
	15.10 14.70 16.80 13.60	6.67 9.00 3.00	MEAN N 4.47
	3.80 12.00 13.00 19.30	10.00 10.00 4.00	14.59 30.00 XMAX XMIN
	18.50 14.20 16.80	13.33 11.00 5.00	RANGE 26.30 3.80
Output of Program 1 CELL # # OBS. IN	17.70 4.50 Activ	16.67 12.00 3.00	22.50 NUMBER OFF SCALE Above Below
% RELATIVE	FREQ. 1.00 0.00	10.00 13.00 2.00	1.00 2.00 Set Flag to
	0.00	6.67 Output of Program 2	PLOT HISTOGRAM
		X S X S X S X S X X S X X S S X X X S X X S S X X X S S X X S S X X S S S X X S S S X X S S S S S S S S S S S S S S S S S S	
-1 <mark>-</mark> 2-		XXXXX XXXX XXXX XXXX + + + + + + + + + +	

REG'TR	CONTENTS	REGITR	CONTENTS	REG	Sample Program
	Working				Printout
c.	W, Cell width				0000CLR20
	n, number of observations				0000XT023
	cell 1 accumulation				0002IND31
-	:				0003 013 0004 101
	•				0005xto23
					0006 +33 0007 a13
					0008 013
:					0009 UP27
_					0010 404 0011 000
4					0012X=Y50
-					0013 000 0014 000
					0015 <u>2</u> <u>0</u> 2
10		30			0016 101 0017 DN25
11		48			0018 DN25
12		49			0019GTO44 0020 101
13		50			0020 i01 0021 K55
14		51			0022 101
15		52			0023 A62 0024 N73
16		53			0025CLR20
17		54			002 6FMT42 0027FMT42
18		65			0028 E60
19		56		93	0029 N73 00 30 xto23
20	cell 20 accumulation	57		94	8831 E60
21	x _{min}	58		95	88 32 013
22	x _{max}	59		96	0033CLR20 0034CNT47
23	no. of obs. below x ₀	60			0035CNT47
24	no. of obs. above $(20W - x_0)$	61		98	0036CNT47 0037 c61
25	working	62		99	0038 Ē6ā
26	x ₀	63		100	0039 L72 0040 L72
27	Σ_{X}	64		101	
28	$\Sigma_{\rm X}^{-2}$	65		102	
29	working	66		103	
30	х	67		104	
31	s _X	68		105	
32	-	69		106	
33		70		107	
34				108	

Graphic Output for the Model 10

Computer Museum

Plot made with Model 10 and Model 62

Output in the form of accurately-scaled graphs and charts has become an essential part of modern calculating systems. This is true today in technical, professional and business areas requiring the higher efficiency, better accuracy, and error-free presentations needed for economic survival.

Uses of these graphic presentations include, as a few examples:

- ... A basis for management decisions to buy or sell;
- ... Determination of economic order quantities;
- ... Statistical use of trend and other graphs for market analysis;
- ... Verification of adequate safety factors in structural designs without costly overdesign;
- ... Fast verification of electronic circuit design compliance and optimization of circuit values;
- . . .Permanent records for the surveyor.

A complete list would include graphic output applications which apply to nearly every field of endeavor in every country. For this reason, an x-y plotter was chosen as one of the first peripheral devices to be made available for use with the Model 9810A Calculator.

The Model 9862A (Model 62) Plotter converts numerical solutions of problems solved by the Model 10 Calculator into permanent graphic records. Plots are made using solid lines connecting points, specified by the calculator as scaled coordinates in the x and y registers, which are sequentially transferred to the x and y control circuits of the plotter. Using increments between points which span not more than five degrees of the arc of a curve results in smooth-appearing curves, each point of which is within closely-specified mechanical tolerances on the resulting graph, as well as within the mathematical accuracy specified by the calculator program.

The Model 9862A eliminates both the drudgery and the frequent human errors encountered in hand-plotting graphs. Not only does the Model 10/Model 62 system reduce the input data and plot graphs in a minimal time; a designer can examine the initial plot, enter new input values, produce a new plot quickly, and immediately see the results of the changes made. Optimum solutions to critical problems can be readily obtained with the Model 9862A's pinpoint resolution.

Additional plotting capability and time savings are available for the Model 62 in the form of two accessory plug-in units for the Model 10 Calculator.

The optional Model 11210A Mathematics ROM (Read-only memory) provides automatic scaling of the user's function for full-surface plots on normal 10 by 15 inch (25 by 38 cm) formats or any smaller size selected by the user.

The optional Model 11215A Plotter ROM adds to the system the capability for complete alphanumeric plotter output, axis generation, automatic function scaling, and point plotting using special symbols. The Plotter ROM thus allows the user to produce plots that are titled, scaled and labeled, ready to photograph or use in a report.

9862A SPECIFICATIONS

The Model 62 Plotter is easy to install and operate. Only two external connections are required, one for power and the other for signals. Both connections are made to receptacles at the back of the Model 10 Calculator. An electrostatic hold-down device secures the paper firmly to the platen. The user switches the CHART HOLD off when the plot is finished to release the paper.

An exerciser program is supplied with each Model 62 Plotter to confirm that the calculator and plotter are operating properly. This program verifies alignment of the vertical and horizontal plotted lines with the plotter paper grids; that a number of plotted dots are within specified positions; that retraced lines do not open more than a specified amount; and that the servos are matched.

Graph limits are set using the LOWER LEFT and UPPER RIGHT controls. Plot size may be a maximum of 10 inches high by 15 inches wide, or 25 by 38 cm for metric paper, or it may be smaller at the user's discretion.

Redrawing a completely scaled and labeled plot in a different size for inclusion in reports is a frequently recurring problem. This can be easily accomplished with the Model 10, simply by changing the LOWER LEFT and UPPER RIGHT controls to set the new dimensions. No change in the calculator program is necessary.

The Model 10 exhibits excellent plotting speed, with *maximum* plotting time of 90 milliseconds for a half-inch vector. In spite of this speed, there is no limit to the length of a vector that can be drawn. Typically, an 18-inch vector can be drawn from the lower left corner to the upper right corner and retraced without a perceptible opening between the lines.

DEMONSTRATIONS

Demonstrations of the new Model 9862A Plotter may be arranged by contacting any Hewlett-Packard sales office. **Plotting Area**: 10 inches on the Y axis by 15 inches on the X axis (25 cm by 38 cm on metric paper.)

Graph Limit Controls: The lower left corner of plotting area (origin) may be set anywhere from 0 in. to 5 in. (0 cm to 12,5 cm) on the Y axis, 0 in. to 10 in. (0 cm to 25,4 cm) on the X axis by the lower left graph limit controls. The upper right corner of plotting area (full scale) may be set anywhere on the plotting area after the lower left corner has been set.

Plotter Vector Length: There is no limit to length of vector that the plotter may draw. Maximum corner to corner dimension is 18.03 in. (45,8 cm).

Pen Control: Local control of electric pen lift is by front panel switches. Remote control from calculator is by program commands. Max. operations/sec. = 12. Time required per pen command = 40 cm/sec.

Writing Method: The Model 9862A uses ink supplied by disposable pens.

Plot Accuracy: Better than .3% of full scale at $25^{\circ}C$ + .005%/C° worst case.

Numerical Resolution: One part in 10,000

Resetability: .007 in. (.18 mm) maximum

Temperature Range: In the range from $5^{\circ}C$ to $45^{\circ}C$, lower left (origin) stability is better than .0025 in./ $^{\circ}C$ (.07 mm/ $^{\circ}C$). Upper right (full scale) temperature coefficient is better than .016%/ $^{\circ}C$.

Power: 100V, 115V, 200V, or 230V \pm 10% (choice of 4 positions). 40 to 66 Hz, 100 Watts.

Weight: Net 40 lbs. (18,1 Kg); Shipping 52 lbs., (23,6 Kg).

Dimensions: 8 1/2 in. high x 20 in. wide x 19 3/8 in. deep (213 mm x 500 mm x 484 mm).

Plotting Time: The actual plotting time of the 9862A will be determined either by the calculations being performed by the 9810A Calculator or by the plotter itself. The maximum plotting time for a .5 in. vector is 90 msec.

PASSIVE RLC NETWORK ANALYSIS PROGRAM

for the Hewlett-Packard 9100 Programmable Calculator by C.E. Weller and W.H. Glass

A general network analysis program has been developed for the HP programmable calculator with its extended memory and plotter equipments. Purpose: This program makes it possible to analyze a ladder-like network. In its present form, the performance of a network of up to fifteen (15) series and shunt branches can be calculated. Each branch can contain up to three elements, making a total of forty-five elements. The HP extended memory is large enough to increase this capability in terms of network size, if required for some special reason. As can be seen in the memory map layout, the storage block of registers 165 through 186 could be moved to registers 123 through 144. This would allow for ten (10) additional branches by enlarging the continuous storage space required for element values and circuit types. This would of course require modification of the program instructions which reference these relocated memory registers. Networks with twentyfive branches or seventy-five R, L, C elements could then be analyzed. Figure 1 depicts the general form of the ladder type network.

The elements in each branch may be series, parallel or series-parallel combinations of R, L and C. The acceptable branch element configurations and their associated entry codes are shown in Figure 2. The circuit element values are entered for each branch with an accompanying circuit type number from one through five. The user should utilize the five circuit branch types shown in Figure 2 in such a way that the network to be analyzed will conform to the general network configuration that is shown in Figure 1. If the network to be analyzed does not contain a corresponding Block 1 branch (reference Figure 1) of the general form, the user should simulate Block I by entering a Circuit Type 1 with a resistance value of zero. While it is required to make the first branch entry a series branch (Block 1 of general form) the Nth entry may be either a series or a shunt branch. Therefore the total number of branches can be either odd or even. For a network which contains more complex branch configurations, it may be possible to utilize dummy branches to effectively combine adjacent shunt or series branches. Series branches can be eliminated by being entered as short circuits (Circuit type 1 with R equal to zero). Shunt branches entered as circuit type 1 with a very large value of resistance will nearly have the effect of combining two series branches directly. All dummy branch entries must be counted in the total branch count entry. When entering the program data, the element values and source and load resistances are independently specified. The amplitude and phase of the transfer function, reflection coefficient or vswr vs frequency can be obtained in plotted form. Amplitude and Phase plots can be made with either a linear or log frequency scale.

For plotting the insertion loss versus frequency (plot type 1 and 3), this program calculates the power delivered to the load referred to the power available from the source.

The insertion loss is calculated by the following equation:

Equation 1:

$$I_L(dB) = 10 \log \frac{Power \text{ out}}{Power available} = 20 \log \frac{e_0}{e_s} + 10 \log \frac{4 R_s}{R_L}$$

For filter and matching networks etc., the program will plot insertion loss as defined by Equation 1 without the possibility of "apparent power gain" from a passive network.



Figure 1 General Form of R L C Network

CODE	Түре	COD	ТҮРЕ
1	oo	5	0
2	o		
3	owo		
4			

Figure 2 Branch Circuit Types and Their Associated Codes

For a circuit type such as might occur in a servo network analysis application, the second term in the equation could be precalculated with R_s made very small ($R_s > 0!!$) and this result could then be entered as the Y-shift entry in the program.

The program would then plot the voltage transfer function, rather than the power transfer function, as defined by equation (2).

Equation 2:

$$I_{L} (dB) = 20 \log \frac{c_0}{e_s}$$

Another method for obtaining the voltage transfer plot without modifying the plot routine would be to treat the first input, series element of the network (providing it is a resistor) as the generator resistance.

The second term of equation (1) could then be eliminated by precalculating its value and entering this value as the Y-shift parameter.

If this method is inconvenient or causes inaccuracy due to R_L approaching infinity, the second term could be eliminated by re-writing a portion of the plot routine.

The reflection coefficient (Γ) may be plotted on a standard Smith Chart with either an expanded or normal scale. The "plot type" entry code is "5". The chart diameter is entered in units of inches. The program will automatically display "7.18" inches for the chart diameter. At this time the user has the option to accept or change this value. The program will ignore any X-shift, Y-shift, X-scale or Y-scale entry values when a plot type "5" has been chosen. Therefore if this plot type is chosen, the afore mentioned parameters may be entered without regard to their values by simply depressing the CONTINUE key for each of these four entries.

To plot reflection coefficients of small magnitude an expanded plot may be obtained by entering an appropriately scaled value for the Smith Chart diameter.

In all cases, the Smith Chart plots are normalized to the value which has been entered for the generator resistance (R_s) .

The diagnostic display codes and their definitions which will be encountered in the event a non-allowable code entry is made are shown in Table 1.

Program Dia	gnostics		
Diagnostic	Display Code		
Message	х	у	Z
Improper Exponent Entry			888
Improper Plot Type Entry	100	100	100
Improper Circuit Type Entry	$^{\pi}_{3.14}$	$\pi_{3.14}$	$\frac{\pi}{3.14}$

Table 1

In addition to the present circuit type calculation programs, if desired the user can write his own program to calculate impedance for a circuit type not shown and label it with a number previously used for a circuit type not needed and insert it into memory by referring to the memory map.

The 1st branch is always considered series. If the user's network does not have this configuration this branch can be eliminated by using the circuit type equal to I and resistance equal to zero.

This technique can also be used to connect shunt branches directly in parallel.

Also, shunt branches can be eliminated by using circuit type No. 1 and making resistance very large.

WARNING

This program calculates insertion loss as referred to the available power from the source. To obtain accurate results for open circuit type analysis you can use a small R_s (not equal to zero) and a value of R_L large compared to the circuit element values. Y shift can then be used to offset the insertion loss caused by the impedance mismatch.

For Servo Type analysis it might be worthwhile rewriting portions of plot subroutine to calculate:

20 Log of
$$\frac{e_0}{e_N}$$

Present Equation

$$I_{N}$$
 Loss = 20 Log $\frac{e_{O}}{e_{S}}$ + 10 Log 4 $\left(\frac{R_{S}}{R_{L}}\right)$

EQUIPMENT NEEDED	✓ 9100A ✓ 9100B	9120 🗸 9125 🗌 9160 🗸	9104 9106
DEGREES	ANS FLOATING FIXED	DECIMAL WHEEL AT 3	0N 9120

PROGRAM LOADING

1.	File Protect Switch OFF			
2.	PRESS: END			
3.	PRESS: CLEAR, FMT, SET FLAG	0	0	0
4.	ENTER: PI			
5.	PRESS: 1, FMT, FMT	6		
6.	ENTER: P ₂			
7.	PRESS: 2, FMT, FMT	14		
8.	ENTER: P ₄			
9.	PRESS: 4, FMT, FMT	19		
10.	ENTER: P ₅			
11.	PRESS: 5, FMT, FMT	21		
12.	ENTER: P ₆			
13.	PRESS: 6, FMT, FMT	28		
14.	ENTER: P7			
15.	PRESS: 7, FMT, FMT	37		
16.	ENTER: P9			
17.	PRESS: 9, FMT, FMT	40		
18.	ENTER: P ₁₀			
19.	PRESS: 10 FMT, FMT	44		
20.	ENTER: P ₁₁			
21.	PRESS: 11, FMT, FMT	54		
22.	ENTER: P ₁₂			
23.	PRESS: 12, FMT, FMT	60		
24.	ENTER: P ₁₃			
25.	PRESS: 13, FMT, FMT	66		
26.	ENTER: P ₁₄			
27.	PRESS: 14, FMT, FMT	71		
28.	ENTER: P ₁₅			
29.	PRESS: 15, FMT, FMT	74		
30.	ENTER: P ₂₀			
	PRESS: 20, FMT, FMT	84		
32.	ENTER: P ₂₂			
	PRESS: 22, FMT, FMT	89		
34.	ENTER: P ₂₃			

 EQUIPMENT NEEDI
 100B
 9120
 9125
 9160
 9101
 9104
 9106

 DEGREES
 R
 FINC
 FIXED
 DECIMAL WHILEL AT
 PRES
 0 00 9120

PROGRAM LOADING (CONTINUED)

3	5. PRESS: 23, FMT, FMT	98
3	6. ENTER: P ₂₄	
3	7. PRESS: 24, FMT, FMT	106
3	8. ENTER: P ₂₅	
3	9. PRESS: 25, FMT, FMT	113
4	d. enter: p ₂₆	
4	1. PRESS: 26, FMT, FMT	122
43	2. File Protect Switch ON	

PROGRAM EXECUTION

		Х	Y	Z
1.	PRESS: 1, FMT, GO TO	6		
2.	PRESS: END, CONTINUE	99	99	99
3.	ENTER: Data N = Total	Ν	99	99
	Number of Series and Shunt Branches ≤ 15			
4.	PRESS: CONTINUE	10	0	10
5.	ENTER: Exponent Code of R of 1st branch	Exp		
	Exponent Code			

- 6 = Mega 3 = Kilo 0 = 10⁰ = 1 -3 = Milli
- -6 = Micro
- -9 = Nano
- -12 = Pico

Note: *Only* the exponent codes shown (6, 3, 0, etc.) are allowable; e.g., entry of exponent code 2 will prevent the program from running, and will result in an 888 diagnostic display.

EQUIPMENT NEEDED	9100A 9100B 9120 9125 9160	9104
DEGREES RAD	ANS FLOATING FIXED DECIMAL WHEEL	CIN 91

PROGRAM EXECUTION (CONTINUED)

6.	PRESS: XEY		Exp	
7.	ENTER: Resistance value of first branch	R	Exp	
8.	PRESS: CONTINUE	11	0	11
9.	ENTER Exponent Code of L value of the first branch	Exp		
1(). PRESS: XEY		Exp	
11	L. ENTER: L value of first branch	L	Exp	
12	2. PRESS: CONTINUE	12	0	12
13	3. ENTER: Exponent Code of C value of first branch	Exp	0	12
14	4. PRESS: XEY		Exp	
15	5. ENTER: C value of first branch	С	Exp	
16	5. PRESS: CONTINUE	13	0	13
17	7. ENTER: Circuit type (1-5) of first branch	Cir type	0	13
18	3. PRESS: CONTINUE	20	0	20
	The Branches in the Circuit are called out in Increments of tens			
	1st Branch 2nd 3rd 15th			

1st Branch	2nd	3rd .	15th
10 R	20	30	150
11 C	21	31	151
12 L	22	32	152
13 Circuit type	23	33	153

After the Last Circuit Type of Last Branch is Entered and the CONTINUE Key has

been Pressed

This Display will Appear	1	0	1
19. ENTER: Exponent of R _L value	Exp		
20. PRESS: XEY		Exp	
21. ENTER: Resistor Load value	R_L	Exp	
22. PRESS: CONTINUE	2	0	2
23. ENTER: Exponent of R _s value	Exp		
24. PRESS: XEY		Exp	
25. ENTER: Source Resistance value	R _S	Exp	
26. PRESS: CONTINUE	3	0	3
27. ENTER: Exponent of initial frequency value	Exp		
28. PRESS: XEY		Exp	
29. ENTER: First Frequency value	fl	Exp	
30. PRESS: CONTINUE	4	0	4

EQUIPMENT NEEDED	01A 91008	9120 9125	9160	\$10:	9104	9106
DEGREES	LI)ATING FIXED	DECIMAL WHE	EEL AT			N 9120

PROGRAM EXECUTION (CONTINUED)

	31.	ENTER: Exponent of the delta frequency function value			
	32.	PRESS: XEY	Exp	Exp	
	33.	For Linear Plot			
-		ENTER: Δf or Frequency Increment value.	Δf	Exp	
		For Log Plot			
		ENTER: $(F_n+1)/F_n$ (or the Ratio of Successive Frequencies value)			
	34.	PRESS: CONTINUE	5	0	5
	35.	ENTER: The following Number for the Plot Desired	Ν		
		1 = Magnitude vs Frequency (Lin)			
		2 = Phase vs Frequency Linear			
		3 = Magnitude vs Frequency Log			
		4 = Phase vs Frequency Log			
		5 = Gamma vs Frequency Lin			
		(Smith Chart)			
		If you select Number "5" ignore the next four entries by pressing CONTINUE at			
		Steps 37, 41, 45 and 49.			
		6 = VSWR vs Frequency Lin.			
	36.	PRESS: CONTINUE	6	0	6
	37.	ENTER: Exponent of X-shift value	Exp		
	38.	PRESS: XEY		Exp	
	39.	ENTER: X-Shift value	X _{shift}	Exp	
	40.	PRESS: CONTINUE	7	0	7
	41.	ENTER: Exponent of Y-shift value	Exp		
	42.	PRESS: XEY		Exp	
	43.	ENTER: Y-Shift value	Y _{shift}	Exp	
	44.	PRESS: CONTINUE	8	0	8
	45.	ENTER: Exponent of X-scale value	Exp		
	46.	PRESS: XEY		Exp	
	47.	ENTER: X-Scale value	X _{scale}	Exp	
	48.	PRESS: CONTINUE	9	0	9
	49.	ENTER: Exponent of Y-scale value	Exp		

50. PRESS: XEY

Exp

Y_{scale} Exp

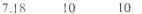
PROGRAM EXECUTION (CONTINUED)

52. PRESS: CONTINUE

Enter New Smith Chart Diameter if desired, if not go to Step 53 and 7.18 will automatically be entered for Smith Chart Diameter and used only if Plot Type "5" has been previously requested.

53. PRESS: CONTINUE

Calculation and Plotting now begins


Changes in the "Circuit Problem" may be incorporated in the following manner.

A. Press (1), FMT, GO TO, END, CONTINUE and Re-Enter until Desired Change is made or, (2) Address Change to Extended Memory using FMT, Y Command Set, and Consulting Memory Map for Storage of Particular Constant.

Then Press 10, FMT, GO TO, END, CONTINUE and Calculations and Plot will begin.

- B. To Change R_L , $R_s F_1$ and, or ΔF Press 6, FMT, GO TO, END, CONTINUE then Repeat Entry Then Press 10, FMT, GO TO, END, CONTINUE and Calculations will Begin.
- C. To Change Plot and Plot Data, Press 7, FMT, GO TO, END, CONTINUE.Repeat Plot Data Entry.

Then PRESS: CONTINUE, and Calculations begin.

P-1	Routine Caller for Z	P24		C122
Entry	Calculation	Diet True		L121
of	Calculation	Plot Type		R120 CT113
Circuit		4 Driver		
Data	P12			C112
Data	P12		Cara	LIII
P2	Odd-Even		Spare	R110
12	Decision and	P25		CT103
Exponent		Die 6 Traces		C102
Calculation	Odd Branch	Plot Type		L101
	Calculation	5 Driver		R100
Subroutine	P13			CT93
	Final			C92 L91
	Calculations	Dac		R90
P4	Exit to	P26	500/Y-scale	
F4			500/X-scale	CT83 C82
Circuit Type 4	Plot P14	Plot Type	Y-shift	
Calculation		6 Driver		L81
Calculation	Even Branch		X-shift	R80
	Calculation		Odd-Even Count	CT73
P5 Circuit Type 3			Smith Chart Dia.	C72
	D1.5		Spare Real Z	L71
P6	P15			R70
Entry of	Circuit Type 5		Imaginary Z	CT63
Entry of	Calculation		RL	C62
R_L, R_s	P20		R _s	L61
fo, $\Delta \mathrm{f}$	D4		Address Pointer	R60
	Plot Types		In e/e mag.	CT53
	1 and 2		e/e ≯	C52
P7	Driver		$\Delta\omega$	L51
			ω	R50
Entry of			P_{n}	CT43
P _n , X-shift,			Spare	C42
Y-shift,			Spare	L41
X-scale, Y-scale		Spare	C _n Value	R40
Smith Chart	P22		L ₁₁ Value	СТ33
Diameter			R _n Value	C32
	Plot Type		CT153	L31
P9	Decision		C152	R30
Circuit Type 2			L151	CT23
Calculations	P23		R150	C22
P10			CT143	L21
Initialization	Plot Type		C142	R20
of Variables	3 Driver		L141	CT13
			R140	C12
PHI			CT133	LII
			C132	R10
Circuit Type			L131	"END OF DATA"
Data Transfer			R130	POINTER
to Work Area			CT123	TOTALER

Sample Problem

The circuit for this example is taken from the HP 9100A Library -- No. 09100-71001.

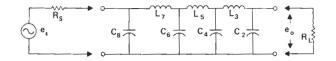


Figure 3. Sample Problem Circuit

Where: $R_s = R_L = 50\Omega$ $C_2 = C_8 = 1175 \text{ pF}$ $C_4 = C_6 = 2086 \text{ pF}$ $L_3 = L_7 = 3.538 \mu\text{H}$ $L_5 = 3.913 \mu\text{H}$ Data is entered for eight branches which includes a dummy

entry for branch position number 1.

Branch	Data	Entry	Summ	nary Table
Data Entered]	Display	y	
	Х	Υ	Ζ	
	99	99	99	before entry
(No. of Branches)	8	99	99	after entry

B	Branch No.	1	2	3	4	5	6	7	8
	X Displays	10	20	30	40	50	60	70	80
R	Exp Entry	0	0	0	0	0	0	0	0
	Value Entry	0	0	0	0	0	0	0	0
	X Displays	11	21	31	41	51	61	71	81
L	Exp Entry	0	0	-6	0	-6	0	-6	0
	Value	0	0	3.538	0	3.913	0	3.538	0
	X Displays	12	22	32	42	52	62	72	82
С	Exp Entry	0	-12	0	-12	0	-12	0	-12
	Value	0	1175	0	2086	0	2086	0	1175
Circuit	X Displays	13	23	33	43	53	63	73	83
Туре	Entry Code	1	2	3	2	3	2	3	2

Each column of data is entered in numerical sequence. Other data entry is shown below.

	ble (Cont'd)				
х	Displa Y	Z	Value	ta Entry Exponent	Problem Data
21	I	L	varue	Code	
1	0	1	50	0	$R_L = 50\Omega$
2	0	2	50	0	$R_s = 50\Omega$
3	0	3	100	3	fo = 100 kHz
4	0	4	50	3	$\Delta f = 50 \text{ kHz}$
5	0	5	6	0	Plot Type
6	0	6	0	0	X-Shift
7	0	7	0	0	Y-Shift
8	0	8	.5	6	X-Scale = ½ MHz
					per inch
9	0	9	1	0	Y-Scale = 1:1
					per inch
7.18	10	10	None	None	Sm. Chart Dia.

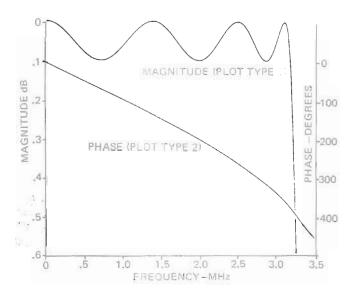


Figure 4. Magnitude and Phase vs Linear Frequency

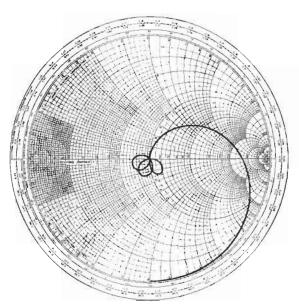


Figure 5. Gamma vs Linear Frequency (Smith Chart)




Figure 6. VSWR vs Linear Frequency

C.E. Weller

Mr. Weller is a senior staff engineer at Avco Electronics Division. He is currently engaged in company-sponsored programs involving thin-film work at UHF frequencies. He is a graduate of Michigan State with a B.S. and M.S. in Electrical Engineering. He is a member of IEEE, Eta Kappa Nu and Sigma Pi Sigma.

W.H. Glass

Mr. Glass's experience includes ten years on computer applications in the engineering field. The general areas of applications are real-time systems, automatic test equipment, large systems simulation and specific engineering problem solving. Mr. Glass received a B.S. degree in Physics from Murray State University in 1961 and is presently employed with Avco Electronics Division as a senior engineer.

P1			P4	D-		
Step Key Code 00 CLR 20 01 2 02 02 4 04 03 6 06 04 UP 27 05 2 02 06 4 04 07 7 07 08 FMT 42	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Stent Key Code 30 DN 25 31 1 01 32 EEX 26 33 1 01 34 2 02 35 CHS 32 36 X 36 37 YTO 40 38 a 13	$\begin{array}{ c c c c c }\hline F_4\\\hline Step & Key & Code\\\hline 00 & CLR & 20\\01 & 1 & 01\\02 & 8 & 10\\03 & 6 & 06\\03 & 6 & 06\\04 & FMT & 42\\05 & \pi & 56\\06 & UP & 27\\07 & 1 & 01\\08 & 8 & 10\\\hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30 UP 27 31 0 00 32 UP 27 33 3 03 34 STP 41 35 XTO 23 36 b 14 37 YTO 40	Step Key Code 10 UP 27 11 0 00 12 UP 27 13 6 06 14 STP 41 15 YTC 40 16 a 13 17 XTO 23
09 YTO 40 0a 9 11 0b 9 11 0c UP 27 0d UP 27	59 UP 27 5a c 16 5b X <y 52<br="">5c 6 06 5d 7 07</y>	39 GTO 44 3a 7 07 3b c 16 3c DN 25 3d 1 01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 a 13 39 2 02 3a FMT 42 3b GTO 44 3c a 13 3d UP 27	18 b 14 19 2 02 1a FMT 42 1b GTC 44 1c a 13 1d UP 27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60 6 06 61 + 33 62 YTC 40 63 d 17 64 GTO 44 65 1 01 66 d 17 67 6 06 68 FMT 42 69 GTC 44 6a END 46 P2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 1 01 21 6 06 22 8 10 23 FMT 42 24 YTO 40 25 7 07 26 UP 27 27 0 00 28 UP 27 29 7 07 2a STP 41 2b YTO 40 2c a 13 2d XTO 23
20 XTO 23 21 e 12 22 d 17 23 UP 27 24 UP 27 25 0 00 26 RUP 22 27 STP 41 28 YTO 40 29 a 13 2a XTO 23 2b b 14 2c 2 02 2d FMT 42	$\begin{array}{cccccccc} 00 & CNT & 47 \\ 01 & b & 14 \\ 02 & UP & 27 \\ 03 & a & 13 \\ 04 & UP & 27 \\ 05 & 0 & 00 \\ 06 & X=Y & 50 \\ 07 & 7 & 07 \\ 08 & 9 & 11 \\ 09 & 3 & 03 \\ 0a & X=Y & 50 \\ 0b & 6 & 06 \\ 0c & d & 17 \\ 0d & 6 & 06 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P6 00 CLR 20 01 1 01 02 UP 27 03 UP 27 03 UP 27 04 0 00 05 XEY 30 06 STP 41 07 YTO 40 08 a 13 09 XTO 23 0a b 14 0b 2 02 0c FMT 42 0d GTC 44	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Storage Plus Page f c c c c c c c c c c c c c c c c c c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 X 36 31 RUP 22 32 XEY 30 33 a 13 34 CHS 32 35 X 36 36 RDN 31 37 XEY 30 38 POL 62 39 LN 65 3a AC+ 60 3b c 16 3c UP 27 3d b 14		60 1 01 61 7 07 62 9 11 63 FMT 42 64 YTO 40 65 7 07 66 FMT 42 67 GTO 44 68 END 46	6 0 4 3 0 1 4 3 0 1 5 4 5 5 6 1 1 5 1 5 1 1 5 1 5 1 1 5 1 1 5 1 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 20 & {\rm CHS} & 32 \\ 21 & {\rm X=Y} & 50 \\ 22 & 3 & 03 \\ 23 & {\rm c} & 16 \\ 24 & 1 & 01 \\ 25 & 2 & 02 \\ 26 & {\rm CHS} & 32 \\ 27 & {\rm X=Y} & 50 \\ 28 & 3 & 03 \\ 29 & 0 & 00 \\ 28 & 8 & 10 \\ 2b & 8 & 10 \\ 2c & 8 & 10 \\ 2d & {\rm STP} & 41 \\ \end{array}$	$\begin{array}{cccccccc} 70 & 1 & 01 \\ 71 & EEX & 26 \\ 72 & 3 & 03 \\ 73 & X & 36 \\ 74 & YTO & 40 \\ 75 & a & 13 \\ 76 & GTO & 44 \\ 77 & 7 & 07 \\ 78 & c & 16 \\ 79 & DN & 25 \\ 7a & YTO & 40 \\ 7b & a & 13 \\ 7c & FMT & 42 \\ 7d & END & 46 \\ \end{array}$	40 - 34 41 a 13 42 POL 62 43 LN 65 44 AC- 63 45 RCL 61 46 EXP 74 47 RCT 66 48 YTO 40 49 a 13 4a XTC 23 4b b 14 4c FMT 42 4d END 46	$\begin{array}{cccccc} 20 & b & 14 \\ 21 & YTO & 40 \\ 22 & a & 13 \\ 23 & 2 & 02 \\ 24 & FMT & 42 \\ 25 & GTC & 44 \\ 26 & a & 13 \\ 27 & UP & 27 \\ 28 & 1 & 01 \\ 29 & 7 & 07 \\ 2a & 5 & 05 \\ 2b & FMT & 42 \\ 2c & YTO & 40 \\ 2d & 3 & 03 \\ \end{array}$	P7 00 CLR 20 01 5 05 02 UP 27 03 0 00 04 UP 27 05 5 05 06 STP 41 07 UP 27 08 1 01 09 8 10 0a 1 01 0b FMT 42 0c YTO 40 0d 6 06	

Step Key Code	Step Key Tro	New Code	Step Key Code	Step Key Code	Step Key Code	Step Key Code
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80 7 07 81 0 00 82 FMT 42 83 YTO 40 84 1 01 85 0 00 86 FMT 42 87 GTO 44 88 END 46		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ccccccc} 40 & UP & 27 \\ 41 & 8 & 10 \\ 42 & STP & 41 \\ 43 & YTO & 40 \\ 44 & a & 13 \\ 45 & XTO & 23 \\ 46 & b & 14 \\ 47 & 2 & 02 \\ 48 & FMT & 42 \\ 49 & GTO & 44 \\ 4a & 5 & 05 \\ 4b & 0 & 00 \\ 4c & 0 & 00 \\ 4d & UP & 27 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 FMT 42 31 YTO 40 32 1 01 33 1 01 34 FMT 42 35 GTO 44 36 END 46	$\begin{array}{ccccccc} 40 & 8 & 10 \\ 41 & 7 & 07 \\ 42 & 2 & 02 \\ 43 & X=Y & 50 \\ 44 & 8 & 10 \\ 45 & 0 & 00 \\ 46 & 3 & 03 \\ 47 & X=Y & 50 \\ 48 & 7 & 07 \\ 48 & 7 & 07 \\ 48 & 7 & 07 \\ 4a & 4 & 04 \\ 4b & X=Y & 50 \\ 4c & 7 & 07 \\ 4d & 0 & 00 \\ \end{array}$	90 0 00 91 XTC 23 92 a 13 93 1 01 94 2 02 95 FMT 42 96 GTO 44 97 END 46	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Storage Plus Page F E C D 9 8 7 0
	20 FMT 42 21 END 46	$\begin{array}{c cccccc} P_{11} \\ \hline 00 & CLR & 20 \\ 01 & 1 & 01 \\ 02 & 7 & 07 \\ 03 & 6 & 06 \\ 04 & FMT & 42 \\ 05 & \pi & 56 \\ 06 & XTO & 23 \\ 07 & a & 13 \\ 08 & XTO & 23 \\ 07 & a & 13 \\ 08 & XTO & 23 \\ 09 & b & 14 \\ 0a & UP & 27 \\ 0b & 3 & 03 \\ 0c & - & 34 \\ 0d & YTO & 40 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 5 4 3 2 1 0 M(nus Page ₹ E d C b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 2 1

Step Key Code	Step Key Gode	Step Key Dogr	Step Key Code	Step Rey Code	Ster: Plan and	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90 + 33 91 1 01 92 8 10 93 0 00 94 FMT 42 95 YTC 40 96 1 01 97 0 00 98 FMT 42 99 GTC 44 9a END 46	40 GTC 44 41 END 46	Step Key Code 40 X 36 41 1 01 42 7 07 43 7 07 43 7 07 44 FMT 42 45 π 56 46 LOG 75 47 YTO 40 48 c 16 49 UP 27 $4a$ 2 02 $4b$ 0 00 $4c$ X 36 $4d$ 1 01
40 UP 27	30 EXP 74	P20 00 CLR 20	50	P22	P23	(main second sec
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 RCT 66 32 AC+ 60 33 RCL 61 34 AC- 63 35 POL 62 36 LN 65 37 AC- 63 38 RCL 61 39 EXP 74 3a RCT 66 3b UP 27 3c 1 01 3d 7 07	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$
50 YTO 40 51 DN 25 52 1 01 53 7 07 54 8 10 55 FMT 42 56 YTO 40 57 2 02 58 2 02 59 FMT 42 5a GTO 44 5b END 46	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Storase Plus Page R R R R R R R R R R R R R R R R R R R
P14	P ₁₅					6
00 CLR 20 01 1 01 02 UP 27 03 1 01 04 6 06 05 5 11 06 FMT 42 07 YTC 40 08 a 13 09 UP 27 0a b 14 0b POL 62 0c LN 65 0d AC- 63	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} 70 & \pi & 56 \\ 71 & {\rm DIV} & 35 \\ 72 & {\rm XEY} & 30 \\ 73 & {\rm LOG} & 75 \\ 74 & {\rm XEY} & 30 \\ 75 & 1 & 01 \\ 76 & 0 & 00 \\ 77 & {\rm X} & 36 \\ 78 & {\rm DN} & 25 \\ 79 & + & 33 \\ 7a & b & 14 \\ 7b & - & 34 \\ 7c & a & 13 \\ 7d & {\rm X} & 36 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Minu Page
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Step Key Code	Step Key Code	Step Key Code	Step Key Code	Step Key Code	Step Key Coda	Step Key Code
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70 END 46	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TT-PACKAR
$\begin{array}{cccccccc} 70 & 1 & 01 \\ 71 & 8 & 10 \\ 72 & 0 & 00 \\ 73 & FMT & 42 \\ 74 & \pi & 56 \\ 75 & UP & 27 \\ 76 & 1 & 01 \\ 77 & 7 & 07 \\ 78 & 9 & 11 \\ 79 & FMT & 42 \\ 7a & \pi & 56 \\ 7b & UP & 27 \\ 7c & 2 & 02 \\ 7d & DIV & 35 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 AC- 63 31 POL 62 32 LN 65 33 AC- 63 34 c 16 35 UP 27 36 d 17 37 LN 65 38 AC+ 60 39 RCL 61 3a EXP 74 3b UP 27 3c UP 27 3d 1 01	80 0 00 81 FMT 42 82 YTC 40 83 1 01 84 0 00 85 FMT 42 86 GTO 44 87 END 46	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Storage Plus Page f c d c b 3 9 8 7 6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P26 00 CLR 20 01 1 01 02 7 07 03 3 03 04 FMT 42 05 π 56 06 UP 27 07 1 01 08 7 07 09 2 02 0a FMT 42 0b π 56 0c YTO 40 0d a 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5 4 3 2 1 0 Minus Page <i>f</i> <i>E</i> <i>d</i> <i>E</i> <i>b</i>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$				7 6 5 4 3 2 1 0

PROGRAM CATALOG AVAILABLE

A new Calculator Products Program Catalog will be off the press soon in a limited quantity. Any *KEYBOARD* reader wanting a copy should fill out and mail the postpaid reply card in this issue.

The catalog lists all HP calculator programs and program pacs for the Model 9100A/B and Model 10 which are now available. Packets and libraries are supplied as complete printed books. Individual programs which are not included in packets or libraries are available for purchase with complete documentation, test examples, and prerecorded magnetic cards.

Complete sets of prerecorded magnetic cards are listed for many of the program pacs and libraries. Delivery of all items listed in the catalog is subject to sufficient demand.

PROGRAM SHARING PLAN

The program sharing plan was announced in *KEY*-BOARD Vol. 3, No. 1. This plan makes available, on a user-to-user trading basis, individual programs which for competitive or other reasons the author does not wish to have widely distributed by including them in *KEYBOARD* or in a published program library, but which the program author is willing to share with other calculator users in related fields.

These programs are kept by the person offering them in return for copies of a like number of programs from another program-sharing user. If you have programs you would like to trade with other calculator owners on a one-for-one basis, send the *KEYBOARD* editor the title of your program, the equipment it requires, and a short summary of the problem and equations it solves. Do not send the program itself. You will be contacted directly by other individuals who wish to exchange a copy of their unpublished programs in return for yours. You may withdraw a program at any time by notifying the *KEY-BOARD* editor, P.O. Box 301, Loveland, Colorado 80537, or in Europe, Herrenberger Strasse 110, 703 Boblingen, West Germany.

Listings of shared programs are being mailed to members of the program sharing plan as they are received. Among the titles of programs included in this plan to date are:

British Income Tax Calculation Crystal to Diffractometer Orientation Matrix Linear Interpolation Subroutine for 9101A The Freely Falling Body Experiment with Plot and Least Squares Fit to a Parabola Parabolic Antenna Parameter Calculation.

MORE PROGRAM LIBRARIES AVAILABLE

Many of our readers gave a vote of appreciation for the list of program libraries in the last *KEYBOARD* issue. Here is an updated list including new pacs for the 9100A/B as well as those for the new Model 9810A. The new ones are asterisked.

F	Part Number	Description
(09100-70800	Stat-Pac Vol. I
(09100-70900	Analysis of Variance Pac
(09100-70950	Quality Assurance Pac
(09100-71200	Microwave Circuit Design Pac
(09100-71374	Electric Utilities Pac
(09100-74100	Surveying Pac Vol. 1
(09100-74175	Surveying Pac for
		9100A and 9120A*
(09100-74200	Structures Pac
(09100-75100	Hydraulic Engineering Pac*
(09100-75203	Animal Ecology Pac
(09100-75300	Cardiology Pac
	09100-75350	Clinical Pathology Pac
(09100-75450	General Biology Programs*
(09100-75598	Chemical Process Pac Vol. 1
1	09100-75599	Chemical Process Pac Vol. 2
	09100-76999	Plotter Program Packet
(09100-77000	Bautechnische 1 (German
		Structures 1)
(09100-77017	Bautechnische 2 (German
		Structures 2)*
(09100-77100	Calcoli Di Strutture Civili
1		(Italian Structures)
(09100-77200	Genie Civil (French
1		Structures)*
(09100-78000	Vermessung 1 (German
		Surveying)
(09100-78100	Stadsmätning (Swedish
		Surveying)
	09100-78200	British Surveying 1
	09100-78400	Italian Surveying
	09100-79400	Shipbuilding Programmes 1*
	09100-79500	British Gear Design
(09107-90022	9107A Digitizer
		Program Library*
(09107-90031	9107A Digitizer Sample
-		Program Packet*
	09810-70000	Model 10 Math Pac*
(09810-70800	Model 10 Stat-Pac*

LIBRARIES FOR THE MODEL 10

The Mathematics and Statistics program libraries are the first packets available for the new Model 9810A Calculator. The Math Pac is supplied at no charge with the purchase of a Model 10, and the Stat Pac is furnished with the purchase of a Model 11214A Statistics Plug-in Function Block. Copies of either library can be purchased separately. Here are listings of the programs.

MODEL 10 MATH PAC PROGRAM LISTING PART NO. 09810-70000

Section I --- GENERAL FUNCTION ANALYSIS

- 1. Root-Finder
- 2. Maximum and Minimum of Z = Z(X,Y)
- 3. Fourier Series

Section II --- NUMERICAL INTEGRATION

- 1. Numerical Integration Using Simpson's One Third Rule
- Differential Equations (Runge-Kutta Gill Method)

Section III --- POLYNOMIALS

- 1. Polynomial Evaluation (N \leq 10)
- 2. Polynomial Coefficients from Roots
- 3. Roots of Polynomial (Order $n \leq 8$)
- 4. Roots of Polynomial (Order $n \leq 20$)
- 5. Quadratic Equation
- 6. Synthetic Division of Nth Order Polynomial (N \leq 10)
- 7. Interpolation (Equi-Spaced Data)
- 8. Interpolation (Unequi-Spaced Data)

Section IV --- MATRICES AND SYSTEMS OF SIMUL-TANEOUS EQUATIONS

- 1. Solution of N Simultaneous Equations in N Unknowns (N \leq 10)
- 2. Solution of N Simultaneous Equations in N Unknowns (N \leq 17)
- 3. Matrix Inversion for the Solution of Simultaneous Linear Equations, $N \leq 6$ (Gauss-Jordan Elimination)
- 4. Matrix Inversion for the Solution of Simultaneous Linear Equations, $N \leq 9$ (Gauss-Jordan Elimination)

- 5. Gauss-Jordan Elimination for the Solution of Simultaneous Equations, $N \leq 6$
- 6. Gauss-Jordan Elimination for the Solution of Simultaneous Equations, N ≤9
- 7. Matrix Arithmetic Program
- 8. Characteristic Equation Solution Matrix (n x n) $n \leqslant \! 6$
- 9. Characteristic Equation Solution Matrix (n x n) $n \leqslant 9$

Section V --- STATISTICS

- 1. Statistics for Single Variable Analysis
- 2. Linear Regression with ANOVA
- 3. Histogram Generation (with Printer Plot)

MODEL 10 STAT PAC PROGRAM LISTING

PART NO. 09810-70800

Section I --- GENERAL STATISTICS

- I. Mean, Standard Deviation, Standard Error
- 2. Mean, Standard Deviation, and Standard Error for Grouped Data
- 3. Mean, Standard Deviation, Skewness and Kurtosis for Grouped and Ungrouped Data
- 4. Permutations
- 5. Combinations
- 6. Arithmetic, Geometric, Harmonic Means
- 7. Covariance and Coefficient of Correlation
- 8. Histogram Generation (with Printer Plot)
- 9. Uniform Random Number Generation
- 10. Normal Random Number Generation
- 11. One-Way Analysis of Variance (Balanced or Unbalanced Design)

Section II --- DISTRIBUTION FUNCTIONS

- I. Normal Probability Integral
- 2. χ^2 Chi Squared Distribution
- 3. Binomial Distribution
- 4. Poisson Distribution

Section III --- CURVE FITTING

1. Two-Variable Linear Regression

 $y = a_0 + a_1 x$

- 2. Two-Variable Parabolic Regression $y = a_0 + a_1x + a_2x^2$
- 3. Two-Variable Cubic Regression $y = a_0 + a_1x + a_2x^2 + a_3x^3$
- 4. Two-Variable Quartic Regression $y = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$
- 5. Least Squares Fit Exponential Curve y = ae^{bx}
- 6. Least Squares Fit Power Curve y = ax^b

Section IV --- MULTIPLE LINEAR REGRESSION

- 1. Multiple Linear Regression (3-Variable) $y = a_0 + a_1x_1 + a_2x_2$
- 2. Multiple Linear Regression (4-Variable) $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3$
- 3. Multiple Linear Regression (5-Variable) $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4$

Section V --- TEST STATISTICS

- 1. Bartlett's Test for Homogeneity of Variance
- 2. Outlier Determination
- 3. Spearman's Rank Correlation Coefficient
- 4. Intraclass Correlation
- 5. Paired Observation Test
- 6. t Statistic for Means of Two Samples
- 7. χ^2 Chi Squared Evaluation (Expected Values Equal)
- 8. χ^2 Chi Squared Evaluation (Expected Values Unequal)
- 9. χ^2 (2 x K) Contingency Table

PROGRAMMING TIPS

RECIPROCAL OF n

According to Brian D. Redmile of Salisbury, Rhodesia, the shortest way to calculate the reciprocal of a number in the x register, and without disturbing the contents of the y or z registers, is the sequence: LN, CHG SIGN, e^{x} . This works with the 9100A/B.

BLANK REGISTER IDENTIFICATION

Our thanks go to Mr. Redmile also for this tip for the 9100A/B. To create a distinctive display when a blank register is recalled the first time through a program, one or more alphameric characters can be displayed at the left of the screen. For example, if the program at some point recalls the d register, followed by a PAUSE or STOP, or you will be stepping through the program and want to recognize when this first happens, you can preprogram the d register as follows:

d0	yto	or 10th displayed alphameric
1	yto	or 9th displayed alphameric
2	yto	or 8th displayed alphameric
3	yto	or 7th displayed alphameric
4	yto	or 6th displayed alphameric
5	yto	or 5th displayed alphameric
6	yto	or 4th displayed alphameric
7	yto	or 3rd displayed alphameric
8	yto	or 2nd displayed alphameric
9	а	1st displayed alphameric
а	yto	
b	y	or yto*
С	yto	
d	yto	

*If $|\mathbf{y}|$ is used, the display is in the floating-point position, i.e., starting at the left-hand edge of the screen, even though the switch is set at FIXED POINT. If yto is used, the display is in the "fixed-point" position.

ON-LINE PROGRAM BRANCH CONTROL

The following program sequence for the 9100A/B was designed by Eugene W. Urban of NASA's Marshall Space Flight Center, Alabama. It provides the operator with keyboard branching control of a running program. It can be used with any program *not* involving the use of trigonometric functions and, with the obvious restrictions discussed below, in certain programs involving trig functions. Branching is controlled with the DEGREES-RADIANS switch on the keyboard. Since $\cos(\pi \operatorname{rad}) = -1$ and $\cos(\pi \operatorname{deg}) = 0.998$, a test for the sign of the cosine of π provides the control, Either X \leq Y or X>Y can be used.

Possible uses of this routine include raising or lowering the plotter pen over a certain region of a graph (or providing a dashed curve), selecting a different variable increment during certain portions of a calculation, selecting different variables for printing, branching to a final calculation sequence when an initial calculation has proceeded far enough, etc. It is also possible to use this branch control at more than one location in a lengthy program provided the loops containing the branch points do not overlap.

STEP	KEY	CODE	
00 01 02 03 04 05 06 07 08 09 08 09 0a 0b 0c 0d	π COS UP CLX X <y< td=""><td>56 73 27 37 52 }</td><td>This branch if DEGREES This branch if RADIANS</td></y<>	56 73 27 37 52 }	This branch if DEGREES This branch if RADIANS
10 11 12 13 14	GTO 0 1	44 00 01	Loop back, for example.

The test will work with some programs containing trigonometric functions provided that the functional arguments are selected to correspond to the switch setting. For example, if the program following a branch has trig functions with arguments in radians, an X > Y test would be used in the example shown to provide proper radian computation. If the portion of a program preceeding the branch has trig functions and the switch is set for proper computation, switch reversal to cause branching will lead to incorrect results during the last pass through the loop. This might be avoided by including two or more PAUSE's just before the branch test to provide switch throwing time.

FOUR STEP-SAVING TECHNIQUES

These four step-savers were submitted by Mr. Claude Cardot of Marcoussis, France. These apply to both the 9100A/B and the Model 10 with the Math ROM.

1. Starting with a number x in the x register, y in the y register, and k in the z register, it is desired to multiply **PROGRAMMING TIPS CONTINUED ON PAGE 32**

STUDENT RECORDS PROGRAM

by K. R. Lindfors

PART NO. 09100-75904 9100B ONLY

Teachers of large numbers of students must face the problem of the determination of final grades at the end of each semester or term. This often involves calculating the semester average for each student as well as the class average. The following program for the 9100B Calculator with 9160A Marked Card Reader and 9120A Printer eases this task. To format the grade card of each student, access to a standard card punch is necessary.

The normal procedure for entering data from marked cards is to enter just one value per card. This is too awkward and inconvenient for the present application. It is possible with a proper program to read several values from a single card. For example, up to 9 two-digit grades could be entered from a single properly formatted card. The following program reads from each card:

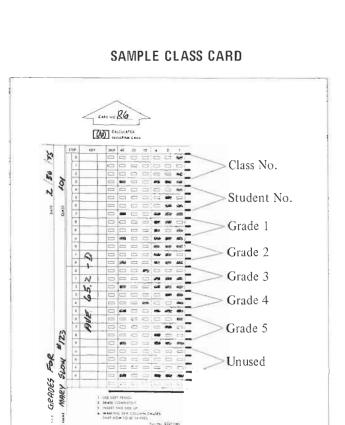
- a) A three-digit class number This is checked to make sure the card is from the right class.
- b) A three-digit student number This is printed out to identify the grades with a particular student.
- c) Four two-digit grades
- d) A three-digit grade

There is room for another three-digit grade on the card, but it was not needed. These grades are printed, added together, divided by an appropriate number to calculate the student average which is printed out, and stored so that a class average can be calculated.

The key to entering several data values from a single card is timing. The 9100B must be ready to accept input

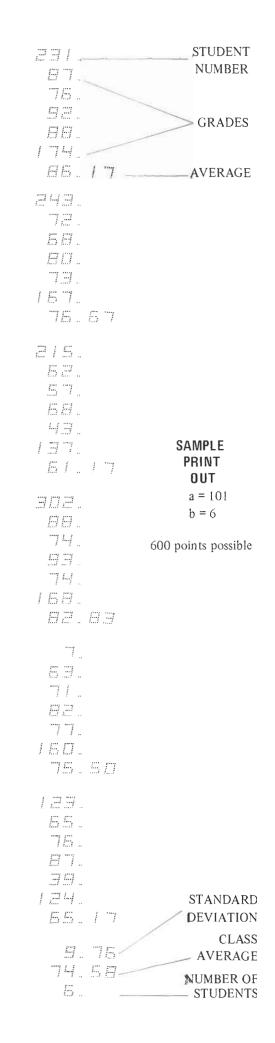
information faster than it can be read from a card and then wait until the card is out of the reader before doing manipulations. This procedure has been used successfully with several programs. If the timing is proper, it works reliably and rapidly. If not, the results are unpredictable and the program in memory may even be altered by the incoming data.

The cards are formatted by entering CONTINUE (No. 47) after each grade. This is easily done using the automatic duplication feature of a standard card punch. A master is prepared by manually multiple punching in the appropriate columns. The punch is then programmed for automatic duplication and copies of the first are made at a rate of about one every five seconds. (NOTE: If the punch has the printing feature, this *must* be turned off.) Thus, a half hour of punch time will produce three hundred or more cards.


These cards are passed out to the students who enter their names, section numbers, etc., in the appropriate blanks. We chose to punch in the class number. Student numbers were entered on each card by pencil as were test scores as they were determined. Thus, the card deck serves as a "grade book." At the end of the semester, the cards are run through the 9100B and the student averages determined. The 9120A printer tape was proof-read against the main grade book and letter grades determined. Errors were avoided and grades determined much more rapidly than by hand as was done in the past.

ΕÇ	UIP	MENT NEEDEC 9100A 🗸 9100B 🗸 9120 9125 🗸 9160	9101	9104	9106
	DE	GREES RADIANS FLOATING FIXED DECIMAL WHEEL AT 2	PRESS 🗸		N 9120
	1.	PRESS: END			
	2.	Enter Program			
	3.	Store class number in register a.			
	4.	Store divisor in register b.	1	0	0
	5.	PRESS: CONTINUE			
	6.	Enter class cards.	Ν	Class No.	Class No.
	7.	After last class card PRESS: SET FLAG, CONTINUE. DEV, AVE and NT are			
		printed out.	1	0	0
	8.	To process another class, PRESS: END and return to Step 3.			
		N = number of next class card to be read			
		NT = total number of cards			
		AVE = class average			

DEV = standard deviation


Step	Кеу	Code	Step	Seg.	Code	Step	Key	Code	Step	Key	Code	Step	Key	Code	Step.	жеу	Code	Step	Key	Code
00	CLR	20	20	STP	41	40	PNT	45	60	Х	36	80	-	34						
01	1	01	21	XTO	23	41	+	33	61	AC+	60	81	d	17						
02	хто	23	22	-	34	42	XFR	67	62	d	17	82	UΡ	27						
03	d	17	23	6	06	43	-	34	63	XEY	30	83	1	01						
04	STP	41	24	STP	41	44	4	04	64	1	01	84	-	34						- 1
05	IFG	43	25	XTO	23	45	PNT	45	65	+	33	85	f	15				11		
06	6	06	26	-	34	46	+	33	66	YТО	40	86	RDN	31						
07	с	16	27	7	07	47	XFR	67	67	d	17	87	DIV	35						
08	CNT	47	28	STP	41	48	-	34	68	DN	25	88	d	17						
09	XТО	23	29	PSE	57	49	5	05	69	GTO	44	89	RDN J	31						
0a	-	34	2a	XFR	67	4a	PNT	45	6a	0	00	8a		76						
0 b	1	01	2 b	-	34	4b	+ XFR	$\frac{33}{67}$	6b	4	04 17	8b	XEY RDN	$30 \\ 31$	11			1		
0c	STP	41	2c	1 UP	0 1 27	4c		34	6c	d UP	27	8c &d	PNT	45						
0 d	XTO	23	2d	UΡ	41	4d	-	34	6d	UP	<i>41</i>	10)QL	PMI	-#D						
					20.00													-	_	
10	-	34	30	а	13	50	6	06	70	1	01	90	RUP	22						
11	2	02	31	X=Y	50	51	PNT	45	71	-	34	91	PNT	45	11					
12	STP	41	32	3	03	52	+	33	72	YTO	40	92	RUP	22						
13	XTO	23	33	5	05	53	XFR	67	73	d	17	93	PNT	45						
14	-	34	34	STP	41	54	_	34	74	UP	27	94	PNT	45	11					
15	3	03	35	XFR	67	55	7	07	75	RCL	61	95	PNT	45	11					
16	STP	41	36	-	34	56	PNT	45	76	RUP	22	96	PNT	45						
17	ХТО	23	37	2	02	57	+	33	77	DIV	35	97	PNT	45						
18	-	34	38	PNT	45	58	b DI V	14 35	78	YTO	40	98	PNT	45						
19	4	04	39	CLX UP	$\frac{37}{27}$	59	DIV DN	35 25	79	f	15	99	GTO	$\frac{44}{00}$	1			11		
1a	STP	41	3a		$\frac{27}{67}$	5a 5b	UP	25	7a	X	36	9a	0	00				1		
1b	ХТО	23	3b	XFR	34	50 50	PNT	45	7b 7c	f X	15 36	9b 9c	END	46						
1c	_	$\frac{34}{05}$	3c .3.d	-3	$\frac{34}{03}$	50 5d	PNT		7e 7d	DN N	25	96	END	40						
1d	5	05	-0-64	-D	00	Du	1 14 1	20	-1.41	1712	<i>20</i>	· · · · · · · · · · · · · · · · · · ·				_				

MEWLETT-PACKARD

Karl R. Lindfors did his undergraduate work in chemistry at the University of Michigan and received a Ph.D. in physical chemistry from the University of Wisconsin in 1963. He is associate professor of chemistry at Central Michigan University in Mt. Pleasant, Michigan, where he has been teaching since 1964.

HEWLETT • PACKARD HEWLETT • PACKARD

HEWLETT • PACKARD HEWLETT • PA

HEWLETT • PACKARD

HEWLETT • PACKARD HEWLETT • PACKARD

PROGRAMMING TIPS (CONTINUED)

the contents of both x and y by k and save k. A normal sequence takes seven steps. This sequence saves two steps:

STEP	KEY	CODE	D	ISPLAY	
			Х	У	Z
00	STP	41	Х	У	k
01	POL	62			
02	RUP	22			
03	Х	3 6			
04	RDN	31			
05	RCT	66	kx	ky	k

If k is not already in z, it can be entered in any way after step 02.

2. If k has a value of -1 and it is desired to multiply as above, a 3-step sequence: TO POLAR, CHG SIGN, TO RECT will do the operation. The initial sign of either x or y can be either plus or minus.

3. In electronic and acoustic problems it is often necessary to transform a given quantity in decibels (dB) into the corresponding power level, based on 0 dB = 1. A minimal sequence to transform a number of dB in y into the corresponding power level in x is:

STEP	KEY	CODE		DISPLAY	
			Х	У	Z
00	1	01		dB	
01	0	00	10		
02	DIV	35			
03	LN	65			
04	Х	36			
05	DN	25			
06	EXP	74	W		

If the dB level is *below* reference, insert CHG SIGN after step 05.

4. A dB level in y can similarly be transformed into the corresponding voltage or current level in x, since $E = 10^{dB/20}$. The trick in this and the above sequence is to use the number 10 for two purposes with one entry.

STEP	KEY	CODE	DISPLAY
			х у z
00	2	02	dB
01	DIV	35	
02	1	01	
03	0	00	
04	DIV	35	
05	LN	65	
06	Х	3 6	
07	DN	25	
08	EXP	74	E

FOUR SUBROUTINES IN ONE SUBPROGRAM

This program tip for the 9100A/B and 9101A Extended Memory was devised by W.J. Butterworth of the

Admiralty, Underwater Weapons Establishment, Portland, Dorset, U.K. It enables up to four subroutines to be entered in one subprogram, thus reducing the number of magnetic cards required.

In the main program, before inserting the subprogram address in the x register, 1, 2, or 3 is entered in the y register. The fourth subroutine can be addressed by a SET FLAG instruction in the main program.

The beginning of the subprogram should contain the following instructions:

STEP	KEY	CODE	
00	IFG	43	
01		}	Branch to subroutine 4
02	•)	
03	2	02	
04	X <y< td=""><td>52</td><td></td></y<>	52	
05	•)	Dropals to automations 2
06		}	Branch to subroutine 3
07	X=Y	50'	
08)	Durate (a sufficient of the
09	a	}	Branch to subroutine 2

Step 0a holds the first instruction in subroutine 1 and each of the first three subroutines is ended with GTO, followed by the address of FMT END in the 4th subroutine.

Each subroutine will usually start with a DOWN instruction to get the information back into the y register ready for use. If only two subroutines are to be stored, the SET FLAG instruction is preferred as it is only one instruction in the main program and causes less manoeuvring in the subprogram.

INDIRECT ADDRESSING FOR THE 9100/9101A

The following programming technique was submitted by Robert K.W. McCoy, Jr., Western Electric Company, Winston-Salem, North Carolina.

The HP 9100 Calculator, when used with the HP 9101A Extended Memory, provides a good system of indirect arithmetic but no way to change an address (indirect addressing). The following example is one method the writer found to achieve indirect addressing while writing a larger piece of software.

This procedure assumes the a, b, c, d, e, f registers are not available. If one of these is available, it should be used in place of an extended memory register for the address counter because of less programming space. In addition, this example is designed to work on both the 9100A and 9100B Calculators, so no minus registers were used.

Given: A table of constants or data in the extended memory in registers 100 through 107 is assumed. This table may be of any length the analyst chooses.

Problem: Increment the table pointer (address) and utilize it in the x register to recall the contents using a minimum of programming space.

PROGRAMMING TIPS (CONTINUED)

Solution: Assign another register as a counter, and initialize it to the address of the first piece of data in the table, in this case, 100. The following is a series of program steps to recall the contents of the table and increment the counter. As an aid to understanding these steps, (110) indicates the contents of register 110, and ((110)) indicates the contents of the contents of register 110.

STEP	KEY	CODE	X Register
00	1	01	
01	1	01	
02	0	00	
03	\mathbf{FMT}	42	
04	π	56	(110)
05	\mathbf{FMT}	42	
06	π	56	((110))
07	UP	27	
08	1	01	
09	UP	27	
0a	1	01	
0b	1	01	
0c	0	00	
0d	FMT	42	
10	+	33	(Increment counter by 1)

TABLE

Example:

Register	Contents
100	123456.
101	543216.
102	246813.
103	292016.
104	585440.
105	130570.

110 Initialized to 100. This number (110) points to the first address or register of the table. It is then incremented to point to each successive address.

The first time through would produce the following results.

(110) = 100

$$((110)) = (100) = 123456$$

Second time:

(110) = 101((110)) = (101) = 543216

Last time:

(110) = 105

((110)) = (105) = 130570

The above procedure has proved to be effective in accomplishing indirect addressing with the HP 9100 Programmable Calculator and the HP 9101A Extended Memory. With this added flexibility, the user's range of possible programming options is widened for more complex tasks with increased efficiency.

MODEL 10 PRINTER-ALPHA TEST

The Model 9810A Calculator may be purchased with the column printer with or without the Model 11211A Printer Alpha ROM which gives alpha printing capability. The ROM can be purchased separately and plugged in later. Programs can be written which include alpha statements but which are capable of operating either with or without this ROM. This requires a test for the presence of the ROM. The following program sequence will always operate correctly.

	Wit	h Alph	na	Wit	hout A	Alpha
	х	У	Z	х	У	Z
8881CLR	0	0	0	0	0	0
0002 <u>i</u>	1	0	0	I	0	0
0003FMT	I	0	0	1	0	0
0004FMT	1	0	0	1	0	0
0005CLR	1	0	0	0	0	0
8886FMT	1	0	0	0	0	0
0007X=Y	1	0	0	0	0	0
0008GTO						
0009 0)						
0010 2	Any	Addı	ress			
0011 6						
0012 ′						

If the Alpha ROM is in the system, the equality test at step 0007 is not met, so the program skips the next four instructions and continues. Without the Alpha ROM, the test is met and the program branches to the designated address.

Note that the GTO statement *must* follow the X=Y statement in this case only; in the general case branching is automatic, as it is in the 9100A/B. Also note that in the Model 10, the branching address normally takes four steps, and a not-met condition causes the next four steps to be skipped.

From the above point, the program usually follows one of three routes.

1. If there are no other alpha sequences in the program might continue as follows:

	0021 D
	0022 A
0012CLR	0023 T
0013FMT	0024 A
0014FMT	0025FMT
0015 E	2026STP
8016 N	0027PNT
8017 T	8828PNT
2018 E	8829XTO
0019 R	0030 5
0020CNT	803i
	6832
	gg33

PROGRAMMING TIPS (CONTINUED)

2. If additional alpha sequences are used in the program, further branching can be directed by activating SET FLAG at the end of each alpha section except the final one. For example:

0012CLR	00921FG	8128I RI
0013FMT	0093GTO	0121 A
0014FMT	0094S/R	0122FMT
9015 E	0095LBL	0123FMT
0016 N	8896 A	0124 0
0017 T	0097XFR	0125 U
0018 E	0098 5	0126 T
0019 g	8899PNT	0127 p
0020CNT	0100PNT	0128 U
0021 P	×	0129 T
0022 T	и	0130CNT
10023 s	::	0131 P
0024FMT		0132 T
0025SFL		0133 S
0026STP		0134FMT
0027PNT		0135SFL
0028PNT		0136S/R
:		:
п		н
		a
		0250END

3. If additional alpha sequences are used in the program but the SET FLAG is not available, the 1 or 0 left in the x register at step 0005 above can be stored, then recalled for a test prior to each subsequent alpha sequence. For example:

0012XTA	
0013 0	
8814CLR	23
0015FMT	0 02 6stp
0016FMT	0027PNT
0017 D	0028PNT
0018 A	0029XTO
0019 T	8830 6
0020 A	11
0021FMT	: "

0056XFR	0075GTO
0057 0	0076 1
0058 UP	0077 0
0059CLX	0078 6
0060X <y< td=""><td>0079FMT</td></y<>	0079FMT
0061 0	0080FMT
0062 0	0081 D
8863 7	0082 A
8864 8	0083 T
0065STP	0084 A
0066PNT	0085FMT
0067XTO	
8868 7	
2	и.
	0106FND

NEW HP *KEYBOARD* **FIELD EDITORS**

HP *KEYBOARD* is proud to announce the addition of two field editors to its staff, as shown in the box below. In Europe, Dr. Eberhard Beck of HP GmbH in Böblingen, Germany will act as field editor. In the western U.S.A., Robert C. Reade of HP's North Hollywood office has agreed to be the field editor.

We are happy to welcome Eberhard and Bob aboard. They will be working with HP calculator users and salesmen to gather publishable applications stories, programs, program tips and other information of general interest for *KEYBOARD*.

If you live in Europe or the western U.S.A., and have questions about submitting information to *KEYBOARD*, or if you have programs you would like to have published, you may elect to contact Eberhard Beck or Bob Reade, respectively. This may save you time in getting your *KEYBOARD* manuscript finalized, or minimize the chance of submitting a program already received by another writer. We will, of course, continue to welcome direct mailings to *KEYBOARD* at Loveland.

A. B. Sperry, Editor

K E Y B O A R D APPLICATIONS INFORMATION FOR HEWLETT–PACKARD CALCULATORS PUBLISHED AT P. O. BOX 301, LOVELAND, COLORAOO 80537 Editor: A. B. SPERRY Art Director: L. E. BRADEN VOLUME 3 NUMBER 3

Field Editors:

Europe-Eberhard Beck, Hewlett-Packard GmbH, Herrenberger Strasse 110 703 Böblingen, West Germany Western U.S.A.-Robert C. Reade, Hewlett-Packard Co., 3939 Lankershim Boulevard North Hollywood, California 91604