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OVERVIEW

This is our last issue for 1975, and, by the time you receive it,
I’1l have been editor for a full year. Although some minor changes
have been made, I’ve tried to retain the basic philosophy of
KEYBOARD . (Hopefully, I've enhanced it.) And this philosophy
is simple — maintain a three-way communications link: reader to
reader, reader to Hewlett-Packard, Hewlett-Packard to reader.
Sharing information and experience with other users is the
foremost link in the KEYBOARD communications system. We
value the inputs you give us and hope we retumn in kind with a
helpful, informative magazine. Special appreciation goes to all
those who have contributed articles and programming tips.

In 1976 we’ll be working toward making KEYBOARD even
better. We hope you’ll continue to be pleased with our efforts.
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We are interested in obtaining programs written for use on the
9820A pertaining to the field of soil mechanics and geotechnical
engineering.

Particular applications of interest would be slope stability
analysis, soil laboratory analysis, surveying, etc.

We have a few programs that we could exchange (curve-
tracing for various types of inclinometers and deflectometers,
curve-tracing for static penetrometers).

J. Y. Chagnon, Director
Geotechnical Service
Department of Natural Resources
1600, Blvd. Entente

Quebec

GIS 4N6

Canada

"

We enthusiastically endorse the creation of your **Forum’
column. We have been using the 9830A for almost two years in
our structural engineering work.

We would be interested in hearing from other structural en-
gineers and learning what programs they have written. Our office
has written a group of structural engineering programs as well as
several business programs suitable for a consulting office.

Included in the first group are such programs as analysis of
continuous beams, general plane frames, cantilever retaining
walls, prestressed beams, laterally loaded piles and composite
beams. The business programs include payroll, bookkeeping and
accounts receivable.

Interested parties are welcome to contact us.

Robert Stoller

Zeiler and Gray, Inc.
2727 Bryant Street
Denver, Colorado 80211
(303) 455-3322

APPLICATIONS INFORMATION
FOR HEWLETT-PACKARD CALCULATORS
PUBLISHED AT P.O. BOX 301,
LOVELAND, COLORADO 80537

Editor: Nancy Sorensen Artist/lHustralor: H. V. Andersen

Field Editors: ASIA--Jaroslav Byma, Hewletl-Packard Intercontinental, 3200 Hill-
view Avenue, Palo Alto, California 94304; AUSTRALASIA--Bill Thomas,
Hewlett-Packard Australia Pty. Lid., 31-51 Joseph Sireel, Blackburn, 3130 Vicloria,
Australia;, BELGIUM--Luc Desmedt, Hewlett-Packard Benelux, Avenue du Col-
Vert, 1, Groenkraaglaan, B-1170 Brussels, Belgium; CANADA--Larry Gillard,
Hewlett-Packard Canada Lid., 6877 Goreway Drive, Mississauga, Ontario L4V 1L9;
EUROPEAN REGIONAL EDITOR--Ed Hop, Hewlett-Packard GmbH, Herren-
bergerstrasse 110, 7030 Boblingen, Germany; EASTERN AREA, EUROPE-
-Wermer Hascher, Hewlett-Packard Ges.m.b.H., Handelskai 52/3, A-1205 Vienna,
Austria; ENGLAND--Dick Adaway, Hewlett-Packard Ltd., King Street Lane, Win-
nersh, Wokingham, England; FRANCE--Elisabeth Caloyannis, Hewlett-Packard Fr-
ance, Quartier de Courtaboeuf, Boite Postale No. 6, F-91401 Orsay, France;
GERMANY--Rudi Lamprecht, Hewlett-Packard GmbH, Berner Strasse 117,
D-6000 Frankfurt 56, Germany; HOLLAND--Jaap Vegter, Hewlett-Packard Be-
nelux N.V., Van Heuven Goedhartlaan 121, P.O. Box 667, NL-1134 Amstelveen,
Holland; ITALY--Elio Doralio, Hewlett-Packard Italiana Spa, Via Amerigo Ves-
pucci 2, 1-20124, Milano, ltaly; JAPAN--Akira Saito, Yokogawa-Hewlett-Packard
L., 59-1, Yoyogi l1-chome, Shibuya-ku, Tokyo 151; LATIN AMERICA--Ed
Jaramillo, Hewlett-Packard Interconlinental, 3200 Hillview Avenue, Palo Alto,
California 94304; MIDDLE EAST--Philip Pote, Hewlett-Packard S.A., Mediterra-
nean and Middle East Operations, 35, Kolokotroni Street, Platia Kefallariou, GR-
Kifissia-Athens, Greece; SCANDINAVIA--Per Styme, Héwlett-Packard Sverige
AB, Enighetsvagen 3, Fack, S-161 20 Bromma 20, Sweden; SOUTH AFRICA-
-Denis du Buisson, Hewlett-Packard South Africa (Pty.) Ltd., 30 de Beer Street,
Braamfontein; SPAIN--Jose L. Barra, Hewlett-Packard Espanola S.A ., Jerez 3, E —
Madrid 16, Spain; SWITZERLAND--Heinz Neiger, Hewlett-Packard Schweiz AG,
Zurcherstrasse 20, P.O. Box 64, CH-8952 Schlieren, Zurich, Switzerland.

N /’

Kp'/



HP Computer Museum
www.hpmuseum.net

For research and education purposes only.



Hewlett-Packard has announced the first
printer designed specifically to interface with
the 9800 Series programmable calculators.
The 9871A Printer is a 30-character-per-
second, full-character impact printer using
interchangeable print discs. Each print disc
contains 96 printing characters. The printer
is fully self-contained and requires only a
power cord and calculator interface cable to
replace existing printing devices on any of
the 9800 Series programmable calculators.
Additional hardware features include a fixed
carriage accommodating paper up to 15 in-

ches wide. Print width can be up to 13.2
inches, which, at the normal print spacing of
10 characters per inch, gives 132 columns.
Bidirectional print disc carrier and platen
motion simplifies two additional
features — form filling and plotting. The
optional form-feed mechanism is recom-
mended for Z-fold, continuous-feed, or
multiple-part paper (the 9871 A is capable of
handling up to 6-part paper). A 10-position
print intensity switch is located on the rear
panel to insure good print quality when using
different thicknesses of paper.

<-Computer
sMuseum

One of the unique features of the 9871A
is the built-in, self-test capability. Located
on the rear panel is a test pushbutton switch
which, when depressed, will cause the
9871 A to perform a built-in diagnostic. The
diagnostic causes the printer to print out a
line of type, advance the platen, and check
the internal memory of the 9871A Printer. If
an error is detected, an audible beep emits
from the printer to alert the operator that
something is wrong.

The normal printing functions, fully con-
trollable from the calculator, include space
and backspace, carrier return, line feed, re-
verse line feed, and variable view advance
delay (after completing a line of text, the
platen reverses to allow the operator to view
that line).

Other programmable printer operations
include:

Horizontal Tabulation
-Set horizontal tab
-Clear horizontal tab
-Clear all horizontal tabs
-Tab right
-Tab left
Vertical Tabulation
-Set vertical tab
-Clear vertical tab
-Clear all vertical tabs
-Tab down
-Tab up
Form and Margin Control
-Set top of form
-Set form length
-Form feed
-Set left margin
-Set text width
-Set text length (initiates automatic
form feed when text length is exceeded)

Programmable plotting and spacing func-
tions are:

Plotting Control
-Absolute plot (resolution 1/120 in x
1/96 in)
-Relative plot (resolution 1/120 in x
1/96 in)
-Absolute plot with points filled be-
tween end points
-Relative plot with points filled be-
tween end points
-Set origin for absolute plotting
Spacing Control
-Variable horizontal spacing
(resolution 1/120 in)
-Variable vertical spacing
(resolution 1/96 in)
-Proportional spacing

The 9871A Data Sheet, 5952-9000 (09),
is available upon request. For literature, in-
formation, or a demonstration, please con-
tact your local Hewlett-Packard sales office
or check the reply card in this issue of
KEYBOARD .



Hewlett-Packard has announced a new
programmable desktop calculator, the
9815A. This newest member of scientifically
oriented calculators uses the same RPN lan-
guage as the HP pocket calculators and is
designed for broad-based applications
among a wide range of users who work with
statistics and who make computations par-
ticular to their professions, as in scientific,
engineering, research, and industrial fields.

The resourcefulness of the RPN language
has been demonstrated by the 9100A/B, the
9810A, and the series of HP pocket cal-
culators. The 9815 further enhances this lan-
guage with multiple flags, both computed
“‘go to’’ and computed label search, FOR-
NEXT loop capacity, compilation of multi-
ple keystroke operations, and a greater
choice of branching techniques.

Human engineering is an important as-
pect of the design of the 9815. For instance,
it has a very simple keyboard. Anyone who
has used one of our pocket calculators will
immediately recognize most of the keys.
Editing features are improved — insert and
delete functions that automatically update all
branching instructions, error messages in
English, complete alpha listings, entry flag,
error detection flags, and simpler UDF keys.

With the revolutionary, high-speed
bidirectional tape cartridge, the HP 9815 of-
fers true, state-of-the-art performance. The
cartridge holds 96,384 program steps, or
12,048 data registers, or any combination
between these two limits. The 9815 is thus
able to handle much larger problems than
other machines in its price range. Bidirec-
tional search speed of 1524 mm/sec (60 in/
sec) and read/write speed of 254 mm/sec (10
in/sec) gives you nearly instantaneous access
to data and programs. A 500-step program is
loaded and execution begun in about 0.6
second, and a 2000-step program in under 2
seconds.

The 9815 contains a built-in thermal
printer with alphanumerics and mathematic
and trigonometric functions. The standard
9815 has 472 program steps and 10 data re-
gisters. Memory is expanded to 2008 pro-
gram steps in the 9815 Option 001. The
keyboard includes 15 special function keys,
a 10-key numeric pad, program language
and control keys, editing keys, and 28 scien-
tific functions.

Users interested in interfacing to experi-
mental or process equipment will also find



the 9815 a well-designed, versatile machine.
Basic I/O speed of the 9815 Option 002 is
much faster than I/O speed of our other 9800
Series Calculators. Such features as burst
mode, binary operations, buffered input and
output, and programmable delimiters are
built in. Logic sense and the polarity of the
flag and control lines are changeable under
program control. The AUTO START feature
allows the machine to recover in the event of
power failure or interruption.

The 9815 Option 002 has two 1/O chan-
nels with plug-to-plug compatibility with
many HP 9800 Series peripherals and a wide
range of digital voltmeters, counters, and
other instruments. Three general types of in-
terface cards are available: general 8-bit /O,
BCD input, and HP-IB. Up to 14 HP-1B in-
struments can be interconnected to a single
HP-IB interface card, and a 15th instrument
can be interfaced via the second channel
available.

A brochure, ‘“*“HP 9815A: A Four-
Dimensional Machine,”” 5952-8998 (09),
and the 9815A Data Sheet, 5952-8999 (09),
are available upon request. For literature, in-
formation, or a demonstration, please con-
tact your local Hewlett-Packard sales office
or check the reply card in this issue of
KEYBOARD.
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Generalized Linear Least-Squares Fitting

by Dr. Ove W. Dietrich and Mr. Ole S. Rathmann

Thanks to the development of computers and automation, sci-
entists of today can handle problems which their predecessors
could not even think of. Apart from the obvious advances in sci-
ence in general, this development has also had an impact on many
of the scientists themselves, theorists as well as experimentalists.
The vast amounts of data, which can be stored and handled by the
computers, have turned many modern scientists into data analysts.
They must know how to extract meaningful results and conclu-
sions from the mass of numbers they feed into the computer mem-
ory. The technique of data reduction varies from one problem to
the next, but there are several standard methods that most scien-
tists use at some time or other.

In this article we describe such a standard procedure that is
useful in many contexts. The ‘‘generalized linear least-squares
fit’’ has long been known, but it is probably new to some
KEYBOARD readers. Hopefully, it is good news to many readers
that this fairly lengthy procedure can actually be executed on a
small desk calculator like the HP 9830A with 2k memory. In the
following we shall briefly describe the fitting procedure and give
reasons why and how it is useful.

YHS

The simplest data reduction problem is, undoubtedly, finding
the average value of a set of numbers. Although this must be
familiar to all our readers, we shall start by defining our aims in
this simple context. Let us imagine that we have measured the
length of a stick four times and got slightly different results each
time. We would then like to find the best estimate of the length. If
the measurements gave the results of 1.015 m, 1.018 m, 1.016 m,
and 1.017 m, the best estimate would, of course, be the average
value, 1.0165 m. However, there is a little more information in
these numbers that we would like to extract. From the scatter of
the individual measurements around the average value we can
estimate the uncertainty or standard error of the average value, if
we assume that the measurements deviate according to the so-
called normal distribution. Denoting the individual measurements
by yi with i=1 up to N and the average value by y, the uncertainty
of the average value is

2y, —y)»?
= (—m————— ) 1
;= ( n—D) ) 4.
Thus for the numbers above, the average value including the un-
certainty will be

¥ = 1.0165 + 0.0006.

The statistical meaning of this uncertainty is such that if we repeat
the set of measurements many times, we would expect that approx-
imately 2/3 of the average values for each set would fall within the
range

y—S; and y+Ss.

Let us complicate the example somewhat and assume that we
have used two different measuring devices to obtain the lengths.
The first three measurements were made with a simple ruler with a
precision of 0.001 m, whereas the last measurement was made
with a slide gage with a precision of 0.0002 m. Now we have to
assign different weights to the measurements. The weight w, is

defined as the inverse square of the precision o, , i.e.
2

w, = a2
The average value is then
Ewl Yi
YT sw

and the uncertainty of ¥ is
EWi ()’i - Y)Z
S;=————F—
’ (n—1) 2w,

For this case our best estimate of the average value is calculated to
be

) Vs

y = 1.0169 = 0.0003.

To relate the average value problem to least-squares fittings, we
notice that the average value we have determined above is the
number giving the least sum of the weighted mean squared devia-
tions,

1 —
X = D Iw (y, =¥

The same criterion is used in more complex fitting problems too.
In the example above we had only one variable, y;, and one
parameter to be determined, the average value §. However, we
often have two variables, an independent and a dependent vari-
able, and possibly more than one parameter to be determined from
a set of measurements. Let us illustrate a more complicated case
by an example:
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In the diagram we show some data measured with a spectrome-
ter. In this instrument particles or rays can be scattered in a sample
and the scattered intensity measured as a function of scattering
angle. The present data were obtained by scattering neutrons in a
crystalline solid; the peak is due to diffraction, and its position and
width contain important information on the internal structure of the
solid. However, the actual interpretation is immaterial for the pre-
sent purpose. The essential point is that for a certain chosen setting
of one independent variable (the scattering angle), we have mea-
sured the corresponding values of a dependent variable (the inten-
sity), knowing the uncertainty of each measurement (the vertical
lines through the points in the diagram).

In the simple problem of the length measurements that we
discussed above, there was no question that the parameter we were
seeking was the average value. In the present, more complex
situation there is nothing as simple as an average value, and it is
not at all obvious which information we can actually extract from
our data. Generally, the data reduction relies on our *‘scientific’’
judgement in the sense that we need to assume that our data “‘de-
scribe’” a certain theoretical or analytical curve y = F(x). In some
cases we believe that our data should fall on a straight line, or a
parabola, or the like. We then try to adjust a straight line or a



parabola to see if we can get it to fit the data. This is exactly what a
least-squares fitting program does. A straight line has two parame-
ters, e.g. a slope and a cutoff, and the program varies these param-
eters until it finds the values of the parameters giving the least sum
of the squared deviations. It might still give a poor fit, but we have
criteria (discussed later) that will tell us whether the fit is statisti-
cally acceptable or not. If it is unacceptable, we have to think of a
better analytical curve and try that instead.
In our example of a diffraction peak, we have reasons to be-
lieve that the data fall on a so-called Gaussian curve:
— 2
y=F(x)=IOexp(—(—x.,7—);°~)—). (1)
This equation contains three parameters: the peak or maximum
intensity I, the peak position x,,, and the peak width 7 (the full
width at half maximum is 7 2V In 2). A least-squares program
will vary the three parameters until it finds the ‘‘best fit”’ charac-
terized by the least weighted mean square deviation,

2_1 N
X2=—"—73

N3 w, (v, — F(x))% . (2)

i—1

““N — 3" is the number of data points minus the number of
parameters in the fit. We refer readers to standard statistical
textbooks for a discussion of why this factor appears rather than N
itself. The curve in the diagram is the best Gaussian fit to the data.
Later on we shall return to this example and show how we judge
the goodness of the fit and how we present the resulting parame-
ters.

We would like to repeat, however, that we could have chosen
other functions F(x) with fewer or more parameters and perhaps
have found equally good fits. The reason for our choice is that we
have a theory which predicts that F(x) should be a Gaussian func-
tion, and we have proved that the experimental results are in
statistical accordance with this prediction. This shows clearly how
data reduction is an interplay between theory and experiment.

T

Let us assume that we have measured N data points [X(I),
Y], I = 1, 2..., N, where X is the independent and Y the
dependent variable. We consider X(I) to be known precisely* and
Y(I) to be uncertain by £o; . Then the weight of the I'th data point
is

W) 64,72,

The fitting function is denoted FE(X), where the ‘‘vector” f)’

stands for the set of parameters

B =[p(1), p2), ..., p(M)]
which is to be adjusted to give the best fit of F to the data points.
As mentioned above, the best fit is characterized by an abso-
lute minimum of the weighted mean square deviation,

N

‘ 1

X2 = 2 WO YD) — BXI)] . 3
N-M 1o P

Considering X2 a function of the parameters B, a condition for
minimurn is that

d (X2

9pK)
For polynomial regression or Fourier analysis, where the p(K)’s
are simply coefficients in a series expansion or a trigonometrical
series, and also for all other fitting functions which are linear in the
p(K)’s, the optimal parameters can be expressed in closed form.
That is, the M equations (4) become a set of linear equations which
can be solved for f)’by standard techniques. In general, however,
when F is not linear in all p(K)’s one must use iterational methods
(note, for example, that F in Eq. (1) is only linear in I, and not in
X, and 7).

In the general case of a nonlinear F function, the idea is to
approximate F by another function F', which is linear. The lineari-
zation is perhaps best understood in pictorial phrasing. For a fixed
X the function F describes a surface in the M-dimensional space of

0 forK=1,2,.... , M. 4)

the parameters §. When F is linear in the p(K)’s the surface is a
plane; otherwise it is a curved surface. In the vicinity of any set of
parameters, say % , the tangential plane is the best “‘linear’” ap-
proximation to the F-surface. Thus we shall replace the true F near
B, by its tangential plane, which has the analytical form

Fg=1, + a0

M TaFx)
Fg(X) + K2=1 [a p(K)] sz Ap(K), (5)
where the derivatives
2 F(X)
0 p(K)

are evaluated at the values py(K).

Of course, the best values of the p(K)'s are not known be-
forehand, but it is often possible to make a reasonable guess, at
least to the right order of magnitude. Making a guess of all the
parameters is the first step of the iterative procedure. Let the guess
be f)’o . Using the linear F’ evaluated at f{, , instead of F in Eq. (4),
gives a set of linear equations which can be solved for all Ap(K).
These ‘‘corrections’” are then added (or subtracted depending on
their signs) to the guess parameters J, to yield a *‘better”” guess.
This procedure is continued iteratively until two successive sets of
guess parameters equalize to any chosen accuracy. With an accu-
racy of 1 per thousand and 3 parameters this happens typically
after 3 or 4 iterations, depending on the closeness of the first
guesses. It is worth noting that even wild guesses will in general
converge towards the correct results, although exceptional cases
could be envisaged where either a minimum is not found or it is
not the absolute minimum.

We shall use the example from the introduction by fitting a
Gaussian function to a set of data points X(N), Y(N), W(N) where
X(N) is the independent variable, Y(N) the dependent variable and
W(N) the uncertainty (standard deviation) in Y(N). Notice that
W(N) is altered during calculation to the weight of the N’th point.

N X(N) Y(N) W(N)
1 20.1 17 9
2 20.2 28 9
3 203 63 11
4 20.4 119 13
5 205 230 17
6 20.6 269 18
7 20.7 253 18
8 20.8 156 15
9 209 83 12
10 21.0 13 9
11 21.1 8 8

To illustrate the detailed processing of a run, we show in the
following a listing using the PRINT ON option of the HP 9830,
whereby all action is printed on the line printer. The orders and
numbers keyed in and/or executed by the user are framed with full
lines. The messages or questions from the calculator usually ap-
pearing only on the display are framed in dashed lines. The normal
printout is left unframed.

*If X(1) is also uncertain by o (X, it is possible to transform ¥ graphically into an uncertainty in
Y(I) which is added to the direct uncertainty in Y(1) (by root-squared summation).



To judge the statistical significance of the fit, the user must

check the following items:

A. The reduced deviation must show no systematic trends,
such as being positive in one end and negative in the other
end of the abscissa range.

B. X2 must be of order unity, or what amounts to the same;
about 1/3 of the data points must have reduced deviations
larger than unity and 2/3 of the data points reduced devia-
tions smaller than unity.

In the example these conditions are fulfilled and we can state
the results as follows:
The peak intensity I, = 274 = 11

(rounded off to integers)
The peak position x, = 20.61 + 0.01

(rounded off to 2 decimals)
The width parameter M = 0.252 = 0.009

(rounded off to 3 decimals)

The figure in the introduction shows the actual data points and
the best fitting Gaussian curve.

Editor’s note: A listing of ‘‘A Generalized Linear Least-Squares
Fitting Program for the 9830A°’" by Dr. Dietrich and Mr.
Rathmann may be obtained on request by writing to KEYBOARD,
Hewlett-Packard, P.O. Box 301, Loveland, Colorado 80537,
US.A.

OVE W. DIETRICH is a senior physicist with the Danish
Atomic Energy Commission at the research establishment Risoe
near Roskilde. He received his M.Sc. in physics from Copenhagen
University in 1960 and became Dr.phil. in 1970. His major re-
search interests are the applications of neutron scattering within
solid state physics, in particular phase transitions and magnetism.
From 1970 to 1971 he was a guest scientist at Brookhaven Na-
tional Laboratory, N.Y.

OLE S. RATHMANN received his M.Sc. in physics from the
Technical University in Copenhagen in 1973 and is presently
working on his Ph.D. in the Physics Department at Risoe. His
scientific interests lie within solid state physics, in particular mag-
netism and the study of condensed matter by neutron scattering
technique.
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«  Starting the program.

<« Now input of data X(N), Y(N), W(N}. You don’t have
to tell beforehand how many data points you have.
‘When you are finished you just key in 0,0,0. Also,
the input need not be in order of increasing X.

<« The last number (19) in this line is erroneous; it should
have been 18. But carry on and correct at the end.

Now tel] that No. 7 is wrong.
And key in correct values.

Tt

< When all data are correct, reply @.

< Here computation starts, and file I is automatically
loaded.

«  The final values of x* and the parameters.

<« Standard deviation of parameters.

<« Input and calculated data for all data points are
printed.

<« The program is ready for your next problem.
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Last August this battered envelope was returned to sender, the
9820A/9821A Calculator Users Club in Boblingen, Germany, as
undeliverable mail. The envelope was mailed in July, 1974. For
over a year the New Zealand Post Office tried to deliver C.U.C.
catalog updates to Mr. Wilkinson. As you can see from all the
stamps and writing on the envelope, the Post Office must have
exhausted all possibilities before returning it.

This is dedication to the job that we all can appreciate, espe-
cially those of us who make international mailings. Please check
for clarity the manner in which your KEYBOARD is addressed.
We sometimes have difficulty in correctly addressing non-U.S.
mail because we are not familiar with all the international postal
systems. But we try. And so do the postal services.



by Chuck Freeman
News Bureau Representative
Southern California Gas Company

Southern California Gas Company,
largest gas distributing company in the na-
tion, has more than 33,500 miles of distribu-
tion and transmission pipelines in the
ground. In past years, the utility devoted
thousands of manhours to scaling millions of
feet of gas mains on tax rate and area maps
by hand.

The constantly changing boundaries of
tax and franchise districts as they expand,
merge, or are newly formed, pose a particu-
lar problem for utility companies. Every foot
of pipe representing a dollar investment in an
affected area must be reported.

The traditional procedure involves plac-
ing a scale over the gas main on a tract map
or atlas sheet, noting the footage and record-
ing it, then totaling it at the end. The process
was slow, tedious, and offered many oppor-
tunities for inaccuracies.

A “‘better mousetrap’” appeared on the
scene, however, when Southern California’s
engineering department procured a
Hewlett-Packard 9830A Calculator with pe-
ripheral components. The system, originally
purchased for engineering computations,
consists of the 9830, a 9866A Thermal
Printer for tabular output, a 9862A Plotter,
and a 9864 A Digitizer.

As various staff members became famil-
iar with the operation of the equipment, they
also became aware that the system was capa-
ble of a great deal more than was required of
it. Practically any soluble problem presented
and programmed properly was solved
rapidly and accurately.

The engineering personnel assigned to
tax and franchise matters started speculating
on how the equipment could be programmed
for scaling and tabulating underground pip-
ing within code areas. When their ideas were
thoroughly jelled into a single plan, the plan
was presented to Steve Schneider, an en-
gineer with the utility who is adept at de-
veloping programs for the 9830.

Schneider developed a program that has
proved highly successful. Several memory
options have been added to the basic 9830 to
increase its flexibility. These include a 4k
memory, the String Variables, Extended
I/O, and the Advanced Programming (APR
I) ROM’s. The String Variables ROM is re-
quired for handling alphanumerics for the
purpose of displaying tax code numbers, the
atlas sheet number, and footage.

>

The Extended I/O ROM is required to
communicate with the Digitizer via the
ENTER statement. To obtain greater flexi-
bility in programming, the APR I ROM is
used. Output from the program is in tabular
form from the 9866 Printer.

Other capabilities added to the system
include sub-tabulations, permanent storage
(with atlas sheet numbers), remote keyboard
typing, and plotting schematics of the piping
networks that have been digitized.

With the exception of map numbers and
other identification input by the keyboard at
the beginning of a work session, input to the
calculator is mainly from the 9864 Digitizer.
The Digitizer was ordered with an oversized
36-inch by 48-inch working area board —
overall size is 42 inches by 54 inches. This
size board makes the 9864 more suitable for
use with large drawings and maps. The
board is supplied ready to be bolted to a
standard drawing table, but it was decided to
mount it on a wheeled cart to allow some
mobility.

Cine

An oversized cursor with a 2-inch diame-
ter sight glass was also ordered to go with the
board. Because of its size, it is easier to lo-
cate map points with the cross hairs, which is
an important factor in expediting a project.

The Digitizer operates 100 percent under
calculator control. When the 9830 Calculator
requests data from the Digitizer, it receives
an X-Y coordinate pair from the location of
the hand-held cursor. Units of the coordi-
nates, as they come from the 9866, are in
inches. This simplifies the program, since it
is easy to relate to a map via a simple feet-
to-inches scale.

Lengths are calculated by the Pythago-
rean theorem. Since only relative length is
calculated between two digitized points, the
beginning and ending points of the pipe,
document alignment on the Digitizer is of no
importance.

The tax and franchise program is simple
and straightforward (see flow diagram). A
chief concern was that the program should be
easy to learn for inexperienced operators.

W ;
OVERSIZED BOARD — Engineer Steve Schneider of Southern California Gas Company uses
oversized cursor with two-inch glass to read points on tract map spread on oversized working area

board tied to 9864 Digitizer. Digitizer feeds data into 9830 Calculator programmed for special tax
and franchise purposes.



A ““menu’’ approach to the Digitizer is
utilized in the program. This is necessary
since the calculator lacks any interrupt and
cannot be redirected once a program is exe-
cuted.

In the menu approach, a section of the
board is reserved for special meaning. With
the tax and franchise program, the menu
calls for: pipe size (any number of sizes can
be entered); continuous mode; error — de-
lete last main measurement; summaries; and
private franchise option.

The cursor works on four button com-
mands: point of origin; single-point digitiz-
ing; automatic digitizing; and axis transla-
tion. There is a fifth button available but not
used.

If a digitized point is detected within the
menu, the program can determine the in-
tended meaning and branch to take appro-
priate action. As an example, if a point is
detected in the 1% inch square, 2 inches x 6
inches right of the origin (0,0), then the
operator commands a summary of the work
completed on the map presently being
worked on. The menu has the advantage that
by modifying the geometric layout, the menu
can be changed or expanded without major
logic changes in the program.

As each pipe length is calculated, it is
stored in an array according to size. The first
version of the program had no provision for
intermediate summartes, but this has since

TABULAR OUTPUT — 9866 Thermal Printer is used with the 9830A
Calculator by Southern California Gas Company for engineering computa-

tions.

been added. This allows for tabulations of
each map, as well as a grand total of pipe
length by size at the end of a work session.
Whenever a tabulation is desired, a point is
digitized in the appropriate box on the menu.

Curved or meandering lines could create
a problem, but, fortunately, the 9864 pro-
vides a continuous sample mode. To enter
this mode, the operator hits a point in the
continuous box on the menu. Then he press-
es the automatic digitizing button on the cur-
sor and follows the curved line. The cal-
culator now continuously requests and ac-
cepts data points. To exit, the operator pres-
ses the same button again and digitizes the
appropriate pipe size on the menu. The
length of the curved line is approximated by
the many straight lines connecting the points
on the line itself. The calculated length is
stored as one segment.

To avoid duplication of measurements, a
clear overlay sheet is placed on top of the
map and a felt pen is used to check off each
main as it is measured.

The program has been honed to the satis-
faction of all those involved for the moment,
but improvements are constantly being
suggested and incorporated into the system
as new capabilities of equipment are
realized. One such improvement is the addi-
tion of the capability to plot a schematic of
all pipe measured on a map. This allows a
quick visual check on which pipes were
scaled.

As an example of how the program al-
ready has reduced manhours, the hand-
scaling of 600,000 feet of main in the City of
Irvine, California, required some 300 man-
hours. A similar project in Palm Desert,
California, was performed recently using the
new program to scale the same amount of
footage in about 20 manhours.

Under the old system, approximately
five million feet of pipe could be scaled in a
year. During the first month of the new pro-
gram’s operation, 1.5 million feet were
scaled.

The capabilities of the Hewlett-Packard
9830 with its peripheral components are al-
most unlimited. All that is needed is a little
imagination.

BASIC PROGRAM LOGIC FLOW

START

|

Input necessary:

|

Identification, etc.

Map scale — Feet or inches

No

Calculate
length

P

-
Y

Digitize point 1

|

Is point on menu?
No Yes

/

Digitize point 2

Is point on menu?
Yes

Determine menu meaning
- Size description:
register appropriate size
-Error — delete last main
- Continuous mode:
Take all points as points
on a single line segment
-Summarize work session

|




PERMUTATIONS AND
COMBINATIONS

By John Nairn, PhD
Hewlett-Packard Calculator Products Division

“If the older mathematics were mostly dominated by the
needs of mensuration, modern mathematics are dominated
by the conception of order and arrangement.”

J. T. Merz

In the last few Crossroads articles we have been looking at the
calculator as a tool for solving mathematical problems. One of the
questions posed in that series concerned six men at a party, each
taking a coat at random as he left. (Actually, they were quite
inebriated, but there’s no sense in bringing that up again.) The
problem was to find the probability that at least one of the men
would get his own coat. The solution involved enumerating all
ways that the six coats could be distributed (a mathematician
would say permuted) among the six men, then counting the
number of ways in which one or more of the six got his own coat,
and taking the ratio of the counts to be the probability.

Several readers knew that this approach would solve the prob-
lem, but did not know the method for calculating the ways of
distributing the coats, and asked that the algorithm be given. As a
result, this article will be devoted to the subject of permutations
and combinations in general, and to algorithms for enumerating
these arrangements in particular.

Before discussing anything, it is best if we know what we are
talking about, so let’s first define permutations and combinations.
If I have three distinct objects (playing cards, for example) they
may be arranged in six different orderings: namely, ABC, ACB,
BAC, BCA, CAB, and CBA. These six arrangements are called
the permutations of three things. Actually, the term ‘‘permuta-
tion”’ may be used more generally to mean the number of distinct
arrangements of N objects chosen from a set of M objects (and can
be made even more complicated when repetitions are allowed).
But we will not get into that here.

Combinations are concerned with the number of ways that N
objects can be chosen from a set of M objects, without regard to
order. For example, the number of seven-person committees that
could be formed from the U.S. Senate (consisting of 100 senators)
would be a particular case of the number of combinations of 100
objects taken 7 at a time.

Although combinatorial analysis has become a powerful tool
of modern science and mathematics, its origins can be traced back
as far as the 8th century B.C. in China. The “‘l Ching’’ (or Book
of Changes) is an ancient book of divination that uses 64 hexa-
grams in combination, with an elaborate ritual for choosing one, to
tell the future. The hexagrams themselves represent the 64 permu-
tations of three solid lines (the yin) and three broken lines (the
yang). References to combinations are also found in the early
Western world. The Greek philosopher, Xenocrates, calculated
the number of possible syllables that could be formed from the
Greek alphabet to be 1,002,000,000,000. (A result you may be-
lieve if you like!)

Many attempts were made through the centuries to obtain for-
mulas that would give the number of permutations and combina-
tions for a given number of objects. The goals of these calculations
were quite practical and concerned such problems as the number of
ways that the known planets could be taken two, three, etc., at a
time for astrological purposes, or the number of combinations
possible for a lock with several movable cylinders. It was not until
the 17th century, however, that the work of such mathematicians
as Fermat, Leibniz, and Pascal put combinatorial analysis on a
firm foundation and established general formulas for their calcula-
tion.
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The use of permutations and combinations can be broken down
into two major classes: the first involves counting (or rather cal-
culating) the number of permutations or combinations of N things
taken M at a time; the second involves the actual enumeration of
these arrangements. It is often sufficient to know only the number
of possible arrangements, and indeed the solutions to many in-
teresting mathematical problems are based on knowing how to find
these counts. Many fields of modern science such as quantum
physics and statistical mechanics are highly dependent on com-
binatorial analysis for their results.

The formulas for the number of these arrangements have been
known for several centuries as:
=n! n!
P = n! mi (n-m)!
where P(n) is the number of permutations of n distinct objects, and
C(n,m) is the number of ways of choosing m objects from a set of
n distinct objects without regard to order. (Also, n! is read as ‘‘n
factorial’’ and is the product of the first n integers.) Any introduc-
tory book on combinatorial analysis will give the derivations of
these formulas and their extensions to cases involving allowed
repetitions.

A more Interesting task as far as calculators are concerned is
the actual enumeration of these arrangements. In the problem men-
tioned at the beginning of this article, we can easily calculate
(using the above formula) that the number of ways the six men
could have taken the six coats is P(6) = 6! = 720. The answer to
the problem is not obtained, however, until we actually enumerate
the 720 arrangements and count the number of these for which
someone got his own coat. For anyone with more ambition than I
have (not a difficult condition to satisfy), this enumeration could
be done by hand. But if the number of men involved were merely
doubled, the number of cases to enumerate and test would jump to
nearly half a billion! Obviously a job for a more patient and tireless
enumerator — the trusty calculator.

Which brings us finally to the real purpose of this article, the
presentation of two algorithms for the enumeration of permuta-
tions and combinations. At this point I am in the position of
Buridan’s proverbial ass which, when placed exactly between two
equally delicious looking stacks of hay could not decide which to
eat first, and so perished from starvation. Since my editor does not
allow me the luxury of the do-nothing alternative, I must choose
which algorithm to present first. And since the title of this article is
permutations and combinations, I will begin with permutations.

In any computer simulation of a real problem, the first obstacle
to be faced is that of finding a suitable notation. Returning to the
problem of the six men and their coats, we would like to find all
the ways that the coats can be distributed among the men. We
could call the men Smith, Jones, etc., and the coats Smith’s coat,
Jones’s coat, etc., but these would be difficult to work with in the
program. A more realistic solution is to associate all of the men
and coats with numbers (which the computer finds easier to di-
gest). Let’s associate the six coats with the numbers | through 6. If
we now line up the owners of the coats in the same order, we may
then look at all the permutations of the integers 1 through 6 and see
how many of these arrangements match one or more of their own-
ers. For example, Figure 1 shows two such arrangements of the six
numbers representing the coats. Notice that the order of the men
does not change.

and C(n,m) =

Coats: 351264 324516
Men: 123456 123456
Figure 1



In the first case, no one got his own coat, whereas in the second
arrangement two men got their own coats. Therefore our program
needs only to enumerate all permutations of the numbers 1 to 6 and
test whether a given number in the list matches its position in the
list. For a general notation we will call the k'™ element of the list
a . , where k = (1,2,...,n), and n is the number of elements in the
list. The symbol {a ,} will denote the entire list.

Never having found the time to develop my clairvoyant pow-
ers, [ won’t even try to guess in which language you would prefer
to have me present the algorithms. So instead I will give them in
the form of flow charts which can be easily translated into the
particular language of your calculator. Figure 2 gives these flow
charts for enumerating all of the arrangements of the first n inte-
gers, P(n), and all ways that m integers can be chosen from a set of
the first n integers, C(n,m). I hope that these are self-explanatory
with the exception of a few details which I shall expand upon now.

These are not flow charts for complete programs, but merely
for those segments of a program to get the next permutation or
combination for testing. In these flow charts the next arrangements
are simply printed. In a working program, the box specifying
printing the current list would be replaced with a more elaborate
procedure in keeping with the purpose of the overall program. For
example, in using the P(n) routine to solve the Coats problem, the
print box would be replaced with a test of each element in the list
to see if it matched its position in the list, and incrementing a
counter if such a match is found. The first box in each algorithm
represents an initialization of the list; i.e. setting a, = 1, a, = 2,
etc.

The permutation algorithm is based on the fact that the n!
arrangements can be broken down into (n-1)! groups of n arrange-
ments each. These n arrangements within each group are merely
the n arrangements obtained by rotating the group one element
each time. The indices i and j are counters used to keep track of
these groupings and rotations, and T is a temporary register used in
carrying out the rotation.

The combination algorithm is simply a combinatorial odometer
which keeps incrementing the last element of the list until it
reaches the maximum number, n. When this happens, the next
element to the left is incremented, the following one set to the
previous one’s new value plus one, and the whole process re-
peated.

These algorithms may not be optimal in some sense, and I
would be interested to hear from anyone who can suggest im-
provements on them. Also, if anyone is using (or because of these

algorithms can now use) permutations or combinations to solve
actual problems, [ would like to hear about your applications.

I would like to thank all of the readers who sent me their
solutions to the problems posed in The Crossroads, Vol. 6, No. 4.
Pierre Connolly sent a solution to the Harold’s Army problem.
Gus Hoehn and N. A. Barker each used a different novel approach
to the Sailors and Coconuts problem which we don’t have space to
cover here.

By far the largest number of letters came in response to the
Crossing the Desert problem. Michael L. Burrows, Harold R.
Cheesman, F. C. Hulatt, Karel Kieslich, Robert L. Neal, and Dick
Rahl all observed that the solution given (1962 miles) is far from
optimal. Indeed, since the trip was finished with 38.1 miles of gas
still left in the tank, any leg of the trip could be reduced by this
amount. And since the first leg is repeated seven times, we can
move all caches 38.1 miles closer to the starting point and cut off
7x38.1 = 266.67 miles. Thus the crossing can be made with a
total of only 1733.33 miles driven. As Robert Neal observed in his
letter, it is not surprising that the mathematician is out of work.

Finally I received a letter from Peter Gubis, Jiri Slavik, and
Karel Vavruska in which they sent a packet of programs solving
most of the problems posed, some in several ways. In particular,
they solved the Coats and Drunkards problem we have been dis-
cussing in three different ways. One was by the evaluation of the
analytic formula (see Crossroads 7-2). A second method used the
enumeration of permutations that we have been discussing. And
the third method used random numbers to simulate each man tak-
ing a coat as he left the party, and the program watched for some-
one to get his own coat. Their result for six men and 1000 trials
gave a probability of 0.615 as compared to the analytic result of
0.632, which shows that there are many ways to skin a cat or
clothe a drunkard!

Martin Gardner, **The Combinatorial Basis of the I Ching*’, SCI-
ENTIFIC AMERICAN, Vol. 230 (1), p.108 (January, 1974)

C. L. Liu, INTRODUCTION TO COMBINATORIAL
MATHEMATICS (New York: McGraw-Hill Book Company,
1968)

D. E. Smith, HISTORY OF MATHEMATICS, Vol. II (New
York: Dover Publications, Inc., 1953)

DONE

Figure 2: Algorithms for P(n) and C(n,m)
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Dennis Eagle of Calculator Lab, Hewlett-Packard, submits this
programming tip.

There are times when it is desirable to be able to output charac-
ters which are not on the keyboard. For example, you might like to
print 80 underscores across a page. If you had the underscore
character, the problem could be solved by using a format statement
in the following manner:

10 WRITE (15,20)

20 FORMAT 80"

Unfortunately, there is no underscore on the 9830A’s keyboard.
There is also no \, [, ], line feed, or typewriter operations such as
tab, backspace, etc. on the keyboard.

If you have a 9880 Mass Memory System, you can obtain the
underscore and other non-keyboard characters as follows. First,
execute the following instructions.

. PRESS: FETCH

. PRESS: fo

. TYPE: 1 DEF FNA (X)
. PRESS: END OF LINE
. TYPE: 2 STOP

. PRESS: END OF LINE
. END

Execute instructions 1 through 7 again, except that in instruc-
tion 2, press f1. Execute instructions | through 7 for fz, f3, and so
on up to fs. Be sure that the two lines of programming are stored in
every key. Next, key in the followng program:

N A AW —

MORELEB gl 1

1o

]
=

FAERY AT
)

el O T

e (R D

CLRUMH" s " IREL " s AE

H
=H TI}
FEIMT #18"
HERT H

B PREINT #13EHMI
228 TGET

TYPE: SAVE KEY ‘““CHARKY”
PRESS: EXECUTE

TYPE: OPEN “XXX,1
PRESS: EXECUTE

TYPE: SAVE ““CHAR™’

PRESS: EXECUTE

PRESS: RUN

PRESS: EXECUTE

ASCII CODE? will be displayed.

ENTER: 10
PRESS: EXECUTE
ASCII CODE? will again be displayed.
ENTER: 95
PRESS: EXECUTE
ASCII CODE? will be displayed. This time, terminate the pro-
gram by entering 999.
ENTER: 999
PRESS: EXECUTE
The Mass Memory will make a few “‘clicking”’ sounds.
10 and 95 are the ASCII codes for line feed and underscore.
If you press fo three times, F + F will be displayed. Although
the character is displayed as a I, it will print as an underscore.
Now whenever you want an underscore, you can press fo.
TYPE: PRINT ““‘ABC
PRESS: fo
TYPE: DEF”’
PRINT “*“ABCHDEF" will be in the display.
PRESS: EXECUTE
ABC__DEF will be printed.

As another example,
1 FORMAT 5> ““test”, 5" F +”
(using the fo key for F)
PRESS: END OF LINE
TYPE: WRITE (15,1)
PRESS: EXECUTE

Your printout should look like this:

TYPE:

You can now type line feeds whenever you Iike. If you press
f5, 1 will be displayed. However, if the character is within a print
or write statement, it will cause a line feed for the thermal printer
or an index on the typewriter.

TYPE: PRINT ““ABCIDEF’’ (using the fskey for J)
PRESS: EXECUTE
ABC
DEF will be printed on the thermal printer.
ABC
DEF will be printed on the typewriter.

Pages F-6 and F-7 of the 9830A Operating and Programming
Manual give all the ASCII codes and their corresponding outputs.
The keyboard characters which can be stored are those with the
following ASCII codes: @ through 1@, 12, 14 through 31, 91
through 96, and 123 through 127.

The CHAR program above permits you to enter up to ten of
these characters into the keys. For less than ten characters, termi-
nate by entering 999.

The characters are stored in the following sequence: fsfo,/1,

fefsfa.fo.fr.fs.fo.



LAW OF COSINES (91060A/B, 9810A)

Our thanks to Robert L. Neal, Jr., Pacific Southwest Forest
and Range Experiment Station, U.S. Forest Service, Challenge,
California, for this programming tip.

The addition of ‘‘Change Sign”’ before ““To Polar” in I. G.
Langdon’s Programming Tip for using the coordinate conversion
keys of the 9100A/B and 9810A with Math ROM to solve the law
of cosines (KEYBOARD, Vol. 6, No. 5, p. 14) will produce angle
B in the y-register at the same time that side ¢ is produced in the
x-register. The remaining angle A of the triangle can then be
solved by A = 180 — (C+B). Langdon’s technique, modified as
described, is used in the complete short program below, which
solves for all unknown parts of a triangle given two sides and the
included angle. With a, C, and b entered in x, y, and z at the first
STOP, A, c, and B appear in x, y, and z at the second STOP. The
area is produced in y at END. All angles are in decimal degrees.

00 1 10 RUP
0oL 8 11 CHS
02 0 12 POL
03 XTO 13 AC-
04 e (bon9810) 14 UP
05 STP 15 e (bon9810)
06 AC- 16 RDN (RUP, RUP on 9810)
07 RCT 17 XEY
08 RUP 18 STP
0 -, 19 f (aon9810)
0a RUP la +
0b X b 2
Oc YTO lc DIV
0d f (aon9810) 1d END
B
C a
A b C

' DISABLING THE END KEY (9830A)

Here’s an interesting programming tip from Dr. John Roberts,
Division of Chemistry and Chemical Engineering, California Insti-
tute of Technology, Pasadena, California.

If you are a poor typist, as I am, you may find yourself pres-
sing the END key instead of A, Q, or SHIFT with a considerably
distruptive effect on whatever you are doing. The END key is one
of the less used keys on the HP 9830 and its action can always be
achieved by the combination of typing in END followed by EXE-
CUTE. To disable the END key is a very simple matter. Bend a
paper clip into a U and bend up the ends about 1/16 inch toward
the middle to form a pair of hooks. Place this instrument around
the key and gently pull it up. Put a simple 1/4 inch rubber grommet
around the base of the key stem and then replace the key —
preferably with END upside down to remind you (and the ser-
viceman) that it is now inoperative.
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T ON2GN TIPS

Bob Huston of Surface Effect Ship Test Facility, Naval Air
Station, Patuxent River, Maryland, submitted these two useful
programming tips.

Following is some information we have discovered in our use
of the HP 9820A Calculator with 9866A Printer, 9862A Plotter,
9869A Card Reader, and Peripheral Control ROM’s I and 11.

Use of Card Reader and Printer to List Cards

1. Load cards into reader.

2. Transfer 1,8 (PC 11).

3. EXECUTE.

4. CONTINUOUS PICK (on 9869).

This will list cards on the printer. We have been using this
feature to list 80-column cards containing Fortran programs. We
have the punched card option on the reader.

Use of READ BYTE Key

If FMT **AD"’; WRT 1 is executed, and then RDB 1 R(), a
decimal code will be returned to the register that is the decimal
equivalent of the ASCII. For instance, a space returns a 32, C is
40, 48 through 57 are digits 0 to 9, 65 through 90 are A to Z, and
so forth. A 10 is found at the end of a card. By looping back to the
RDB command and not the FMT, an entire card can be read in and
decoded. This feature can be used to sort cards with the select
hopper option on the card reader and will work on alpha or
numeric data.

In our application we use the card reader and plotter to produce
report-quality plots. In order to make the lettering of plots automa-
tic, we use the routine mentioned above. All plot heading data and
plot points are put on cards by a computer. The plots are done
completely by the 9820, including lettering. Heading data is read
into the calculator one column at a time. It is decoded using the
short program given below and plotted using the plot commands of
the PC 1 ROM.

We also use this method for special lettering of plots. It allows
us to keypunch lettering and have the plotter produce high quality,
finished work.



Printed in U.S.A.
December 15, 1975



