Woridwide Response Center

HP 3000 APPLICATION NOTE #54

¢

Improving Database Performance

40g HEWLETT April 01, 1989
(/’ | PACKARD Document P/N #5959-9251

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

RESPONSE CENTER APPLICATION NOTES

HP 3000 APPLICATION NOTES are published by the Worldwide Response Center twice a month
and are distributed with the Software Status Bulletin. These notes address topics where the volume of
calls received at the Center indicates a need for addition to or consolidation of information available
through HP support services. Following this publication you will find a list of previously published
notes and a Reader Comment Sheet. You may use the Reader Comment Sheet to comment on the note,
suggest improvements or future topics, or to order back issues. We encourage you to return this form;

we'd like to hear from you.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

This document contains proprietary information which is protected copyright. All rights are reserved.

Permission to copy all or part of this document is granted provided that the copies are not made or
distributed for direct commercial advantage; that this copyright notice, and the title of the publication
and its date appear; and that notice is given that copying is by permission of Hewlett-Packard
Company. To copy otherwise, or to republish, requires prior written consent of Hewlett-Packard

Company.

Copyright © 1989 by HEWLETT-PACKARD COMPANY

IMPROVING DATABASE PERFORMANCE
DATABASE PERFORMANCE ISSUES

Many questions are received by the Response Center on TurboIMAGE performance.

“How long is the DBUNLOAD/DBLOAD going to take?' "My program takes a long time to update the
database now. It used to be fast. What happened? "I am designing a program/schema now. What can I do
to have the best design for performance? These are just a few examples, there are many more. Let us
approach performance from three sides. First, design features for optimal performance will be discussed,
then maintenance functions to help achieve better performance, and finally programmatic procedures for
best results.

A. DATABASE DESIGN CONSIDERATIONS OR WHAT THE DATABASE
ADMINISTRATOR CAN DO

How may features be used in the DESIGN PHASE to obtain optimal performance from a database? The
effects of poor database design may be most obvious on a DBLOAD. TurboIMAGE is performing massive
DBPUTs as data is loaded back into the database. If this process seems to take too long, then the time has
come to look at the database design factors discussed here.

Many factors may affect the response time of a program that is accessing a database. How can a database
be designed that will result in faster response to the particular demands of a particular set of users? By
first examining the database concepts using schema structure, the optimal structure for performance may
be determined.

BLOCKSIZE

The S$CONTROL statement has the option of altering the blocksize through the use of the
BLOCKMAX=nnnn. The blocksize chosen determines the size of the buffers in the extra data segment
known as the DBB (DATABASE BUFFERS) which is created at the time of the first DBOPEN of a
database by the TurboIMAGE intrinsics. These buffers will all be a2 uniform size, a "one size fits all"
concept. This extra data segment, normally resident in memory, acts as traffic cop for input and output
to the database. If updates to the database will occur using batch applications at a time when memory
contention is low, say at night, then the blocksize should be large. On the other hand, if updates occur
through application programs when many users are active and memory contention is high, then block size
should be smaller. Disc caching is 2 mitigating factor in this process which will be discussed in a later
section.

How applications access data is an important consideration. If chained reads to details or frequent key
item reads to a master are used, then smaller blocks are more effective since there will not be a2 high read
hit in the blocks read into the buffers of the DBB. On the other hand, if the database is accessed using
serial reads, then large block sizes will lead to a better read hit ratio. Another consideration to block size

might be the largest record size in the database. If the records in the database are large, then use a larger
block size.

PASSWORDS/SECURITY

Passwords and security are also a performance consideration. Using set level security will cause less
overhead than item level access, because of the additional security checking that must be done on the item
level. This overhead is actually CPU time plus the additional time involved in queuing for the CPU.
Password security has the same overhead.

ITEM LIST ORDER

Put items into the schema list in the order they will be used. In TurboIMAGE items are hashed and
loaded into a table in the root file. This table allows faster access of items 50 at the time of the first
DBOPEN they are loaded into the DBG (DATABASE GLOBALS DATA SEGMENT) for faster access.
Secondary chains may exist in this area of the root file. So to make certain the most used items are
primary entries, they are added first and therefore chasing synonym chains is avoided.

As in security checking, the overhead is CPU and queuing time.

SET USAGE - MASTERS AND DETAILS

The possible uses of data sets themselves in a data processing environment are important in the
performance arena.

Why make a set a detail or master?

Consider the record information. Is it summary type or detail? If the grouping of the data in this data set
will be of summary type and will have a limited number of data items that are static, then this should be
a master. On the other hand, if the set will contain a larger number of data items, there are lengthy
fields, the data is constantly changing, the fields describe data that is unique, or the set contains an item
that is related to other members of the set, this is a detail data set.

Stand alone masters are useful for table lookups, while stand alone details are useful for organizing data
with possible security needs associated with them. In this way TurboIMAGE security may be used to apply
to data rather than requiring a program to be written to create security.

Automatic masters are easier for users but involve more processing behind the scenes by TurboIMAGE
intringics. The Turbolmage intrinsics will be performing all the updates to chain information as well as
necessary additions or deletions to the automaster.

PATH USAGE

Now consider the linking of masters to details. Using masters linked to details requires updating chain
information in the chain head when adding and deleting from associated details. The chain head, present
in the master entry, contains chain count as well as forward and backward pointers.

2

First consider if each path is really needed. Consider carefully whether or not this particular search item
will be used often enough to make it a search item. If paths are to be used infrequently by application(s)
or the search item will have only a few possible values, such as "Y" or "N", then use as a path should be
avoided.

Because of the overhead involved with each chain update, it is best to go easy on multiple associations of
details to masters. Or, in other words, it is better to use more details and fewer masters due to the
overhead associated with chain updates. (Another problem with multiple relatlonshlps is the additional
disc space required in the masters due to the space needed for each path.)

It is also important to define the path most often used between a master and a detail as its primary path.
The default is the first path defined in the schema. (To change from the default include an " ! " prior to
the path in the schema, and this will become the primary path.) Know the data. What item should be the
key into the detail? Chained access is direct, while serial access is time consuming.

SORTED PATHS

Sorted paths can have a major impact on performance. In placement of records into a sorted chain, the
chain is read backwards and comparisons are made between the previous entry read and the current entry
to find the correct logical position for the entry that is being added. The LENGTH of the chain is
important. The reason being that to place a new entry the entire chain will be read until the sort item
which will - according to the collating sequence ~ preceed, and the record which will follow the newest
entry is found. If the chains are long, then more records must be read. Long sorted chains are a surefire
performance problem.

The PLACEMENT of the sort item within the record also will have great impact on performance. A
chain sort is a collating/sort process. If an identical sort item value is found, the sort will continue into
the next field(s) until the collation of records determines which should maintain fore and aft positions. If
the sort item is at the beginning of a record, this extended sort might continue to the end the record. This
will have a magnified effect if the chain is long and the sort item is at the beginning of a record. For
example, if all records in a data set were in the same sorted chain and/or the sort item was poorly
placed-such as in the beginning of the record- either adding or deleting a record would become a
noticeably time consuming process.

The number of sorted chains may also become a problem. This is a geometric problem: length of chain,
placement of sort item and number of sorted chains are all factors that determine how many I/O’s are to
be needed to add and delete items in a data set. These all decrease performance in a geometric fashion.

SYNONYMS

TurboIMAGE intrinsics determine where to place records in master data sets by "hashing". This will not
be a discussion of how hashing is done but where database design can impact performance and how. For a
discussion of hashing refer to Chapter 10 of the TurboIMAGE Manual (Part No. 32215-90050). Hashing
is actually a method of finding a unique position within a range of values between | and the capacity for
a master entry. The search item together with the capacity of the data set is used in a mathematical
formula to generate this unique position which will be used to place the record physically in the data set.
If a record position generated for a new record is identical to one already generated and is still in use by
that record, the newest record is placed nearby and becomes a SECONDARY or SYNONYM of the
original record. Then the chain information is updated to keep track of these similar records. These are
called SYNONYM CHAINS. '

When new records hash to the same location, synonym chain information must be updated to include new
members. When the synonym chain head is deleted, the first member of the chain will "migrate" or
physically move to the location occupied by the old chain head and the chain will be updated to reflect its
new head. A migration will also occur if a member of a synonym chain (a secondary member instead of
the chain head) is in a physical location to which a new record hashes. The secondary record will migrate
to a new location.

This overhead of moving records and chain overhead can be limited by a proper use of search items and
capacity. Since the point is to create a unique number then the two factors that are controlled by the
designer of the database: search item and capacity, should be optimized.

The best search item to use to generate the most unique numbers is a item defined as a type U, X, S, or P.
The reason for this is these types are used in the hash routine in a different manner than types I, J, K, or
R. Types U, X, S, or P use the whole search item value no matter what its length to obtain a positive
doubleword value while types I J, K, or R use the low order 31 bits to form a doubleword value. In other
words more bits are used in the case of a U, X, S, or P type and therefore a better randomization occurs.

However, if the key MUST be an integer, then keep the range of values for the search item within the
value assigned to the capacity. Every key will hash to a unique location, with NO synonyms! With this
hashing setup the data set can run up to full capacity without performance degradation. The capacity is
used in the formula to find a remainder from the doubleword value discussed above. One school of
thought suggests that prime numbers for capacity cause a better distribution than even numbers. The
reasoning behind this is a prime number would generate less even number remainders and therefore create
more odd number results resuiting in more unique numbers needed to prevent the synonyms and the
problems discussed above.

AUTO DEFER

When the time has come for batch processing, performance times may be enhanced by the setting of the
AUTODEFER flag through DBUTIL. This sets a flag in the root file informing TurboIMAGE extra data
segments that large blocks of data only will be coming. These large blocks of data will fill the buffers of
these extra data segments, then, and only then, will they be posted. The default is that with each intrinsic
level transaction the buffers are posted. A word of caution, since the file labels and buffers are not posted
with either ILR nor ROLLBACK is compatible with this method of updating. The database should be
backed up prior to setting this flag and processing.

B. MAINTENANCE PRACTICES FOR GOOD PERFORMANCE OR WHAT THE
SYSTEM MANAGER CAN DO

If the database is already designed and loaded with data, but response times are getting longer and longer,
what can be done to improve response?

MIXES OF BATCH AND REAL TIME APPLICATION

Take care mixing online user applications with batch application processes. Consider users and choose non
peak times to run batch applications which do many updates of a database or databases.

DATA SET LOADING

A utility such as DICTIONARY/3000’s DICTDBA {Database Audit Utility) or Query/3000 and some
calculation, may be used to determine the fill percentage of master data sets. A rule of thumb on this
percentage is not to allow a master to become more than 80% full. The reason being that beyond that
range the likelyhood becomes very high that the synonym chains already existing will become a more
serious performance problem. The problems arise in adding, searching blocks for an empty record in
which to place the new arrival and in deleting the records with the resultant migration of synonyms. In
other words it is simply an amplification of an existing problem which in actuality becomes geometric in
terms of performance as the data base fills.

Detail data sets may begin to have performance problems at this point as well, especially if the detail set
has been volatile. A detail set with frequent deletes and adds will lead to a lengthy delete chain. A delete
chain is the TurboIMAGE mechanism to reuse space occupied by previously deleted records in a detail set.
This is chain information within the detail set which is modified with each delete and add for that set.
Once again this is simply a revelation of a pre-existing problem which appears when data sets are nearing
capacity. Another issue with volatility of details is the chains that previously occupied a single block,
therefore contiguous on disc, begin to scatter to different blocks, spread out on the discs. This results in
the overhead that is most costly: 1/0 on discs. This may be somewhat offset by disc caching which will
be discussed. :

CLUSTERS

Clusters may occur in a master data set regardless of fill rate. Clusters occur when the search item and
capacity result in many values for the search item. hashing to the same location. Since changing the
capacity of the master data set alters the formula for hashing, a change in capacity is used to redistribute
the records of a cluster.

REDUCING DISC CONTENTION

The most volatile data sets should be separated across discs to reduce disc contention. Physical I/0 is the
most time costly activity on the system. If queuing occurs as well, say for the same disc, performance
suffers. Masters and related details should be spread across discs to achieve good results. The master
should be placed on one disc and its related detail on a different disc. DBUTIL’s MOVE command can be
used as well as STORE/RESTORE with a "DISC=" option to achieve this result.

DISC CACHING

DISC CACHING is an MPE subsystem which utilizes excess memory and the CPU to keep certain
frequently used areas of disc in memory. The idea being that disc I/O is slower than memory access, 0
disc caching creates a buffer storage area for frequently used disc files.

When a process requests a read, if the area is already in main memory the read will take a fraction of the
time required for the disc I/O to be completed to retrieve the requested data.

When a process requests a write, if the area is in main memory queuing must be done to wait for the
previous write to post. If it is not in memory only the changed area will be written and the process does
not have to wait for completion to continue processing. This is handled by disc caching.

OVERHEAD OF LOGGING AND ILR

Logging and ILR both cause overhead. Prior to a change in the database, the log file and the ILR files
must be posted with new informatiop which includes before and after images of record, file label, and user
label. Log files may be either disc or tape so we incur the expense of 1/O for each change to the database. _
ILR is a disc file so the expense is once again the I/O of disc update. The advantages of these activities
must be weighed against the cost of the I/O activities involved here.

DBUNLOAD/DBLOAD - CHAINED

Perhaps a long time has gone by since the last DBUNLOAD/DBLOAD. It might be of great value to
perform this function to achieve better performance. For detail sets the delete chain will be removed and
data compacted, no matter which option is taken: Chained or Serial. For masters unless the capacity is
changed (use a prime number) the location of synonyms will remain the same.

If the DBUNLOAD is done serially then broken chains will be rebuilt along all paths. If performance is
the objective then a chained DBUNLOAD will rebuild along the primary path AND place members of the
same chains in the detail set physically next to one another to allow faster access especially with DISC
CACHING.

Remember this will only improve access time in detail sets since chain members are residents there but a
change to the capacity might generate fewer synonyms as each master record is rehashed.

C. PROGRAMMATIC DESIGN OR WHAT THE PROGRAMMER CAN DO

The database is in place and loaded. What is the best way to access it and have the fastest response times?
Programming practices will have great impact on what the user perceives as performance.

MISCELLANEOUS

Consider the data type and language used. For example, avoid use of FORTRAN if the database is mostly
of character data since FORTRAN is designed for scientific and mathematical computing. Similarly
avoid use of COBOL if the database contains many REAL data types since COBOL will not be able to
contend with REAL formatted data.

Keep code localized. Try to keep procedures that call one another within the same segment.

Trap for errors. This will avoid time consuming debugging when problems do occur.

Use Query as an aid to debugging. If the program is written and in testing phase, Query may be used to
see how the program is deals with data.

Remember changes to a sort item involve doing a DBDELETE and DBPUT instead of a DBUPDATE.
If possible, sort the data before adding it to sorted chains.
Avoid the use of lengthy chains in chained reads. Keep chained reads short.

In programs having tables that are frequently used, think of using a dedicated database for lookups. Static
“lookup” type information such as territory information or product categories is perfect for database use.
This information could be updated easily if needed and most important, during processing time, would be
loaded into TurboIMAGE buffers in main memory allowing for cheap (do not use any user stack space),
easy access.

USE OF LIST parameter

When designing a program which accesses a database, a list parameter must be used to indicate what data
items are to be accessed. There are several ways of programmatically completing this list. Use of item
names, item numbers, "@" (all), and "*" (current) are the possible designations. Table A below shows the
activities required for satisfying each type:

TABLE A

"LIST" OVERHEAD FUNCTIONS PERFORMED ON YOUR BEHALF

	Item	Item		
Procedure	Name	Number)	*
DBGET	ADBJEG	ABJEG	ACBJEG	AJF
DBPUT	ADBIJ I ABIJ	ACBIJ	AJF	
[[
DBUPDATE	ADBHJ	ABHJ	ACBHJ	AJF
'				

- MOVE LIST TO TRAILER AREA OF TURBOIMAGE-USER EXTRA DATA SEGMENT

- CHECK ACCESS SECURITY

- REPLACE "@" WITH NUMERIC LIST

- CONVERT NAME TO ITEM NUMBER

MOVE ITEM TO GLOBAL TURBOIMAGE EXTRA DATA SEGMENT

- MOVE ITEM FROM GLOBAL TURBOIMAGE EXTRA DATA SEGMENT TO USER STACK

- MOVE TRAILER AREA OF TURBOIMAGE-USER EXTRA DATA SEGMENT TO USER STACK
- MOVE ITEM FROM USER STACK TO TURBOIMAGE-USER EXTRA DATA SEGMENT

- KEY/SEARCH ITEM CONFIRMATION

- INTRINSIC DOES OTHER THINGS

QGHHIOTMMOOm>
[}

NOTE

The " @ " parameter shows the first use. Each additional use is the same as
1] * n N

The important thing here is the number of tasks in each type of list parameter. Notice that " * " has the
least while item name has the most. So in the range of most efficient to least efficient the parameters
should be used in this order: " * ", item numbers, " @ ", followed by item name.

LOCKING

Locking has more impact on perceived performance than any other factor. Locking is a necessity and
cannot be tossed aside if there is any concern about the validity of data. Wisely used, locking can be
transparent to the user and need not impact performance.

First there are a few important things to remember about locking. If a process is using MR (multiple rin)
capability, to avoid a deadlock - which is the ultimate performance block - lock in a predefined sequence
and unlock in the reverse order. Back out the way you came in. Also remember locking is unnecessary if
DBOPEN:Ing in modes 3, 7, and 8. If using chained or calculated, reads, lock at the entry level, but if using
serial or directed reads lock at the set or base level.

The golden rule of locking is: “The longer the lock will be held the lower the level it should be." In other
words do not program a base level lock, which is meant to allow users to enter multiple changes across sets
(maybe go to lunch), then unlock. (This is poor data security as well.) Lengthy and/or complex
transactions should be locked at the entry level. It is a bit more programming, however it results in
infinitely happier users. Set level locks are acceptable when doing approximately 8 TurboIMAGE
intrinsics. Another way to minimize locking problems, is to lock at the same level throughout all process
that share a resource. Do not allow one process to lock at the set level while another locks at the item
level. This results in bottlenecks. A process must have an "all clear" or green light before proceeding
through the various levels to achieve the desired level of lock.

The last rule of locking is that when locking at the entry level it is important to always lock on the same
item in any one data set. If this rule is ignored then TurboIMAGE intrinsics will generate a set level lock
and the extra overhead of the entry level lock will be incurred. An example of locking on multiple items
in a set: attempting to lock on the item DOG=MASTIFF while a different user tries to lock in the same set
on the item SIZE=BIG. Both locks cannot be granted at one time since DOG=MASTIFF is a subset of
SIZE=BIG records, so some of the records meeting criteria might be identical for both users. If however
one item had been chosen as the most appropriate, say SIZE=BIG then one lock at a time can be processed.

BACK ISSUE INFORMATION

Following is a list of the Application Notes published to date. If you would like to order single copies of
back issues please use the Reader Comment Sheet attached and indicate the number(s) of the note(s) you
need.

Note # Published Topic

1 2/21/85 Printer Configuration Guide (superseded by note #4)

2 10/15/85 Terminal types for HP 3000 HPIB Computers (superseded by note #13)

3 4/01/86 Plotter Configuration Guide

4 4/15/86 Printer Configuration Guide - Revised

5 5/01/86 MPE System Logfile Record Formats
6 5/15/86 Stack Operation
7
8
9
10

6/01/86 COBOL I1/3000 Programs: Tracing Illegal Data
6/15/86 KSAM Topics: COBOL's Index 1/0; File Data Integrity
7/01/86 Port Failures, Terminal Hangs, TERMDSM

7/15/86 Serial Printers - Configuration, Cabling, Muxes

11 8/01/86 System Configuration or System Table Related Errors

12 8/15/86 Pascal/ 3000 - Using Dynamic Variables

13 9/01/86 Ferminal Types for HP 3000 HPIB Computers - Revised

14 9/15/86 aser Printers - A Software and Hardware Overview

15 10/01/86 RTRAN Language Considerations ~ A Guide to Common Problems

16 10/15/86 IMAGE: Updating to TurboIMAGE & Improving Database Loads

17 11/01/86 Optimizing VPLUS Utilization

18 11/15/86 The Case of the Suspect Track for 792X Disc Drives

19 12/01/86 Stack Overflows: Causes & Cures for COBOL 11 Programs

20 1/01/87 Output Spooling

21 1/15/87 COBOLII and MPE Intrinsics

22 2/15/87 Asynchronous Modems

23 3/01/87 VFC Files

24 3/15/87 Private Volumes

25 4/01/87 TurbolIM AGE: Transaction Logging

26 4/15/87 HP 26804, 26884 Error Trailers

27 5/01/87 HPTrend: An Installation and Problem Solving Guide

28 5/15/87 The Startup State Configurator

29 6/01/87 A Programmer's Guide to VPLUS/ 3000

30 6/15/87 Disc Cache

317 7/01/87 Calling the CREATEPROCESS Intrinsic .
32 7/15/87 Configuring Terminal Buffers

33 8/15/87 Printer Configuration Guide

34 9/01/87 RIN Management (Using COBOLII Examples) (A))
34 10/01/87 Process Handling (Using COBOLII Examples) (B)

35 10/15/87 HPDESK 1V (Script files, FSC, and Installation Considerations)

34 11/01/87 Extra Data Segments (Using COBOLII Examples) (C)

36 12/01/87 Tips for the DESK IV Administrators

37 12/15/87 AUTOINST: Trouble-free Updates

38 1/01/88 Store/Restore Errors

39 1/15/88 MRJE Emulates a HASP Workstation

40 2/01/88 HP 250 / 260 to HP 3000 Communications Guidelines

41 4/01/88 MPE File Label Revealed - Revised 6/15/88 \
42 7/15/88 System Interrupts ﬂ
43 7/15/88 Run Time Aborts

44 8/01/88 HPPA Pathing Conventions For HP 3000 900 Series Processors

45 8/15/88 Vplus & Multiplexers

46
47
48
49
50
51
52
53
54

8/15/88
9/15/88
11/15/88
12/01/88
12/15/88
1/01/89
1/15/89
2/01/89
4/01/89

Setting Up An HPDesk/HPTelex For The First Time

Customizing Database Data Items & Changing Passwords in JCL Files
Printer Configuration (Revision #4)

Configuring DAT ACOMM Products Into MPE

VFC's For Serial Printers

Terminal Types For The HP 3000 HPIB Computers

Configuring MRJE

Using Special Characters on the 700/ 9x Series Terminals

Improving Database Performance

READER COMMENT SHEET

Worldwide Response Center Support
HP 3000 Application Note §4: Improving Database Performance
(April 01, 1989)

We welcome your evaluation of this Application Note. Your comments and suggestions help us to
improve our publications. Please explain your answers under Comments, below, and use additional pages
if necessary.

Is this Application Note technically accurate? [[] Yes [] No
Are the concepts and wording easy to understand? [] Yes [] Neo

Is the format of this Application Note convenient in size, arrangement and readability? [] Yes [| No

Comments and/or suggestions for future Application Notes:

This form requires no postage stamp if mailed in the U.S. For locations outside the U.S., your local HP
representative will ensure that your comments are forwarded.

FROM: ' Date

Name

Company

Address

FoLD FoLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 95, MT. VIEW, CA

ISESSENEEENESENEEEEENEEEEEEEEENEEEEENEENEEEREERRENN DD N
POSTAGE WILL BE PAID BY ADDRESSEE

Application Note Comments

Hewlett-Packard Manufacturing Specifications
690 E. Middlefield Road

Mail Stop 30-0

Attention: AN ORDERS

Mt. View, CA 94043

S T L L L T T T T L T L L T R R Y Y L LI LR P Y P S L R T L L

FOLD FOLD

