Worldwide Response Center

HP 3000 APPLICATION NOTE #60

2

TurbolIMAGE’s

I-FILES
and
J-FILES
(D P Docunent PN 5959-7368

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

RESPONSE CENTER APPLICATION NOTES

HP 3000 APPLICATION NOTES are published by the Worldwide Response Center twice a month
and are distributed with the Software Status Bulletin. These notes address topics where the volume of
calls received at the Center indicates a need for addition to or consolidation of information available
through HP support services.

Following this publication you will find a list of previously published notes and a Reader Comme‘

Sheet. You may use the Reader Comment Sheet to comment on the note, suggest improvements or
future topics, or to order back issues. We encourage you to return this form; we'd like to hear from you.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

This document contains proprietary information which is protected copyright. All rights are reserved.
Permission to copy all or part of this document is granted provided that the copies are not made or
distributed for direct commercial advantage; that this copyright notice, and the title of the publication
and its date appear; and that notice is given that copying is by permission of Hewlett-Packard
Company. To copy otherwise, or to republish, requires prior written consent of Hewlett-Packard
Company.

Copyright © 1989 by HEWLETT-PACKARD COMPANY

TurbolIMAGE’s I-FILES AND J-FILES

When running applications that access a data base, has a message like the following ever appeared:

INTERNAL ERROR ENCOUNTERED

PthSE SEND :STORE TAPE OF PRIVILEGED FILE I#######.PUB.WHATEVER
TCAHEWLETT-PACKARD. TO DELETE THIS FILE, LOG ON IN PUB.WHATEVER
AND RUN DBDRIVER.PUB.SYS,PURGE

This message might look pretty forbidding, but it is actually a flag and a tool for finding problems in data
bases. If you have ever wondered about the how’s, why’s, and so~what’s of I-FILEs, this article will be of
great importance to you. In this article, we will introduce you to the I-FILE and discuss how to analyze
it.

This article describes:

The TurboIMAGE/V and TurboIMAGE/XL control block structures

An introduction to the uses of the new I-FILE and J-FILE of TurboIMAGE/XL

The events that could generate an I or J file

The I-FILE and J-FILE contents

Sample I and J files.

This article concludes with a case study illustrating how I-FILE analysis played a major role in problem
identification and resolution.

. GLOBAL STRUCTURES OF TurbolMAGE/V AND TurbolMAGE/XL

An I-FILE consists of unformatted TurboIMAGE data as well as some additional user-stack information.
The TurboIMAGE data is captured in control blocks. TurboIMAGE on both V/E and XL machines, use
control block structures to control and coordinate access to a data base. In order to analyze an I-FILE, it
is imperative that you understand the information contained in TurboIMAGE control blocks.

A. TurbolMAGE/V CONTROL BLOCKS

TurboIMAGE/V control blocks are extra data segments used by the TurboIMAGE intrinsics to store data.
The stored data allows us to coordinate multiple access to a database. By using multiple control blocks,
TurboIMAGE overcomes the constraints of the MPE/V extra data segment size limitations. The use of
multiple control blocks also allows for more information within each data segment. The three control
blocks we will discuss are: the DBG, DBB, and DBU.

1. DBG - DATA BASE GLOBALS

The DBG data segment contains an area used for locking as well as global schema information from the
root file. The DBG allows TurboIMAGE intrinsics to quickly access required security information since
these structures are in memory and pointers are maintained in the user’s stack. The DBG contains root file
information such as: access tables, set definitions, item definitions, and Native Language Support collating
sequences. This extra data segment is created before any of the other TurboIMAGE extra data segments
at the time the data base is first opened and will be the last TurboIMAGE extra data segment purged at
the time the last user in the data base does a DBCLOSE.

Each TurboIMAGE extra data segment begins with a "tag". This tag not only allows us to identify thal Rhe
segment belongs to TurboIMAGE, but also indicates which control block it is.

The DBG begins with the literal value "IMAGE1". The DBG Iayout is pictured beIow:

DATA BASE GLOBALS
DBG

"IMAGE1"

ACCESS INFO FOR
SETS AND ITEMS

ITEM DEFINITIONS

NLS COLLATING
SEQUENCE TABLE

LOCKING AREA

|

I

I

I

I

I

I

| SET DEFINITIONS
I

|

|

|

|

|

I

I

| TRAILER
|

2. DBB - DATA BASE BUFFERS

The DBB- control block contains areas for tasks such as logging management and buffer management.
Since all TurboIMAGE I/0 is done through buffers, the best performance is gained by coordinating the
use of the DBB buffers. The DBB allows us to do that by providing a control block whose main purpose is
to house and facilitate the coordination of all buffer usage. Logging, like buffer management, also
requires extensive coordination. Whether we are doing ILR logging, user logging, or both, we need a
monitored environment to ensure the proper application of changes. This act1V1ty also takes place within
the DBB.

This extra data segment is created at the time of the first DBOPEN after the DBG is created and will be
‘ purged at the DBCLOSE of the last user accessing the data base.

The DBB begins with a tag of "IMAGE3". The DBB layout is pictured below:

DATA BASE BUFFERS
DBB

"IMAGE3"]

LOGGING/BUFFER
GLOBAL INFO

ILR INFORMATION

I/0 BUFFERS

|
I
I
I
I
I
I
I
I
I
|
I
I
I
I
| TRAILER
I

3. DBU - DATA BASE USER DATA SEGMENT

The DBU data segment contains specific user information. A DBU will be created each time a DBOPEN is
performed on a database. For example, if the same process opens a database twice, two DBU’s will be
created for that process. This is done to keep process specific access information for each open of a data
base discrete. The data retained in the DBU is item and set access information. The DBU also contains the
current list maintained for the user from the last intrinsic performed. :

The DBU begins with "IMAGE2" as a tag to allow identification as a TurboIMAGE extra data segment.
The layout of DBU follows below:

DATA BASE USERS
DBU

"IMAGE2" |

SECURITY ACCESS
TABLE FOR THIS
DBOPEN

CURRENT LIST

I
I
I
|
I
|
|
I
I
| TRAILER
I

B. TurboIMAGE/XL CONTROL BLOCK STRUCTURES OR "MAPPED FILES"

On the XL machines, the TurboIMAGE control block structures are used for the same purpose as on
MPE/V: to store process information and coordinate access. Unlike MPE/V, though, the DBG and DBB
have been combined into a single "mapped file" called <dbname>GB. The DBU is also a mapped file which
is, however, temporary and unnamed.

1. WHY "MAPPED” FILES ARE USED BY TurboIlMAGE/XL

A "mapped file" is a file which can reside in memory or on disc or a combination of memory and disc.
The advantage of "mapped files" is that they can be accessed as virtual memory, which allows for high
speed performance. This performance increase is accomplished by taking advantage of the new
architecture’s Demand Paging to to page and prefetch (the file into main memory). No longer is there any
need for File System buffers. Main memory serves as the only buffer needed by the new file system.
Another reason for better performance is that these "mapped files" are accessed and controlled by the use
of specific pointers to direct reads within the file. These reads are controlled and maintained by the
special intrinsicss. FPOINT and FCONTROL. The FREAD and FWRITE intrinsics used by
TurboIMAGE/V therefore are not required by TurboIMAGE/XL.

2. GB-FILE

The information contained in the GB-FILE is the same information contained in TurboIMAGE/V control
blocks. The major difference is that the DBG and DBB are combined into one "mapped” file. This
"mapped file" has a file code of -403 and is binary. Though we call it the "GB-File", its true name is
<dbname>GB where <dbname> is the name of the database.

‘ At a glance the <dbname>GB looks like this:

GB-FILE

| "IMAGE1"

|
| ACCESS INFO FOR

| SETS AND ITEMS

ITEM DEFINITIONS

SET DEFINITIONS

NLS COLLATING
SEQUENCE TABLE

LOCKING AREA

DEAD ZONE

"IMAGE3"

LOGGING
GLOBAL INFO

BUFFER HEADERS
AREA

1/0 BUFFERS

I
I
I
I
I
I
I
I
I
I
|
I
I
|
I
I
I
|
I
I
|
|
|
I
I
DBG TRAILER |
I
I
|
|
|
|
I
|
I
I
I
I
I
I
I
|
I
I
I
I
I
TRAILER |
I

3. XL - DBU

The TurboIMAGE/XL DBU is also a mapped file. However, it is not permanent and does not have an
MPE file name or file code. It is a temporary file local to the process that created it with a DBOPEN. Its
structure is the same as TurboIMAGE/V DBU structure.

Il. 1-FILE and J-FILE STRUCTURES
A. I-FILEs NAMING CONVENTION

This section presents how the TurboIMAGE/V control blocks and other user information are represented
in I-FILEs. Unlike cars, homes, and people, I-FILEs do not come in a variety of shapes, colors, and sizes.
They always have the same form. I-FILEs derive their name from the fact they begin with the letter "I"
coming from IMAGE. The next seven characters of the file name represent the Julian date and military
time of the I-FILE creation. The time is based on a 24-hour clock. This naming convention is similar to
the naming convention used by EDITOR and TDP for K-FILES. An I-FILE called 10031 300 indicates an
I-FILE that was created on the third day of the year at 1:00 pm. The I-FILE naming algorithm is
illustrated below:

"I<ddd><tttt>" where <ddd> = Julian date (1:365)
and <tttt>= Military time (0001:2400)

The I-FILE is created in the logon group and account of the user encountering the TurboIMAGE abort.
This can be a different group and account that in which the database resides. Upon creation of an I-FILE,
TurboIMAGE will inform the user that an I-FILE was produced. If the I-FILE cannot be found, chances
are the user is looking in the wrong group and account. Usually a :LISTF I#######.@.@,2 will locate the
file.

Another distinguishing feature of an I-FILE is its physical characteristics. I-FILEs are created with a
negative file code which means they are privileged files. This lends extra file protection to the I-FILE
since they cannot be purged, renamed, or modified accidentally.

B. WHAT IS A J-FILE AND WHY IS IT ONLY ON THE XL?

There is a slight twist to the I-FILE concept on the XL machine. A new data structure called the
“J-FILE" was introduced along with the redefinition of the I-FILE. The J-FILE is not really a new data
structure. It is just a new name for the TurboIMAGE/V I-FILE. The J-FILE naming convention is the
same as the I-FILE so a J-FILE called J0041400 was created on the fourth day of the year at 2:00 p.m.
Like the I-FILE, the J-FILE contains the TurboIMAGE control blocks related to the aborted process: the
<DBNAME>GB and the DBU.

The MPE/XL I-FILE contains a stack marker trace and stack dump of the aborting process. This I-FILE
is built based on a script file: IMAGEDMP.PUB.SYS. A quick look at that file will reveal a series of
DEBUG commands. These commands are used to create a file containing information specific to the
environment in which the abort occurred. The IMAGEDMP.PUB.SYS file has been written by
experienced personnel to capture:

. o Environmental variables

Stack marker traces

NM registers

CM globals and registers

C. WHY WOULD AN *I-FILE BE PRODUCED?
*(For purposes of this discussion, I-FILEs will refer to both 1 and J-FILEs for the MPE/XL machine and
I-FILEs on the MPE/V machine.)
An I-FILE will be produced only when certain TurboIMAGE aborts occur which call the intrinsic
DBABORT AND the database being accessed has been enabled for dumping via DBUTIL. To enable a
database for "dumping":
1) Logon as the data base creator.

2) :RUN DBUTIL.PUB.SYS

' ‘ 3) >>ENABLE <dbname> FOR DUMPING.

Once the database has been enabled for dumping, an I-FILE will be created when one of the following
conditions exist:

o INTERNAL ERROR(S) from MPE File System Intrinsics

INTERNAL INCONSISTENCY in the data base or extra data segments discovered by Image
Library Procedures.

e A faulty user calling sequence

A call from a user process with the hardware DB register not pointing to the process stack.

MPE file intrinsics such as FOPEN, FREADLABEL, FREADDIR, FWRITELABEL, FWRITEDIR, or
FCLOSE impact the structure and contents of files. Any type of error when calling these procedures may
result in a TurboIMAGE abort. This type of error would be reported as either INTERNAL ERROR or
INTERNAL INCONSISTENCY. Typically the user may find or more of the following:

e Corrupt User/File Labels

e Corrupt Chain Head

¢ Broken Detail Chains

e Corrupted Delete Chains

¢ Virtual Memory Problems

o Extra Data Segment Corruption Due to Privileged Mode Programming

Why do these conditions cause TurboIMAGE to abort? Let us examine each condition to see what is taking
place and why.

At the time of FOPEN, checks are done on several areas of the file label to ensure integrity. Two of these
checks are: CHECKSUM and COLDLOAD ID. Either of these two might return an error condition which
would signal corruption.

Corrupted chains due to bad chain heads, bad detail records pointers, or broken delete chains can be
detected by FREADDIR or FWRITEDIR. A TurboIMAGE chain is simply a structure containing pointers
within the dataset. An I-FILE will be produced when these pointers do not point to a record or an
address within the file or when the pointed-to records within the file are illogical (bit-map indicates that
the record which is to be updated is not in use.)

Virtual Memory problems can be sensed during an FOPEN or at a time when the DBB is swapped out of
memory to enlarge or shrink the extra data segment size. The number of buffers used per accessor is
determined through the DBUTIL command SET BUFFSPECS. By varying the number of buffers used per
accessor, TurboIMAGE has to swap the DBB in and out of virtual memory. This swapping increases the
probability of problems with virtual memory. The problem will be a lack of available space to copy the
DBB from or to Virtual Memory. By setting the BUFFSPECS in DBUTIL to a constant value, say
100(1/120) this swapping will be avoided as much as possible.

Privledged mode programs in some rare cases could corrupt extra data segments, user stacks, and other
memory structures. The corruption experienced during PM processing 1s usually not intentional but is due
to improper programming or poor coding techniques. An example might include an incorrectly set
pointer. Consequences of this corruption will cause the intrinsics operating at the time to abort
unexpectedly since they return or receive unexpected results.

It is important to remember that the conditions causing an I-FILE to be created signal a serious problem.
When this problem occurs, it is informing the user that processing in this situation is questionable and that
further analysis should be done. When an I-FILE is created, all users should exit the database and the
extent of the database corruption should be determined before users are allowed to access the database.
Users will receive a message indicating that further access is not allowed and that the only TurboIMAGE
intrinsic that will be performed is a DBCLOSE of the database in question.

Though all these examples vary from case to case, the cause and effect relationship is still the same for

‘ each case:

I-Files are created by ->
File Intrinsic Failures due to ->
Some type of corruption
A later section of this article contains two I-FILEs: one resulting from Privileged Mode program

corruption and another resulting from broken chains. The third example is an I-FILE and a J-FILE
generated by TurboIMAGE/XL showing a bad pointer, which is possibly due to a broken chain.

. ANALYSIS

Now that you know what an I-FILE is and why it is created, it is time to ask yourself what can be done
with it. Since an I-FILE cannot be edited or listed, how can it help? More importantly, how can I read it?

As you might have guessed an I-FILE can help by telling you almost everything you need to know about
the state of the database at the time of the I~FILE was created. The next question should be: "How can I
use an I-FILE to isolate the problem. Since an I-FILE cannot be edited or listed, how can it help me?
More importantly, how can I read it?

DBDRIVER.PUB.SYS. DBDRIVER may be used for a wide variety of diagnostic purposes, however in

. There is a Hewlett Packard tool that will help you “dump" the I-FILE for inspection:
order to print an I-FILE the program must be run with the “CLONE" entry point.

" Running DBDRIVER

To access and dump the I-FILE with the DBDRIVER program, the user must satisfy one of two
conditions:

¢ Be the creator of the I-FILE, or

o Have PM capability

It is this program (DBDRIVER) that allows a user to "dump" an I-FILE. The formal file designator for the
output of DBDRIVER is DBDRLIST. By default, DBDRLIST is directed to "LP". The user can redirect the
dump to the terminal or to a disc file by issuing a file equation: _

Terminal----------- => :FILE DBDRLIST=$STDLIST
Disc-------ccrec-w-- > FILE DBDRLIST;DEV=DISC;SAVE
Deferred Spoolfile--> :FILE DBDRLIST{DEV=LP,1,1

The input file can be file equated as well as the output file. This will enable the user to be signed on to a
different account and/or group than that in which the I-FILE resides. Any formal file designator may
be used:

:FILE xyz=######.PUB.WHATEVER

where *xyz is to be used when DBDRIVER prompts for the I-File name (see below) and xyz is equated to a
valid I-File.

To "dump” the file, run the DBDRIVER program as indicated below:
:RUN DBDRIVER.PUB.SYS,CLONE

The user will be prompted for the name of the file to be "cloned". The group and account cannot be
specified so make sure you are logged into the group and account in which the I-FILE exists or use a file
equation as mentioned above.

Please remember throughout this discussion that a complete analysis of an I-FILE should be conducted by
a trained Hewlett-Packard employee and that the information discussed here will allow the user a cursory
glance at the problem.

As explained earlier, the I-FILE contains a short description of the problem, a stack trace, the user stack,
and the TurboIMAGE control blocks associated with that particular database.

A typical analysis of an I-FILE would start with interpreting the ASCII message found at the beginning
of the I-FILE. These messages will include the name of the aborted TurboIMAGE intrinsic along with the
database name and abort location. For example:

ABORT: DBFIND ON DATABASE TESTDB.PUB.MYACCT;
IMAGE ABORTS AT PROCEDURE: 000737; ADDRESS: 042046
INTERNAL TRAP ENCOUNTERED.

Although this message does not give a comprehensive report of the problem, 1t does tell you that a problem
occurred when executing a DBFIND on the database called TESTDB.PUB.MYACCT. At this point, it
might be in the best interest of the user to run some type of diagnostic program against the database to
verify consistency. DIOGENES, a database diagnostic program usually found in the TELESUP account,
will help identify any type of structural inconsistency.

The other information displayed in the message in this example may not be helpful to users since
TurboIMAGE source code is not available to reference the offset. But once again, this message does
identify the database affected.

Other sample messages contained in I-FILEs might read:

LOST FREE SPACE in DATASET ## or UNABLE TO COMPLETE ILR FUNCTION.

After examining the ASCII text, the next step in I-FILE analysis is to review the error cells of the DBB.
The following table illustrates the meaning of each cell and its placement within the DBB:

10

S

N
")

Cell Contents MPE/V MPE/XL Comments

- - - - - - - - - . wemem— - - - - -

Error Number %100 $168-$169 bytes The TurboIMAGE error number
: corresponding to the offending
aborted procedure.

e Error Dataset ° %101 $16a-$16b bytes The dataset in which the
. error occurred.

e FS Error %102 $16c-$16d bytes The file system error returned
by the TurboIMAGE intrinsic if
appropriate.

e File Number - %103 $16e-$16f bytes The file number assigned to the
A dataset in question by the file
system. Since TurboIMAGE
datasets are globally opened,
this number will be negative.

Iv, EXAMPLES OF I-FILE AND J-FILE ANALYSIS

Following are examples of parts of actual I-FILEs and J-FILEs with a discussion of
the most pertinent areas of concern.

A. TurbolMAGE/V

1. EXAMPLE OF I-FILE SHOWING BROKEN CHAIN

This examp]e shows portions of an I-FILE generated due to bad pointers in a sorted chain. The user who
received the error attempted to do a DBPUT to an entry with a pointer that pointed outside the dataset.
Because the database was enabled for dumping when the user attempted the DBPUT, the same message
was displayed to the user as appears at the beginning of this I-FILE.

(For brevity and readability in this article, only the pertinent information is displayed.)

ABORT: DBPUT ON DATA BASE EXAMP.PUB.SYS]IMAGE ABORTS AT PROCEDURE: 000627; A
IMAGE ABORTS AT PROCEDURE: 000627: ADDRESS: 42730

CRITICAL READ ERROR ON DATA SET #5.

END OF FILE (FSERR 0)

11

The following is a stack dump of the aborting procedure. This information is useful only if a map of the
procedure is available.

k&

STACK DISPLAY
$=051007 DL=177650 2Z=05361

Q=051013 P=006720 LCST=S067 STAT=P,1,0,L,0,
Q=050570 P=002727 LCST=S072 STAT=P,1,0,L,0,
Q=050316 P=012166 LCST=
Q=030206 P=017201 LCST=
Q=027723 P=020247 LCST=
Q=027717 P=177777 LCST=S156 STAT=P,1,0,L,0,

*kd

ID # 4

The following is the actual stack of the aborting program.

..DB

.08. . OCTAL
-00130 000000 000000 000000 000000 000000 Q00000 000000 000000 000000 000000 000000 000000..

020 STAT=U,1,1,L,0,
021 STAT=U,1,1,L,0,
021 STAT=U,L1,1,L,0,

-00114 000000 000000 000000 000000 000000 000000 Q00000 000000 000000 000000 000000 000000.. v +u vt vr oo ws
-00100 000000 000000 000000 000000 000000 000000 0Q0000 000000 000000 000000 000000 000000.. .. v «v ct vt vr vv o vu ve o
-00064 000000 000000 000000 000000 000000 0000CGO 000000 000000 000000 000000 000000 000000..« vv v en v v v vu oo
~-00050 000000 000000 000000 000000 000000 0OO0OO 000000 O00POO Q00000 000000 000000 0000Q0..

-00034 000000 0000GO 000000 000000 000000 000000 000000 00CGOO0 000000 000000 000000 000000.
-00020 000000 000000 000000 000000 000000 000000 0000CI 000000 022422 000000 177777 000000..
-00004 Q00000 177777 000000 177777 000000 000526 002024 002044 002072 002476 003102 003112..

00010 003144 003164 003204 004724 004744 005064 005470 005510 005544 000000 000000 000000. . d
00024 000000 000000 000000 000000 000000 000000 000000 000000 O0QD00 000000 000000 000000.. ~v st vt v er v ou s

d.t

The following is the DBB which we can tell from the value "IM AG E3" which appears as the header at
the beginning of this block of data. This data segment contains the File System error referred to in the

ANALYSIS section. In this data segment words %100-%103 contain this important tracing information. q
00000 044513 040507 042463 000367 000426 016800 002401 000000 000000 000000 000001 000000 IM AG EJ v vt ve oo .o

00014 000000 000000 000000 000000 000000 000002 000000 042530 040515 050040 050425 041040.. EXAMP PUB

00030 020040 020040 046525 051120 044131 020040 024704 000006 000000 000000 176000 000000 8Y 8). ...

00044 000000 000000 000000 000000 Q00000 000000 000000 000000 000000 000000 000000 000000 +'v v ov we vv vr s e e o

00060 000000 000000 177777 Q00000 000000 177777 Q00430 002401 000000 000000 000000 000003 v v o ce an e o

Following are words %100-%103:

00074 000006 OQO000 000000 000000 2777785 ACO0OS OOMVO0 177770 000000 002001 000000 000000 v .t or eo vo v on vr 4u uu

Word %100:

bounds of this dataset.

Word %101:

Word %102:

IMAGE ERROR NUMBER
This means that when attempting to access an address, an error
condition occurred. For example the pointer was outside the

SET NUMBER

#00000S #S DATA SET §
The error occurred while attempting to access dataset S.

FILE SYSTEM ERROR
An FSERR 0 (END OF FILE) occurred while trying to find the values
pointed to in a chain. .

#000000 #0 FSERR O

12

%#177775 #-3 FREADDIR FAILURE

Word #103: FILE NUMBER %#177770 #-8 GLOBAL AFT ENTRY 8
The file number assigned to this file in the GLOBAL Available
File Table, which holds entries for each dataset opened, is 8.

00110 000000 000000 000000 000000 000000 DOOOOO 000223 000213 000316 000416 000470 000470.. R R
00124 006564 000102 000074 000044 000000 006074 010000 000000 000000 DODODO 000000 000000, t B .< 3 € e e e e
00140 000000 000000 000000 000771 000006 000000 000002 000002 000001 000003 000000 000000.. . e e e

The following is the DBG which begins with the literal “IM AG E1". Notice as well the TurboIMAGE
version is contained in the header of this extra data segment.

00000 044515 040507 042461 000426 000000 011554 041456 030060 032061 000367 000430 O0OC00IM AG EL1 C. 00 41
00014 000000 000000 000000 000000 000405 000417 000413 000567 000722 000725 001147 001547. . F O * S
00030 000001 000000 DOOOOD 000002 000000 000000 042530 040515 050040 050125 041040 020040.. EXAMP PUB
00044 020040 046525 051120 044131 020040 000000 000000 000000 000000 COOOCO 0OOO00 000000 SY S e e e e e e
00060 000000 000000 DODOOO OOGCOC 000000 000000 020040 020040 020040 020040 040100 100200.. e ..

B. TurboIMAGE/XL

1. GETTING ABORT INFORMATION FROM TurboIMAGE/XL I-FILEs

The previous example featured an I-FILE on TurboIMAGE/V. This next example uses the I-FILE and
J-FILE on TurboIMAGE/XL.

The J-FILE contains the same data structures as the TurboIMAGE/V I-FILE. But what does the
MPE/XL I-FILE contain?

Remember that this file is produced by the Script contained in the file IMAGEDMP.PUB.SYS and that
the IMAGEDMP file should not be changed. Hewlett Packard support personnel DO have the ability to
customize this file for the purpose of retaining special information required to fully analyze the abort. It
is very important not to alter the variables, since changing or adding new parameters could cause a system
abort.

Sometimes there is detailed error message information that can be useful in determining the problem. By

using DEBUG, we can "map" into the MPE/XL I-FILE by the use of the following commands, and dump
out these error messages.

13

:DEBUG

HPDEBUG Intrinsic at: a.06d3298 hxdebug+12c

$1 ($2f) nmdebug >MAP 10041403 FILECODE -403

1 10041403.EXAMP.SYS
$2 ($ac) nmdebug >

VIRT $755
VIRT $755

VIRT $755.
VIRT $755.
VIRT $755.
VIRT $75S.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $7585.
VIRT $755.
VIRT $755.
VIRT $7585.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $7565.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.
VIRT $755.

.0

.10
20
30
40
50
60
70
80
90
a0
b0
c0
do
e0
f0

110
120
130
140
150
160
170
180
190
1a0
1b0
1c0
1d0
1e0
110
200
210
220
230
240
250

100~

dv 755.0,#150,b

$41424152
$20414e20
$53544442
$20202020
$20202020
$20202020
$20202020
$20202020
$20202020
$4c204142
$45445552
$3b204144
$39343038
$20202020
$20202020
$20202020
$20202020
$47452158
$44424220
$44424220
$20202020
$20202020
$20202020
$20202020
$20202020
$20465245
$41544120
$20202020
$20202020
$20202020
$20202020
$20202020
$20202020
$454e4420
$45525220
$20202020
$20202020
$20202020

543a2020
44415441
2e47524f
20202020
20202020
20202020
20202020
20202020
54555242
41525453
453a2024
44524553
20202020
20202020
20202020
20202020
20202020
4c204142
434f4e54
20202020
20202020
20202020
20202020
20202020
20202020
45205350
53455420
20202020
20202020
20202020
20202020
20202020
20202020
41462046
30292020
20202020
20202020
20202020

755.0 Bytes=35100

44425055
20424153
55502e41
20202020
20202020
20202020
20202020
20202020
4f494d41
20415420
30303030
533a2024
20202020
20202020
20202020
20202020
54555242
41525453
524f4c20
20202020
20202020
20202020
20202020
20202020
20202020
41434520
2331312e
20202020
20202020
20202020
20202020
20202020
20202020
494c4520
20202020
20202020
20202020
20202020

54202020
45205445
4343543b
20202020
20202020
20202020
20202020
20202020
47452158
50524143
30313937
30303565
20202020
20202020
20202020
20202020
4f494d41
204f4e20
424c4f43
20202020
20202020
20202020
20202020
20202020
4c415354
494e2044
20202020
20202020
20202020
20202020
20202020
20202020
20202020
20284653
20202020
20202020
20202020
20202020

$1. To dump this file out we dpened the I-FILE as a mapped file

(with a file code of -403).

$2. We then display the first #150 bytes of the I-FILE and
discover the errors that the running program received:

14

ABOR

T: DBPU

T

ON DATA BAS E TE

STDB

L AB
EDUR
: AD
9408

GE/X
DBB

FRE
ATA

.GRO UP.A

TURB OIMA
ORTS AT

E: $ 0000
DRES S: §

TURB
L AB ORTS
CONT RoOL

E SP ACE
SET #11.

END OF F ILE
ERR 0)

CCT;

GE/X
PROC
0197

00Se

OIMA
ON
BLOC

LOST
IND

(FS

ABORT DBPUT ON DATA BASE TESTDB.GROUP.ACCT

TURBOIMAGE/SL ABORTS AT PROCEDURE: $00000197,ADDRESS: $005¢9408
TURBOIMAGE/XL ABORTS ON DBB CONTROL BLOCK

LOST FREE SPACE IN DATA SET #11 %

END OF FILE (FSERR 0) :

This is actually the beginning of the dump of the aborting ‘%procedure. The user who was running the
program received this message, however in most cases this message is not seen by anyone but the aborting
user. Often this is due to the user running a block mode application with a small window for error
messages. :

2. GETTING FILE SYSTEM ERRORS FROM AN MPE/XI J-FILE

The J-FILE contains both the DBG and the DBB of the TurboIMAGE/V, otherwise known as the
GB-FILE on MPE XL. J-FILEs may be examined by running DEBUG. To use DEBUG to read the
privileged J-FILE the user m_ust have PM capability.

Bytes $168 through $16f, on MPE/XL operating systems of 1.1, of the DBB contain the File System error
information that was contained in words %100 through %103 of the TurboIMAGE/V DBB (see III
ANALYSIS). Using Debug on XL, we can open the J-FILE as a mapped file, find the start of the DBB in
the J-FILE, and from there read the File System error cells.

A step~by-step example follows:

:DEBUG
HPDEBUG Intrinsic at: a.006d3298 hxdebug+$12c

$1 ($27) nmdebug > MAP J0041403 FILECODE -#403
1 JO0041403.SANDRA.CT 354.0 Bytes=35100

$2 ($2f) nmdebug > DV 354.0,10,B

VIRT $354.0 $ 494d4147 45310000 5980000 5980000 IMAG E1..
VIRT $354.10 $ 000073da 0000432e 30303437 e598e7hb4 ..s. ..C. 0047
VIRT $354.20 $ 00000000 e59802fc e598026c 598058a1 ..,..
VIRT $354.30 $ 5980712 e59807ae e59818dc e59820bcc. coue o
$3 ($2f) nmdebug > DV 354.73DA*2,10,B :

VIRT $354.e7b4 $ 494d4147 45330000 e598e7b4 5980000 IMAG E3..
VIRT $354.e7c4 $ 00010000 00000000 00000000 00000000 cuvv' wuvs wuo.
VIRT $354.e7d4 $ 00000000 00000000 00000000 00000000veec coes oane
VIRT $354.e7e4 $ 00000000 ffff0000 00000000 00000000ev coon &

$4 (32f) nmdebug > DV 354. 73DA*2+168,2 <<<remember on 1.0 to use §A>>>
VIRT $354.e83¢c § fffd000d 000c0013

$5 ($2f) nmdebug > E

Refer to the Debug commands by the hex number at the beginning of each command
line.

15

$1. We open J-FILE J0041403 as a mapped file, passing the file code, ~403.

$2. We display the first $10 words, in hex and ASCIL. The control block
"tag", IMAGE], is plainly visible. From word $4 (0 relative) we
get the length of
the DBG, $73da HALF-WORDS, not words or bytes. The DBB should trail the
DBG, and should start at that address.

$3. We display starting at BYTE $73da*2; we have multiplied the half -word
figure by two, to get bytes. We display in hex and ASCII, and
the DBB "tag", IMAGE3, tells us we made it to the right place.

$4. In the XL J-FILEs, the File System error cells are in half -words
starting at byte $168, as mentioned above. We display them, and
in this case we can learn the following:

Byte $168-169 IMAGE ERROR NUMBER $fffd #-3 FREADDIR FAILURE
This means that when attempting to access an address, an error
condition occurred. Sound familiar?

Byte $16a-16b SET NUMBER $000d #13 DATA SET 13
--The error occurred while attempting to access dataset 13.

Byte $16¢c-16d FILE SYSTEM ERROR $000c #12 FSERR 12
An FSERR 12 (RECORD NUMBER OUT OF RANGE) occurred. This probably
means the bad pointer was a negative number due to the sign bit being on.

Byte $16e-16f FILE NUMBER $0013 # 13 FILE NUMBER 13
ON the MPE/XL machine this cell has no real meaning since we
no longer have an AFT TABLE.

V. Case Study: I-FILE Analysis Speeds Up Problem Identification

EXAMPLE OF I-FILE WITH PRIVILEGED MODE CODE VIOLATION

Using an actual call history, we will examine how the use of I-FILEs play a major role in diagnosing a

particular problem.

A user reported there were sporadic instances when Query would abort when executing a TurboIMAGE
intrinsic against a database. The following error message would be displayed on the users terminal:

ABORT: DBDELETE ON DATABASE TESTDB.GROUP,ACCOUNT;
IMAGE ABORTS AT PROCEDURE: 000737; ADDRESS: 042046

READ ERROR ON DATA SET #8

16

D

+-F-I-L-E---I-N-F-0-R-M-A-T-I1-0-N---D-I-S-P-L-A-Y+
File Name is TESTDBOS8.GROUP.ACCOUNT
FOPTIONS: SYS,BINARY,FORMAL,F,NOCCTL,DEQ

PHYSICAL STATUS: ??7?7?77277777?7?27?77
ERROR NUMBER: -3 RESIDUE: O
BLOCK NUMBER: 0 NUMREC: 1

I

| |
| NOLABEL I
| AOPTIONS: IN/OUT,NOMR,NOLOCK,SHR,NOBUF |
| NOMULTI ,NOWAIT ,NOCOPY [
| DEVICE TYPE: 3 DEVICE SUBTYPE: 8 |
| LDEV: 2 DRT: 89 UNIT: O |
| RECORD SIZE: 128 BLOCK SIZE: 128 (WORDS) |
| EXTENT SIZE: 4 MAX EXTENTS: 1 |
| RECPTR: 0 RECLIMIT: 2 |
| LOGCOUNT: 0 PHYSCOUNT: 0 [
[EOF AT: 2 LABEL ADDR: %00200247636 |
| FILE CODE: -401 ID IS USER ULABELS: 1 |
| |
I I
I I

ABORT :QUERY.PUB.SYS.%15.%12243:SYSL.%75.%11176
PROGRAM ERROR #18 :PROCESS QUIT .PARAM = 18260

PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)

Day after day the customer experienced similar errors on different datasets in different databases. No
common thread tied these aborts together. So in order to collect more data about the aborting processes,
we suggested the user enable all their databases for dumping. At this point, I-FILES were produced each
time an abort occurred.

What follows is a step-by~step analysis of the problem. For brevity and readability, only the pertinent
information from the I~FILE is displayed.

THE ACTUAL I-FILE ITSELF

We began analyzing the I-FILE by studying the ASCII message contained in the first part of the file.

ABORT: DBDELETE ON DATA BASE TESTDB.GROUP.ACCOUNT;
IMAGE ABORTS AT PROCEDURE: 000737; ADDRESS: 042046
INTERNAL IMAGE TRAP ENCOUNTERED.

We were able to verify procedure %737 was DBDELETE and that offset 4042046 was a call to DBABORT
by studying the TurboIMAGE code. Following the ASCII description was a dump of the stack markers.

17

*** STACK DISPLAY - *#* ID#15

S=003355 DL=177650 Z=00636
Q=003361 P=006720 LCST=S357 STAT=P,1,0L,0,CCG X=000011

Q=003136 P=002045 LCST=S356 STAT=P,1,0L,0,CCG X=000004
Q=003115 P=001534 LCST=S356 STAT=P,1,0,L,0.CCL X=000002
Q=003072 P=004013 LCST=S356 STAT=P,1,0L,0,CCL X=000006
Q=003042 P=003147 LCST=S356 STAT=P,1,0L,0,CCL X=000002
Q=003023 P=001731 LCST=S363 STAT=P,1,0,L,0,CCL X=000003
Q=002551 P=003726 LCST= 001 STAT=U,1,1L,0,CCG X=000017
Q=002512 P=177777 LCST=S156 STAT=P,1,0,L,0,CCG X=000000

This also allowed us to verify that DBDELETE- was calling DBABORT. Following the dump of the stack
markers was the user stack itself. At this point we were able to verify that the parameters passed from
QUERY to DBDELETE were correct.

The TurboIMAGE control blocks followed the user stack dump. Rather than listing all control blocks
(some of which are over %10000 words), we will discuss only those pertinent to user analysis.

.After finding the DBB by searching for the "IM AG E3" tag,we preceded to dump out the error cells in
words %100 - %103: - ,

00074 000025 000000, 000000 000000 177775 000010 000110 177132 000Q00 002001 000000 000000..H .Z

Word %100: IMAGE ERROR NUMBER %177775 #-3 FREADDIR FAILURE
While attempting to access an address, an error condition occurred.
The error number indicates a FREADDIR Failure.

Word #101: SET NUMBER #%000010 #8 DATA SET 8
The error occurred while attempting to access dataset #8 (TESTDBO0S).

Word %102: FILE SYSTEM ERROR %000110 #0 FSERR 72
This error indicates an INVALID FILE NUMBER was being used during the
particular intrinsic in question.

Word %103: FILE NUMBER %177132 #-422 GLOBAL AFT ENTRY 422
The file number assigned to this file (TESTDBOS8) in the GLOBAL Available
File Table was -422.

As we collected I-Files from each aborted process, we noticed that while the error number and dataset
were different, the MPE V assigned file number was always the same: -422. This was significant, the
same file number was involved even though the databases and datasets were different. Based on our
previous experience, we knew there was a product which had in the past FCLOSEd out datasets due to a
defect in its code. Though that particular defect FCLOSEd files assigned with a number of -1, we
decided to do some further checking into that same product. Checking through the source code for this
- product, it was discovered that in rare circumstances an FCLOSE of file number -422 could occur.

The point of this explanation is that I-FILEs allowed us to identify similarities across aborts. This was
done by analyzing words %4100 - %103 of the DBB. In all of the I-FILEs produced in this case, word %103
was aqual to %177132 (-422). Thus we knew we were dealing with a localized problem. Something was
FCLOSing globally openied files whose file number was -422. Since we knew that the customer was

18

running the same product that had in the past showed similar problems, we decided to pursue this line of
‘ investigation which correctly led us to the problem and the subsequent solution.

19

BACK ISSUE INFORMATION

Following is a list of the Application Notes published to date. If you would like to order single copies of
back issues please use the Reader Comment Sheet attached and indicate the number(s) of the note(s) you
need.

Note # Published Topic

1 2/21/85 Printer Configuration Guide (superseded by note #4)
2 10/15/85 Terminal types for HP 3000 HPIB Computers (superseded by note #13)
3 4/01/86 Plotter Configuration Guide
4 4/15/86 Printer Configuration Guide ~ Revised
5 5/01/86 MPE System Logfile Record Formats
6 5/15/86 Stack Operation
7 6/01/86 COBOL 11/3000 Programs: Tracing Illegal Data
8 6/15/86 KSAM Topics: COBOL's Index 1/0; File Data Integrity
9 7/01/86 Port Failures, Terminal Hangs, TERMDSM
10 7/15/86 Serial Printers - Configuration, Cabling, Muxes
11 8/01/86 System Configuration or System Table Related Errors
J2 8/15/86 Pascal/ 3000 - Using Dynamic Variables
13
14
15
16
17
18
19
20

9/01/86 Terminal Types for HP 3000 HPIB Computers - Revised
9/15/86 Laser Printers - A Software and Hardware Overview
10/01/86 FORTRAN Language Considerations - A Guide to Common Problems
10/15/86 IMAGE: Updating to TurboIMAGE & Improving Data Base Loads
11/01/86 Optimizing VPLUS Utilization
11/15/86 The Case of the Suspect Track for 792X Disc Drives q
12/01/86 Stack Overflows: Causes & Cures for COBOL 11 Programs
1/01/87 Output Spooling

21 1/15/87 COBOLI1I and MPE Intrinsics

22 2/15/87 Asynchronous Modems

23 3/01/87 VFC Files

24 3/15/87 Private Volumes

25 4/01/87 TurbolMAGE: Transaction Logging

26 4/15/87 HP 2680A, 2688A Error Trailers

27 5/01/87 HPTrend: An Installation and Problem Solving Guide

28 5/15/87 The Startup State Configurator

29 6/01/87 A Programmer's Guide to VPLUS/ 3000

30 6/15/87 Disc Cache

317 7/01/87 Calling the CREATEPROCESS Intrinsic

32 ?/15/87 Configuring Terminal Buffers

33 8/15/87 Printer Configuration Guide

34 9/01/87 RIN Management (Using COBOLII Examples) (A)

34 10/01/87 Process Handling (Using COBOLII Examples) (B)

35 10/15/87 HPDESK 1V (Script files, FSC, and Installation Considerations)
34 11/01/87 Extra Data Segments (Using COBOLII Examples) (C)

36 12/01/87 Tips for the DESK IV Administrators

37 12/15/87 AUTOINST: Trouble-free Updates

38 1/01/88 Store/Restore Errors

39 1/15/88 MRJE Emulates a HASP Workstation

40 2/01/88 HP 250 / 260 to HP 3000 Communications Guidelines

41 4/01/88 MPE File Label Revealed - Revised 6/15/88 /j
42 7/15/88 System Interrupts

43 7/15/88 Run Time Aborts

44 8/01/88 HPPA Pathing Conventions For HP 3000 900 Series Processors
45 8/15/88 Vplus & Multiplexers

46 8/15/88 Setting Up An HPDesk/HPTelex For The First Time

47
48
49
50
51
52
53
54
55

56 -

57
58
59
60

!
!
!

9/15/88
1/15/88
2/01/88
2/15/88

. 1/01/89

1/15/89
2/01/89
4/01/89
4/15/89

- 5/01/89

6/15/89
7/01/89
8/01/89
9/01/89

Customizing Database Data Items & Changing Passwords in JCL Files
Printer Configuration (Revision #4)

Configuring DAT ACOMM Products Into MPE

VFC's For Serial Printers

Terminal Types For The HP 3000 HPIB Computers

Configuring MRJE

Using Special Characters on the 700/9x Series Terminals

Improving Database Performance

Customized Message Catalogs And Help Facilities

BRW Tips For Beginners

Configuring The HP 23344 Plus & Hp 23354 As A Statistical Multiplexer
HPPA Pathing Conventions For HP 3000 900 Series Processors (Update)
HP 23344 and HP 23354 Configuration Recipes

TurbolMAGE's I-FILES and J-FILES

READER COMMENT SHEET

Worldwide Response Center Support
HP 3000 Application Note 60: TurboIMAGE’s I-FILES and J-FILES
{September 1, 1989)

We welcome your evaluation of this Application Note. Your comments and suggestions help us to
improve our publications. Please explain your answers under Comments, below, and use additional pages
if necessary.

Is this Application Note technically accurate? |___| Yes |:] No
Are the concepts and wording easy to understand? l___l Yes [:] No

Is the format of this Application Note convenient in size, arrangement and readability? |___| Yes |___] No

Comments and/or suggestions for future Application Notes:

This form requires no postage stamp if mailed in the U.S. For locations outside the U.S., your local HP
representative will ensure that your comments are forwarded.

FROM: Date

Name

Company

Address

FoLD FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

|
|
|

FIRST CLASS PERMIT NO. 95, MT. VIEW, CA R q

SESEENSSEESAESESENEESEENESEEENSEEEENEEEEENEENEENEE NN NN
POSTAGE WILL BE PAID BY ADDRESSEE

Application Note Comments

Hewlett-Packard Manufacturing Specifications
690 E. Middlefield Road

Mail Stop 30-0

Attention: AN ORDERS

Mt. View, CA 94043

FOLD FOLD

