Worldwide Riesponse Center

HP 3000 APPLICATION NOTE #85

The Optimization of Programs in MPE/ XL

%

[‘] HEWLETT ‘ March 15, 1991
2 PACKARD : Document P/N #5960-4335

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

RESPONSE CENTER APPLICATION NOTES

HP 3000 APPLICATION NOTES are published by the Worldwide Response Center and are
distributed with the Software Status Bulletin. These notes address topics where the volume of calls
received at the Center indjcates a need for addition to or consolidation of information available through
HP support services.

Following this publication you will find a list of previously published notes and a Reader Comment

Sheet. You may use the Reader Comment Sheet to comment on the note, suggest improvements or
future topics, or to order back issues. We encourage you to return this form; we'd like to hear from you.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

This document contains proprietary information which is protected copyright. All rights are reserved.

Permission to copy all or part of this document is granted provided that the copies are not made or
distributed for direct commercial advantage; that this copyright notice, and the title of the publication
and its date appear; and that notice is given that copying is by permission of Hewlett-Packard
Company. To copy otherwise, or to republish, requires prior written consent of Hewlett-Packard

Company.
Copyright ® 1991 by HEWLETT-PACKARD COMPANY

The Optimization of Progra

ms In MPE/XL

Introduction

To optimize or not to optimize? That is the question!
In MPE/XL, the native compilers (PASCAL/XL, COBOL/XL, FORTRAN/XL and C/XL)

offer the possibility of generating optimized co
present the functions of the optimizer and to s

de. The intent of this Application Note is to
tudy the different levels of optimization.

How to Use the Code Optimizer?

To invoke the code optimizer during compilatiém, a compilation option needs to be added to

the beginning of the source program.

The syntax of compilation options by languagei is given in the figure below.
l
PASCAL/XL : $OPTIMIZE (’LEVELO?) no optimization

(’LEVEL1’) optimization level
(’LEVEL2’) optimization laevel

(ON
’(OFF

NN -

) optimization level
) no optimization

COBOL/XL : $CONTROL (OPTIMIZE|) optimization level i
(OPTIMIZE#0) no optimization
(OPTIMIZE®1) optimization lovel 1

FORTRAN/XL: $OPTIMIZE (ON
(OFF
(LEVEL1
(LEVEL2

C/XL : #pragma OPT.LEVEL

)] optimization level 2
) no optimization

) optimization level 1
) optimization level 2

(1) optimization level 1
2) optimization level 2
ON) optimization level 2
OFF) no optimization

P oo W o S e 8

When Does the Optimizer Intervene
Let us begin by detailing the phases of a compilation.

The diagram below shows the different phases which take place between the submission of
a source file to the compiler, and the generation of a object code file (SOM: System Object
Module). ‘

Compiler
BACK END

,Compilér
FRONT END.

Source
File

UCODE

Object { OPTIMIZER - SLLIC
code N\ /

The first step of this operation is the translation of the source file by the compiler FRONT
END.

This operation is the only one dependant on the language used since the result (UCODE)
should be the same whatever the language of origin.

This design choice implies that all the following operations (BACK END, OPTIMIZATION)
will be identical whatever the language. The UCODE is an intermediate internal code
generated in an unnamed file which is then submitted to the BACK END during the
compilation time. When compiling a very large program on screen, you may see a longer or
shorter delay between the display of the last line of the source and the end of the compilation,
this time, in fact, is the run time of the BACK END.

The BACK END therefore interprets the UCODE and generates the SLLIC (Spectrum Low
Level Intermediate Code). This code is actually made up from groups of instructions which
are ready, either to be optimized if the optimization level is 1 or 2, or to be regrouped in
OBJECT MODULE.

The remainder of this Application Note we shall concentrate on the optimization pha.se.

Study of the .Dlﬂerent Levels of Optimization
LEVEL 0

No optimization or OPTIMIZATION 0 level (default)

This mode is used during development and program DEBUGGING. In this case, the optimizer
still intervenes for 5 operations. _ ‘

Construction of basic blocks:

This operation consists of creating the data structures which divide the program and cut it

into sections known as Basic blocks.

Registers allocation:

Here the optimizer on one hand assigns the neces| lﬁary registers for the calculations and

expressions evaluation, and on the other hand ge

Branch reduction:

erates the procedural headers and footers.

During this phase the optimizer analyses the brai;ches generated by the FRONT END and

checks if a LONG type branch can be changed fo;

Branch simpiification:

a SHORT type and conversely.

This operation consists of extracting, from the instruction blocks between two branches, all

those which can be extra.cted from it.

This then permits the long type branches to be langed to the short type (see example 1).

example 1 :
Before operation

begin

varl := |

input var2

if var2> 0 then
begin
var3 := varl + var2
var4 := var2 % 2
var4 := var4 + var3
end;
write var4;

end.

This example, to simplify reading, is in high level
will note that the line

var3 := varl + var2

is extracted from the instruction block comprised

expression does not depend on the result of the t

After operation

begin

varl := |

input var2

var3 :* varl + var2

if var2 > 0 then
begin
var4 := var2 % 2
var4 := var4g + var3d
end;
write var4;

end.

language instead of machine language. You

between BEGIN and IEND since this
t and is not used afterwards.

Thus, if the test result is negative, the number of instructions of the IF loop to not execute is
reduced. This may permit passing from a long type branch to a short type.

Extension of PSEUDO INSTRUCTIONS:

The optimizer generates machine code for mnltiincation and division. For example:

multiplication by 2 becomes bit shifts, multiplicati

addition.
(3%1 <==>2% 141 etc...)

ions by 3 become multiplication by 2 plus an

LEVEL 1

Péephole optimizer:

This operation consists of checking if in the code, the addressing method of an instruction can
be improved, if a code sequence can be shortened thanks to the use of instructions accessing
or manipulating bits group.

Optimizing of branches:

Please note that in example 2 the group of instructions containing instr2 is NEVER used,
consequently, as well as the direct branching at the end of the test near label 20, this
instruction block is purely and simply deleted.

example 2 :
Before ' After
it a > 0 goto 10 3 - if a > 0 goto 20
ix.xstri in;tri
10 géto.20 20 a := 1 '
ix;str2 |
20 a :-.1

improvement of instruction sequences:

This operation is necessary to avoid the conflicts between registers, also known as the
INTERLOCKS REGISTER. In fact, an instruction accessing a register (LOAD, STORE) is
composed of two phases. One FETCH phase, which fetches the information to be LOADed or
to be STOREd and an EXEC phase which carries out the operation.

The RISC architecture allows the execution of the EXEC phase of an instruction when the
FETCH phase of the next instruction has already begun. :

(This system also has the name of PIPELINE architecture on other systems).

This procedure is only possible if both instructions in sequence do not manipulate the same .
registers, if this is the case, we are confronted by a case of REGISTER INTERLOCK. The
optimizer function, therefore, is to modify the order of the instructions to favor the PIPELINE
function while avoiding the REGISTER INTERLOCKS.

example 3:
' Calculation of D := & + B+ C

Before Optimization

LOAD <A>,R19 ; Register R19 loaded with contents of A

LOAD ,R20 N : :

ADD R19,R20,R21 ; Register R21 loaded with sum of registers R19 et R20
; here we see a register interlock on register

; R20 :the ’FETCH’ phase of ADD cannot begin as soon
as the ’EXEC’ phase of the previous LOAD is not
finished

LOAD <C>,R22 '
ADD R21,R22,R23
STORE R23,<D> 3 D loaded with contents of register R23.

After Optimization

LOAD <A>,R19
LDAD ,R20
LOAD <C>,R22
ADD R19,R20,R21 ; In this case the ADD ’FETCH’ phase is executed in
parallel with the previous LOAD ’EXEC’ phase, this
; 18 because there is no register interlock between
; these two instructions
ADD R21,R22,R23
STORE R23,<D>

You will note here that the number of executed instructions is the same before optimization as
afterwards, however in the second version, the instruction flow is executed more quickly, using
all the power of RISC architecture.

Deletion of NOP instructions (No OPeration):
The BACK END, for reasons of simplicity, generates a large number of NOP instructions
which are deleted when possible. :

Deletion of extraneous code:

Notice in one of the above examples, how a group of unused instructions may be deleted.

LEVEL 2

At this level of optimization, the compilation consumes a great deal more memory resources.
This is because each procedure is processed by the compiler as an entire unit of code. This
is why compilation at this level is much longer and its use is recommended only when your
programs are completely DEBUGged and tested. {Furthermore, optimized code is extremely
difficult to read. '

Optimization is always carried out from the SLLIC, and each procedure is first treated as a
-unit of code. These units are then regrouped, and if necessary some optimizations are still
carried out in such a way as to generate the best possible code.

Two concepts are used by the optimizer to produce the code, and these two concepts generaté
an analysis for each unit of code.

The analysis of the program control flux:

The purpose of this analysis is to divide the units of code into groups of instructions with
the following characteristics: if the first instruction is executed, no event can stop the last
instruction being executed.

Analysis of the data control flow:

This consists for the optimizer in searching among the data used in a code unit which is
the most often referenced. This process allows the definition of which data it is judicious to
reserve registers for in relation to those that can be left in memory. .

Once both these analyses have been carried out, the optimizations already discussed in level 0
and level 1 are carried out.

Then specific operations intervene at level 2. We will look at these in more detail.

Optimization of registers allocation and
reduction of memory transfers:

We see in example 4 below, that the variables a, b, and c are internal to this procedure,
consequently it is not necessary to store them in memory (even if the program’s MAP
indicates that they are supposed to be there). This avoids 3 STORE instructions which are
extraneous in the sense that these variables do not have functions external to the procedure.
Furthermore, only 3 registers are required instead of 5. '

example 4:
source:begin

a:= parmi

b:= parm2

c:= a+b

parm4:= parm3 + ¢

end.

Generated code before optimization: Generated code after optimization

LOAD <parmi>, R4 LOAD <parmi>,R4
STORE R4,<a> LOAD <parm2>,RS
LOAD <parm2>,R5 LOAD <parm3>,R6
STORE R5, ADD R4,RS5,R4
ADD R4,R5,R6 ADD R4,R6,R4
STORE R6,<c> STORE R4,<parm4>

LOAD R7,<parm3>
ADD R6,R7,R8
STORE R8,<parm4>

Pre-evaluation of constant expressions:

Here, instead of re-evaluating the expression (a+b), it is calculated by the optimizer and
directly integrated into the code.

example 5:
Before After
a:=1 ais=i
b:=2 b:=2
c:=at+b+param c:s3+param

Elimination of common gsub expressions:

To do this the optimizer will search the code for

all identical groups of instructions and

substitute calculated instructions. The interest of this is that all redundancy in the code is

avoided. -

erxample 6:
Before

a := a + (c*b)
d :=d - (c*b)

After

t := c*b
a := att
d :=d-t

Here the optimizer prefers to reserve a temporary register to store the result (c*b). This

avoids carrying out the calculation twice.

Deleting of code not dependant on loop cmmI;

The expression of the calculation of a is extract
carried out once instead of 100.000 times.

example 7:
Before
For i:= 1 to 100000 do
begin
a:sbec*(o+f/h)
i:=a+is2+ax(i-1)
end
Development of induced variables

For this the optimizer uses what it knows about

here from the loop and its evaluation

After

a:=b+cx(e+f/h)

for i:= 1 to 100000 do
begin
i:savis2+as(i-1)
end

the tyﬁe and format of the variables. In

example 8 below, the optimizer uses the fact that an integer is coded on four bytes.

example 8:
Source :
procedure test (B,C:pack
type tab= packed array [
var A : tab;
i : integer ;
begin
for i:= 1 to 10 do
A(i) := B(1) + c(i);
end.

ted array[1..10] of integer) ;
1..10] of integer;

Generated code without optimization .

Bl : T:=41i=4
A(T) := B(T) + C(T)
i:=41+1
it i <= 10 goto B1

Generated code using induced variables

Bl : T:=sT+ 4
A(T) := B(T) + C(T)
if T >= 36 goto Bi1

(T is a byte offset to the beginning of the array.)

We see here that the variable i is deleted thanks to the fact that the optimizer knows the
length of an element of the array is four bytes. Further, we note that the multiplication by
four (2 bit shifts) is replaced by an addition which will be carried out by a single instruction.

Use of Different Levels of Optimization

The 0 level of optimization must be used during the development phase of a program. When
the program has been entirely corrected and is ready for production, it then suffices to
recompile it with the adequate option to optimize at the highest possible level in the language
used (2 for PASCAL, FORTRAN or C, 1 for COBOL). If a malfunction occurs at this time,
either from the compiler or the program, you should reduce the optimization level and re-test.

We have effectively seen above that the levels of optimization 1 and 2 work on a certain
number of different types of improvements. These optimizations may be contradictory in
certain cases this is why the optimizer must sometimes arbitrate between several different
optimization concepts. :

Thus, it can happen that the choice having been badly made by the optimizer it is then
necessary to recompile at a lower level.

Optimization Example

Here and on the following pages you will see two examples of the compilation of the same
program, one without optimization and the other with a level 2 optimization.

These examples show the difference in size of the generated code.
NON OPTIMIZED VERSION
MON, DEC 18, 1989, 6:14 PM

$optimize ’LEVELO’S$

0 1.000 ©

0 2.000 O $list_code on$

0 3.000 O program prog;

0 4.000 O var i,j,k: integer;
3 65.000 1 Dbegin

3 6.000 1 i:=1;

4 7.000 1 j:=4;

6 8.000 1 k:=i+j;

6 9.000 1 for i:=1 to 1000 do
7 10.000 2 begin

7 11.000 2 j:=8;

8 12.000 2 k:si+j;

9 13.000 2 k:=4s§ - j+12#6;
10 14.000 2 end;

10 16.000 1 end.

10

END OF COMPILE

16.000 O

NUMBER OF ERRORS =
PROCESSOR TIME 0

NUMBER OF LINES =
NUMBER OF NDTE? =

:link po,px
HP Link Editor/XL (HP30315A.01.08) Cdpyright Hewlett~Packard Co 1986

LinkEd> 1ink po,px

:do run

:run px;debug

DEBUG/XL

A.1A.16

: 0:

o] NUMBER OF WARNINGS =

i
16 LINES/MINUIE =
0

DEBUG Intrinsic at: 399.00005040 ?PROGRAM

$1 ($49) nmdedbug > s

$2 ($49) nmdebug > s

$3 ($49) nmdebug > dc PROGRAH aa
PROG $399.5018

00005018
000050fc
00005100
00005104
00005108
0000510c
00005110
00005114
00005118
0000811c
00005120
00005124
00005128
0000512¢
00005130
00005134
00005138
0000513¢
00005140
00005144
00005148
0000514¢
00005150
00005154
00005158
0000516¢
00005160
00005164
00005168
0000516¢

PROGRAM 6bc23fd9 STW
PROGRAM+$4 37de0060 LDO

PROGRAM+$8 6bc03f££9 STW
PROGRAM+$c = e85f1ledd BL

PROGRAM+$10 08000240 OR
PROGRAM+$14 e85f1f0d BL
PROGRAM+$18 08000240 OR
PROGRAM+$1c 34010002 LDO
PROGRAM+$20 6b610020 STW
PROGRAM+$24 341£0008 LDO
PROGRAM+$28 6b7£0018 STW
PROGRAM+$2c 4b730020 LDW
PROGRAM+$30 4b740018 LDW
PROGRAM+$34 0a930ei5 ADDO
PROGRAM+$38 6b750010' STW
PROGRAM+$3c 34160002 LDO
PROGRAM+$40 6b760020 STW
PROGRAM+$44 34010010 LDO
PROGRAM+$48 6b610018 STW
PROGRAM+$4c 4b7£0020 LDW
PROGRAM+$50 4b730018 LDW
PROGRAM+$54 0a7f0ei14 ADDO
PROGRAM+$58 6b740010 STW
PROGRAM+$5c 4b750018 LDW
PROGRAM+$60 08150096 SH2ADDO
PROGRAM+$64 4b610018 LDW
PROGRAM+$68 08360cif SUBO
PROGRAM+$6c b7£30890 ADDID
PROGRAM+$70 6b730010 STW
PROGRAM+$74 4b740020 LDW

2,~20(0,30)

48(30),30

0,-4(0,30)

7_start+$1c,2
0,0,0
?_start+$3c,2
0,0,0
1(0),1
1,16(0,27)
4(0),31
31,12(0,27)
16(0,27),19
12(0,27),20
19,20,21
21,8(0,27)
1(0),22
22,16(0,27)
8(0),1
1,12(0,27)
16(0,27),31
12(0,27),19
31,19,20
20,8(0,27)
12(0,27),21
21,0,22
12(0,27),1
22,1,31
72,31,19
19,8(0,27)
16(0,27),20

ELAPSED TIME O: 0: 1

1814.7

0

10

PROGRAM+$78
PROGRAM+$7¢
PROGRAM+$80
PROGRAM+$84
PROGRAM+$88
PROGRAM+$8¢
PROGRAM+$90
PROGRAM+$54
PROGRAM+$98
PROGRAM+$9¢
PROGRAM+$20
PROGRAM+$a4
PROGRAM+$a8
PROGRAM+$ac

00005170
00005174
00006178
0000517¢
00005180
00005184
00005188
0000518¢
00005190
00005194
00005198
0000519¢
00005120
00005124

$4 ($49) nmdebug > e
END OF PROGRAM

OPTIMIZED VERSION

:pasxl ps,po

PAGE
MON, DEC 18,

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000
10.000
11.000
12.000
13.000
14.000
16.000

OO WOON~NNOOTNDPWWOOOO
= DN MNMMODMNH 2 220000

[Ty

END OF COMPILE
:do 1lin

:1ink po,px

HP Link Editor/XL

:do ru
:run px;debug

1 HP PASCAL/XL

34150740
82b4201a
45760020
b6c10802
6b610020
e81£1167
e85f1e55
08000240
08000240
e85f1e7d
08000240
4bc23179
€840c000
37de3fal

LDO 1000(0),21
COMBT,=,N20,21 ,PROGRAM+$90
LDW 16(0,27),22
ADDIO 1,22,1
STW 1,16(0,27)
B,N PROGRAM+$44
BL 7.start+$5¢c,2
OR 0,0,0

_OR 0,0,0
BL 7_start+$7¢,2
OR 0,0,0
LDW -68(0,30),2
BV 0(2)
LDO -48(30),30

HP31502A
1989, 6

.01.21
:04 PM

$optimize ’LEVEL2’S$
$list_code on$
program prog;
var i,j,k: integer;
begin
i:=1;
j:=4;
k:=i+j;
for i:=1 to 1000 do
begin
j:=8;
k:=i+j;
k:=4%j - j+12+6;
end;
end.
NUMBER OF ERRORS = 0O
PROCESSOR TIME O: 0: 1
NUMBER OF LINES = 16
NUMBER OF NOTES = 0

NUMBER OF WARNINGS =
ELAPSED TIME O: 0: 3
LINES/MINUTE = 1511.8

(HP30315A.01.08) Copyright Hewlett-Packard Co 1986

COPYRIGHT HEWLETT-PACKARD CO. 1986

DEBUG/XL A.1A.16

‘ DEBUG Intrinsic at: 439.00005040 PROGRAN
$1 ($2¢) nmdebug > s
$2 ($2¢) nmdedbug > s
$3 ($2¢) nmdebug > dc PROGRAM 20
PROG $439.5018

000050£8 PROGRAM 6bc23£49 STW 2,-20(0,30)
000050fc PROGRAM+$4 37de0060 LDO = 48(30),30
00005100 PROGRAM+$8 6bc03ff9 STW - 0,-4(0,30)
00005104 PROGRAM+$c e85f1edd BL - ?_start+$ic,2
00006108 PROGRAM+$10 08000240 OR 0,0,0
0000510c PROGRAM+$14 865£1£0d BL ' . ?_start+$3c,2
00005110 PROGRAM+$18 08000240 OR 0,0,0
00006114 PROGRAM+$1c 34110002 LDO 1(0),31
00006118 PROGRAM+$20 34170740 LDO 1000(0),23

0000511c PROGRAM+$24 82££2012 COMBT,=,N31,23,PROGRAM+$34
00005120 PROGRAM+$28 b7££0802 ADDID 1,31,31
00005128 PROGRAM+$30 b7££0802 ADDIO: 1,31,31

0000612c PROGRAM+$34 85f1f0d BL ?7_start+$5c,2
00005130 PROGRAM+$38 08000240 OR 0,0,0
00005134 PROGRAM+$3c 85f1f3d BL ?7_start+$7c,2
000056138 PROGRAM+$40 08000240 OR 0,0,0
0000613c PROGRAM+$44 4bc23f79 LDW -68(0,30),2
00006140 PROGRAM+$48 @840c000 BV 0(2)
00006144 PROGRAM+$4c 37de3fail LDO -48(30),30
‘ $4 ($2¢) nmdebug > e -

END OF PROGRAM

You will notice that the optimized version reqmres only 20 instructions instead of 44 in the
basic version.

Published Application Notes

HP 3000

Following is a list of the Application Notes publi hed to date. If you would like to order single
copies of back issues please use the Request Form attached and indicate the number(s) of the
note(s) you need, and the part number(s).

Note # | Part Number ; Topic
1 5958-5824 | Printer Configuration Guide - Version 1
2 5960-2841 | Terminal types for HP 3(*00 HPIB Computers - Version 1
3 | 5960-2842 |Plotter Configuration Guide
4 5960-2843 | Printer Configuration Guf}ide - Version 2
5 5960-2844 | MPE System Logfile ,Rea%)rd Formats
6 5960-2845 |Stack Operation
7 5960-2846 | COBOL I1/3000 Programs: Tracing Illegal Data
8 5960-2847 | KSAM Topics: COBOL’d! Index I/O: File Data Integrity
9 5960-2848 | Port Failures, Terminal Hangs, TERMDSM
10 5960-2849 | Serial Printers - Configuration, Cabling, Muxes.
11 5960-2850 | Systern Configuration or System Table Related Errors
12 5960-2851 | Pascal 3000 - Using Dynamic Variables
13 5960-2852 | Terminal Types for HP 3b00 HPIB Computers - Version 2
14 5960-2853 | Laser Printers - A Softwaire and Hardware Overview
15 5960-2854 |FORTRAN Language Coilsidetations - A Guide to Common Problem§
16 5960-2855 |IMAGE: Updating to TutboIMAGE & Improving Database Loads
17 5960-2856 | Optimizing VPLUS Utilization
18 5960-2857 | The Case of the Suspect Track for 792X Disc Drives
19 5960-2858 |Stack Overflows: Causes & Cures for COBOL II Programs
20 5960-2859 | Output Spooling
21 | 5060-2860 |COBOLII and MPE Intrinsics
22 5960-2861 | Asynchronous Modems

1 Published Application Notes 1

HP 3000 (continued)

Note # | Part Number Topic
23 5960-2862 |VFC Files
24 5960-2863 | Private Volumes
25 5960-2864 | TurboIMAGE: Transaction Logging
26 5960-2865 |HP 2680A, 2688A Error Trailers
27 5960-2866 |HP Trend: An Installation and Problem Solving Guide
28 | 5060-2867 |The Startup State Configurator
29 5960-2868 |A Programmer’s Guide to VPLUS 3000
30 5960-2869 |Disc Cache
31 5960-2870 | Calling the CREATEPROCESS Intrinsic
32 5960-2871 |Configuring Terminal Buffers
33 5960-2872 | Printer Configuration Guide - Version 3
34A | 5960-2873 |RIN Management (Using COBOLII Examples) (A)
34B >|. 59602874 |Process Handling (Using COBOLII Examples) (B)
35 | 5960-2875 | HPDESK IV (Script files, FSC, and Installation Considerations)
34C 5960-2876 |Extra Data Segments (Using COBOLII Examples) (C)
36 | 5960-2877 |Tips for the DESK IV Administrators
37 5960-2878 | AUTOINST: Trouble-free Updates
38 5960-2879 | Store/Restore Errors
39 5960-2880 |MRJE Emulates a HASP Workstation
40 5960-2881 |HP 250 / 260 to HP 3000 Communications Guidelines
41 | 5960-2882 |MPE File Label Revealed
42 5960-2883 |System Interrupts
43 5960-2884 |Run Time Aborts
44 5960-2885 | HPPA Patching Conventions for HP3000 900 Series Processors - Version 1
45 | 5960-2886 |Vplus & Multiplexers |
46 5960-2887 |Setting Up an HPDesk HPTelex for the First Time
47 5960-2900 | Customizing Database Data Items & Changing Passwords in JCL Files
48 5959-9215 | Printer Configuration - Version 4
49 5959-9227 | Configuring DATACOMM Products Into MPE
50 | 5959-9228 |VFC's for Serial Printers

2 Published Application Notes

HP 3000 (continued)

Note | Part Number Topic
ik ,
51 5959-9237 | Terminal Types for the HP 3000 HPIB Computers
52 5959-9242 | Configuring MRJE
53 5959-9245 | Using Special Characters on the 700/9x Series Terminals
| 54 5959-9251 | Improving Database Performance
55 5959-9258 | Customized Message CatLlogs and Help Facilities
56 5959-9266 | BRW Tips for Beginners ‘
57 5959-9270 | Configuring the HP 2334A Plus & HP 2335A As a Statistical Multiplexer
58 5959-9274 | HPPA Pathing Conventid!ns for HP3000 900 Series Processors - Version 2
59 5959-9289 | HP 2334A and HP 2334A Configuration Recipes
60 5959-9301. | TurboIMAGE'’s I-FILES and J-FILES
61 | 59597385 |HPDeskManager - Looking Behind the Scenes
62 5959-7803 | Setting Up a System Dictionary
63 5959-7834 | Configuring Telesupport Modems for MPE V/E Systems
64 5960-1816 | Finding Solutions in HP $upportLine
65 5960-1817 | Using the Electronic Call Feature of ’HP SupportLine
65 5960-1818 | Using the Feedback Feature of HP SupportLine
67 5960-1819 | Printing Documents from HP SupportLine
63 5960-1820 | HP SupportLine Commands
69 5960-2901 | Nonsystem Volume Sets ﬁnd t;he Migration of Private Volumes to an
$9000 HP 3000
70 5960-2907 |Modem Links for RemoteJ Console and Standard DTC Connections on
Commercial XL HPPA Systems
71 5960-2918 | Asynchronous Cabling
72 5960-2919 | BRW Tips and Tricks
73. | 5960-2998 |SNA NRJE Configuration
74 5960-2999 |SNA IMF Configuration
75 5060-3000 | XL NRJE Configuration

Published Application Notes 3

HP 3000 (continued) (continued)

Note | Part Number Topic
+ ,
76 5960-4301 | XL IMF Configuration
77 | 5960-4302 |Calling the BRW Intrinsics
78 | 50604303 |PUB.SYS What Is Behind It?
79 5960-4625 | Conquest of Disc Space
80 | 5960-4633 |Looking Behind the Scenes of Resource Sharing
81 5960-4637 |MPE/XL System Interrupt Recovery Procedures
82 | 59604347 |Private Volumes
83 5960-4396 | Serial Printer Configuration
84 5960-4334 | How to Migrate FORTRAN Programs to Newer Compilers and XL
Hardware '
85 5960-4335 | The Optimisation of Programs in MPE/XL

4 Published Application Notes

NOTES

NOTES

- NOTES

NOTES

@® HP 3000 ApplicatiQn Note Request

Please eend me the HP 3000 Application Notes lieted below. To order an
Application Note Just fill in the Ap@llcctlon Note number and the part no.
in the epace provided below. (Use thd Publiehed Application Notes form)

AN_/ 89 _/ -/ | | AN_L 89 [-1 | J

AN_/ 59 [-~ [/ [[AN LSQJ-II/

AN_/ 59 1 ~_| / AN_L 89 [-_[| |

AN__/ 89 _/ -_J | [AN_/ 89 _/ -1 [[

AN_/ 89 | - [[[AN_/ 89 /[- [| |
@

Business phone Extension Best time to call
Name | . Title/Dept.
Company Division
Majling Address Mail Stop/Bldg./Ra.
City State Zip Code

1518

BUSINESS REPLY MAIL

FIRST CLASS MAL PERMIT NO. 600

POSTAGE WILL BE PAID BY ADDRESSEE

HEWLETT-PACKARD ,
19310 PRUNERIDGE AVE
BLDG49AM

CUPERTINO CA 95014-9826

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Customer Conj?nent Card

Application Note No

Part No.:

|
i

We welcome your evaluation of this Application Note Your comments and suggestions will
help us improve our publications. Attach addmonh.l pages if necessary.

Please circle the following Yes or No:

@ Is the information technically accurate? Yes No
@ Are instructions complete? Yes No
@ Are concepts and wording easy to understand? Yes No
@ Are the examples and pictures helpful? Yes No
® Is the format of this note convenient in size, ammgqment and readability? Yes No

w Did you receive the published application notes requested in a timely manner? Yes No

Additional Comments and/or suggestions for future n?pliution notes:

Please provide:

Name: Title:

Company: Address:

City: State: Zip Code/Country
Please send to :

ﬂB HEWLETT

PACKARD

No postage is required. Just remove this card, fold
outside, secure and mail.

Thank you for your assistance.

Printed in U.S.A. 1990

so that the pre-addressed label is on the

FOLD | - FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

e
I
R
FIRST CLASS PERMIT NO. 85, MT. VIEW, CA s

SEERREREEAERNEAREEAEEENREERERRNENERREAEREREERRR AN R RN .
POSTAGE WILL BE PAID BY ADDRESSEE

Learning Products Manager
Hewlett-Packard Company
100 Mayfield Avenue

Mail Stop 37MA
Attention: George Enos
Mt. View, CA 894043

- FOLD FOLD

Customer Order Number

NONE

Printed in USA

** For HP Internal Reference Only #*%*

Manufacturing Part Number

5960-4335

