Proceedings

FUTURA PRESS, INC. :: 512/442-7836 :: BOX 3485 :: AUSTIN, TX 78764

TABLE OF CONTENTS

Section 1 — SYSTEM MANAGEMENT
6 Overview of Optimizing (On-Line and Batch)
Robert M. Green
16 Thoughts Concerning
“How Secure Is Your System?”
Jorg Grossler

35 Private Volume Experiences
Bruce Wheeler

42 System Resource Accounting: An Overview
of Available Software

Wayne E. Holt
Amy J. Galpin .
43 On-Line Database:
Design and Optimization
Robert B. Garvey

48 Power Line Disturbances and Their
Effect on Computer Design and Performance

Vince Roland

58 System Disaster Recovery: Tips and Techniques
Jason M. Goertz
70 System Performance and Optimization
Techniques for the HP3000
John Hulme

Section 2 — DATABASE SUPPORT
5 Auditing with IMAGE Transaction Logging
Robert M. Green

34 Transaction Logging and Its Uses
Dennis Heidner

52 RAPID/3000
Nancy Colwell
53 Information Management:
An Investment for the Future
David C. Dummer
64 Successfully Developing On-Line
RPG/3000 Applications
Duane Schulz

71 An Experimental, Comprehensive
Data Dictionary
Thomas R. Harbron

74 Considerations for the Design of
Quality Software

Jan Stambaugh

Section 3 — UTILITIES
2 LOOK/3000: A New Real-Time
System Performance Monitoring Tool
Kim D. Leeper

3 QHELP: An On-Line Help System
David J. Greer

15 Modular Programming in MPE
Jorg Grossler

31 A Universal Approach as an
Alternative to Conventional Programming

Bill McAfee
Craig Winters

61 Business Graphics: An Efficient
and Effective Tool for
Management Decision Making

Gavin L. Ellzey

62 Automatic Calling with the HP3000
Paul W. Ridgway
81 Programmatic Access to
MPE'’s HELP Facility
Jon Cohen

85 Management Options for the 80’s
Giles Ryder

86 Transaction Processor for the HP3000
David Edmunds

Section 4 — LANGUAGE SUPPORT

1 RISE — An RPG Interactive System
Environment for Program Development

Gary Ow

4 IMAGE/COBOL: Practical Guidelines
David J. Greer

12 Using COBOL, VIEW and IMAGE:
A Practical Structured Interface
for the Programmer

Peter Somers

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

13 PASCAL? ADA?? PEARL!!
Klaus Rebensburg
27 Applications Design Implications of

PASCAL/3000 Dynamic Variable Allocation
Support — or How to Use the HEAP

Steven K. Saunders

30 Process Sensing and Control
Nancy Kolitz
36 Putting the HP3000 to Work
for Programmers
Tom Fraser

83 RPG: A Sensible Alternative
Steve Wright
90 Techniques for Testing On-Line
Interactive Programs
Kim D. Leeper

Section 5 — DATA & TEXT PROCESSORS
57 The Technology of the QUAD Editor,
Part 2
Jim Kramer
65 The Automated Office —
Example: Producing A Newsletter
Eric A. Newcomer
73 Integrated Data and Textprocessing
With HP3000
Joachim Geffken

79 Computerized Typesetting: TEX on the HP3000
Lance Carnes

Section 6 — PERIPHERAL SOFTWARE

40 Everything You Wanted to Know About
Interfacing to the HP3000
— Part I and Part II —

Ross Scroggs
John Tibbetts

69 Programming for Device Independence
John Hulme

Section 7 — BUSINESS

18 Selectings Application Software
and Software Suppliers

Steven J. Dennis

20 Office of the Future — Starting Today
Mark S. Trasko

21 Job Costing on the HP3000

Steve Perrin
Robert Lett

24 Is a Packaged Program the Answer?
A Compromise to MM3000
James G. Raschka, CPIM

49 Management Reporting with
Hewlett-Packard’s Decision Support Graphics
William M. Crow

55 Business Graphics Applications Using DSG/3000
Cecile Chi

59 Tips and Techniques for
Data Interface to DSG/3000

Jason M. Goertz

72 Project Management With the HP3000
Nichols and Company

80 Using the HP3000 for
Decision Support Systems

Bob Scavullo

Section 11 — MISCELLANEQOUS

17 The Truth About Disc Files
Eugene Volokh

25 Data Communications Troubleshooting
Pete Fratus

26 Financing Quality Solutions
Melissa J. Collins
28 Tips and Techniques in Writing
for the HP3000 IUG Journal
John R. Ray
Lloyd D. Davis

33 Management: Key to Successful
Systems Implementation

Gary L. Langenwalter
38 An Overview — Networking Cost
Performance Issues
Russell A. Straayer

41 Microcomputer-Based Distributed Processing
John Tibbetts

63 Software Management Techniques
Janet Lind
75 Understanding Hewlett Packard--
A View from the Inside
Jan Stambaugh

84 Structured Analysis
Gloria Weld

88 An On-Line Interactive Shop Floor Control
And Capacity Planning System
Walter J. Utz, Jr.

AUTHOR INDEX

Class No.

Carnes, Lanceccivevennnns 5 79
Chi,Cecilecoovvviiiiineiann. 7 55
Cohen,Joncoeviiiiiiiiiiiinnn 3 81
Collins, Melissa J. 11 26
Colwell, NanCyccevueeeeeenens 2 52
Crow, William M. 7 49
Davis, Lloyd D.coviiiieanann 11 28
Dennis, StevenJ.o it 7 18
Dummer,David C. 0 2 53
Edmunds, Davidc0n0n 3 86
Ellzey,GavinL.coonnnn 3 61
Fraser, TOMccciiiiinnannenens 4 36
Fratus,Peteccoiiiiiennn. 11 25
Galpin, Amy J.iiiit 1 42
Garvey, Robert B.c.ovvun 1 43
Geffken, Joachim 5 73
Goertz, Jason M.t 1 58

7 59
Green,Robert M.chn 2 5

1 6
Greer,DavidJ.ot 3 3

4 4
Grossler, Jorgcooveiiininnnns 3 15

1 16
Harbron, Thomas R. 2 7
Heidner,Dennisccoovveenes 2 34
Holt, Wayne E.ccoivieens 1 42
Hulme,Johnccovviiianiinnen 6 69

1 70
Kolitz, NancCyceviivveeensanes 4 30
Kramer, Jimcocoeiivenianienss 5 §7
Langenwalter,Gary L. 11 33

Class No.

Leeper, KimD.cconiee. 3 2
4 90

Lett, Robertoooiviiiiinnnns 7 21
Lind, Janetccoiiiiiiiiiien 11 63
McAfee, Billcooiiiiiiiiiiin, 3 31
Newcomer, Eric A,covvenntn 5 65
Nichols and Company 7 N2
OW,Gary ...ovviiiiiivrennransanens 4 1
Perrin, Steveccciiiiiiieraennn 7 21
Raschka, James G,CPIM 7 24
Ray,JohnR.coovininnt 11 28
Rebensburg, Klaus 4 13
Ridgway, Paul W. 3 62
Roland, Vincecciivennnnnnn 1 48
Ryder,Gilescocivvinnnns 3 85
Saunders, Steven K. e 4 27
Scavullo, BObcoiiiiiiiiiiiin 7 80
Schulz, Duanecoevveennennn 2 64
Scroggs, Ross e 6 40
Somers, Peterot 4 12
Stambaugh, Janol 2 74
11 75

Straayer, Russell A. 11 38
Tibbetts, Johnccciieinn 6 40
11 41

Trasko, Mark S. ... 7 20
Utz, Walter J., Jr.ooiiivviinnnnns 11 88
Volokh, Eugenecovivnnnn 11 17
Weld,Gloriaccooevviveannns 11 84
Wheeler, Brucecooceennicans 1 35
Winters, Craigoovvvveniannienn. 3 31
Wright, Steveciieiiiiiiiae 4 83

Overview of Optimizing
(On-Line and Batch)

Robert M. Green

Computei

Museum

Robelle Consulting Ltd.

SUMMARY

The performance of many HP3000 installations can
often be improved significantly. There are general prin-
ciples for delivering better response time to on-line us-
ers, and other principles to speed execution of produc-
tion batch jobs. As long as users continue to consumer
the extra horsepower of new HP3000 models by loading
them with new applications, there will continue to be a
need for optimizing knowledge and tools. And, if inter-
est rates remain at current levels, many managers may
not be able to upgrade to faster computers as soon as
they would like.

CONTENTS

I. How to Improve On-line Response Time
A. Make Each Disc Access Count
B. Maximize the Value of Each “Transaction™
C. Minimize the Run-Time Program ‘‘Size”
D. Avoid Constant Demands for Execution
E. Optimize for the Common Events
II. On-line Optimizing Example: QEDIT
A. QEDIT and “Disc Accesses”
B. QEDIT and “Transaction Value”
C. QEDIT and “Program Size”
D. QEDIT and “Constant Demands”
E. QEDIT and “Common Events”
F. Results of Applying the Principles to QEDIT
III. How to Increase Batch Throughout
A. Bypass Inefficient Code (CPU hogs)
Transfer More Information Per Disc Access
Increase Program Size to Save Disc Accesses
Remove Structure to Save Unneeded Disc Ac-
cesses
Add Structure for Frequent Events

B
C
D

E.
IV. Batch Optimizing Example: SUPRTOOL
A. SUPRTOOL and ““Bypassing Inefficient Code”
B. SUPRTOOL and “Transferring More Informa-
tion”
C. SUPRTOOL and “Increasing Program Size”
D. SUPRTOOL and “Removing Structure”

E. SUPRTOOL and “Adding Structure”

Copyright 1982, All rights reserved.

Permission is granted to reprint this document (but NOT for profit), provided
that copyright notice is given.

This document was prepared with QGALLEY, a text formatter distributed
with software to all Robelle customers.

F. Results of Applying Batch Rules to
SUPRTOOL

SECTION 1
HOW TO IMPROVE
ON-LINE RESPONSE TIME

I have identified five general principles which help in
optimizing the performance of on-line programs:

® Make each disc access count.

® Maximize the value of each “transaction.”

e Minimize the run-time program “size.”

® Avoid constant demands for execution.

® Optimize for the common events.

On a systems programming project, such as a data
entry package or a text editor, you should be able to
apply all five of these principles with good results. That
is because systems software usually deals with MPE
directly and most of the sources of slow response are
under your eontrol. Applications software, on the other
hand, usually depends heavily upon data management
sub-systems such as IMAGE and V/3000. The optimiz-
ing principles proposed here may not be as easy to
apply when so many of the causes of slow response are
beyond your control. However, there are still many
ways in which you can apply the guidelines to applica-
tion systems (monitoring program size, designing your
database and laying out your CRT screens). Relying
upon standard software not only increases your pro-
grammer productivity, it also provides an unexpected
bonus: any improvements that the vendor makes in the
data management tools will immediately improve the
efficiency of your entire application system, with no
re-programming or explicit ‘‘optimizing” on your part.

1. A. Make Each Disc Access Acount

Disc accesses are the most critical resource on the
HP3000. The system is capable of performing about 30
disc transfers per second, and they must be shared
among many competing ‘“consumers.” (This can in-
crease to 58 per second under the best circumstances,
and can degrade to 24 per second when randomly ac-
cessing a large file.) MPE IV can double the maximum
disc throughput for multi-spindle systems by doing
“lJook-ahead” seeks, but only for the Series II/Series
I11, not the Series 30/33/44.

1—6-—1

-The available disc accesses will be ‘“spent” on several
tasks:

® Virtual memory management (i.e., swapping).

® MPE housekeeping (logon, logoff, program load,

etc.).

® Lineprinter spooling.

® Accesses to disc files and databases by user pro-

grams (the final payoff).
If the disc accesses are used up by overhead opera-
tions, there will not be sufficient left to provide quick
response to on-line user transactions. Some examples
of operations that consume disc accesses on the HP3000
are:
® Increasing the number of keys in a detail dataset,
thus causing IMAGE to access an extra master
dataset on each DBPUT. Also, making a field a key
value means that a DBDELETE/DBPUT is re-
quired to change it (which is 10 times slower than a
DBUPDATE).

® Increasing the program data stack by 5000 words,
thus causing the MPE memory manager to perform
extra, swapping disc accesses to find room in
memory for the larger stack.

® Improperly segmenting the code of an active pro-

gram, causing many absence traps to the memory
manager to bring the code segments into main
memory.

® Constantly logging on and off to switch accounts.

® Defining a database with a BLOCKMAX value of
2000 words, thus limiting IMAGE to about 13 data
buffers in the extra data segment that is shared by
all users of that database. With such a small
number of buffers, there can be frequent buffer
“thrashing.” This effectively eliminates the bene-
fits of record buffering for all users of the database,
and greatly increases disc accessing.

Much of the remainder of this document is devoted to
methods of *saving the precious resource — disc acces-
ses.”

I. B. Maximize the Value of Each “Transaction”

This principle used to read, ‘‘Maximize the Value of
Each Terminal Read,” but I have generalized it to
“transaction” to take into account the prevalence of
V/3000, DS, MTS and other ‘“‘communications” tools.
In the terms of MPE IV, a “transaction” begins when
the user hits the ‘return’ key (or Enter) and ends when
the user can type input characters again. This includes
the time needed to read the fields from the terminal (or
from another HP3000), to validate them, perform
database lookups and updates, format and print the re-
sults, and issue the next “read” request.

Each time a program reads from the terminal, MPE
suspends it and may swap it out of memory. When the
operator hits the ‘return’ key, the input operation is
terminated, and MPE must dispatch the user process

1—6—2

again. If MPE has overlaid parts of the process, they
must be swapped back into main memory again. Due to
the overhead needed to dispatch a process, a process
should get as much work done as possible before it
suspends for the next terminal input.

The simplest way to program data entry applications
is to prompt for and accept only one field of data at a
time. This is also the least efficient way to do it. Since
there is an unpredictable “pause” every time the user
hits ‘return’ (depending upon the system load at the
moment), consistently fast response cannot be guaran-
teed. The resulting delays are irritating to operators.
They can never work up any input speed, because they
never know when the computer is ready for the next
input line. If response time and throughput are the only
considerations, it is always preferable to keep the
operator typing as long as possible before hitting the
‘return’ key. Multiple transactions per line should be
allowed, with suitable separators, and multiple lines
without a ‘return’ should be allowed. If you are using
V/3000, the same principles applies: each high-volume
transaction should be self-contained on a single form,
rather than spread out over several different forms.

I. C. Minimize the Run-Time Program “Size”

The HP3000 is an ideal machine for optimizing be-
cause of the many hardware features available at run-
time to minimize the effective size of the program. Even
large application systems can be organized to consume
only a small amount of main memory at any one time.
Each executing process on the HP3000 consists of a
single data segment called the “stack,” several extra
data segments for system storage, such as file buffers,
and up to 63 code segments. All segments (code and
data) are variable-length and can be swapped between
disc and main memory.

Program code which is not logically segmented makes
it harder for the memory manager to do its job, causing
disc accesses to be used for unnecessary swaps. Proper
code segmentation is a complex topic (more like an art
than a science), but here is a simplified training course:
write modular code; don’t segment until you have 4000
words of code; isolate modules that seldom run; isolate
modules that often run; aim for 4000 words per seg-
ment, and group modules by “time” rather than ‘‘func-
tion;” if you reach 63 segments, increase segment size,
but keep active segments smaller than inactive ones.

Although every process is always executing in some
code segment, the code segment does not belong to the
process, because a single copy of the code is used by all
processes that need it. Since code is shared, it does not
increase as the number of users running a given pro-
gram increases. Most of your optmizing should be di-
rected to the data areas (which are duplicated for each
user). A 3000 can provide good response to more termi-
nals if most data segments are kept to a modest size
(5000 to 10,000 words). To keep stacks small, declare

most data variables ‘‘local” to each module
(DYNAMIC in COBOL), and only use *‘global” storage
(the mainline) for buffers and control values needed by
all modules. Dynamic local storage is allocated on the
top of the stack when the subroutine is entered, and is
released automatically when the subroutine is left. This
means that if the main program calls three large sub-
routines in succession, they all reuse the same space in
the stack. The stack need only be large enough for the
deepest nesting situation. By inserting explicit calls to
the ZSIZE intrinsic, you can further reduce the average
stack size of your program.

You can also minimize stack size by ensuring that
constant data items (such as error messages and screen
displays) are stored in code segments rather than in the
data stack. Since constants are never modified, there is
no logical reason that they should reside permanently in
the data stack. By moving them to the code segment,
one copy of them can be shared by all users running the
program. In SPL, this is done by including =PB in a
local array declaration or MOVEing a literal string into
a buffer. In COBOL, constants can be moved to the
code segment by DISPLAYing literal strings in place of
declared data items. In FORTRAN, both FORMAT
statements and DISPLAYed literals are stored in the
code.

A frequently overlooked component of program
“size” is the effect of calls to system subroutines (IM-
AGE, V/3000, etc.). These routines execute on the cal-
ler’s stack, and the work they do is “‘charged” to the
caller. In many simple on-line applications (dataset
maintenance program, for example), 9% of the prog-
ram’s time and over 50% of the stack space will be
controlled by IMAGE and V/3000. You should be
aware of the likely impact of the calls that you make. Do
you know how many disc accesses a particular call to
DBPUT is going to consume? As an example of how
ignoring the *“extended size” of a program can impact
response time, consider the following case:

An application with many functions can be im-
plemented with one of two different strategies. The
first, and simplest, strategy is to code the functions as
separate programs and RUN them via a UDC (or
CREATE them as son processes from a MENU pro-
gram). Each function opens the databases (and forms-
file, etc.) when you RUN it, and closes them before
stopping.

The second strategy is to code each function as a
subprogram that is passed in the previously opened
databases (and forms-file, etc.) as a parameter from a
mainline driver program. If the application requires fre-
quent movement from function to function (performing
only a few transactions in each function), the *process”
strategy will be up to 100 times slower than the ““sub-
program”’ strategy. The resources required to RUN the
programs, open the databases, close the databases, and
perform other “overhead” operations will completely

swamp the resources needed to perform the actual
transactions.

I. D. Avoid Constant Demands for Execution

The HP3000 is a multi-programming, virtual-memory
machine that depends for its effectiveness on a suitable
mix of processes to execute. The physical size of code
and data segments is only one factor in this ‘“‘mix.” The
“size” of a program is not just the sum of its segment
sizes; it is the product that results from multiplying
physical size by the frequency and duration of demands
for memory residence (i.e., how often, and for how
long, the program executes). A given 3000 can support
many more terminals if each one executes for one sec-
ond every 30 seconds, rather than 60 seconds every two
minutes. Each additional terminal that demands con-
tinuous execution (in high priority) makes it harder for
MPE to respond quickly to the other terminals.

Here are some examples of the kind of operation that
can destroy response time, if performed in high priority:

¢ EDIT/3000,a GATHER ALL of a 3000-line source

file.

® V/3000, forms-file compiles done on four terminals
at once.

® QUERY, a serial read of 100,000 records (or any
application program that must read an entire
dataset, because the required access path is not
provided in the database).

® SORT, a sort of 50,000 records.
® COBOL, compiles done on four terminals at once.

You should first try to find a way to avoid these oper-
ations entirely. (Can you use QEDIT instead of EDIT/
3000? Would a new search item in a dataset eliminate
many serial searches, or could you use SUPRTOOL to
reduce the search time? Are you compiling programs
just to get a clean listing?)

After you have eliminated all of the ““bad” operations
that you can, the remainder should be banished to batch
jobs that execute in lower priority (this works better in
MPE IV than III). Since jobs can be *‘streamed”’ dynam-
ically by programs, the on-line user can still request the
high-overhead operations, but the system fulfills the re-
quest when it has the time. The major advantage of
batch jobs is that they allow you to control the number
of ““bad” tasks that can run concurrently (set the JOB
LIMIT to 1 for best terminal response).

I. E. Optimize for the Common Events

In any application where there is a large variation
between the minimum and maximum load that a
transaction can create, the program should be optimized
around the most common size of transaction. If a pro-
gram consists of 20 on-line functions, it is likely that
four of them will be most frequently used. If so, your
efforts should be directed toward optimizing these four
functions; the other functions can be left as is. Because
the HP3000 has code segmentation and dynamic stack

1—6—3

allocation, it is possible for an efficient program to con-
tain many inefficient modules, as long as these modules
are seldom invoked.

Since MPE will be executing a great deal of the time,
you should become competent at general system tuning.
Learn to use TUNER, IOSTAT, and SYSINFO (and
the new :TUNE command in MPE IV). Any improve-
ment in the efficiency of the MPE “kernel” will improve
the response time of all users.

You do not have infinite people-resources for op-
timizing, so you must focus your attention on the fac-
tors that will actually make a difference. There is no
point in optimizing a program that is seldom run. The
MPE logging facility collects a number of useful statis-
tics that can be used to identify the commonly accessed
programs and files on your system. Learn to use the
contributed programs FILERPT and LOGDB (Orlando
Swap). If you are using IMAGE transaction logging, the
DBAUDIT/Robelle program will give you transaction
totals by database, dataset, program, and user (total
puts, deletes, updates, and opens). Such statistics help
in isolating areas of concern.

You can optimize application programs around the
average chain length for detail dataset paths (the con-
tributed program DBLOADNG will give you this in-
formation). Suppose you need to process chains of en-
tries from an IMAGE dataset. If your program only
provides data buffers for a single entry, you will have to
re-read each entry on the chain each time you need it
(extra disc I/O!!). Or, if you provide room for the
maximum chain length, the data stack will be larger than
needed most of the time (the maximum chain length is
often much larger than the average). The larger data
stack may cause the system to overload, eliminating the
benefits of keeping the records in your stack. You
should provide space in the stack for slightly more than
the average number of entries expected. This will op-
timize for the common event.

SECTION II
ON-LINE OPTIMIZING EXAMPLE: QEDIT

QEDIT is a text editor for the HP3000 that was de-
veloped by Robelle Consulting Ltd. The primary objec-
tive of QEDIT is to provide the fastest editing with the
minimum system load. Other objectives include con-
servation of disc space, similarity to EDIT/3000 in
command syntax, ability to recover the workfile follow-
ing a system crash or program abort, and increased pro-
grammer productivity.

QEDIT is an alternative to a hardware upgrade for
users who are doing program development on the same
HP3000 that they are trying to use for on-line produc-
tion. Every optimizing paper in recent years by an HP
performance specialist has recommended avoiding
EDIT/3000. They usually recommend the ‘‘textfile-
masterfile” approach to program development. (You do
not actually edit your source program; instead, you
create a small “textfile” containing only the changes to

1—6—4

a

your “masterfile,” then merge the two files together at
compile-time). QEDIT allows you to have “real” edit-
ing on your HP3000, with less overhead than the
“textfile masterfile” method, and still give good re-
sponse time to your end-user terminals.

II. A. QEDIT and “Disc Accesses”

In order to reduce disc accesses, QEDIT eliminates
the overheads of the TEXT, KEEP and GATHER ALL
commands of EDIT/3000. These three operations have
the most drastic impact upon the response time of the
other users. QEDIT attacks the problem of KEEPs by
providing an interface library that fools the HP compil-
ers into thinking that a QEDIT workfile is really a “card
image” file. As a result, it is never necessary to KEEP a
workfile before compiling it. Since KEEPs are rarely
used, most TEXTs are eliminated. The LIST command
was given the ability to display any file (e.g., /LIST
DBRPT1.SOURCE), so that a TEXT would not be re-
quired just to look at a file. TEXT is only needed when
you want to make a backup or duplicate copy of an
existing file. Since most users choose to maintain their
source code in QEDIT workfiles (they use less disc
space), the TEXTing of workfiles is optimized (by using
NOBUF, multi-record access) to be four to seven times
faster than a normal TEXT of a card-image file. The
GATHER ALL operation is slow because it makes a
copy of the entire workfile in another file. QEDIT re-
numbers up to 12 times faster by doing without the file
copy.

Disc accesses during interactive editing (add, delete,
change, etc.) are minimized by packing as many con-
tiguous lines as possible into each disc block. Leading
and trailing blanks are removed from lines to save
space. The resulting workfile is seldom over 50% of the
size of a normal KEEP file, or 25% of the size of an
EDIT/3000 K-file (workfile). Most QEDIT users
maintain their source programs in workfile form, since
this saves disc space, simplifies operations (there need
be only one copy of each version of a source program),
and provides optimum on-line performance.

QEDIT always accesses its workfile in NOBUF
mode, and buffers all new lines in the data stack until a
block is full before writing to the disc. Wherever possi-
ble in the coding of QEDIT, unnecessary disc transfers
have been eliminated. For example, the workfile
maintains only forward direction linkage pointers,
which reduce the amount of disc I/0 substantially. Re-
sults of a logging test show that reducing the size of the
workfile and eliminating the need for TEXT/KEEP re-
duce disc accesses and CPU time by 70-90%.

II. B. QEDIT and “Transaction Value”

Like EDIT/3000, QEDIT allows either a single com-
mand per line (/ADD), or several commands on a line,
separated by semi-colons (/LIST 5/10;M 6;D 5). The
principle of maximizing transaction value has been
applied with good results to the MODIFY command. In

EDIT/3000, several interactions may be needed to mod-
ify a line to your satisfaction. QEDIT allows you to
perform as many character edits as you like on each
transaction; many users can perform all of their changes
in a single pass. For complex character editing, such as
diagrams, version 3.0 of QEDIT will provide ‘““visual”
editing in block-mode.

II. C. QEDIT and “Program Size”

QEDIT is a comletely new program, written in highly -

structured and modular SPL. The code is carefully
segmented, based on the knowledge of which SPL pro-
cedures are used together and most frequently. Only
two code segments need be resident for basic editing,
and the most common function (adding new lines) can
be accomplished with only a single code segment pre-
sent.

QEDIT uses a modest data stack (3200 words) and no
extra data segments. The stack expands for certain
commands (especially the MPE :HELP command), but
QEDIT contracts it back to a normal size after these
infrequent commands are done. All error messages are
contained in the code, isolated in a separate code seg-
ment that need not be resident if you make no errors.

Use of CPU time is th eother dimension to program
“size.” QEDIT is written in efficient SPL and con-
sumes only a small amount of CPU time (compared with
the COBOL compiler, or even EDIT/3000). Because
QEDIT does its own internal blocking and deblocking
of records, it can reduce the CPU time used in the ile
system by opening files with NOBUF/MR access.

II. D. QEDIT and “Constant Demands”

Most QEDIT commands are so fast that they are over
before a serious strain has been placed on the host ma-
chine. For example, a 2000-line source program can be
searched for a string in four seconds. For those opera-
tions that still are too much load, QEDIT provides the
ability to switch priority subqueues dynamically. In
fact, the system manager can dictate a maximum prior-
ity for compiles and other operations that cause heavy
system load.

IL E. QEDIT and “Common Events”

The design of QEDIT is based on the fact that pro-
gram editing is not completely random. When a pro-
grammer changes line 250, he is more likely to require
access to lines 245 through 265 next, than to lines 670
through 710. This observation dictated the design of the
indexing scheme for the QEDIT workfile. There are
many examples of optimizing for the most common
events in QEDIT:

® Each block of a QEDIT workfile holds a “screen-

ful” of lines, with leading and trailing blanks elimi-
nated.

e QEDIT has built-in commands to compile, PREP

and RUN (since these functions are frequently
used by programmers).

® QEDIT has a fast /SET RENUM command (it can
renumber 600 lines per second), instead of a slow
GATHER command.

e QEDIT can TEXT a workfile much faster than a
KEEP file (since most text will end up in QEDIT
workfiles).

® QEDIT can “undo” the DELETE command (be-
cause programmers are always deleting the wrong
lines).

IL. F. Results of Applying the Principles to QEDIT

In less than seven seconds, QEDIT can text 1000
lines, renumber them, and search for a string. Com-
mands are 80% to 1200% faster than EDIT/3000, pro-
gram size is cut in half, and disc 1/0 and CPU time are
reduced by up to 90%. There are now more than 350
computers with QEDIT installed, in all parts of the
world. Recently, we asked the QEDIT users what they
would tell another user about QEDIT. Here are some of
their answers:

“If he’s doing program development, he
needs QEDIT.” (Gerald Lewis, Applied
Analysis, Inc.)

“Would not live without it. SINCLUDE:s in
FORTRAN; one file or dataset per include-
file.” (Larry Simonsen, Valtek, In¢.)

“Fantastic product.” (Lewis Patterson,
Birmingham-Southern College)

“Buy it. The productivity advantages are
tremendous and don’t cost anything in ma-
chine load. The disc savings in a large (13
programmers) shop will pay for it.” (Jim
Dowlinig, Bose Corp.)

“It’s great. We usually get into QEDIT and
just stay there for a whole session. Compiles
and PREPs are very easy. I really like FIND,
LIST, and BEFORE commands. QEDIT is
very fast. It is great for programmers.” (Larry
Van Sickle, Cole & Van Sickle)

“It’s a tremendous tool and should be used
by any medium-sized shop. I use it to produce
an index of all source or job streams for an
account.” (Vaughn Daines, Deseret Mutual
Benefit Assoc.)

“QEDIT is the best editor I’ve used on the
market. It makes a programmer extremely ef-
ficient and productive. In rewriting an exist-
ing system completely, the on-line compile,
flexible commands, and savings of disc space
all contributed to bringing the system up very
rapidly.” (Glenn Yokoshima, HP Corvallis)

“Excellent product. Increases programmer
productivity dramatically (morale too!).”
(David T. Black, The John Henry Company)

“FAST, convenient. No need to TEXT and
KEEP. Somewhat dangerous for novice, be-
cause changes are made directly. [It worked
well for us in] conversion of SPSS, BMDP,
and other statistical packages to the

1—6—5

HP3000.” (Khursh Ahmed, McMaster Uni-
versity)

“If you are writing a lot of programs, you
should get QEDIT. It is much easier than
EDITOR for this purpose. Program source
files demand complex editing capabilities,
which QEDIT has. I shudder to think of hav-
ing to work on a 4000-statement SPL source
using EDITOR rather than QEDIT.” (Bud
Beamguard, Merchandising Methods)

“Excellent product. Anyone using the HP
editor more than 6 times per day (or more
than 1 hour/day average) should not be
without QEDIT!” (T. Larson, N. J. McAllis-
ter and Associates Ltd.)

“Easier to use than HP editor and much
more efficient. I do not have to leave QEDIT
to RUN, PREP.” (Myron Murray, Northwest
Nazarene College)

“Takes a great load off the mind (i.e., the
‘““electronic brain™). There have been occa-
sions when heavy editing would have killed
our system if we had been using EDITOR.”
(Mike Millard, Okanagan Helicopters Ltd.)

“Very good product — works well in de-
velopment environment. Compilation of
source programs without leaving QEDIT is
very nice for debugging.”” (David Edmunds,
Quasar Systems Ltd.)

“Use it. It is so much better than HP editor
that there is no comparison.” (Ilmar Laasi,
TXL Corp.)

*Fast text editor.” (F. X. O’Sullivan,
Foot-Joy, Inc.)

“In one word. Fantastic.” (Tracy Koop,
Systech, Inc.)

“Superb tool. Far better than EDIT/3000.
Also, information about HP3000 that is
supplied gratis is very useful.” (James
McDaniel, The UCS Group Ltd.)

“I would highly recommend it over EDIT/
3000. In benchmarks and actual use, it has
proven to be much less load on the computer.
In a University environment, we have many
students and faculty editing programs at one
time. QEDIT allows us to run with a high ses-
sion limit and still get decent batch
turnaround.” (Dan Abts, University of Wis-
consin — La Crosse)

“QEDIT is an excellent product for the
price, and is one of the easiest ways to in-
crease programmer productivity. The LIST
command has been invaluable for cross-
referencing data items in COBOL source pro-
grams.” (Mark Miller, Diversified Computer
Systems of Colorado)

“Absolutely. QEDIT has allowed us to con-
trol the development of systems (requiring
off-line compiles, audit trails for source modi-
fications) while actually increasing program-
mer productivity.” (Jean Robinson, Lease-
way Information Systems, Inc.)

1—6—6

“Get it! It’s great. Cheap at twice the
price.” (Willian Taylor, Aviation Power Sup-
ply, Inc.)

“QEDIT is THE ONLY text editor that
you should use in a development environ-
i'nent.” (Craig T. Hall, Info-tronic Systems,
nc.)

“Much better than HP’s editor, well sup-
ported, well documented and continually im-
proving. An excellent product. We activate
QEDIT from our job file generator and acti-
vate SPOOK from QEDIT for editing and
testing output and job streams.” (Patrick Hur-
ley, Port of Vancouver)

“Excellent — can do more than Editor, fas-
ter, and saves disc space. In searching for a
specific literal, QEDIT finds them all in one
command [e.g., LIST “literal”].” (Larry Pen-
rod, Datafax Computer Services Ltd.)

““We could probably not operate if QEDIT
were not available.” (Winston Kriger, Hous-
ton Instruments)

“Buy it, or another computer (a second
HP3000, of course)” (John Beckett, Southern
Missionary College)

“Best software package I've bought for our
shop.” (James Runde, Furman University)

SECTION III
HOW TO INCREASE
BATCH THROUGHPUT

By a “batch job” I mean a large, high-volume, long-
running task, such as a month-end payroll or financial
report. Why is there any problem with this type of task?
Because the batch job is only a poor, neglected cousin
of the on-line session. “On-line” is “with it,” new, Sili-
con Valley, exciting; “‘batch” is old, ordinary, IBM, and
boring. The best people and most of the development
resources have been dedicated to improving the on-line
attributes of the HP3000. The result is predictable:
batch jobs are beginning to clog many HP3000 proces-
sors. The overnight jobs are not completing overnight
and the month-end jobs seem never to complete.

The methods for maximizing the throughput of a
single batch job are not the same as for maximizing the
response time of a large number of on-line users. The
biggest difference: for an on-line application, it is sel-
dom economical to optimize CPU usage. There isn’t
enough repetition to amount to much CPU time. But, a
batch process may repeat a given section of code
100,000 or a million times. CPU time matters.

I have identified five general principles for increasing
batch throughput. Not surprisingly, they differ signifi-
cantly from the principles used to improve on-line re-
sponse time:

® Bypass Inefficient Code (CPU hogs).

® Transfer More Information Per Disc Access.

® Increase Program Size to Save Disc Accesses.

® Remove Structure to Save Unneeded Disc Acces-
ses.
® Add Structure for Frequent Events.

For each optimizing principle, there are three differ-
ent tactics you can apply, with three levels of complex-
ity and cost:

e Changes in the Data Storage (simplest and
cheapest, since no programming changes are
needed).

e Simple Coding Changes (still inexpensive, since
these are “‘mechanical” changes which do not re-
quire re-thinking of the entire application).

e Changes to the Application Logic (the most com-
plex and expensive, since the entire application
may have to be re-designed).

HI. A. Bypass Inefficient Code (CPU hogs)

Elimination of inefficient code is the simplest way to
produce big throughput improvements, assuming that
you can find any code to eliminate that is inefficient (or
more general-purpose than needed).

For a number of reasons, IMAGE is usually more
efficient than KSAM as a data management method. If
you don’t need “indexed sequential” as your primary
access method, convert from KSAM files to IMAGE
datasets. Or, if you don’t need “‘keyed” access to the
data, convert all the way from a data management sub-
system to an MPE flat file, and use sequential searches.
The more powerful the data access method, the more
CPU time is required to maintain it.

Bypassing inefficient code is simply a matter of re-
coding parts of programs to substitute an efficient alter-
native for an existing method that is known to have poor
performance. For example, the MPE file system is
CPU-bound when handling buffered files, so converting
to NOBUF access will save considerable CPU time
(you transfer blocks and handle your own records). In
IMAGE, use the “*” or “@" field list instead of a list of
field names. In COBOL, re-compile your COBOL68
programs with the COBOL-II compiler and they will
run faster. The FORTRAN formatter is a notorious
“CPU hog’’; either bypass it completely or learn its
secrets. The third-party software tool, APG/3000 (ap-
plication profile generator), should be helpful in identi-
fying the portions of an application where the CPU time
is spent (APG was written by Kim Leeper of Wick Hill
Associates). Once APG has identified the key section of
code, you might want to recode it in SPL/3000 for
maximum efficiency.

As is usually the case, the biggest improvements are
obtained by re-evaluating the logic of the application.
For example, you should periodically check the dis-
tribution of all reports to see if anyone is reading them.
If not, don’t run the job at all — that is an infinite per-
formance gain.

I11. B. Transfer More Information Per Disc Access

Besides CPU time, the other major limit on
throughput is the access speed of the discs. One way to
transfer more information per disc access is to build
files with larger blocksizes. The *“block” is the unit of
physical transfer for the file. A larger blocksize means
that you move more records per revolution of the disc.
However, there is a trade-off: increased buffer space
and impact on other users. In on-line applications, you
usually want a small blocksize. Below, I will explain
NOBUF/MR access, which is a technique that allows
you to “have your cake and eat it, too!”

Another way to transfer more useful information per
disc access is to ensure that the data is organized so the
records that are usually required together are in the
same disc block. Rick Bergquist’s DELOADNG pro-
gram (contributed library) reports on the internal effi-
ciency of IMAGE datasets. For example, if it shows
that the work orders for a given part are randomly dis-
persed throughout a detail dataset (necessitating
numerous disc accesses), you can ensure that they will
be stored contiguously by doing a DBUNLOAD/
DBLOAD (assuming that part number is the primary
path into work orders). For master datasets,
DBLOADNG shows you how often you can find a spe-
cific entry with only a single disc read (the ideal). If
DBLOADNG shows that multiple disc reads are often
needed for a certain dataset, you may be able to correct
the situation by increasing the capacity of the dataset to
a larger prime number or by changing the data type
and/or internal structure of the key field.

Don’t overlook the obvious either. If you can com-
press the size of an entry by using a more efficient data
type (Z10 converted to J2 saves six bytes per field), you
can pack more entries into each block and thus reduce
the number of disc accesses to retrieve a specific entry.

You can often increase the ‘‘average information
value” of each disc access by re-thinking your applica-
tion. For example, suppose you must store transactions
in a database in order to provide some daily reports,
many monthly reports, a year-end report, and an occa-
sional historical report covering several years. If you
store all transactions in a single dataset, the daily jobs
will probably take three hours to find, sort, and total 100
transactions. Why not put today’s transactions in a sep-
arate dataset and transfer them to the monthly dataset
after the daily jobs are run? When the monthly reports
are completed, you can move the data to a yearly
dataset, and so on. This is called “isolating data by fre-
quency of access.” The fewer records you have to
search to find the ones you want, the more information
you are retrieving per access.

It is theoretically possible to transfer more informa-
tion per second by reducing the average time per disc
access. Typically, you attempt to improve the ‘‘head
locality” (i.e., keep the moving “heads” of each disc
drive in the vicinity of the data that you will need next).

1—6—7

Although it is hard to prove, it does seem that using
device classes to keep spooling on a different drive from
databases, for example, does improve batch
throughput. Under MPE 1V, you can also spread “vir-
tual memory” among several discs. The next “logical
step” is to place masters and details on separate drives.
However, in all tests that I have run with actual datasets
and actual programs, there was no consistent difference
in performance between having the datasets on the
same drive or on different drives. The dynamics of disc
accessing on the HP3000 are very complex. Unless you
have the time to do a RELOAD afterwards, don’t move
files around; the moving process itself (:STORE and
:RESTORE) may fragment the disc space and eliminate
the potential benefit of spreading the files. Remember
Green’s Law: “The disc heads are never where you
think they are.”

You can also improve overall batch throughput by
recovering wasted disc accesses. The disc drives re-
volve at a fixed speed, whether you access them or not.
Any disc revolution that does not transfer useful data is
wasted. Multiprogramming attempts to use these
wasted accesses by maintaining a queue of waiting
tasks. Unfortunately, maximum throughput under MPE
III coincided with JOB LIMIT = ONE (no multiprog-
ramming!). Under MPE IV, however, I have obtained a
25% decrease in elapsed time on the Series III by run-
ning two or three jobs concurrently. Try it.

IIL. C. Increase Program Size to Save Disc Accesses

In on-line optimizing, we are always trying to reduce
the size of the program (code, data, and CPU usage), so
as to allow the system to provide good response time to
more users at once. In batch optimizing, we do not want
better response time (we won't be running 36 batch jobs
at a time, so we don’t have to worry about mix); we
want better throughput. Since most of the on-line tricks
actually make the program slightly slower, we should
avoid them. Batch tricks usually consist of trading off a
larger program size for a faster elapsed time.

You can often save disc accesses by storing data in
larger “‘chunks,” keeping more data in memory at any
time. Larger blocks will accomplish this, as will extra
buffers. MPE file buffers can be increased above the
default of two via :FILE, but doing so actually appears
to degrade throughput. KSAM key-block buffers are
increased via :FILE (:FILE xx;DEV=,,yy :MNS where
xx is the KSAM data file and yy is the number of key-
block buffers), which will help for empty files (KSAM
cannot deduce how many buffers it will need unless the
B-tree already exists). IMAGE buffers are increased via
the BUFFSPECS command of DBUTIL; this can be
effective for a stand-alone batch job, but only if it works
with a large number of blocks concurrently (i.e., puts
and deletes to complex datasets with many paths).

Pierre Senant of COGELOG (the developer of ASK/
3000) has an ingenious method for ‘“‘increasing program
size”” dramatically. He has implemented ‘‘memory

1—6—8

files.”’ An entire file is copied in main memory and kept
there. For a small file that is frequently accessed (e.g., a
master dataset containing only a few edit codes that
must be applied to many transactions), Pierre’s method
should save enormous numbers of disc accesses.

NOBUF access to files was mentioned above as a
way to save CPU time. If you use NOBUF with MR
access, you can save disc accesses also, but at the cost
of a larger data stack. MR stands for “multi-record,”
and gives you the ability to transfer multiple blocks per
access, instead of just one block. With a large enough
buffer, you will reduce the number of disc accesses
dramatically.

Since multi-block access is faster only if each block is
an exact multiple of 128 words in length, you should
always select a recordsize and blockfactor such that the
resulting blocksize (recordsize times blockfactor) is
evenly divisible by 128 words. The resulting blocksize
need not be large; it need only be a multiple of 128 (i.e.,
256, 384, 512, . . .). As I promised earlier, here is your
way to have the best of both worlds. Build your files
with 512-word blocks (i.e., 4 times 128, 8 times 64, 16
times 32) for on-line use, and redefine the blocksize to
8192 words in batch programs via NOBUF/MR access.

For a “stand-alone batch” job, you may as well set
MAXDATA to 30,000 words. This allows sorts to com-
plete with maximum speed and provides other oppor-
tunities for optimization. With a larger stack you can
keep small master datasets in the stack (e.g., a table of
transaction codes). When you have exhausted the
30,000 words of your data stack, there are always extra
data segments, which can be thought of as “fast, small
files.”

Re-evaluate your view of the data. Databases are
usually set up to make life easy for the on-line user
(rightly). Their organization may not be optimum for
batch processing. In order to provide numerous enquiry
paths, a single word order may be scattered in pieces
among seven different datasets, and may require up to
20 calls to DBFIND and DBGET for assembly. In a
batch job, if you are going to have to re-assemble the
same order many times, it may be more efficient to
define a huge, temporary record for the entire order,
assemble it once, and write it to a temporary file. Then
you can sort the temporary-file record numbers in
numerous ways, and retrieve an entire order with a
single disc read whenever you need it. Of course, this
wastes disc space (temporarily) and increases your pro-
gram size.

III. D. Remove Structure to Save
Unneeded Disc Accesses

“Structure” for data means organization, lack of ran-
domness, and the ability to quickly find selected groups
of records. It takes work to maintain a “structure,” and
the more structure there is, the more work (CPU time
and disc accesses) it takes.

Study your data structures critically. Can you reduce

the number of keys in a record? A serial search may be
the fastest way to get the data. Can you eliminate a
sorted path? Overall, the application may be faster if
you sort each chain in the stack after reading it from the
dataset (Ken Lessey’s SKIPPER package has this
capability), but only if you don’t use the COBOL SORT
verb.

Another type of “structure” is consistency. IMAGE
is a robust data management system because it writes
all dirty data blocks back to the disc before terminating
each intrinsic call. You can make IMAGE faster, but
less robust, if you call DBCONTROL to defer disc
writes (only after a backup). Another IMAGE idea:
don’t use DBDELETE during production batch jobs.
Just flag deleted records with DBUPDATE and
DBDELETE them later, when no one is waiting for any
reports. When you can, use a DBUPDATE in place of
DBDELETE and DBPUT.

For KSAM, if you are planning to sort the records
after you retrieve them, use ‘‘chronological access”
(FREADC) instead of default access (FREAD). Default
KSAM access is via the primary key; KSAM must jump
all over the disc to get the records for you in this sorted
order, just so you can re-sort them in another order!
Also for KSAM, try to keep only one key (no alternate
keys), do not allow duplicates (much more complex),
and avoid changing key values of records.

I am grateful to Alfredo Rego for pointing out a useful
way to ‘““eliminate structure” from IMAGE. When you
are loading a large master dataset, use a Mode-8
DBGET prior to the DBPUT in order to find out if the
new entry will be a primary entry or a secondary entry.
Load only primaries on the first pass, then go back and
load the secondaries on a second pass. This effectively
turns off the IMAGE mechanism known as ‘‘migrating
secondaries,” which although essential, is time-
consuming when filling an entire dataset.

III. E. Add Structure for Frequent Events

I saved this for last because it is one of the most
powerful ideas. Batch tasks usually repeat certain key
steps numerous times. Batch tasks have patterns of
repetition in them. If you make that key step faster by
adding structure to it, or re-structure the application so
that “like-steps” are handled together, you can make
the whole task faster. Extra structure (code complexity
or data complexity) is justified in the most frequent op-
erations of batch processing.

Check your data structures for patterns that you
could capitalize on. For example, if you have a file of
transactions to edit and post to the data base, could the
task be made faster if the file were sorted by transaction
type (only do validation of the transaction type when it
changes) or by customer number (only validate the cus-
tomer number against the database when it changes)?

Here are more examples of adding structure. If you
sort by the primary key before loading a KSAM file,
you can often cut the overall time in half. When erasing

an IMAGE detail dataset, sort the record numbers by
the key field that has the longest average chain length
and delete the records in that order. When loading a
detail dataset with long sorted chains, first sort by the
key field and the sort field. In all of these examples,
throughput is increased by adding code structure to
match the structure of the data.

If you frequently require partial-key searches on
IMAGE records, use an auxiliary KSAM file (or a
sorted flat file and a binary search) to give you
“indexed-sequential” access, rather than only serial ac-
cess, to your IMAGE dataset. (Mark Trasko’s IMSAM
product enhances IMAGE by adding an indexed-
sequential access method to the other access methods
of IMAGE.)

If you have used many IMAGE calls to find a specific
record, remember its record number. Then, when you
need to update it, you can retrieve it quickly with a
Mode 4 DBGET (directed read), instead of doing the
expensive search all over again. If certain totals must be
recalculated each month, why not re-design the
database so that they are saved until needed again? If
something takes work to calculate, check whether you
will need it again. '

The general principle is: look for patterns of repeti-
tion and add structure to match those patterns.

SECTION 1V.
BATCH OPTIMIZING EXAMPLE: SUPRTOOL

SUPRTOOL is a utility program for the HP3000 that
was developed by Robelle Consulting Ltd. The objec-
tives of SUPRTOOL are to provide a single, consistent,
fast tool for doing sequential tasks, whether in produc-
tion batch processing, file maintenance, or ad hoc de-
bugging. Example tasks that SUPRTOOL can handle
are: copying files, extracting selected records from
IMAGE datasets (and MPE files and K SAM files), sort-
ing records that have been extracted, deleting records,
and loading records into IMAGE datasets and KSAM
files. SUPRTOOL can’t do everything yet, but we are
adding new capabilities to it regularly (the most recent
enhancements are a LIST command to do formatted
record dumps and an EXTRACT command to select
fields from within records). SUPRTOOL embodies
many of the batch optimizing ideas discussed in the
previous section of this document.

IV. A. SUPRTOOL and
“Bypassing Inefficient Code”

By doing NOBUF deblocking of records,
SUPRTOOL saves enough CPU time to reduce the
elapsed time of serial operations visibly. For MPE files,
NOBUF is now fairly commonplace (although it still
isn’t the default mode in FCOPY — SUPRTOOL is 6 to
34 times faster in copying ordinary files). Where
SUPRTOOL goes beyond ordinary tools is in extending
NOBUF access to KSAM files (a non-trivial task) and
to IMAGE datasets (very carefully). By making only a

1—6—9

few ‘“large” calls to the FREAD intrinsic, instead of
many ‘‘small” calls to DBGET (each of which must ac-
cess two extra data segments, look up the dataset name
in a hash table, re-check user access security, and then
extract a single record), SUPRTOOL quickly cruises
through even enormous datasets with only a minimal

SUPRTOOL/Robelle

>BASE ACTIVE.DATA,5

>GET LNITEM

>IF ORD-QTY>10000

>XEQ

IN=60971. OUT=14479,
CPU-SEC=56. WALL-SEC=133.

Notice that SUPRTOOL used 1/9th as much CPU
time and 1/6th as much elapsed time. And, the QUERY
FIND command only builds a file of record numbers; to
print the 14,479 records, QUERY must retrieve each
one from the dataset again. SUPRTOOL creates an
output disc file containing the actual record images, not
the record numbers. With suitable prompting,
SUPRTOOL can do this task even faster (see below for
the BUFFER command).

IV. B. SUPRTOOL and
“Transferring More Information”

SUPRTOOL transfers more information per disc ac-
cess by doing multi-block transfers between the disc

FCOPY/3000

consumption of CPU time.

For example, here is a comparison of SUPRTOOL
and QUERY, selecting records from a detail dataset
containing 60,971 current entries which are spread
throughout a capacity of 129,704 entries.

QUERY/3000

>DEFINE

DATA-BASE =>>ACTIVE.DATA
>FIND LNITEM.ORD-QTY>10000
USING SERIAL READ

14479 ENTRIES QUALIFIED
(CPU-SEC=520. WALL-SEC=763.)

and the data stack in main memory. If records are 32
words long and stored as four per block (for a blocksize
of 128 words), reading multiple blocks can make a big
difference. For 20,000 records, one block at a time re-
quires 5000 disc accesses. Using a 4096-word buffer and
reading 32 blocks at a time reduces the number of disc
accesses to 157!

SUPRTOOL has an option (SET STAT,ON) that
prints detailed statistics after each task, so that you can
see how it was done and where the processing time was
spent. For example, suppose you want a formatted
dump in octal and ASCII of all the records from the file
described above for the order “228878SU.” Below are
the commands and times for SUPRTOOL and FCOPY:

>FROM=SUMMRY ; TO=*SUPRLIST;SUBSET="228878SU", 1;0CTAL;CHAR
EQOF FOUND IN FROMFILE AFTER RECORD 19999
3 RECORDS PROCESSED ¥¥% (o ERRORS

(CPU-SEC=78. WALL-SEC=114.)

SUPRTOOL/Robelle
>SET STAT,ON
>DEFINE A,1,8

>IN SUMMRY

>LIST

>IF A="2288783U"
XEQ

IN=20000. OUT=3. CPU-SEC=11.

¥¥ OVERALL TIMING **
CPU milliseconds:
Elapsed milliseconds:
¥% TNPUT ¥*¥
Input buffer (wds):
Input record len (wds):
Input logical dev:
Input FREAD calls:
Input time (ms):
Input records/block:
Input blocks/buffer:

Notice that SUPRTOOL was using its default buffer
size of 4096 words. FCOPY had to make 5000 disc
transfers, while SUPRTOOL only had to make 157.

1—6—10

WALL-SEC=16.

10854
16254

4096
32
12
157
6304
m

32

That is one of the reasons why SUPRTOOL finished in
1/7th the time and used 1/7th the CPU time.

IV. C. SUPRTOOL and “Increasing Program Size”

SUPRTOOL gets a great deal of its performance edge
by doing its own deblocking: allocating a large buffer
within its data stack, reading directly from the disc into
the buffer, and extracting the records from the blocks
manually. SUPRTOOL trades a larger program size for

SUPRTOOL/Robelle

>BUFFER 8192

>IN SUMMRY

>LIST

>IF A="228878sU"

>XEQ

CPU-SEC=10. WALL-SEC=13.

By combining SUPRTOOL with IMAGE, you can
have small data blocks for on-line access and large data
blocks for batch sequential access. Here is the same

SUPRTOOL/Robelle
>BUFFER 14336

>BASE ACTIVE.DATA,5
>GET LNITEM

>IF ORD-QTY>10000
>XEQ

a faster elapsed time. But you don’t need to stop with
the 4096-word buffer that SUPRTOOL normally allo-
cates. Using the BUFFER command, you can instruct
SUPRTOOL to work with buffers of up to 14,336 words
and observe the results with SET STAT,ON. Here is
the same selective file-dump that took 16 seconds with
4096-word buffers, done with 8192-word buffers:

[An additional savings of 3 seconds]

database extract as done above (in the QUERY vs,
SUPRTOOL test). Instead of using 4096-word buffers,
we will increase the buffer space to 14,336 words:

IN=60971. OUT=14479. CPU-SEC=46. WALL-SEC=104. [Saved 29 sec.]

IV. D. SUPRTOOL and “Removing Structure”

SUPRTOOL can optimize batch operations by “re-
moving structure.”” NOBUF deblocking of MPE files
and IMAGE datasets provides faster serial access by
saving CPU time and reading larger chunks of data, but
NOBUF deblocking of KSAM files does that and more:
it also eliminates structure. When you read a KSAM file
serially by default, the KSAM data management system
does not return the records to you in “physical” se-
quence; it returns them to you “‘structured” by the pri-
mary key value, and this takes work — a lot of work.

KSAM must search through the primary B-tree to
find the sequence of the key values, and must then re-
trieve the specific blocks that contain each records.
Quite often, logically adjacent records may not be phys-
ically adjacent; in the worst case, each logical record
requires at least one physical block read. The
SUPRTOOL NOBUF access to KSAM files cuts
through all of this and returns the raw records to you in
physical order; the savings in time can be impressive
and, if you are planning to sort the records anyway,
there is no loss of function. SUPRTOOL only removes
the structure that you were not going to use.

Another example of removing structure in
SUPRTOOL is the SET DEFER,ON command. When
used in conjunction with the PUT or DELETE com-
mands, the DEFER option causes SUPRTOOL to put
IMAGE into output-deferred mode (via a call to
DBCONTROL). Normally, IMAGE maintains a consis-

tent and robust “structure” in the database after every
intrinsic call. If you are planning to make a large
number of database changes and can afford to store the
database to tape first, you may be able to cut the
elapsed time in half (or more) by leaving the physical
database in an inconsistent state after intrinsic calls.
(DBCONTROL makes the database consistent again
when you are done.)

Here is an example use of SUPRTOOL to find all
work orders that are completed (status=“X"") and old
(dated prior to June 1st, 1982), delete them from the
dataset, sort them by customer number and work-order
number, and write them to a new disc file. SET DE-
FER,ON is used to make the DELETE command fas-
ter:

SUPRTOOL/Robelle

>BASE FLOOR.DATA

>GET WORKORDER

>IF WO-STATUS="X" AND WO-DATE<820601
>DELETE

>SORT CUSTOMER-NUM;SORT WORKORDER-NUM
>OUTPUT W08206

>SET DEFER,ON

>XEQ

Another way to look at SUPRTOOL is as follows: if a
serial search is fast enough, you may not need to have
an official IMAGE “path” in order to retrieve the re-
cords you need. On the Series III, SUPRTOOL selects

1—6—11

records at a rate of two seconds per 1000 sectors of
data.

IV. E. SUPRTOOL and “Adding Structure”

SUPRTOOL can optimize batch tasks by ‘“adding
structure’’ to data. One way to add structure is to sort
data. Experiments have shown that sorting records into
key sequence can cut the time to load a large KSAM file
in half. SUPRTOOL easily reorganizes existing KSAM
files by extracting the good records, sorting them by the
primary key field, erasing the KSAM file, and writing
the sorted records back into it — all in one pass.

You can also add “structure” to raw data by defining

a record structure for it (QUERY can access IMAGE
entries because they have a structure defined by the

SUPRTOOL/Robelle

>BASE FLOOR

>INPUT WO8206 = WORKORDER
>IF CUSTOMER-NUM="785626"
>LIST

>XEQ

And, since SUPRTOOL has access to the IMAGE
database that the entries originally came from,
SUPRTOOL can still format the entries on the linep-
rinter with appropriate field names and data conver-
sions (similar to REPORT ALL in QUERY).

IV. F. Results of Applying
Batch Rules to SUPRTOOL

Just before completing this paper, we sent a ques-
tionnaire to the users of SUPRTOOL, asking them what
they would tell other HP3000 sites about SUPRTOOL.
Here are their replies:

“I always recommend SUPRTOOL with any new
system. Without programming, I duplicated a master
file from one application to another application. I set up
a job stream to do this on a weekly basis (i.e., purge the
old dataset entries and add the new dataset entries eas-
ily). SUPRTOOL creates files with different selection
criteria to feed the same program.” (Terry Warns,
B P L Corp.)

“An essential package for efficient operation of a sys-
tem. Most of our job streams include a SUPRTOOL
function.” (Vaughn Daines, Deseret Mutual Benefit As-
s0C.)

“Excellent. We had an application that serially
dumped a dataset of 185,000 records (4 hours) and then
sorted the 114-byte records in 6 hours (provided we had
the disc space needed). We changed to SUPRTOOL
with the OUTPUT NUM KEY option and a modified
program using DBGET mode 4 and maximum
BUFFSPECS. The result was 4 hours altogether.”
(Bobby Borrameo, HP Japan)

“SUPRTOOL is an excellent utility for copying stan-
dard MPE files and databases very quickly . . . extract-
ing and sorting records from a database (i.e., 40,000
records of 60,000), copying files across the DS line

1—6—12

schema). Normally, regular MPE files are not thought
of as having the same kind of record structure as
IMAGE datasets. Why is this so? Because you cannot
access the fields of the file’s records by name in tools
such as FCOPY, even if the structure exists. In
SUPRTOOL, you can.

If you use SUPRTOOL to archive old entries from
IMAGE datasets to MPE disc or tape files, you can later
do selective extracts, sorts, and formatted dumps on
those MPE files, using exactly the same field names as
you did when the entries were in the database. (In fact,
you can even put selected records back into a tempor-
ary database with the same structure and run QUERY
reports on them.) Here is how SUPRTOOL associates
structure with raw MPE files:

[implied record structure!]

(much quicker than FCOPY), copying tape to disc and
disc to tape.” (Dave Bartlet, HP Canada)

“We couldn’t operate without it. We are a heavy
KSAM user and SUPRTOOL has cut our batch proces-
sing by at least 1/3.” (Jim Bonner, MacMillan- Bloedel
Alabama)

“All sorts of marvelous things. [SUPRTOOL] is re-
ally nice (and fast) to copy a database for test pruposes
or to make minor changes (instead of DBUNLOAD/
LOAD) — even major changes, using a program to ref-
ormat the SUPRTOOL-created file.”” (Susan Healy,
Mitchell Bros. Truck Lines)

“Just last night I told a friend that, after working with
different sorts on IBM (DPD- and GSD-level machines),
Burroughs sorts, and even HP sorts, SUPRTOOL is the
best sort tool I have ever used.” (Robert Apgood,
Whitney-Fidalgo Seafoods)

“Get it. Runs much faster than SORT. Cheap at twice
the cost.” (Willian Taylor, Aviation Power Supply, Inc.)

“Fast and functional. SUPRTOOL is deeply embed-
ded in our applications, most extracts are done with
SUPRTOOL. Ad hoc inquiries [via SUPRTOOL], in-
volving pattern matching on our customer file, extract
the appropriate keys, which are then passed to the re-
port program.”’ (Patrick Hurley, Port of Vancouver)

“SUPRTOOL is a product which no shop that uses
IMAGE and does batch report generation should be
without. By changing certain reports to use
SUPRTOOL instead of traditional selection techniques,
a savings of 60% in CPU and wall time was obtained.”
(Vladimir Volokh, VSI/Aerospace Group)

“SUPRTOOL is a great timesaver when used with
BASIC (or RPG) to modify IMAGE datasets and place
them in another dataset or the same dataset.” (John
Denault, Datafax Computer Services, Inc.)

Thoughts Concerning

How Secure Is Your System?

Ingenieurbiiro Jorg Grossler
1JG, Berlin

WHAT DATA SECURITY MEANS

To be able to rebuild the file system in case of a
disaster
To restrict access on various type of data.

STANDARD FILE BACKUP
FACILITIES IN MPE
Sysdump, Reload (based on magnetic tape)
Store, Restore (tapes)
User Logging (based on disc or tape)
Private volumes (disc)

PROBLEMS WITH STANDARD
FILE BACKUP

Tape read error during RELOAD

— system cannot be started

— next action “must be RELOAD”

measures:

— change disc packs before RELOAD

— RELOAD with “ACCOUNTS-only” then RE-
STORE the remaining files (very time consum-
ing)

Tape read error during RESTORE

— all files 'stored behind error point cannot be re-
stored

measure:

— use RESTORE or GETFILE?2 program

User logging causes system overhead

measure:
— consider special logging during program design

PROSPECTS FOR
TAPE-BACKUP SYSTEM

GETFILE-facility will be improved

® Special STORE-RESTORE system is considered
(this possibility includes features like UPDATE
and APPEND)

RESTRICTIONS IN DATA ACCESS
Account-system (users, groups, accounts with dif-
ferent passwords)

User capabilities (SM, PM, PH, etc.)

Filenames with passwords

Privileged files

File access capabilities on user/group- and file-
level

RELEASE/SECURE-commands

SEVEN POSSIBLE WAYS
TO CRACK THE SYSTEM

. FIELD.SUPPORT

measure:
Password on SUPPORT-account
Or remove SUPPORT-account from the system.

. Jobs in PUB.SYS-group

measure:
Password on job-file or
Put job into other SYS-group.

. LISTUSER@.@;LP

measure:
Log-on-UDC or perform command
Not in PUB.SYS-group.

Open all files of the system

measure:
Special analysis of system logging

. Read terminal buffers (PM-capability needed)

measure:
Remove PM-capability

. Reading tapes

measure:
Keep track of all tape-transactions also using
system logging

FOPEN on terminals

measure: ??

1—16—1

Online Database:
Design and Optimization

Robert B. Garvey
Witan Inc.
Kansas City, Missouri

CONTENTS

A. The Foundations
1. GOALS; A System Language and Methodology
2. System Principles
a. Elements
1. Components
2. Relationships
b. Use in System Phases
(1) Analysis
(2) File Design
~(3) General Design
3. Information System Architecture
(a) General System Architecture
(1) Detailing
(2) Development
(3) Implementation
(b) Use of IMAGE and VIEW
4. Interactivity and Control
(a) Menu Programs
(b) Control Tables
(c) Data Area Control
(d) Quiet Callability
B. Dynamically Callable Programs
1. SLs & USLs
2. Effect of called programs on the stack
C. SPL Standards

FOUNDATION

A system language, GOALS, will be introduced to
render systems and components.

A general set of principles will be presented incor-
porating the components and structures inherent in a
structured system. The use of these components in the
system life cycle and as a documentation system will
evolve.

A general system architecture will be presented and
an approach to interactivity will be discussed.

The detailed use of callable programs in the 3000 en-
vironment will be discussed with emphasis on im-
provement of system performance.

I am going to assume that you are first time users of a
3000 that you want to write online database systems,
that you do not have some of the more typical real

© Copyright Witan Inc. 64113

world problems like a conversion from another machine
and that you are going to use VPLUS and IMAGE. 1
don’t care what language you use unless it is RPG in
which case much of what I say will not be true.

GOALS: A System Language

GOALS was designed to meet the following criteria:

e Provide good documentation throughout the
lifecycle

e Ease maintainence

Expedite development

Provide users early understanding of System

functions and restraints

e Improve project management and reporting

e Reduce resources required

® Optimize System performance and quality

Many of the above criteria can be achieved through
reasonable structuring of the system . However many of
the structuring techniques that are now popular are
simply more trouble than they are worth. Yourdon,
Jackson and certainly IBM’s HIPO involve more work
involve more work in their maintainence than rewards
merit. Warnier comes closest to being worthwhile but
cannot be reasonably maintained in machine sensible
form.

GOALS will be described as a methodology only be-
cause it does what the popular ‘“Methodologies” tout,
and much more. We do not feel that any of the meth-
odologies should be considered ends in themselves and
more sacred than the system at hand. Once the princi-
ples are learned and applied the implications should be
obvious and the apparent need for a methodology for-
gotten.

Documentation

General Statement

The purpose of documentation is to assist in the
analysis, design, program design, maintenence and op-
eration of a system. To those ends software documenta-
tion must be flexible, easily modifiable, current and
easy to read. Witan has developed a system of
documentation called GOALS which uses simple text
files associated through control numbers to meet the
criteria listed above. The following sections describe

1—43—1

the general features of the structural notation used in
GOALS and the General system structure used in sys-

GOALS Primitive Structures

tem projects. SEQUENCE
GOALS is used throughout the life of a project. It is
used:
1. To state requirements FLOW = e
2. Render flow and components in the analysis phase < BEGIN
3 To develop, test and render a general design @~ =00 o===e——e—-
. . I
4. As a pseudo code or structured English for detail Y o '
deslgn' ! PROCESS 1
5. As a high level programming language e b !
6. As a project network descriptor. !
GOALS: Structural Notation ! PROCESS 2—- N
Formal structuring permits three primitive opera- oo ________
tions: Sequence, Repetition and Alternation. Structural !
Notation was developed to meet the criteria of formal = =——=—e———ao____
systems in a generalized way and was guided by the ! PROCESS 3
assumption that systems must be rendered in a machine ""'""" """""
sensible form. GOALS relies upon text sequences and e
key words as its basis. Structural Notation is the basis < END
of the syntax of GOALS. % B
Following are the representations of the primitive
structures using flowcharts and GOALS. The word GOALS 1 PROCESS 1
PROCESS is used to represent a step, a process or an 2 PROCESS 2
item depending on the use of the notation at the time. 3 PROCESS 3
ALTERNATION
FLOW
< BEGIN >
!
*
* *
* * e e
* IF X ¥ ——— true----- >! PROCESS 1
* * ! _____________
* *
*
!
false
[}
*
* *
* * ! _____________
* IF Y * ———true-——---- >! PROCESS 2
* *
* * :
*
!
false
]
*x
* *
*x *x ! _____________
* IF 2 ¥———true------- >! PROCESS 3
*x * e
* *

1—43 -2

GOALS IF X IS TRUE
PROCESS 1
IF Y IS TRUE
PROCESS 2
IF Z IS TRUE

PROCESS 3

REPETITION

FLOW

< BEGIN

>

< END > 1{mmmmm ! PROCESS 1 !
—————— | R ittt |
GOALS WHILE Y << IS TRUE >>
PROCESS 1
PROCESS 1A
PROCESS 1B
PROCESS 1C

The exclamation point is used to signify control in the
WHILE loop. If the condition is met the control passes
to the statement following the (!) on the same level. If
the condition is met the control passes to the first
statement following the condition. Processes 1A
through 1C were added to show a simple subsequence.

Data Structuring

GOALS is also used to represent data structure. As
with control structure there are three general structures
which can be represented.

Data items listed line after line represent sequence:

1. item-1

2. item-2

3. item-3

Subsequences are represented as sequences on a
level below the item of which they are are a part.

1. item-1
1A. item-1A
1B. item-1B
1C. item-1C
2. item-2
3. item-3

Repetition in data structuring can be represented by
“(S)” at the end of the item name which is repeated, this
can take the form an expression [i.e., (0>s<15)1.

item-1(S)

item-1
Example: a file of accounts
Account File
Account(s)
Account
Account number

1—43—3

Name
Address(s)
Address type (h=home, w=work)
Street number
Direction
Street name
Affix
Amount due
Order(s)
Order number
Item(s)
Item

Alternation

Alternation is represented with the IF control word or
with the notation (1,0).

IF segment descriptive code = 1
material

IF segment descriptive code = 2
supply

This convention is seldom used because the WHILE
handles most situations for the case of data structuring.

The other type of alternation is within a string of data
items where the item can either exist or not exist.
Another way of representing a non-required item.

1. item-1

2. item-2

3. item-3(1,0)

This says that items 1 and 2 must exits or are required
and item 3 is optional.

Discussion

The highest level of repetition within a data structure
is assumed to be the key to the file or at least the major
sort sequence. If additional keys are required they can
be represented with the word KEY [i.e., item-3 (KEY)]
or an additional data structure can be presented to rep-
resent the structure represented when the KEY is used.

GOALS can be used to represent logical structures as
well as the physical implementations. It is important
that the required logical views of data be derrived and
documented before any physical structures be planned.
A goal in system design is to have a one to one relation-
ship between the physical and the logical structures of
the system. The coding complexity is reduced appreci-
ably as wellas the maintainence activity. An additional
byproduct is the ability to use Query or other general
inquiry languages in a more straight forward fashion.

LEVELS: are represented graphically with the use of
indentation. The first character in a line is considered to
begin an “A” level subsequent levels are indented an
additional three spaces each.

Successively lower levels (higher value characters
and more deeply indented) represent subordinate pro-
cesses. As will be seen in the general system structure
the highest most levels are controled by increments of

1—43 —4

time; years, quarters, months, days, etc. while lower
levels are controlled by events or conditions.

CONTROL NUMBERS: The control numbers used
in GOALS are developed by alternating the use of num-
bers and letters to represent sucessively lower levels
within the system. The system is similiar to English
outlining except that only capital letters and numeric
characters are used. For a given statement there is no-
thing to indicate its position in the hierarchy unless the
entire control number is dipicted or the starting control
number on the page is given. When GOALS statements
are machine stored the entire control number is either
stored or is assumed.

Principles

An Information system is distinguished from operat-
ing systems, command interperters, compilers and the
like. An Information System is that set of communica-
tions, operations, files and outputs associated with a
single conceptual “file.”

F'am not talking about a single program. Historically I
am talking more about an application area.

Elements
Components

First an analogy: All purely mecanical devices are
made up of elemental components; the incline plane, the
wheel and axle, the lever and the chamber. The physics
of these basic components and the materials from which
they are constructed define the limits of their applica-
tion. You may be saying, that list does not sound cor-
rect or “what about the screw.” In listing elemental
components certain definitions are inherent. I define the
screw as a “‘rolled incline plane.”

For information systems I assert that the list is:
Communications, files, operations and outputs. The lim-
its for such systems are defined by the ordering of the
elements using the primitive structures (sequence, al-
ternation and repetition).

As a note; to date the list of elemental components
may have been input, process and output without regard
to structure. This is more elemental considering all
computer processes but is unbounded. This makes a
general system design technique very difficult. Adding
hierarchy to the above does not enhance these primi-
tives to any great extent.

Relationships

With these boundries and definitions in hand, lets
look at the relationships that develop.

There is generally a one to one relationship between
file structure and operations structure, between com-
munications structure and operations structure, be-
tween output structure and operations structure. In
other words the operations or control structure mimics
the other components of the system and each componet
is related to the other in structure. Structure begins with
the file structure.

Example; if you have a file of accounts and you want

to report them; the report program may need to be
structured exactly the same as the file or database to
report all the data in the file. Most often there is a one to
one relationship between files and outputs. In the report
example the report structure could be expected to look
exactly like the file. If the report is to look different than
the file there would be in intervening operation usually a
sort or selection to convert an intermediate output to
the final output.

The same is true of communications which on the
data processing level are the transmissions to the uses,
the screens and the messages. The structure of a com-
munication is generally the same as the operation struc-
ture which is the same as the data structure and thus the
communication structure is the same as the data struc-
ture. This substantiates the theory that systems can be
completly described knowing only the data structure.
True but limited. Knowing the structure of any part
should in theory give you the whole.

If everything describable about a system can be de-
scribed in simple structures (and thus in GOALS) and
the components of a system include only communica-
tions, files, operations, and outputs and GOALS can be
used in all system phases then we have a framework for
a general system covering conception through
maintainence.

Lets look at any application. Traditionally you would
begin with a requirements statement and do an analysis
of the existing system. Forget flowcharts, classic narra-
tives, and other charting techniques. Think of prog-
ressively decomposing the system using simple english
outlining starting with the functions. Functions fit into
the operations structure discussed. You will note that as
you get down a level or two you will encounter repetit-
ive tasks dependant on conditions, add WHILE and IF
to your outlines and keep describing. Remember that
users can understand outlines and repetition and alter-
nation are not difficult to understand.

Operations will include existing machine processes,
manual proceedures, paper flows, sorting processes etc.
As you are going through the operations keep a list of
the files that are mentioned and note the file keys (and
sorts) and any advantages or requests for multiple keys.

List any outputs or reports prepared by the organiza-
tion or required in the future.

Communications will be minimal at this stage but

note any memos that may go from one section to
another of a “file” of notes used as crossreference or
duplicate of any more perminent file.

Your documentation is now shaping up; your
notebook and I assume that the whole world has change
to 814"S11”, should be divided into communications,
file, operations and outputs.

The starting point for design is the detailing of the
files in your file list. You will want to reduce the files as
much as possible to a single file. By way of naming
conventions the ‘file” should have the same name as
the system at hand.

You will notice that many of the manual files are
really communications in that they are “views” of the
file that are required in a particular subfunction.

The design of the conceptual file must be validated
against the required operations. I am going to leave this
hanging for a moment to discuss a General System
Structure.

General System Structure

A General System Structure is presented on the fol-
lowing page in Goals.

This structure is not applicable in all systems but is
used as a pattern for system discription, design and
understanding.

The key elements of design of this structure are:

1. File unity; a system with this structure has only
one conceptual file. It may have any number of
datasets of or physical files but they must be for-
malized into one.

2. Journalizing or logging; all changes made to data
items can be (and normally should be) logged.

3. Last action dating; incorporated as part of logging,
permits an offline log.

One detailed implication of this is need to have a date

stamp in each detail set and a master date stamp in the
master file.

Note: sleeper from the contributed library is a must.
A standard job stream to prepare the system for shut-
down and to bring it back up to production mode is also
recommended. Allocation of application programs a de-
sirable feature is the reason for this and also a good way
to get sleeper going again.

General System Architecture

Begin system
WHILE NOT EOSystem
WHILE NOT EOYear
WHILE NOT EOQuarter

WHILE NOT EOMonth

WHILE NOT EODay

WHILE ONLINE

Begin online

identify operator and security

1—43—5

Open system file
Open current files

WHILE

Communication

IF control transfer
transfer control

IF batch request
initiate request

IF update

Begin

, add or delete

Memo to LOG

LOCK

Update
UNLOCK

End

IF inquiry

radd or delete

perform communication operation

[}
!
End Online
Begin daily batch

Perform daily batch processing

Run LOG analysis
If end of week

Perform Monthly Processing

ROLL FILES
!

perform Monthly processing

Perform Quarterly processing

Perform end of year processing

!
Close system
End

A GENERAL DESIGN

With this Architecture and database design complete
we have the basis for the development and implementa-
tion of any application.

Step 1 is inquiry into our file; if there is only one
search criteria then we calculate into to file and return
the master data or a summary. Once positioned in a
master we can chain through our detail sets or follow
appropriate programatic paths.

The master screen (a communication) should provide
inquiry, update, and addition ability.

Each detail set should have a screen providing the
same update add and inquiry ability. Our screens will be
one for one with the detail sets. Think of a detail set as
having a buffer that will correspond to communication
(VPLUS) buffer. Moving data within one program is
facilitated with this concept.

The list of detail sets becomes a list of programs
which must be written to handle the retrieval, update,
addition, deletion and editing of data for the detail set.

When this is complete you will have a functioning
system; it will not function well. I have intentionally

1—43 —6

oversimplified. The office proceedures which may be in
place or will evolve will dictate what combination of
sets will appear on a screen but no effort was be lost in
developing the barebones system according to this
method. Each set (detail set) should have its own pro-
gram to handle retrieval and update. When require-
ments demand inclusion the programs can usually be
used with few changes. You can take this one step fur-
ther to include a general scheme to handle multiple data
sets on one screen.

The question then becomes; “How do I tie this all
together?”

Interactivity and Control

Let’s say that we have written a system composed of
a series of programs that correspond to our data sets.
The way in which we implement interactivity is through
a control program called MENU. 4A Menus

A master data set will exist at the top of the concep-
tual file and the primary search path will be the file key.
Other search paths will be provided through subsystems
such as “Name Family” or through automatic masters.
For all detail sets associated to the master there will be

a program to handle that data set. Your analysis will
dictate all the processes that the operator may wish to
perform.

As other requirements develop associating more than
one data set the code can be combined and new screens
developed.

The menu control program provides transfer of con-
trol. It can do this either “quietly”’ or “‘loud.” Loud is
the obvious implementation; the operator choses a data
set from a menu screen, the control is transferred via a
““call” to a dynamic subprogram the data set is accessed
updated, etc. and control returns to the controlling
menu. But let us give the operator the ability to ‘“‘tell”
the system where he wants to go next. If he does a
common area flag can be set to say don’t display the
menu simply transfer control to some other subprog-
ram. We call are common area for data SYSBLK and
out flag(s) Q1, Q2, etc. (you are not limited to one level
of menu).

A menu structure may look like this:

MAIN MENU
WHILE NOT PARENT OR END OF SYSTEM
IF LOUD
GET MAIN MENU SCREEN
SEND (SHOW) SCREEN
WHILE EDITS'FAILED

EDIT FIELD
IF EDITS FAIL
SEND SCREEN

SET MODE TO QUIET
IF QUIET
IF NEXTPROCEEDURE=A
CAIL A
IF NEXTPROCEEDURE=B
CALL B

IF NEXTPROCEEDURE =N
CALL N
ELSE
CALL CONTROL'NUMBER'TABLE

Through this technique those programs which are not
being used are not using memory resources. The CON-
TROL NUMBER TABLE refers to implementations
which have levels of menus. If the control reference is

‘ not handled at that menu level control is appropriately
passed to the proper level where a control program can
handle it.

The quiet “CALL” technique can be used for any of
the data set programs discussed by putting the quiet call
structure “around” the program and requiring the pass-
ing of appropriate data into or from the communication
buffer. If you need to pass data from one subprogram to
another and you want to release the calling program
stack space you can do so with extra data segments
(DMOVIN, DMOVOUT) or message files or scroll files

(logical device dependant files) that you set up in the
application program i.e. BUILD SCROLO033;rec=-
80,16.f ascii.

Pitch for the use of intrinsics; we have found that
most 3000 users do not take advantage of some of the
very rich intrinsics in MPE. They are simple calls, well
documented and even those that require bit settings are
fairly easy to implement in any language.

The COMMAND intrinsic, for example lets you issue
MPE command line, commands programatically. We
use this to create stream jobs then kick off the job from
online programs. A report menu can be used this way.

Effect of called programs on the Stack

The effect of using properly implemented called pro-
grams is simple and dramatic. You reduce the amount
of stack (that normally translates into main memory)
that is required by each user of an application program.
Jim Kramer HP SE Saint Louis (Quad Editor Fame)
calls it timesharing the stack.

Usually the outerblock program carves out the re-
quired amount of data area to be shared by all subprog-
rams in the “system”; this would normally include a
database area, a VPLUS area and an area for the system
at hand. MPE then carves out some data area for Image
and VPLUS. Using a simple menu concept as dis-
cussed, as each program is called it will require its own
data area and thus addition stack on top of the common
(Q relative) data area, when the program returns to the
menu this stack space will be unused but as soon as the
next program is called this same space will be used by
that program for its space.

COBOL sections do not do the same thing. They
create data areas for all declared data in the data divi-
sion. Sectioning permits smaller code segmentation but
this is a shared resource on the 3000 anyway. Note that
with stack sharing per user that the reduction in mem-
ory requirements is greatly enhanced over code optimi-
zation,

You will also find that editing code is much easier
with smaller source files, that compilation is faster and
more concise code is written.

SL’s and USL’s
SL’s

® Modules, entry points and called Programs require
1 CST entries if they are not already referenced in a
running process.

® Code is sharable by all programs. The PUB.SYS
SL is avalable to all programs. Account and group
SL’s are available to programs being run out of that
Account or group.

® You may exclusive access to the SL to make an
entry in it.

® When SL entries are made you do not need to pre-
pare the SL. It is available after you have exited
the segmenter.

1—43 —7

USL’s ® All USL resolved entries create XCST entries ex-

® Programs compiled into a USL must be prepared cept the outer block.
before they are runnable.
o ST’s and XCST’
® Many programs may be compiled into the same CST's and XCST’s

USL. When a program is run the system will look ® There are 192 CST entries available to user proces-
to the USL for resolution of called programs, it ses

then looks to the PUB.SYS SL unless a library is ® There are 1028 XCST entries available to user pro-
specified in the RUN. (RUN prog;LIB=G) cesses.

COMPILE INTO A USL COBOL/3000 Example

1JOB JOBNAME,username/userpass.accountname/accountpass;OUTCLASS=
{COBOL progname,SNEWPASS, SNULL

ISEGMENTER

USL SOLDPASS ** only needed **
NEWSEG progname,progname’ *x for * %
PURGERBM SEGMENT ,progname’ ** COBOL/3000 * %

USL yourusl

PURGERBM SEGMENT,progname

AUXUSL SOLDPASS

COPY SEGMENT,progname

EXIT

ITELL user.acct; yourprog ~-=--> yourusl
1EOJ

PREP OF USL

1JOB DyourUSL ,user/userpass.account/accountpass;PRI=ES;OUTCLASS=

tPURGE yourrun

ICONT INUE

!BUILD yourrun;DISC=2500,1,1;CODE=PROG)
! SEGMENTER

USL yourusl

PREPARE yourrun;MAXDATA=16000;CAP=MR, DS

EXIT

ITELL user.acct; vyourrun ---> yourrun

{EOJ

CALLABLES INTO SL’s

tJOB D!SL,user/userpass.account/accountpass;OUTCLASS=,l
ICOBOL yourprog,SOLDPASS, SNULL

! SEGMENTER

AUXUSL SOLDPASS

SL SL

ADDSL yourprog

EXIT

ITELL user.acct; yourrun =---> yourrun
1EQJ

MENU

REPEAT until parent or end of system
IF loud
get menu screen
show screen
REPEAT until edits pass

edit fields
IF edit fail)
send screen
' L]

set mode to quiet

1—43 —8

IF quiet
IF nextprocedure = "O"
CALL "O" USING ., ., .
IF nextprocedure = “I"
CALL "I"™ USING ., ., .

IF nextprocedure = "n"
CALL "n" using ., ., .
ELSE

CALL "CONTROLNUMBERTABLE"

using nextprocedure

Goals~SPL Standards

Section Title

1 General

2 Procedures and Declarations
3 Moves

4 IF Control

5 REPEAT Control

6 Witan include files

7 Coding rules

GOALS-SPL STANDARDS

General

Indentation of three spaces indicates the beginning of
a new level. If the next line is indented six spaces it
indicates a continuation of the previous line.

Assignment is done with the “:=.”

Comparison is done with the “="".

The astrisk is used to indicate that the address re-
quired in a statement has already been loaded on the
stack. This has general applicability but we will limit its
use to moves where the previous move has used the
stack decrement option leaving the ending address on
TOS. In a MOVE WHILE there is a stack decrement

feature, a **,1” following the A, AN or N indicates that
the final destination address is left on TOS.

The asterisk in parenthesis (*) indicates a backrefer-
ence to another data item causing a redefinition of the
area in the data stack. This back reference does allocate
one word of the stack as a pointer.

Parameters should always be on word boundries thus
BYTE ARRAYS should not be used as parameters.

Procedures and Declarations

Procedures parameters should all be called by refer-
ence not by value.

The form for an outer block program is:

SCONTROL USLINIT [ERRORS=5, LIST, ees]

BEGIN

<< SOURCE >>

tglobal data declarations]
tprocedures/intrinsics]
lglobal-subroutines]

tmain-body]
END. <<

SOURCE >>

The form for a subprogram is:

1—43—9

SCONTROL SUBPROGRAM [ERRORS=5, LIST, ...]
BEGIN << SOURCE >>
lcompile time constructs]
lprocedures/intrinsics]
END. << SOURCE >>

The form of a sample subprogram using the Witan INCLUDE files found in the appendix follows:

SCONTROL SUBPROGRAM,ERRORS=5,NOLIST,NOWARN, SEGMENT =SEGNAM
BEGIN << SOURCE >>
SINCILUDE INC1G.T

<< BEGIN EXTERNAL PROCEDURE DECLARATIONS >>
SINCLUDE STDINTR.T << STANDARD EXTERNAL PROCEDURE DECLARATIONS >
PROCEDURE BLANK(WINDOW,VI);
VALUE VI;
IA WINDOW;
IN VI;
OPTION EXTERNAL;
<< END EXTERNAIL PROCEDURE DECLARATIONS >>

PROCEDURE SEGNAM(VBLK,SYSBLK,RTN'CDE);
IA VBLK,SYSBLK;
IN RTN'CDE;

BEGIN << SEGNAM >>

<< BEGIN DATA >>

SINCLUDE VBLK.T

SINCLUDE SYSBLK.T

IA IBLK(0:0);

SINCLUDE SUBGLOB.T << USING SUBGLOB.T REQUIRES THAT VBLK, IBLK
SYSBLK HAVE BEEN INCLUDED IN THIS PROCE
EITHER AS PASSED PARAMETERS OR AS NULL
ARRAYS. >>

<< OTHER DATA LOCAL TO PROCEDURE >>

LG KEEP'GOIN;

IN VI;

IN MISC;

IA (0:9)TEN'WORDS;

<< END DATA >>

<< BEGIN SUBROUTINES >>
SUBROUTINE PUT 'WINDOW;
BEGIN << PUT'WINDOW >>
V 'PUT 'PAUSE (VBLK, 2);
BIANK (WINDOW, 30) ;
WINDOW'LEN: =60;
VPUTWINDOW (VBLK,WINDOW'LINE,WNINDOW'LEN) ;
VSHOWFORM (VBLK) ;
END; << PUT'WINDOW >>
<< END SUBROUTINES >>

Ko hkhhhhhhhhhhhhhhhhhkhhhhhhhhkhhhhhh>>
BEGIN << CODE >>

KEEP'GOIN:=TRUE;

WHILE KEEP'GOIN DB
KEEP'GOIN:=FALSE;
END'REP;

END; << CODE >>
END; << SEGNAM >>
END; << SOURCE >>

1—43 —10

Moves

General Forms:

MOVE destination: =source, (length)[,stack de-
crement];

Literals:

Length need not be specified in the move of a literal If
successive moves are anticipated to build a string or
concatenate into a buffer then the stack decrement op-
tion of 2 can be used. Example:

MOVE OUTBUF:= “Hello”,2

MOVE *.=‘ Everyone”’;

Non-Literals:

SPL requires type compatibility in moves, therefore
general buffers should be defined in words and in bytes.
The word buffer name should end with ‘’W.” The byte
buffers will have the just name without an identifying
sufix.

The length parameter in the move should specify a
name equated to the length in bytes or words depending
on the type of move. The equate will generally be gen-
erated by DBUF. Byte lengths will begin with “BL’ ”,
word lengths with “WL’.”

Example:

MOVE OUTBUF:=

ACCOUNTNO,(BL’ACCOUNTNO);

Some moves may embed procedure to insure type
compatibility and at the same time perform the appro-
priate conversion.

IF Control
The control structure for the IF will follow directly

IF --condition--

IF --condition--
--statm't--;
--statm't--;

IF'G --condition--
--statm't--;
--statm't--;

ELSE'G
-—-statm't--
END'IF;

ELSE'G
--statm't--;
--statm't——;

END'IF;

Repeat

General Form:

WHILE --condition-- DB
--statm't-———-———---)
--statm't-—-—--=----—

END'REP;

TB
TB

the structure enforced in GOALS. All IF’s will be fol-
lowed by a condition which may be compound and may
extend to subsequent lines (note; continuation line dis-
ciple in general standards).

Following an “IF” condition a TB will be inserted,
which is defined as a “THEN BEGIN.” SPL does not
require a BEGIN if the following statements are not
compound, i.e., a lone statement. However, the ‘“BE-
GIN” is required to bracket the sequence and to enforce
the use of an ““END” on the same level as the beginning
“IF.” If there are subsequent ‘“IF’s’’ on the same level
(mutually exclusive IF’s — programmer enforced) the
IF should be converted to an IF’G which is defined in
INC1G as an “END ELSE IF.” This is not called a
“IF” in GOALS. It is refered to as an “IF string”
(mutually exclusive conditions).

Nested IF’s:

If “IF’s” are nested, the nested IF may begin any time
after the “TB” of the preceding IF and will be indented
to show its nesting. The rules for the nested IF are
exactly the same as the IF; TB required.

ELSE

When the trailing ELSE is required in an IF string,
the preceding end for the IF must not have a semicolon.
The ELSE requires a BEGIN-END pair to enforce the
terminating “END”’ at the end of the IF string.

Nested IF strings, where trailing elses come together
may cause some confusion, but do not require any spe-
cial rules.

Example:

<< THEN BEGIN >>

TB

The REPEAT in the GOALS-SPL is used as
documentation and is defined as a null statment. RE-
PEAT must be followed by WHILE and a condition or
compound condition. Following a WHILE condition a
“DB” is required which is DEFINED in INCI1G as a
“DO BEGIN.” As in the IF construct a “BEGIN” is
required to enforce a terminating “ENI’REP.”

1—43—11

SUBGLOB.T

BYTE POINTER
BP << USED FOR TEMPORARY POINTER, NOT SAVED >>

EQUATE

RTN = 13 << CARRIAGE RETURN IN ASCCI >>
= 27 << ESCAPE CHARACTER IN ASCII >>

,ESC

INTEGER I,J,K,LEN80,OLD'LANGUAGE;

DA IBLK'D (*) = IBLK;
BA IBLK'B (*) = IBLK;
DA SYSBLK'D (*) = SYSBLK;
BA SYSBLK'B (*) = SYSBLK;
DA VBLK'D (*) = VBLK;
BA VBLK'B (*) = VBLK;
DEFINE
EL = END ELSE#
| ,END'IF = END#
% ,END'REP = END#
: INCIG.T and some constructs for GOALS presentation SPL
This INCLUDE is used for abbreviation of data types compilations.

§ DEFINE <<USED TO ABBREVIATE DATA TYPES>>

IA = INTEGER ARRAY#

; ,IN = INTEGER#

; ,DI = DOUBLE #

] ,IA = LOGICAL ARRAY#
,DA = DOUBLE ARRAY#
,BA = BYTE ARRAY#
,RA = REAL ARRAY#
,XA = LONG ARRAY#
,LP = LOGICAL PROCEDURE#
,DB = DO BEGIN#
,TB = THEN BEGIN#

,LG = LOGICAL#

,REPEAT = #

,G'IF = END ELSE IF#
,G'ELSE = END ELSE BEGIN#
,IF'G = END ELSE IF#
,ELSE'G = END ELSE BEGIN#

.
14

IBLK.T
<< IA IBLK(0:42); >> MODE 4 = IBLK(29) #,
DEF INE MODE>S = IBLK(30) #%,-
COND'WORD = IBLK #, MODE 6 = IBLK(31) #,
STAT?2 = IBLK(1) #, MODE 7 = IBLK(32) #,
STAT3'4 = IBLK'D(1l) #, MODE 8 = IBLK(33) #,
STAT5'6 = IBLK'D(2) #, ALL'ITEMS = IBLK(34) #,
STAT7'S = IBLK'D(3) #, PREV'LIST = IBLK(35) #,
STATY9'10 = IBLK'D(4) #, NULL'LIST = IBLK(36) #,
BASE = IBLK(10) #, DUM 'ARG = IBLK(37) #,
MODE 1 = IBLK(26) #, NUM'BASE = IBLK(38) #,
MODE 2 = IBLK (27) #, IBLK'LEN = 43 ¢
MODE 3 = IBLK(28) #, ;

1—43 — 12

5

IBLKG.T MODE 4 1= 4;
The following is initilization code to be included in :gggg S
. s = ;
the outer block program to set IBLK fields : MODE 7 c= 7
MOVE ALL'ITEMS := "@;";
MODE1 t=1; MOVE PREV'LIST = "*;%,
MODE 2 1= 2; MOVE NULL'LIST := "0;";
MODE3 t= 3; DUM'ARG := 0;
VBLK.T
<< THIS ASSUMES THAT VBLK IS DECLARED IA VBLK(0:51) >
<< VBLK IS MADE UP OF COMAREA AND THE OLD VBLK >
<< CALLS TO VIEW INTRINSICS WILL USE VBLK AS THE COMAREA PARM >

<<SPL DECLARATIONS FOR COMAREA>>

DEFINE
COM'STATUS VBLK (0) %,
COM'LANGUAGE VBLK (1) #,
COM'COMAREALEN VBLK (2) #,
COM'USRBUFLEN VBLK (3) #,
COM'CMODE VBLK (4) #,
COM'LASTKEY VBLK (5) #,
COM'NUMERRS VBLK (6) #,
COM'WINDOWENH VBLK (7) #,
COM'LABELSOK VBLK (9) #,
COM'CFNAME VBLK'B (10%*2) #,
COM'NFNAME VBLK'B (18%*2) #,

COM'REPEATAPP
COM'REPEATOPT
COM'FREEZAPP
COM'CFNUMLINES
COM'DBUF LEN
COM'DELETEFLAG
COM'SHOWCONTROL
COM'PRINTFILNUM
COM'FILERRNUM
COM'ERRFILNUM
COM'FM'STORE 'SIZE
COM'NUMRECS
COM'RECNUM
COM'TERMF ILENUM
COM'TERMMODE
COM'TERMALLOC
COM'DATAOVERRUN
COM'READT IMEOUT
COM'OTHERDATAERR
COM'MAXRETRIES
COM'TERMCONTROLOPT
COM'TERMOPT IONS
COM'ENVINFO
COM'TIMEOUT

VBLK (26) #,
VBLK (26) #,
VBLK (27) #,
VBLK (28) #,
VBLK (29) #,
VBLK (32) #,
VBLK (33) #,
VBLK (35) #,
VBLK (36) #,
VBLK (37) %,
VBLK (39) #,
VBLK'D (21) #,
VBLK'D (22) %,
VBLK (48) #,
VBLK (49) #,
VBLK (50) #,
VBLK (51) #,
VBLK (52) #,
VBLK (53) #,
VBLK (54) #,
VBLK (55) #,
VBLK (55) #,
VBLK (56) #,
VBLK (57) #

r

EQUATE
COMAREALEN = 60,
COBOL 'LANG =0,
VBLKLEN = 100,
SPL 'LANG =3,
MAXWINDOWLEN = 150,
MAXMODE LEN = 8,
NAMELEN = 15,
NORM =0,
NOREPEAT =0,

1—43—13

V'REPEAT =1,
REPEATAPP =2,
ENTERKEY =0,
PARENTKEY =1,
KEY2 =2,
KEY3 = 3,
REFRESH = 4,
PREV =5,
NEXTKEY =6,
INQ'ENT =7,
EXITKEY = 8

i
<KSPL DEFINITIONS FOR VBLK>>

DEFINE
WINDOW'LEN VBLK (COMAREALEN+Q) %,
MODE 'L.EN VBLK (COMAREALEN+1) %,
WINDOW'LINE VBLK (COMAREALEN+2) %,
#,

VBLK (COMAREALEN+2)
VBLK (COMAREALEN+MAXMODELEN) %,
VBLK'B ((COMAREALEN+2)*2) #,

VBLK'B ((COMAREALEN+2)*2) #,

VBLK'B ((COMAREALEN+MAXMODELEN) *2) #

WINDOW 'MODE
WINDOW
WINDOW'LINE'B
WINDOW 'MODE 'B
WINDOW'B

SYSBLK.T

<<IA SYSBLK(0:114) SPACE ALLOCATED IN MAIN PROGRAM >>

DEF INE
CNTRL 'NUM = SYSBLK #,
LST 'PROC = SYSBLK (2) #,
NXT 'PROC = SYSBILK (4) #,
01 = SYSBLK(6) #,
02 = SYSBIK(7) #,
Q'NEXT = SYSBIK(8) #,
OPER'ID = SYSBLK(9) #,
SECU'TY = SYSBLK(11) #,
SsC = SYSBLK (13) #,
CNUM = SYSBIK (16) #,
['FILNUM = SYSBLK(21) #,
M'FINUM = SYSBIK (22) #,
FLAGS = SYSBLK (23) #,
DQSTAT 'SB = SYSBIK (28) #,
GLSTAT'SB = SYSBLK (43) #,
TERMID = SYSBLK(58) #,
MSBLK'SB = SYSBIK(63)# << STARTING ON DOUBLE BOUNDRY
14

DEF INE
CNTRL'NUM'B = SYSBIK'B #,
LST 'PROC 'B = SYSBLK'B (2*2) #,
NXT 'PROC 'B = SYSBLK'B (2*4) #,
OPER'ID'B = SYSBLK'B(2*9) #,
SECU'TY'B = SYSBLK'B(2*11) #,
SSC 'B = SYSBLK'B(2*13) #,
CNUM'B = SYSBLK'B(2*16) #,
FLAGS 'B = SYSBIK'B(2%*23) #
14

EQUATE

CNTRL'NUM'BI = 4,
LST '"PROC 'BL = 4,
NXT 'PROC 'BL = 4,
OPER'ID'BI = 4,
SECU'TY'BL = 4,
SSC'BI =6,

1—43—14

CNUM'BL
FLAGS'BL

[

10,
10

Coding Rules

All agorithms should first be done in GOALS without
concern for the SPL structure. SPL constructs will be
used for individual statements and conditions but the
control structure should be in GOALS.

This complete:

1. Replace all ELSE’s with G’ELSESs or ELSE’Gs.

2. Locate all “IF’s that are on the same level as a

[=5)

“running” IF. Replace each running IF with an
IF°G or G'IF.

Replace all ““.””’s with an END’IF;

Insert a THEN BEGIN or “TB” following every
IF condition.

Replace all “!” with an END’REP;.

. Insert a“DB” or DO BEGIN after every REPEAT

condition.

An Example using the rules on the preceeding page

WHILE = ——me—m——————w
5 S ———
IF —————m—mmme
ELSE
IF ———-——m——m-
IF ———m——m—m—m
IF —————m—mm -
ELSE
1
WHILE = =e————————ee
IF ————m—————m
IF ————em—————
ELSE'G
END'IF;
*%%(20) ERROR **%*
LINE
1490
TRUNCATED BY 4 CHARACTER(S)
IF'G —————m=—m
END'IF;
IF ————m— e
% (20) ERROR *
LINE
1495

TRUNCATED BY 4 CHARACTER(S)

DB
TB

TB

TB,

TB

<< SPL RULE >>
<< DO BEGIN 6 >>
<< THEN BEGIN 4 >>

<< THEN BEGIN 4 >>

<< END ELSE BEGIN 1 >>

<< END'IF 2 >

<< END ELSE 2 >> << THEN B

<< END'IF 3 >
<< THEN BEGIN 4 >>

1—43 —15

IF'G —-======~- TB << END ELSE 2 >> << THEN B

ELSE'G << END ELSE BEGIN 1 >
END'IF; << END'IF 3 >
END'REP; << END'REP 5 >

Note: work the top example yourself using the rules algorithm correctly in GOALS and the SPL code will
and see if it matches the completed program. Note the follow.
: count of the begins and ends match for SPL. Do the

1—43 — 16

Auditing with IMAGE Transaction Logging

Robert M. Green

Robelle Consulting Ltd.
Aldergrove, B.C., Canada

SUMMARY

The transaction logging of IMAGE is not just for re-
covery of lost transactions; the transaction log-files
contain a vast array of information that is useful for
auditing purposes. Reports generated from these files
can answer basic audit inquiries (WHO, WHEN,
WHERE, WHAT and HOW), can provide statistics that
are useful for performance tuning (which dataset has the
most puts and deletes?), and can aid in program debug-
ging (what does this program actually change in the
M-CUST dataset?)

CONTENTS

1. Introduction

2. Selecting and Formatting the Transactions
3. Other Useful Information

4. Summary Totals and Statistics

OPEN 17 AUG81 11:38 N:3
U:BOB.GREEN,PUB
B:TEST.PUB.GREEN
Logon device:28
Last dbstore:17 AUG81 11:15

PUT 17 AUG81 11:38 N:4
U:BOB.GREEN, PUB
B:TEST.PUB.GREEN
Data-Added:
ORD-NUM

COM-NUM

COM-DESC

11111111
5

Each transaction has a date and time stamp (17
AUGS1 11:38), a unique transaction number assigned
by MPE (N:3), a unique logging access number for each
user who does a DBOPEN (L:1), a logon account, group
and user name (U:BOB.GREEN,PUB), a program
name (P:QDBM.PUB.GREEN), a base name
(B:TEST.PUB.GREEN), a logon device number and
batch/session indicator, an optional userid (an extra
identifier that can be passed to DBOPEN as part of the
password, and acts to distinguish between different
users who happen to be logged on with the same MPE

Computer
Museum

5. Future Possibilities
6. Hints on Transaction Logging

INTRODUCTION

Since MPE release ‘“1918,” the IMAGE/3000
database system has had the ability to “log” database
changes to a disc or tape file. Although the format of
these log-files is somewhat obscure (and not
documented accurately or completely), they can pro-
vide a great deal of information that is useful for audit-
ing. DBAUDIT (a proprietary software product of
Robelle Consulting Ltd.) will analyze transaction log-
ging files and print transaction audit reports from them.

Here are two sample IMAGE transactions (a DBO-
PEN and a DBPUT), as printed by DBAUDIT, which
show the auditing information that is available from
transaction logging:

L:1

P:QDBM.PUB.GREEN
Mode: 1
as a session.

Security:64
Userid:None.

L:1

P:QDBM.PUB.GREEN
DE :DCOM R:10

55

user name), the dataset type and name (DE:DCOM is a
detail dataset), the data entry’s physical record number
(R:10), the key-field value (for master dataset entries),
the fields that were added, deleted or changed (with
field names), plus before and after data values that have
been converted from binary to ASCII where necessary
(ORD-NUM = 11111111).

Logging Answers Basic Questions

As you can see, logging provides answers to many
questions:

2—5—1

WHO (logon user name and user id)

WHEN (date and time)

WHERE (database and dataset)

WHAT (data fields changed)

HOW (terminal number and program name)

The only question that cannot be answered is WHY? commands to restrict which transactions are selected
and what data is printed for the selected t ti if

Two Types of Logfiles . s printed for the selected transactions (
There are two basic types of logging files that can The SELECT command allows you to select

contain IMAGE transactions: raw log-files (on disc or
tape) which are filled by IMAGE as transactions occur,
and user recovery files generated by DBRECOV during

transactions for specified bases, datasets, programs, us-
ers, time periods, and a range of record numbers.

transaction recovery. >SELECT BASE TEST
The original log files have fixed-length records, with »>SELECT DATASET TEST,DCOM
large transactions split over several records. iggtEgg USER BOB. EREEN
The user recovery files hold the transactions as >SEL§CT 55;85E2};J2

variable-length records (one record per transaction).
User recovery files are usually generated for

transactions that DBRECOV could not recovery (and The LIST command allows you to control which
which you must recover by hand). User recovery files transactions are printed (LIST CALLS) and which field
contain one extra field which is not found in regular values are printed for the transactions‘(LlST FIELDS).
log-files: a recovery flag that indicates whether each In order to print only the date and time of DBOPEN
transaction was successfully recovered or not (‘OK’ or transactions, these commands would be used:

‘NO).

>LIST CALLS HNONE
>LIST CALLS 0O+

SELECTING AND FORMATTING SLIST FIELDS NONE

THE TRANSACTIONS >LIST FIELDS D+T+
Since a great deal of paper can be consumed in print-
ing every detail of every transaction, DBAUDIT has Here are the full options of LIST:

>LIST FIELDS N4+D+T+C+L+U+P+B+S+R+K+F+M+X4
These flags determine how much information is
printed for each transaction:

unique id number assigned by DBOPEN
user.account,group name
program.group.account
basename.group.account

set name/type; MA=master, DE=detail
IMAGE record number of entry

date of transaction

time of transaction

sequence number assigned by user logging
call type (OPEN, CLOSE, ...)

field values

key-field value

memos from DBMEMC, DBBEGIN, DBEND

extra fields on DBOPEN (mode, etc.)

NTO=Z3omLhmowc

~ =

>LIST CALLS O+C+P+D+U+B+E+A+M+T+L+

These flags enable/disable listing of the different

IMAGE and MPE intrinsic CALLS in the log-file.
O=open C=close P=put Dzdelete Uzupdate B=zbegin E=end
Azabort of program between BEGIN and END calls
T=termination of program without calling DBCLOSE
L=logging status records (header, trailer, ...)

2—5-2

OTHER USEFUL INFORMATION

DBAUDIT also provides three other useful pieces of
information for the auditor or database administrator:

1. Reliability of the log-files for recovery purposes.
DBAUDIT checks each log-file to ensure that
transactions are in the proper sequence (for date,
time, transaction number and logging access
number). If there are any inconsistencies in the
log-file, they are detected and reported. Without
DBAUDIT, the only way to test a log-file is to
restore the original database and actually run a
logging recovery. DBAUDIT’s double-checking
feature has already detected a number of bugs in
IMAGE transaction logging.

2. Detection of program aborts.
DBAUDIT reports program aborts separately
from regular program DBCLOSEs. By selecting
only the abnormal termination transactions, you
can see which programs are aborting. This can be
helpful in ensuring program quality.

3. Detection of program ‘‘abends.”

For all bases, current:
TEST.PUB.GREEN
0:1 X:1 P:2
DCOM P:2

For all progs, current:
QDBM.PUB.GREEN
0:1 X:1 p:2

For all users, current:
BOB.GREEN,PUB
0:1 X:1 P:2

In these tables, O equals DBOPENs, X equals
DBCLOSEs, DBBEGINs, DBENDs, and DBMEMOs,
P equals DBPUTs, D equals DBDELETEs, and U
equals DBUPDATESs. Note that for datasets (such as
DCOM), only P, D and U totals are collected.

Logging Records Read from File
Transactions that were Selected

DBAUDIT reports programs which terminate with
an unmatched DBBEGIN. This can happen be-
cause the program aborted during a logical
transaction, because the programmer forgot to
terminate the logical transaction with a DBEND,
or because the system crashed during a logical
transaction. DBAUDIT gives you a quick sum-
mary count of the number of ABENDs in the file
(it should normally be zero), plus additional details
if the count is non-zero (where in the file the
ABENDs occur, whether the DBBEGIN has a
put, delete, or update after it, etc.).

SUMMARY TOTALS AND STATISTICS

From this basic transaction data, it is possible to gen-
erate a number of useful summary statistics.

Transaction Breakdowns

One way of analyzing the transactions is to break
them down into the different types of transactions, and
then total them by program, user, base and dataset:

entries 20 maximum.

" D:0 U:0
D:0 U:0

entries 200 maximum.
D:0 U:0
entries 200 maximum.

D:0 U:0

Summary Totals

Here are the types of summary totals provided by
DBAUDIT:

\V]

Transactions read but not Selected
Transactions Selected and Printed

Transactions Selected, not Printed
Transactions,but no OPEN (should be 0)
Inconsistencies in File (should be 0)
Number of ABENDs in file (should be 0)

OO OO IROOW

FUTURE POSSIBILITIES

Information that could be generated from the log-
files, but is not currently collected by DBAUDIT, is the
total “‘changes” to a given numeric field, such as
ACCOUNT-BALANCE in a CUSTOMER-MASTER
entry. By periodically summing the field values in the
entire database and comparing changes in this sum with

the incremental changes to that field (as recorded in
transaction logging), it should be possible to ensure that
all transactions are being logged (i.e., the database is in
balance with the transactions).

One problem is the database in which IMAGE
schema does not accurately describe the actual data
fields. This situation usually happens when users over-

2—5-—-3

k. Terminate the programs that are generating
the transactions; when the last database ac-
cessor has closed the database, MPE will
terminate the log process and close the log-
file. Now, use DBUTIL to disable logging to
this database (so that DBAUDIT can access
it?).

:RUN DBUTIL.PUB.SYS
>DISABLE TEST FOR LOGGING
>EXIT

l. Run DBAUDIT and specify TESTLOG as
the source of input records. If you do not
want the report on the lineprinter, you can
use a :FILE command to the file
DBREPORT to redirect it to $STDLIST or to
a disc file.

:FILE DBREPORT=$STDLIST;REC=-79
:RUN DBAUDIT.PUB.ROBELLE
>INPUT TESTLOG

>EXIT

2-5—6

5. Users report that the system load of transaction

logging may not be as bad as was first rumored.
Considering the performance improvement that is
likely to accompany MPE IV, now may be a good
time for users to consider activating transaction
logging for their databases.

. In one of the releases of MPE IV, IMAGE was

changed in a way that can affect user programs.
Previously, a user program could invoke the
DBBEGIN, DBEND or DBMEMO intrinsics
whether or not logging was active for the database
in question. The intrinsics always returned
STATUS=0, as long as the parameters were legal.
Now, these three intrinsics return an error (non-
zero STATUS) if logging is not active at the time
of the call (i.e., the DBBEGIN, DBEND or
DBMEMO could not be logged). User programs
that don’t care whether logging is running, must
not check the STATUS result. User programs that
wish to ensure that the operator has activated log-
ging can now do so by checking the STATUS from
these intrinsics.

Transaction Logging and Its Uses

Dennis Heidner
Boeing Aerospace Company
Seattle Washington

For some time database users have been concerned
about the integrity of their databases and methods to
prevent them from being corrupted. Another concern is
performance measurement. When H-P introduced
MIT-1918, they also introduced “Transaction Log-
ging.” Transaction logging is intended to provide a
means of repairing databases which are either damaged
or are suspected of being so. There are however many
additional benefits to be derived from transaction log-
ging including automatic audit trails, historical records
of the database users, and information on the database
performance.

The purpose of is paper to discuss the basic concepts
of transaction logging, its benefits, and drawbacks. Var-
ious logging schemes, such as long logical blocks, and
multiple IMAGE databases are discussed. Several dif-
ferent database logging cycles and HP recommended
recovery procedures are discussed, and a method of
recovering and synchronizing multiple databases is
proposed.

Finally this paper covers a user written program
which has been used to monitor the database perfor-
mance, to validate and debug new user-written applica-
tion software, and provide a complete audit trail for
future reference.

INTRODUCTION

Many computers are justified only because they can
keep track of large quantities of information in *“‘real
time” databases. In such cases it becomes extremely
important that the integrity of this information remains
consistent.

The database can be destroyed or corrupted in a
number of ways. These include program errors, person-
nel errors, and computer hardware problems. A consid-
erable amount of time and resources can be expended to
eliminate most of the program errors, but it is almost
impossible to guarantee a perfect program. The second
source of inconsistencies is people. While it is possible
" to protect the information from human error by increas-
ing the complexity of the program or by eliminating the
human contact with the machine and its peripherals,
both are often undesirable. Finally the third cause is
system failures. System failures can be caused by
numerous events including such things as fires,
earthquakes, vandalism, hardware problems, power
failures, and of course, MPE flaws.

We can take steps, however, to protect our invest-
ment in the database. There exist several very good
programs,' such as DBCHECK and DBTEST, which
will look for and can correct minor structural problems
caused by crashes. But what about the user who must
update a critical path in IMAGE? To do so requires a
DBDELETE followed by a DBPUT. If the system
crashes between the two, there will be no structural
damage to be found. If you don’t mind losing a $50,000
item or a $100,000 check, you have no worries. . . An
effective database protection method is transaction log-
ging. Logging takes many forms, the simplest of which
only requires that we file away the paperwork used to
generate the modifications to the database. Although
this is convenient, it is a poor approach when it comes
to recovering the database from a crash or system fail-
ure. For instance let’s assume that we have a failure
after two or three thousand transactions have been en-
tered from terminals at several locations. Who wants to
re-enter all the old data, while all the normal work is
stacking up?

A better method is to have the computer keep dupli-
cate copies of the information used to make the
changes. Then it would only be necessary to instruct the
computer to use the duplicate to reconstruct the
database following a crash.

There are several ways that computers can be used to
generate these duplicate copies. The most efficient
method is to write the programs with an intrinsic
transaction-logging system. This logging system can
either be supplied by HP or could be a custom logging
scheme. The problem with custom schemes is that they
generally require as much or more design time as many
of the applications programs that will use them. Since
this work is not readily visible to either the end user or
management, there is a temptation to do a quick job.
The resultant lack of planning causes poor database and
system performance. Additionally, in-house logging
schemes only work with the in-house programs. If we
use externally-written software (such as QUERY), we
may find it difficult or impossible to get these routines
to use our logging schemes.

TRANSACTION LOGGING (USERLOGGING)

HP recognized this need for database protection, and
developed a version of transaction logging which runs
on the HP3000.2-3 HP’s transaction logging is actually a

2—34—-1

process which runs under the control of the MPE
operating system. If the database is enabled for logging,
a logging process then attaches itself to the database
when it is opened up for any update access. If the
database is opened up in a read-only mode, the logging
process is not attached. When the logging process is
running it intercepts transactions after the IMAGE
check has been made, yet before the actual transaction
has been made in the database. This captured data (old
and new values) are then blocked up in a buffer in mem-
ory. When the memory buffer fills up, the transactions
are moved out to a logging file on the disc. If we are
logging to the disc only, then this becomes our duplicate
copy of the transactions. If we are logging to the tape
drive, then the disc buffer is periodically moved out to
the tape drive (see figure 1).4

If we have a system failure (or any other event which
could cause a database inconsistency) then we use a
database recovery procedure which uses a good copy of
the database and the duplicate copy of the transactions
to restore the information in the database to its condi-
tion only moments before the crash.

The recovery program which HP supplies is called
DBRECOV. The program literally re-works all the
transactions in the same sequence as originally made;
this repetition assures that the database structure is cor-
rect and undamaged.

Once the database has been corrected and brought
back into a consistent state, a backup copy is made and
a new logging media is used. The act of making a bac-
kup copy and using a new logging media is known as
beginning the logging cycle.

In order to implement transaction logging, HP intro-
duced several new user-callable DBMS procedures:
DBBEGIN, DBEND, DBMEMO, WRITELOG, BE-
GINLOG, ENDLOG, OPENLOG, and CLOSELOG.
These new procedures are extremely useful because
they let us define how transactions are logically
grouped.?

To illustrate the importance of logical grouping of
transactions, assume we have two mutually-dependent
pieces of information. It is important that if any change
is made to one item, the change that is made to the
second item must also be made. If either item is not
changed, then neither should be modified. We can do
this by using DBBEGIN to mark the beginning of the
dependent changes, and DBEND to mark the end (see
figure 2). The intrinsic routines ensure that if there is a
system crash or failure between the DBBEGIN and the
DBEND, neither transaction is made. While transaction
logging does not guarantee that we will not have
crashes, it does provide some relief in recovering from
their effects.

Now let’s talk about the drawbacks. Anytime we ask
the CPU to perform additional work, there is an in-
crease in the overhead cost for our process. The object

2—34 -2

is to balance the additional workload on the computer
with the benefits that we hope to gain.

Every time the memory buffer is moved out to disc,
or the disc buffer is moved to magnetic tape, these
transfers tie up the disc controller. Although this may
be for very short periods of time, one of the biggest
problems plaguing many HP3000 sites is slow response
time due to a large number of disc accesses.

If we install logging then, our response time may be-
come worse. Your alternative of course is to use abso-
lutely no logging at all! Thus transaction loggings may
be one of the necessary evils in life.

LOGGING STRATEGIES

The placement of the calls to DBBEGIN and
DBEND can play a crucial role in the success or failure
of logging. Since each call to DBBEGIN or DBEND
causes a logging record to be written, and thus
additional overhead, it is tempting not to use these at
all. The people in the logging laboratory at HP wrote
DBRECOYV to handle both blocked and unblocked
transactions (QUERY does not block its transactions).
However while this is ideal for existing programs, we
may be losing some very valuable information about our
databases.

By properly placing the DBBEGIN and DBEND it is
possible to measure the performance of our database.
This information can later be used to tune-up our appli-
cations programs. Additionally proper placement of the
calls enhances our crash recovery procedures.

The worst possible thing that we can do is to take the
easy way out, calling DBBEGIN when we open up the
database and calling DBEND as we close the database.
This results in large recovery blocks. As long as we
never have a crash everything works fine. However the
first time we must recover after a crash, we might find
that DBRECOV is unable to help us out. This is be-
cause the recovery process tries to resolve all
transactions made between periods when the database
is inactive. With the long blocking scheme the database
is almost always active. DBRECOV will attempt to
build a monstrous file to look for dependent
transactions, and inevitably fail!

HP recommends that we make all the necessary locks
on the database, call DBBEGIN, make the transaction,
the call DBEND before unlocking (see Figure 3A). This
will ensure that we have a minimum chance of large
concurrent blocks.®

Another strategy that appears to work well is to call
DBBEGIN, then lock the database or sets, and make
our updates. Conversely we would unlock, and then call
DBEND (see Figure 3B). This method allows us to
measure the time between the begin and the end, which
reflects the performance of our database. This proce-
dure works quite well, as long as the following condi-
tions are met:

e Always use ASSIGN LOCK OPTION OFF in
QUERY

® Qur transactions are made by terminals, and de-
signed so that they collect the data from the screen,
perform edits, then go through the DBBEGIN,
DBLOCK, updates, DBUNLOCK, DBEND.

If you cannot operate under these conditions, then

stay with HP’s recommendations.

MULTIPLE DATABASES

When HP first introduced transaction logging, they
did not make any provisions for synchronizing
transactions which span multiple databases. The
DBBEGIN and DBEND intrinsics work only for a
single database at a time.” However with MIT 2028, HP
introduced the BEGINLOG and ENDLOG intrinsics.
These new intrinsics now make it possible to develop a
method for synchronizing multiple database
transactions. This is done by calling BEGINLOG be-
fore any multiple database transaction, and ENDLOG
at the completion of the transaction (see figure 4). A
user-written program could then scan the transaction
log for complete BEGINLOG-ENDLOG blocks and in-
dentify the record number of the last complete transac-
tion.

To recover the database you then run DBRECOV
and specify @@CONTROL EOF=recordnum.” It may
be necessary to run DBRECOV for each database that
was involved.

LOGGING CYCLES

The method and length of our logging cycles depends
heavily on the application and previous experience with
the computer system’s reliability. There were several
possible methods proposed by HP during the MPE 1918
update course. These include:

e DBSTORE, then start a new logfile

e DBSTORE, start a log tape, when it fills start a new

one, when it fills start another

® SYSDUMP, start a logfile

The first logging cycle method is the perferred meth-
od. It is straightforward, the recovery procedure is easy
to follow, and in the event of a system failure, downtime
is limited to the time needed to recover one logfile.

The second type of logging cycle should only be used
on databases which require backing up, but have very
little activity. This is because each logfile complicates
the recovery procedure, and adds a considerable
amount of time to recover each logfile.

The third logging cycle option omits the DBSTORE.
We have found that a DBSTORE takes about 2 minutes
for 3 megabytes of database (1600 bpi tape, series 33
computer). At first glance it would appear that the use
of DBSTORE wastes time. However DBSTORE sets
some internal flags and time stamps which SYSDUMP
does not. These internal stamps and flags are used by
DBRECOV to provide added protection against using

logfiles from the wrong time period.

If you use a SYSDUMP tape, you must remember to
request SYSDUMP store all the files. If partial backups
are done, the database must be restored from the latest
full backup, then restored from each succeeding partial,
before DBRECOYV is used. Because the time stamp and
flags were not set by SYSDUMP, we must then specify
that DBRECOYV is to ignore all time stamps and flags.
This is often difficult or dangerous to do, especially if
your system operators are inexperienced.

SYSDUMP should only be used as a backup for the

previous two logging methods. If you do not want to
have your database stored on your backup tapes, then
you should look into Alfredo Rego’s STORENOT pro-
gram. STORENOT allows the creator of a database to
“tie it up” so that it is not stored by full or partial
backups.
The logfile can reside on either the disc or magnetic
tape. It is faster to log to the disc; however, if the reason
for the system failure is a disc hardware or free space
problem, you could lose both your database and the
backup copy of the transactions. The other choice is for
the logfile to reside on tape. This has two drawbacks:
first, it ties up the tape drive, and second, it periodically
requires the CPU to move the logging buffer from the
disc to tape. If the system is already heavily loaded this
can only worsen the problem.

If you decide to log to a disc file, you should be care-
ful to build the logfile large enough to hold all of your
expected transactions plus a reserve. You can obtain a
rough estimate of the log size by:

of sectors = 4*number of database opens
+ (number of updates * up-
date rec len)
+ (number of puts * put re-
cord length)
+ (number of deletes * de-
lete rec len)
+ 1 for DBEND
+ 1 for DBBEGIN
update rec len (in sectors)
= (# of items in list
+ update buffer size)/256
delete rec len (in sectors)
= (# of items in list
+ delete buffer size)/256
put record length (in sectors)
= (# of items in list
+ put buffer size)/256

If the buffer sizes are not known — use the
media record size . .. you can get that
from a DBSCHEMA compilation.

You can count the # of items in the item
list or if “@;” was used then just use the
item count in that particular set.

If you are not sure you calculated the size correctly

2—34—3

then use the :SHOWLOGSTATUS command to
monitor the number of records in the log. If you run out
of space in a disc file while logging, you can put the
database in a state similar to a crash; this may require
that you go through a complete database recovery pro-
cedure!

CRASH RECOVERY

HP implies that a recovery procedure must be fol-
lowed every time there is a database crash.® This can be
disastrous. On one occasion we followed the recom-
mended crash recovery procedure, purged the
database, restored the database, and started
DBRECOYV. It bombed, and upon investigation we dis-
covered that approximately 500 transactions had been
lost because the logtape was blank due to a tape drive
malfunction. Moral of the story: You should first de-
termine the cause of the crash, then verify that the log-
file is good via LOGLIST or DBAUDIT.

We also found that it is important to write your appli-
cations programs so that they abort to prevent further
transactions if they detect a logging problem. It is pos-
sible for the program to pass the IMAGE checks for
DBDELETES, delete an item, then find out there is a
logging problem! The end result is one less item in the
database. This becomes especially critical if you are one
of the many IMAGE users who have to update critical
items by deleting and re-adding.

If the crash is because the logfile was too small and
filled up, then the end result of trying to recover is that
your data-entry personnel spend hours reconstructing
previous transactions. It is better to run a program such
as LOGLIST, and find out what data have been ef-
fected. Then run DBSTORE, build a new, larger logfile,
and start a new logging cycle. One note of caution: we
found that parity errors on the tape drive cause a crash
whose symptoms are almost identical to those of one
caused by running out of space on a disc logfile.

If the crash is because of a system failure, the correct
procedure is:

® Perform a memory dump for HP

® WARMSTART (if possible); this causes MPE to
try to recover the transactions in the internal disc
buffer. (THIS IS VERY IMPORTANT!)

® SHUTDOWN

® COOL or COLDSTART

® Run LOGLIST or DBAUDIT to determine who,
what, when and how bad the crash is.

® If the database was not open in an update or modify
mode then simply start a new logging cycle and get
your users back on.

® If the database was open in an update or modify
mode, then purge the database using DBUTIL, re-
store the database using DBRESTOR and recover
using DBRECOV. BE SURE TO START A NEW
LOGGING CYCLE!

2344

AUDIT TRAILS

Good data processing applications have some form of
built-in controls which allow for the verification of the
accuracy of the database. This is especially true if the
application is in the banking, inventory control, or gov-
ernment fields. In many applications some form of an
electronic *‘paper trail” is mandatory.

The information which is logged by IMAGE exceeds
most audit requirements and can provide the required
electronic trail. Transaction logging records information
about who, when, where, and how an item or entry was
modified. This information can be extracted in several
ways. Bob Greene has a package called DBAUDIT
which can analyze the log.? I have contributed a similar
program called LOGLIST (via IUG 1982 swaptape)
which can expand the transaction log per directions. It
is described in a appendix to this paper.

The audit trail recorded by transaction logging can be
enhanced by carefully planned use of the 'text’ area on
DBBEGIN, DBEND and DBMEMO. We record the
information which leads to a transaction when we call
DBBEGIN. The results of the update or special error
conditions are logged on the DBEND. If needed,
DBMEMO is used to record special remarks and initials
of the person making the change.

If you foresee a requirement for frequent analysis of
the transaction log, it is also important to include a
time-stamp as an item in individual data entries. This
forces IMAGE to log both the present time-stamp and
its previous value. The value of this information is ap-
parent when tracing the history of a specfic data entry.
With a time-stamp on your data entries, it is possible to
pull and analyze only those logfiles which contain the
time interval about the time-stamp of interest. Since
analysis of a transaction log takes about 10-15 minutes
for 40,000 records, the time saved in this manner can be
considerable.

Perhaps more importantly from a programmer’s point
of view, we can use the audit trail as a method of provid-
ing continuous software monitoring. The concensus
among data-processing people is that it is virtually im-
possible to guarantee that a complex program will cor-
rectly handle all cases regardless of what data is fed to
it. When an error does occur at our site, experience
indicates that it is generally several months before we
notice that something is wrong. By maintaining transac-
tion logfiles for a sufficient length of time (6 months), it
is possible to locate the source of most errors. This
makes it much easier to correct latent program errors.
In addition we have found that if the problem was
caused by human error, the hard-copy printout that can
be generated from the log tape goes a long way toward
refreshing the memory of the person who made the mis-
take.

For users at sites whose software must be accepted
by Quality Assurance, audit trails have an additional
advantage. As part of the acceptance testing on new

2

releases of our applications programs, we DBSTORE
the database, then run the test programs and fully
analyze the log. This enables us to provide a visual
check on fields and items in a manner easier than using
QUERY. :

After using the transaction log as an audit trail and
debugging aid during the last two years I would estimate
that we have saved probably a hundred man-hours
which would otherwise have been spent looking for the
cause of “freak errors.”

As with all good things in life there is a “Catch-22.”
IMAGE3000 is structured as a closely-knit group of files
tied together with the root file. When modifications are
made to the database , only the set number, item
number and item buffer are logged. If the root file is
altered (by using ADAGER, DBGROOM, etc.), then
the link between the database and the transaction log is
broken. The most obvious problem occurs when the
order of data sets is changed with ADAGER’s DE-
TSLIDE. Suddenly your Employee-Detail becomes
your Part-Master and the log analysis program either
bombs or gives ridiculous answers. You have two
choices: either don’t use ADAGER (not a very realistic
choice), or use ADAGER’s SCHEMA to generate a
dummy version of the database structure as it appeared
before changes were made. Then use the editor to
shrink the capacity of all the sets down to 3 or 5. Assign
this schema some version number and identify on all
logfiles under which version of the schema the logfile
was made. I have set up a separate group in our account
for these “‘old, shrunk databases.” Then when I need to
look at an old logfile, I set up a file equation referencing
the old ‘‘database” and run LOGLIST under that condi-
tion.

TRANSACTION-LOGGING PERFORMANCE

There is a great emphasis on designing systems with
better response time. For this reason any type of over-
head (regardless of how beneficial) is generally shun-
ned. To make matters worse, when HP introduced
transaction logging with MIT 1918, they had indicated
that there would be a ‘“‘through-put reduction of 30% for
large modication-intensive online applications running
10 or more concurrent processes.”’'® Unfortunately the
test environment used for that statement was not com-
pletely explained. During the past two years we have
been using transaction logging on a Series 33 with 768
kbytes and typically 11 active processes. Our experi-
ence has shown that there was probably less than 10%
reduction in throughput. So, what is the overhead cost
of transaction logging?

In order to find out, I wrote a program (DBPERF)
which allows me to benchmark IMAGE transactons
with and without logging. The benchmarks are deliber-
ately run with as light a load as possible in order to
isolate the overhead caused by logging from the effects
of other users’ activities (see APPENDIX: DBPERF).
The results of the tests are shown in Figures 5-7. In

Figure 5 we see the comparison of the time to DBPUT
verses pathcount, on series 33 and 44 CPU’s. As seen in
Figure S the added overhead caused by transaction log-
ging, is marginal. The anomalies on series 44 data was
caused by a user logging on and using FCOPY during
the benchmark test. Figure 6 shows the comparison of
the time to DBDELETE verses pathcount, on the series
33 and 44 CPU’s. The overhead caused by transaction is
marginal, again the anomalies on the series 44 data was
caused by a user logging on and using FCOPY during
the benchmark test. Figure 7 shows comparisons of the
time to DBOPEN, DBUPDATE and block transactions
with DBBEGIN and DBEND. Earlier [mentioned that
logging blocks up the IMAGE transactions (approxi-
mately 32 transactions), then moves this buffer out to
disc. The overhead caused by this movement is com-
parable to the roll-in and -out of an inactive user process
by the memory manager (MAM).

In most on-line applications the overhead added to
the transaction is considerably less than the threshold
point at which the system becomes overloaded. How-
ever batch jobs are generally another story, if you have
batch jobs which require a considerable amount of sys-
tem resources, run them without logging. Store your
database before the job begins, stream the job, and
when it completes, then store the database and start a
new logging cycle. If you have a crash during the unpro-
tected batch jobs it will only require that you DBRES-
TOR and rerun the jobs.

PREDICTION OF RESPONSE TIMES

At this point it will be worthwhile to discuss a little
queueing theory and how it is used to estimate response
times so that we can illustrate the effects of transaction
logging on the system. A queue is just a waiting line.!!
When we analyze queueing systems, we talk about such
things as number of servers, arrival rate, transaction
rate and number of users. The classical example of
queues in operation.is the waiting lines at banks. With
only one cashier (number of servers), if the customers
arrive at a rate of one per hour (arrival rate) and the
cashier takes only 15 minutes to complete an average
transaction (transaction rate), then there will be no wait-
ing line and the cashier can perform some overhead
functions such as washing windows while waiting for
the next customer. If, on the other hand, customers
arrive every 15 minutes, then we can expect to find a
person at the cashier constantly. The windows start to
collect dirt and grime since the cashier no longer has
time to wash them. When the arrival rate of the custom-
ers increases to one every 10 minutes, we soon find that
a line is forming. If sufficient time is allowed to pass,
customers start to switch banks, the cashier demands a
raise and the windows now appear to have several
layers of dirt and grime and strange creatures crawling
on them.

Transaction processing on an HP3000 performs in a

2—34—5

similar manner. As long as the arrival rate is sufficiently
slower than the transaction rate, MPE is able to perform
its necessary overhead functions and the response time
is good. Unfortunately the HP3000 cannot ignore its
overhead as the cashier did, so as the arrival rate ap-
proaches the transaction rate, response time begins to

arrival rate

number of users

Think time =

For example:
The XYZ Company has an HP3000 Series 33 com-
puter on which they wish to implement an application

suffer. which will support 10 users. The “think time” of these

users is about 30 seconds each per transaction. The
transactions consist of a DBDELETE and a DBPUT on
a detail set with four paths. What will their transaction
response time be?

The transaction response time is equal to:

It is possible to estimate the response time of the
computer if you are able to estimate the number of us-
ers, the average time each user ‘‘thinks” about what
needs to be done, and the time required to complete the
transaction. The average *‘think time” is equal to:

Transaction response time= Queue length * transaction rate

Queue length = the greater of
1
or
number of users * transaction rate

think time
Using the IMAGE benchmark results, we then determine:

Transaction response time = Queue length * 1.3 sec

10*1.3 13
Queue length = ---—~- = -- ; as noted above, use 1
30 30
then Transaction response time = 1.3 sec
If XYZ adds logging, it will be:
10*1.4 14
Queue length = —-=—-—--- = -- ; as noted above, use 1
30 30

then Transaction response time = 1.4 sec

tion. The time available for the computer was approxi-
mately:

Our model works well as long as the computer has
time to perform its overhead functions, i.e. code-
segment swapping, MAM function, and garbage collec-

User think time
Computer idle time = —------~-—--m--—- -
number of users

transaction rate

In the case of the XYZ company this averaged 1.6
seconds per user transaction (with logging).

transaction

time with

logging
Added overhead =

The overhead that was added due to transaction log-

ging is:

transaction
- time without

logging

transaction time without

or, for XYz,

(1.4-1.3)

Added overhead =

2—34—6

logging

If 7.6% overhead is enough to cause XYZ’s machine
to have problems, can you imagine what an additional
user using QUERY, the editor, or any of the compilers
would do?

An additional benefit from transaction logging is that
we are able to collect the arrival rates, transaction rates,
and number of users during our actual production en-
viroment. With this knowledge we can make more ac-
curate design decisions when developing new and
additional applications.!2

CRASH-PROOF?

How crash-proof is your database? Damage to
databases can be caused in several ways. The typical
cause of damage is a crash occurring while adding or
deleting an item to or from a detail set. If the DBPUT or
DBDELETE was manipulating the internal pointers in
the database, then you can probably count on having at
least one broken chain. Other types of database crashes
occur when MPE or some “neat” privelege-mode pro-
gram adds its own kind words to a random data set!

When discovered, this error has the same symptoms as
a broken chain; however, you may also be missing a
considerable amount of data.

Perhaps the worst kind of database crash is the one
you can’t find. That is, DBTEST, DBCHECK, AD-
AGER and even DBUNLOAD-DBLOAD say every-
thing is ok. These errors occur when the data set has a
critical path which must be updated. Since IMAGE will
not let us update critical paths, we have to delete and
re-add. If a crash occurs after the DBDELETE is com-
plete and before the DBPUT re-adds the item, then we
have lost an entry in the database though the database
structure remains intact (see Figure 8). DBTEST,
DBCHECK and the other routines have no way of test-
ing for or detecting this error. If your HP3000 is an
accounting system, this is intolerable. This type of error
could be prevented by using transaction logging and
placing the DBBEGIN at the start of the transaction and
DBEND at its finish.

It is possible to estimate your chances of having some

form of damage to your database in the event of a crash.
This Crash Figure of Merit (CFOM) is given by:

(transaction rate * number of users)

think time

If your CFOM is high, say 20 or 30 percent, then it is
probably worth the effort to run DBTEST and
DBCHECK on every database that was open when a
crash occurred. It may also be very much worthwhile to
try transaction logging. If the CFOM is very low (one to
two percent), then it is probably easier to manually cor-
rect errors and run DBCHECK at some convenient
time.

SUMMARY

This paper discusses the merits and drawbacks of
transaction logging, and provides some basic guidelines

to aid in the successful implementation of transaction
logging. Since most applications are designed to “earn”
money, it is only fair to treat transaction logging in the
same manner. As summarized in figure 9, the decision
to log or not to log should be made only after a careful
review of the associated system costs, its performance
cost, alternatives, and by establishing values for the in-
tangibles such as improved data security, benefits from
audit trails, etc.

ACKNOWLEDGEMENT

I wish to thank the HP sales office in Bellevue, Washington, for
allowing me to run DBPERF on their Series 44.

APPENDIX LOGLIST

LOGLIST is a logfile analysis program written by the

author; it has the following capabilities:

A. Show who, what, when, and how a database
which was running with transaction logging
was accessed.

B. Trace the changes made to the database and
expand the values in a format similar to
QUERY so that the dump is easily readable.

C. Selectively track user-requested database
items which fall within user-specifiable limits.

D. Show when the log was opened, closed, or re-
started and identify all users that were acces-
sing the database during a crash!

E. Provide statistics showing the database activi-
ty, transaction elapsed time, detail sets acces-
sed, the ratio of BEGIN-ENDS to database
transactions, average transaction times, and
worst-case transaction response time.

F. F. Identify (if any) the processes which had
“broken” transactions.

Running LOGLIST

LOGLIST should be run in the same account and
group in which the database resides. If the log to be
examined is on disc, then that file must also be accessi-
ble. LOGLIST cannot analyze a logtape that is cur-

2—-34-—-7

rently active. Finally, the log analysis consumes con-
siderable CPU time (even though the elapsed time of the
analysis may be very short). It is advisable the log
analysis be either streamed in a low JOBPRIORITY
(DS or ES) or run during periods of low computer us-

age.

LOGLIST Commands

LOGLIST commands are listed below, each followed
by a short summary of its function.

HELP — print additional instructions

DATABASE=[dbnamel.groupl.acct]l]
(if not specified the values are set to @.@.@ and no
expansion of the log records may be done. Only the
Log User Summary and histograms will be gener-
ated.)
PROCESS=[program[.groupl.acct]l]
(if not specified the values are set to @.@.@)
LOGON-=[user{.groupl.acct]l]
(if not specified the values are set to @.@.@)
LISTI=rangel
expand the transactions made to the database (in the
QUERY report format) showing:
the user that made the modification
if an UPDATE, what was changed
if a DELETE, what was deleted
if a PUT, what was added

The transactions are outlined in asterisks (*) to in-
dicate indicate ‘‘logical transactions.”” When the
beginning or end of a transaction cannot be deter-
mined, the program leaves the outlined block open
(see Figure 10). On such blocks, the LOGID of the
process is printed and it is possible to rerun the
analysis — specifying that those items be ex-
panded separately.

RANGE — The range field is optional, and is in the
following form:
LIST=startingrecord:endingrecord
If the ending record is not supplied then LISTLOG
will continue to expand until the end of the log file.

NOLIST disable expansion of the transactions made to
the database
DATE=ml/d1/y1 [TO m2/d2/y2]

look only for transactions made between and includ-

ing the specified dates. The default for m2/d2/y2 is

99/99/99.

TIME=H1:M1 [TO H2:M2]
look only for transactions made during the specified
time interval. The default for H2:M2 is 24:00.
FIND dset.itemname (EQ,LT,GTLIB])
‘valuel’[,'value2’]

look only for transactions made to dset.itemname and

falling within the bracketed area as specified by the

relational operators.
FIND dset record#
look only for transactions made to record# of dset.

2—-34—8

{ TAPE;LABEIL=label }
LOGFILE={
{filename(.group[.acct]] }

if a filename is specified, you must have exclusive
read-access to the file. If tape is specified, you must
be able to use this non-sharable device.

RUN — begin processing the transaction log.

EXIT — exit the program and return to MPE.

SHOW — display current parameters.

INIT — initialize the files, plots and data back to the
way they were when LOGLIST first started. Any
data accumulated so far will be sent to the LP.

LIMIT — limit and identify the ‘‘worst” transactions.
This causes all transaction response-time data which
exceeds 20 times the current running average to be
thrown out. The time of day, user and process are
printed on $STDLIST. This command has no effect
until ten logical transactions have been completed. It
is useful in locating deadlocks.

<CONTROL Y> — (“CNTL” and “Y” Kkeys pressed
simultaneously) interrupt the program (sessions
only). The program will give the the time and date of
the transaction which it is currently processing and
ask if you wish to continue. A “Y” or “N” is ex-
pected.

Interpretation of the

Log User Summary (see Figure 11)
USER — Logon user name
GROUP — Logon user’s group
ACCT — Logon user’s account
DBASE — Database that was accessed
PROCESS — Process run by user
GROUP — Group in which the process resides
ACCT — Account to which the Process belongs
LOGON TIME — Time the process began

LOGOFF TIME — Time the process closed the
database

LG# — LOGID # for the process (assigned by MPE)

DEV — Logical device from which the process was run

O — Database open mode

CAPABILITY — User’s capability (see WHO intrinsic
of MPE)

UP — Number of DBUPDATES

PUT — Number of DBPUTS

DEL — Number of DBDELETES

#BLKS — Number of complete logical transaction
blocks

Inferences from the LOGLIST Statistics

Several histograms and charts are derived from the
data; these are provided by LOGLIST to aid in the
interpretation of the data.

DATABASE ACTIVITY (see Figure 12)

™

The DATABASE ACTIVITY histogram plots the
number of transactions on the y-axis and the time of day
(in 15 minute intervals) on the x-axis. This histogram
can be useful in determining when the peak database
loads occur.

DATABASE RESPONSE TIME (LOG10) (see Figure

13)

The LOG10 plot is a useful tool in determining if a pro-

cess or processes are suffering from very bad response

time or may be causing database deadlocks. The

LOG10 plot covers the range from .1 sec to 10,000 sec-

onds.

DATABASE RESPONSE TIME (LINEAR) (see Fig-

ure 14)
The LINEAR plot is a useful in determining if a pro-
cess or processes are suffering from poor database
response times. The y-axis represents the number of
transactions made. The x-axis represents the time,
from 0 to 30 seconds.

LOGICAL BLOCK SIZE (see Figure 15)
The LOGICAL BLOCK SIZE histogram is useful in
evaluating the effectiveness of the transaction block-
ing of a process. This chart may also be used to de-
termine if a program is calling the DBBEGIN-
DBEND pair only at the beginning and end of pro-
cesses or after making single database modifications.

DATABASE RESPONSE TIME (AVERAGE) (see

Figure 16)

The AVERAGE histogram can be useful in evaluating

modifications made to existing programs by aiding in

the determination of whether or not the system (as seen

by the database users) is getting slower or faster.

DATABASE RESPONSE TIME (WORST CASE) (see

Figure 17)
The WORST CASE histogram is useful in locating
processes that may have caused database deadlocks.
The histogram is also useful in determining if there
are certain times during the day in which stream jobs
may be run with little or no impact on the response
time for on-line users.

TRANSACTION FREQUENCY (see Figure 18)
The TRANSACTION FREQUENCY histogram is a
measure of the time between logical blocks, often
called the user’s “think time.” This plot, in conjuc-
tion with the database response time charts, can be
helpful in determining if and/or how improvements
can be made to the application programs and the sys-
tem.

ADD-DELETE-UPDATE TO BEGIN-END RATIO
(see Figure 19)
The ratio of DBPUTS, DBDELETES, and DBUP-
DATES to DBBEGINS and DBENDS is a good in-
dication of how the transactions are blocked by the
user’s application programs. The desirable range is
0 < [PUTS + DELETES + UPDATES]/ [BEGINS
+ ENDS] < 100.
If the ratio is less than one, this usually indicates that

there is a process or processes which are making only
one database transaction per BEGIN-END set. Al-
though this is not harmful, it does not fully utilize the
benefits of transaction logging, resulting in more
overhead during the logging process and during re-
covery.

AVERAGE + STANDARD DEVIATION

LOGLIST provides the averages for the response
time and block lengths. With the averages and the
standard deviations which are also supplied, it is pos-
sible to determine your chances of attaining desired
response times or block lengths. For instance, the
interval covered by the sum of the average plus one
standard deviation includes approximately 85% of all
data base transactions logged.

DETAIL SET (DATA BASE) SUMMARY
The DETAIL SET summary provides totals based on
the actual activity in the sets. As shown in Figure 20,
this information includes the number of DBDE-
LETES, DBPUTS, and DBUPDATES. The capacity
and number of entries are also printed.

How LOGLIST Works

When processes are using the “USER LOGGING”
facility of MPE, the process opens up a path to the
transaction log for each process and each database ena-
bled for logging. As part of this ‘“‘opening’ procedure
the user’s name, acct, process name, capability, LDEV,
and database (if one) are logged in a special record.
LOGLIST looks for these records and builds its internal
working tables from them.

As processes make transactions to their databases,
the logging process intercepts a copy of the changes,
adds a time and date stamp then routes them to the
logging file. LOGLIST uses the time stamp from the
DBBEGIN and DBEND records to determine the total
elapsed transaction time. (If you don’t use DBBEGIN
or DBENDS then you can never measure your response
times with LOGLIST!)

Broken transactions can be located by looking for a
special “ABNORMAL END” record, and by checking
to make sure that all process issued a DBEND before
closing the log and terminating.

If the process did not (or was unable) to close the log
before terminating, and LOGLIST detects an EOF on
the log then it is assumed that there has been a system
crash. System crashes can also be determined by look-
ing for the crash marker which was written out at the
time of a WARMSTART recovery.

Transactions are expanded by using the information
gathered when the process first opened up the log, and
the actual data- base ‘‘change” records. (These records
are marked with “DE,” “PU” or “UP.”) LOGLIST
uses the item-list recorded as part of the transaction and
calls DBINFO to determine the types and lengths of the
individual items logged.

2349

APPENDIX DBPERF

This program was written to benchmark the time re-
quired to perform a wide range of DBPUTS, DBDE-
LETES and DBUPDATES. The primary area of inter-
est was the overhead added to IMAGE/3000 when the
user is using transaction logging.

The benchmark process follows the procedure listed
below:

A.

B.

Disable the database XYZ for logging
Perform 50 DBOPEN’s and DBCLOSE’s to
measure time to initially startup the logging
process. (NOTE: this will really clobber the
response time for everybody else.)

Perform 50 DBPUTS to a detail set which con-
tains a single path and various data types. The
data used for these operations is generated
using the RAND function from the compiler
library.

Perform 50 DBDELETES to the detail set.
Setup a loop so that we can perform 50
DBPUTS and DBDELETES on detail sets
which contain from 0 to 15 paths.

Generate the plots and data summaries.

G) Enable database XYZ for logging. then re-
peat steps B) thru F)

The database modifications are performed without
signaling the start of the transactions with DBBEGIN or
the end with DBEND. This was done so that the com-
parison could be made, without the overhead added by
the BEGIN-END blocking. This type of test is fair since

D.

F.

G.

= user =
=program
= user = =
=progran = = IMAGE
=== ===z = = data base
= management
= user = = = system
=program = =
/
/
= disc =
= drive =

nify that that are changes which are dependent.

The time required to perform the BEGIN-END block
is measured and plotted on a separate chart. It should
be noted that since DBBEGIN and DBEND do not re-
quire immediate access to the disc drives, the time re-
quired to perform these intrinsics is very low. The can
however add a significant number of records to the
memory buffer, which of course means that there is an
additionaly load on the I/O channel which controls the
disc drives.

REFERENCES

'F. Alfredo Rego, “DATABASE THERAPY: A practitioner’s expe-
riences,” in HPGSUG 1981 Orlando Florida Proceedings, Vol 1, pp.
B12-01 to B12-13

zP. Sinclair, “MPE 1918: A BONANZA OF ENHANCEMENTS,"”
in COMMUNICATOR issue 23, pp. 4-17

*HP, “MPE III 19i8 USER UPDATE COURSE"”

‘HP, “MPE 111 Intrinsics Reference Manual.”” pp. 3-92 to 3-96

SHP, “IMAGE Data Base Management System reference manual,”
pp. 4-22 to 4-22

SHP, “IMAGE Data Base Management System reference manual,”
pp. 4-23

’P. Sinclair, “MPE 1918: A BONANZA OF ENHANCEMENTS,”
in COMMUNICATOR issue 23, pp. 14

fHP, “MPE Ii1 1918 USER UPDATE COURSE,” pp. 60

9Robert M. Green, Robelle Consulting [.td.. 5421 10th Avenue, Suite
130, Delta, British Columbia V4M 3T.. Canada.

YHP, “MPE I1I 1918 USER UPDATE COURSE,” pp. 71

A, O. Allen, “Queueing Models of Computer Systems,” in COM-
PUTER, pp. 13-24, Apr. 1980 (an IEEE publication)

12C. Storla, "MEASURING TRANSACTION RESPONSE TIMES,”
in 1981 [UG Orlando Florida Proceedings, Vol. 1, pp. C7-01 to C7-08

T = = = =)

r = =8 = =

al = =KB= =

nos= = u= =D = ====
sg= =Mf = =]i= = ===
a g ===> e f ===> 5 ==>= Tape =
c 1= =me= =35= = (if =
tn= =o0or = = = =used)=
ig = r = = = ====

o Yy = = =

n = = = =

Figure 1. IMAGE transaction logging flow

2—-34—-10

CALIL DBBEGIN (BASE,...)
CALL DBLOCK(BASE,...)

CALL DBDELETE (BASE, ...)
At this point,

if there is a crash we lose
this data entry!

o000

change made to search item

(o}

o]

o]
CALL DBPUT (BASE,...)

o this item has now been re-added

CALL DBUNLOCK(BASE,...)
CALL DBEND(BASE,...)

Figure 2. Dependent Changes

CALL DBLOCK (...)
CALL DBFIND(...)
CALL DBGET (...)
** MAKE CHANGES TO ITEM VALUES HERE **
CALL DBBEGIN({...)
DBPUT
CALL {DBUPDATE } (...)
DBDELETE
CALL DBEND({...)
CALL DBUNLOCK(...)

Figure 3A

CALL DBFIND(...)
CALL DBGET (...)

** MAKE CHANGES TO ITEM VALUES HERE **

CALL DBBEGIN(...)
CALL DBLOCK(...)

DBPUT
CALL{DBUPDATE} (...)
DBDELETE
CALL DBUNLOCK (...)
CALL DBEND(...)
Figure 3B

2—34—11

2—34—12

CALL BEGINILOG (...)
CALL DBFIND(BASEl,...)
CALL DBGET (BASEl,...)
** MAKE CHANGES TO ITEM VALUES HERE #*#*

CALL DBBEGIN(BASEl,...)
CALL DBILOCK(BASEl,...)

DBPUT
CALI {DBUPDATE} (BASEl,...)
DBDELETE

CALL DBUNIOCK(BASELl,...)
CALL DBEND(BASEl,...)

CALL DBFIND (BASE2,...)
CAIL DBGET (BASE2,...)

** MAKE CHANGES TO ITEM VAILUES HERE **

CALL DBBEGIN (BASE2,...)

CALL DBIOCK (BASE2,...)

DBPUT
CALL {DBUPDATE} (BASE2,...)

DBDELETE

CALL DBUNLOCK (BASE2,...)

CALL DBEND(BASE2,...)

CALLI ENDLOG(...)
Figure 4

IMAGE-3888 BENCHMARK RESULTS
THE MEASURED TIME TO PERFORM DBPUT’S.

SERIES 33 SERIES 33 SERIES 44 SERIES 44
WITHOUT LOGGING WITH LOGGING WITHOUT LOGGING WITH LOGGING

— - — — - — - o - -

18

2—34—13

IMAGE-3P08 BENCHMARK RESULTS
THE MEASURED TIME TO PERFORM DBDELETE’S.

SERIES 33 SERIES 33 SERIES 44 SERIES 44
VITHOUT LOGGING VITH LOGGING VITHOUT LOGGING VITH LOGGING

— . — — — — - o

16

2—-34—14

IMAGE-3P28 BENCHMARK RESULTS
MEASUREMENTS OF DBUPDATE AND DBBEGIN-DBEND

WITHOUT LOGGING WITH LOGGING
[] 777

828
815
818p

-
ses-

=

DBUPDATE 33 DBUPDATE (44 BEG BEG) “e
Figure 7

2—34—-15

2—-34—16

CALL DBBEGIN (BASE, ...)
CAILL DBLIOCK(BASE,...)

CAIIL DBDELETE (BASE,...) <structural damage,if crash occurrs>
< for a detail set with 5 paths >
< the 'critical' time could be >
< a half second or more! >

At this point,
if there is a crash we lose
this data entry!

o O 00

change made to search item

o]
o]
o]

CAIIL DBPUT (BASE,...) <structural damage, if crash occurrs>
< for a detail set with 5 paths >
< the 'critical' time could be >
< 2 half second or more! >

o) The item has now be re-added

CALL DBUNLOCK (BASE,...)
CALL DBEND(BASE, ...)

Figure 8. Crash Modes

Benefits of lLogging VS Cost of Logging

AUDIT TRAIL REDUCED THROUGHPUT?
Who, What, When and How Dependent on your
Ability to list Sets and application, and system
fields which are modified. load.

RECOVERABLE DATA COST OF ADDITIONAL MEMORY?
Ability to recover May need more memory
most if not all to maintain current
transactions, upto the system throughput.
time of the crash.

PERFORMANCE INFO TAPE DRIVE OR DISC
Information available DEDICATED TO LOGGING?
which can lead to better Valuable disc space
application designs or tape drive can be
in the future. tied up with logging.

LOGGING OF ALL CHANGES STARTUP AFTER CRASH

MADE TO DATA BASE MORE COMPLICATED

REGARDLESS OF PROGRAM
You can use any vendor Training and "test
software and still recoverys" may be
maintain an "audit trail". required to familiarize

the programmers and
operators with the
new system restart

HP SUPPORT OF LOGGING procedures.

/ \
/ N\
/ \
Figure 9

2-34—-17

SEEESRAEERARRRRERARARERAARRERARESBRARERIRRERSRABERELRERILESAEEELSUBOSSEOREERILESRERISEISIIESANISSERSISEREINESEESES0SIS323388008

ACCTPROGBAC

TEINS

DELETEING ITEK IN

ADDIND ITEM TO

TUEs DEC 29 1981

EQUIP-DETL

EQUIP-DETL

8158 PM

DBFILE RECORD#: 23277

DBFILE RECORD! 23277

Ll 2 2.2 2 2 2 3

153 P s
ORI a R RS R EaEsea RN SR AsaN s a s NSRS RSN RN ERNSNssIENNsasuasRNLassassastNseNsRsssUsEIsIsantIssnsateastants

BOSEESRRLREASESRNRNEANSRISABARERESANSRENRERERININSEISIRERRNISEESRERASSIERANSISERISINSIESRINLISISEREIRSENBILEANISIANRILILINAS

ACCTPROGRAL

TEINS

UPDATING ITEM 1IN

TUE, DEC 29, 1981,

ENUIP-DETL

8159 PN

DSFILE RECORDS: 23277

Loga2 2ot 21228 2t i d it ia dt Sl s antittiditedtsitedts s ttitinittiRtitetesveeststvessitetinensiqraradtis PeeressrrertrsiTeeerseeyeysy

s OFFICE BAC TEINS
: Iakect
1 LOBID: TRANSACTIONS -
s PROPY [z 3=
s NODELCOD [U14] = 0OOIFIDDLE
' NOMNCODE (1 3«3
s EQUIPLOC E“ =10
s PROGTAG 11 -
s CURRUSER U10] = 0000060100
1 NEXTUSE} U103 = MONE
s PO~SERIES U10 3 = NONE
s HOLDFOR V10 3 = NONE
s BORROKER U10) = WOME
! FROMUSER ulo 1 = Nowe
a
146 { a0
: LR‘T‘E {2 3 e 811225
3 RIALY U10 3 » SERIAL
s 097 12 3 e it
3 EXPEN U2 3k
s MEWUSED U2 3N
s 185UEDAT 12 = 811220
3 ODE J2 - AC
8 ACOUDATE (12]« 811415
8 WEXTSTD] 2 .
] NEXTSTD2 2 .
3 DAT (12 .
b MEXTEND1 (12 -
s NEXTEND2 2 =
s STARTCYCLE (12 »
3 TMDATE 2 1
1 ROWDT [12 3 »
s MESSTAG] i .
s MESSTAG2 1 .
s MESSTAG 1 .
s ACCESTAG (11 =
s OFTINTAG X2 e m
s 8PECCODE It 1=
I i U0 35 ¥oemaise
-
s L081De! hmiacrf ¢ -
s 4 ui2 3=y
s DEL COB Ul4) = 0003FIDDLE
3 0 11 «]
s OUIPL Il . 10
] PROGTAG 11 "0
: 39:0? tgig = 5172870970
[]
¢ R bio 12 iu
R Uis 3+ Mok
-
2 PR Uo7 e N
: "'..3 T h .3
a
A
L]
PRl fhe 4
L]
{- mﬁssn Rﬁ {1k
s 188UEDAT 12 s 811220
] AGCODE {17} = &
: acgun?r: 2 = 811113
»
P :
| 7 »
H TEND} -
XTEND2 -
3 TARTCYCLE 2 .
s TNDATE 2)
s DORRONDT 2 Jse9
: nmr:m } .
a
§ ORI I
8 ACCESTAD 1 =
: omgm }:2 "M
]
1 mu?ﬁ u§ jayvt
: LASTUSER U10) = 5174822150
BSESRERELEINRALELENNDS
H OFFICE BAC TEING
s LOG1D#! TRANSACTIONS -
1 NEW VALUES:
s CALDATE (12 1s90
: 2 3= w
s OLD VALUES!
1 CALDATE £12) = 811225
] AGCODE 2 J)s=a
s 8159 P¥
LOBIDS: TRANSACTIONS -
NEW VALUES!
W0 m 1s=3
OLD YALUES!
13 1 31s0

]

2—34 —18

UPDATING ITEM IN

Figure 10

EQUIP-DETL

DBFILE RECORD4! 23277

BZOM-~NODOIDPI4 WO &

USER GROUP ACCT DBASE PROCESS GCROUP acCT LOCON TIME LOGOFF TIME LG® DEV
OFFICE BAC TEINS TEIM1 QUERY PUB $Ys WED,NOV 25,1981, 1:55P NOv 25, 2:02P 163 25
BML BAC TEINS TEIM! HAPROG BAC TEINS WED.NOV 25,1981, 1:50P NOY 25, 2:04P 162 37
WED, NOY 23, 198t, 2:13 PM w#ss PROCESS ABORTED w»ee PLTII BAC TEIMS
PLTII BAC TEINS TEIMI HAPROG BAC TEINS WED,.NOY 25,1981, 2:03P NOv 23, 2:13P 164 36
OFFICE BAC TEINS TEIMt QUERY PUB £YSs WED,NOY 25,1981, 2:07P NOY 2%, 2:14P 165 2%
14 BAC TEINS TEIM! HAPROGC BAC TEINS WED,NOV 25,1981, B8:01A NOY 25. 2117P 132 34
BAC B8AC TEINS TEIN1 ACCTST BAC TEINS WED,NOV 25,1981, 2:19P NOv 25, 2:20P 169 2€
oC [[, TEINS TEIM! HAPROG BAC TEINS WED,NOV 25,1981, 6:55A NOvV 25, 2:36P 127 39
PRIMARY BAC TEINS TEINY @APROC BAC TEINS WED,HOY 25,1981, 2:09P NOV 25, 2:38P 166 37
PRIMARY BAC TEINS TOOLS @APROG BAC TEINS WED.NOV 25,1981, 2:09P NOV 2%, 2:38P 167 3?
[L} #AC TEINS TEIMY QAPROG BAC TEINS WED,NOV 25,1981, 6:32A NOv 2%, 2:32P 122 32
(L] | L1a TEIMS TOOLS @APROG BAC TEINS WED,NOV 25,1981, 6:32A NOV 25, 2:52P 123 32
(L] PAC TEINS TEIM! QAPROG 8AC TEImS WED,NOV 2%,19€1, 2:%3P NOV 2%, 2:36P 172 32
(- L] [L1 TEINS TOOLS QAPROG 8aC TEINS WED,NOY 25,1981, 2:53P NOY 25, 2:36P 173 32
(-1} [214 TEINS TEIM1 QAPROG BAC TEINS WED,NOV 25,1981, 2:58P NOv 25, 2:59F 174 32
[T} | 1o TEINS TOOLS QAPROG 8AC TEINS WED,NOY 23,1981, 2:38P NOv 25, 2:39F 175 32
| L1+ BAC TEINS TEIMt QUERY PUB (343 WED,NOY 25,1981, 2:43F NOY 25, 3:04PF 171 26
PLTIZ BARC TEINS TEIMt HRPROG BAC TEINS WED,NOY 25,1981, 2:16P MOV 25, 3:08P 168 3¢
KENT BAC TEINS TEIM! HAPROG BAC TEINME WED,NOY 25,1987, 6:394 NOV 25, 2:08P 124 133
oC BAC TEINS TEIMY HAPROG BAC TEINS WED,NOV 25,1981, 2:37P NOvV 25, 3:20P 170 34
KENT [L1 TEINS TEIMY NAFROG BAC TEINS WED,.NQV 25,1981, 6:26R NOV 23, 3:24P 120 31
KERT BAC TEINS TEIMI HAPROG BAC TEImS WED.NQV 25,1981, 3:09P NOv 28, 3:26P 1?77 32
PAC Pac TEINS TEIMt ACCTPROGBAC TEINS WED,NQV 25,1981, 3:04P NOv 25, 2:39P 176 2¢
WED, NOV 25. 1921, T 44 FN mms PPOCESS ABOPTEDR mme TEKSTAFFEAC TEIMS
TEXKSTAFFBAC TEINS TEIM!' TECHPRUGBAC TEIMS WED,NOY 25,1961,12.58P NOY 25, 3:44F 155 21
OFFICE BRC TEIMS TEIMt AIITPROGBAC TEIMS WED,NOV 25,1981,12.13P NOV 2%, 3.47P 154 25
BAC BAC TEINS TEIMYI ACCTST BAC TEImS WEL .NOV 25,1981, 3.3%P NOV 25, 4:00P 178 26
PAC BAC TEINS TEIMY HAPROG BAC TEINS WEL . NOV 25,1981, 4:27P NOV 25, 4:45P 179 1
= « INDICATE: PROCESS DID NOT QUALIF: IN SELECTIVE SEARCH 2 - BROKEN
.
Figure 11
1000]
|
I
|
I
I
i
800 -~
i
600 -~
-
.
|
|
|
|
|
|
400 - =
] -
| . -
| - -
| . =
] - a m
1 - - =
- = =ow
200 -
i
t
I
i mmms =
asw -
1 -
] - asassesnsEesenw aETssssEEEESSeTsEn
-0
i { 1 | i I | [| | | t I 1 I { | ! | t
.00

MAXINUN VALUE:

860.0 MIN IS :

EACH BAR IS 1S MINUTES

.0 SCALE FACTOR:

20.0 AVG

" Figure 12

111.86 Y AXIS MAX:

1000 TOTAL @ IN ALL CELLS:

t
1
1

CAPARILITY

40203060611
0060300601

0020300611
4020300611
0020300611
S360300612
0020300611
0020300611
0020300611
0020300611
0020300611
0020300611
0020300611
0020300611
0020300611
3360300613
0020300£ 1
0020200611
0020300611
0020300611
0020300611
5360300413

0020300611
402030061
83603006132
8360300613

TRANSALT 10N

PUT DEL #BLKS
0] 9
3 3 3
1 1 12
0 0 0

S0 38 k1]
0 0 0
54 42 42
[€ 6
0 0 o=
99 9% 99
0 0 0x
0 0 [
0 0 0
0 0 0
¢ 0 24
2 1 0
22 16 16
97 78 e3
[} 3 6
59 21 7?1
e S S
[1 4
20 1 -
76 T3 FARS
[J & 0
[} 0 0
2400.00

11186

2—34—19

2000

|
|
|
|
!
1
. 1
!
0 !
F !
1600 -~
7 |
R [
A !
N 1
§ [
A 1
€ 1
T 1
! 1
0 1200 -
N 1
s !
I
| =
| =
] =
[
j =
| =
800 -} =
| =
| =
| =
| =
| =
| =
=
} -
400 -
} =
- -
=
[
=
=
i
[
!
e e e e e e e e — — ————— —— ————— ———— ———— —— m ——————— e e
1 | | | i | | 1 | |
B 29 50 1090 200 S00 1E3 2€3 SE3 1E4
RESPONSE TIME IN 6EC.CLOG10)
MAKIMUM YALUE: 1066.0 MIN JS : .0 SCALE FACTOR: 40.0 AVG : 37.06 Y AXIS MAX: 2000 TOTAL @ IN ALL CELLS: 3706

Figure 13

2—34—-20

NVZO~-4ODPOITDV/~4 MO @&

2000

i
|
|
|
|
|
I
|
!
|
1600 -
1
|
|
|
|
|
|
1
|
|
)

1200 <-|=
|=
|=
|=
lz
i=
i=
|-
'-
800 -)=
':
|=
=
|=
|=
|=
=
i=
i=
400 <=
|=
)=
i= -
= =
|m= = =
'-- muEw
.- assas
|owe sasesass
|=wan aErAEREESIPER =
[T A T T A N T (Y E R N TS NN NN NN Y AN T AN Y I SN Y T N N T N N O I
.00 30.00
RESPONSE TIME IN SEC.CLINEAR)
MAXIMUNM VALUE : 1272.0 MIN IS .0 SCALE FACTOR: 40.0 AVG : 37.06 Y AXIS MAX: 2000 TOTAL & IN nLl CELLS: 3706

Figure 14

2—-34-21

2000

[}
0
F
1600 -
T 1
R } -
A | =
N | = -
- | = -
A | = -
c { = -
T | = -
1 | = L]
0 1200 = = -
L] | = -
S | = -
| = -
| = -
{ = -
j = -
| = -
| = -
l - -
800 - » =
| = -
| = -
{ = -
| = -
{ = -
| = -
| = -
| - -
| = L]
w00 -] = &
| « =mm
| = L 1]
{ = =me
| = we
| = uw
| me wes
| ws we
| o= as
|omanew
ePrmmnnm P . P - ———— mececacrrana
| 1 | 1 | 1 [| | I
00 100,00
LENGTH OF LOGICAL Bi.OCK
MAXINUM YALUE: 1838.0 MIN 18§ 0 SCALE FaACTOR, 40.0 AvG J7.06 ¥ AXIS MAX: 2000 TOTAL & IN ALL CELLS: 3706

Figure 15

2—3¢4—-22

L 3 X 4

mozIrzovom» ZOm-4ODNIDW

-om®e ZT -

10

a [[]
[}] }

LY
1

MAK MU YALUE :

9.4 MIN 1S

[I | [| [| |

EACH BAR 1S 1S MIN. WIDE

.0 SCALE FACTOR:

.2 AYG 1.60 ¥ AX1IS MAX:

Figure 16

10 TOTAL

2400.00

IN ALL CELLS: 160

2—34—23

|
I
1
i
I
|

L4 i

[|

R)

s |

T 400 -
!

T |

R 1

A |

N [

S |

A i

¢ |

T !

1 Joo -}

o !

N |
!

R !

E |

S !

4 | -

[i =

N | -

s 200 - -

E ! =
1 -

1 { -

N | =
i -

$ | =

E | =

c 1 - -

N | = -

160 - - =
| = -
i - -
i = =
] - -
] - -
| = =
l - ax
| s - = amx
i == =ammx aax=s [
1 ! | [! | | | } i f 1 I 1 } !) t | | ! ! i ! |
» 00 2400.00
EACH BAR IS 15 MIN. WIDE
MAXIMUM YALUE: 235.4 MIN IS : .0 SCALE FACTOR. 10.0 AYG : 9.87 ¥ AXIS MAX: 500 TOTAL @ IN ALL CELLS. 987

Figure 17

2—34—-24

NIO=-ODOIPN-d MO =

160

120

-1

40

HAXINUN VALUE:

{enunvass - E L] - -

|{essssen o= - -

| b -

| I I | | i | | | | | | |
18 1 2 1o 20 30 100 200 800 1E3 2E3 SE3 1E4

135.0 MIN 1S

TRANSACTION INTERVALS LOG!1O

.0 SCALE FACTOR: 4.0 AVG

Figure 18

36.23 Y AXIS MAX:

2—34-—-25

200 TOTAL & IN ALL CELLS:

362°%

23426

WP SBO LSRR RS SE RSN RSP SRS SR NTESS SN PSP S CC SRS C S S S

& ¢ 8B EBIEFIE

HUMBER OF RECORDS PROCESS

PUTS, DELETES. UPDATES

DBBEGINS & DHENDE

AVERAGE TRANSACTION TINME
STD DEVIATION

AYERAGE TRANSACTION INTERVAL
BTD DEVIARTION

AVERAGE BLUCK LENGTH
8TD DEVYIARTION
& OF LOCICAL BLOCKS

22112
11186
7415
1.60
4.57

182.04
645.60

1.49
2.00
3625

S5 8B EN 3

LLEL R E LI Rl LRI I I TS T NI IR T T Y T Y P T P e Ty

PATA-BET(BABE >

CROGSREF JOY
OFTION-DETL
SERY~DETL
UTIL-DETL
ERUIP-DETL
NOMCL -DETL
USER-DETI
NOMRH-DBET L
BPEC-DETL
iIMEWITH- MREYX
WHRREHOUSELOC

Figure 19

OUPDATES ODELETES 6PUTS
° 8 ?

0 0 1
210 120 125
79 45 832
704 2018 2021
399 1 28
3732 o 0
12 j 13
229 5 48
v 10 106

0 24 27
Figure 20

CAPRCITY

30036
987
30964
30990
34986
5004
1704
1512
34986
1014
5031

EMTRIES

41355
369
2170%
7443
27363
3970
1140
697
16389
101
518

PERCENT FULL

ez.
37.
?0.
24,
76.
79.
66 .
46 .
46 .
9.
30.

[3]
39
05
02
2t
34
90
10
84
2%
03

Modular Programming in MPE

Ingenieurbiiro Jorg Grossler
1JG, Gbgh, Berlin Museum

computer

MODULAR PROGRAMMING — The module interfaces should be as simple as pos-
__ There is no final definition yet sible
— A module can be embedded into any environment WHAT MODULES CAN OFFER
knowing its interface but not the algorithm used.
example: — Procedures
) sin (X) e.g.: sin(X)
the user must know: — Data
— x must be of type “REAL” Fil eg.: INTEGER ARRAY A
— sin (X) will be of type “REAL” — rues ,
— sin (3.1415) = 0 e.g.: Data-base
— 1.2E-50 < X < 4.5SE+55 — Any mixture of the three above
— what happens in case of error
the user must not know: MODULE INTERFACES
— the method how sin (X) is calculated — Information flow between modules
— Described by:
SOME MORE ASPECTS — The type of information (data, procedure,
file)
. — A module can be constructed without knowing the — The access rights for each communication
environment it will be used in ‘ direction:

3—15—1

Examples for Module Interfaces

a: BEGIN
INTEGER 1I;

PROCEDURE P1;
BEGIN
:=0;
WHILE (I:=I+1) < 10 DO
BEGIN END;
END;
I: *EQILO;
WHILE (I: =I+1) < 10 DO
BEGIN
P1l;
END;

END;
Cc: SUBROUTINE SUB
INVAL=ITEMP (10)

END

MODULE REQUIREMENTS

— Control of information flow (specification of im-
ported and exported objects)

— Check of interfaces (some checking done by
SEGMENTER, but not for all types)

— Hidden information (to keep information within
the module — problems with stack-structure,
file-access)

— More possibilities to restrict access on data, pro-
cedures and files

— Comfortable to handle (library-problem)

Example: Own Data in SL-Routines

PROBLEM: The principle of hidden information re-
quires that local data is not deleted between two proce-
dure calls. This causes problems when procedure has to
be put into a SL.

WHAT WE WANT: A module which stores local
data into an extra data segment before exit and re-
freshes the data after call.

SPECIFICATION FOR MODULE
“OWN DATA”

PROCEDURE INITDATA (BUFFER, LENGTH);
INTEGER ARRAY BUFFER;
VALUE LENGTH; INTEGER LENGTH;
OPTION EXTERNAL;

BEGIN
IF "first time used’
THEN “initialize BUFFER with 0
ELSE “refresh BUFFER with data
stored in data segment';
END;

3—15-2

PROCEDURE UPDATEDATA (BUFFER, LENGTH) ;
INTEGER ARRAY BUFFER;
VALUE LENGTH; INTEGER LENGTH;
OPTION EXTERNAL;

BEGIN
‘copy contents of BUFFER into
data segment’;

END

Solution No. 1

PROCEDURE INITDATA (BUFFER, LENGTH);
INTEGER ARRAY BUFFER;
VALUE LENGTH; INTEGER [ENGTH;

BEGIN

‘allocate data segment';

IF "data segment already exists'
THEN “copy contents into BUFFER'
ELSE “initialize BUFFER with 0';

END;

PROCEDURE UPDATEDATA (BUFFER, LENGTH);
INTEGER ARRAY BUFFER;
VALUE LENGTH; INTEGER LENGTH;

BEGIN
“allocate data segment';
‘copy contents of BUFFER into
data segment';

END;

But

— Extra data segment has to be *“‘global.”

Therefore:

— Other users of module “OWN DATA” will use the
same data segment

— Data segment is not automatically deallocated
when program terminates. So no initialization will
happen after the module has been used once.

Solution No. 2

PROCEDURE INITIALIZEDATE;
OPTION PRELUDE;

BEGIN
"allocate extra data segment’';
"mark user within data segment’';
"initialize info part';

END;

PROCEDURE INITDATA (BUFFER, LENGTH);
INTEGER ARRAY BUFFER;
VALUE LENGTH; INTEGER LENGTH;

BEGIN
*allocate extra data segment';
IF ‘used first time (info part)'
THEN
BEGIN
*initialize BUFFER with 0';
‘*change info part’';
END
ELSE ‘copy contents into BUFFER';

END;

PROCEDURE UPDATEDATA (BUFFER, LENGTH);

INTEGER ARRAY BUFFER;
VALUE LENGTH; INTEGER LENGTH;

BEGIN
‘allocate extra data segment';
‘copy contents of BUFFER into
data segment’;

END;

PROCEDURE FREEDATA;
OPTION POSTLUDE;

BEGIN
‘allocate extra data segment';

*delete module user from info

part';

‘free extra data segment’';
END;

3—15—3

-

IMAGE/COBOL: Practical Guidelines

David J. Greer
Robelle Consulting Ltd.
Aldergrove, B.C., Canada

SUMMARY

This document presents a set of practical “rules” for
designing, accessing, and maintaining IMAGE
databases in the COBOL environment. This document
is designed to aid systems analysts, especially ones who
are new to the HP3000, in producing “good” IMAGE
database designs. Each “‘rule” is demonstrated with ex-
amples and instructions for applying it. Attention is paid
to those details that make using the database trouble-
free for the COBOL programmer, and maintaining the
database easier for the database administrator.

CONTENTS

. Database Design
. Polishing Database Design
. The Schema
. Establishing the Programming Context
. Database Maintenance
. Bibliography
Copyright 1981. All rights reserved.
Permission is granted to reprint this document (but not for profit), provided
that Copyright notice is given.

This document was prepared with Prose, a text formatter distributed with
software to all Robelle customers.

A bW —

DATABASE DESIGN

IMAGE/3000 is the database system supplied by
Hewlett-Packard;® it is used to store and retrieve appli-
cation information. A database does not suddenly ap-
pear out of thin air; it develops through a long and in-
volved process. At some time, a logical database design

CUST-STATUS

Computer

Museum

"

must be translated into the actual schema that imple-
ments a physical IMAGE database. This phase is the
most difficult of the database development cycle.” The
IMAGE/3000 Reference Manual® contains a sample
database called STORE, which demonstrates most of
the attributes of IMAGE. Throughout this document,
the STORE database will be referenced when examples
are needed.

Logical Database Design

The foundation of a new database is a logical design,
which is created by examining the user requirements for
input forms, for on-line enquiries, and for batch reports.
The database should be viewed as an intermediate stor-
age area for the information that comes from the input
forms and is eventually displayed on the output re-
ports.® 1

Database design is normally done from the bottom
up, as opposed to structured program design, which is
usually done from the top down. The starting point for a
database is the elements (items) that will be stored in
the database. These data elements represent the user’s
information. In the early stages, the size and type of
these elements are not needed, only the name and val-
ues.

Rule: Start your logical database design by naming
each data item, then identify what values it can
have and where it will be used.

Here is an example of a subset of data items for the
STORE database:

Two characters, attached to each customer record.

Valid values are: 10=zadvanced, 20=current,
30=arrears and d40=inactive.

DELIV-DATE

Six numeric characters; Date, YYMMDD, attached to

every sales order as the promised delivery date.

ON-HAND-QTY

Seven numeric characters, attached to every inventory

record to show the current quantity of an
inventory item available for shipping.

PRODUCT-PRICE

Eight numeric characters, (6 whole digits, 2 decimal
places), attached to every sales record.

This is

the price of a product sold, on the date that
the sale was made.

4—4—1

As the logical database design develops to deeper
levels of detail, the elements needed should eventually
reach a stable list. These elements should then be com-
bined into records by grouping logically related items
together.

It is important that ‘“‘repetition’ be recognized early
in the design. An example of this is a customer’s ad-
dress. The most flexible method of implementing ad-
dresses is a variable number of records associated with
the customer account number. Another method is to
make the address field an X-type variable (e.g., X24)
repeated 5 times (e.g., 5x24). Repeated items are often
the most natural way to represent the user’'s data, so the
use of repeated items is encouraged.

After the records are designed, enquiry paths must be
assigned. During the early stages of database design, it
is important to use elements that are readable and easy
to implement with the tools at hand. This permits test-
ing of the database using tools such as QUERY, AQ,
and PROTOS.

NAME: M-CUSTOMER,
ENTRY:

CITY
,CREDIT-RATING
,CUST-ACCOUNT(1)
,CUST-STATUS
 NAME-FIRST
,NAME-LAST
, STATE-CODE
, STREET-ADDRESS
,7IP-CODE

CAPACITY: 211

Rule: If a “natural” master dataset will require on-line
retrieval via an alternate key, drop it down to u
detail dataset.

The detail dataset will have two Keys: the key field of
the original master dataset, and the alternate key. You
will have to create a new automatic master for the origi-

NAME :
ENTRY:

A-CUSTOMER,

CUST-ACCOUNT(2)
;

CAPACITY: 211;

NAME:
ENTRY:

A-NAME-LAST,
NAME-LAST(1)
CAPACI%Y: 211;

NAME: D-CUSTOMER,

4_4_2

MANUAL (1/2);

AUTOMATIC (1/27,

AUTOMATIC (1/2),

DETAIL (1/2);

Physical Database Design

After the local database is designed, the IMAGE
schema must be developed. The restrictions of IMAGE
must now be worked into the database design.

IMAGE requires that all items needed in the database
be defined at the beginning of the schema, and a size
and type must be associated with each. Initially, declare
each item as type X (display); later, the data type may
be altered.

Records are implemented as IMAGE datasets. Start
by treating each record format as a master dataset.

Rule: If a record is uniquely identified by a single key
value, start by making ir a master dataset (e.g.,
customer master record keved by a unique cus-
tomer number).

The STORE database assumes that each CUST-
ACCOUNT field is unique. Furthermore, there is only
one customer record for each CUST-ACCOUNT. All of

the information describing one customer is gathered to-
gether to result in the M-CUSTOMER dataset:

<CPREFIX = MCS>>

<KKEY FIELD>>

; {M~-CUSTOMER, PRIME; ESTIMATED>>

master for the alternate key (unless you already have a
manual master dataset for that item).

Take the M-CUSTOMER dataset as an example. As-
sume that in addition to needing on-line access by
CUST-ACCOUNT, it is also necessary to have on-line
access by NAME-LAST. The following dataset struc-
ture would result;

<{PREFIX = ACS>>

<<KEY FIELD>>

{<A-CUSTOMER,PRIME; ESTIMATED>>

<<PREFIX ANL>>

<KKEY FIELD>>

{<{A-NAME-LAST,PRIME; CAP(A-CUSTOMER)>>

<KPREFIX = DCS>>

ENTRY:
CITY
,CREDIT-RATING

,CUST-ACCOUNT(!A-CUSTOMER)

,CUST-STATUS

,NAME-FIRST
,NAME-LAST(A-NAME-LAST)
, STATE-CODE
,STREET-ADDRESS
,ZIP-CODE
1
CAPACITY: 210; <<D-CUSTOMER;

Rule: If an entry can occur several times for the pri-
mary key value, store it in a detail dataset.

Detail datasets are for repetition and multiple keys.
Master datasets can only contain one entry per unique
key value. An example of repetition in a detail dataset is

ADDRESS-LINE, X2u; <<
>>
CUST-ACCOUNT, 78; <<
>>
LINE-NO, X2; <<
>>
NAME: D-ADDRESS DETAIL (1
ENTRY:

ADDRESS-LINE
,CUST-ACCOUNT (! M=CUSTOMER (LI
,LINE-NO

CAPACITY:

8UY; <<D-ADDRESS;

Dataset Paths

The following definition of PATHs and CHAINs
comes from Alfredo Rego:!

A PATH is a relationship between a MAS-
TER dataset and a DETAIL dataset. The
master and the detail must contain a field of
the same type and size as a common ‘‘bond,”
called the SEARCH FIELD. A path is a
structural property of a database.

A CHAIN, on the other hand, contains a
MASTER ENTRY and its associated DE-

<<KEY FIELD, PRIMARY>>

<<KEY FIELD>>

CAP(A-CUSTOMER)>>

a customer address field. The customer address can be
stored as a repeated field in a master dataset, but even-
tually there will be an address that will not fit into the
fixed-size repeated field. Instead of a repeated field, use
a detail dataset to store multiple lines of an address. For
example:

An individual line of address. This
item is used in D-ADDRESS to provide an
arbitrary number of address lines for
each customer.

Customer account number. This field
is used as a key to the M-CUSTOMER

IMAGE/COBOL: Practical Guidelines

and D-ADDRESS datasets.

Used to keep address lines in D-ADDRESS
in the correct order. This field also
provides a unique way of identifying
each address line for every
CUSTOMER-ACCOUNT.

/2); <<PREFIX DAD>>

NE-NO)) <<KEY FIELD, PRIMARY PATH>>

<<SORT FIELD>>

4 *¥ CAP(M-CUSTOMER)>>

TAIL ENTRIES (if any), as defined by the
PATH relationship between the master and
the detail for the particular DETAIL
SEARCH FIELD. ... A chain is nothing
more than a collection of related entries (for
instance, a bank customer would be the mas-
ter entry and all of this customer’s checks
would be the detail entries; the ‘‘chain’ would
include the master AND all its details; the
chain for customer number 1 would be com-
pletely different from the chain for customer
number 2).

4—4-—3

.

Paths provide fast access at a certain cost: adding and
deleting records on the path is expensive. The more
paths there are, the more expensive it gets.! Another
restriction of paths is that there can be a maximum of
64,000 records on a single path for a single key value.
This sounds like a large number, but it can be very easy
to expand a chain to this size if a key is specified for a
specific, reporting summary program (e.g., billing cycle,
in monthly billing transactions).

Rule: Avoid more than two paths into a detail dataset.

There are some instances where three paths are nec-
essary, but these should be avoided as much as possi-
ble. Before adding a path, examine how the path is
going to be used. If it is added just to make one or two
batch programs easier to program, the path is not jus-
tified. The batch programs should serially read and sort
the dataset, then merge the sorted dataset with any
other necessary information from the database.

The date paths of the SALES dataset of the STORE

database are good examples of unnecessary paths. Be-
cause the chain lengths of paths organized by date are
almost always very long, such a chain is rarely allowed.
Also, users are often interested in a large range of dates
(such as a month, quarter or year), not just a specific
day.

In order to obtain the same type of reporting by date,
it is possible to do one of the following: (1) read the
database every night and produce a report of all records
entered every day; (2) keep a sequential file of all re-
cords added to the dataset on a particular day. This file
can then be used as an index into the database.

These are not the only solutions to removing the date
paths, but they indicate the kind of solutions that are
possible. Because of the high volume and length of the
average chain, date paths are prime candidates for re-
moval from a database.

The following example demonstrates how the SALES
dataset should have been declared:

<< The D-SALES dataset gathers all of the sales records

for each customer.

The primary on-line access 1s by customer,

but it 1is necessary to have available the product sales

records.
the product is ordered.

The PRODUCT~PRICE is the price at the time
The SALES-TAX is computed based

on the rate in effect on the DELIV-DATE.

>>

NAME:
ENTRY:
CUST-ACCQUNT(!M-CUSTOMER)
,DELIV-DATE
, PRODUCT-NO(M-PRODUCT)
, PRODUCT-PRICE
, PURCH-DATE
, SALES-QTY
, SALES-TAX
, SALES-TOTAL

D-SALES,

y
CAPACITY: 600;

Rule: Avoid sorted paths.

Because sorted paths can require very high overhead
when records are added or deleted, they should be
avoided as much as possible. There are some instances
when a sorted path makes the system and program de-
sign much easier, but this convenience must be traded
off against the highest cost of maintaining sorted chains.

The most important criteria in evaluating sorted
chains are: (1) whether the chain is needed for batch or
on-line access. In batch, it is possible to read and sort
the dataset, rather than relying on sorted chains. In an
on-line program, this is usually not possible, so sorted
chains are required. (2) How long is the average chain
going to be? The longer the chain, the more expensive it
is to keep sorted. If chains have fewer than 10 entries
per key value on average, sorted chains can be permit-

4—4_4

DETAIL (1/2);

<KPREFIX = DSA>>
<CKEY FIELD, PRIMARY PATH>>

<<KEY FIELD>>

(<D-SALES; 3 * CAP(M-CUSTOMER)>>

ted. (3) How are records being added to the dataset? If a
sorted chain is present, and data is added to the dataset
in sorted order, there is very little extra overhead in the
sorted chain. If, on the other hand, data is added in
random fashion, there is a very high cost associated
with the sorted chain.!! 3

Locking Strategy

Early in the database design, it is important to iden-
tify the locking necessary for the application. The
easiest choice is to use database locking. Unless spe-
cific entries are going to be modified by many users,
database locking should work. Remember: locking is
only needed when updating, adding, or deleting entries
from the database, not when reading entries. Never
leave the database locked when interacting with the
terminal user.

The next level of locking to be considered is dataset
locking. This takes more programming, but provides for
a more flexible locking strategy.

Rule: Never permit MR capability to programmers; in-
stead, use lock descriptors (and a single call to
DBLOCK) to lock all datasets needed.

For very complicated systems (e.g., an inventory sys-
tem with inventory levels that must be continually up-
dated), record locking should be used. The database
design should help the application programmer by mak-
ing the easiest possible locking strategy available for
each program.?

Passwords

Most application systems go overboard in their use of
database passwords. The simplest scheme to implement
is a two-password system. The database is declared
with one password for reading and one for writing. Each
password is applied at the dataset level; and item-level
passwords are not used.

Rule: Use the simplest password scheme that does not
violate the database integrity.

The advantages to this scheme are that there are
fewer passwords to remember, IMAGE is more effi-
cient (because all security checks are done at the
dataset level, instead of the data item level), and the
user can still use tools such as QUERY, by being al-
lowed the read-only password.

In sensitive applications, a separate dataset or
database can be used to isolate data requiring special
security. This still permits the simplest password
scheme possible, with an extra level of security. The
following example shows how to declare passwords for
read-only access and read/write access on a dataset
level:

PASSWORDS: 1 READER;
2 WRITER;

The declarations for the M-CUSTOMER and the
D-SALES datasets contain “(%)”’ on the line that de-
clares the name of the datasets. The “(32)” indicates
that the READER and WRITER passwords are in effect
for the whole dataset.

Early Database Testing

The early database design should allow the user or
analyst to experiment on the database design with test
data. User tools such as QUERY or AQ should be used
to access the database. At this stage, the item types may
be left approximate, so long as the user or analyst gets a
chance to interact with the database design. The analyst
should check that all requirements of the user can be
met by the database design.

Rule: Build your test databases early. Use an applica-
tion tool to verify that the database design is cor-
rect.

In some cases, the end user may not be able to access
the database, but the database designer must go through
this testing process. This examination of the database
design may uncover design flaws which can be fixed
easily at this early stage. After the logical database de-
sign has been roughly packaged as an actual IMAGE
database and verified against the user requirements, the
design should be optimized and the finishing touches
added (see next section).

Very Complex Databases

IMAGE has a number of size restrictions that it im-
poses on the database design. For example, the number
of items in a database is limited to 255, and the number
of datasets in a database is limited to 99. For many
applications, these limits pose no problems; but with the
larger databases being designed today, it is not difficult
to imagine databases which exceed these lmits. What
can you do to get around this problem?

Bottom-Up Design

The design method outlined above must be extended.
For small projects, it is adequate to simply group related
data items into datasets, because the entire application
will fit into one database. However, for large projects,
another step is required: related datasets must be
grouped into separate databases.

Multiple databases introduce new problems for the
application programmer. These include larger pro-
grams, which result in larger data stacks, as well as
problems with locking. In designing a multiple database
system, it is best to minimize the number of programs
that must use more than one database.

If an application decomposes into independent sub-
units, few programs will require more than one
database. The design of the system and the database
may have to be revised to increase the independence of
the sub-systems.

POLISHING DATABASE DESIGN

The database designer has two main concerns in
completing the database design. Will the application
programs be able to access the database within the de-
fined limits of the HP3000? Does the database take best
advantage of COBOL and other tools avail-
able?a—s—u—xs

Overall Performance

Rule: Always make a formal estimate of on-line re-
sponse times and elapsed times for batch jobs.
If the project is going to require additional
hardware resources, it is better to know it be-
fore the project goes into production.

The following material is taken from On Line System

4—4_5

Design and Development,® with comments and exam-
ples to expand on the original. The HP3000 is able to
perform approximately 30 I/Os per second. On various
machines under different operating systems, it may be
possible to obtain more than this. Because it is ex-
tremely difficult to obtain the theoretical maximum of
30 I/Os per second, it is best to plan for a maximum of
20 I/Os per second.

Each IMAGE procedure results in a specific amount
of I/0. Before going ahead with a large application, the

Procedure I/0

DBGET 1
DBFIND 1
DBLOCK 0
DBUNLOCK 0
DBUPDATE 1

2

2

DBPUT
DBDELETE

The figures for DBPUT and DBDELETE do not take
into account sorted chains. If sorted chains are kept
short, the above figures will work. If sorted chains are

total I/O required for the application must be computed
and compared against the maximum. This is done by
estimating the I/O for each on-line function, then sum-
ming the I/Os of the functions that might reasonably
occur concurrently. Also, the total elapsed time for
batch jobs must be estimated to ensure that they will
complete in the time available.

The following gives an approximate measure of the
number of I/Os necessary for each IMAGE procedure
in an on-line environment:

+ 2 * Number of keys in the dataset.
+ 2 ¥ Number of keys in the dataset.

long, the following formula gives an approximate meas-
ure of how many I/Os are required to add records in
random fashion to a sorted chain:

2 + 2 ¥ number of keys + (average chain length / 2)

All of the above figures for the number of 1/Os for
each IMAGE procedure are the same in batch, with one

exception. If a batch program reads a dataset serially,
the I/Os required will be:

Serial DBGET I/0s = number of records / blocking factor

If the batch program also does a sort of all of the
selected records from the serial DBGET, the number of
I/Os will be increased.

Batch Calculation Example

The following example computes how long a specific
batch program will take to run; the program makes the
following IMAGE calls:

125,000 DBGETs serial; blocking factor is 5.
80,000 DBPUTs to a detail dataset with two keys.

80,000 DBFINDs.

80,000 DBGETs to the dataset with the DBFIND.

80,000 DBUPDATEs.

Total I/0s required =

1/0s for DBGET (205,000 / 5) plus
1/0s for DBFIND (80,000 X 1) plus
1/0s for DBPUT (80,000 X 6) plus
1/0s for DBUPDATE(80,000 X 1).

equals 681,000 I/0s.

We can do approximately 20 I/0s a second so

681,000

34,050 seconds = 9.5 hours

4—4_6

If the batch program also is intended to run overnight,
but is unlikely to finish in one evening, because time is
also needed for backup and other daily functions.

Improving Performance

How can the total time of this program example be
reduced to 3.9 hours? One way is to replace the DBPUT
with a DBUPDATE. In many instances it is possible,
through changes in the application and database design,
to use a DBUPDATE instead of a DBPUT. This is
especially true in environments where there are recur-
ring monthly charges, which change only slowly over
time.

There is another advantage to using DBUPDATE.
For each DBPUT, a record is added to the database,
and this record must later be deleted using DBDE-
LETE. Because it takes as long to delete the record as it
did to add it in the first place, the DBUPDATE can
provide as much as an eight-fold decrease in running

Number of Digits

IMAGE Data type

time, compared with DBPUT/DBDELETE.

COBOL Compatibility

When designing a database, keep in mind how the
database is going to be used (COBOL, QUERY, AQ,
PROTOS, etc.). The following rules apply to item types
and should be used throughout the database.

Numeric Fields

When the database was first designed, all fields were
initially declared as type X (display). By now you
should know the likely maximum value for each data
item. Once the size of each data item is fixed, the time
has come to specify a more efficient data type for
numeric fields.

The type of field used for numeric values depends on
the maximum size of the number to be stored (i.e., the
number of digits, ignoring the sign). The following table
should be used in determining numeric types:

<5 J1
<10 Je
>=10 Packed-decimal of the appropiate size.

Rule: For numeric fields, use J1 for fewer than five
digits; use J2 for fewer than ten digits; otherwise,
use a P-field (packed-decimal) of the appropriate
size.

In COBOL, an S9(2)V9(2) COMP variable is consid-
ered to have a size of 4, or J1. The one exception to this
rule is sort fields. All sort fields must be type X. If a
numeric sort field is required, it must be declared as
type X and redefined as zoned in all COBOL programs.
Remember that packed fields in IMAGE are always de-

clared one digit larger than the corresponding COBOL
picture (S9(11) COMP-3 becomes P12) and must be al-
located in multiples of four.

COBOL databases must not contain R-fields, because
R-fields have no meaning in the COBOL language. In-
stead of an R-type field, a J-type or P-type field must be
used. The STORE database contains an R-type field,
CREDIT-RATING, which should have been declared
as:

CREDIT-RATING, J2; << Customer credit rating. Thé larger
the number, the better the customer's
credit. Used to five decimal places.
>>
Key Types When using a Z-type for a key, leave it as unsigned in

Every key, whether in a master or detail dataset, must
be hashed to obtain the actual data associated with the
key value. Hashing is a method where a key value, such
as customer number 100, is turned into an address. The
method used tries to generate a different address for
every key value, but in practice this is never possible.
The choice of the type of key has a large bearing on how
well the hashing function will work.

Rule: Always use X-type, U-type, or Z-type keys, and
never use J-type, R-type, P-type, or I-type keys.
Type X, type U, and type Z keys give the best
hashing resulits.

all COBOL programs. Because key values rarely have
negative values, there is no effect on the application by
removing the sign from a zoned field. The advantages to
leaving off the sign are: (1) displaying the field in
COBOL or QUERY results in a more ‘‘natural”
number, and (2) problems between positive, signed, and
unsigned zoned numbers are avoided.

Date Fields

Rule: Dates must be stored as J2 (59(6) COMP) in
YYMMDD format.

This format provides the fastest access time in
COBOL and takes the least amount of storage. Use a

4—4_7

standard date-editing routine to convert from internal to
external format and vice versa.*

The only exception to this is when a detail chain must
be sorted by a date field. Because IMAGE does not
allow sorting on J2 fields, X6 is used. For the chain to be
sorted correctly, the date must still be stored in
YYMMDD format.

Other Item Types

The only item types that should be used are J- or
P-types for numeric values, and X-, U- or Z-types for

keys. The K-, I- and R-types should never be used in a
commercial application where COBOL is the primary
development language.

Example

Earlier, in the discussion of logical database design,
four items were described: CUST-STATUS, DELIV-
DATE, ON-HAND-QTY, and PRODUCT-PRICE. The
following example gives the actual IMAGE declaration
for each of these items, according to the rules of this
section:

CUST-STATUS, X2; << Defined state of a particular customer
account. The valid states are:
10 = advance
20 = current
30 = arrears
40 = inactive
>>
DELIV-DATE, Je; << Promised delivery date.
>>
ON-HAND-QTY, Je; << Amount of a specific product currently

onhand.

Only updated upon

confirmation of an order.

>>

PRODUCT-PRICE, Jdz; <

Individual product price, including

two decimal points,

>>

Primary Paths
Rule: Assign a primary path to every detail dataset.

IMAGE organizes the database so that accesses
along the primary path are more efficient than along
other paths. The primary path should be the path that is
accessed most often in the dataset.

If there is only one path in a detail dataset, it must be
the primary path. If there are two paths that are acces-
sed equally often, but one is used mostly in on-line pro-
grams and the other mostly in batch programs, assign
the primary path to the one that is used in on-line pro-
grams. A primary path is indicated by an exclamation
point (!) before the dataset name that defines the path.
A path with only one entry per chain should not be
selected as a primary path.

The Schema

The IMAGE schema is the method by which you tell
both IMAGE and the programmers what the database
looks like. The schema should be designed with
maximum clarity for the programmer, because IMAGE
is only partly concerned with the schema’s layout.

Rule: The schema file name is always XXXXXX00,
where XXXXXX is the name of the database.

This naming convention makes locating the schema
easier for all staff. The file is always located in the same

4—-4_38

group and account as the database. If the database
name was STORE and the STORE database was built in
the DB group of the USER account, the schema name
would be STORE00.DB.USER.

Layout

A clear layout of the schema makes the programmer’s
job easier. Some requirements of the layout are im-
posed by IMAGE, but there are still a number of things
that the database designer can do to make the schema
more understandable.

Every database schema should start with a $CON-
TROL line. The SCONTROL line must always contain
the TABLE and BLOCKMAX parameters. The default
BLOCKMAX size of 512 should always be used when
first implementing the database. Later, after careful
consideration, the BLOCKMAX size may be changed.
When first designing the database, SCONTROL
NOROOT should be used.

The SCONTROL line should be followed by the name
of the database. This is followed by a header comment.
This comment describes the designer of the database,
the date, the conventions used in designing the schema,
abbreviations that are used within IMAGE names, and
sub-systems with which the database is compatible and
incompatible.

The following are the opening lines of the example
STORE database:

N

$CONTROL TABLE,BLOCKMAX=512,LIST,NOROOT

BEGIN

DATA BASE STORE;

< STORE DATABASE FROM THE IMAGE MANUAL
AUTHOR: DAVID J. GREER, ROBELLE CONSULTING LTD.
DATE: DECEMBER 15, 1981

CONVENTIONS:

This schema is organized in alphabetic order. All master datasets are
listed before detail datasets, and automatic masters come before

manual master datasets.

A1l dates are stored as J2, YYMMDD, except where they are used as

sort fields. If a date is a sort

field, it is stored as X6, YYMMDD.

The following abbreviations are used throughout the schema:

NO = Number
CUST = Customer
QTY = Quantity

This database can be accessed by COBOL, QUERY, AQ and PROTOS. Note
that the STREET-ADDRESS field is incompatible with QUERY, but AQ
can correctly add and modify the STREET-ADDRESS field.

>>

Naming of Items and Sets

Rule: Names must be restricted to 15 characters; the
only special character allowed in names is the
dash (-). This ensures that the names are compat-
ible with V/3000 and COBOL.

The percent sign (%) should be replaced with the ab-
breviation “-PCT”’, and the hash sign (#) should be re-
placed with the abbreviation “-NO”.

Item Layout

The easiest layout to implement, maintain and under-

CUST-NO, 210; <<

>>

The item name, its type, and the comment start in the
same column for every item. Each part of the item defi-
nition will stand out, and because the item names are in
sorted order, the applications programmer can easily
find a particular item.

Dataset Layout

Every dataset declaration must be preceeded by a
header comment that describes the use of the dataset
and any special facts that the programmer should be

stand is to declare everything in the database sorted in
alphabetic order. The items in the database should
begin with a $PAGE command to separate the items
from the header comment. Each item appears sorted by
its name, regardless of the item’s type or function.

In many IMAGE applications, the schema also acts
as the data dictionary. For this reason, it is very impor-
tant that every part of the database design be com-
pletely documented in the schema. Document each item
as it is declared. To make each item stand out, the fol-
lowing layout should be used:

The customer number is used as a
key field in the M-CUSTOMER dataset.
It is also the defining path in

the D-ORDER-DETAIL dataset.

aware of.

When accessing the dataset from a COBOL program,
it will be necessary to have a COBOL record which
corresponds to the dataset. In order to prevent confu-
sion between two occurrences of the same item as a
field in several datasets, a prefix will be assigned to each
of the variables in the COBOL buffer declaration. This
prefix is selected by the database designer and must
appear on the same line as the name of the database.
For example:

4—4_9

<< The M-CUSTOMER dataset gathers all of the static information

about each customer into one dataset.

A customer must exist

in this dataset before any sales are permitted to the

customer.

into the D-SALES dataset.
>>

NAME: M-CUSTOMER,

The AUTOMATIC, MANUAL or DETAIL keyword
must always appear in the same column. This makes
reading the schema easier, and by searching the file for
a string (by using \L“NAME:” in QEDIT) it is possible

:RUN QEDIT.PUB.ROBELLE
/LQ STOREOQ.DB "NAME:"

This dataset also provides the necessary path

MANUAL (1/2); <<KPREFIX=MCS>>

to produce a nice index of dataset names, their types,
and their prefixes. The following example prints an
index of the STORE dataset names:

NAME: M-CUSTOMER, MANUAL
NAME: M-PRODUCT, MANUAL
NAME: M-SUPPLIER, MANUAL
NAME: D-INVENTORY, DETAIL
NAME: D-SALES, DETAIL

(1/2); {KPREFIX = MCS>>
(1/72); {KPREFIX = MPR>>
(1/2); {KPREFIX = MSU>>
(1/72); {KPREFIX = DIN>>
(1/2); {KPREFIX = DSA>>

Rule: Automatic master datasets have names that start
with “A-"".

They must be declared immediately after the item
declarations, separated from item declarations by a
$PAGE command, and they must appear in alphabetic
order,

Rule: Manual master datasets have names that start
with “M-"".

The manual master datasets follow the automatic
master datasets, again preceded by a $PAGE command.
Like the automatic masters, the manual master datasets
must be declared in alphabetic sequence.

Rule: Detail dataset names start with “D-"".

The detail datasets follow the manual master
datasets, and the two are separated by a $PAGE com-
mand. The detail datasets also appear in alphabetic or-
der.

Field Layout

Without exception, the fields in every dataset must be
declared sorted alphabetically. There is a strong ten-

dency to try to declare the fields within a dataset in
some other type of logical grouping. Because this logi-
cal grouping exists only in the mind of the database
designer and cannot be explicitly represented in IM-
AGE, it should never be used. By declaring fields in
sorted order, the applications programmer can work
much faster with the database, since no time has to be
spent searching for fields within each dataset.

The database designer can still group fields together
in a dataset by starting each field with the same prefix.
If a dataset contains a group of costs, they might be
called VAR-COSTS, FIX-COSTS and TOT-COSTS. To
group these items together in the dataset, call them
COSTS-VAR, COSTS-FIX and COSTS-TOT. This
maintains the sorted field order in each dataset, while
allowing for logical grouping of fields.

Most datasets contain one or more key fields. A key
field is specified by following it with (). Because the O
pair is sometimes hard to see, a comment should be
included beside every key field, indicating that the field
is a key. In a detail dataset, the primary key should
include a comment to that effect. The following exam-
ple shows how to declare the fields in a dataset:

<< The D-SALES dataset gathers all of the sales records

for each customer.

The primary on-line access is by customer,

but it is necessary to have available the product sales

records.
the product is ordered.

The PRODUCT-PRICE is the price at the time
The SALES-TAX is computed based

on the rate in effect on the DELIV-DATE.

>>
NAME: D-SALES,

4—4—10

DETAIL (1/2);

<{KPREFIX = DSA>>

ENTRY:
CUST-ACCOUNT(!M-CUSTOMER)
,DELIV-DATE
. PRODUCT-NO(M-PRODUCT)
, PRODUCT-PRICE
,PURCH-DATE
,SALES-QTY
, SALES-TAX
,SALES-TOTAL

1
CAPACITY: 600;

Capacities

Analysis of the data flow of the application should
result in an approximate capacity for each dataset.

Rule: The capacity of master datasets must be a prime
number.

To see if a number is prime :RUN the PRIME pro-

CAPACITY: 211;

The comment after the capacity gives a method for
determining the approximate capacity of the dataset.
Most detail datasets have a capacity that is related to
the master datasets having paths into the detail
datasets. These relationships should be described in the
capacity comment.

By doing a \L“CAPACITY", it is possible to obtain

:RUN QEDIT.PUB.ROBELLE

/LQ STORE0QO.DB "CAPACITY:"
CAPACITY: 211,
CAPACITY: 307,
CAPACITY: 211,
CAPACITY: U450;
CAPACITY: 600;

Final Checkout
After the schema is entered into a file, it must be

<<D-SALES; 3 *

<KKEY FIELD, PRIMARY PATH>>

<<KEY FIELD>>

CAP(M-CUSTOMER)>>

gram contributed by Alfredo Rego. Master datasets
should never be more than 80% full (sce DBLOADNG
below, under ‘‘Database Maintainence”), and detail
datasets should never be more than 90% full.

The line with the capacity must be formatted in the
following way:

<{<M-CUSTOMER,PRIME; ESTIMATED>>

quickly an index of the capacity of each dataset in the
schema. Because the capacity is always the last line of
each dataset declaration, doing a \L“M-CUSTOMER”
will identify the beginning and ending declarations for
the M-CUSTOMER dataset. The following example
lists the capacity of the datasets in the STORE
database:

({M-CUSTOMER,PRIME; ESTIMATED>>
<<M-PRODUCT,PRIME; ESTIMATED>>
<<M-SUPPLIER,PRIME; ESTIMATED>>
<<D-INVENTORY; 2 * CAP(M-SUPPLIER)>>
(<D-SALES; 3 * CAP(M-CUSTOMER)>>

:RUN through the schema processor, and any typing
mistakes should be eliminated:

:FILE DBSTEXT=STOREO0O.DB
:FILE DBSLIST;DEV=LP;CCTL
: RUN DBSCHEMA.PUB.SYS;PARM=3

The table produced at the end of the schema should
be studied. The following anomalies should be checked:

1. Large-capacity master datasets with a blocking
factor less than four (either increase the
BLOCKMAX size to 1024, or change the master
dataset to a detail dataset with an automatic mas-
ter dataset).

2. The blocksize is too small (IMAGE optimizes the
blocking factor to minimize disc space); use RE-
BLOCK of ADAGER to increase the blocking fac-
tor. The blocksize of all dataset blocks should be

as close to the BLOCKMAX size as possible.
3. Are there more than two paths into a detail
dataset? If there are, can some of them be deleted?

Establishing the Programming Context

By using IMAGE, the COBOL programmer’s job
should be simplified, since all access to the database is
done through the well-defined IMAGE procedures.
Like most powerful tools, IMAGE (and COBOL) can
be abused by the unsuspecting user.

Rule: Define a standard IMAGE communication area

4 —-4—11

and put this area in the COPYLIB.

The starting point for using IMAGE is the standard
parameter area, which includes the IMAGE status area,

05 DB-ALL-LIST
05 DB-SAME-LIST
05 DB-NULL-LIST
05 DB-DUMMY-ARG
05 DB-PASSWORD
05 DB-MODE1
05 DB-KEYED-READ
05 DB-STATUS-AREA,
10 DB-COND-WORD
88 DB-STAT-0K

88 DB-END-OF-CHAIN
88 DB-BEGIN-OF-CHAIN

88 DB-NO-ENTRY
88 DB-END-FILE
88 DB-BEGIN-FILE

10 DB-STAT?2

10 DB-STAT3-4

10 DB-CHAIN-LENGTH

88 DB-EMPTY-CHAIN

10 DB-STAT7-8
10 DB-STAT9-10

Rule: Establish naming standards for all variables as-
sociated with IMAGE databases.

Standard prefixes must be used on all database var-
iables, including the database, dataset, data field and
dataset buffer declarations. A suggestion is to start all

01 DATASET-M-PRODUCT.
05 DB-SET-M-PRODUCT

05 DB-BUFFER-M-PRODUCT.
10 MPR-PRODUCT-DESC
10 MPR-PRODUCT-NO

Field Lists

The selection of the type of field lists depends on the
answer to this question: Can your total application be
recompiled in a weekend?

Rule: Use “@” field list is you can recompile in a
weekend (prepare a COPYLIB member for each
dataset); use “*” field list otherwise and hire a
DBA!

If the answer to the question is “‘yes,” the at ‘@™
field list and full buffer declarations should be used
when accessing the database. This method requires that
all dataset buffers be declared and added to the
COPYLIB. If a dataset changes, the buffer declaration
must be changed in the COPYLIB, and all affected pro-
grams must be recompiled. The simplest solution is to
recompile the complete application system whenever a
dataset changes.

4—4—-12

the various access modes used, a variable for the
database password, and a number of utility variables
which are needed when using IMAGE. For example:

PIC X(2) VALUE "@ ",

PIC X(2) VALUE "¥ n,

PIC S9(4) COMP VALUE 0.
PIC S9(4).
PIC X(8).
PIC S9(4)
PIC S9(4)

S9(4) COMP.
VALUE ZEROS.
VALUE 15.
VALUE 14,
VALUE 17.
VALUE 11.
VALUE 10.
PIC S9(4) COMP.
PIC S9(9) COMP.
PIC S9(9) COMP.
VALUE ZEROS.
PIC S9(Q9) COMP.
PIC S9(9) COMP.

COMP
COMP

VALUE 1.
VALUE 7.

PIC

database variables with “DB-"", all dataset names with
“DB-SET-", and all database buffer declarations with
“DB-BUFFER-". Data field names are prefixed by the
special dataset prefix (which the designer established in
the schema), so that each field has a unique name. For
example:

PIC X(10) VALUE "M-PRODUCT;".

PIC X(20).
PIC 9(8).

There must be two complete COPY LIBs available for
every application. One is for production, and one is for
development.

Rule: Use a test COPYLIB during development.
Double-check that all existing programs will re-
compile and :RUN correctly before moving the
new COPYLIB into production’

When a database is restructured. the buffer decla-
rations are first changed in the development COPYLIB.
When the new database is put into production, the de-
velopment COPYLIB is also moved into production, as
well as any programs that required modification or re-
compilation.

If the application system is so large that it cannot be
recompiled in a weekend, it should use partial field lists
and the same (***”) field list. This requires that an appli-
cation program declare a matching field list and buffer

area for each dataset that it accesses. The field list de-
clares the minimum subset of the dataset that the appli-
cation program needs.

Because partial field lists are more expensive at run
time, the applications programmer must code a one-
time call to DBGET for every dataset that the applica-
tion program will use. The same (“*”) field list is used
on all subsequent DBGET calls. Note that this can
cause problems if a common subroutine is called that
uses one of the same datasets, but with a different field
list.

In order to maintain an application with partial field
lists, there must be a way to cross reference every
program/dataset relationship. When a dataset changes,
the cross reference system is checked to see which pro-
grams use the dataset. Each of these programs must be
examined to see if it is affected by the change to the

dataset. It is not enough to fix the COPYLIB and re-
compile, since the field declarations are in the individual
source files, not in the COPYLIB file.

Dataset Buffers

The database designer assigns a short, unique prefix
to each dataset of each database. These prefixes are
used in the declaration of the database buffers for the
datasets. In addition, dataset buffer declarations must
include all 88-level definitions for flags, and sub-
definitions for IMAGE fields that are logically sub-
divided within the application.

The following is the full buffer declaration for the
M-CUSTOMER dataset of the STORE database. Note
that each variable is prefixed with “MCS-", which is the
prefix that was assigned by the database designer.

01 DB-BUFFER-M-CUSTOMER.
05 MCS-CITY PIC X(12).
05 MCS-CREDIT-RATING PIC S9(4)V9(5) COMP.
05 MCS-CUST-ACCOUNT PIC 9(10).
05 MCS-CUST-STATUS PIC X(2).
88 MCS-CUST-ADVANCE VALUE "10".
88 MCS-CUST-CURRENT VALUE "20".
88 . MCS-CUST-ARREARS VALUE "30".
88 MCS-CUST-INACTIVE VALUE "4oQ".
05 MCS-NAME-FIRST PIC X(10).
05 MCS-NAME-LAST PIC X(16).
05 MCS-STATE-CODE PIC X(2).
05 MCS~-STREET-ADDRESS PIC X(25) OCCURS 2.
05 MCS-ZIP-CODE.
10 MCS-ZIP-CODE-1 PIC X(3).
10 MCS-ZIP-CODE-2 PIC X(3).

Repeated items should be declared with an occurs
clause, or sub-divided, whichever the application re-
quires. For example, a cost field may be declared as a
repeated item representing fixed, variable, overhead,

COSTS, 4J2; <<

>>

Assuming that the COSTS field was declared in the
D-INVENTORY dataset, which has a prefix of “DIN”,

01 DB-BUFFER-D-INVENTORY.
05 DIN-COSTS.
10 DIN-VARIABLE-COSTS
10 DIN-FIXED-COSTS

10 DIN-OVERHEAD-COSTS
10 DIN-LABOUR-COSTS

and labor costs. Rather than declare the costs field as a
repeated item in the actual buffer declaration, sub-
divide it into the four costs. For example, assume a
declaration for costs such as:

Cost of an item. Each cost has two
decimal points and the cost item
is broken down as follows:

COSTS(1) = Variable costs
COSTS(2) = Fixed costs
COSTS(3) = Overhead costs
COSTS(4) = Labour costs

the following buffer declaration would be used for the
COSTS field:

PIC S9(7)V9(2) COMP.
PIC S9(7)V9(2) COMP.

IMAGE/COBOL: Practical Guidelines

PIC S9(7)V9(2) COMP.
PIC S9(7)V9(2) COMP.

4—4—13

Rule: Prepare sample COBOL calls to IMAGE in
source files, with one IMAGE call per file.

The sample IMAGE calls should be organized with
one parameter per line. When programming, these
template IMAGE calls must be copied into the COBOL
program and modified with the database name, dataset
name, and any other necessary parameters.

General purpose SECTIONS, declared in the

CALL "DBFIND" USING DB-

DB-SET-

DB-MODE1

COPYLIB, should NOT be used for the IMAGE calls.
These SECTIONS obscure the meaning of the COBOL
code. In addition, they can cause unnecessary branches
across segment boundaries.

A scheme for handling fatal IMAGE errors must be
declared, and the sample IMPAGE calls should refer to
the fatal-error section. Here is a sample call to the
IMAGE routine DBFIND:

DB-STATUS-AREA

DB~KEY~
DB-ARG-

IF NOT DB~STAT-0K AND NOT DB-NO-ENTRY THEN

PERFORM 99-FATAL-ERROR.

The fatal-error section (99-FATAL-ERROR) should
call DBEXPLAIN. It should also cause the program to
abort, and the system job-control word should be set to
a fatal state. Note that just using STOP RUN will not

set the system job-control word to a fatal state. The
following is an example of a fatal-error section. The
routine MISQUIT calls the QUIT intrinsic, which
causes the program to abort.

$PAGE "[99] FATAL ERROR"

**
* THIS SECTION DOES THE FOLLOWING: *
* 1. CALLS DBEXPLAIN WITH THE IMAGE STATUS AREA. *
* 2. CALLS MISQUIT TO ABORT THE PROGRAM. *
* *
* NOTE: THIS MODULE MUST ONLY BE CALLED AFTER A FATAL ERROR¥
* HAS OCCURED WHEN CALLTNG AN IMAGE ROUTINE. *
* *
**

99-FATAL-ERROR

CALL "DBEXPLATIN"

CALL "MIsSQuIT"

99-FATAL-ERROR-EXIT. EXIT.

Rule: Avoid tricky data structures, especially if they
cannot be easily retrieved and displayed with the
available tools (QUERY, AQ, PROTOS, QUIZ,
etc.).

Some examples of data structures to avoid: (1) julian
dates; (2) bit maps; (3) alternate record structures (RE-
DEFINES); (4) implied and composite keys/paths; and
(5) implied description structures. The more compli-
cated the database structure, the more likely it is that
programming or system errors will be created as a result
of the database design.

Database Maintenance

There are a number of steps that the database admin-
istrator must take in order to guarantee that a database

4—4—-14

2]

ECTION.

USING DB-STATUS-AREA.

USING DB-COND-WORD.

remains clean after it is implemented. A number of
standard programs must be run against each production
database at least once a month; others must be run
daily.

Backup

A number of other people have commented on the
backup problem of databases,’? but the problem is im-
portant enough to deserve comment again. Most
HP3000 shops do a full backup once a week and a par-
tial backup once a day. This is normally sufficient for
most purposes (e.g., source files, PUB.SYS, utilities),
but it is not adequate for most IMAGE applications. An
IMAGE database consists of several interrelated files.
A database that is missing one dataset is nearly useless.

Rule: EVERY backup tape should include ALL of the

files of ALL of the database that are used in
day-to-day applications.

There should be an easy way to store complete
databases onto partial backup tapes, without having to
do selective stores. The BACKUP program (available
from the San Antonio Swap Tape) helps solve this prob-
lem. The BACKUP program is run once a day against
every production database. It accepts the database
name as input and causes the last-modified date to be
changed to today’s date on every file of the database.
This causes the entire database to be included on the
daily partial backup.

In addition, the BACKUP program prints a listing
with the following information: the dataset name, the
current number of entries in the dataset, and the capac-
ity of the dataset. Further, the BACKUP program ex-
amines the relationship between the number of entries
and the capacity of each dataset, and prints a warning if
it thinks the capacity is too small. This listing must be
checked daily, in order to have time to expand the
capacity of a dataset before it is exceeded.

Measuring Database Performance (DBLOADNG)

The performance of a given database will change as
the database matures.

Rule: The perfqrmance of every application database
should be measured at least once a month.

There is one program that will measure, in great detail,
the performance of an IMAGE database. This program
is DBLOADNG,!2 and it is available from the HPIUG
contributed library.

DBLOADNG examines the performance of both
master and detail datasets, and reports a large number
of statistics. The most important are the percentage of
secondaries in master datasets, and the elongation of
detail datasets.

If there are a large number of secondaries in master
datasets, either the hashing algorithm is not working
well, or the capacity of the dataset needs to be in-
creased. Note that the hashing performance of a key,
such as customer number, can be improved by adding a
check digit to every customer number.

The “elongation” of a detail dataset indicates whether
logically related records are being stored physically ad-
jacent. For primary paths, the elongation factor should
be very small (1=perfect), since IMAGE tries to place
records of a primary-path in the same disc block (see
the DBLOADNG documentation and Optimizing IM-
AGE: An Introduction.!

If the performance of detail datasets is very poor be-
cause logically related records have been spread around
the disc, there is only one solution: RELOAD the
database using DBUNLOAD/DBLOAD. This will
cause the detail dataset to be organized along the pri-
mary path, and could result in significant performance
improvements.

Logical Database Maintenance

During the design phase of an IMAGE database,
many logical assumptions are made about the data in
the database. Some assumptions might be: (1) status
fields, which are two characters long in a detail dataset,
but have a long description in a master dataset; (2) keys
that are stored in detail datasets, but do not have an
explicit path into a master dataset; and (3) IMAGE
chains that are limited to a specific length (e.g., one
address per customer) or a range of lengths (e.g., no
more than 10 items per order). .

Rule: When designing a database, keep a list of logical
assumptions.

. These assumptions are dangerous, because they must

be maintained by the application software, not by IM-
AGE.

Rule: A program to check logical assumptions should
be implemented for every application system.

This program is often called DBREPORT, and its
purpose is to check these logical assumptions.
DBREPORT is often left until last, and often never im-
plemented. This is unfortunate, since the DBREPORT
program is the most important program in an applica-
tion system.

In Alfredo Rego’s paper, DATABASE THERAPY: A
practitioner’s experiences'?, he describes periodic
checkups for a database. The following is taken from his
paper:

Please notice that a good diagnosis system
must be nasty and sadistic by nature. It has as
its primary objective to FIND ERRORS, not
to certify a system as being error-free (there is
no such system anyway!). A good diagnosis
system must also be extremely patient and
humble, since it will fail many times. Please
keep in mind that there is a psychological in-
version in effect here: A good diagnosis sys-
tem fails if it does not detect any errors. And
most of the time it will not detect any errors,
since we hope and assume that the entity
being tested is reasonably error-free.”1

The DBREPORT program must be designed with Al-
fredo’s philosophy in mind. It should check EVERY
dataset in an application, and it should check EVERY
record for logical consistency. This includes simple
checks to see that every field in every dataset is within a
reasonable limit. Examples of this are status fields that
take on values from 1 to 10, but which are implemented
as J1. A J1 variable can take on values from —32768 to
+32767, which is certainly a larger range than 1 to 10.

The DBREPORT program must check all logical
dataset relationships. What happens if every customer
record has its address in a detail dataset? If the system
crashes while the user is adding a new customer, the
address record may not be added. DBREPORT must

4—4—15

%

check for these types of relationships (what will your
billing program do when it can't find an address?).

ADAGER

Rule: If an application system is going to depend on
IMAGE, ADAGER is a requirement, not an op-
tion.

ADAGER provides all of the restructuring facilities
necessary to maintain IMAGE databases: these
transformations cannot be accoplished with
DBLOAD/DBUNLOAD. Without ADAGER, numer-
ous conversion programs must be written.

While DBILOAD/DBUNLOAD can be used for some
simple database restructuring, it is prone to err. AD-
AGER is designed to be friendly to the end user, but,
more importantly, ADAGER guides the user through
every phase of the database restructuring process.

ADAGER provides a powerful facility, but it can also
be misused by the unsuspecting. In order to make AD-
AGER changes effectively, test them first on a devel-
opment database. Following changes to the database
structure, the application programs must be recompiled
(with buffers changed in the development COPYLIB),
and each program must be tested against the new
database.

Currently, ADAGER cannot be run from batch (at
least, not conveniently), nor does it produce a hard-
copy audit trail of the changes to a database.

Rule: ADAGER must be run on a printing terminal.

Keep the listing of the ADAGER changes to the test
database. Use it to verify that the changes to the prod-
uction database match exactly the changes to the test
database. After changing the production database,
move the development COPYLIB into production and
recompile all affected programs. File the hard-copy list-

4_4_16

ing of the ADAGER changes and keep it for future ref-
erence.

Because the schema is also used as the data dictio-
nary, it must be modified to indicate the new database
design. ADAGER's SCHEMA function can be used to
double check that all schema changes were made prop-
erly. When modifying the database schema, be sure to
apply all of the rules in the Schema section of this pa-
per.

BIBLIOGRAPHY
To gain a complete understanding of IMAGE., study the references
in this bibliography. A suggested order of study is: References 6, 7, 9,
10 and 11 for more ideas on database design; 5§ for some hints on
common programming errors; and 1, 3. 8, 12 and 13 for notes on
optimizing IMAGE databases and application systems in general.
Reference 1 is an excellent introduction to database optimization, and
it includes a discussion of the DBLOADNG program.
'Rick Bergquist. Optimizing IMAGE: An Introduction, HPGSUG
1980 San Jose Proceedings.
*Gerald W. Davidson, Image Locking and Application Design, Jour-
nal of the HPGSUG, Vol. 1V, No. 1.
3Robert M. Green, Optimizing On-Line Programs, Technical Report,
second edition, Robelle Consulting Ltd.

‘Robert M. Green, SPLAIDS2 Software Puackage, contains date edit-
ing routine (SUPRDATE) available from Robelle Consulting Ltd.
*Robert M. Green. Common Programming Errors With IMAGE/

3000, Journal of the HPGSUG, Vol. I. No. 4.

‘Hewlett-Packard, IMAGE/3000 Reference Manual.

"Karl H. Kiefer, Data Base Design - Polishing Your Image,
HPGSUG 1981 Orlando Proceedings.

8Jim Kramer, Saving the Precious Resource — Disc Accesses,
HPGSUG 1981 Orlando Proceedings.

*Ken Lessey, On Line System Design and Development, HPGSUG
1981 Orlando Proceedings.

‘*Brian Mullen, Hiding Data Structures in Program Modules.,
HPGSUG 1980 San Jose Proceedings.

"'Alfredo Rego. Design and Maintenance Criteria for IMAGE/3000,
Journal of the HPGSUG, Vol. III, No. 4.

?Alfredo Rego. DATABASE THERAPY: A practitioner’s experienc-
es, HPGSUG 1981 Orlando Proceedings.

"*Rernadette Reiter, Performance Optimization for IMAGE,
HPGSUG 1980 San Jose Proceedings.

Using COBOL, VIEW and IMAGE

A Practical Structured
Interface for the Programmer

Peter Somers
Cape Data, Inc.

INTRODUCTION

VIEW or V/3000, Hewlett-Packard’s screen handler
offers a convenient and versatile method of data collec-
tion. To fully utilize the capabilities of VIEW requires
the application programmer to go beyond the routines
available using the ENTRY program. Ideally the data
entry routine will include complete editing including
IMAGE data base checking and comprehensive error
messages. The routine should allow the programmer to
quickly “plug in” new applications and easily perform
maintenance. Additionally the program will provide
utility routines for data confirmation, screen refreshing,
paging, etc.

At our shop, Cape Data, we developed a general pur-
pose VIEW and IMAGE interface program. This pro-
gram written in structured COBOL allows new applica-
tions to go up, with custom editing, in a fraction of the
time previously required. The following discussion will
cover this interface routine and its application. I will
assume that the user has basic knowledge of both
VIEW and COBOL.

TABLE OF CONTENTS

1. Screen Design Tips
A. Error Messages
B. VIEW Editing
C. Screen Titles
2. Function Keys
3. COBOL Application Program
A. General
B. Data Division Considerations
C. Main Program Loop
D. Program Text
4, SPL Forced Read Subroutine

1. Screen Design

When designing your VIEW input screens using
FORMSPEG, the following techniques will help you get
the most out of VIEW.

A. Error Message Fields: Add error message fields
during form design wherever needed. Place the error
message field next to or under the corresponding data
field. The error message fields will remain invisible un-

less your program writes a message to the field. Create
the field with an enhancement of B (blink) and a field
type of D (display) and an initial value of spaces (Fig. 1,
Field 3). The last 24th line of the screen is reserved for
program error messages.

B. VIEW Editing: As a general rule let VIEW do as
much editing as possible. On numeric ficlds let VIEW
zero fill and test for numeric input during the FIELD
portion of VIEW’s editing. On alpha-numeric input
fields allow VIEW to left justify the data and optionally
upshift lower case characters (Fig. 1, Field 2).

C. Title: We reserve a Title area on all forms using
Field #1. The title field is initialized by VIEW to a save
field value. The VIEW forms file can contain the title
and any other constants in SAVE FIELDS.

Function Keys

When using a formatted screen program with a
Hewlett-Packard 2640-2645 type terminal, a special set
of function keys are used by the programs. The 8 func-
tion keys are located on the upper right hand side of the
terminal’s keyboard. They are labeled with blue letters
f1 through f8 in 2 rows. A blank Hewlett-Packard
template labels the function keys (#7120-5525). On the
2620 family of terminals, the keys are labeled program-
matically.

[]
SKIP CLEAR HELP REFRESH
£1 £2 l £3. || f4
MAIN
CONFIRM NEXT MENU EXIT
£5 ‘ £6 £7 £8

Function Keys

The function keys are used as follows in the interface
program: f1 SKIP — This key will cause the cursor to

4—12—1

skip to the next block of data. This is useful if you have
a number of fields to skip. The tab key only skips a field
at a time where the SKIP key will skip to the next block
of data.

f2 CLEAR (RESET) — This key causes the screen to
clear all fields and set the initial field values (usually
blanks). This key is useful if you have created a mess on
the screen and want to start over again.

f3 HELP — This key will cause the program to dis-
play an instruction screen. A special set of instructions
can be displayed relating to the particular form on the
screen when the HELP key was pushed. When you
have finished reading the HELP instructions, push the
ENTER key to return to the last form or the MENU (f7)
KEY to return to the MAIN MENU.

f4 REFRESH — This key resets the terminal, erases
the screen and brings up a fresh copy of the form. If you
loose your form due to a power or line failure or the
terminal hangs up, the REFRESH KEY will restore the
terminal to normal operation.

f5 CONFIRM — This key is used when you have
changed a record in the EDIT mode, or if the program
wants confirmation that the data on the screen is ac-
ceptable. The program will prompt with a message at
the bottom of the screen when a CONFIRM is desired.
Before a CONFIRM is requested the data must pass all
normal program edits.

Note:

The terminal normally does not read data when the
function keys are pushed. If you need to read the screen
contents after a function key has been pushed call the
IMMVREADFIELD Subroutine to force a read.

f6 NEXT — This key will cause the program to go to
the NEXT form or next step.

f7 MAIN MENU — This key causes the program to
display the MAIN MENU SELECTION form. Use this
key to change from one program mode to another.

f8 EXIT — This key ends the program.

3. COBOL Application Program

A. General: The attached COBOL program has suffi-
cient structure to allow the programmer to readily plug
in applications without having to spend additional time
coding VIEW procedures. At Cape Data, I have used
this program layout to do extensive data entry routines
which edit against the IMAGE data base, and provide
detailed error messages and help routines. The program
procedure division consists of 3 parts:

1. Opening
2. Main Loop
3. Closing

The program contains routines which call the VIEW
procedures listed in Fig. 7. The program also contains
special VIEW data fields in working storage.

1. Opening — The program opens the terminal, forms
file, the data base and displays the MENU screen.

4 —12—2

2. Main Loop — After opening the program performs
the Main Loop until either the 8 (exit) function key is
pushed, or the program encounters a fatal error. The
Main Loop consists of 3 parts:

a. Read Keys and Screen
b. Edit Input
¢. Process Input (if valid) and Refresh Screen

3. Closing — The program closes the terminal file,

forms file and data base.

B. Program Data Division Considerations: The work-
ing storage area contains the buffers needed by the var-
ious VIEW procedures used. Every VIEW procedure
called uses the VIEW-COM buffer (Fig. 2). Most of the
fields useful to the programmer have self-explanatory
names. Remember the V-Language field must be set to
zero for a COBOL program.

The data area passed between the program and
VIEW (using VGETBUFFER and VPUTBUFFER
calls) is defined as DATA-BUF (Fig. 3). This Buffer is
redefined for each screen layout. Note the title field and
error message ficlds.

The program uses a forms table which contains the
MENU selection character, form number, next form
number, and help form number for each routine. When
the user makes a selection from the Screen Menu, the
program scans this table to find the corresponding sc-
reen references (Fig. 4). The program picks up the Form
Name corresponding to the Screen Number from the
Form Name Table (Fig. 6). Additional routines and
forms can quickly be added by making additional en-
tries in the tables.

3. Program Main Loop

The program goes to the MAIN [LOOP and remains
there until the user pushes the f8 (exit) function key.
The program performs a terminal read (VREAD-
FIELDS) each time either a function key or the enter
key is depressed. The program then tests to see if any
function keys were pushed (VIEW returns the key
number pushed into the last key field of the VIEW-
COM buffer).

If the ENTER key was pushed (key zero) the pro-
gram will perform the edit routine corresponding to the
screen routine selected. Within each edit routine the
program does the following steps (Fig. 5):

. Zeros the field error array and set the field count.

Performs VIEW edits (VFIELDEDITS).

Get the data buffer from VIEW (VGETBUFFER)

Clear the error message fields.

Performs any user defined edits (if an error is de-

tected, a flag is set in the field error array and a

message is moved to the appropriate error field)

6. The data area is sent back to VIEW (VPUTBUF-
FER)

7. Perform VIEW edits again (VFIELDEDITS). This

zero fills and justifies data.

N o W N

8. The field error array is scanned and any error If the routine passes all edits, the program then goes

fields are set to blink (VSETERROR). to the corresponding valid record routine. If an error
9. The screen is updated and displayed (VSHOW- exists or a function key was depressed, the program will
‘ FORM). do the appropriate error and screen enhancing routines.

4. SPL Forced Read Subroutine

1 $CONTROL SUBFROGRAYM
2 << KEPT AS TIMMREAD >
3 << THIS ROUTINE IS CALLED TO FORCE >>
4 << AN IVMMEDIATE READ (RE-RCADC FOR DATA) >>
5 << IN PARTICULAR CASES WHERE THE USER >>
6 << USED A SOFT KEY TO INDICATE ACTIONS >>
7 << HE/SHE WANTS PERFORMED WITH THE DATA >>
8 << THAT HAS BEEN ENTERED ON THE SCREEN >>
9 << SINCE THE HITTING OF A SOFT KEY DOES D>
10 << NOT TRANSFER THE ACTUAL BUFFER DATA >>
11 << A CALL TO THIS ROUTINE OR ONE LIKE >>
12 << IT IS NEEDED TO GET THE SCREEN DATA >>
13 << INTO THE PROGRAM WHERE IT CAN BE >
14 << WORKED UPON >
15 << IN COBOL, THE CALL WOULD BE >
~-16 ~ < CALL "IMMVREADFIELDS" USING VCONT >>
17 << WITH VCONT BEING THE V/3000 CONTROL >>
18 << AREA >
--19 — << IN THE USER PROGRAM, THIS SHOULD BE >>
o 20 << TREATED EXACTLY AS IF IT HAD BEEN A D>
21 << CALL TO “VREADFIELDS® >
—32 - BESIN PROCFDURE IMMVREADFIELDS(CONT)3
23 INTEGER ARRAY CONT;
24 BEGIN
- 25 PROCEDURE VREADFIELDS(C)
26 INTEGER ARRAY C3
27 OPTION EXTERNALS
--28 CONT (550 .(1332)2=%13
29 VREADFIELDS(CONT)
30 CONT(55)(13:2):=03
31 END:
32 END.

4—12—3

FORMSPEC VERSIONY A, 00,01

FORMS FILES BUDGFURMJUEVELODP FDEVELDP

FORM: VENDOR_DATA
REPEAT OPTIONS N

NEXT FORM OPTION: C
NEXT FORM: BUDMAINT_HELP

VENOOR MASTER SPECIFICATONS,

RRAAXAARRN RAARARARAS SRR AAR AN

L1ILE .

INPUT & EODITING

AR RRAAE SARRTAARE ARAARARAR AANRRRAAN KRR RRRARR

VENDUORSM
VENDOR NUMBER

VENDUR’S NAME
VENDOR ADORESS

VENDUR®’S CITY

PAYMENT ADDRESS

PAYMENT CITY

ASTER TINFORMRETION

Y NBR_ YENR_ERR___
VEND_NAME —
YEND AR el ——
YEND_ADDRZ —— -
YEND _CIXY o we== STATE: 81 2IP3 y 21P___..
B ADDRES S e
SAQRRESSE o e el
E_CllYy ece- OSTaTE: P§S 21P: P_ZIP_____

(PAYMENT ADDRESS USED ONLY IF YQU WNANT PAYMENTS GD TO A DIFFERERNT ADDRESS)

VENDOR'S PHONE NUMBER: (AL_) EXC~PHQN

1099 CODE Ig
cQane

VENDOR CODE YL VENDOR STATUS ¥§
ERR s1aius ERR

ARRRARNARN ANRRRAARN RAARRAARR

FIELOS: TITLE
NUME 1 LEN: 69
INIT VALUE?S
nex PROCESSING SPECIFICATIONS
INIT
SET T0 SFTITLE

VAME:?

FIELD?: v_NBR
NUM: 2 LEN: 6
INIT vALUE:
#xe PROCESSING SPECIFICATIONS
FIELOD
JUSTIFY RIGHT
FILL LEADING "o"

NAME:

FIELD: VEND_ERR
Hyv: 8 LEN: 26 NAME ¢
INIT vaLuUE:

FIELD: VEND _NAME
NUv: d LEN: 3u
INIT vaLUE:

NAME $

4—12—4

RANARRRRR RANRRNRAAN KARRARANR ARAARRAAAR ARNARARR A AR

TITLE ENH: NONE FTYPE: D DTYPE! CHAR
LR 3

V_NAR ENH: 1 FTYPE: R DIYPES DIG
L BN

VEND_ERR ENH: R FTYPE: D ODTYPE: CHAR
VEND_NA-E Eurs FTYPES ® DTYPES: CHAR

Figure 1

NN NN N NN NN NTIPTTT

O DN ST E W

O XNTNEWwWN-

OIB~NTNE W -

- e ’
OO C LIV VDB LLLODIOLCTETTPIEE ETEEX

)
N ==

10,3
10.4
10,5
10,6
10,7
10,8
10,9
i1

11,1
11.2

01 vIieEwv=COn,

05
(VA
0s
0s
095
04
09
U>
U5
09
05
05
s
0%
0%
(1}
0
UK
uh
05
0s
0%
05
09
09
09
05
0s
05
09
05
0§
09
05
05
08
05
08
0S
05
05
0S
0S
05
09
05

Ve=STATUS
VeLANGUAGE
VeCUMwAREA=LEN
FILLER
VIEw=MODE
LAST=KEY

Ve M=ERRS
Vel NDON=FNH
FILLER
FILLER
V=CFNAVE
FILLEK
Ve=FNAME
FI1LLER
VekEPEAT=0PT
venF=0PT
VengR=L [NES
VepBdtJF =LEN
FILLER
FLLLER
V=DELETE=FLAG
VeSHOW=CONTROL
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FLLLER
FILLER
VeNUMeRECS
VeREC=NER
FLLLER
FILLEK

VeTERM=FILE=NBR

FILLER
FILLER
FILLER
FILLER
FLILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FLLLER

PIC
Pic
Flc
PIC
PIC
PIC
P1lC
PIC
PIC
PIC
PIC
PIC
PIC
PlIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PlC
PIC
PIC
P1C
PIC
PIC
PIC
PIC
PIC
PIC

Figure 2

S9(4)
59 (4)
59(4)
S9(4)
S9(4)
$9(4)
59(4)
$9(4)
sa(4)
$9(4)
X(15)
X

X(19)
1

$9(4)
S9(4)
s9(4)
$9(4)
$9(4)
S9(4)
S9(4)
$9(4)
S9(4)
$9(4)
59(4)
59 (4)
$9(4)
§914)
$9(4)
$9(4)
S9(6)
89 (e)
89 (4)
S9(4)
89 (4)
8$9(4)
$9(4)
89 (4)
$9(4)
$9(4)
$9(4)
$9(4)
§9(4)
59(4)
5$9(4)
$9(4)

COmP
coMp
coupP
Cnup
covp
covp
COMP
comp
covp
CoMpP
VALUE
VALUE
VALUE
VALUE
COMP
cCovp
coup
COovpP
COMP
covwp
COMP
COMP
CovpP
COoMP
COMP
COMP
cCoMP
CNMP
cCovpP
COMP
COMP
comp
covp
COMP
COMP
COMP
COMP
COMP
CoMP
COmMP
CoMP

COvMP

comp
cowp
COvP
comP

VALUE
VALIJE
VAL UE
val_UE
VAL JE
VALUE
VALIUE
val UE
VAL UE
VALUE

TERO,
JER(.-
A0,
ZERO.
7ERO,
7ERO.
7ERO,
ZERU,
JERO,
2ERO,

SPACES.,
SPACES,
SPACES,
SPACES,

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

7ERQO,
7ERD .
ZERU,
ZEROD,.
ZERO,
ZERO,
lERO,
ZERO.
ZERO,
2EROD,
ZERO,
7ERO,
2ERO,
2ERO,
ZERO,
ZERO,
ZERO,
2ERO,
ZERO,
ZERO,
ZERD,
ZERU.
7ERO,
ZERO,
ZERO,
2ERO,
ZERO,
2ERO,
ZERO,
7ERO,
ZERO,
ZERO,

4—12—5

15,59 {1 DATA-UF
15.4 09 FILLER PIC X(69),
15.9 Ny DATA~TN PIC Xx(443),
13.56
1.7 01 MENU=DATA REDEF INES DATA=UIF,
1.8 09 FILLER PIC x(69),
15.9 09 SELECT=IN PIC x.
14 09 SELECT=£RR PIC X{2K),
14,1
14,2 0t VEND=IN REDEFINES DATa=31JF,
14,38 09 FILLER PIC x(69),
14.4 05 VEND=N3R PIC x(s),
14,9 09 VEND=NHR=FERR PIC X(2k).
14,6 05 VEND=NAVE PIC X(30),
14,7 Y S=ApDRESS PIC x(30),
14,8 US 3=ADDKRESS? PIC x(30),
14,9 08 S=ClIYy PIC x(20),
1S 05 S=STATE PIC X(2),
15,1 05 S=4]P PIC x(10),
19.¢2 03 P-ADDKESS P1C x(3%50),
15,3 09 P=ADDRESS? PIC x(39),
15,4 S P=CITY PIC x(e20n),
19,5 09 P=STATE PIC x(2),
15.6 05 P=21P Pic x(10),
15.7 05 PHONE=NBR,
15,8 10 PHONE=AC PIC X(3),
15,9 10 PHONE=EX PIC Xx(3),
16 10 PHONE=ND PIC x(4),
16,1 05 FLAG=1099 PIC X(2),
16,2 05 VEND=CODE PIC x(2),
16.3 05 VENDUOR=-STATUS PIC x(2),
16.4 08 VEND=CODE=ERR PIC x(26).
16,5 0S5 VEND=STATUS<ERR PIC x(26),
16,6
16,7 01 BUDG=IN REDEFINES DATA-BUF,
16.8 0S5 FILLER PIC X(69),
16.9 09 ACCT=NBR PIC x(20),
17 0S5 BUDG=-NBR=ERR PIC X(26),
17.1 05 BUDG=NY=AMT PIC x(13),
17,2

Figure 3

4—12—6

19
19,1
19,2
19.5
19,4
19,5
19.6
19,7
19,8
19,9
20

20,1
20,2
20,3
20.4
20,5
20,6
20,7
20,8
20,9
21

21,1
21.2
21.3
21.5
21.6
21,7
21.8
21.9
22

22.1
22.2
22.3
22.4
22,5
22.6
22,17
22.8

22.9

23
23.1
23.?
23.3
25,4
23.5
23.6
23,7
23,8
25,9
24

24,1
24,2
24,3
24,4
2445
24 .6
24,7

Fu<v=IiAHLc,

0% FURrwm=1,
10 FILLER
10 FILLER
10 FILLER
10 FLlLLER

05 FORM=2,
10 FILLER
10 FILLER
10 FILLER
10 FILLER

05 FORM=3,
10 FILLER
10 FILLER
10 FILLER
10 FILLER

05 FORM=4,
10 FILLER
10 FILLER
10 FILLER
10 F1LLER

05 FORM=4,
10 FILLER
10 FILLER
10 FLLLER
10 FILLER

05 FORM=h,
10 FILLER
10 FILLER
10 FILLER
10 FILLER

05 FURM".
10 FILLER
10 FILLER
10 FILLER
10 FILLER

05 FURM=8,
10 FILLER
10 FILLER
10 FILLER
10 FILLER

05 FORM=9,
10 FlLLeRr
10 FILLER
10 FLLLER
10 FLILLER

05 FORM=10
10 FILLER
1u FILLER
10 FILLER
1o FILlEr

FORM=SPEC~ARRAY
09 FURM=SPECS
10 FURM=1D
10 FURMe 4R
Ly FORM=NEXT
10 FORM=AELP

PIC
PIC
PIC
PIC

P1C
PIC
P1C
P1C

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC
P1C
P1C
PIC

PIC
PI1C
PIC
PIC

PIC
PIC
PIC
PIC

x
9(4)
9(4)
9(4)

X

9(4)
9(4)
9(4)

X
9(4)
9(4)
9(4)

X
9(4)
9(4)
9(4)

X

9(4)
9(4)
9(4)

X
9(4)
9(4)
9(4)

X
9(4)
9(4)
9(4)

X
9(4)
9(4)
9(4)

X

9(4)
9(4a)
9(4)

X

9(4)
9(1)
9(4)

VALUE "72",
COMP VALIE
cCOvMP VALUE
COMP VALUE

VALUE "aA",
COMP VALUE
COMP VALUE
COMP’ VALUE

VALUE ||B|I'.
COMP VALUE
COMP VvALUE
COMP VALUE

VALUE "Cc".
COMP VALUE
COMP VAL UE
COMP VALUE

VALUE "D",
COMP VALUE
COMP VAL UE
COMP VALUE

VALUE "E",
COMP vaALUE
COMP VALUIE
COMP VALUE

VALUE "Z",
COMP VALUE
COMP VALUVE
COMP VAL VUE

VALUE "2".
COMP VALIUE
COMP VALLUE
COMP vaALUE

VALUE "Z2",
COoMP VALUE
COvP vaALUE
COvP vaALUE

VALHE 2",
COvVP VALUE
COMP VALUE
COMP VALUE

RENDEFINES FORM=TABLE.
OCCURS

PIC
PiC
PIC

PIC
Figure 4

X,
9(4)
9(4)

4(4)

10 VIvVES,

cove,
CoMP,

comp,

1.
Te
14,

2.
1.
13,

3.
1.
13,

4.
1.
11.

2.
1.
13.

1.
1.
14.

1.
1.
14,

1.

14,

4—12 -7

P9 01 FORv=nAAM~TARIE,
2H 05 Furve=i,
251 10 FILLER PIC x(15) VALUE "sudvMA[NT_MENY "
25,2 10 FILLER PIC 9(a) LCOmP VALHUE 96,
25.3 US FOrRM=P,
2.4 10 FILLER PIC x(15) VALJE "VENDNR_DATA "
25%.5 1y FILLER PIC 9(4) COVP VALUE 357,
€5.6 05 FORm=-%,
25.7 10 FILLER PIC x(15) VALUE "BANK_MSTR_DATA "
25.8 10 FILLER PIC 9(4) COMP VALUF 325,
5.9 05 FORM=4,
26 10 F1LLER PIC X(15) VALUE "BUDGET_LOAD .
2b.1 10 FILLER PIC 9(4) COVP VALUE 128,
26,2 05 FORM=5,
b3 10 FILLER PIC x(15) vALUE * "
eb .4 10 FILLER P1C 9(4) COMP VALUE 96,
26e5 05 FUORM=6,
2hob 10 FILLER PIC x(15) VALUE " "
26,7 10 FILLER PIC 9(4) COMP VALUF 96,
2b.B 05 FORmM=7,
26.9 10 FILLER PIC x(15) vALUE "
el 10 FILLER PIC 9(4) COMP vaLUE 96,
e7.1 05 FURM=§,
2l,.,2 10 FILLER PIC X(1S) VALUE * w
27.3 10 FILLER PIC 9(4) COMP VALUE 96,
e7.4 05 FURM=9,
27.5 10 FILLER PIC x(15) VALUE * "
2l.6 10 FILLER PIC 9(4) COMP VALUE 96,
el.7 05 FUrRM=10,
el.s 10 FILLER PIC X(15) VALUE " "
27.9 10 FILLER PIC 9(4) COUMP VALUE 96,
28 05 FORM=11,
28,1 10 FILLER PIC x(15) VALUE "HELP_BANK_DATA ",
et,e 10 FILLER PIC 9(4) COMP VALUE 69,
2803 05 FORM'IE.
ed. 4 10 FILLER PIC X(15) VALUE "HELP_RUDG_LOAD ",
28,5 10 FILLER PIC 9(4) COMP VALUE 69,
28,6 05 FORM=13,
28,7 10 FILLER PIC X(15) VALUE "HELP_VENDOR "
28,8 10 FILLER PIC 9(4) COMP VALUE 69,
28,9 05 FURM=14,
29 10 FILLER PIC x(15) VALUE "BUDMAINT_HELP ",
9.1 10 FILLER PIC 9(4) COMP VALIIE 69,
29,2 05 FURM=15,
2d3.3 10 FILLER PIC x(15) VALUE "HELP_CREDIT_SuP",
29,4 10 FILLER PIC 9(4) COMP VALUE 69,
29.5
29.6 01 FORV=NAME=ARRAY RENDEFINES FORMevAME~TABLE,
29,7 U3 FURM=NAAE=]NFO OCCuUxRS 1S TIMES,
29,8 1V FURM=NAME PIC X(1%),
23.9 10 FOrM=ATAa=LEN PIC 9(4) COM2,
30
Figure 4a

4 —12—8

48,3
48,4
48,5
48,6
48,7
48.8
48,9
49

49,1
49,2
49,3
49,4
49,5
49.6
49.7
49.8
49.9

50,1
50,2
50.3
50,4
50.5
50.6
50,7
50.8
50,9
51

51,1
51.2
51.3
51,4
51.5
51,6
51,7
51.8
51.9

52.1
S52.2
52.3
52.4
52.5
52.6
S52.7
52.8
52,9
53

102000V IT=A,
MIOVE Z7ERD TO CHECK=RESULT,
MOVE ZEKU TO FLELD=ZERD,
MOVE 16 TO FIELD=CNT,
PERFURM 805000=VIEN=EDTT,
PERFORM 807000=-GET=BUFFER,
MOVE SPACES TO VEND=-NBR=ERR, VEND=-STATUS=ERR,
PERFORM 102100~CK=VEND=NBR,
PERFORM 102200=CK=VEND=CUDE,
PERFORM 102300=CK=VEND=STATUS,
PERFORM 102400=CK=VEND=1099,

PERFORM 809000=-PUT=BUFFER,

PERFORM B80S5000«-VIEW=-EDIT, ’
IF. V=NUM=ERRS NOT = ZERO MOVE 1 TO CHECK»RESULT,
MOVE ZERQ TO FIELD=~LOC.

PERFORM 813000-SET=ERROR-FIELDS FIELD=CNT TIMES,

102100~CK=VEND=NBR, _
MOVE VEND=NBR OF VEND=~IN TO ARGUMENT,
PERFORM 831000=-GET=VEND=MSTR,
IF. COND=WORD = 17 NEXT SENTENCE
ELSE MOVE "INVALID! DUPLICATE NUMBER" 70 VEND~NBR<ERR
MOVE 1 TO FIELD=ERR (2)
MOVE | TO CHECKeRESULT,

102200~-CK=VEND=CODE .
IF VEND-CODE OF VEND=IN = "VYN" OR = "VM" OR = "DP"
NEXT SENTENCE
ELSE MOVE "INVALID VENDOR CODE!"™ 7O VEND-CODE=ERR
MOVE 1 TO FIELD=ERR (19)
MOVE 1 TO CHECK-RESULT,

102300=-CK~VEND=STATUS,
IF VENDOR-STATUS OF VEND=IN = ®"CR" OR = "xx"
NEXT SENTENCE
ELSE MOVE "INVALID STATUS CODEI"™ TO VEND=STATUS~=ERR
MOVE 1 TO FIELO=ERR (20)
MOVE 1 TO CHECK=RESULT,

102400=CK=VEND=1099,
IF FLAG=1099 (F VEND=IN = SPACES OR = "y »
NEXT SENTENCE
ELSE
MOVE 1 TO FIELD=ERR (18)
MOVE 1 TO CHECK=RESULT,

Figure §

4—12—9

Summary of VIEW Procedures

PROCEDURE FUNCTION
VCLbSEBATCH Closes batch file.
VCLOSEFORMF Closes forms file.
VCLOSETERM Closes terminal file.
VERRMSG Returns message associated with errer code.
VFIELDEDITS Edits field data and performs other field processing.
VFINISHFORM Performs final processing specified for form.
VGETBUFFER Reads contents of data buffer into use.r program.
VGETFIELD Reads field from data buffer into user program.
VGETNEXTFORM Reads next form into form definition area of memory; window and data buffer are not
affected.
VGETtype Reads field from data buffer to user program, converting data to specified type.
VINITFORM Sets data buffer to initial values for form.
VOPENBATCH Opens batch file for processing.
VOPENFORMF Opens forms file for processing.
VOPENTERM Opens terminal file for processing.
VPRINTFORM Prints current form and data on offline list device.
VPUTBUFFER Writes data from user program to data buffer.
VPUTFIELD Writes data from user program to field in data buffer.
VPUTtype Writes data of specified type from user program to data buffer, converting data to ASCII.
VPUTWINDOW Writes message from user program to window area in memory for later display.
VREADBATCH Reads record from batch file into data buffer.

VREADFIELDS
VSETERROR

VSHOWFORM

VWRITEBATCH

Reads input from terminal into data buffer.
Sets error flag for data field in error; and moves error message to window area.

Updates terminal screen, merging the current form, any data in buffer, and any message
in window.

Writes data from data buffer to batch file.

4—12—-10

Figure 6

W -

- gt b P heb fb s b et
=

W E~NTD

WENUPE WV

O @ N NS W

O PN N & wlu -

NV GV UNE EESLEEEEREBUWWUKWUWKWNWWWWNIVNNNIVVNIVV

O X NTPTE NN -

FOITTTOCCC RN UG

COBOL VIEW Application Source Program

SCONTROL LIST, vOSOURCE,USLIANTIT,BRDUNDS
INDENTLFLICAYIUN DIVISLON,
PROGRAM=1D,
LAYOUT,
**xTHIS PRUGRAM PROVIDES A LAYOUT FOR USING VIEW FORMS WITH COBOL.,
x* THE PRUOGRAM DISPLAYS, EDITS, aND UPDATES MANY FORMS,
xxx VERS 0,00 APRIL 9,1980, :
AUTHOR,
P SOMERS,
INSTALLATION,
CAPE DATA INC,
xx« (C)COPYRIGHT 1980 CAPE DATA INC, CAPE MAY,NEW JERSEY 08204
DATE=COMPILED,
ENVIRONMENT DIVISION,
CONFIGURATION SECTION,
SOURCE=COMPUTER, HP=3000,
OBJECT=COMPUTER, HP=3000,
INPUT=DUTPUT SECTION,

DATA DIVIS1UN,

NUORKING=STORAGE SECTION,

77 FBASE PIC %X(13) VALUE * BUDGET,PUB:",
17 PASSAHORD PIC Xx(8) VALUE "ABC1234:",
T7 DSET=NAME PIC X(16) VALUE SPACES,
77 NO=1TEM PIC X(2) VALUE "0:",
17 ITEM PIC X(16) VALUE SPACES,
77 LIST PIC X(30) VALUE SPACES.,
77 ALL=-ITEMS PIC X(2) VALUE "a:z",
77 SAME~ITEMS PIC X(2) VALUE "x3",
77 ARGUMENT PIC X(20) VALUE SPACES,
77 MODEL PIC 9(4) COMP VALUE 1§,
77 MODER PIC 9(4) COMP VALUE 2.
77 MODE3 PIC 9(4) COWP VALUE 3,
77 MODES PIC 9(C4) COMP VALUE S,
77 MODE7 PIC 9(4) COMP VALUE 7,
77 M™MODE=FLAG PIC X,
77 LOC=FORM PIC 9(4) covp,
77 LOC=FORM=NAME PIC 9(4) COwmP,
77 LOC=FIND P1C 9(¢4) COmP,
17 FUTURE=FLAG PIC 9,
77 NEA=FLAG PIC 9,
77 LAST=RESULT PIC 9 ,
17 CHECK=RESULT PIC 59(4) COYP,
01 BELL P1C X VALUE " ",
01 STATUS=AREA,

05 CUND=ANQRD PIC S9(4) cCOowP,

0y =L PIC S9(4) covp,

05 R=N PIC S$S9(9) comp,

05 C=L PIC S9(9) comp,

09 H=A PIC S9(9) comp,

15 F=A PIC S9(9) COMP,

U1 VIEN"CUMQ
05 VveSTATl)S PIC S9(u) COMP VALUE ZERO.

4—12—11

[o e 3
* s e
L~

PRV VI

O X~ TN

e o o ® o @ ® o o o o o
BNV E NN -

O ® N UV E WY

—

10,1
10,3
10,4
10.5
10,6
10.7
10.8
10,9
11

11.1
11,2
11.3
11,4
11.5
11.6
11,7
11.3
11.9
12

12.1
12.°
12.%8

—
[
n

4—12—12

01

01
0]
01
1
(18]
01
i)
1
VR

Oy ve=Lanhiablh FIC S92 (u) COP VAILUE JERY,
Dy VeLuMwaREd~LEn PIC S9(/1) COHMP VALYE kO,
09 FILLENW PIC S9(4) COwP vALdE [ZFRU,.
095 VIEw=v0)E PTC So(a) Cnvp vaLlE ZFRO,
05 LAST=KETY PIC S9(4) COvwP VALUE 7EROU,
U V=NUM=ERRS PIC S9(4) COMP VALUE ZERO,
0% Ve lNDIA=EANH PIC S9(71) COMP VALIHE ZFRU,
05 FILLER PIC $9(d) COMP VALUE ZERO,.
0S FLILLER PIC S9(4) Cowvp VALUUE ZERD,
05 V=CFMAME PIC X(15) VALUE SPACES,
05 FILLER PIC x VALIIE SPACES,
09 V=NFNAVE PIC x(19) VAL UE SPACES,
05 FILLER PIC x VALUE SPACES,
0% V=REPEAT=QPT PIC S9(4) CoMP VvALUE ZERO,
U5 Vv=iNF=yP] PIC 59(4) COMP VALUEF ZERO.
05 V=NBR=LINES PIC S9(4) COMP VALUE ZERO,
0S5 VeDBUF=LEWN PIC S9(4) COMP vALUE ZERO,
05 FILLER PI1C s9(4) COMP VALUE ZERO,
05 FILLER PIC S9(4) Comp VALIIE 7ERU,
05 V=0ELETE=FLAG PIC s9(4 COowp VALUE ZERO,
09 V=5HOWN=CONTROL PIC 59(4) COMP VALUE ZFROQ,.
09 FILLER PIC $9(4) COMP VALUE ZERO,
05 FILLER PIC s9(4) COMP vALUE ZERO,
05 FILLER PIC 59(4) comup VALUE ZERU,
0% FIILLER PIC S9(4) COMP VALIE ZEROD,
N5 FLLLER PI1C s9(4) CoMP vaALUE 7€R0O,
Us FILLER PIC $9(4) COMP vALUE ZERO,
US FLLLER PIC S9(4) COMP VALUE ZERO,
05 FILLER PIC S9(4) CoMP VALUE ZERO.
05 V=NUM=RECS PIC S9(6) CNMP VALUFE Z2ERO,
U5 V=REC=NBR PIC s9(6) COMP VALUE ZERO,
05 FILLER PIC S9(4) COMP VALUE ZERU.
0S5 FILLER PIC S9(4) COMP VALUE ZERO,
05 V=TERM=FILF=NBR PIC s9(4) COMP VALUE ZERO,
05 FILLER PIC S$9(4) COMP VALUE ZERO,
09 FILLER PIC $9(a4) COMP VAILUE ZERQ,
05 FILLER PIC so(a) CoOMP VvALLUE ZERO,
05 FI1LLER PIC S9(4) comp VALUE ZERU),
U FILILER PIC 59(4) COmP vALUE ZERO,
05 FILLER PIC S9(4) ComMP VALUE ZERO,
03 FILLER PIC S9(4) COMP VALUE ZEROD,
05 FILLEK PIC S9(4) COMP VALYJE ZERO,
05 FILLER PIC $9(4) COMP VALIUE 7ERU.
05 FILLeR PIC 39(4) COMP VALUFE ZERD,
05 FILLER PIC S9(4)Y COvP yA[LLUE 7FRO,
VeF |LE=idAME PIC X(36),
ERI=ME S=RUF PIC X(78).,
LEN=ERK=HUF PIC 59(4) CaMp VALIIF 76,
LEV=ERR=MES PIC $9(4) CIMP VALUE 7ERD,
TFRV=F [LE PIC Xx(8) VALUE SPACES,
DATA=LEN PIC Sa(4) Cavp
FIELO=NBR PTIC S9(4) COvP VALUE ZFRD,
ACT=FLELD=LEN PIC 59(4) Ca4P VAL UE ZERO,
NEX[=FLELD=3R PIC S9(4) CIMP VAL IJE ZFRN,
W=k S5AGE PIC S59€4) COMP VAL JE =1,

12,4
12,9
12.4
12.17
leia
12,9
13

13.1
13,2
13.3
13.4
13.5
13.6
13,7
13,8
13.9
14

14.1
14,2
14,3
14,4
14,5
14,6
14,7
14,8
14,9
15

15,1
15.2
15.3
15.4
15.9
15.6
15.7
15,8
15,9
16

16.1
16,2
16,3
16.4
16.5

1646

16,7
16.8
169
17

17.1
17,2
17.5%
17.4
17.5
17.6
17.7
17.8
17.9
14

o1
U
vl

01

01

01

01

01

A=

NifV-
Nijv=

JuT
JiSP=13

ACCT=MSTR

VEND=MSTK

PIC A(13).,

PIC S$S9(9)1V49,

PIC ------—--9.99.
COPY ACCTMWSIR,

COPY VENDMSIR,

DA‘A-BUP.
05 FILLER PIC X(69),
0S DATA=-IN PIC Xx(443),
MENU=DATA REDEFINES DATA=BUF,
09 FILLER PIC X(69),
05 SELECI=IN PIC X,
05 SELECT=ERR PIC x(26),
VEND=IN RENDEFINES DATA=3UF,
05 FILLER PIC x(69),
0S5 VEND=NBR PIC X(6),
08 VEND=NBR=ERR PIC x(26),
05 VEND=NAME PIC X(30),
05 S=ADDRESS PIC Xx(30),
0S S=ADVURESS? PIC x(30),
05 S=C1TY PIC Xx(20),
05 S-STAIE FIC x(2),
05 S=71P PIC x(10),
05 P=ADDRESS PIC x(350).
05 P=ADDRESS? PIC x(30),
05 P=CITY PIC x(20),
05 P=STATE PIC x(2).
05 P=21P PIC x(10),
05 PHONE=NBR,
10 PHONE=AC PIC x(3),
10 PHONE=EX P1C Xx(3),
10 PHONE=NQ PIC Xx(4),
05 FLAG=1099 PIc x(2),
0% VEND=CODE PIC x(2),
09 VENDOR=STATUS PIC X(2),
05 VEND=CONDE=ERR PIC X(2K),
0S VEND=STATUS=ERR PIC x(26),
01 BUDG=LN RFODEFINES DATA=RUF,
09 FILLER PIC x(63),
09 ACCT=NAR PIC xX(20),
085 BUDG=NRK=ERR PIC x(26),
05 BUDG=NY=AMT PIC x(13%),

Y222 2 222 R 222222 R 222 RS EES R RERRRREARSREN

L 8 A
LR &
LE 2]
* k%

kxk

Ak k

FORM

TABLE LAYODUTF:
SFLEGCTION CHARACTER
FORM NIMRER

NEXT FORKM NUVHBER
HELP FORM NUMIER

' X R R 2R R A2 2SR A RE R R AR R R R R R SRR RS

4—12—13

1341
16,72
19.4
18,4
18.5
18.6
18,7
18,8
18.9
19

19,1
19,2
19.3
19,4
19,5
19,6
19.7
19,8
19,9
20

2041
20,2
2u,3
20.4
20,95
20,6
20,7
20,8
20.9
21

2l,.1
el.e
el,.3
21.0
21.5
el.b
el.?
21.8
21.9
22

22,1
°c.?
22.3
22.4
2.5
22.h
ed.’
22, f
22,9
es

23.1
23,2
23.5
e3.4
25.5
23.6
2%.7

4—12—14

AAKXARAX Kk kKA Ak ko A AKX R AKRRAAARA RN K Ak k b KA X R AR AR AR Ak kxR

LR R Faoxka NAME TAsLE LAYyDul:

kX FORM NAME (VIE. FURY NAME)
* A& LENGTH OF DATA FIELDS

* kN

LAASARES A EEER SRS SRR R R R R R R R S R R R R S R R R R R D]

01 FORM=TaAGLE,
05 FURM=~1,

10 FILLER PIC X VALUE "Z",
10 FILLER PIC 9(4) CcOMP VALLUE
10 FlLLEN PIC 9(4) COMP VALNE
10 FILLER PIC 9(4) COMP vaALUE
05 FORM'E.
10 FILLER PIC X VALUE "a",
10 FILLER PIC 9(4) COMP VALUE
10 FILLER PIC 9(4) COMP VALUE
10 FILLER PIC 9(4) COMP VALUE
0S FUORM=-3,
10 FILLER PIC X VALUE "R",
10 FILLER PIC 9(4) COMP VALUE
10 FILLER PIC 9(4) COMP VvALUE
10 FILLER PIC S(4) COMP VALIIE
05 FURM=4,
10 FILLER PIC x VALLUE "C",
10 FILLER PIC 9(4) COMP VALUE
10 FILLER PIC 9(4) COMP vALLUFE
o FILLER PIC 9(4) COMP VALIIE
05 FORmM=49,
10 FILLER PIC X VALUE "n",
10 FILLER PIC 4Y(4) COMP VALLIUE
10 FILLER PIC 9(4) COMP vaALUE
10 FILLER PIC 9(4) COMP VALUE
0S5 FURM=6,
10 FILLER PIC X VALUE "E",
10 FILLER PIC 9(4) COMP VALUE
10 FILLER PIC 9(4) COMP VALUE
10 FILLER PIC 9(4) COMP valLUE
05 FOrRM=/,
10 FILLER PI1C X VALUE "7",
10 FILLER PIC 9(4) CuMP VALIIE
10 FILLEN PIC 9(4) CUMP VA[LUE
10 FIlolex PIC Y9(0) COVP vaALUE
U9 FORM=&,
1G FILLER PTC X VALUE ®»72",
10 FILLER PIC Y(4) COMP VAL IE
10 FI1LILEk PIC 9(d) LIMP vALUE
10 FILLER PIC 9(4) COMP VALIJIE
04 FUrM=9,
19 FILLER PIC X VALUE "7",
10 FILLER PIC 9(4) COMP VAL HE
10 FILLER PIC 9€(4) COMP VvALUE
10 FILLER PIC S (4) COMP VAL UE
03 FORM=10,
10 FILLEx PIC x VALUE "7",

1.
1.
14,

2.
1.
13,

3.
)
13,

S.
1.
12.

1,
1.
12.

1,
1.
14,

23.6
23,9
-

24,1
24,2
24,3
24.4
24,5
2d,.h
24,7
24,8
24,9
25

25.1
25.2
25.3
eS.d
25.5
25.6
25.7
25.8
25,9
26

26,1
eb.2
26,3
26,4
26.5
26,6
e6.7
26,8
26,9
27

27l.1
el.2
27.3
e7.u
el.s
27.6
27.7
27.8
27.9
28

26.1
23,2
28,3
28.4
28,5
23 .5k
2.7
28.8
en.9
eI

29.1
2v.2
29.3
29,4

10 FILLER
10 FILLER
jo FILLER

01 FOIM=SPEC=ARRAY
09 FURM=SPECS
10 FORM=1D
10 FORM=4BR
10 FORM=NEXT
10 FORM=HELP

01 FORM=NAME=TABLE,
05 FORM=1,
10 FILLER
10 FILLER
05 FORM=2,
10 FILLER
10 FILLER
095 FORM=3,
10 FILLER
10 FILLER
0S FORM=4,
10 FILLER
10 FILLER
08 FURM=Y,
10 FILLER
10 FILLER
0% FURM=6,
10 F1LLER
10 FILLER
0S5 FURM=T7,
10 FILLER
10 FILLER
0S5 FUORM=8,
10 FILLER
10 FILLER
05 FORM=9
10 FILLER
10 FILLER
05 FORM=10,
10 FILLER
10 FILLER
05 FORM=11,
10 FILLER
10 FILLER
05 FURM=]12,
10 FILLER
10 FILLER
09 FURM=13,
10 FILLER
10 FILLER
05 FORM=14,
10 FILLER
10 FILLER
U5 FURM=19,
10 FILLER
10 FILLER

RE

PIC 9(u4) COVP vaLUE 1,
PIC 9(4) COMP vALUE 1,
PIC 9(4) Cu+P VALUE 14,

DEFINES FORM=TABLE,
QCCUKRS 10 TIMES,-
PIC X,

PIC 9(4) COmMP,

PIC 9(4) COMP,

“PIC 9(4) COwmP,

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC

PIC

PIC
Plc

PI1C
PIC

PIC
PIC

P1C
PLC

PlC
PIC

PiC
PIC

X(15) VALUE "BUDMAINT_MENU ",
9(4) COMP VALUE 96,

X(15) VALUE "VENDOR_DATA ",
9(4) COMP VALUE 357,

X(15) VALUE "BANK_MSTR_DATA ",
9(4) COMP VALUE 32S.

X(1S) VALUE "BUDGETY_LOAD "
9(4) COMP VALUE 128,

X(15) VALUE " ®e
9(4) COMP. VALUE 96.

X(15) VALUE " "
9(4) COMP VALUE 96,

X(15) VALUE * L
9(4) COMP VALUE 96,

X(15) VALUE " ".
9(4) COMP VALUE 96,

X(19) VALUE * "o
9(4) COwpP VALUE 96,

X(1S) VALUE " ",
9(4) COMP VALUE 96,

X(15) VALUE "HELP_HANK_DATA ",
9(4) COMP VALUE 69,

X(19) VALUE "“HELP_BUDG_LDAD ",
9(4) CHOMP VALIE 69,

X(15) VALUE "HMFLP_VENDUR ",
9(4) COMP VALUE 69,

X(15) VALUE "SUDMAINT_HELP ",
9(4) COMP VALUE 69,

X(19) VALIE "HFLP_CREDLIT_supP",
9(4) COMP VALUE 69,

4—12—15

69.5

29, A UV FOIM=NAME=ARRAY REDEF JNES FORVM=NAME=TARLE,
9.7 09 FURM=NAAE<-TNFD UCCHRS 1S TIMES,

29,8 U FUKWM=NAME PIC X(15),

29,9 10 FORM=DATA=LEN PIC 9(4) COMP,

30

30,1

3v,.2

30,3

30.4

30,5

30,6

20,7 01 FORMAT=CNIL COPY FORMYCTL,

30,8

30,9 01 FORMAT=13,

3] 05 FILLER PIC S$9(4) COMP VALUE 1§,
31.1 0S FILLER PIC S9(4) COMP VALUE 13,
31,2 05 FILLER PIC S9(4) COMP VALUE 0,
31.3 089 FILLER PIC X VALUE » ",
31.4 05 FILLER PIC X% VALUE SPACES,
31.5 05 D13=FORMYAT,

31.6 10 FILLER PIC Ss9(4) COMP VALUE 11,
31,7 10 FILLER PIC $9(4) COMP vaLUE ZERO,
31.8 10 FILLER PIC x VALUE SPACES,
31,9 10 FIBLER PIC «x VALUE "nN",

32 10 FILLER PIC X VALUE "1",
32,1 10 FILLER PIC X VALUE ®p2",
32,2

2.3

32.4 01 ERROR=ARRAY,

32.5 05 FIELD=ERR OCCURS 96 TIMES pic 9,
32.6 01 FIELD=ZERO REDEFINES ERROR=ARRAY PIC X(56),
32.17

32.8 01 FIELD=CNT PIC 99 COwvwpr,

32.9 01 FIELD=LOC PIC 99 (C(OwvwP,

33

23,1 LRSS S SRS R R RRRE RSl R RS R R R R R N S R R SR R R A2 AR
35,7 SPAGE

33.3

33.4

33,5 PROCEDURE DIVISION

33,6 000000~MALN=PART SECTTION 01,

33.7 00000U=PRUGRAM=LOGIC,

33.A PERFURM 900000=0PEN=PROGRAM,

33.9 PERFUORK™M 1000Y0=READ=LNOP UNTIL LAST=XFY = 8,

34 PERFURM G10000=CLOSE=PRUGKRAM,

34,1 S10P RunN,

34,2

34,3 10000U=READ=LONP,

34,4 PERFORA BO1u0U=RFAND=TFRM,

34,5 IF LASI=KEY = 0

34,6 NEXT SENTENCE

.7 ELSE IF LAST=-KEY = 1

4,5 PERFURM HB1N00=KEY =}

34,9 ELSE IF LASTeKEY = P

35 PERFURM RABANG0=KEY=p

5.1 ELoE IF LAST-KEY = 3

4—12—16

39%.°7 PERFURY BASO00=-XEY=1

5.3 ELSE IF LAST=KEY = 4

35%.4d PERFURY BA3QOQU=KEY=4
35.5 ELSt IF LASTe-KEY = 5

35,6 PERFURM 8R5000=-KEY=S
39.7 ELSE 1F LAST=KEY = 6

35,8 PERFORM B88a000=KEY=h
35,9 ELSE IF LAST-KEY = 7

36 PERFURM 887000=-KEY=7
36.1 ELSE

36.2 PERFORM B888000=-KEY=8,
36,3

36,4 IF CHECK=RESULT NOT = 0 OR LAST=XEY = 95
36,5 NEXT SENTENCE

36,6 ELSE IF LOC=FORM = 1|
36,7 PERFORM 101000=EDIT=MENU
36,8 ELSE IF LOC=FORM = ¢

36,9 PERFORM 102000=-EDIT=A

37 ELSE IF LOC=FORM = 3

37.1 PERFURM 103000=FDIT-8
37,2 ELSE IF LOC=FORM = 4

37.3 PERFORM 104000=ED1T=C
37.4 ELSt IF LOC=FORM = §

37.5 PERFORM 10S000=-EDIT=D
37.6 ELSE IF LOC=FORM = 6

37.7 PERFORM 106000-EDIT=E
37.8 ELSE

37.9 MOVE 4 TO CHECK=RESULT,
38 :

38,1 IF CHECK=RESULT NOT = ZEROD
18,2 NEXT SENTENCE

38,3 ELSE 1F LOC=FORM = 1

58,4 PERFURY 150000=VALID=MENU
38.5 ELSE IF LOC~FORM = 2

38,6 - PERFORM §151000=-VALID=A
38,7 ELSE JF LOC=-FORM = -3

38,8 PERFORM 152000=VALID=~B
38.9 ELSE IF LOC=FQORM = 4

39 PERFORM 153000=VALID=C
39,1 ELSE 1+ LOC=FORM = 6

39,2 PERFORM 155000=VALID=~E
39,3 ELSE IF LAST=KEY NOT = S
39,4 PERFOKM 8R9000=ASK=CONFIRM
39.5 ELSE IF LOC=FORM = 9

39,6 PERFORY 154000=VALID=D
19,7 . ELSE

39,8 MOVE 4 T0D CHECK=RESULT,
39,9 :

40

40,1 If CHECK=RESUL! 3 PFRFORY 89%1000=REFRESH=TERM,

40,2 IF CHECK=RESULT g MOVE 3 10 V=SHOA=CONTROL

40,3 MOVE "Z"™ 10 MODE=-FLAG,

40,4 IF CHECK=RESULT = 0 PERFURM 811000=FORM«INTTIALIZE,

4u,% JF CHECK=RESULT = 2 OR = 4 DR = & PERFORY 852000«NEXTeFUKY,
40,6 IF CHECK=RESUJLT NOT = 9

40,7 . PERFUORY 804N00=SHDON=FORW

40,8 PERFURY RO30V0=CLEAR=AN]INDOAN,

4—12—17

40,9 AWVE JEKU TO CHECK=RESULT, VeSHha=CONTRGL ,
a4

4141

41,2 1010G00=E0] T=MEvu,

41,3 MIVE ZERD TU CHECK=-RESULT,

41,4 PERFURM ByS000=-VIEA=EDLI,

41.5 PERFURM 807000=GET=BUFFER,

41,5 MOVE SPACES TO SELECT=ERR,)

41,7 IF SELECT=1N = "X" MOVE 8 TO LAST=KEY

41,8 MOVE 9 TO CHECK=RESHLT

41,9 ELSE

42 PERFOR™ 101100=EDTT=MENU=DATA,

42.1

42,2 103100-E0IT=-MENU=DATA,

42.3 PERFORM 101110=MENU=SCAN VARYING LOC=FIND FROM 1 BY 1
42,4 UNTLIL LUC=FIND > 15

42,5 OR SELECT=IN = FORM=I0 (LOC=FIND),

42.6 IF LOC=FIND > 15 PERFORM 1011{20~MENU=ERROR

4.7 ELSE PERFORM B03000=CLEAR=WINDON,

42,8

4c2.9 101110~4ENU=SCAN,

43 ExIT,

43,1

45,2 101120=-MENU=ERROR,

43,3 MOVE

43,4 "PLEASE SEILLECT ONE OF IHE ABOVE LETTERS AND RE-ENTER™
43,8 1) ERR=MES=3(}F,

43,6 MIVE 91 TO LEN=ERR=BUF .

43,7 MOVE 2 TO FIELD=NBR,

43,8 PERFURM B812000=SET=ERRUOR,

43,9 ADD 1 70 V=NIJM=ERRS,

44 MOVE 1 1O CHECKX=RESULT,

44,1

44 .2

44,3 AEIERR AR AR AR AR R AR NN R R KRR R AR K R AR R R A AR R RARR R AR AR R R AR AR NN Ak kR
44,4 * MODE SFLECTIONS *
44,5 * A = ADD VENDOR MASTER N = *
44,6 * B = ADD BANK MASTER 0 = *
44,7 * C = ADD NEXT YR, BUDGFT P = *
44 .8 * D = EOLIT VENDOR MASTER 4 = *
44,9 L E = LOAD BUDGET R = *
49 * F = S = R
45,1 * G = T = *
49,2 * H = il o= *
45, % ® I = vV = *
45,4 * J = N = *
45.9 * K = X = EXIT PROGRAM *
45,.4A * L = Y = x
45,7 * v = 7 = MATiN MEN *
45,48 * *
45,9 * *
275 iktt*ik***t**t*k*tt*tt*t*ttt**kitt*ttt*ittt*tt*tt*ti****t**i**
46,1

46,2

46,3 *i*kt*ktttkt*tt*t**tttt**tt***t*il**tt**tit***tﬁ***t****t

46,4 A& K CHECK RFSULT CODFS * kg

b .5 ' EX U T wid ERRORS ' 5 = K x

4—12—18

Ubh
46,1
4b . 8
46.9
a7y

47.1
47,2
47,3
47.4
47.5
47,6
47,7
47,8
47.9
48

48,1
48,2
48,3
48,4
48,5
48,6
48,7
48,8
48,9
49

49,1
49,2
49,3
49,4
49,5
49,6
49,7
49,8
49,9
50

S0.1
50,2
50,3
50.4
50.5
50,6
50,7
5048
50.9
91

51,1
51,2
51,3
514
51.9
Sleb
5147
S1.8
51.9
92

52,1
52,2

- 1 = ERKORGS, RE=READ b = NEXT FORM "
x k% 2 = Ax[AG up NEY FURM 7 = ik oK
* k% 3 = KEFRESH FTERM] AL A = K K
A% 4 = RETURS TO MATN MEMNY 9 = EXIT PRNGRAM * kA
| & B 4 w X &

i*i*lt****k**ttt*******tt***kt***i**ti************ﬂ**

*******i****k*ﬁ****************t******ﬁ***************ﬁ*******i*

"Xk FUNCTION KEY CODES ‘
xxx F1 = SKIP FS = CONFIRM ENTRY
xxx F2 = CLEAR (INITIALIZE) F6 = NEXT FORM

xx%x F3 = HELP F7 = MAIN MENU

#xx F4 = REFRESH SCREEN F8 = EXIT

* k%

k&
* kK
LR &4
* x K
* Kk K
LE 2

********************t*********t*********************************

102000=-EDIT=A,
MOVE ZERO TO CHECKX=RESULT,
MOVE ZERD TO FIELD=ZERO.
MOVE 1o 0O FIELD=CNT,
PERFORM BOSOOQ-VIEW-EnITo
PERFORM BYT7000=GET=BUFFER, :
MOVE SPACES TUO VEND=NBR=ERR, VEND=STATUS=-ERR,
PERFURM 102100-CK=VEND=NBR,
PERFURM 102200=~CK=VEND=CODE,
PERFORM 192300=-CK=VENN=STATUS,
PERFURM 102400=CK=-VEND=~1099,

PERFUORM 809000=PUT=RUFFER,

PERFORM 305000=VIEw=ENRIT,

IF V=nNUM=ERRS NOT = ZEROD MOVE 1 TO CHECK=-RESULT,
MOVE ZERD T0 FIELP=LOC,.)

PERFORM 813000~SET=ERROR=FIELDS F1ELD=CN1 TIMES,

102100=CK=VEND=NHR,
MOVE VEND=NBR OF VENO=TN TO ARGUMENT,
PERFORM 831000=GET=VEND=MSTR,
IF COND=wORD = 17 NEXT SENTENCE
ELSE MOVE "INVALID! DUPLICATE NUMBER"™ TO VEND=NHR=ERR
MOVE 1 10 FIELD=ERR (2)
MOVE 1 TU CHECK=RESULT,

102200=CK=VvEND=LCONE,
IF VEND=CODE OF VFuD=IN = "va" R = "VM" OR = “np"
NEXT SENTENCE
ELSE MUVE "INVALID VENDOR CODEL!™ TO VENND=CONE=ERR
MOUVE 1 TO FIELD=EWRR (19)
AIVE 1 TO CHECK=RESULT,

102300=CA=VEHND=STATUS,
1F VENDOR=STATUS OF VEND=]N = "CR"™ OR = nyy"
NEXT SEwnTeEwNCE
ELSE ™UVE "INVALID STATUS CONE!"™ TO VEMND=STATUS-ERR
WOVE 1 TO FIELD=ERR (20)
MOVE 1 0 CHECK=RESULT,

4—12—19

h2. 8 10240 y=CXaevEND=109G,

b Y-/ IF FLAG=10Y9Y UF VFND=IN = SPACES (R = "y M
B2 VEXT SEMIEVCE

S52.h ELaot

52,7 MUVE I T FIELD=FRR (18)

52,8 MUVE 1 TO CHECK=KESULT,

52.9

53

53,1

53,2

53,3 103000-EDIT=-8,

53.4 MOVE ZERO TO CHECK=RESULT,

53,5 MOVE ZEROD 10 FIELD=-ZERO,

53.6 MOvtE 3 70 FIELD=CNT,

53,7 PERFURM B0S000=VIEWN=ENTIT,

53,8 PERFURM BOTUUO=GET=BUFFER,

53.9 PERFORM 105100=CK=VEND=NBR,

54 PERFORM 102200=CK=VEND=CODE,

54,1 PERFURM 102300=CK=VEND=STATUS,

54,2 PERFURM 102400=CK=VEND=1099,

54,3 PERFORM 809000=PUT=BUYFFER,

S4,4 PERFURM BU5000=VIEN=ED]IT,

54,5 IF V=NUM=ERRS NOT = ZERU

54,6 MOVE 1 TO CHECK=RESULT,

54,7 MOVE ZERDU 10 FIELND=LDC,

S4.4 PERFOURM 813000=SET=ERROR=FLELDS FIELND=CNTY TIMES,
54,9

59 103100=-CK=VEND=NBR,

55,1 IF NEW=FLAG = Z2ERND NEXT SENTENCE
55,2 ELSE IF VEWD=NBR OF VEND=IN = VEND=NBR OF VEND=MSTR
55,3 MOVE {1 TO NEw=FI AG

55,4 ELSE MOVE [ZERO 10 NEw=FLAG,

55,5 MOVE VEND=NBR OF VENDeIN TO ARGUMENT,
55.6 PERFURM B31000=GET=VEND=MSTR,

55,7 IF COND=wORD = ZERO AND NEW=FLAG = 1
55,8 NEXT SENTENCE

95.9 ELSE IF COND-NORD = ZERO

S6 PERFORM 103110=SETUP=VENDOR

56,1 ELSE

56,2 MOVE "NON=EXISTENT VENDOR NUMZER!™ TO VEND=NBR=ERR
56,3 MUOVE 1 TO FIELD=ERR (2)

Sh,4 MOVE 1 TO CHECK=RESULT,

56.5

Sb,.6 FO3110=5ETUP=VENDUR,

96,7 MIOVE CUKR VEMNND=YSTR TGL VEND=IN,

56,8 MOVE 1 TO NEW=-FLAG, CHECK=RESHULT,
56.9

57 10400vu=ED}T=C,

57 .1 MAVE ZERD TU CHECK=-RESULT,

57,7 MOVE ZERD T3} FLELD=ZEKD,

57,3 MIJVE 4 T FTIELD=CNT,

57,4 PERFURM 805000=-VIEW=EDTT,

S7eh PERFUORYM 807000=GET=RIFFER,

57.6 * MIOvVE SPACES T1) ERROR DYSPLAY FIELDS
S7.7 * PERFURM EO1T ROUTINVNES

57,8 PERFURM 89300n=PUT=BUFFER,

57.9 PERFURA d05000=yTES=EN]T,

4—12—-20

54
98,1
5842
58,3
S8,4
58,5
58,6
98,7
58.8
58,9
S9
99,1
59.2
59.53
59.4
59,5
59.b
59.7
59.8
99,9
60
60,1
60.2
60,3
60,4
60.5
60.6
60,7
60,8
60,9
61
61,1
61.2
61,3
61.4
61.5
61,6
61.7
61.8
61.9
62
62.1
62.2
ba.s
62.d
62,5
62.h
62.7
Y-
62.9
63
63,1
6%.2
63,3
65.'4
63,5
bi.h

[F VenUVM=ERRS NOT = 7ERU
MOVE ZERU 1 FLELD=LOC,.

PERFUKM $513000=SET=ERROR=FIELNS FIELD=CNT TI4ES,

105000=-E011=0,
MOVE ZERU TO CHECK=RESULI,
MOVE ZERO TO FIELD=ZERO.
MOVE 3 TO FIELD=CNT,
PERFORM B05000=VIEW=EDIT,
PERFORM 807000=GET=BUFFER,
MOVE SPACES TO ERROR DISPLAY FIELDS
PERFUORM EDIT RUUTINES
PERFORM 809000=PUT=RUFFER,
PERFURM B05000=VIEW=EDIT,.
IF. VeNUM=ERRS WOT = ZERO
MOVE 1| TO CHECK-RESULT,
MOVE ZERO 70 FIELD-LOC,

PERFOKM 813000=SET=ERRNR=FIELDS FIELD=CNT

106000-EDIT-E,
MOVE ZERU TO CHECK=RESULT,
MOVE ZERO TO FIELN=ZERO.
MOVE 3 TO FIELD=CNT,
PERFURM B05000-VIFW=ENIT.
PERFURM 80T000=GET=BUFFER,
MOVE SPACES TO ERRDR DISPLAY FIELDS
PERFORM EDIT ROUTINES
PERFORM 809000=PUT=BUFFER,
PERFORM 805000=VIEW=EDTT,
IF V=NUM=ERRS NOT = ZERO
MOVE 1 TO CHECK=RESULT,
MOVE ZERO TO FIELD=LOC,

PERFORM 813000~SET=ERROR=FJELDS FIELD=CNT

150000=VALID=RECORD SECTION 03,

150000=VALID=MENU,

MOVE 2 TU CHECK=RESULT,
MOVE LOC=FIND TQ LOC=FORM,
MOVE ZERD TO NEW=FLAG,

151000=vALIN=4,
152000=VALID=8,
15500u=VvALID=C,
154000=VAL1D=D,

155000=vALID=E,

ROQNOV=UTILITIES SECTINN 02,

TIMES,

TIMES,

Il

4—12—21

63,7 HO1OyU=rRtAD=TER,

S I CALL "vREADFIELDS" USING vIFa=Chv,
h4,9 IF v=5TA1US YOI = 0 PERFIORM 992000=VIEN=ERRNR,

hd -~
6d 1 BO2000=PUT=aLAN0OW,

64,2 CALL "VPUTATIMNDON" USTING VIEN=COM ERR=MES=RBIIF LEN=ERR=BUF,
64,3

6d,d 803000=CLEAR=NINDOW,

64,5 MOVE SPACES T ERR=MES=HUF,

64,6 PERFORM B02000=PUT=NINDUW,

64,7

64,8

64,9 804000=SHOW-FORM,

65 CALL "VSHOWFORM" USING VIEWN=COM,

65,1 IF V=STATUS NOT = 0 PERFURHM 992000=-VIEw=ERROR,

65.2

65,3

65,4 BOSO00U~VIEW=EDIT,

65.5 CALL "VFIELDEDITS" USING VIEW=COM,

65.h

65,7 806000=FIN1SH=FORM,

65,8 CALL "VFINLISHFORM" USING VIEA=COM,

65,9

66 BO7000=-GET=BUFFER,

66,1 CallL "VGETBUFFER"™ USING VIEA=COM DATA=RYUF V=DBUF<LEN,
hb,2 IF v=STATUS NOT = 0 PERFUO3M 992000=-VIEW-ERROR,

66,3

66,4 B0900U=-PUT=BUFFER,

66.5 CALL "VPUTBUFFER"™ USING VIEwW=COM DATA=BYUF V=DBUF=LEN, T
66,6 IF v~STATUS WNOT = 0 PERFURM 992000=VIEW=ERROR,

66,7

66,8 B1000U=GEVT=FURY=FILE,

66,9 MOVE ¢ 10 VeREPEAT=0OPT,

67 MOVE 0 0 VeNF=0PT,

67.1 CALL "VGETNEXTFORM" USING VIEW=CQOM,

67,2 IF V=S5TATUS NOT = 0 PERFORM 992000~-VIEW=-ERROR,

67,3

67,4 B11000=FORM=INITIALIZF,

67,5 MOIVE 65 TO VewINDDOW=FNH,

67.6 CALL "VINITFORM™ USING VIEA=COM,

67,7 * ADD INDIVIDMAL FORMS INTIALIZATION HERE AS REQ,

67,58 IF V=STATUS MOT = 0 PERFORM 9920G0=VIEW=ERROR,

6/.9 PERFURM BOSODO-CLFAR=WINDDW,

68 MavE 1 10 LAST=RESULT,

680 1

68,2 B12000=SET=EHROR,

68,3 CALL "VSETERROR" USING VIEA«COM FIELD=NRR ERR=MES=ByF
68,4 LEN=ERR=BUF,

h8,9 IF v=STAITYS NOT 2 0 PERFORM 992000=vIEAN=ERROR,

68,6

HhH,7 B1300u=SE|=ERRUR=FJELDS,

68,8 ADD 1 TO FIELND=LOC,

63,9 [F FLELD=ERR (FIELD=-LNC) = 1

69 CALL "VSETERROR"™ USTNG VIEAN=COM FTELD=L_OC FRR=MtLS=8UF —
9,1 NU=MESSAGE

69,7 It veSTAaTus NMOT = /ZEROQ

69,3 PERFORY 992000V Ik A=ERRUR

4—12—22

b"’o"’ ELht

69,9 NEXT SENTENCE

hYa.b ELSE

9.7 NEXT SENTENCE,.

69,4

69,9 B14000=CONF IRM=READ,

70 CALL "IMMYREADFIELDS"™ USING VIEA=CDM,

70,1 [F V=STATUS NOT = ZERN PERFORM 992000-VIEW-ERROR,
70.2 '
70. %

70.4 B20000=-SPACE~NUMBER,

70,5 MUOVE FORMATY=13 TO FORMAT=CNTL,

70.6 CALL "CAPE'ENTRY" USING FORMAT=CNTL NUM=IN NUM-QUT,
70,7 IF CFIELD=ERR (1) = ZERU AND CENTRY=ERR = ZERO
70.8 MOVE NUM=0OUT TO NiyM=DISP=13

70,9 ELSE MUVE 1 TO CHECK=RESULT.

71

71.1 B30000=GET=ACLCT=MSTR,

71.2 MOVE "ACCOUNT=MSTR:" TO DSET=NAME,

71.3 CALL "UBGET" USING FAASE DSET=NAVE MODE? STATUS=AREA
71.4 ALL=ITEMS ACCT=MSTR ARGUMENT,

71.5 IF- COND=wQORD NOT = ZERO AND NOT = 17

71,6 PERFORM 991000=STATUS=CK

T1.7 ELSE

71.8 NEXT SENTENCE,

71.9

72 B83100U0=GET=VEND=MSTR,

72.1 ' MOVE "VENDQR=MSTR:" TO DSET=NAME,

72.2 CALL "DHBGET" USING FBASE DSET=MAME MODE? STATUS«<AREA
12.3 ALL=1TEMS VEND=MSTR ARGUMENT,

72.4 IF CUND=NQRD = ZERO OR = 17

72.5 NEXT SENTENCE

12,6 ELSE

72.7 PERFORM 991000~STATUS=CK,

72.8

72.9 B41000=-DB=L0CK,

13 CALL "DBLOCK®™ 1SING FBASE DSET=NAME MONE3 STATUS=AREA,
73.1 IF COND=WORD NOT = ZERD PERFORM 991000-STATUS-CK,
73.2

73.3% BY42000=~0B=UNLOCK,

73.4 CALL "DRUNLOCK" USING FBASE DSET=NAME MODE1 STATUS~AREA.
73.5 IF COND=A0ORYD NDT = 2ERD PERFORM 991000=STATUS=CK,
73.6

73,7

73.8

73,9 851000=KEFRESH=TERH4,

74 PERFQORM 980000-CLOSE=TERM,

T4..1 PERFORM 992000=0PEN-TERM,

14,7 MIVE % 10 y=SHDA=COWTROL,

74,3 PERFURM 811000=FUORM=INTITIALI/E,

Td.4

74,5 892000=NEX1=FORM,

Tdem 1F CHECK=RESULT = 4 MOVE 1 T3 LDC=FORW,

74,7 MOVE FORM=NHR (LOC=FORM) TO LUC=FORM=NAME,

Td.48 MIVE FORMeNAME (LNC=FORM=YAME) T0 VeNFVAME,

14.9 PERFURM B10000=6GET=FURM=FILE,

79 PERFUKM B11000=FNRM=-InTITlaLI/E,

4—12—-23

79.1
I, 7
5.3
75,4
/9.8
75.6
15,7
75,8
15,9
76

16,1
76,2
76,3
76,4
76.5
76,6
76.7
76,8
76,9
17

77.1
77,2
77.3
77.4
77,5
717.6
17.7
T7.8
77.9
78

78,1
78,2
78,3
78,4
78,5
78,6
78,7
78,8
78,9
79

79.1
79,7
79,3
19,4
19,5
719.6
79,7
79,8
79,9
Ay

80,1
B,
Blle$
B0O,4
80,49
81,6
BUL7

4 —12—-24

®
®
*
*

* % % »

H93000=t Ul T=ERRIN,
CALL "VERRMSG" USTNG VIEW=(CN ERReVES-HUF [LEN=FRR=B{F
LEN=ERR=YES,
IF Vv=STATHS NOT = O PERFORM 992000=VIEN=ERROR,
CALL "WPUIWINDON" HSING VIEa=COM ERR=-MES=BUIF LEN=ERR=ByYF,

A34000=-PuTl=TIILE,
MOveE 1 TO FILIELOD=NRR,
CALL "VPUTFIELO" USING VIEw=COM FIELD=NBR TITLE=-BUF
TITLE=LEN ACT=FIELD=LEN NEXT=FIELD=NBR,
IF V=STATUS NOT = 0 PERFURM 992000=-VIEW=ERROR,

B60UNVU=START=HELP,
MOVE FURM«HELP (LOC=FORM) TO LOC~FORM=NAME,
MOVE FORM=NAME (LOC=FORM=NAME) TO VeNFNAME ,

B61000=-HELP=-DISPILAY,
PERFORM B810000=GET=FORM=FILE,
PERFORM BS54000~PUT-TITLE,

PERFORM 804000=SHOW=FQRM,
CALL "VREADFIELDS" USING VIEw=CDM,
IF V=STATUS NDOT = 0 PFRFORM 992000=VIEN=ERRNR,
IF LAST=KEY = B
MUVE 9 TO CHECK=RESULT
ELSE |F LAST=KEY = 7
MOVE 4 T() CHECK=RFSULT
ELSE IF LAST=-KEY = 4
MOVE 3 10 CHECK=RESULT
ELSE
MUVE 2 TO CHECK=RESILT,

B6S000=INITIAL=VENDOR,
MOVE VEND=NBR OF VEND=MSIR TO VEND=NBR OF VEND=IN.
MOVE VEND=NAME OF VEND=MSTR TO VEND=NAME OF VEND=IN,
PERFURM B09000=PUT=HUFFER,

B70000=-UPDAIE=ACCT=MSTR,
CALL "DBUPDATE"™ USING FBASE OSET='laAME MODE
STAIUS=AREA Al | =[TEMS ACC1=4STR,
IF COND=ADRD = ZERD NFEXT SENTENCE
ELSE PERFIRM 991000=STAJJS=CK,

Ba1000=KkYe],
MOVE 1 TO CHECK=<ESULT,
MUVE "INVALTD KEY SELECTED, 1GHORED" TO ERR=MES=RUF
MOVE 29 T4 LEN=ERRe3HF,
PERFURM dy2000=P TayvInundw,

BA200y=REY=2,
MIve 1 Tu CArCK=RESULT,

80, R
BO,9
B1

81,1
81,2
B1.3
81.4
81,5
81.6
81,7
81,8
81.9
82

82.1
82.2
82.3
82.4
82,5
82.6
82,7
B2,.8
82.9
83

83.1
83,2
83,3
83,4
83.5
83.6
83.7
83.8
83.9
84

84,1
84,2
84,3
84.4
84,5
84.6
84,7
84,8
84,9
85

85,1
85,2
85,3
85.4
89.h
85,1
B85.8
9,9
86

Bb.‘-
Bb,2
Rb.3
Bhot

PERFURYM A1100u=FORM=TMITIALLZE,

BAZOOU=REY=3,
PERFURM #60000=START=HFLP THRU 861000«HELP=~-DISPLAY,

ABY4000=KEY=4d,
MOVE 3§ 10U CHECK=RESHLT,

RB5000=XEY=5,
IF LAST=RESULT = ZEROQ
PERFORMY 814000-CONF JRM=READ
MOVE S TO LAST=XEY
MOVE 2ERO O CHECK=RESULT
ELSE
PERFORM 890000=INVALLD=CONFIRM,

886000-KEY=6,
MOVE 6 TO CHECK=RESULT,
_ MOVE FORMeNEXT (LOC=FORM) TO LOC=-FORM,

AB8T7000=KEY=T,
MOVE "Z" TO MODE=FLAG,
MOVE 4 TO CHECK=RESULT,

REBO00U-KEY=8,
MOVE 9 10 CHECK=RESULT,

889000=ASK=CONF IRM,

MOVE _ : .
"VALIO RECORD, PuUSH CONFIRM KEY (F5) TO POST AS SHOWN"
TU ERR=MES=HUF,

MOVE 52 TO LEN-ERR=BUF,.

PERFURM 802000=PUT=-WINDOW,

MOVE 1 TO CHECK=RESULT.,

MOVE ZERO TO LAST=RESULT,

890000=INVALIND=CONFIRM,
MOVE 1 T0 CHECK=RESULT,
MOVE
"INVALID USE OF CONFIRM KEY! CONFIRM NOT REQUESTED!"
TO ERR=MES=BUF,
MOVE 92 TO LEN=ERR=BLF,
PERFURM 802000«PjT=AINDUN,

AXRARNRK AR AR A AR R A AR AR ARRARARRR AR AR R AN AR AR AR AR R A A AR A kR A kA&

900000=-START=STOP SECTION 51,
300000=0PEN=PRIGRAM,
DISPLAY "VvIEwW/COB0L LAYOUT PROGRAM VERS, 0,01",
PERFORM 90100u=UPEN~DATA=3ASE,
PERFURM 902000=0PEN=TERM,
" PERFORM Y03000=0PEN=VFDRM
PERFORM Q04900 0=START=MENU,

901000=0PEnN=DATA=RASF,
CALL "DOUPEN" USIMNG FBASE PASSAORD MODE1 STATUS-AKREA,

41225

He .5
Bo,h
8o, 7
86,8
Bb.9
81/

87,1
81,2
87.3
87,4
87.5
87,6
87.7
81,8
8/.9
88

88,1
88,2
88,3
B8,.4
88.5
88,6
88,7
88,8
88,9

89,1
89,2
89,3
89,4
89,5
89,6
89.7
89,8
89,9
90

90,1
90.2
90,3
90,4
90,5
90,6
90,7
90,8
90,9
91

91.1
91,2
91,3
91.4
91.5
91.6
91,7
91.8
91.9
97

921

4—12—26

IF Cumbi=adr = 78Rr0D
VXD SENITEACE

ELSE
PERKFORY 991 000=STATI)S=CK
SITUP K,

902000=UPEN=TERM,
MIOVE (ZERU TO V=STATUS, V=LANGUAGE,
VIEAN=MODE, LAST=KFEY, V=NIJUM=ERRS, V=REPEAT=0PT
VeNF=0PT,
CaLL "VUPENTERM" USING VIEwW=(COM [ERMeFILE,
IF v=8TATUS = ZERD
NEXT SENTENCE

ELSE
PERFORM 992000=-VIEW=ERRDOR
CALL "VCLOSEFORMF"™ (JSING VIEwA=COM
DISPLAY ERR-MES=BUF " STOPPING RUN! "
PEKFORM 990000=STOP=PAR,

903000=0PEN=VFORM,
MOVE "BUDGFORM,BUDGET ,PROGLIA" TO Ve=FILE=NAME,
CALL "VOPENFORMF" USING VIEW=COY VeFILE=NAME,
IF v=STATUS = ZERO
NEXT SENTENCE
ELSE
PERFORM 992000=VIEW=ERROR
CALL "VCLOSETERM" (JISING VIEWN=COM
DISPLAY ERR=-MES=HUF " STOPPING RUN! ®
PERFURM 99(0000=STOP=PAR,

904000=-START=MENU,
MIVE 1 TO LOC=FORY,
PERFURM 852000=NEXT=FORM,
PERFORM BO400G=-SHOAN=FORM,
MOVE ZERO TO CHECK=RESULT,

370000=CLUSE=PROGRAM,
PERFURM 9R000N=CLOSE=TERM,
PERFURM 981000=CLOSE=VFORM,
PERFORM 990000=STOP=PAR,

980000=CLUSE=TERV,
CaLL "VCLOSETERM" USING VIEA=COV,
IF veSTATUS WO = 0 PERFORVM 992000=VIEN=ERRUR,

98100U=CLOSE=VFOR4,
CALL "VCLOSEFORMF" USING VIFw=COw,
LF v=STATIS 10T = 2ERD PERF(ORM 9320n0=V]EN=ERRQOR,

9900 V=STUP=PAR,
CaLL "DSCLOSE"™ USING FHASE DSET-NAME MODE1 STATIJS=ARFEA,
SIUP RUN.

991 0up=s3TATuN=Cx,

92,2
92.3
92.4
92,5
92.6
92,7
92.8
92.9
93

93.1
93.2
93,3
93,4
93,5

PERFURM Y8DL0U=CLOSE=TERM,

PENFORM QA1U00N=CLOSE=VFORY,

CALL "DOSEXPLAIN" uSInG STATUS-AREA,
PERFURM 99N000=STP=PAR,

99200U=VIEW=ERROR,

CALL "VERRMSG" USING VIEW=COM ERR-MES=-BUF LEN-ERR=BUF

LEN=ERR=YES,
DISPLAY BELL "VIEW ERROR!IL",
DISPLAY ERR=MES=BUF,

DISPLAY BELL "PROGRAM TERMINATED DUE TO ABOVE ERRORyi"™,

PERFORM 990000=STOP=PAR,

4—12-—-27

Process Sensing and Control

Nancy Kolitz
Hewlett-Packard Company
Cupertino, California

I. INTRODUCTION

Various MPE intrinsics on the HP3000 allow a user to
create processes, to obtain information about them, and
to control them. This paper will describe the process
sensing and control capabilities available to a user,
through illustrations and examples. The paper will also
introduce a new intrinsic, PROCINFO, currently being
developed by the MPE lab.

II. WHAT IS A PROCESS?

All user programs run as processes under MPE. A
process is the unique execution of a program by a par-
ticular user at a particular time, and is the entity within
MPE which can accomplish work. A process is also the
mechanism which allows system resources to be shared
and a user’s code to be executed. Each process consists
of a private data stack and code segments, shared by all
processes executing the same program.

As the system is brought up, the Progenitor (PRO-
GEN) is the first process created by MPE. One of the
various system processes that Progen creates is the
User Controller Process (UCOP), which creates a User
Main Process (UMAIN) as a session or job logs on.
Then when a user (or job) runs a program, a User Son of
Main (USONM) process is created. If other processes
are subsequently created from this program, User pro-
cesses are established. (See Figure 1.)

A process will be in one of two states once it has been
created: Wait or Active. If it is in a wait state, it is
waiting for some event (I/0, RIN acquistion, etc.) to
occur before it will run again. If it is in an active state,
the process is running or ready to run.

A standard MPE user has no control over his proces-
ses. The operating system creates, controls, and kills
the processes for the user. However, if the user’s pro-

BA BA I

PROGEN
|
ucop
/1A

UMAIN UMAIN

I
USONM
/1A
/1A
USER USER

UMAIN

USER

Figure 1

gram has Process Handling (PH) capability, it can, to
some degree, manage its own processes. In fact, it can
even control processes in its family tree.

III. PROCESS CREATION

In MPE, there are two intrinsics that a user with PH
capability can use to create a process: CREATE and
CREATEPROCESS.

The intrinsic CREATE will load a program into vir-
tual memory, create a new process, initialize the stack’s
data segment, schedule the process to run, and return
the process identification (PIN) number to the process
requesting the creation. Once the process is estab-
lished, it will have to be activated by the creating pro-
cess. The command syntax is:

LV v Iv

CREATE(progname,entryname, pin, param,flags,stacksize,dlsize,

1v LV IV 0-V
maxdata, priorityclass,rank).

4—30—1

The last parameter RANK (in the CREATE intrinsic)
is not used by the intrinsic and is only there for com-
patibility with previous versions of MPE.

I I BA

CREATEPROCESS is the other intrinsic that can be
used for creating processes. Its format is:

IA LA o-v

CREATEPROCESS(error, pin, progname, itemnums ,items).

The parameter ITEMNUMS indicates the options to
be applied in creating the new process, and the parame-
ter ITEMS provides the necessary information to be
used for each option specified in ITEMNUMS.

With CREATEPROCESS, a son may be activated
immediately upon creation or may be activated as a
process is with CREATE (via the ACTIVATE intrin-
sic). A user may also specify an entry point into a pro-
gram, define $STDIN and $STDLIST to be any file

other than the defaults (the defaults are the creating
father’s $STDIN and $STDLIST), control stack size,
and control the process’ priority queue. Some of these
can also be done with CREATE.

The example that follows illustrates the intrinsic
CREATEPROCESS. It will create a process, indicate
that the father should be awakened upon completion of
the son, and then activate the new process.

hkkhkhhhkdhhhkhhkhkhhkhkhkhhhkhkhkhhkhkhkhkhhkkkkkhkhhkhkkhkrkkk

BEGIN

{{CREATEPROCESS example>>

INTEGE™ ERROR, PIN;

BYTE ARRAY EXAMPLE(O:7) := "EXAMPLE "
INTEGER ARRAY OPTNUMS(0:10);
LOGICAL ARRAY OPTIONS(0:10);

intrinsic CREATEPROCESS,TERMINATE;

{<{set up optionsd>
OPTNUMS(0) := 3; OPTIONS(0) := 1;
OPTNUMS(1) := 10; OPTIONS(1l) := 3;
OPTNUMS(2) := 0; {Kterminator>>

CREATEPROCESS (ERROR,PIN,EXAMPLE,OPTNUMS,0PTLIONS);

if <> then TERMINATE;

khkhihkdhhkdhhhkhhkhhkhhhhkhkhdokdkkkkkkikkkkkkkkkkkkkkkk

When calling MPE intrinsics, a good programming
practice is to check the condition code returned, and the
error parameter, if one is used. In the case of
CREATEPROCESS, if the condition code is less than
zero the process was created, but some event occurred
to cause the operating systerni to give a warning to the
creator. lf the condition code is greater than zero, an
error has occurred and the process was not created. If
the error occurred because of a file system problem
(error number returned is 6), a user can use the intrinsic
FCHECK with a parameter of zero to obtain more in-
formation as to why the process creation failed.

4 —30—2

IV. SENSING PROCESSES

Each process in MPE has a large amount of informa-
tion about it that can be useful, providing a process can
access it. There are various intrinsics that will return
this information once a process has been created. How-
ever, a program must have PH capability to use these
intrinsics.

A user may determine the PIN number of the process
that created it via the intrinsic FATHER. Its syntax is:

I
pin := FATHER.

Once again, a programmer should check the condition
code that was returned. In this case, it will tell what
type of process the father is. Through specific codes, it
will specify whether the father is a system process, a
user main process, Or a User process.

To obtain the PIN number of any of his son proces-
ses, a program may use the intrinsic GETPROCID. The
command is:

1 v
pin := GETPROCID(numson).

The parameter NUMSON is a integer value that

L D D BA

specifies which son a father wants to know the PIN
number. For example, if a father has created three sons
and wants to know the PIN number of the second son,
he will supply GETPROCID with a parameter of two.

The WHO intrinsic provides the access mode and
attributes of the user running a program. The file access
capabilities (save file (SF), ability to access nonsharable
devices (ND), etc.), user attributes (OP, SM, etc), and
user capabilities (PH, DS, etc) can be obtained. Also
information about the user, his logon group name and
account name, his home group, and the logical device of
his input file may be returned. The command syntax for
WHO is:

BA BA BA L o-Vv

WHO(mode,capability,lattr,usern, groupn,acctn, homen, termn).

The intrinsic GETORIGIN will return, to a re-
activated process, the origin of its activation. The value
returned will specify if the PIN was activated from a
suspended state by a father, a son, or another source
(interrupt or timer). GETORIGIN looks like:

1

source := GETORIGIN.

Other information about a son or father may be ob-
tained from the intrinsic GETPROCINFO. Its format is:

D Iv
statinfo := GETPROCINFO(pin).

A double word is passed back giving the process’
priority number and priority queue, its activity state

I I Iv

(active or waiting), its suspension condition and source
of next activation, and the origin of its last activation.
The process number, passed as a parameter, specifies
which process you want information about. If PIN=0,
then information is returned for the father; otherwise,
the information is for a son process.

A new intrinsic currently under develocpment in the
MPE lab is called PROCINFO. This intrinsic returns
general information about processes that is currently
unavailable, unless you have privileged mode capabil-
ity. It should simplify some of the uses of process re-
lated intrinsics because a large amount of information
may be retrieved in one call to PROCINFO. Its com-
mand syntax is:

I BA 0=V

PROCINFO(errorl,error2,pin{,itemnuml,iteml]

This intrinsic is formatted similar to FFILEINFO in
order to maintain ease of use and extensibility. It can
return to a program the process number of the process
itself, its father, all its sons, and all its descendants. It
can also supply information about the number of de-
scendants and generations in a family tree, the name of
a program that a specified process is running, the pro-
cess’ state, and the process’ priority number.

[,itemnum2,item2]
[,itemnum3,item3]
[,itemnumé,itemé]
[,1temnum5,item5]
[,itemnumb,itemb]).

The first error word is used to return the type of error
incurred when executing the intrinsic. The second error
word returns the index of the offending item number.
The program name is returned in a byte array that is a
minimum of twenty eight bytes long. It is in the format
of <filename.group.account>,

The following example will help to illustrate the use
of the PROCINFO intrinsic:

4—30—3

4—30—4

de gk ke kK kK ok ok ko g ok gk ke ke e e ke ke e e ke ke o ke o ok ok o ok ke ke ok ke ke e ke ke ke ke ke

BEGIN <<procinfo example>>
INTEGER ERROR1, ERROR2, PIN;
BYTE ARRAY ITEMVAL1l (0:1),

ITEMVAL2 (0:1),
ITEMVAL3 (0:1),
ITEMVAL4 (0:1),
ITEMVALS (0:1);

INTEGER ITEMNUM1,ITEMNUM2,ITEMNUM3,ITEMNUM4 ,ITEMNUMS;

INTRINSIC PROCINFO;

PIN := O; <<seek information about ourselves>>
ITEMNUML := 1; {request our pin #>>

ITEMNUM2 := 3; <<how many sons we haved>

ITEMNUM3 := 4; <Khow many descendants we have>>
ITEMNUM4 := 2; <<pin number of our father>>

ITEMNUMS := 5; <<how many generations we haved>>

PROCINFO (ERROR1, ERROR2, PIN, ITEMNUM1, ITEMVALI,
ITEMNUM2, ITEMVAL2,
ITEMNUM3, ITEMVAL3,
ITEMNUM4, ITEMVAL4,
ITEMNUM5, ITEMVALS);

IF <> THEN GO PROCERROR;

PROCERROR:
<<print message and error number>>
RETURN;

END. <<procinfo example>>

% e de g ke e ok ke ok ke ok ok ke ek ek ek gk g g ke ke e e ke ke e ke o ok ok ek ke ke ke keke

If the previous program was executed by pin 45 in the
process tree of figure 2, the following information would
be returned:

item number information
1 45
3 2
4 5
2 12
5 3
Pin 12
/ 0\
/I 0\
/ \
Pin 23 Pin 45
/ 0\
/\
/ \
Pin 22 Pin 34
/ 1\
/1N
/A
/1 N\
/1N

Pin 38 Pin 21 Pin 30

Figure 2

gk kdddedodkdddkdkkhdededdkkkdddkddhk kkhdddkkkkhkkhkkkkikhikk

V. CONTROLLING PROCESSES

Once a program has created a process, it can control
its activity. As mentioned before, it can activate its sons
via the intrinsic ACTIVATE. However, only a father
can activate a newly created process. ACTIVATE is
called with the following parameters:

v v
ACTIVATE (pin, susp).

o-v

The process’ pin number is required, but the susp
parameter is not. If susp is provided and not equal to
zero, then the calling process will be suspended and the
specified process will be activated. Otherwise, the
father process continues to run and the activated pro-
cess becomes ready to run. The activated process will
execute when the dispatcher selects it as the highest
priority process to launch.

A process may also suspend itself. Via the intrinsic

IV

LV

SUSPEND, a process may place itself in a wait state
and state its expected origin of activation. The intrinsic
calling sequence is:

LV IV o~V

SUSPEND (susp,rin).

The RIN parameter is the Resource Identification
Number that will be locked for the process until it sus-
pends again. The RIN allows a process to have exclu-
sive access to a particular resource at a particular time.
This is one way to synchronize processes and their re-
sources running under the same job.

One other process control intrinsic is GETPRIOR-
ITY. When a process is created, it is given the same
priority as its father. This intrinsic allows a program to
change its own process’ priority or that of a son. The
process cannot, however, request a priority outside of
its allowable priority class. GETPRIORITY is called as
follows:

Iv o-v

GETPRIORITY(pin, priorityclass,rank).

4—30—5

The priorityclass parameter is a 16-bit word that con-
tains two ASCII characters. Depending on the priority
queue desired, the parameter is ‘“AS,” “BS,” “CS,”
“DS,” or “ES.” (If a user has privileged mode, he can
supply an absolute number for the priority parameter
instead of the ASCII characters. It is done by supplying
the parameter “‘xA where “'x” is an integer value and
“A" is the ASCII character A.) The rank parameter,
once again, is not used except for compatibility with old
versions of MPE.

The last two intrinsics to be discussed are used for
process termination. When a process is terminated, it
must return all the system resources that it is holding,
stop its sons from running and start their termination

sequence, and then request that its father take away its
stack. The two intrinsics used for termination are:

v

KILL(pin) and TERMINATE.

The parameter in the KILL intrinsic is the pin
number of the process’ son that it wants deleted. TER-
MINATE can only be used for the calling process.

The following is another example using these various
intrinsics. This example illustrates the CREATE, AC-
TIVATE, GETPRIORITY and TERMINATE intrin-
sics:

EAXKAAXEAKXEAAAKAIAKRARKRKRAARKRLAARRAAAAAARA A AR A A AI AR A KA

BEGIN

ARRAY NAME(0:15) :=
BYTE ARRAY BNAME (*) = NAME;
INTEGER PIN;

"EXAMPLE.PUB.SYS ";

INTRINSIC CREATE,ACTIVATE,TERMINATE,GETPRIORITY;

CREATE(BNAME, ,PIN, ,1);

IF <> THEN TERMINATE;

ACTIVATE(PIN,2);

IF <> THEN TERMINATE;
GETPRIORITY (PIN, "DS");
IF <> THEN TERMINATE;

END.

{Kcreate the new process. reactivate >>
{<the father when this one finishes.)>>

<<kill process because of error ind>>
{<{creation sequence >>

{Kactivate process and then reactivated>
<<Lcalling process by the son >

{Kprocess not activated due to error>>
{{change priority of son process>>

{Knew priority not granted>>

RAKKAA KA A A AR hhhhhhhhkhhhhhhhhhhkhkkhkhhhhhhhhhkhhkhkkkx

VI. SUMMARY

This paper has summarized various intrinsics that can
be used to create new processes, obtain information
about them, control them, and then terminate them. A
new intrinsic, PROCINFO, was also introduced which
can provide the user with more information about pro-

4 —-30—6

cesses without requiring privileged mode capability.
MPE is a process oriented operating system, and with a
better knowledge and understanding of how processes
operate, a user can enhance his applications and their
performance on the HP3000.

Putting the HP3000 to Work
For Programmers

Thomas L. Fraser
Forest Computer Incorporated
East Lansing, MI

1. THE OPPORTUNITY

The demand for software is exploding as businesses
and other organizations which use computers strive to
be more productive, control costs, and improve the
quality of management information. The acceleration of
this demand is forecasted to continue throughout the
early 1980s.

Software is produced for the most part by people,
skilled people. These “‘programmers’ are a limited re-
source. If the increasing demand is to be met, either the
size of this resource must be increased or the prod-
uctivity of the resource must be improved.

Looking at the issue from the viewpoint of an indi-
vidual DP shop, increasing the size of the resource
means hiring people. Skilled people are expensive, and
costs are going up. Especially expensive are program-
mers, due to the already existing shortage. This short-
age also makes it difficult to find quality people. So
increasing the size of the resource is not always easy
and is very costly.

Another trend that is evident is the decreasing cost of
computer hardware. This contributes to the increasing
demand for software, and thus is part of the problem.
However, it can be made part of the solution by putting
computers to work for the programmers.

This is the opportunity. Use the computer to increase
the productivity of programmers. Provide software
tools which allow the people to work efficiently and
quickly. The expensive and scarce programmer should
not have to wait for or adapt to the increasingly inex-
pensive computer. In a word, the computer needs to be
made more friendly toward the programmer.

II. THE HYPOTHESIS

In the specific environment of the HP3000, program-
ming is usually done online. A majority of the programs
are written in COBOL with FORTRAN also popular.
There are several types of tools which can be intro-
duced to this environment. Report generators, high
level file systems, COBOL generators, forms
generators, and very high level languages such as
RAPID/3000 can all help. However, in most shops pro-
grammers still spend a large amount of time at a termi-
nal working with source code. This therefore is the first

place to look when considering how to get the HP3000
working for the programmer.

By far the most prevalent software tool used by pro-
grammers is the HP editor. Compared to the primeval
batch methods of source input and maintenance,
EDIT/3000 is vastly superior. Because the editor is in-
teractive, changes can be viewed as they are made
within the context of the rest of the program. Also the
editor provides many features such as searches and
global changes previously unavailable. And best of all
there is no problem keeping card decks in sequence.

However, the new features and capabilities come
with a price, that of increased demand on the system
resources. The programmers are competing with each
other, as well as with production users, for precious
disk accesses and CPU time. An obvious result of any
delay in system response is lower productivity. This
applies to all users of the system, including program-
mers.

EDIT/3000 is not without weaknesses. It is a line-by-
line editor. This is a logical carryover from the days of
cards. (Remember, the VDT was originally intended as
a keypunch replacement.) All 1/O is organized around
the line as a standard unit. I/O from the terminal inter-
rupts the hardware once for each character because of
lack of block-mode handling. Moreover, the software
must get involved each time “RETURN" is hit; thisis a
minimum of once per line with the exception of the
“CHANGE" command, and with many commands can
be several times per line. Disk I/O is blocked, but the
binary search used to locate the card-image formatted
records i very expensive in terms of disk accesses. This
line orientation has obvious negative performance im-
plications. Moreover, it means that the programmer
must work with a line at a time. Despite the ability to
display 20 lines on a single CRT screen, only one line at
best can be entered or changed per transmission except
for the noted exception.

Believing that the overall demand on resources might
be reduced, and system performance improved, there
still remain other areas to be investigated when seeking
to improve upon the editor. For example, the “TEXT"”
and “KEEP” commands are very slow due to the fact
they are actually file copying commands.

4—-36—1

One of the nice features of EDIT/3000, that of being
able to see the changes in context, is mitigated against
by two major factors. The first is screen clutter. Unless
one repeatedly does “LIST” commands, the screen be-
comes full of old source lines and already executed
commands as well as current source lines. The second
is the inability to access everything on the screen.

Performing some operations, even on a single source
line. require several commands to be transmitted. This
makes more effort by the programmer necessary, and
slows the coding process. This, together with the other
factors, are seriously impairing the speed of software
development and system performance.

Thus the hypothesis, that a full screen block-mode
editor, written for maximum features with minimum
demand on machine resources, would dramatically im-
prove programmer productivity. Improved response
time for other users could also be anticipated.

1. THE METHOD

To test the hypothesis a full screen, block-mode
editor was designed and written. The result of this ef-
fort. called “CHICKEN" by its architects, was a
COBOL and SPL program which can be used to edit
source code, documentation, stream-files, and other
text. No operating system modifications are required,
and the program runs in ordinary session-mode.

Block-mode transmissions dramatically reduce the
overhead of terminal I/O. This is especially true when
the line is driven from the Asynchronous Data Com-
munications Controller (ADCC). The number of
transmissions is also reduced making life easier for the
programmer. The terminal has a microprocessor;
block-mode enables taking advantage of this to reduce
load on the HP3000. If one has paid for a “smart termi-
nal.” it behooves one to use it. By the way, CHICKEN
can automatically switch the terminal between block-
mode and character as needed. Implicit is that the VDT
being used is an HP compatible terminal with block-
mode capability.

Full screen access is another way of putting the ter-
minal to work. With the new editor, all twenty-four lines
of the screen are used. One line is for entering com-
mands, one line for error messages, and the other
twenty-two are used to display source lines. The pro-
grammer can change, delete, or insert lines of code any
place on the screen by using just the terminal
capabilities. Only after completing an entire screen, is
the source transmitted to the HP3000. At that time
CHICKEN will determine which lines should be de-
leted, changed, or added to the file. There is no need to
use commands to tell it what is a change, delete, etc.

The disk organization of source files also effects Sig-
nificant advantages. Standard MPE files are used, but
CHICKEN has its own access techniques. The old
card-image format is replaced by a compressed format
which is designed to maximize performance while using
less disk space. Because of the file organization and

4—36—2

access methods, CHICKEN can retrieve any single line
of source code in one disk access, and any twenty-two
consecutive lines in an average of 1.4 seeks with a
maximum of two required. This single technique has
great performance implications.

Ease of use is always an important design considera-
tion and CHICKEN is easy to use. The command set
uses language similar to EDIT/3000 to make it easy to
quickly get acquainted. Any command can be issued at
any time. Moreover, it is seldom necessary to issue mul-
tiple commands to accomplish a single task. Recall also,
that the software frequently will figure out what you
want done without having to be specifically told. Prob-
ably the biggest factor in ease of use, though, is the full
screen access. A simple list of commands is below.

CHICKEN has other featur..s which contribute to
improved productivity:
® Screens are automatically formatted for COBOL,
FORTRAN or SPL source if desired.
® The programmer has access t most MPE com-
mands from the editor.

® Compiles can be submitted without leaving the
editor.

® Special passwords are put on source files.

® An optional log of changes provides a means of
recovery and a means of “backing out” modifi-
cations. This also can be used to provide an audit
trail.

Several commands are listed below to show general
syntax and to compare their operation with the similar
commands available in EDIT/3000. In general, the
commands follow a standard format as shown here:

CMD <starting-line <ending-line>> required-params
<optional-params>
CMD <starting-line <ending-line> > required-params
<optional-paiams>

Most command key-words are the same as found in
EDIT/3000, and all can be invoked by entering only the
first letter. For instance, “LIST 120.5" can be entered
as “L 120.5.

CHICKEN attempts to give the user as much flexibil-
ity in entering a command as possible. so as to accom-
modate differing user styles acquired through exposure
to various other editors. Thus the following commands
would all have the same effect if entered:

DELETE 20/30
D (20.00:30.00)
DEL 20 30

DELETE 20,30

The goal here is to make the editor easy to learn by
not requiring strict adherence to particular syntax rules,
and easy to remember by keeping command formats
simple and regular.

Following are some representative commands:
TEXT edit-file < NEW < mpe-source-file > >

This command opens and grants access to an edit-file.

If another edit-file is currently open and being worked
on, it is automatically closed. If the NEW option is
entered, a new edit-file is created. The ‘‘mpe-source-
file” refers to an EDIT/3000 source file which can be
copied to the CHICKEN edit-file. This command exe-
cutes very quickly because there is no copy operation
from a source file to a work file as in EDIT/3000, except
when an MPE source file is copied in, which happens
only rarely.

KEEP < A < B > > mpe-source-file < PURGE >

This command makes a copy of the currently acces-
sed edit-file to an EDIT/3000 formatted source file.
Normally all lines will be copied. If line A is specified,
all lines from line A through the end of the edit-file will
be copied. If line B is specified, the copy will only in-
clude the lines from line A through line B. If the
PURGE option is entered, the edit-file is closed and
purged from the system after a successful copy opera-
tion.

This command is used infrequently, usually for bac-
kup purposes. Since compiles can be implemented di-
rectly from within the editor on the existing edit-files,
there just isn’t much need to KEEP files. If one edit-file
is TEXTed in and modified, a second TEXT automati-
cally closes the first edit-file with changes intact. The
improvement in response time to access edit-files can
be dramatic even on only a moderately loaded system.

LIST< { A/LAST } >

A simple LIST command without parameters will
display the first 22 lines of text in the edit-file. Sub-
sequent transmission will display the next 22 lines, in
effect paging through the text. If line A is specified, then
line A and the next 21 lines of text following line A will
be displayed. Again, paging applies after entering the
command once. If “LAST” is specified, then the last
line of text and 21 blank lines are displayed.

This is where some of the power and flexibility of a
full screen block-mode editor can be seen. The user can
now be free to move the cursor anywhere on the screen,
modifying, inserting, and deleting lines. Changes can be
reviewed in context of the surrounding text. Even line
numbers can be changed simply by typing over the old
ones displayed. All of this goes on without bothering the
host computer. Of course, this frees up the HP3000 for
other tasks at hand.

FIND < A < B > > *textl* < ALL >

This command performs a search for the next occur-
rence of textl and displays the line containing the textl
along with the following 21 lines of text. If line A is
specified, the search will begin at line A and continue
until a match is found or the end of the file is reached. If
line B is specified, the search will only encompass lines
A through B. The asterisks surrounding textl represent
delimiters, which can be any non-alphanumeric charac-
ters including a space.

Examples:

FIND MEN
F/ALL MEN/

<spaces as delimiters>
<slashes as delimiters . . . space
is part of the search string>

The ALL option will cause the editor to attempt to
find all occurrences of textl and display all correspond-
ing lines. If 22 occurrences are found before the search
line limit, the lines containing occurrences of textl are
displayed along with a message stating that the search is
not finished. The user can modify any of the lines on the
screen. To resume the search, the user only needs to
enter “F”, and the editor picks up the search where it
left off. The user can even begin a search and then use
other commands such as LIST or CHANGE, add and
delete lines, etc., and will still be able to resume a
search.

RENUMBER < A> <BYN?>

Renumbers the edit-file. If no parameters are entered,
all text lines are renumbered. If line A is specified, the
numbering will begin at line A and continue through the
end of the file. If line B is specified, the renumbering
will only be done on lines A through B. The BY N
option allows the user to override the default line
number increments used by CHICKEN in a renumber
operation.

The renumbering is done to the file in place, rather
than through a copy procedure. This significantly
speeds up the operation in comparison to, say, EDIT/
3000’'s GATHER command.

Other commands found in EDIT/3000 as well as many
other line editors, are either unnecessary or have their
utility reduced with a full screen editor. The ADD
command in EDIT/3000 is a good example. With
CHICKEN lines are inserted right on the screen be-
tween other lines of text, and transmitted back to the
editor. The line number does not even have to be in-
cluded. The editor identifies the surrounding text and
calculates a line number for the new line. To add text at
the end of a file, the user enters L LAST. CHICKEN
displays the last line of text followed by 21 numbered
blank text lines. Along the same vein, line deletes can
be handled on the screen simply by placing the letter
“D” before a displayed line of text. The DELETE
command itself is only needed for global deletes, as in D
100/200.

The above are just a sampling of the full screen
editor’s command list. As was mentioned previously,
command keywords have, for the most part, been kept
the same to facilitate learning to use CHICKEN. Thus
the user will find such familiar key-words as GATHER,
JOIN, HOLD, CHANGE, EXIT, etc., along with a few
new commands, such as ZIP which initiates a compile
for an edit-file without having to either exit the editor or
KEEP the source code.

THE RESULT
(A Personal Digression)

The most notable difference upon the installation of

4—36—3

CHICKEN was not programmer productivity, it was
programmer euphoria. After using it for even a short
time, one gets hooked. In our shop we have a mixture of
block-mode and character-mode terminals used for pro-
gram development. To say that the character-mode
terminals are collecting dust would be an exaggeration,
but we have noticed people arriving quite early in the
morning to stake claim to a “CHICKEN” terminal.
The productivity, response time, and performance
improvements are also accomplished. As of this writing

4—36—4

(December 1981), quantitative data are not available.
Anyone desiring more information of this nature, or
having any further interest in learning more about
CHICKEN can write to:
Tom Fraser
Forest Computer
P.O. Box 1010
East Lansing, Michigan 48823

or call (517) 332-7777.

Techniques for Testing On-Line
Interactive Programs

Kim D. Leeper
Wick Hill Associates Ltd.
Kirkland, Washington

ABSTRACT

This paper will describe various strategies for testing
on-line interactive programs. These strategies include
acceptance/functional testing, regression testing and
contention, testing. The paper will also discuss the me-
chanics of testing including testing by human interven-
tion and various forms of automated testing. This in-
formation will allow you to create a viable test plan for
software quality assurance in your shop.

INTRODUCTION

Program Testing. Those two words undoubtedly con-
jure up thoughts of long boring hours sittig in front of a
terminal typing in all kinds of data looking at error mes-
sages produced by the program. This paper will present
alternatives to this type of program testing. It will also
describe a prototype test plan or quality assurance cycle
which may provide the reader with ideas for implement-
ing his/her own test plan for his/her own shop.

We must make sure we are all talking the same lan-
guage so some definitions are in order at this point.

What is Testing?

Software testing may be thought of as a series of data
items which when presented to the program under test
(PUT) cause the software in question to react in a pre-
scribed or expected fashion within its intended envi-
ronment. The purpose of testing is to expose the exis-
tence of mistakes in the program or to show the absence
of any such bugs. If the software does not act in the
expected way then one has found a bug or mistake in
the program.

Vocabulary

SCRIPT — a list of inputs or data items given to the
PUT for testing purposes.

DATA CONTEX OF BUG — the collection of inputs
required to cause the PUT to fail or return results which
are not expected.

TYPES OF TESTING

Acceptance/Functional Testing

This type of testing is used to demonstrate that the
various functions of a given software package actually

works as described in its documentation. This is not
exhaustive testing as it only examines one or two
transactions per function. This is the typical type of
testing the vast majority of users perform now.

Regression Testing

This type of testing can be used to test all the various
logical paths within a given software system. Regres-
sion testing tries all the data extremes per function that
the program could be expected to respond to. This type
of testing is rarely performed because it is resource, that
is to say hardware and personnel, intensive.

Contention Testing

This type of testing is used to determine if the
database or file locking strategies that are used in your
application programs actually work. Two programs are
executed at the same time, one performs a transaction
which locks a given item in the database. The second
program attempts to access this same data that is sec-

“ured by the lock via another transaction type different

than the one used in the first terminal. The designer in
this instance is interested in the message of action of the
software to this challenge. This type of testing becomes
particularly relevant when the installation has many
programmers implementing many systems dealing with
the same database.

THE TEST PLAN OR
QUALITY ASSURANCE CYCLE

The keystone of any successful testing program is to
have a viable test plan. This plan should describe all the
phases a software development project goes through
and then ties all the phases together in one comprehen-
sive flow of data and actions. The plan should exten-
sively use feedback loops so that when problems are
discovered there are clear paths for the problem rectifi-
cation process to follow. One possible quality assurance
cycle that can be proposed may be seen in Figure 1.

The diagram indicates that the test script should be
generated along with the design of the software. Many
times in the design process the designer realizes some
weakness in the design and will want to specify a special
test in the scriptfile. S/he is encouraged to do so. Many
companies that use this methodology specify programs

4—-90—1

by a test script and V/3000 screens.

Examining this diagram more closely one can see that
the flow of debugging actions is closely tied to the
design/maintenance of the original test script. The rea-
son for this is to force the implementors to keep track of
the bugs they discover and place them in the test script.
This script should then be run against the application
program whenever a new fix or correction has been
applied to the original program. This script will con-
stantly force the program to re-execute all the previous
transactions which caused bugs to occur in the past, to
assure the program maintenance team that no additional

start

'

design software

|

design test script

|

implement software

.

mistakes have been introduced by fixing the last bug.

In this version of the QA cycle the users are always in
a mode of testing the delivered software. Eventually the
users will find a bug which will start the whole cyclic
process over again. If they don’t find a bug, don’t think
it is not for trying. The users have eight hours per day
per person to find bugs. It does not take very long be-
fore they have more execution time on the application
software than the designer/implementator has. This is
the time when more bugs can and will be found which
will start the cycle once again.

modify test script

to include bug

implement fix

|

I

acceptance test

Pl/ !F

contention test

PJ/ | F

deliver to users

users find bugs

N Y

Figure 1
Quality Assurance Software Cycle

THE MECHANICS OF TESTING

Obviously, the type of testing that is currently being
used is human intervention testing. This is where a pro-
grammer of analyst sits in front of a terminal and simu-
lates a user by following a handwritten script. This ap-
proach to testing is less than desirable for a number of
reasons, among those being:

1. input data error due to arrogance/boredom in ap-

plications tester;

4902

[§S]

non-repeatability of exact timing due to human
tester:

3. the tester might not record everything happening
off the screen;

4. an expensive employee is being utilized for testing
purposes when s/he could be designing/
implementing more applications

A possible solution to the dilemma outlined above is

to mechanially examine the software by exhaustively

testing all the paths in the program by computer. Using
completely random data types as input you could auto-
mate the testing process. However, as there is only so
much time available during a 24 hour day it might take
all day to exhaustively test a very small application pro-
gram. This technique is machine bound in terms of both
creating the random data and testing all the paths in the
application code.

A saner approach would be to combine the above two
techniques into a testing procedure that utilizes a
human being’s capacity for creative thought and a ma-
chine’s capacity for highly efficient repetition. This
technique would rest in the programmers designing the
scripts used for automated testing at the same time as
they design the application itself. Once the test script is
produced then the machine itself tests out the applica-
tion program under the watchful eye of a human. In fact
the script can be used as a specification for implement-
ing the system. As Yourdon has written, *“What we are
interested in is the minimum volume of test data that
will adequately exercise our program.’

It is now possible, using VTEST/3000, to automate
this testing procedure and achieve a real manner of
quality control. VTEST/3000 includes full V/3000 test-
ing capability. The compiled code runs as though it
were in a live situation with VTEST/3000 providing full
documentation of all errors occurring on the screen of
the terminal.

In order to use VTEST effectively one must appreci-
ate the diagram in Figure 2. There are two types of tests
that VTEST can perform, block mode testing for those
programs that use V/3000 and non-block mode testing
for those not using V.

The first type of testing that will be discussed is non-
block mode application testing. In this case VTEST
looks like a non-block mode glass TTY terminal. The
script file contains the actual commands and data that a
user would normally type into the screen of a real ter-
minal, everything between and including HELLO and

BYE. This script file is built and maintained by the
standard HP EDITOR. The script file is input to
VTEST. VTEST transmits this file a line at a time to the
application and VTEST prints out a report of the termi-
nal screen before the return key was depressed and
after along with the number of seconds that the re-
sponse took to come back to VTEST.

The second type of testing that will be discussed is
block mode application testing. In this case VTEST
looks like a HP2645 block mode terminal. The script file
is the same as above with an important extension. The
script file now can tell VTEST when it must transmit
data to a V screen. The data for a V screen must come
from a different type of file. This file is called the
BATCH file. This BATCH file is created and
maintained by another program called CRBATCH.
CRBATCH allows the user to specify the formfile name
and the form to be displayed. Data is then entered and
CRBATCH reads the screen and puts the data into a
BATCH file. CRBATCH allows the user to insert sc-
reens, to delete screens and modify the data in screens
already in the BATCH file. It is a general purpose
maintenance program or editor for BATCH files.
Whenever the application program under test wants
some block mode data the next record is read from the
BATCH file. VTEST then transmits this record com-
plete with all the special characters that V requires to
the application. VTEST prints out a report for every
transaction before the ENTER key was depressed and
after the next screen was received along with the
number of seconds that the response took to come back
to VTEST.

One can see quite easily that VTEST fits right into a
well designed quality assurance cycle.

REFERENCES

1Edward Yourdon, “Techniques of Program Structure and Design,”
Prentice-Hall, 1975.

zSoftware Research Associates, “Testing Techniques Newsletter,”
(415) 957-1441.

4 —90—3

V3000
FORMSPEC

At completion, a fully documented print-out is

produced.
CRBATCH EDIT 3000
BATCH SCRIPT

ATC/ADCC

p——
‘ > LINK

J

RESULTS APPLICATION

Figure 2
4 —-90—4

A Universal Approach an an Alternative

to Conventional Programming

Bill McAfee and Craig Winters
Futura Systems

Austin

Some two years ago we set about to find a shortcut to
programming, a way to simplify and speedup the actual
coding, to eliminate all or nearly all of the housekeep-
ing, and to improve the reliability and maintain-ability
of our work. We wanted to be able to deal with any
problem in terms of the logical operations to solve it,
rather than with a sequence of detailed programming
statements.

We identified approximately 100 routines to handle
input, validation, conversion, formatting, and other
functions not provided in the System Library. We de-
signed an English-like language and compiler to invoke
these operations as well as those in the SL and to pass
them parameters; and we designed a driver to execute
all operations in a reliable, consistent manner.

Our primary objectives were:

® to define data types by the significance of their

contents (date, phone, zip code, quantities, mone-
tary amounts, etc.) and to perform data entry, vali-
dation, conversion and formatting automatically,
regardless of storage type.

® to provide a very high-level English-like language

that would be both easy to learn and self-
documenting.

® to be able to use any number and type of files
simultaneously including multiple databases,
datasets, KSAM, printer, etc.

® to automatically store and load tables to supply
values needed at run-time.

e to simplify declarations and eliminate the dull, bor-
ing redundant part of programming, where most
errors are made

® to provide text specification syntax, including lit-
eral text, program variables and control characters,
for use as program messages, report output, head-
ings, etc.

e to work equally well for interactive and batch ap-
plications.

We wrote the system in SPL. It has been in daily
operation for just over two years, during which time
there have been two major rewrites and many additions
and enhancements designed to further simplify its use
and improve performance. Presently we are just putting
the finishing touches on the final version which will

incorporate all the things we have learned from these
past two years of use and will reflect at every step what
we feel will be the best design and coding available.

Since this is a new and unique approach to program-
ming, there is no generic for it. We call it The Futura
System, and it consists of a language, compiler, driver
and an extensive procedure library. We have attempted
to give it the ability to do anything, and when we have
discovered something it would not do, we have added it.
And while our primary intent was to use it for applica-
tions programming, we have found that it is equally
strong and valuable as a powerful, versatile utility that
is able to supplement and round-out the various system
utilities quite handily.

Programming using FUTURA consists of Initializa-
tion Commands and Mainline Commands. The compiler
reads and validates these, checks their parameters, pro-
vides default values where desirable, builds the
Mainline binary command module, and formats and
prints a program listing in one of several styles. The
binary command module resides in the data stack and
drives and controls the entire program execution.

InitCommands include:

STACK — which sets the total space the program will
require. It has a default value of 3500 bytes, which
will handle most utility needs as well as quite a lot
of applications.

ALLOCATE — which dimensions the various buffers,
should the defaults not be quite right.

BASE — used to open an IMAGE database.

SETS — for identifying the DataSets to be accessed.

FILE — for opening MPE and KSAM files.

TABLE — declares and loads a table, taking care of
data conversion, statistics and storage automati-
cally.

PRINTER — opens a printer file according to your
specifications, including headlines, page numbers
and location, forms-message, and all other
parameters used with the line printer.

LOAD — which initializes any area in the data stack
with any string or binary value.

INTEGERS — used to load a string of binary single-
word integers at any location.

5—31—1

IDENTIFY — an InitCmmd that may be used or im-
plied by the syntax, it sets up a table of identifiers
for use throughout your program.

All InitCmmds that may be required must precede the
Mainline.

Mainline Commands are names of logical operations
such as ADD, MOVE, UPDATE(datatype), BINARY,
etc. They may have up to five parameters, some of
which are required and some optional. There are
MainCmmds to do everything, and frequently there are
several, giving the programmer meaningful options on
how to accomplish a step. For interactive applications
there are a dozen-or-so UPDATE (datatype) com-
mands, such as UPDALFA, UPDNMBR, UPDZIP,
UPDSSNO, etc., which not only accepts, validates,
formats and displays, and stores the data, but also gives
the programmer complete control and recognizes up to
8 special characters that permit backing up one or more
fields, begin record over, check for mail, etc.

The fact that commands are the names of logical op-
erations rather than language requirements means that
when you have logically solved the problem you have
also largely written the program.

Many MainCmmds return one or more values to the
program such as the Condition Code, Length,
DBStatus, Returned Value, etc. as may be needed.

Text strings to be used as prompts for interactive
operations are passed automatically to the program, as
the compiler counts them and stores them together with
any control characters needed to handle the screen and
make an eye-appealing presentation. Text needed for
any other purpose is also passed, counted, stored, and
recalled with little or no effort on the part of the pro-
grammer.

The MainCmmds themselves, the Identifiers, and the
way the text strings are handled all provide a great deal
of self-documentation right where it is needed in a pro-
gram, and other documentation and comments may be
added at any point. There is an index-building facility
that produces an index for the documentation consisting
of the program name and all of the comments in each
program.

Many commands provide for testing and branching.
They are processed uniformly by a subroutine, and

5—31—-2

branching may be either to a label or to another instruc-
tion. Subroutines may be nested up to 20 deep; they
may call themselves, and they may reside anywhere in
the Mainline. There are both Init and Mainline $IN-
CLUDE commands, allowing routines to be stored sep-
arately where they may be used by several programs by
including only the reference table.

The binary module together with any tables and initial
values may be automatically saved and used again
without recompiling by simply adding “$”’ to the
STACK command ($STACK). This binary file may be
purged any time changes are made, and it will be re-
compiled and saved at next compile if the “$” is in
place.

In the handout pages we have included examples
showing the program file as it is keyed using EDITOR,
the normal program listing provided by the compiler
which formats this Editor file and prints the permanent
documentation, and a look as the terminal screen as
each of these programs would appear when run, and a
sample of the printer output where applicable.

These are some of the programs that were used to
produce the Proceedings and the Exhibit and Confer-
ence Guide. While we asked that the papers for the
Proceedings be keyed in cap and lower case using the
EDITOR, with standard 72-byte records, the facts are
that everyone used his/her own method — with record
lengths from 60 to 160 bytes and some embedded con-
trol characters that would completely snarl our typesett-
ing computer if they were not removed.

These are mostly small, simple programs that will il-
lustrate the truly universal nature of the Futura System
as a powerful and versatile utility. I have also brought
the documentation for the Automatic TimeSharing Ac-
counting and Billing System (ATSABS) which will
show how it can be used for a large, complex system.

This will also show the automatic indexing and sys-
tem documentation features that are available. We
would be glad to have you all look this over and discuss
it either at our booth or at other times and places by
arrangement. This system totally automates our
TimeSharing accounting and billing. It required approx-
imately 5,000 lines of FUTURA code, and we estimate
it would have required more than 30,000 of SPL.

Everything You Wanted to Know
About Interfacing to the HP3000
PART 1

Ross Scroggs
The Type Ahead Engine Company
Oakland, California

INTRODUCTION

It is important to realize that the information
presented in this paper is my interpretation of the facts.
The interpretation is not perfect, for surely I have in-
cluded incorrect statements. If you believe that some-
thing here is incorrect, bring it to my attention. If I
believe that you are wrong I will try to set you straight,
but I will not argue about anything. I have included a list
of references at the end of this paper from which I have
obtained most of the information included here. If you
desire to make all of your terminal attachments success-
ful, obtain all of the references and read them. The most
important piece of information I can give you is to start
planning early when attaching terminals to the HP3000
and don't believe anything you read, if you haven’t seen
it work yourself, plan on having to solve a few prob-
lems. This paper is a guide to solving those problems,
but it won’t solve them for you.

Most of the experiments outlined in this paper were
performed with the Bruno release of MPE-IV, I have
subsequently been informed that the C release of
MPE-IV fixed many terminal driver problems as-
sociated with the ADCC.

Asynchronous terminals are attached to the HP3000
Series 1,11, and III through the Asynchronous Terminal
Controller (ATC) and to the Series 30, 33, 40, and 44
through the Asynchronous Data Communications Con-
troller (ADCC). This paper addresses issues involved in
making a successful connection to one of these two de-
vices. Terminals attach to the Series 64 through the Ad-
vanced Terminal Processor (ATP) which should make
all of our lives simpler (though expensive) in the coming
years. In its earlier versions the ATP will act much like
the ATC in terms of interfacing to terminals. It features
two major advances over the previous terminal control-
lers. First, there is a microprocessor controlling each
terminal line, this removes considerable work from the
CPU, the “character interrupt” problem. Second, the
ATP can use either the RS-232 or RS-422 interface
standards. RS-422 is a completely new electrical and
mechanical interface that supports very high data rates
over great distances with no errors, a typical example
would be 9600 baud at 4000 feet. What this flexibility

costs you is about $200 extra per terminal to provide a
RS-232 to RS-422 adapter. These won’t be required
when terminals provide RS-422 interfaces.

Terminals attached to the ATC or ADCC are acces-
sed primarily in two ways: as a session device or as a
programmatically controlled device. A session device is
one on which a user logs on with the HELLO or ()
commands and accesses the HP3000 through MPE
commands. A programmatic device is one which is con-
trolled by an application program that is run indepen-
dently from the device. These two access methods are
not mutually exclusive, a session device can be acces-
sed programmatically and many MPE commands can be
executed on behalf of a user who is accessing the sys-
tem programmatically.

SESSION DEVICES

Attaching a terminal as a session device is typically
the easier of the two methods. You must set the termi-
nal speed, parity, subtype, and termtype correctly and
provide the proper cable to complete the hookup.

Terminal Speed

The speeds supported by the ATC are 110, 150, 300,
600, 1200, and 2400 baud. The speeds supported by the
ADCC are those of the ATC plus 4800 and 9600 baud.
Unfortunately these two higher speeds can not be
sensed by the ADCC and thus you must log on at a
lower speed and use the MPE SPEED command to ac-
cess the higher speed. (Use of subtype 4 and specifying
any speed will allow a terminal to log on at that speed
only, this includes 4800 and 9600. Note however, that if
you use the :SPEED command the new speed specified
will be required at your next logon.)

Terminal Parity

The format of characters processed by the HP3000 is
a single start bit, seven data bits, a parity bit, and one
stop bit (two at 110 baud). The parity bit may always be
zero, always be one, computed for odd parity, or com-
puted for even parity. Choosing the proper parity set-
ting has been complicated by differences between the
ATC and ADCC. The ATC inspects the parity bit of the

6—40—1

initial carriage return received from the terminal and
sets parity based on that bit. If the bit is a zero the ATC
generates odd parity on output, if it is a one the ATC
generates even parity on output. In either case the par-
ity of incoming data is ignored and the parity bit is al-
ways set to zero before the data is passed to the request-
ing program. The ADCC also sets parity based on the
parity bit of the initial carriage return but does so with a
slight, but nasty twist. If the bit is a zero the ADCC
passes through the parity bit supplied by the application
program on output, if it is a one the ADCC generates
even parity on output. If pass through parity was
selected the parity of the incoming data is passed
through to your program buffer. If even parity was
selected the input data is checked for proper even par-
ity. Thus, you should not use odd or force to one parity
on the ADCC. The odd parity will be interpreted as pass
through and the parity bits will wind up in your data
buffer, string comparisons will fail because of the parity
bits. Force to one parity will be interpreted as even and
all input will cause parity errors.

Subtype

The ATC supports subtypes 0, 1, 2, 3, 4, 5, 6, 7, the
ADCC support subtypes 0, 1,2, 3, 4, 5. Subtypes 2, 3, 6,
7 concern half duplex modems and not me, so I will
ignore them. Subtype 0 is the standard for directly at-
taching terminals without modems. (Note that terminals
that are attached to multiplexors can fit in this category,
the modem involved is managed by the multiplexor, not
the HP3000.) Subtype 1 is the standard for attaching
terminals that use full duplex modems such as Bell 103,
212 and Vadic 34xx. Both subtypes 0 and 1 speed sense
on the initial carriage return. Subtype 4 is for direct
attach terminals that will not be speed sensed, they will
run at a fixed speed that is set at configuration time.
This subtype is often used to prevent the HP3000 from
trying to speed sense garbage, this sometimes occurs
when using short-haul modems (line-drivers) that do not
have a terminal attached to the other end. Subtype § is
for modem attached terminals that will not be speed
sensed.

Termtype

The ATC supports terminal types 0, 1,2, 3, 4, 5,6, 9,
10,12, 13,15, 16, 18, 19, 31, the ADCC supports terminal
types 4, 6, 9, 10, 12, 13, 15, 16, 18, 19. Termtype 4 is for
Datapoint 3300 terminals, it outputs a DC3 at the end of
each output line and responds to backspace with a
Control-Y, truly bizarre. (Termtype 4 on the ADCC
does not output DC3s at the end of each line.) Termtype
6 is for low speed printers, it outputs a DC3 at the end of
each line but responds to a backspace with a linefeed.
(The linefeed is on the first backspace of a series, this
allows you to type corrections under the incorrect
characters.) Termtype 9 is the general purpose non-HP
CRT terminal type. No DC3s are output at the end of
the line (whew!!) and nothing strange happens on
backspace, the cursor backs up just as you would ex-

6—40—2

pect. Termtype 10 is the standard for HP-26xx termi-
nals. Termtype 13 is typically for those terminals at a
great distance from the HP3000 for which some local
intelligence echos characters and the 3000 should not.
(Telenet and Tymnet charge you for those echoed
characters, that’s reason enough not to have the HP3000
echo them.) Termtypes 15 and 16 are for HP-263x prin-
ters. Termtype 18 is just like termtype 13 except that no
DCl is issued on a terminal read. Certain termtypes less
than 10 specify a delay after carriage control characters
are output to the terminal. The ATC handles this by
delaying for the designated number of character times
but does not output any characters. The ADCC actually
outputs null characters. The most extreme case is
termtype 6 which causes 45 nulls to be output after a
cr/If at 240 cps.

Cable

Direct attach terminals, subtypes 0 and 4, use only
three signals in the cable: pin 2, Transmit Data, pin 3,
Receive Data, and pin 7, Signal Ground. (Note that all
signal names are given from the point of view of the
terminal, not the modem or the HP3000 which acts like a
modem.) Typically the cable will connect pin 2 at the
terminal end to pin 2 at the HP3000, pin 3 at the terminal
to pin 3 at the HP3000 and pin 7 at the terminal to pin 7
at the HP3000. This is not to say that your terminal does
not require other signals, it just says that the HP3000 is
not going to provide them, you must. If your terminal
requires signals like Data Set Ready, Data Carrier De-
tect, or Clear To Send, you can usually supply these
signals to the terminal with a simple cable patch.
Jumper pin 4, Request To Send to pin 5, Clear To Send.
Jumper pin 20, Data Terminal Ready to pin 6, Data Set
Ready and pin 8, Data Carrier Detect. These two jum-
pers cause the terminal to supply its required signals to
itself.

Modem attach terminals, subtypes 1 and 5, use seven
signals in the cable: pin 2, Transmit Data; pin 3, Receive
Data; pin 4, Request To Send; pin 6, Data Set Ready:
pin 7, Signal Ground; pin 8, Data Carrier Detect; and pin
20, Data Terminal Ready. Naming the signals gets com-
plicated since the HP3000 is acting like a modem and it
is being attached to a modem. Typically, the cable that
connects the HP3000 to the modem will connect pin 2 at
the modem end to pin 3 at the HP3000, pin 3 at the
modem to pin 2 at the HP3000, pin 4 at the modem to pin
8 at the HP3000, pin 6 at the modem to pin 20 at the
HP3000, pin 7 at the modem to pin 7 at the HP3000, pin 8
at at the modem to pin 4 at the HP3000, and pin 20 at the
modem to pin 6 at the HP3000.

The cable that attaches your terminal to a modem
should be specified in your terminal owners manual,
consult it for proper connections.

Flow Control

Flow control is the mechanism by which the speed/
amount of data from the HP3000 to the terminal is con-

trolled. The HP3000 supports two flow control
methods, ENQ/ACK and XON/XOFF. The ENQ/ACK
protocol is controlled by the system, after every 80 out-
put characters the systems sends an ENQ to the termi-
nal and suspends further output until and ACK is re-
ceived back from the terminal. The suspension is of
limited duration for termtypes 10 to 12, output resumes
if no ACK is received in a short amount of time. The
suspension is indefinite for termtypes 15 and 16, the
ENQ is repeated every few seconds until an ACK is
received. (It is the ENQ/ACK protocol that fouls up
non-HP terminals that attempt to access the HP3000
through a port that is configured for an HP terminal.
Most terminals do not respond to an ENQ with an
ACK, you must do it manually by typing Control-F
which is an ACK. An ENQ is generated by the HP3000
when the initial carriage return is received from the ter-
minal, thus you get hung immediately. But, hit
Control-F, and logon and specify the proper termtype in
your HELLO command.)

The XON/XOFF flow control protocol is controlled
by the terminal. When the terminal wishes to suspend
output from the HP3000 it sends an XOFF (Control-S or
DC3) to the HP3000 and sends an XON (Control-Q or
DC1) to resume output. Unfortunately the HP3000
sometimes fails to properly handle one of the two
characters and you either overflow your terminal or get
hung up. This is particularly nasty when your terminal is
a receive-only printer and you can’t supply a missing
XON. You're really dead if the HP3000 misses the
XOFF. Termtype 13 has in my experience been the best
termtype to use if your terminal requires the XON/
XOFF flow control protocol. You can turn the echo
back on with ESC :.

A special note on XON. If you inadvertently send an
XON (DC1) to the HP3000 when output is not sus-
pended, surprise you are now in paper tape mode and
backspace, Control-X, and linefeed will act most
strangely. Hit a single Control-Y to get out of this mode,
the Control-Y will not be received by your program.

begin

integer
ilen,
olen,
pfnum:=0,
pifnum:=0,
pofnum:=0,
precsize:=-256;

Some terminals perform flow control by raising and
lowering a signal on their interface, the HP3000 can not
handle this. You must either run the terminal at a low
enough speed to avoid overflowing it or provide
hardware to convert the high/low signal to ENQ/ACK
or XON/XOFF, a costly affair.

A form of flow control used by HP terminals when
inputting data to the HP3000 is the DC2/DC1 protocol.
When the enter key is pressed on the terminal, a DC2 is
sent to the HP3000 to alert it to a pending block mode
transfer. When the HP3000 is ready to receive the data
it sends a DC1 back to the terminal to start the data
transfer. (Your program does not handle the DC2/DCI1,
but see below FCONTROL 28, 29.) This works fine
except in certain circumstances. In certain modes the
HP actually sends DC2 carriage return when the enter
key is pressed. This is no problem unless the DC2 and
CR do not arrive together. The CR may be seen as the
end of the data if it comes sufficiently far behind the
DC2, your program completes its request for data with
nothing and the real data bites the dust when it finally
shows up. The separation of the DC2 and CR can occur
when using statistical multiplexors or when using Tele-
net or Tymnet. Be aware, this problem is infrequent, but
unsettling when it occurs.

PROGRAMMATIC DEVICES

Attaching a terminal as a programmatic device is usu-
ally done when you want to attach a serial printer, in-
strument, data collection device, or other strange beast
to the HP3000. An application program you write will
typically control all access to the device, a user will not
walk up to it, hit return, and log on. I will explain the
various intrinsics that are used to access programmatic
devices and will give short (incomplete) program seg-
ments that illustrate the access method.

Declarations

The following declarations will be assumed for all
program segments shown.

<<** pick a number large enough for the

max imum data transfer *#*>>

logical
fcontrol'parm:=0,
prev'echo;

logical array
ibuff' (0:255),
obuff' (0:255),

6—40—3

byte array
pfname(0:7):="PROGDEV *";

byte array
pdevice(0:7):="PROGDEV “;

byte array
pifname(0:7):="IPROGDV ";

byte array
pidevice(0:7):="IPROGDV *";

byte array
pofname(0:7):="OPROGDV ";

byte array
podevice(0:7):="0PROGDV ";

define
fs'error'on'ccl= if <

then file'error (#,

fs'error'on'ccne=if <> then file'error (#;

procedure print'message({enum);
value
enum;
integer
enum;
option external;

intrinsic

fclose,fcontrol,fopen,fread,fsetmode,fwrite,print'file'info,
getprivmode,getusermode,iowait,terminate;

subroutine file'error (fnum,enum);

value
fnum,enum;
integer
fnum,enum;
begin

<<** simple file error handling subroutine, basic, not fancy

or very good. **>>

print'file'info (fnum);
print'message(enum);

<<** supply something, but remember your

cliches, make it user-friendly! **>>

terminate
end; <<K* file'errar *>>

FOPEN

You must call FOPEN to gain access to the device, I
always use a formal file name to allow control of the
open with file equations. If the device is unique in the
system, I use its device name as the file name. The
foptions specify CCTL, undefined length records, AS-
CII, and a new file. The aoptions specify exclusive ac-
cess and input/output. Choose a record size that is
larger than the maximum data transfer that will take
place.

<<** gimple, direct, not too graceful **>>

ATC — Opening a terminal with an HP termtype
causes an initial ENQ to be output to the device on the
first output, there must be an ACK reply from the de-
vice or your program will wait until the ENQ time-out
occurs.

ADCC

For devices that are to be used exclusively in pro-
grammatic mode it is recommended that you REFUSE
the device so that extraneous carriage returns from the
device will not be speed sensed by the HP3000.

pfnum:=fopen(pfname,%604,%104,precsize,pdevice);

fs'error'on'ccl (pfnum,l);

6—40—4

FCLOSE

You call FCLOSE to release access to the device,
some FCONTROL options exercised while the device
was open are not reset by FCLOSE.

ATC — MPE sends a cr/If to the device if it believes

fclose (pfnum,0,0);
fs'error'on'ccl (pfnum,9);
pfnum:=0;

FREAD

You call FREAD to get data from the device, many of
the FCONTROL calls shown below affect how FREAD
works. End-of-file is indicated by a record that contains
“:EOF:”. Any record with a colon in column one is an
end-of-file to $STDIN, *:EOD”’, *“:EQJ”, “:JOB”’,
“.DATA”, and “:EOF:” are end-of-file to $STDINX.
You should avoid linefeeds that follow carriage returns
because garbage characters will be echoed to the termi-
nal. (The inbound linefeed collides with the outbound
linefeed coming as a result of the carriage return.)

ilen:=fread (pfnum,ibuff',precsize);
fs'error'on'ccl (pfnum,2);
if >

then ; <<** handle eof **>>

" You may want to trap certain errors returned by
FREAD to your program: 22, software time-out; 31, end
of line (alternate terminator); and 33, data lost.

ATC — The characters NULL, BS, LF, CR, DCI,
DC3, CAN (Control-X), EM (Control-Y), ESC, and
DEL are stripped from the input stream for both session
and programmatic devices.

ADCC — The characters BS, LF, CR, CAN
(Control-X), and EM (Control-Y) are stripped from the
input stream for session devices. The characters BS,
CR, and CAN (Control-X) are stripped from the input
stream for programmatic devices.

getprivmode;

that the “carriage” is not at the beginning of the line,
i.e., the last character output was not a linefeed.

ADCC — MPE sends a cr/If to the device if it believes
that the “carriage” is not at the beginning of the line,
i.e., the last character output was not a linefeed or
formfeed.

<<** 1 do this for error handling purposes **>>

The default parity cases are handled quite differently
between the ATC and ADCC, you should exercise ex-
treme caution when dealing with parity on the ADCC.

ATC — If the ATC is in the odd/out, no check/in
mode all incoming characters have their parity bits set
to zero. The same is true for even/out, no check/in
mode.

ADCC — If the ADCC is in pass thru/out/in mode all
incoming characters retain their parity bits, they are not
set to zero. All special characters must have a zero
parity bit to be recognized. If the ADCC is in even/out,
check even/in mode the incoming characters must have
proper even parity and their parity bits are set to zero.
The second time you open this terminal the ADCC has
switched to pass thru mode and all incoming characters
retain their parity bits!!!

Each time you issue an FREAD to the terminal MPE
sends a DC1 to the terminal to indicate that it is ready to
accept data. Most devices ignore, totally, the DC1. If
your a device reacts negatively to the DCI, use
termtype 18 which suppresses the DC1 on terminal re-
ads. The device must not send data to the HP3000 until
it has received the DC1, otherwise the data will be lost.
If the device does not wait for the DC1 you must supply
external hardware that will provide buffering and wait
for the DC1 or you can solve the problem on the HP3000
by using two ports to access the device. One port is
opened for reading and the other for writing. A no-wait
read is issued before the write that causes the device tc
send data, then the read is completed.

<<** necessary for nobuf, no-wait i/o **>>

pifnum:=fopen(pifname,%204,%4404,precsize,pidevice);

if <
then begin
getusermode;
file'error(pifnum,l)
end;
getusermode;

pofnum:=fopen(pofname,%604,%404,precsize,podevice);

fs'error'on'ccl(pofnum,l);

ilen:=fread (pifnum,ibuff' ,precsize);

fs'error'on'ccl (pifnum,2);

fwrite(pofnum,obuff',-olen,%cctl);

fs'error'on'ccne{pofnum,3);
iowait (pifnum,ibuff’,ilen);
fs'error'on'ccne(pifnum,22);

6—40—5

When you attach your device to the two ports, con-
nect pin 2, Transmit Data of the terminal to pin 2 of the
read port, connect pin 3, Receive Data of the terminal to
pin 3 of the write port, and pin 7, Signal Ground of the
terminal to pin 7 of both ports. (This two port scheme
was first introduced to me by Jack Armstrong and Mar-
tin Gorfinkel of LARC.)

FWRITE

You call FWRITE to send data to the device. The
carriage control (cctl) value of %320 is often used to
designate that MPE send no carriage control bytes, such
as cr/lf, to the device. Some FCONTROL calls shown
below affect how FWRITE works. Control returns to
your program from FWRITE as soon as the data is
loaded into the terminal buffers, it does not wait until all
data has been output to the device.

fwrite (pfnum,obuff',-olen,%cctl);
fs'error'on'ccne(pfnum,3);

ATC — Carriage control %61 is output as carriage
return, formfeed (termtype 10).

ADCC — Carriage control %61 is output as formfeed
(termtype 10).

The default parity cases are handled quite differently
between the ATC and ADCC, you should exercise ex-
treme caution when dealing with parity on the ADCC.

ATC — If the ATC is in odd/out mode all outgoing
characters are given odd parity, even parity is generated
when the mode is even/out. Simple.

ADCC — If the ADCC is in pass thru/out mode all
outgoing characters retain their parity bits as passed to
FWRITE. If the ADCC is in even/out mode all outgoing
characters are given even parity. The second time you
open this terminal the ADCC has switched to pass
thru/out and all outgoing characters retain their parity
bits!!!

<K** eof here is probably an error, I mean what is going on? **>>

FSETMODE — 4 — Suppress carriage return/
linefeed

In normal operation a line feed is sent to the terminal
if the input line terminates with a carriage return, a cr/If
is sent to the terminal if the line terminates by count,
and nothing is sent if the line terminates with an alter-
nate terminator. FSETMODE 4 suppresses these
linefeeds and carriage returns. FSETMODE 0 returns to
normal line termination handling, an FCLOSE also re-
turns the device to the normal mode.

fsetmode (pfnum, 4) ;
fs'error'on'ccl (pfnum,14);

FCONTROL

FCONTROL is the workhorse intrinsic for manag-
ing a programmatic device on the HP3000. Each use
of FCONTROL which be shown separately but it will
usually be the case that several calls will be used.

fcontrol'parm:=30;
fcontrol (pfnum,4,fcontrol’'parm);
fs'error'on'ccl (pfnum,413);

ilen:=fread (pfnum,ibuff' ,precsize);

if <
then begin
fcheck(pfnum,errorcode) ;
if errorcode <> 22

then file'error (pfnum,errorcode*100+2);

<<** handle time-out **>>
end;

FCONTROL - 10, 11 - Set terminal input foutput speed

These FCONTROL options allow you to change the
terminal input and output speeds. FCONTROL 37 can
also be used to set terminal speed, it sets termtype as

6—40—6

Most calls are required only once, but the timer calls
are required for each input operation. Each call will
be identified by the controlcode parameter that is
passed to FCONTROL.
FCONTROL -4 - Set input time-out

This option sets a time limit on the next read from the
terminal. It should always be used with devices that
operate without an attached user to prevent a ““hang.” If
something goes wrong with the device, your program
will not wait forever, control will be returned to your
program. The FREAD will fail and a call to FCHECK
will return the errorcode 22, software time-out. No data
is returned to your buffer in the case of a time-out, any
data entered before the time-out is lost. If you issue a
timeout for a block mode read the timer is stopped when
the DC2 is received from the terminal, a new timer is
then started which is independent of the timer set by
this FCONTROL call. See the section below on
enabling/disabling user block mode transfers.

<<** 30 second time-out *#*>>

<K** something else **>>

well and is the method that I prefer.
ATC — Split speeds are allowed.

ADCC — Split speeds are not allowed, FCONTROL
10 and 11 set both input and output speed.

FCONTROL - 12, 13 — Enable/disable input echo
These FCONTROL options allow you to enable and
disable terminal input echoing. Many devices that at-
tach to the HP3000 do not expect or desire echoing of
the characters they transmit. This option along with

fcontrol (pfnum,13,prev'echo);
fs'error'on'ccl (pfnum,1313);

FSETMODE 4 completely turns off input echoing.
(Control-X is handled separately.) Echoing is not re-
stored when a file is closed so you should always put
echo back the way it was found.

<<** turn echo back on if it was previously on **>>

if prev'echo =0
then begin

fcontrol (pfnum,12,prev'echo);

fs'error'on'ccl (pfnum,1213)
end;

FCONTROL - 14, 15 - Disable/enable system break

The break key is typically disabled when terrible
things will happen if the user hits break and aborts out
of a program. You, the programmer, always seem to
need break for debugging purposes and discover that
you have it turned off. System break can only be
enabled for session devices, it is not allowed for pro-
grammatic devices. If break is entered on a session de-
vice the data already input will be retained and provided
to the user program after a resume and the completion
of the read. If a break is entered on a programmatic
device a null will be echoed to the device but no data is
lost.

FCONTROL - 16, 17 — Disable lenable subsystem break

Subsystem break is recognized only on session de-
vices, it can be enabled on programmatic devices but
has no effect. If a Control-Y is entered during a read, the
read terminates and the data already input will be re-
tained and provided to the user program after the
Control-Y trap prodedure returns. If Control-Y is dis-
abled any Control-Y will be stripped from the input but
no trap procedure is called and the read continues.
Control-Y trap procedures are armed by the XCON-
TRAP intrinsic. A subsystem break character other
than Control-Y may be specified when unedited termi-
nal mode (FCONTROL 41) is used.

ATC — In programmatic mode Control-Y’s are al-
ways stripped from the input.

ADCC — In programmatic mode Control-Y is not
stripped from the input if subsystem break is enabled.
FCONTROL - 18, 19 - Disable/enable tape mode

ATC — This is effectively an FSETMODE 4, an
FCONTROL 35, and suppression of backspace echoing
all rolled into one.

ADCC — Tape mode can not be enabled.
FCONTROL — 20, 21, 22 — Disable/enable terminal
input timer, read timer

These options can be used to determine the length of
time it took to satisfy a terminal read. It is not a time-
out, that is FCONTROL 4. The manual states that you
must enable the timer before each read so why is there a
disable option? If you read the timer without enabling

the timer, you get the time of the most recent read that
did have the timer enabled. The number returned is the
length of the read in one-hundreths of a second. Condi-
tion code > implies that the read exceeded 655.35 sec-
onds.

fcontrol (pfnum,21,fcontrol'parm);
fs'error'on'ccl (pfnum,2113);
ilen:=fread (pfnum,ibuff' ,precsize);
fs'error'on'ccne (pfnum,2);

fcontrol (pfnum,22,fcontrol'parm);
fs'error'on'ccl (pfnum,2213);

FCONTROL - 23, 24 - Disable/enable parity checking

This option enables parity checking on input for the
parity sense specified by FCONTROL 36. Parity check-
ing is overridden by binary transfers (FCONTROL 27)
or unedited.mode (FCONTROL 41).

ATC — This option affects input parity checking
only, output parity generation is controlled by FCON-
TROL 36.

ADCC — This options controls both input parity
checking and output parity generation, FCONTROL 36
only specifies the type of parity.

FCONTROL - 25 - Define alternate line terminator

This option is used to select an alternate character
that will terminate terminal input in addition to carriage
return. It is useful if your device terminates input with
something other than return.

ATC — Backspace, linefeed, carriage return, DCI1,
DC3, Control-X, Control-Y, NULL, and DEL are not
allowed as terminators. The manual claims that DC2
and ESC are not allowed as terminators but they work.
If a DC2 is the first input character from an HP termtype
terminal the HP3000 drops the DC2 and sends a DC1
back to the terminal, it thinks a block mode transfer is
starting. Any other DC2 is recognized as a terminator if
enabled. By enabling user block mode transfers
(FCONTROL 29) a DC2 as the first character will also
be recognized as a terminator when enabled. For
non-HP termtype terminals a DC2 is always recognized
as a terminator when enabled.

ADCC — Backspace, linefeed, carriage return,

6—40—7

Control-X, Control-Y, and NULL are not allowed as
terminators. The manual claims that DC1, DC3, ESC,
and DEL are not allowed as terminators, but they work.
DC2 is allowed as a terminator but produces bizarre
results unless unedited terminal mode (FCONTROL 41)
is also enabled in which case the DC2 is recognized as a

fcontrol'parm:=[8/0,8/"."];

fs'error'on'ccl (pfnum,2513);

ilen:=fread (pfnum,ibuff',precsize);

if <
then begin
fcheck (pfnum,errorcode);
if errorcode <> 31

then file'error (pfnum,errorcode*100+2);

terminator in any position.

If a line terminates with an alternate terminator, it will
be included in the input buffer and length and an error
will be indicated for the read. You must call FCHECK
to determine that the read terminated with the alternate
character.

<<** period is alternate terminator **>>
fcontrol (pfnum,25,fcontrol'parm);

<<** something else **>>

<<** handle alternate terminator **>>

end;

FCONTROL - 26, 27 — Disable lenable binary transfers

Binary transfers can be used to transmit full 8-bit
characters to and from the terminal. On input a read will
only be satisfied by inputting all characters requested, a
carriage return or alternate terminator will not terminate
the read. No cr/If is echoed to the terminal at the end of
the read. Thus, you must always know how many
characters to read on each input from the terminal.
Enabling binary transfers also turns off the ENQ/ACK
flow control protocol and carriage control on output.
No special characters are recognized on input. See the
note under FCONTROL 25 about DC2 as the first input
character on a line. If a session device is being accessed
in binary mode, a break will remove the terminal from
binary mode but it will not be returned to binary mode
when a resume is executed.

FCONTROL - 28, 29 - Disable/enable user block mode
transfers

As described above the normal sequence of events in
a block mode transfer from an HP terminal to the 3000 is
for the HP3000 to send a DC1 to the terminal indicating
it readiness to accept data, the terminal sends a DC2
when the enter key is struck to indicate that it is ready
to send data, the HP3000 responds with another DC1
when it is really ready to take the data, and the terminal
sends the data. All of this is transparent to your program
which just issues a big read. If your would like to par-
ticipate in this handshake you enable user block mode
transfers and MPE relinquishes control of the hand-
shake. Your program would issue a small read, get the
DC2, and issue another read to accept the data. This
allows you to meddle around before the data shows up.

The terminal driver only supports block mode trans-
fers with HP termtypes and performs one other function
during block mode transfers. Normally you wouldn’t
put a timeout (FCONTROL 4) on a block mode read
because the user can take an indefinite amount of time
to fill a screen; but you would like to avoid terminal
hangs because the block terminator from the terminal

6 —40 —8

gets lost. This situation is handled by the driver for you,
the portion of the read after the second DC1 is sent to
the terminal is timed for (#chars in read/#chars per
sec)+30 seconds. If the terminator is lost and the read
times out, the read will fail and FCHECK will return
error 27.

fcontrol (pfnum,29,fcontrol'parm);
fs'error'on'ccl (pfnum,2913);

ilen:=fread (pfnum,ibuff',-1);
fs'error'on'ccne (pfnum,2);

<<** meddle/muddle **>>

ilen:=fread (pfnum,ibuff',precsize);
fs'error'on'ccne (pfnum,2);

FCONTROL - 30, 31 — Disablelenable V/3000 driver
control '

This option is an undocumented option in which the
terminal driver provides low level support for V/3000
use of terminals. When V/3000 issues a read to the ter-
minal the driver outputs a DC1; the terminal user hits
enter which causes a DC2 to be sent to the 3000; the
driver responds with ESC ¢ ESC H DC1 which locks
the keyboard and homes the cursor; it appears that the
driver also enables binary transfers because the second
read only terminates by count, not by terminator. The
portion of the read following the second DC1 is timed as
described under FCONTROL 28, 29,

FCONTROL - 34, 35 — Disablelenable line deletion
echo suppression

This option suppresses the !!!cr/If echo whenever a
Control-X is received from the terminal, the Control-X
still deletes all data in the input buffer.
FCONTROL - 36 - Set parity

This FCONTROL option sets the sense of the parity
generated on output and checked on input. The four
possibilities are: 0, no parity, all 8 bits of the data are
passed thru; 1, no parity, the parity bit is always set to

one; 2, even/odd, even parity is generated if the original
parity bit of the data was a zero, otherwise odd parity is
generated; and 3, odd parity, odd parity is generated on
all characters.

ATC — FCONTROL 36 sets the parity sense and
enables output parity generation. FCONTROL 24 must
be called to enable parity checking on input. An un-
documented effect of this FCONTROL call is that the
previous parity setting is returned in the controlcode
parameter wiping out its original value!

ADCC — FCONTROL 36 sets the parity sense only.
FCONTROL 24 must be called to enable output parity
generation which results in input parity checking as
well. An undocumented effect of this option is that the
previous parity setting is returned in the controlcode
parameter wiping out its original value!

Parity is not reset to the default case when a device is
closed. This can be useful if you have a session device
that can not run with the default parity. Each time the
system is started run a program that opens the device,
sets the parity, and closes the device. It can then be
accessed as a session device with the required parity.

ATC — The following results were obtained when
parity generation was enabled on output. All options
performed as described in the manual.

ADCC — The following results were obtained when
parity generation was enabled on output. Option 0, par-
ity pass thru, resulted in even parity on all characters.
Option 1, parity forced to one, resulted in odd parity on
all characters. Option 2, even/odd parity, resulted in
even parity on all characters regardless of the original
parity bits of the characters. Option 3, odd parity, re-
sulted in odd parity on all characters. Only option 3
performed as expected.

_ ATC, ADCC — The following results were recorded

when parity checking was enabled on input. Option 0,
parity pass thru, resulted in parity errors on all input
except that with even parity. Option 1, parity forced to
one, resulted in parity errors on all input except that
with odd parity. Option 2, even/odd parity, resulted in
parity errors on all input except that with even parity.
Option 3, odd parity, resulted in parity errors on all
input except that with odd parity. Options 2 and 3 per-
formed as expected, options 0 and 1 did not. In all cases,
parity bits are always set to zero before the data is
passed to your program buffer.

HP has told me that the following is the parity story as
of the C-delta version of MPE-IV.

ATC — Options 0 and 1 will not check parity on
input, everything else as described above.

ADCC — Option 0 and 1 will be parity pass thru,
everything else as described above.

FCONTROL - 37 - Allocate a terminal

In the old days you had to allocate a programmatic
terminal before it could be used. Now you don’t even
though the manual claims that you do. This option is
still useful because it allows you to set the termtype and

terminal speed with one FCONTROL call. Common
sense, mine at least, says to set termtype and speed each
time a device is opened even if the proper values are
configured in the i/o tables. Using this option allows use
of a file equation redirecting the program to another
device that might not be properly configured.

fcontrol'parm:=[11/speed,5/typel;
fcontrol (pfnum,37,fcontrol'parm);
fs'error'on'ccl (pfnum,37);

FCONTROL - 38 - Set terminal type
This option allows you to set the terminal type, but
use FCONTROL 37 and set type and speed all in one
shot.
FCONTROL - 39 — Obtain terminal type information
Before changing the terminal type, get the current
value and reset it when you are through.
FCONTROL - 40 - Obtain terminal output speed
Before changing the terminal speed, get the current
value and reset it when you are through.

FCONTROL — 41 — Set unedited terminal mode

Unedited terminal mode is about the most useful
FCONTROL option used to communicate with pro-
grammatic devices. It allows almost all control charac-
ters to pass through to the HP3000 but does not require
reads of exact length as in binary transfers. Input will
terminate on a carriage return or an alternate terminator
if specified. The subsystem break character, replacing
Control-Y, can also be specified.

ATC — Unedited terminal mode overrides input par-
ity checking, no checking is performed and all input
parity bits are set to zero. Output parity generation is
performed normally.

ADCC — Unedited terminal mode processes parity in
the same manner as edited mode, see the section on
FREAD for an explanation.

Binary transfers enabled overrides unedited terminal
mode enabled, If the input terminates with the end-of-
record character or alternate terminator.no cr/If is sent
to the terminal. If the input terminates by count a cr/If is
sent to the terminal unless an FSETMODE 4 has been
done. Unedited mode does not turn off the ENQ/ACK
flow control protocol on the ATC or ADCC. See the
note under FCONTROL 25 about using DC2 as a ter-
minator.

PTAPE

The manual describes PTAPE as the intrinsic to use
to read paper tapes. (A fancy data-entry media that is
becoming increasingly popular.) It can be used on the
HP3000 to access devices that send up to 32767 charac-
ters all in one shot subject to a few limitations. The data
must be record oriented with carriage returns between
records, MPE will cut the data into 256 character rec-
ords if there are no returns, and the whole mess must be
terminated by a Control-Y. Certain buffering terminals
allow you to fill their memory off-line, connect to a

6—40—9

computer, and transmit all the data. This could save
considerable time and money over dial-up phone lines.

DEBUGGING

If you have a requirement to attach a programmatic
device to the HP3000 the worst strategy is to write some
code on the 3000, plug the device in and start testing.
Murphy says it won’t work and it won’t. The method I
use is to test the device, then the code, and then the
code and device together. I test the device by plugging it
into an HP-2645 (or equivalent) terminal, turning on
monitor mode, and simulate the HP3000 by typing on
the keyboard. (Remember that you are hooking two
terminals together, you will probably hook device pin 2
to 2645 pin 3, device pin 3 to 2645 pin 2, and device pin 7
to 2645 pin 7.) You can stimulate the device and observe
all responses quite simply. Any strange behavior can be
noted at this point. The next step is to write the code on
the HP3000 to access the device in the manner deter-
mined by the first tests. Then plug the HP-2645, not the
device, into the HP3000. Now type on the 2645 to simu-
late the device, continue until your code is debugged.
Now you can plug the device into the HP3000 and you

6—40—10

have a good (modulo Murphy) chance of actually getting
it to work.

REFERENCES

Communications Handbook, Hewlett-Packard Company, April 1981
Part #30000-90105. This manual supersedes the HP Guidebook to
Data Communications and the Data Communications Pocket
Guide.

Don Van Pernis, “HP3000 Series 11 Asynchronous Terminal Control-
ler Specifications,” Computer Systems Communicator, #15, De-
cember 1977, page 2. This explains the terminal subtypes and sig-
nal requirements for the ATC.

Charles J. Villa, Jr., “Asynchronous Communications Protocols,”
Journal of the HP General Systems Users Group, Volume 1, #6,
March/April 1978, page 2. Good introductory material.

John Beckett, ‘“Poor Man’s Multidrop,” Journal of the HP General
Systems Users Group, Volume 2, #1, May/June 1978, page 7. How
to hook several terminals to the same port.

Tom Harbron, *‘Lightning, Transients and the RS-232 Interface,”
Journal of the HP General Systems Users Group, Volume III, #3,
Third Quarter 1980, page 14. How to avoid being zapped.

MPE Intrinsics Manual, Hewlett-Packard Company, January 1981
Part #30000-90010. Chapter 5 discusses most of the FCONTROL
options that are applicable in terms of the ATC, it is often inaccu-
rate in describing the ADCC.

Everything You Wanted to Know
About Interfacing to the HP3000
PART 11

John J. Tibbetts
Vice President, Research & Development
The DATALEX Company

INTRODUCTION

The title of the this talk is “Everything You Wanted
to Know about Interfacing to the HP3000-Part 11.” In
Part I, Ross Scroggs described in great detail charac-
teristics of the internals of the asynchronous communi-
cations protocol, especially for the benefit of those who
would wish to tie foreign devices onto an HP3000
through the asynchronous port. This talk — the second
part — is intended to take that discussion into a specific
direction and discuss how, specifically, to connect in-
telligent devices, in particular microcomputers, to the
asynchronous communications protocol of the HP3000.
Note immediately that we are restricting our discussion
of microcomputer communication to the asynchronous
communications protocol. The reason for this is simply
that most microcomputers are easily configurable to
communicate asynchronously. Few microcomputer
hardware and software packages have been assembled
so far which will use bisynchronous communications
protocol. Consequently, the reality of the current state
of microcomputers suggests that asynchronous com-
munications protocol will be the standard way of hook-
ing up your microcomputer to the HP3000.

This talk will have two major parts. In the first part,
we will discuss what is at issue in terms of features and
capabilities in a remote communications program. We
will discuss in some detail what our standard ap-
proaches to handling such capabilities as terminal emu-
lation, sending and receiving files, simultaneously print-
ing to a local printer, and control of the communications
protocol from either the local end — that is, the mi-
crocomputer end — or from the remote computer end.
In this talk we will refer to the local side as being the
microcomputer and the remote side as being the remote
or the host computer.

In the second part of the talk we will describe how
you can actually get such a program running on your
own machine. The choices are twofold: either buy one
or write one. By using the criteria we have established
in part one of the talk, we will try to outline some of the
considerations of doing either of these.

One final note before we begin is that the remote

communications capabilities tend to be a very
hardware- and software-specific part of microcomput-
ing. Whereas one can usually take a CPM program writ-
ten in BASIC, for instance, and run it on most or all
CPM implementations, one cannot expect to do the
same with remote software. Remote software usually
has to talk to pieces of your microcomputer which the
operating system tends not to know anything about.
During the course of the talk we will periodically make
reference to a specific capability that is required for the
remote program and in the published paper we will an-
notate them as a capability bullet that you will need to
either have supplied to you or you will have to imple-
ment on your microcomputer to get this particular
capability to be implemented for your remote program.

TERMINAL EMULATION

The first and perhaps the easiest capability to imple-
ment on your microcomputer is the emulation of a sim-
ple terminal.

e Capability — handling the remote port. Any of the
operations we will be discussing for remote com-
munications program presume that your mi-
crocomputer has a separate usable asynchronous
communications port. Your program should be
able to perform the following operations on that
port:

« read a character
» write a character
. test to see if a character is ready to be read.

This last capability is the one that is usually missing
in the standard microcomputing operating
environments. In particular, CPM implements the
read and write character routines as the reader and
punch devices, respectively, but do not have a
standard driver entry for testing the status of the
remote port. Usually, you have to specifically write
this capability for your own hardware if it hasn’t
been provided to you by someone ¢lse.

The standard procedure for implementing a terminal
emulator is to write a polling loop. In the polling loop a
very tight program loop tests to see if a character has

6—40—11

been entered, either at the remote port or at the
keyboard. If the character has been entered on either
one, the character is then read and written to its oppo-
site port. Thus, a character entered at the keyboard of
the microcomputer, when sensed, would be written to
the remote port and vice versa. It is important to make
the polling loop as quick as possible. No code should be
included in that loop unless it is absolutely necessary.
Especially if you are writing in a high level language and
especially if that language is interpretive, such as BA-
SIC, you may have speed problems when trying to emu-
late a terminal at higher baud rates, say over 2400 baud.
When writing in assembly language this is usually less
important and you will find that you can support
virtually any standard baud rate.

When emulating a half duplex terminal, any character
entered at the keyboard should be immediately written
back to the screen, thus providing the local echo. If
terminal emulation requirements stopped here, a termi-
nal emulator would be a very easy piece of software to
write. Unfortunately, there are usually a few special
problems with the terminal emulator.

The first problem is handling the break key. Many
timesharing systems do not require break keys, but as
any member of the HP3000 audience knows, the break
key is a very crucial part of terminal handling on the
HP3000. Unfortunately, the break key is not a character
in the way any other keystroke on the terminal is. When
depressed, the break key actually changes the electrical
state of the transmit pin.

® Capability — sending a break. Most mi-

crocomputer communication ports have a mecha-
nism by which the output port can be put into a
break state. It almost always requires assembly
language programming to implement a break key
function. The actual reasoning behind break key
handling goes beyond the scope of this talk. Suffice
it to say that the preferred technique of break key
transmission is, when the break key of a terminal is
sensed, to put the output port into the break state
until either 200 milliseconds have elapsed or a
character comes in on the remote port.

Thus, to properly handle the break key our polling
loop now needs to be expanded to test to see if the value
entered from the keyboard is the break signal. When the
break signal is sensed, the polling loop should then, in-
stead of sending that character, invoke the send break
routine to send a break.

The second capability which makes the terminal
emulator more difficult relates to simultaneous printing
of the terminal interactions on a printer which is hooked
up to the microcomputer. The whole issue of printers,
and especially printers that might hold up communica-
tions flow, is dealt with in a subsequent section.

SENDING AND RECEIVING FILES

Probably the main, useful work we would like for a

6 —40 — 12

communications program is to send files from our mi-
crocomputer to our HP3000 and receive files from the
HP3000 down to the microcomputer. At first glance this
may seem to be a rather simple operation. To send the
file we should simply read the file from the local storage
medium on the microcomputer and write it out the re-
mote port. To receive a file we should simply read from
the remote port and write to the diskette. If it were only
so simple . . . There are three issues which will signifi-
cantly complicate the issue of sending and receiving
files. They are:

1. The vast majority of computers need time for
themselves. What I mean by this statement is that at
various times in the life of a computer it needs time to
handle data it has been sending or receiving. On an
HP3000, if you should try to type characters into it be-
fore it has put a prompt character up, you know that you
will lose those characters. On a microcomputer, if you
try to enter characters into most microcomputers while
it is reading and writing a diskette file, for example,
those characters will be lost. These phenomena reflect
the fact that most computers are not designed to be able
to handle communications of their terminal or remote
ports at any time they are activated. A newer line of
more commercially oriented microcomputers are begin-
ning now to feature interrupt systems that do have full
functioning typeahead systems which greatly ameliorate
these problems. However, these microcomputers are
definitely in the minority. Thus, our communications
program needs to somehow be able to allow each com-
puter to have time for itself when it needs it.

2. Communications lines tend to be rather noisy,
especially if we are using the telephone system to
transmit our data. Since file integrity is usually im-
portant, we need to come up with some kind of error
checking protocol which can detect errors in the trans-
mission of the data being sent or received. Interestingly
enough, most of the programs running now on mi-
crocomputers for sending and receiving data do not
handle error detection. The reason is that so far most
microcomputer users who are using communications
programs are doing so to make use of timesharing net-
works such as The Source for sending and receiving
programs. As more, real, data processing functions,
which might relate to shared databases or distributed
data entry, are being built, clear data transmission pro-
tocols will become very important. '

3. Most systems have some kind of difficulty with
binary transmissions. This may not be a problem in ap-
plications in which only textual data needs to be sent.
As time goes on, one finds the need to send binary data,
for instance, to distribute object code of programs
through the communications program. Thus it becomes
desirable to be able to send binary files.

This is a summary of the problems — now let’s take a
look at some of the possible solutions.

MESSAGE HANDLING

Message handling is the general title by which we
refer to the problem of the traffic control of the data
being passed back and forth between the micro and the
HP3000. The message handling protocol determines
when data can safely be sent or received so that we
never go faster than either of the machines can accom-
modate. The very first thing that becomes apparent
after some investigation and experimentation is that the
send and receive case are quite different from one
another with rhis pair of computers. This is unusual
when compared to communications software usually
existing between microcomputer and microcomputer.
In that case, the communications message handling is
usually symmetric; that is, whatever convention is used
to control data flow on the send side is also used sym-
metrically in the other direction to control it on the re-
ceive side. We have to do extra work on the HP3000
since none of it asynchronous communications protocol
was designed for access by an intelligent terminal, and it
ends up having some asymmetric properties which we
have to deal with.

First, let’s consider the case of sending data from a
microcomputer to an HP3000. The first fact one must
always be aware of when trying to send data to an
HP3000 through its asynchronous communication port
is that it can only read data from a device when a read is
up; that is, when a read has been issued from a program.
If you try to type ahead on an HP3000, the data is lost.
Fortunately, in the HP3000 communications software a
character is always sent whenever a read is put up. That
character is the Control-Q or the DCI character. Thus,
any device trying to send data to the HP3000 can simply
wait until it sees a DCI] and then send its record of data
terminated by a carriage return. This type of data inter-
locking is the preferred method of sending data to an
HP3000. For instance, this is the mechanism that
LINK-125 uses in its protocol. It simply invokes
FCOPY, and when FCOPY puts up its first read, it
hands a record of data to it, terminates it with a carriage
return, and proceeds with file transmission in that fash-
ion.

But this is not always good enough. Consider this
case: a message has been transfered to the HP3000, a
carriage return sent following it, the HP3000 has issued
another read, has sent the DCI back along the phone line
and suddenly there is a noise burst on the phone line.
The DCI coming back to the microcomputer is lost. The
microcomputer is waiting there to transmit its next rec-
ord of data with the DCI and then deadlocks because it
never sees the DCIL. This type of deadlocking is charac-
teristic of trying to make too much out of a simple inter-
locking protocol. What we really find as more desirable
is to write a communications program on the HP3000
which talks to the program on the microcomputer. This
will allow the microcomputer program and the HP3000
program to issue reads with timeouts which would re-

quire that after a certain amount of time we give up on a
particular read because of lost protocol characters or a
dropped line. In the particular case of the missing DCl
— and this is only one of the pathological conditions
that can arise — the microcomputer program can sim-
ply, after a certain amount of time, send a message up
the line which says something like, ‘‘Hey, are you still
there?” to which the HP3000 program will response,
“Yes, I am still here and here is another DCI” or may
not respond at all if the machine has crashed or the line
has gone down. This concept of using programs on both
sides is really what differentiates very simple dumping
of files up and down the line from more sophisticated
communications protocols. I feel that this approach is
required for any serious use of communications, espe-
cially with any bulk of data transmission which we
would like to move reliably back and forth. Using this
“program-to-program” approach, we can also perform
some other more sophisticated error checking which we
will get into shortly.

As we leave the send case, note this important fact.
Make sure that after a record has been sent to the
HP3000 with its carriage return the very next piece of
work the microcomputer does is to turn around and wait
for the DCI before it does anything else. One might be
tempted to put up the next read to the diskette to pull
the next record off while waiting for the DCI. If your
microcomputer has the appropriate communications
typeahead software on its remote port, you might be
able to get away with this. However, in general the
micrcomputer needs to wait for that interlock character
to come back before it tries to do any other useful work.
Otherwise, ‘'you will start missing DCls and your pro-
gram will get hung up.

RECEIVING FILES

Just as we have done with the send case, let’s exam-
ine the most trivial method of receiving files which
would not rely on a program being run on the HP3000
side. The basic fact of life when receiving files is that the
remote computer — the HP3000 — will be instructed to
start sending down a file; perhaps we use FCOPY or the
editor to start sending a file to us. The microcomputer is
going to periodically need to write out the buffer it is
accumulating to the disk drive. When it does this there
will usually be a second in which it can’t receive any
data. The first approach is to just receive small files, in
which case the microcomputer never writes out its data
until it has collected the full file in memory. This of
course limits the size of the file you can receive to the
amount of available memory on the microcomputer,
usually somewhere between 10,000 and 40,000 bytes.
Obviously, this is an unsatisfactory method of receiving
files unless your application is very limited. The next
idea that comes to mind is making use of the X-on/X-off
characteristics of the HP3000 to control this flow. As a
human user, sometimes when a listing is coming out too
quickly onto the CRT, we stop the flow by typing the

6 —40—13

X-off key which is a Control-S and most of the time the
HP3000 stops its transmission flow until you have done
what you wanted and then you hit a Control-Q and the
scrolling of the data output continues. Maybe we could
have the microcomputer perform this function for us as
a simple interlocking method.

The answer is that “Yes, we can,” however, it is not
the preferred method of receiving files. The reason for
this is that, surprisingly, Control X-on/X-off protocol
seems to have some holes in it on the HP3000 side.
Someone told me that after some extensive testing they
found that one out of five X-off characters seems to
drop into a hole when sent to the HP3000. I have abso-
lutely no way of verifying this other than to tell you it
has happened a number of times to me. This doesn’t
make the use of this mechanism impossible, it simply
complicates it somewhat.

Using this technique then, what you need to do is:

1. Build a large receive buffer.

2. Start receiving data until the buffer gets to 80% or
90% full.

3. Send an X-off character to the HP3000 but keep
receiving the characters onto your mi-
crocomputer.

4. After some predetermined timeout time — perhaps
a second of no characters coming in — assume it
has finally absorbed the X-off character, and then
you can proceed with your disk writes of the buf-
fer.

But, if 4 or 5 characters have passed without stop-

ping, send the X-off character again. Repeat these steps
until the data transmission actually stops.

Just like the send file case, I recommend the use of a
program on both sides. Using this technique we will
simulate the kind of data interlocking protocol that the
HP3000 uses. That is, every time the microcomputer is
ready to issue a read to the remote HP3000 it will issue a
character, perhaps for symmetry’s sake a Control-Q, or
any character of your choice. When that character is
received by the program on the far side, that program
will then send down the next record of data to the mi-
crocomputer followed by some standard termination
character. After the message has been received, the mi-
crocomputer can set to work writing that message to the
disk or doing whatever other housekeeping it would like
to do. It then issues the next interlock character, and
proceeds. This protocol also allows for the kind of time-
out mechanisms that I described in the send case so that
you can recover from lost transmission and especially
lost protocol transmission. It will also easily accommo-
date the kind of error checking we will be talking about
in the next section.

As always, there is a complication and a warning.
Even in the case we have just described, we have not
really built a symmetric communications protocol to the
HP3000. The interlock character itself, which is going to
be sent to the HP3000, has to be read by an HP3000

6 —40 — 14

read. Of course, that HP3000 read will have a DCI com-
ing right before it and any attempt to write the protocol
character up the line before the HP3000 is able to read it
results in a lost protocol character. Thus, some real
world experimentation is usually needed in which some
delay is required after the record has been received
from the HP3000 so that it will have had time to finish
writing the record and then put up the read which will
read the next character interlock. It’s for reasons like
these, incidentally, that interfacing microcomputers to
the HP3000 has not always been the simplest and the
least frustrating of tasks.

The other item of note is that on reading characters
into the microcomputer it is usually wise to strip out
occurrences of the protocol characters that have ac-
cumulated in the asynchronous communication chip.
These characters would be the line feed character which
the HP3000 will usually tag onto the end of the carriage
return unless you turn that off, and also the DCI charac-
ter itself. Although these characters will be flying
around during the transmision of the data, you don’t
want to include them into the data stream itself. They
should be filtered out of the actual data flow.

ERROR HANDLING

Now that we have described the actual methods by
which data can be sent and received, let’s go on to the
second defined problem in our data communications
task — error handling.

The fact is that there are very few asynchronous
communications protocols which go to this level, and I
find this fact to be extremely regrettable. No serious
large-scale interface of microcomputers to any kind of
data processing network can be accomplished without
real error checking. However, once we have built the
proper send and receive frameworks with the right
kinds of interlocking and assuming there is some in-
telligence and flexibility on both ends, it becomes rather
easy to add the error handling phase. What are some of
the usual techniques for adding error handling to the
send and receive cases that we've described?

The standard mechanism, of course, is to add to each
message sent or received some kind of check character
or checksum which is used to check out the validity of
the data. The simplest form of a checksum is an addition
of the various character values of the message. For in-
stance, if one record of data I am sending to the HP3000
is 40 characters long, the microcomputer can run
through those 40 characters, add up the ASCII value of
the 40 characters, and then produce a new character for
the string and tag it onto the beginning or the end of that
string. The HP3000 on the other end, when it has re-
ceived the data, will go through the very same operation
except that this time it will strip the character off and
compare it with its own calculation of that string and see
if they match.

There are some problems with the simple add-em-up

checksum and there are many other sophisticated al-
gorithms around — I can refer you to literally any book
on communications for a description of CRC al-
gorithms. The problem with CRC algorithm is that it’s
usually a fairly difficult algorithm to execute quickly
enough on a microcomputer unless you are programm-
ing in an assembler language. The algorithm I have
found to be very simple but very effective is an al-
gorithm which adds and shifts the bits as the characters
roll in. In this algorithm each character is added on to
the checksum and then the checksum is multiplied by 2
which shifts all the bits to the higher order by one bit.
Then it receives the next character and repeats the pro-
cess. This final 16-bit quantity is then tagged onto the
message.

You have to remember not to freely insert binary in-
tegers into the communications stream. Some adjust-
ment of the value must be done when we are sending it
to the HP3000 to make certain we are not sending a
character it will have difficulty receiving.

Once a message has been sent to the other side with a
checksum on it, the other side has the opportunity to
examine that message and respond. The typical re-
sponse is for the receiver to send back some
predetermined character message which says either: the
data was received successfully and you should proceed
to the next block; or, alternatively, the data was not
received correctly so retransmit the block just transmit-
ted. I usually include a third state in this message traffic
which indicates that something terrible has happened on
one end or the other and to abort the entire transmission
process altogether. You can include in this function the
ability for the user to hit some kind of escape key and
abort the communicatons traffic.

One other item I have found to increase reliability is
to add sequence numbers on each of the messages sent
or received. This would ensure that in some pathologi-
cal case we don’t actually get the blocks out of order;
that is, in a case where an entire block has dropped out
of the communications traffic. Although this is fairly
rare, there are actually certain conditions which can
cause something like that to happen. A sequence
number which is checked on both sides for each block
transmitted can protect against this possibility.

BINARY TRANSFERS

We have mentioned previously that it is generally un-
reliable to transmit 8-bit binary characters from a mi-
crocomputer up to an HP3000. What are the possible
ways around this problem? The standard way is to sim-
ply convert the 8-bit binary traffic into hexadecimal
strings, that is convert a binary character 255 into the
ASCII string FF, etc. Of course, you would probably
immediately see this means that there is a 50% reduc-
tion in communications efficiency. This technique is
usually simple to perform and it is useful when the bi-
nary traffic is somewhat limited. A technique that I
prefer is to translate seven 8-bit bytes into eight 7-bit

bytes. This is quickly accomplished by gathering the 8th
level bit of the 7 bytes input and building another byte
and tagging it onto the back end of each 7-byte block.
This effectively chops the 8th level off the communica-
tions stream at transmission time and is then reassem-
bled on the far side. If this technique is used on the
entire message, including checksums, sequence num-
bers or any kind of message identifier on the block, the
whole communications interface becomes considerably
simpler.

USING PRINTERS

It is often desirable in a communications protocol to
log the data to the printer. For instance, on receiving a
file to a microcomputer you may want to get a listing of
it. Alternatively, you may-wish, during terminal emula-
tion, to get a copy of that session onto a hardcopy
printer.

Like everything else mentioned in this talk, there are
hidden catches. It seems simple enough to be able to put
in a switch in the software — for instance, in the polling
loop of the terminal emulator — that when a character
has been sent or received, it should be sent to the printer
port. However, many printers don’t print at the com-
munications speed. We will therefore distinguish be-
tween a fast printer and a slow printer. In this context,
fast and slow do not have any absolute meaning to

_them. Fast means that the printer operates faster than

the current communications context, and slow means
that the printer operates slower than the current com-
munications context. For example, in a 300-baud
environment most printers (for example, an Epson mat-
rix printer or a TI-810) will be fast printers. However, at
1200 baud most of the inexpensive matrix printers are
slow printers, that is, they cannot keep up with the
1200-baud stream. Surprisingly, even printers such as
the TI-810 which are rated at from 120 to 150 characters
per second often cannot keep up with the 1200-baud
flow of data. Therefore, the determination of whether a

" printer is a fast or slow printer can only be done by

running a series of tests.

As you might now be able to suspect, there is very
little difficulty with a true, fast printer in our communi-
cations program. Any characer we wish to print we
simply output to the printer port. However, on a slow
printer we have to do more resource balancing in that
there is now another resource in the communications
environment which needs time of its own. Adding a
slow printer to a communications program can easily
double the complexity of the communications environ-
ment.

At this point let me summarize a few of the major
elements of printer integration:

e If the communications program has been im-
plemented, as I have been suggesting, with a pair of
programs on either end which have an interlocking
mechanism, the simplest approach of integrating a slow

6—40—15

printer is to print out the block of data during the time
that the program is performing activities such as writing
to the diskette or reading from the diskette. That is,
after the message has been sent or received and before
the interlock causes the pair of programs to proceed, the
buffer of data sent or received can be put to the printer.
An unfortuante side effect of this approach is that the
printer is only printing between records. This does not
take advantage of the fact that there may be sufficient
time during the actual communications transmission to
have the printer doing some useful work.
® Improvement on this scheme requires a new capa-
bility:
Capability — Printer Ready — The printer ready
capability says that our communications software
can sense when the printer is available; that is,
when a character can be written to the printer in
such a way that the printer buffer will absorb the
character instantly.
With a printer-ready capability in our software, we
can build a more sophisticated operating environment in

which we have, in effect, a small spooler being oper-.

ated. That is, any data which has been successfully sent
or received and is ready to print can be added to a print
buffer. This buffer is metered out to the printer when
the printer is ready. It is important that the remote
communications facility always have top priority. The
other mechanism that needs to be in effect in this type of
environment is that as the printer buffer gets close to
being full, a flag will go up which will hold the interlock
the next time around until the print buffer has been
totally cleared. Although this mechanism sounds
somewhat obtuse, it actually provides a very effective
method of integrating a slow printer into a communica-
tions environment,

o Integrating a slow printer into the terminal
emulator mode can be accomplished by using the
X-on/X-off character techniques I described in the re-
ceive section. That is, if printing is active, a mechanism
will go into effect, during terminal emulation mode, such
that the microcomputer dispatches X-on/X-off to con-
trol the characters coming from the remote computer
into the microcomputer. ‘

BIDIRECTIONAL CONTROL

The last major capability we will discuss in our com-
munications program is the ability for the remote com-
puter to assume control of the communications pro-
gram. This can be very desirable in applications in
which an operator may activate a communications pro-

_gram and get online with an HP3000 and perhaps start a
- UDC. At that point the UDC might take over all control
of the microcomputer through the communications pro-
gram such that it can request files to be sent and re-
ceived. The following are a couple of points concerning
bidirectional control:

® The basic concept in bidirectional control is that
the remote computer can have some escape character

6—40—16

which it can send to the microcomputer during terminal
emulation that will cause the remote computer to as-
sume command of the microcomputer. Commands can
then be dispatched by the remote computer directly to
the microcomputer. Be sure that all of the issues
previously mentioned about interlocking and protocol
are also supported by any direct interaction between the
remote computer and the microcomputer.

® It is very useful to be able to have a capability
whereby the remote computer can ask for directory list-
ings directly from the microcomputer. This gives the
remote computer a list of what files may need to be sent
or received.

.® You may wish to.give the remote program the abil-
ity to actually terminate the communications session
itself and to remove the user from the terminal emulator
mechanism.

IMPLEMENTATIONS

The best thing you can do with communications
software is to buy it rather than develop it. Unfortu-
nately, this assumes that someone has developed the
type of softwaré running on the type of machine you
desire. As we've indicated during the course of this talk,
remote communications software tends to be more
hardware dependent than almost any other software
running on your computer. Not only is it hardware de-
pendent, it is also operating system dependent. Thus, on
a single machine — for instance, the Apple which can
run the Apple DOS, the PASCAL operating system, and
CPM (if the CPM card is added) — each of these three
operating systems has a different file system and each
has different requirements for its communications pro-
gram. This means that no one program will solve all of
your problems.

Let’s consider some of the available implementations.
Under CPM, there are a couple of programs fairly well
known in the CPM community for doing file-to-file
transfers. They are a program called CROSSTALK and
a program called COMMX, Both of them are available
through the major CPM software distributors. Both of
the programs feature a non-protocol mode and a pro-
tocol mode. In the non-protocol mode you can easily
make the software talk to your HP3000 by setting the
DCI character to the interlock character. Unfortunately,
on both of these programs the protocol mode which
includes the checksumming algorithms is only usable
when the program is talking to another CPM program of
its own type. Clearly, these programs are written for
CPM systems to talk to other CPM systems, not to
another computer system. This means that if you do
wish to turn one of these systems into a protocol
checked operating environment, you need to do a little
extra work on it. If you have an HP125 you can acquire
LINK-125 which does a good, but not error-checked,
link with the HP3000.

None of the programs I have seen feature bidirec-
tional control which would allow, as I have described in

the talk, the remote computer to assume the control of

the microcomputer.

If you are running some variant of the UCSD PAS-
CAL or UCSD p-System operating environment, then,
with all due modesty, there is no better communications
software available than that provided by our own com-
pany. It incorporates in a table-driven fashion, ready-
to-run for the HP3000, all of the capabilities described in
this talk, that is: full error-checked protocol, the ability
to support fast and slow printers, full bidirectional con-
_trol, and blank compression of the data. All of the
software for communicating with an HP3000 has been
worked out in great detail. Incidentally, we also support
protocol-oriented communication for other p-Systems
— that is, for p-System to p-System communication —
as well as communication with the IBM 370 interactive
operating system such as CMS, CSS, or TSO, and
DEC-10, -11, and -20 support.

Something new is that the software distributors for
the UCSD p-System now have a CPM file compatibility

mode which, when available, will mean that we can also
use our communications software to send and receive
CPM files as well.

CONCLUSION

If there is any theme for a discussion of communica-
tions software, it is “There is More Than Meets the
Eye.” As I have repeatedly stressed, the very best way
of solving your communication problems is finding
someone else who has already solved them and acquire
the software from them. This is my very strong recom-
mendation when attempting to establish a remote com-
munications network for your system.

I would also refer to the other talk I am giving at this
meeting which encompasses distributed processing ap-
plications using microcomputers. It is entitled
“Microcomputer-based Transaction Processing with
Your HP3000” and it goes into some detail about the
state of the art in microcomputer software for distrib-
uted processing.

6 —40 — 17

Programming for Device Independence

John Hulme

Applied Cybernetics, Inc.
Los Gatos, California

INTRODUCTION

The purpose of this presentation is to discuss tech-
niques and facilities which:

1. Isolate the programmer from specific hardware
considerations

2. Provide for data and device independence

3. Allow the programmer to deal with a logical rather
than a physical view of data and devices

4. Allow computer resources to be reconfigured, re-
placed, rearranged, reorganized, restructured or
otherwise optimized either automatically by sys-
tem utilities or explicitly by a system manager or
databse administrator, without the need to rewrite
programs.

The evolutionary development of these techniques
will be reviewed from a historical perspective, and the
specific principles identified will be applied to the prob-
lem of producing formatted screen applications which
will run on any type of CRT.

WHAT IS A COMPUTER?

As you already know, a computer consists of one or
more electronic and/or electromechnical devices, each
capable of executing a limited set of explicit commands.
For each type of device some means is provided to
allow the device to receive electrical impulses indicat-
ing the sequence of commands it is to execute. In addi-
tion to commands, most of these devices can receive
electrical impulses representing bits of information
(commonly called data) which the device is to process
in some way. Nearly all of these devices also produce
electrical impulses as output, which may in turn be re-
ceived as commands and/or data by other devices in the
system.

Nowadays, most devices also have some form of
“memory”’ or storage media where commands or other
data can be recorded, either temporarily or semi-
permanently, and a means by which that data can later
be received in the form of electrical impulses.

The tangible, visible, material components which
these devices are physically made up of is generally
called computer hardware. Any systematic set of in-
structions describing a useful sequence of commands
for the computer to execute can be called computer
software. As we will see later, software can be further
subdivided into system software, which is essentially an

extension of the capabilities of the hardware, and app!i-
cation programs, which instruct the computer how to
solve specific problems, handle day-to-day applica-
tions, and produce specific results.

Originally it was necessary for a computer operator to
directly input the precise sequence of electrical signals
by setting a series of switches and turning on the cur-
rent. This process was repeated over and over until the
desired sequence of instructions had been executed.

By comparison with today’s methods of operating
computers, those earlier methods can truly be called
archaic. Yet the progressive advancement of computer
systems from that day to this, however spectacular, is
nothing more than a step-by-step development of
hardware and software building blocks, an evolutionary
process occurring almost entirely during the past 25
years.

ENGINEERING AND AUTOMATION

I think we mostly take for granted the tremendous
computing power that is at our fingertips today. How
many of us, before running a program on the computer,
sit down and think about the details of hardware and
software that make it all possible? For that matter, who
stops to figure out where the electrical power is coming
from before turning on a light or using a household
appliance? Before driving a car or riding in an airplane,
who stops to analyze how it is put together?

Probably none of us do, and that is exactly what the
design engineers intended. You see, it is the function of
product engineering to build products which people will
buy and use, which usually means building products
which are easy to use. The fact that we don’t have to
think about how something works is a measure of how
simple it is to use.

Wherever a process can be automated and incorpo-
rated into the product, there is that much less that the
consumer has to do himself. Instead of cranking the
engine of a car, we just turn a key. Instead of walking up
30 flights of stairs, we just push a button in the elevator.

It’s not that we are interested in being lazy. We are
interested in labor-saving devices because we can no
longer afford to waste the time; we have to meet dead-
lines; we want to be more efficient; we want to cut
costs; we want to increase productivity. We also want
to reduce the chance for human error. By automating a

6—69—1

complicated process, we produce consistent results,
and when those results are thoroughly debugged, error
is virtually eliminated. We can rely on those consistent
results, which sometimes have to be executed with split
second timing and absolute accuracy. Without reliable
results there might be significant economic loss or
danger to life and limb. Imagine trying to fly modern
aircraft without automated procedures.

Automation also facilitates standardization, which al-
lows interchangeability of individual components. This
leads to functional specialization of components, which
in turn leads to specialization of personnel, with the
attendant savings in training and maintenance costs.
And because the engineering problem only has to be
solved once, with the benefits to be realized every time
the device is used, more time can profitably be spent
coming up with the optimum design.

BUILDING BLOCKS

In my opinion, the overwhelming advantage of au-
tomating a complicated process is that the process can
thereafter be treated as a single unit, a “‘black box,” if
you will, in constructing solutions to even more compli-
cated processes.

Later, someone could devise a better version of the
black box, and as long as the functional parameters re-
main the same, the component could be integrated into
the total system at any time in place of the original
without destroying the integrity of any other compo-
nents.

It is this “building-block” approach which has permit-
ted such remarkable progress in the development of
computer hardware and software. As we review the
evolution of these hardware/software building blocks,
keep in mind that the chronological sequence of these
developments undoubtedly varied from vendor to ven-
dor as a function of how each perceived the market
demand and how their respective engineering efforts
progressed.

ONE STEP AT A TIME

‘Even before the advent of electronic computers, var-
ious mechanical and electro-mechanical devices had
been produced, some utilizing punched card input. Be-
sides providing an effective means of input, punched
cards and paper tape represent a rudimentary storage
medium. Incorporating paper tape and card readers
into early computer systems not only allowed the user
to input programs and data more quickly, more easily,
and more accurately (compared with flipping switches
manually), but on top of that it allowed him to enter the
same programs and data time after time with hardly
more effort than entering it once.

The next useful development was the “stored pro-
gram’’ concept. Instead of re-entering the program with
each new set of data, the program could be read in once,
stored in memory, and used over and over.

6 —69—2

This concept is an essential feature of all real com-
puters, but it would have been practically worthless ex-
cept for one other essential feature of computers known
as internal logic. We take these two features so much
for granted that it’s hard to imagine a computer without
them. In fact, without internal logic, computers really
wouldn’t be much good for anything, since they would
only be able to execute a program in sequential order
beginning with the first instruction and ending with the
nth. Internal logic is based on special hardware com-
mands which provide the ability first of all to test for
various conditions and secondly to specify which com-
mand will be executed next, depending on the results of
the test. In modern computer languages, internal logic is
manifest in such constructs as IF statements, GO TO
statements, FOR loops, and subroutine calls.

But at the stage we are discussing there were no mod-
ern programming languages, just the language of elec-
trical signals. These came to be represented as numbers
(even letters and other symbols were given a numeric
equivalent) and programs consisted of a long list of
numbers.

Suppose, for example, that the numbers 17, 11, and 14
represented hardware commands for reading a number,
adding another number to it, and storing the result, re-
spectively, and suppose further that variables A through
Z were stored in memory locations 1 through 26. Then
the program steps to accomplish the statement “‘give Z a
value equal to the sum of X and Y’ might be expressed
as the following series of numbers, which we will call
machine instructions:

17,24, 11, 25, 14, 26

In essence, the programmer was expected to learn the
language of the computer.

A slight improvement was realized when someone
thought to devise a meaningful mnemonic for each
hardware command and to have the programmer write
programs using the easier-to-remember mnemonics, as
follows:

READ, 24, ADD, 25, STORE, 26
or perhaps even
READ, X, ADD, Y, STORE, Z.

After the programmer had described the logic in this
way, any program could be readily converted to the
numeric form by a competent secretary. But since the
conversion was relatively straightforward, it would be
automated, saving the secretary some very boring
work. A special computer program was written, known
as atranslator. The mnemonic form, or source program
as it was known, was submitted as input data to the
translator, which substituted for each mnemonic the
equivalent hardware command or memory location,
thus producing machine instructions, also known as ob-
Ject code. Translators required two phases of execu-
tion, or two passes, one to process the source program
and a second to execute the resulting object code. Once
the program functioned properly, of course, it could be

executed repeatedly without the translation phase.

It would have been possible for the hardware en-
gineers to keep designing more and more complicated
hardware commands, and to some extent this has been
done, either by combining existing circuitry or by de-
signing new circuits to implement some new elemental
command. Each new machine produced in this way
would thus be more powerful than the last, but it would
have been economically prohibitive to continue this
type of development for very long and the resulting ma-
chines would have been too large to be practical any-
way.

Engineers quickly recognized that instead of creating
a more powerful command by combining the circuitry
of existing commands, the equivalent result could be
achieved by combining the appropriate collection of
commands in a miniature program. This mini-program
could then be repeated as needed within an application
program in place of the more complex command. Or
better yet, it could be kept at a fixed location in memory
and be accessed as a subroutine just the same as if it
were actually a part of each program.

Another approach was to use an interpreter, a special
purpose computer program similar to a translator. The
interpreter would accept a source program in much the
same way as the translator did, but instead of convert-
ing the whole thing to an object program, it would cause
each hardware command to be executed as soon as it
had been decoded.

Besides requiring only one pass, interpreters had the
added advantage of only having to decode the com-
mands that were actually used, though this might also
be a disadvantage, since a command used more than
once would also have to be decoded more than once.

The chief benefit of an interpreter lay in its ability to
accept mnemonics for commands more complex than
those actually available in the hardware, and to simulate
the execution of those complex commands through the
use of subroutines. In this way, new commands could
be implemented without any hardware modifications
merely by including the appropriate subroutines in the
interpreter. This step marked the beginning of system
software.

In addition, source programs for nearly any computer
could be interpreted on nearly any other computer, as
long as someone had taken the time to write the neces-
sary interpreter. Interpreters could even be written for
fictional computers or computers that had been de-
signed but not yet manufactured. This technique,
though generally regarded as very inefficient, provided
the first means of making a program transportable from
one computer to another incompatible computer.

It is possible, of course, to apply this technique to
translators as well, allowing a given mnemonic to repre-
sent a whole series of commands or a subroutine call
rather than a single hardware instruction. Such
mnemonics, sometimes called macros, gave users the

impression that the hardware contained a much broader
repertoire of commands than was actually the case.

Implementing a new feature in software is theoreti-
cally equivalent to implementing the same function in
hardware. The choice is strictly an economic one and as
conditions change so might the choices. One factor is
the universality or frequency with which the feature is
likely to be used. Putting it in hardware generally pro-
vides more efficient execution, but putting it in the
software is considerably easier and provides much
greater flexibility.

The practice of restricting hardware implementation
to the bare essentials also facilitated hardware stan-
dardization and compatibility, which was crucial to the
commercial user who wanted to minimize the impact on
all his programs if he should find it necessary to convert
to a machine with greater capacity. Beginning with the
IBM 360 series in 1964 “‘families’’ of compatible
hardware emerged, including the RCA Spectra 70 seri-
es, NCR Century series, and Honeywell 200 series,
among others.

Each family of machines had its own operating sys-
tem, software monitor, or executive system overseeing
the operation of every other program running on the
machine. In some systems, concurrent users were al-
lowed, utilizing such techniques as memory partition-
ing, time-sharing, multi-threading, and memory-
swapping. Some form of job control language was de-
vised for each operating system to allow the person
submitting the jobs to communicate with the monitor
about the jobs to be executed.

Introducing families of hardware did not solve the
problem of compatibility between one vendor and the
next, however, a problem which could only be solved
by developing programming languages which were truly
independent of any particular piece of hardware.

Since the inventors of these so-called higher-level
languages were not bound by any hardware con-
straints, an effort was made to make the languages as
natural as possible. FORTRAN imitate the language of
mathematical formulas, while ALGOL claimed to be
the ideal language for describing algorithmic logic;
COBOL provided an English-like syntax, and so on.

Instead of having to learn the computer’s language, a
programmer could now deal with computers that under-
stood his language. Actually, it was not the hardware
which could understand his language, but a more
sophisticated type of translator-interpreter known as a
compiler.

To the degree that a particular language enjoyed
enough popular support to convince multiple vendors to
implement it, programs written in that language could
be transported among those machines for which the
corresponding compiler was available.

The term compiler may have been coined to indicate
that program units were collected from various sources
besides the source program itself, and were compiled

6—69—3

into a single functioning module. Subroutines to per-
form a complex calculation such as a square root, for
example, might be inserted by the compiler whenever
one or more square root operations had been specified
in the body of the source program.

Embedding subroutines in the object code was not
the only solution, however. It became more and more
common to have the generated object programs merely
“CALL” on subroutines which were external to the
object program, having been pre-compiled and stored in
vendor-supplied “‘subroutine libraries.” This concept
was later extended to allow users a means of placing
their own separately-compiled modules in the library
and accessing them wherever needed in a program.

I should mention that an important objective of any
higher level language should be to enable a user to de-
scribe the problem he is solving as clearly and concisely
as possible. Although the emphais is ostensibly on mak-
ing the program easy to write, being able to understand
the program once it has been written may be an even
greater benefit, particularly when program maintenance
is likely to be performed by someone other than the
original author.

It is well-known that program maintenance occupies
a great deal of the available time in the typical data
processing shop. Some studies estimate the figure at
over 50% and increasing. In order to be responsive to
changing user requirements, it is essential to develop
methods which facilitate rapid and even frequent pro-
gram changes without jeopardizing the integrity of the
system, and without tying up the whole DP staff.

To avoid having to re-debug the logic every time a
change is made, it is often possible to use data-driven or
table-driven programming techniques. The portion of
the program which is likely to change, and which does
not really affect the overall procedural logic of the pro-
gram, is built into tables or special data files. These are
accessed by the procedural code to determine the effec-
tive instructions to execute.

The most common example in the United States, and
perhaps in other countries as well, is probably the table
of income tax rates, which changes by law now at least
once a year. The algorithm to compute the taxes
changes very rarely, if at all, so it does not have to be
debugged each time the tables change. In simple cases
like this, non-programmer clerks might safely be permit-
ted to revise the table entries.

In more sophisticated applications, tables of data
called logic tables may more directly determine the
logic flow within a program. The program becomes a
kind of interpreter, and elements in the logic table may
be regarded as instructions in some esoteric machine
language. Such programs are generally more difficult to
thoroughly debug, but once debugged provide solutions
to a broad class of problems without ever having to
revise the procedural portion of the program.

Sometimes, logic-controlling information is neither

6 —69—4

compiled into the program nor stored in tables, but is
provided to the program when it is first initiated or even
during the course of execution, in the form of run-time
parameters or user responses. The program has to be
pre-programmed to handle every valid parameter, of
course, and to gracefully reject the invalid ones, but this
method is useful for cutting down the number of sepa-
rate programs that have to be written, debugged, and
maintained. For example, why write eight slightly dif-
ferent inventory print programs, if a single program
could handle eight separate formats through the use of
run-time options?

Incidentally, program recompilations need not always
cause alarm. Through the proper use of COPY code,
programs can be modified, recompiled, and produce the
new results without the original source program ever
having to be revised. This is made possible by a facility
which allows the source program to contain references
to named program elements stored in a COPY library
instead of having those elements actually duplicated
within the program. A COPY statement is in effect a
kind of macro which the compiler expands at the time it
reads in the source program.

For example, if a record description or a table of val-
ues appears in one program, it is likely to appear in
other programs as well. It is faster, easier, safer, and
more concise to say “COPY RECORD-A.” or “COPY
TABLEXYZ.” than to re-enter the same information
again and again. And if for some reason the record lay-
out or table of values should have to be changed, merely
change it in the COPY library, not in every program.

By changing the contents of a COPY member in this
way and subsequently recompiling selected programs in
which the member is referenced, those programs can be
updated without any need to modify the source. If pro-
cedure code is involved, the new COPY code only need
be debugged and retested once rather than revalidating
all the individual programs.

Where blocks of procedural code appearing in many
programs can be isolated and separately compiled,
however, this would probably be better than using
COPY code. For one thing, the separate modules would
not have to be recompiled every time the procedural
code was revised.

BITE-SIZE PIECES

Breaking a complex problem into manageable inde-
pendent pieces and dealing with them as separate prob-
lems is a valuable strategy in any problem-solving situa-
tion. Such a strategy has added benefits in a program-
ming environment:

1. Smaller modules are typically easier to under-

stand, debug, and optimize.

2. Smaller modules are usually easier to rewrite or

replace if necessary.

3. Independent functions which are useful to one ap-

plication are often useful to another application;

using an existing module for additional applica-
tions cuts down on programming, debugging, and
compilation time.

4. Allowing applications to share a module reduces
memory requirements.

5. Having only one copy of a module ensures that the
module can be replaced with a new version from
time to time without having to worry that an un-
discovered copy of an older version might still be
lurking around somewhere in the system.

The fact that a routine only has to be coded once
usually more than compensates for the extra effort that
may have to go into generalizing the routine. The more
often it’s used, the more time you can afford to spend
improving it.

SYSTEM SOFTWARE

Functions which are so general as to be of value to
every user of the computer, such as I/O routines, sort
utilities, file systems, and a whole host of other utilities,
are usually included in the system software supplied by
the hardware vendor. Just what facilities are provided,
how sophisticated those facilities are, and whether the
vendor Charges anything extra for them, is a matter of
perceived user need and marketing strategy. Sometimes
vendors choose to provide text editors and other devel-
opment tools, and sometimes they don’t. Sometimes
they provide a very powerful database management
system, sometime only rudimentary file access com-
mands. And so on.

When hardware vendors fail to provide some needed
piece of software, it may be worthwhile for the user to
write it himself. If the need is general enough, software
vendors may rush in to fill the void; or perhaps user
pressure will eventually convince hardware vendors to
implement it themselves.

In this way, many alternative products may become
available, and the user will have to evaluae which ap-
proach he wishes to take advantage of, based on such
factors as cost, efficiency, other performance criteria,
flexibility of operation, compatibility with existing
software, and the comparative benefits of using each
product.

PRINCIPLES OF GOOD SYSTEM DESIGN

In case you may need to design your own supporting
software, or evaluate some that is commercially avail-
able, let’s summarize the techniques which will permit
you to achieve the greatest degree of data, program, and
device independence. I have already given illustrations
of most of the following principles:

1. Modularity — Conceptually break everything up
into the smallest modules you feel comfortable dealing
with.

2. Factoring — Whenever a functional unit appears
in more than one location, investigate whether it is feas-
ible to ‘“‘factor it out” as a separate module (this is

analogous to rewriting A*B+A*C+A*D as
A*(B+C+D) in math).

3. Critical Sections — Refrain from separating mod-
ules which are intricately interconnected or subdividing
existing modules which are logically intact.

4. Independence — Strive to make every module
self-contained and independent of every external factor
except as represented by predefined parameters.

5. Interfacing — Keep to a minimum the amount of
communication required between modules; provide a
consistent method of passing parameters; make the
interface sufficiently general to allow for later exten-
sions.

6. Isolation — Isolate all but the lowest-level mod-
ules from all hardware considerations and physical data
characteristics.

7. Testing — Test each individual module by itself as
soon as it is completed and as it is integrated with other
modules.

8. Generalization — Produce modules which solve
the problem in a general way instead of dealing with
specific cases. Be careful, however, not to over-
generalize. Trying to make a new technology fit the
mold of an existing one may seem like the best modular
approach, and the easiest to implement, but the very
features for which the new technology has been intro-
duced must not become lost in the process.

EXAMPLE — When CRTs were first attached to
computers they were treated as teletypes, a class of 1/O
devices incompatible with two of the CRT’s most useful
features: cursor-addressing and the ability to type over
existing characters. Putting the CRT in block-mode and
treating it as a fixed-length file represents the opposite
extreme: the interactive capalities are suppressed and
the CRT becomes little more than a batch input device,
a super-card-reader in effect.

9. Standardization — Develop a set of sound prog-
ramming standards including structured programming
methods, and insist that each module be coded in strict
compliance with those standards.

10. Evaluation — Once the functional characteristics
have been achieved, use available performance meas-
urement methods to determine the areas which most
need to be further optimized.

11. Piecewise Refinement — Continue to make im-
provements, one module at a time, concentrating on
those with the largest potential for improving system
performance, user acceptance, and/or functional
capabilities.

12. Binding — For greater flexibility and indepen-
dence, postpone binding of variables; for greater effi-
ciency of execution, do the opposite; pre-bind constants
at the earliest possible stage.

BINDING

As the name suggests, “binding” is the process of
tying together all the various elements which make up

6—69—5

an executing program. Binding occurs in several differ-
ent stages ultimately making procedures and data ac-
cessible to one another.

For example, the various statements in an application
program are bound together in an object module when
the source program is compiled. Similarly, the various
data items comprising an IMAGE database become
bound into a fixed structure when the root file is
created. A third case of binding involves the passing of
parameters between separately compiled modules.

Remember that at the hardware level, where every-
thing is actually accomplished, individual instructions
refer to data elements and to other instructions by their
location in meory. The *“‘address” of these elements
must either be built into the object code at the time a
program is compiled, be placed there sometime prior to
execution, or be provided during execution. Likewise,
information governing the flow of logic can be built into
the program originally, placed in a file which the pro-
gram accesses, passed as a parameter when the program
is initiated, or provided through user interaction during
execution.

Binding sets in concrete a particular choice of options
to the exclusion of all other alternatives. Delayed bind-
ing therefore provides more flexibility, while early bind-
ing provides greater efficiency. Binding during execu-
tion time can be especially powerful but at the same
time potentially critical to system performance. In gen-
eral, variables should be bound as early as possible un-
less you specifically plan to take advantage of leaving
them unbound, in which case you should delay binding
as long as it proves beneficial and can still be afforded.
Incidentally, on the HP3000, address resolution be-
tween separately-compiled modules will occur during
program preparation (PREP) except for routines in the
segmented library, which will be resolved in connection
with program initiation. If your program pauses initially
each time you run it, this run-time binding is the proba-
ble cause.

A SPECIFIC APPLICATION

About five years ago, we were faced with the problem
of developing a system of about 300 on-line application
programs for a client with no previous computer experi-
ence. Their objective was to completely automate all
record-keeping, paper-flow, analysis, and decision mak-
ing, from sales and engineering to inventory and man-
ufacturing to payroll and accounting. The client had or-
dered an HP3000 with 256K bytes of memory and had
already purchased about 20 Lear-Sigler ADM-1 CRTs.
About 12 terminals were to be in use during normal
business hours for continuous interactive data entry;
the remaining eight terminals were primarily intended
for inquiry and remote reporting. Up-to-date informa-
tion had to be on-line at all times using formatted sc-
reens at every work station. Operator satisfaction was
also a high priority, with two- to five-second response
time considered intolerable.

6—69—6

DISCUSSION QUESTIONS

Based on the ‘“principles of good system design”
summarized earlier, what recommendations would you
have made to the development team?

At the time, HP’s Data Entry Language (DEL)
seemed to be the only formatted screen handler avail-
able on the HP3000. Consultation with DEL users con-
vinced us it was rather awkward to use and exhibited
very poor response time. Also it did not support
non-HP character-mode terminals.

We elected to write a simple character-mode terminal
interface, which was soon expanded to provide internal
editing of data fields, and later enhanced to handle
background forms. We presently market this product
under the name TERMINAL/3000. You’ve probably
heard of it.

The compact SPL routines reside in the system SL
and are shared by all programs. The subroutine which
interfaces directly with the terminals is table-driven to
ensure device-independence. By implementing
additional tables of escape sequences, we have added
support for more than a dozen different types of termi-
nals besides the original ADM-1’s.

If we were faced with a similar task today, would your
recommendations be any different?
After completing most of the project, we did what

* should have been done much earlier: we implemented a

CRT forms editor and COBOL program generator
which together automate the process of writing
formatted-screen data entry programs utilizing
TERMINAL/3000. We call this approach ‘“‘results-
oriented systems development”’; the package is called
ADEPT/3000. Programs which previously took a week
to develop can now be produced in only half a day.

Since we were using computers to eliminate
monotonous tasks and improve productivity for our
clients, it was only natural that we should consider
using computers to reduce monotony and increase
productivity in our own business, the business of writ-
ing application programs. If you write application pro-
grams or manage people who do, you also may wish to
take advantage of this approach.

What features of VIEW /3000 would have made it un-
suitable for this particular situation?

® not available five years ago

® HP2640 series of terminals only

® block-mode only (not interactive field-by-field)

® requires huge buffers (not enough memory avail-
able)

® response time and overall system performance in-
adequate

From what you know of TERMINAL/3000 and
ADEPT/3000, how do these products enable a pro-
grammer to conform to the principles of good system
design?

TERMINAL/3000 itself: modular, well-factored,
single critical section, device-independent, independent
of external formats, simple l-parameter interface,
table-driven hardware isolation, well-tested,
generalized, optimized for efficiency, run-time binding
of cursor-positioning and edit characteristics.

ADEPT/3000: produces COBOL source programs
that are modular, well-segmented, device-independent,
and contain pre-debugged logic conforming to user-
tailored programming standards; built-in interfaces to
TERMINAL/3000 and IMAGE/3000 (or KSAM/3000)
isolate the programs from hardware considerations and

provide device and data independence.

BIBLIOGRAPHY
Boyes, Rodney L., Introduction to Electronic Computing: A Man-
agement Approach (New York: John Wiley and Sons, Inc., 1971).
Hellerman, Herbert, Digital Computer System Principles (New York:
McGraw-Hill Book Co., Inc., 1967).

Knuth, Donald E., The Art of Computer Programming (Reading,
Mass.: Addison-Wesley Publishing Company, 1968).

Swallow, Kenneth P., Elements of Computer Programming (New
York: Holt, Rinhart and Winston, Inc., 1965).

Weiss, Eric A. (ed.), Computer Usage Fundamentals (New York:
McGraw-Hill Book Co., Inc., 1969).

6—69—17

Selecting Application Software
and Software Suppliers

Steven J. Dennis
Smith, Dennis & Gaylord

We begin by looking at some of the data regarding the
assumptions that have evolved regarding standard
software packages and the software package industry.

THE MYTHS

Following are some of the myths — beliefs (‘‘beliefs”
are assumptions which may or may not reflect reality)
— which have evolved over the past decade or so of
application packages evolution:

® Myth: We can safely go ahead with our hardware
purchase since there MUST be plenty of good software
systems available.

® Fact: There are surprisingly few firms nationally
that have developed truly viable packages. And fewer
still that will be able to meet YOUR requirements.

In fact of the literally, tens of thousands of software
firms, barely a dozen have sales of more than
$10,000,000 annually. And of these, the largest barely
tops $35 million . . . hardly international giants!

® Myth: Since all packages are essentially the same,
we will budget for the low priced one . . . that will help
keep the costs low.

® Fact: Costs certainly aren’t the most accurate in-
dicator of how good the software is . . . but you don’t
typically put retread tires on a brand-new Mercedes.
Quality software — a system which has the quality you
would expect help manage your organization effectively
— is going to be a little higher priced.

There are lots of factors which go into software price
— and probably only about 25% of them have anything
to do with writing the programs (more on this in Part
1I1).

® Myth: One great thing about a package is that we
can install quickly . . . get it running in a month . . .
maybe get several packages running in a month or
$O. . . .

® Fact: For one thing, remember that quality
software firms are busy too . . . their schedules may not
fit exactly with yours.

For another YOU have to learn the package BE-
FORE your users do. You should run parallel (or at

This paper is an excerpt from the book A Success Plan . .. for
Software/Implementation by Steven J. Dennis and Barry Barnes.
Published by Barry Barnes & Company, 1982.

least develop a good test case). Your objective should
NOT be just to see if the package works — but does it
work for YOU. _

Take your time . . . do it right! After all, your organi-
zation will probably spend many months deciding on
the right hardware — surely you can allow an extra
month or two to make sure the software is operating
properly.

® Myth: Our organization can’t be TOO different
from everyone else — we should be able to fit into a
STANDARD General Ledger . . . STANDARD Ac-
counts Receivable . . . a STANDARD Order Manage-
ment System . . . a STANDARD . . .

® Fact: Data Processing should work for YOU . . .
not the other around. Companies ARE different.
Packages ARE different. Approaches ARE different.
Features ARE different . . . and some are critical. A
large multi-national firm doesn’t just go changing its
chart of accounts because THAT’S THE WAY THE

e Myth: Most applications are easy, straight-forward
systems.

® Fact: Anyone who feels this way needs to design
and implement from scratch just ONE Payroll system
. . . just one INTEGRATED General Ledger to realize
that there are NO easy applications.

If you find yourself saying to the software or
hardware firms you are talking to, “We just need a stan-
dard A/P system . . .” catch yourself and re-think. You
may be identifying yourself as the classic “easy mark.”
And easy marks have a way of giving their money and
time to people who give little in return.

® Myth: The terms General Ledger, Accounts Re-
ceivable, Accounts Payable, Purchasing, Materials
Handling, Resources Requirements Planning, Financial
Modeling, and Inventory Control are universal . . . they
mean the same thing to everyone.

® Fact: While your technical staff may think that
General Ledge was probably just promoted from Col-
onel, ONLY your financial staff will be able to deter-
mine the features that are needed. Be careful . . . don’t
assume anything.

General Ledger does NOT necessarily include finan-
cial statements. Accounts Receivable systems don’t
always let you apply cash to ANY account (not just to

7—18—1

an open receivable). Order Management differs radi-
cally for manufacturers vs. distributors.

Many systems do not allow for much FLEXIBILITY
in your chart of accounts. Few packages allow you to
customize the. software to your organizations’s own
UNIQUE requirements (short of an almost complete
rewrite of the software).

® Myth: A package is a system that is operating suc-
cessfully at some other company . . .

® Fact: Wrong! Packages are WRITTEN to be
PACKAGES!!! They are not — NOT — custom sys-
tems which happen to work at an organization which
may be in the same industry as yours.

And, remember a package is also not something that
is SCHEDULED to be done . . . it is something that IS
done.

A TRUE software package is one developed to be a
package by a firm that has as its business developing
and supporting PACKAGES!

® Myth: All software packages obviously contain the
proper audit trails and accountancy . . .

® Fact: Make sure your controller, chief financial of-
ficer, administrator, vice president of finance, business
manager, or your CPA takes a good look at the package
.. . we have heard of too many audits that insisted on
changes to existing software ... expensive changes
. .. to include fundamental audit trails (the ones
everybody assumed were there in the first place).

The people who write software don’t always under-
stand accountancy considerations ... on the other
hand, just because the firm has strong accounting cre-
dentials, doesn’t mean that their software adheres. ASK
about controls, audit trails, security, and the philosphi-
cal underpining of the software products.

® Myth: Just because you have a computer or are
getting a computer . . . just because management feels
that EVERYTHING should be automated . . . just be-
cause there are relatively inexpensive packages crying
to be bought, we should surely bring ALL applications
in-house.

® Fact: Some applications require careful analysis
before a final decision is made to go in-house. Payroll is
the best example: For small companies we have often
recommended against the hassels of maintaining their

own payroll . . . changes in tables, government forms,
minimum wages, unions, etc., require a heavy in-house
investment . . . well worth it for many organizations —

but definitely not for everyone . . .

Be appropriate. Automate when there’s some defina-
ble distinct advantage to the organization. Automate
when you expect to be able to see results.

® Myth: For those of you whose organizations have
an in-house data processing staff, “there just isn’t
ANYONE out there who can develop a system better
than we can right here in our own organization” (also
known affectionately as the “Not Invented Here” syn-

7—18 —2

drome . . . or, often, more accurately, as the “Kiss of
Death” or “Results Not Yet In” syndrome).

® Fact: First off, you are probably viewing it from
the technical side . . . and from that viewpoint there
may well be some truth. After all who better knows the
DP philosophy, particular hardware configuration,
internal politics, etc., better than your own data proces-
sing department.

In fact, the software house you select should be an
expert in PARTICULAR applications — they know
General Ledger, Order Management, Payroll, Medical
Billing, Financial Modeling . . . and in the long run
THAT’s what you need.

And, by the way, (to the surprise of the DP staff) a
good software package will often be impressive techni-
cally as well). This is much truer now than in the past.
“Mature” packages are often relatively new — and
often written using software development tools that
simply weren't available a few years ago.

® Myth: With a wealth of new systems and lan-
guages, programming is now much easier than before
. . . surely I can write my own applications.

® Fact: Programming is not so terribly difficult . . .
but desig a particular function — or an entire system —
requires the experts. The main benefit of the advent of
powerful software development tools is that they free
up time to do a more comprehensive job of DESIGN
and that’s fundamentally why packages are so suddenly
such a viable alternative.

Learning to speak another language is one thing . . .
writing a novel using this new language is quite another!
And, writing that novel error-free? . . .

Programming is only approxiamtely one-sixth of the
total effort ... the whole picture looks something like:

® Designcvivviinn one-third
® Programming one-sixth
® Test/Debug one-third

® Training & Documentation ... one-sixth

® Myth: We MUST have our programs written in
COBOL, or some other such language.

® Fact: Arguing for a particular computer language is
usually ridiculous. It’s like arguing for French, Spanish
or German — all of which are excellent languages.

Properly used — FORTRAN, RPG, COBOL,
BASIC, and many other user-oriented high-level lan-
guages can provide excellent solutions.

Remember, even though you may think English or
Danish, or whatever is the world’s best language, mil-
lions speak others . . . write others . . . get results in
others.

® Myth: Choice of language doesn’t matter AT ALL
. .. choice of file handling technique doesn’t matter AT
ALL ... as long as it WORKS!!!!

® Fagct: Buying something completely non-standard

can be a disaster . . . insist on complete documentation
for anything that looks a little out of the ordinary.

® Myth: Since my company deals with a single-
person (or small) law firm . .. or a single-person or
small CPA firm, it’s okay to get my software from a very
small software house . . . or even from an individual.

® Fact: This is a tough one . . . certainly there are
many, many excellent, well-qualified software firms.
Remember, though, our industry does not yet have a bar
exam or any accepted professional certification like the
CPA ... nor are there ANY levels of standards
throughout the industry which compare with the stan-
dard “generally accepted” accounting practices that all
CPA’s follow.

On the other hand, if your small (one, two . . . five-
person firm) KNOWS their business — and yours —
they may well be far superior to the 100-person com-
pany which views you as a small fish in a big pond. We
know of a company — one of the 10 largest in the world
— which actually PREFERS to work with small (one to
ten-person) software firms.

Put this test to work . .. if my CPA went out of
business, where would I be? Probably all right — there
are others who could step right in. NOW if my software
consultant/supplier went out of business then what???

® Myth: There are software firms to whom I can turn
over complete responsibility for my implementation
.. . total turnkey solutions . . . software houses which
will sign a contract guaranteeing success . . . With pe-
nalty clauses . . .

® Fact: There ARE firms which will tell you that
they’ll take on all responsibilities. But let’s face it . . .
whose system is this? Theirs? Unless you take the re-
sponsibility for the solution to work . . . invest the time
. . . invest the energy . . . adopt the right attitude . . .
you will be developing all the ingredients for failure.

And, remember, desperate people will sign anything.
A firm that knows how to do business doesn’t have to
sign your attorney’s document in blood — they’ll drop
you like a hot potato and move on to someone else who
knows how to get results.

® Myth: Custom software is never necessary or if it
is, it should always be done in-house.

® Fact: Not true! Custom software IS quite often re-
quired.

For example: We have worked with a large client
which fabricates and erects steel for many of the really
large , modern high-rise office buildings and hotels in the
Western U.S.A. Recently, a custom system was devel-
oped (by an outside firm) for this steel fabricator — one
that estimates, to the nut and bolt level, the steel re-
quirements for a 40-story office building . . . determines
the best source throughout the world for that steel . . .
how to transport it . . . and how long it’ll take . . . and
cost. That doesn’t exactly lend itself to a package.

SUMMARY

There is an emerging — definite — context for stan-
dard application software packges. The degree to which
workable solutions and procedures evolve for the suc-
cessful incorporation of this new field into our business
life directly affects the results we can expect for the
near future.

The use of the data outlined in this presentation can
assist in initiating the process of getting RESULTS. . .
for your organization and for others.

Now, let’s move on to an examination of the process
of assessing software, selecting the software supplier,
and implementing the software system.

PART 11
SELECTING A SOFTWARE SUPPLIER

INTRODUCTION

The approach outlined in this section of this book is
most appropriate for companies in the $10,000,000 to
$10 Billion annual revenues categories. Smaller com-
panies tend to be able to fit extremely well into totally
“standard” packages — often being able to change their
mode of operation to fit the package. Larger organiza-
tions — particularly when they hit to $25,000,000/year
level — tend to have developed unique operating styles,
unbendable procedures, inflexible managerial require-
ments, or just plain strong preferences.

In general, very small organizations can ignore a lot
of what we propose in this book. Yet . . . the fundamen-
tal underpinning of RESPONSIBILITY for results — a
commitment to being successful — will still serve well!

CONTEXT — A VARIETY OF VARIABLES

Packaged software has become the major area of
focus in the information systems field. Yet, the industry
called “Packaged Software Firms" has no equivalent of
a FORTUNE 500. In fact, only recently has the situa-
tion arisen where there are more than a dozen com-
panies in the world which have annualized sales of more
than $10 million (and those few have only recently at-
tained that level).

The vast majority of software firms — including the
QUALITY ones — are small companies doing between
one-half million and five or six million dollars per an-
num. And, small businesses are sometimes subject to
radical ups and downs.

Thus, the selection of a software firm needs to be
based on a set of criteria which optimize the potential
for success. It may well be the case that the firm supply-
ing the software is as important — or more so — than
the software itself.

The important point to know . . . and acknowledge
. . . and accept — whe you like it or not — is this: In
selecting a software supplier, you are establishing a
long-term business relationship! And, if you do your job
WELL, you’ll establish a really long-term relationship.

7—18—3

So DO your job well. Exercise the same care you’d use
in selecting your CPA firm and your Corporate attor-
neys.

PURPOSE — A TOOL FOR MEASUREMENT

This set of guidelines encompasses what we’ve
learned from our own experience as consultants and as
software suppliers. It is developed from a variety of
viewpoints. We offer it as a tool to use to measure any
software firm which offers standard application
software packages.

GUIDELINES — CHECKLISTS
& PROCEDURES

Following are a series of “bullet-item” guidelines.
These can be greatly expanded: These lists are by no
means meant to be all-inclusive . . . they're simply a
good start.

Give the software suppliers you deal with an oppor-
tunity to present their story to you — in their own way;
then use these items as a checklist.

Don’t expect any one firm to get an A+ on all items.
We know that we're not “There” on them all . . . and we
probably never will be! A score of 70 to 80% is “Excel-
lent”’; 90%, ““Superior’’;100% . . . well. . .comeon. . .

THE SELECTION COMMITTEE

Application software packages should NEVER be
purchased by a single person . . . and that’s not an in-
dictment that individuals can’t adequately make the de-
cision. Some can.

The truth is: Software must be implemented by a va-
riety of people at different levels in different functions
within the organization. The wise organization will get a
variety of viewpoints from the start.

In general, the Committee Model doesn’t work in this
world (as governments strive ernestly — and repeatedly
— to prove). Yet, here is an example where a team of
well-chosen effective people can make a real significant
contribution.

Ideally, the Selection Committee should include rep-
resentatives of the following functions . . .

® Organizational Management

® Functional Management

® User/Operator

® Data Processing/Technical

® System Implementor — the person who will have

the responsibili of successfully implementing the
system once it’s chosen.

® System Coordinator.

A properly selected (and operating) Selection Com-
mittee can achieve tremendous results for the organiza-
tion. It should meet frequently during the buying cycle.
Each member should diligently fulfill assigned respon-
sibilities.

7—18—4

THE SOFTWARE/SYSTEM ACQUISITION
PROCESS OVERVIEW
We can’t say what works for everybody . . . but in
our experience as managers, users, consultants and
software suppliers, we’ve found the following proce-
dure to be a valid one:

Organizing Yourselves
® Define the Selection Committee

® Define the overall, broadbrush implementational
schedule

® Develop a brief Selection Committee charge and
guidelin

® Develop a brief background and requirements
document fo the software suppliers

The Review Process

Define the software packages to evaluate
Poll your colleagues for additional ones
Call your friends

Ask around at social occasions and cocktail parties
Poll the computer vendors for others
Contact your CPA (and other consultants)
Preview the various directories

Define acceptable computer vendors
Collect literature & documentation
Contact the software suppliers

Contact the hardware vendors

Our recommendation is an unusual one. We recom-
mend that you do the front-end work yourself (preview-
ing brochures, telephoning software suppliers, calling a
few of their resources), and quickly narrow it down to
three to five finalists which you’ll then visit . .. and
then send your RFP (if you use one) to only those. It
saves you a lot of time and energy in the long run, while
letting you be sure that the supplier who responds with
a proposal actually knows something about your busi-
ness.

The Preliminary Evaluation Process

® Develop a preliminary set of selection criteria for
the software packages (Software Requirements
Checklist)

® Develop a preliminary set of selection criteria for
the software firm

® Find out more about the software firm (by tele-

phone)

Find out more about the application packages

Procure the software supplier’s client lists

Telephone the software firm’s references

Select three to five (3-5) finalist firms

Visit the finalist software firms

Visit the computer vendors

The Interim Evaluation Process
Analyze the findings of the visits
Expand the Software Requirements Checklist
Adopt the budget for software, hardware, etc.
Develop the Request for Proposals (if appropriate)

The Final Evaluation Process

Receive and review the proposals
Prepare the Comparative Requirements Analysis
Review the responses (entire Selection Committee)
Review the responses with your users
Review the responses with the software suppliers
Select and advise the software supplier

The next step may be the most important part of the
process. Make s you get to know ALL the people with
whom you’ll be working . . . and that they get to know
— and like — all your key people. This is a people-
oriented business. The better you know, and under-
stand each other, the better will be the overall level of
affinity and communication and reality when the going
gets tough . . . and it will, at one time or another, get
tough!

Establishing the Client/Software
Firm Relationship

Complete the financial requirements & procedures
Complete the legal/contractual requirements
Establish the technical support contact points
Establish the software training procedures
Establish the documentation update procedures
Establish the user support procedures

In general, it’s the hardware vendor who will maintain
the computer equipment and the operating system.
DON'T rely on the sales representative . . . he or she
has other sales to bring in! Get to know the people who
will support you. '

Establishing the Hardware Vendor Relationship

e Establish the relationship with the hardware ven-
dor’s operating software and hardware
maintenance staff (SE’s & CE’s)

e Complete the legal and financial requirements with
the hardware vendor

® Issue a purchase order for the required computer
hardware and operating software

Implementation Planning
® Define the Implementation Review Committee
(may be the same as the Selection Committee)
® Adopt a requested Implementation schedule

® Present the requested schedule to the software
supplier for review and resolution

® Review the software supplier’s recommended Im-
plementation Plan

e Mutually resolve discrepancies to achieve an
Adopted Implementation Plan

General Application Preparation

Schedule applications training
Schedule technical training (if appropriate)
Review procedures for potential modification

Conduct weekly or bi-weekly Implementation
Committee review sessions

® Procure the software supplier’s final recommenda-
tion of the hardware configuration

e Finalize the hardware configuration

General Computer Hardware Preparation

® Conduct the site review for the computer
Prepare the computer site as appropriate

® Analyze & define CRT and hardcopy printer loca-
tions

e Arrange for cabling and modem installation

e Conduct Implementation Committee review
meetings

Final Implementation Preparations

Initiate applications training

Initiate hardware training

Initiate other technical training

Conduct project activities for special/custom work

Conduct Implementation Committee review meet-
ing

Implementation
Install the computer
Install the software module(s)
Load/convert data to the new software
Conduct application testing
Conduct Implementation Committee review meet-
ing
Conduct end-user operational training
e Implement the application(s) on a “live” basis

On-going Review
® Conduct periodic review sessions with end-users
® Conduct periodic Implementation Committee re-
view meetings
® Conduct periodic software firm review meetings
® Conduct periodic hardware vendor review
meetings
This checklist is one way to acquire software. It’s
surely not the ONLY one . . . it just works! Try it . . .
or modify it. But whatever you do, have a commitment
to get results; develop a a Plan . . . then WORK the
plan.

7—18—5

THE SOFTWARE REQUIREMENTS
CHECKLIST
(THE STATEMENT OF REQUIREMENTS)

The Software Requirements Checklist (also known as
the Statement of Requirements) is the common thread
for the Functionality of the software to be chosen. Most
of what should go into this document is a list of features
which you want or need . . . thus, it’s impossible at this
time to descri exactly what should be on it. Following,
though, is a set of guidelines for preparing it:

® Don’t overlook the obvious . .. don’t “assume”

that what want will automatically be in all packag-
es.

® Clearly state your requirements. Avoid lots of text

.. it doesn’t get read; use lists or checklists,
where possible.

® Rank your requirements. Don’t get too fancy . . .

“A” for Must-haves; “B” or ‘“3” for Highly-
Desirable; “C”” or “2” for Nice-to-Haves or Tie
breakers.

® Include philosophical or approach requirements —

things like on-line vs. batch . . . language . . . op-

tions . .. decentralized vs. centralized manage-
ment style . . . growth . . . plans . . . security re-
quirements . . . accounting batches . . . auditabil-
ity . ..

® Include interface or customization requirements

® Ask about product expansion — are updates pro-
vided? How How often? What happens if you cus-
tomize? Interface? Is a software support agreement
available?

® Ask about documentation — what’s provided?
How readable is it? Who writes it? How often is it
updated? Do you ger it? How many levels of
documentation are there?

® Ask about training — what’s provided? How of-
ten? Who attends? Are there standard classes? Do
you get the training materials? Who conducts the
training? Who attends the training?

® Ask about installation procedures — what
checklists wil you have? What procedures will be
provided? What assistance will you get?

® Find out about support — what happens when you
get in trouble? How do you report software bugs?
What facilities exist for phone consultation? How
often is user documentation updated? What proce-
dures exist for follow-up on your requests? How do
you suggest changes and the “wouldn’t it be nice
.. .,” enhancements or extensions? Does the firm
have a standard support program and a standard
support contract?

® Describe your organization — tell the software
firm abo your objectives (lists — not narrative); get
each functional unit’s requirements; get alignment
so that you’ll all be using the same terms . . . ex-
pecting the same results.

7—18—6

A well-designed Software Requirements
Checklist should have terse one- and two-line
features/requirements statements with a place to
the right (or left) for the software supplier to enter a
short yes/no/***”” response. Each grouping of fea-
tures should be followed by a *“*’’ blank space to
write responses, exceptions, n rates, quotations for
custom work, future release dates, etc. In other
words, make it EASY to USE.

WHAT ABOUT CUSTOMIZATION?

No matter how much you may desire otherwise, your
application may well have requirements that just aren’t
available from a standard package. We’ve seen requests
for such applications as railcar tracking, event schedul-
ing, loan tracking, event-driven action item manage-
ment, and such — applications which are mainstream to
the company, and which must reflect the specific ap-
proach of the organization.

The need for customization need not be a catastrophe
... IF. . . you understand the implications. Learn how
to define the need:

® Check against the Statement of Requirements for
alternative approaches.

® Use the software firms’ consultative assistance —
they have suggestions as to how others have solved
the same problem.

® Seek out parameter-driven software — it may be
tailorab your need.

® Re-evaluate your need . . . if there’s no package
availa just may be that you’re doing things too dif-
ferently.

® Don't be afraid to stick to your requirements . . .
perh organization’s way — non-standard as it is —
is the one which gets results!

® Determine whether standard package modifi-
cations required a structural or are general en-
hancements . . . thatis . . . are you adding a room
. . . or repainting . . . do you need a new founda-
tion. IF the changes are structural — go custom (or
buy the package to use as a building block for a
custom system, with the understanding that you
must take ownership of the resultant system).

® If you’ve found a “fit” or a near-fit for other
applicati discuss with the software firm their inter-
est in developing your custom requirements . . . or
their recommendations . . . or how cooperatively
they’d work with another firm which you might
engage.

Most software requirements can be met from a pack-
age . . . but NOT ALL . . . not even all the “of course
THAT would be in a standard package” requirements
for a given function may be in the package you like best
(and it may still be the best package to buy).

THE SOFTWARE DEMONSTRATION

Seeing the software work is extremely important.
Software — like the people who design and use it — has
a personality. Ask for a software demonstration!

The demonstration is best done at the software firm
itself (assuming it has its own computer).

® Define in advance which modules you want to see.

¢ Send the software firm a copy of your Statement of
Requirem in advance.

® Get the RIGHT people there.

® Come prepared.

® Give the software firm an extra hour or two to tell
their story.

® Take the software firm’s advice.

o Allow sufficient time.

Ask for an extra hour or so — at the end of the

session to unanswered questions handled.

Tell what you expect to accomplish.

Keep an Open Mind!

Keep on Track.

Be courteous.

Ask Questions.

Look at the Audit Trails.

Look at the User Documentation.

Look at the Technical Documentation.

Look at the human engineering.

Expect to have a reasonably good fit — (75% to

85% is considered a good fit; 90% is considered

excellent; 100 is rare!).

Expect to find gaps.

Beware of the Everything’s Great Syndrome.

Be professional.

Meet the user support staff.

Don’t demand to spend lots of time with the techni-

cal staff

® Follow up on Unanswered questions.

A good software demonstration can enlighten you as
to omitted items on your Statement of Requirements.
Also, it’s an opportunity to interact with key people in
the software firm who may end up being your contacts
for years to come.

Use the demo effectively . . . then go back home and
update your Statement of Requirements. Have a Selec-
tion Committee meeting after each such visit.

THE REQUEST FOR PROPOSALS

This is probably the area in which the most mistakes
are made . . . by the requestor!

In the first place, use an RFP where it’s appropriate.
If you find a package during the preliminary search
which meets your needs . . . offered by a firm that fits
all the selection criteria, then, WHY go through the

misery of an RFP? And, the RFP is as much work for
you as for the software firm (if you’re doing it properly).

Admittedly, it is a controversial stance to recommend
against RFP’s . .. but more TIME — and, often,
MONEY — is spent by some prospective buyers, going
through the drudgery (and motions) of Proposal Re-
quests than is often spent on acquiring and implement-
ing the software itself!

Let’s look in more detail at the purpose of the Re-
quest for Proposals.

What an RFP Isn’t

® It is NOT a way of justifying an already-made deci-
sion.

® 1t isn’t a guarantee (those are up to YOU!)

e It isn’t a fancy way of covering shoddy selection
processes.

® It isn’t a ““test” for the software supplier (quality
soft firms throw away the ones which look like
“tests’’).

e It isn’t a way of badgering others into doing things
your way.

® It isn’t a document more than %" to %" thick (any-
thing thicker is a request for free consulting servic-
es).

® It is NOT something to be tied into a contract (most
software firms which will agree to tie the RFP and
their response to the contract aren’t capable of liv-
ing up to a court challenge; who can deliver what
they say aren’t interested in complicating their
legal agreements . . . on strong counsel of their
own attorneys!).

® Itisn’t,in summary, much more than a statement of
requirements . . . than a statement of requirements
. . . a Statement of Requirements.

What an RFP IS

® A Statement of Requirements.

® An opportunity for the software firm to tell its story
(in own way).

® A place for summarization of costs.

® A place for summarization of potential implemen-
tation sched dates and events.

Guidelines for the RFP
® Make it friendly!
® Make sure you personally contact the firms you
send it REPEAT: Personally telephone — or, bet-
ter yet, VISIT — the software suppliers you want
to respond.

® Send it to NO MORE than three to five firms.
® Tell about your organization (briefly).

® Give a brief background of the situation for which
you're seeking solutions.

o Include the Statement of Requirements.

7—18 —7

® Allow the software firm to answer in its own style.

® Attach an outline of what you want to know about

the softwa firm. Keep it to the “need to know”
level.

® Avoid rigid formatting requirements.

® Don’t demand all sorts of contractual modifications

. suppliers just aren’t interested in doing
business that way (no matter what counsel you get
otherwise).

® Don’t ask the supplier to tie their response to a

contract good firms spend enough time on their
contractual agreements to do business well — and
their attorneys counsel them heavily against such
modifications.

On the other hand, if the software firm has shabby-
looking or weak contracts, you're entitled to ask for
contractual modifications ... but ... do you really
want to do business with such a firm?

® Remember: The software firm is busy — particu-

larly if they’re competent. If you ask for two weeks
worth of work to respond to an RFP, you’ll only get
the software suppliers who aren’t in demand.

® Get competent assistance in evaluating the re-

sponses.

® READ and ANALYZE the responses.

As a summation, regardless of whether you agree
with us on the value of an RFP, don’t let the RFP be a
substitute for human interaction, client reference-
checking, . . . software firm visits . . . and just plain
hard work. If it’s worth doing, it’s worth spending some
time doing right.

EVALUATING THE SOFTWARE FIRM

It is almost as — maybe even more — important to
carefully assess the software supplier as the package
itself.

REMEMBER: You are establishing a long-term busi-
ness relationship. Just because this is a highly technical
field, don’t be bamboozled into anything. Look for the
same organizational attributes that you'd look for in
ANY company!

The successful software organization has to know
their business . . . and must be committed to supporting
clients using standard software products.

Following are some checklist items we’ve come
across. Perhaps you can extract several items and de-
velop a weighting/evaluating schema which will work
for you.

® Look at Outward Appearances: How does the

software firm va itself. What evidence is there that
they’ve been around for a while . . . survived the
magical ‘“New Company Mortality’’ syndrome?
How have they invested in the future? Look for
“gut-level” feeling. DO they look like winners?
Check these attributes:

* Facilities

7—18 —8

* Equipment

* Furnishings

* Clients

* Checklists & Procedures

* Documentation

* How the people view things (values)
* Organizational Structure

® Look at the People who Create the Packages:
Again, use gut-level approach. Would you want
them working for your organization?

® Look at the Firm’s Background: More gut-level
stuff. Lo them and their experiences . . . and don’t
assume there’s any one ‘‘right’” way. Listen care-
fully to their story.

® Look at the Knowledge Level of the People: How
have the all together? Does the firm have what it
takes to succeed in ALL its areas (not just the
technical)?

® Look at their Guidelines and Standards: Examine
the evi of commitment. Written standards are
statements of intention, stability, permanence.
They’re important!

® Look at their orientation: This is incredibily impor-
tant . . . this is the firm’s real purpose. Ask candid,
yet open, friendly questions.

® Look at the Firm’s Target Marketplace(s)

® Check for Internal Procedures: These are the in-
dicators attention to detail. And, that’s critical in
the software field.

® Look at the Support Apparatus: This will be your
contac AFTER the sale. You only interface with
the sales or business development function BE-
FORE you signup . . . IF you select the right firm.

® ook at What Goes Into Product Price: The differ-
ence in price is inmense. There are, in many cases,
equally-developed software packages available
from different firms at vastly differing prices.
What'’s the difference between a $3,000 Order Pro-
cessing system and a $40,000, $50,000, or even a
$100,000 one? Generally, there ARE features dif-
ferences . . . but not always. The difference may
well be in the firm. How does a firm selling their
product for ten times that of another one of equal
“features” survive? Generally, because they ap-
peal to organizations which value long-term com-
mitments.

® Look at the Software Firm's Sales Style: Here’s
where a of the true values of a firm show up . . . to
the extremes. If the sales representatives act like a
stereotyped salesperson, then there’s probably
something behind the scenes which supports such
an approach. On the other hand, if the people re-
sponsible for business development show good
knowledge, experience, and a consultative ap-
proach which demonstrates genuine concern for
your success, they’re probably reflecting some

very solid and fundamental philosophies and
policies of the firm . . . latch onto them.

nal organizational analysis that needs to be done . . .

® Determine what people-problems you will have
with software tha cuts across organizational lines

. ® ook at the Implementation Planning Assistance:

The understanding of implementational considera-
tions is one of the most positive indicators of a
real-world, results-oriented firm.

If the firm begins talking implementation, listen
to them. Chances are, if they’ve passed the other
tests, they know far more about how to implement
a system than you. After all, they’re probably doing
it between ten and a couple of hundred times per
year!

® Look at the Legal/Contractual Instruments: If you

get a double-spaced typewritten page for a con-
tract, feel free to take a hatchet and an army of
attorneys to it.

On the other hand, if you get a typeset, well-
structured document that provides for mutual pro-
tections and which incorporates and documents
business procedures, then expect the firm to be
relatively resistant to modifying it.

Look at the Firm’s Growth: The software industry
is in explosive environment.

Unfortunately, even organizations with shoddy
products and shabby outlooks can survive — even
grow rampantly! Growth is a tough thing to handle
.. . and it’s roughest on the firm which is commit-
ted to quality.

Look at the Company’s Management Style: De-
spite all the growth, the firms which will truly suc-
ceed (for themselves and for you) are the ones
which MANAGE themselves well . . . just as in
any field, good management pays off.

Look at the Company’s Business Ethics

® Look at the Software Firm’s References: Ask for

references . . . AND . . . then contact them.

Talk to the Software Firm — This has to be the
most imp criteria of all. Talk to the software firm as
you would to ANYBODY who could truly assist
you; don’t worry about giving too much of yourself
and your values to them . . . if they’re unethical,
they’ll definitely try to take advantage of you — be
mature enough to be willing to find that out be-
forehand.

Choose the software firm as you would your
CPA firm or corporate attorneys. Choose them
using the same criteria you would if your organiza-
tion were going to acquire them . . . or if you were
going to invest in them.

AFTER YOU SELECT THE PACKAGE
... THEN WHAT?

... Order Processing for example can affect
marketing, sales, credit, customer service, produc-
tion control, manufacturing, shipping, quality as-
surance, AND accounting . . . what will your peo-
ple problems be?

Develop a plan for handling the inevitable . . . it
WILL occur!
If you have to modify procedures to fit a selected
package, try it manually first. Get the resistance
out of the way . . . PRIOR to having the computer
to blame.
Get the user to sign off on the system . . . the Ac-
counts Re supervisor will be much happier if he or
she blesses the system in advance.
Take ownership of the system . . . and make sure
everybody — including management — expects re-
sults . . . and is committed to doing whatever it
takes to GET results. Finger-pointing and blame
and “reasons” just simply have no place in the im-
plementation phase. If they crop up, acknowledge
them for what they are (the things people do when
they’re NOT getting results) and MOVE ON! (to
getting results).
If you haven’t already done it, list your required
enhancem Have the software vendor quote/
recommend how these enhancements should be
done.
Develop workarounds for all the functions which
aren’t exac the way you’d like the package to work
— and inform everybody, so there won’t be the
excuse of: “Well, this package just isn’t the way we
should be doing things.”

Make sure you get completely trained on the
software (from perspectives: User . . . technical
.. . and standards). Make certain the user is fully
trained . . . that there’s the ability and willingness
to understand.

BE PREPARED — remember that users CAN
damage themselves thr no fault of the software
house or the software.

Or even: “Advised of a schedule change??? Call
the dispatcher.”

Convert some or all of the members of the Selec-
tion Committee into an Implementation Commit-
tee.

Identify ONE person (for each module) as the
System Implementor — that one person who has
the ability and the responsibility for getting results
. . . and who is recognized and respected by others

. There are several steps which should be taken. The as able and willing to make it happen. Have a meet-
important thing is NOT to assume that you’re “‘there” ing of the key players at least once every two

. . . indeed, the journey is still somewhat in its infancy. weeks.
In fact, you’re just beginning! There’s some more inter- Once the selection has been made, there’s the

7—18—9

cumbersome job of getting things rolling. And
that’s where the software firm’s many experiences
can assist you ... that’s where Implementation
Planning and Project Control procedures come into

play.

THE PURPOSES REVISITED

The purposes of this document are plain and simple:
To provide at least one quality, honest, ‘“‘what’s 5o’ step

7—18—10

forward. Specifically, we offer a considerable amount of
data, several methodologies or processes, and a sharing
of experiences which may support you and your organi-
zation in attaining the successes you want. The only
real value you can get from this book is a willingness to
look at things as they are ... followed by using
whatever portions of our data, methods, and experi-
ences which prove to be useful for you.

Data Communications Troubleshooting

Pete Fratus
Information Networks Division
Hewlett-Packard Company

PREFACE

Data communication problems can be extremely dif-
ficult to solve. They can also be solved very simply.
Why the differences? Let’s look at modern medicine for
a few examples.

A patient complains of a sore arm. The doctor takes
his temperature (they always take your temperature),
examines his arm, asks some questions about past med-
ical history and sends him to X-ray. Looking at the
x-rays, she sees an obvious crack in the bone and places
a cast on his arm. That was a fairly simple solution.
Now take the same patient back to 18th century
Europe. Tools for diagnosing broken arms were lack-
ing, but there was always blood-letting. If that didn’t
work, the doctor could try irritants, Phrenology, mag-
netism and magic.

Had the doctor possessed the proper tools to do the
job, the time between complaint and correct treatment
would have been shortened considerably.

The type of problem, the tools available, and the
technique applied can shorten or lengthen the time re-

HEATERS AND AIR CONDITIONERS

quired to solve the problem. This presentation will help
you understand the problem, become aware of the
tools, and improve your techniques.

From the viewpoint of most computer users, there are
four types of malfunctions. They are usage, protocol,
digital and analog. Usage problems are those arising
from improper use of an otherwise working data comm
link. Protocol problems go beyond the users’ immediate
control and involve the software that handles the link.
Digital problems involve the interface between the data
terminal equipment (DTE) and the data communica-
tions equipment (DCE). Analog problems are limited to
the data communications facility, which is the wires be-
tween the modems or data sets.

There are many approaches to troubleshooting. The
process of elimination by replacing equipment, stepping
through software, and circuit checks by the halving al-
gorithm are some ways. Symptomatic troubleshooting
does not eliminate any of these methods, but it does
reduce the time necessary by quickly pointing out the
area of the malfunction.

24-23

SYSTEM COOLS INTERMITTENTLY

Symptoms
Electrical
1. Unit operates
intermittently.
2. Clutch disengages

prematurely during
operation.

Mechanical
l. System operates
until head pressure
on builds up at
which time clutch
starts slipping; may
or may not be noisy.

1.

2.

Possible Causes

Defective fuse, relay
blower switch, or blower
motor.

Improper ground, loose
connection, or partial
open in clutch coil,.

Compressor clutch slip.

Example:

Troubleshooting guide from auto repair manual.

11 —25—1

An example of symptomatic troubleshooting can be
found in nearly any automobile repair manual. You may
find a flowchart or table in which the axes are labeled
SYMPTOM and PROBABLE CAUSE. The idea is to

find the probable causes for the condition (or problem)
encountered, then by testing or a process of elimination,
discover the remedy. Newer methods have been devel-
oped which can suggest solutions.

AUTOMATIC TRANSMISSION 21-30
General Diagnosis Chart
Causes (see list below)
I | I |
Symptoms I 2 3 | 4 5 6 | 7 8 9 |
| I | I
HARSH ENGAGEMENT FROM | | I |
NEUTRAL TO D OR R | | X | |
--------------------------- el I |
DELAYED ENGAGEMENT FROM | | | |
NEUTRAL TO D OR R | X] X X X | X X X }
--------------------------- el Bl e St btedl
RUNAWAY UPSHIFT | X | X X | X |
--------------------------- e et Bt e ® ittt |
NO UPSHIFT I X | X X | X |
--------------------------- Rl et |
3-2 KICKDOWN RUNAWAY | X | X X |
--------------------------- bbbl ettt e Sttt
NO KICKDOWN OR NORMAL | | |
DOWNSHIFT | I X | |
--------------------------- e e e B
SHIFTS ERRATIC [X | X X | X X X |
--------------------------- [======———— | e | m e e
SLIPS IN FORWARD DRIVE | | |
POSITIONS | X | X X | X X X |
1l Engine idle speed too high
2 Hydraulic pressures too low
3 Low-reverse band out of adjustment
4 Valve body malfunction or leakage
5 Low-reverse servo, hand or linkage malfunction
6 Low fluid level
7 Incorrect gearshift control linkage adjustment
8 0il filter clogged
9 Faulty oil pump
Example: Symptom/Cause Chart from auto repair manual
Let’s get back to the computer. Think of all of the E. The Tools — what tools will do the tests
possible problems one can have with a data communica- F. The Solution — what action to take

tions network: hangs, disconnects, errors in the data,
delays, retries, and on and on. What could be the possi-
ble causes of these problems? Noise, fade, delay, pro-
gram bugs, faulty equipment, operator error, and more
can all cause aggravating malfunctions.

This is what you need to know to solve these prob-
lems in a timely manner:

A. The Basics — what is the environment,

what was supposed to happen
The Symptoms — what did happen
The Causes — why
The Tests — what tests will give the right
information

Cow

11—25-—-2

This presentation will help you learn how to get from
AtF.

EXCERPT

Let me give you an example to show how knowledge
of the symptoms, tests, and tools can make problem
solving easier. A problem occurred at a site where the
symptoms were terminal hangs and garbage on the sc-
reen sometime after the session started. There was
never any problem signing on. This was a point-to-point
terminal on a switched line using BELL 212A modems.

Three things were done in an attempt to resolve the

problem: the MPE 1/O configuration was checked, the
modem options were verified, and a 1640 data scope
was put into the line. The 1640 showed that a DC1 was
received followed by garbage. This was either printed
as garbage or hung the terminal. The assumption that
followed was that something was wrong with the termi-
nal. The configuration of the terminal showed that it
was *‘providing clock,” as was the 212 modem. At this
point, it was decided that the modem options listed in
the Data Comm Handbook must be wrong.

This bit of troubleshooting had gone way off on a wild
goose chase. No attempt was ever made to test the most
basic part of the network, the telephone line. Simple
modem self-tests and loop backs were completely ig-
nored. The 1640 served no useful purpose at this point.

A more reliable approach would have been to start by
defining the exact symptoms, determining the possible
causes, and making some appropriate tests. Using the
new information gained through this technique, troub-
leshooting would have been more directly related to the
problem.

The Basics
HP262X terminal
Point-to-point terminal connection to a port
Switched public line
Full duplex modem with good complement of diag-
nostics

The Symptoms
Apparently random terminal hangs and garbage oc-
curs only on one line

The Causes
Fortuitous line problems
Faulty modem
Faulty terminal
The Tests
Modem loop back with test pattern
Modem self-test
Terminal data comm test
The Tools
None needed
The Solution
Switched lines are susceptible to noise and other
problems. Since each new connection uses a dif-
ferent route, conditioning is not available (and
would not help noise anyway). Therefore, the ter-
minal should be reset if it is hung or the data re-
transmitted if it was garbaged. If that doesn’t help,
redial the connection.

SUMMARY

This excerpt is an example of what my presentation
will cover in much more detail. I am currently working
on flowcharts and decision tables to make solving data
comm problems easier by encouraging the use of symp-
tomatic trouble shooting. This should lead to using the
proper tools in the proper order.

11—25—3

Financing Quality Solutions

Melissa J. Collins

Is your manager a fire-breathing dragon? Does your
budget get thrown in the dungeon year after year? If you
answered “yes” or even thought twice about one of
these questions, you are not alone.

The Data Processing manager faces many challenges
and pitfalls in operating his or her department. One such
pitfall is the budgeting and finance area. This paper will
discuss solutions and methods to deal with department
monies (or lack thereof) and interaction with a non-
technical manager.

THE SUCCESSFUL DATA PROCESSING
DEPARTMENT EQUATION

Good Equipment + Good People + Money = Quality
Solutions

All of you have made an excellent choice in equip-
ment. If you don’t have the good people, they are out
there for the hiring. Now all you need is the money and
the management’s support and Quality Solutions will be
within your grasp.

So where does the DP manager fit into the money part
of the equation? The manager submits a budget of his
monetary wants/needs for a fixed period of time. Of
course, just because he asked for a million dollars,
doesn’t mean he gets that amount. The DP manager
must convince the upper management that the monies
requested are sound investments in the company’s goals
and futures. This is where the hard part comes into
play. HOW DO YOU convince the upper management,
who has little or no computer training, that your budget
goals are not unrealistic?

GETTING YOUR BUDGET APPROVED

First of all, you must face three facts. Once you come
to grips with them, the outlook will not be so gloomy.
1. Your management is not against you or your de-
partment.
2. Getting the monies necessary to finance any DP
project is sometimes harder than bleeding a rock.
3. Anything truly worthwhile is worth a small battle.
The first step to insure approval of your budget is to
be realistic about your requests. But, at the same time,
do not under-budget your department. This is a fine line
to walk, but it can be done. It is always nicer to come in
under budget than over budget, but if a department is
consistently under budget, then a manager can be ac-
cused of “padding the budget.” A few guidelines to con-
sider about budgeting items other than normal expendi-

tures (salaries, maintenance contracts, consumables,
etc.):

1. If there is the slightest chance that you will need a
new piece of equipment, budget for it.

2. Be sure you have sufficient justification for new
equipment.

3. If using the budget as a tool for justification of new
employees, provide good evidence of need. (Such
as project time tables, department workload, etc.)

4. As atradeoff — instead of new employees, budget
for programmer productivity tools whenever pos-
sible. Offer this as an alternative to your manager.
If the same results are achieved, the lower cost
alternative will always be chosen.

If a manager is dealing with a non-DP superior, hav-
ing his support is very helpful. The time you spend
educating a non-DP manager is time well spent. If your
manager knows what a disc is and what its uses are,
getting approval for a new one is not quite as painful.
The Data Processing department is surrounded by an
aura that threatens some managers. The high technol-
ogy and computer ‘“buzz words” are enough to scare off
anyone who doesn’t know what is going on. By working
with your manager and educating him, you will find that
he will support you more. The old adage, *“You can lead
a horse to water, but you can’t make him drink,” applies
here. Some managers could care less about learning
more about the DP department. Subtle tactics can be
used to educate a non-technical manager. Such tactics
include, but are not limited to, inviting your manager to
participate in your weekly staff meetings, taking him on
a tour of your facility BEFORE you present your
budget requests, or taking him to a regional user group
meeting. These actions may prick his interest to learn
more about the DP department.

Interaction with users may not seem really important
in attaining your financial goals. But consider this; if the
users are unhappy with the DP department, this attitude
will filter up to the managers of said users. The mana-
gers will, in turn, convey this attitude to the higher man-
agement who may uitimately be in the position to ap-
prove or disapprove your budget. You can’t expect
your users to be happy all of the time, but shoot for
making them happy as much as you can. It will help
around budget time.

USING YOUR BUDGET FUNDS
Now that your budget is approved, you don’t have a

11—26—1

free reign in distributing the monies awarded to your
department. This is a fact everyone has to face. This
problem has a name well known to all of us — RED
TAPE. The government doesn’t hold a monopoly on the
man-made phenomenon. But, there are ways to circum-
vent its nasty powers. Take purchase orders for in-
stance.

Instead of filling out two tons of paperwork for a

PURCHASE ORDER PROCESS

purchase order number, have the vendor submit a bill to
you that you can sign off. The end result is the same;
you get product/services and the vendor gets the money
(probably in shorter time). If you can follow the chart
below, you can trace the path of the purchase order
request. If a bill was sent to you, you could eliminate all
of these steps.

HRRRE I | I | I
EREEN P.O. | | Manager | yes | Finance |
| I | ' | | |========== > I ==========) I |
I11]1l] FORMS [| approve | | approve |
NEREN | ? | I ? |
hours to fill out weeks . to as long as
{} decide Manager
I \\ // ¢
[\\ // [lo
[\\ // [In
| \\ // Ils
Il No \\ // No 11 v
\\ § \\ // lla e
\\ T \\ // lle s
\\ A \\ // o
\\ R \\ // |
\\ T \\ // 1Y
\\ \\// 1o
\\ 0 \/. [lu
\\ V [z
\\ E | | | Is
\\ R Yes 1 Try | |le
{ EEEEEEEEEsEEEEassss | | 111
| Again | | 1£
I ? I |
---------- L
I [lu
Il I'le
[l No 1k
[| ly
I I
v |
| i
TOP

Most, if not all, managers have a monetary limit for
which they are allowed to sign without having their
managers approval. Using this limit will help you elimi-
nate not only the purchase order request cycle, but will

11 —26 —2

maybe next
year.

also help you acquire products/services without the ap-
proval cycle. If you want a vendor’s product that is
$7,500, but don’t have said product in the budget for this
year, don’t give up hope. Use the art of finagle. First

and foremost, check your budget very carefully to see if
you have any extra money anywhere. If there is some
money, but not enough, consider cutting something out,
like a tape cabinet. Then, working with the vendor, try
to agree on some financial arrangement that will get you
your product, the vendor his money, and, most impor-
tant, not get you fired. Most vendors will work with you
on this. Instead of not making a sale, they will gladly bill
you on an installment plan. As long as these install-
ments are under the amount you are allowed to sign for,
you will all be getting what you want.

However, it is not wise management to practice the
art of finagle all of the time. The more you use it, the
more likely you are to get in trouble. It is to be used
when the political climate of your company is not con-
ductive to spending, or when you know that there is no
other way to get what you want. Dealing ‘‘under the
table,” so to speak, is a tool you have available to you as
long as you do not abuse it.

FIGHTING BATTLES

So what if it’s in your budget? Your manager could
change his mind by the time the purchase order hits his
desk. What recourse do you have except retreat? You
can stand up and fight for what you want, diplomatically
of course.

Di-plo-ma-cy (di plo’'me se) n. 1. the conduct-
ing of relations between nations 2. the skill of
doing this 3. skill in dealing with people; tact
SYN. see TACT

According to Webster, the art of diplomacy is based
on the skill of dealing with people. For a manager to
achieve his goals, he must know how to deal with peo-
ple. When a proposal is rejected, it can be very difficult
for a manager to understand why his request was turned
down. The first reaction is usually one of anger or frus-
tration, which if vented on your manager, will leave
little or no chance for a reverse decision.

When you have an important request turned down,
analyze the situation. What was the reasoning behind
the decision? The political climate of your company
may have wreaked havoc on your proposal. Or you did
not justify it in a way that your manager could appreci-
ate your true need for your request. Try to see the situa-
tion from your manager’s point of view. Discuss it with
him, and ask him why the request was turned down. Try
not to put him on the defensive about his actions. If any
of his doubts can be resolved, do so as soon as possible
while the situation is fresh in his mind. If this fails, you
still have ways in your grasp to continue the fight.

The battleground is already set. You want something
you feel you need, and your manager told you that you
cannot have it. Whatever his reasoning was for denying
your request, if you still feel very strongly that you need
this request, sound the charge.

For an example, you have requested $3750.00 for a.

new memory board and your manager says no. Exam-
ine your reasons for this request. Obviously you feel the
machine is slow, and your users are starting to recog-
nize this fact. With your continued development work,
the situation will only grow worse. Direct a memo to
your manager explaining the situation as clearly as pos-
sible. Include in your comments that the users are start-
ing to show dissatisfaction with the response time of the
machine and that the situation will get worse. Other
points to consider for mention are a slump in prod-
uctivity and decreased throughput. If your General
Ledger is coming up on end of month close, illustrate
the consequences of productivity slumps and decreased
throughput. That will make him stand up and take no-
tice.

The memo serves two purposes: one, it informs your
manager of the consequences of the denied request,
and, two, should the situation not resolve itself, when
the complaints start pouring in, you have documented
proof that you tried to rectify the situation.

When the users do start to complain, and they will,
tell them what the problem is and what you have tried to
do about it. Be sure that you do not, under any circum-
stances, criticize your manager in this discussion. Even-
tually, the user attitude will be translated up the line to
other managers and the pressure will be shifted onto
your manager. This is the long way to go around the
mountain, but you will eventually get what you want/
need without stepping on anyone’s toes,

Should this approach fail, give your manager alterna-
tives. Instead of getting another memory board, con-
sider optimizing your machine. In presenting this con-
cept to your manager, provide as many solutions as
possible. You could hire another programmer to op-
timize all of your code. You could buy OPT/3000* and
train one of your staff to interpret its data and optimize
where necessary. Or you could hire a consultant and let
him figure it out. All of these are alternatives. When
presented to your manager, he will realize that these are
all costly alternatives, much more than a memory
board. So in order to save the company money, you will
most probably get your original request.

If all other efforts fail, start a memo blitz. Every week
or so, send your manager yet another memo concerning
the subject. Be sure that these memos are inoffensively
worded or the heat will turn against you. You may get
your request just because your manager wants the
paper barage to stop or he doesn’t want to be bothered
anymore.

One final word on the subject. If you are informed
that the answer is still NO after all of your efforts, it
may be best to hold off for a while until the smoke has
settled and then try, try again.

*Not to be considered an endorsement of this product.

11—26—3

Managernént: Key to
Successful Systems Implementation

Gary A. Langenwalter
Manager, MIS
Faultless Division
Bliss & Laughlin Industries
Evansville, Indiana

When I arrived at Faultless four years ago, the new
on-line Order Entry system was supposed to be com-
pletely operational. I found a completed general design,
some detail design, and 10 programs coded. The
hardware vendor (not HP) had promised Faultless man-
agement that they would contribute one person for one
year, we would do likewise, and the result would be a
state-of-the-art order entry system. We finished 1%
years late, with an investment of 6+ years of effort. We
are currently replacing our old hardware with an
HP3000, and replacing all our software. This conversion
was scheduled to take 14 months, finishing November
30, 1981. Our best current projection is August 1982, In
all fairness, I must mention that the Master Scheduling
package that we bought three years ago was installed on
time, under budget, and it met our expectations.

We at Faultless are not alone. Consider the following
three disasters, all of which occurred in Fortune 500
companies in 1980:

“A major industrial products company dis-
covers one and a half months before the in-
stallation date for a computer system that a
$15 million effort to convert from one man-
ufacturer to another is in trouble, and installa-
tion must be delayed a year. Eighteen months
later, the changeover has still not taken place.

‘*A large consumer products company
budgets $250,000 for a new computer-based
personnel information system to be ready in
nine months. Two years later, $2.5 million has
been spent, and an estimated $3.6 million
more is needed to complete the job. The com-
pany has to stop the project.

“A sizable financial institution slips $1.5
million over budget and 12 months behind on
the development of programs for a new finan-
cial systems package, vital for day-to-day
functioning of one of its major operating
groups. Once the system is finally installed,
average transaction response times are much
longer than expected.” (McFarlan, p. 142)

Ollie Wight, the leading consultant in the manufactur-
ing systems field, estimates that there are fewer than 25
“Class A” MRP users in the country! That number
compares poorly to the multiple thousands of com-

panies that have tried to implement manufacturing sys-
tems, each with the intent to succeed. We are one of the
“thousands’’; we are working to become ““Class A.”

The major risks of systems implementation can be

categorized as follows:

1. Failure to obtain all, or even any, of the antici-
pated benefits.

2. Costs of implementation that vastly exceed
planned levels.

3. Time for implementation that is much greater than
expected.

4, Technical performance of the resulting systems
that turns out to be significantly below expecta-
tion.

5. Incompatibility of the system with the selected
hardware and software. (McFarlan, p. 143)

Three factors that determine the degree of risk are
listed below:

1. Project size. The larger the size, the greater the
risk. Size is also relative — a $500,000 project has
much greater risk for a $20,000,000 company with
a 3 person MIS staff that has never installed any-
thing of its size, than for a $200,000,000 company
with 20 programmer/analysts.

2. Experience with the technology. Unfamiliarity
with the computer in question, or its operating sys-
tem, or database, or TP monitor and terminals in-
creases the risk.

3. Project structure. Having clearly defined inputs
and outputs, which all users agree upon be-
forehand substantially reduces the project risk. I
have not yet seen this, but it is theoretically possi-
ble. Conversely, when people are still changing
basic systems functions and designs midway
through the project, that project is doomed to
overrun both temporal and financial budgets. The
military is particularly adept at this (aided and
abetted by the contracters).

My current experience, plus my previous background
as an educator and consultant with a major DP
hardware vendor, support the hypothesis that forms the
basis for this talk:

11—33—1

HYPOTHESIS

The single factor most responsible for success or fail-
ure of system implementation is management. Good
management requires identification and minimization of
risk of failure, plus continual execution of the three
basic management principles: Planning, Organizing, and
Controlling.

The implementation of a system will be successful if,
and only if, it meets three basic goals which are the
converse of the risks listed above:

1. On-time completion.

2. On-budget completion.

3. The completed and installed system must meet
both its specifications, and the users’ expecta-
tions.

Let us review in some detail how each of the basic

management techniques can be used to insure success-
ful systems implementation.

PLANNING

Perhaps the best way to approach the topic of plan-
ning is with a cursory overview of the techniques avail-
able. Both PERT charts (or CPM charts, or “Bubble
charts”) and bar charts have been widely used for
years. Appendix B includes a sample of each. In gen-
eral, computer programs are a tremendous help in han-
dling complex PERT charts, and recalculating critical
paths.

Time estimating is perhaps the biggest stumbling
block to proper systems implementation time and cost
projections. Various articles suggest that each person
on a project be scheduled at only 70% efficiency, and
that one should allow 2-3 weeks for a user decision. My
own personal experience indicates that one should
allow 1-2 months for vendor feedback (to an RFP, for
example), and for scheduling vendor presentations and
reference visits. Also, if a person is managing others,
20% of his time should be allotted for each person man-
aged, subject to the discretion of the estimator. Finally,
an estimator needs to allow “Contingency time”’ of 20-
200%, depending on the tightness of the other estimates,
and the degree of risk inherent in the project — the
contingency factor should increase proportionally with
the risk.

Now, down to the actual planning itself. In my opin-
ion, the only intelligent way to implement a large system
is to break it into four phases, with management, the
users, and MIS mutually agreeing to the functions, cost,
benefits, and time estimates at the end of each phase.
This minimizes the risks involved, and maximizes the
probability that the user department will implement the
finished product successfully. We will examine each
phase below.

1. Initiation Phase

This phase includes the preliminary survey, a rough
estimate of potential costs and benefits, and the selec-

11 —33 —2

tion of the alternative perceived to be the most attrac-
tive (make vs. buy, Vendor A vs. Vendor B, etc.). It
culminates in a presentation to top management of the
Systems Proposal written jointly by the user depart-
ment manager and the MIS Manager. If top manage-
ment approves, the system implementation enters phase
2. If not, it can be reworked or dropped, with minimal
expenditures of resources to date.

This phase is the most important of all; it creates the
basic expectations of system functionality in the minds
of users and management. It should be noted that the
basic system functions are defined by the person who
will use them in his daily work, not by the MIS depart-
ment representative. “Systems are tools for the man-
ager, not toys for the technician.” (Wight, p. vii)

Some of the topics which are covered in the Systems
Proposal (or Management Overview) are management
summary, major system benefits, economic justifica-
tion, and schedule. Appendix A1l contains a more com-
prehensive list of topics included in the Systems Pro-
posal.

One other topic which needs consideration
throughout the implementation of a new system is the
fear of change of the part of some people in the com-
pany. Some will be afraid that they will lose their jobs;
others that they will not be able to measure up to the
new expectations; and still others that they will lose
their status with their peer groups, and/or that their
work groups will be reorganized. These fears, unless
addressed, can result in passive or active resistance to
the new system on the part of the people whose daily
enthusiastic cooperation is an absolute requirement.
They must, therefore, be actively addressed and over-
come.

2. Analysis Phase

This phase starts with a study which examines in
greater detail all major assumptions and promises of the
original proposal. Greater attention must be paid to any
area that includes major uncertainty (response times
with the particular hardware, application, and database
under consideration, for example). Cost and benefits
estimates are updated with the new information. My
experience indicates that costs almost invariably in-
crease, and benefits almost equally invariably decrease.
Finally, the MIS department writes the Functional
Specifications for the proposed system, and has them
approved by the user department(s) affected. After they
all agree, they jointly present them to the Steering
Committee, with updated costs and benefits. If man-
agement approves, the project continues; if not, it is
either discontinued, or revised. At this stage still, there
has not been a major expenditure of corporate re-
sources.

The Functional Specifications (or General Design)
document can include the major logic chart, proposed
input and output layouts, a training plan, future
capabilities, and a contingency plan, to name but a few

of the many topics. A more complete list appears as
Appendix A2.

3. Design Phase

This phase defines how the system will be built. It is
finished upon the completion of two major documents:
the Design Specifications (or Detail Design), and the
User’s Manual.

Some topics that the Detail Design Specifications in-
clude are a detailed system flowchart, with input and
output defined for each program, security, detailed pro-
gram functions, specifications, and logic, and a detailed
project implementation schedule. Appendix A3 con-
tains a more exhaustive list.

One item that must be covered in appropriate detail is
the Contingency Plan. All hardware, even HP’s, and all
software, even Faultless’, will eventually fail. Such an
event cannot be allowed to totally stop a critical de-
partment from functioning.

The User’s Manual includes pictures and descriptions
of all input and output screens, and reports, with expla-
nations of all fields — what they mean, and how to
change their contents, if appropriate. It also includes
operating instructions (how to sign on to the system,
what to do in case of problems, etc.). It must be written
in language that the person in the functional department
will easily understand.

These two major documents, plus Contingency Plan,
are jointly presented by the user department manager
and the MIS manager to the Steering Committee, with
the re-revised cost/benefits data. If management ap-
proves, the system enters the final phase of implementa-
tion. If not, the minimum resources possible have been
expended thus far; the project can be either revised or
dropped. At this stage, all parties involved will have
agreed on the details of the new system; there should be
no “‘surprises” from here on out. There should be no
reservations about technical capabilities, or about what
the system will do.

4. Construction Phase

This phase is the one that includes the actual prog-
ramming, testing, and documentation. In a well-
managed project, more than 50% of the time should
already have been spent designing. This minimizes
changes, revisions, etc. that are the bane of efficient and
effective systems. Let us discuss each subphase inde-
pendently.

Programming is a complex enough topic that it war-
rants books, talks at this convention, and week-long
training courses. Let me outline my views briefly, and
then continue with the subject at hand. All program-
ming should be top-down, structured, and modular.
Each program or module must be tested and
documented as soon as it is completed. It is then, and
only then, that it can be included in the account that
contains completed programs.

I will knowingly raise a controversy by suggesting
that users should design their own screens (with
V/3000, where applicable), and write their own reports
(we are using REX for that purpose). To me, the data
belongs to the user. Assuming that he understands the
contents and implications of the numbers that exist in
the database (and he should, for in most cases we hold
him responsible for their accuracy), then he should be
given the tools to generate the reports and inquiries that
will allow him to manage his portion of corporate re-
sources optimally. In other words, I refuse to perpetrate
an “IBM” (International Brotherhood of Magicians)
image with regard to my department.

The Systems Manual is a major document. It needs to
follow predetermined specifications and formats, and,
more importantly, must be updated throughout the life
cycle of the system. There are very few things more
dangerous than a slightly outdated Systems Manual in
the hands of a programmer who is trying to maintain a
system.

The Operations Manual is a must, whether your MIS
department has a formal operations group or not. This
document tells the operator how to run the batch jobs,
back up the system, recover in the event of failure,
where to send the output, etc. It defines expectations. If
there is no formal document, the person who normally
runs the job is generally the only person in the company
with that information. The financial risk that represents
to a company increases with the importance of the ap-
plication (for example, weekly payroll).

Training cannot be overemphasized. The responsibil-
ity for training users lies with the Project Manager (the
user department manager) rather than with MIS, be-
cause the head trainer becomes the person who knows
the application better than anyone else in the organiza-
tion. In smaller organizations, the Project Manager will
train users directly; in large organizations, he will train
other managers, who will then train their own people.

Training can and must commence as soon as the first
few programs are finished. After the Project Team has
trained itself, it is time to start familiarizing other per-
sonnel with the screens and reports they will be using
soon. These people can often suggest invaluable im-
provements, some of which take almost no time to in-
corporate. The ones that involve much time must be
prioritized, and approved by the Steering Committee
prior to inclusion. The end users will also spot program
flaws that escaped everybody else.

All user training and all program testing, except vol-
ume and response time testing, must be performed on a
small test database, preferably one distilled from your
real live database. My user personnel respond much
more favorably to reports which include casters that
they do to reports which feature bicycles.

Training is the one place that most people grossly
underestimate the time and resources required for a
proper implementation. Most people also underestimate

11—33 -3

the numbers of people that must be trained, and perhaps
even educated. Training materials can be acquired from
the vendor, if the software is purchased, and from
video-tape training companies such as ASI and Deltak.

One has three choices for final testing: Parallel testing
(which works well for financial systems, for example),
Pilot testing (which can be used for some manufacturing
systems implementations), and None (which I cannot
recommend; the only cold turkey that I like is that
which is left over from Thanksgiving dinner).

Final testing also quickly unearths any latent run time
or response time problems. Although painful, and em-
barrassing, it is better to discover those problems at this
stage than to try to squeeze 25 hours of processing into
a 24 hour day after the old system has been cut off!

After the final testing is complete, one faces the ac-
tual conversion. Although this sounds simple (‘‘Just
take the old data and load it into the new database.”), it
can be most complex. Each type of data to be converted
must be examined. Each outstanding piece of paper
must be considered (Do we leave it there? Replace it?
How do we find them all? What about the ones we
miss?). To illustrate the complexity of such a task, con-
sider that it took us at Faultless the entire Labor Day
weekend, running around the clock, to cut our MRP
database over from our other (non-HP) computer to the
Series III. The process involved over 30 steps. The pro-
cess and programs were so complex that we ran test
runs on the conversion programs themselves several
times.

ORGANIZING

Since the most important person in an implementa-
tion effort is the Project Manager, let us start by briefly
defining his (her) attributes and responsibilities.

The Project Manager, in my opinion, must come from
the department most affected by the project (that is, the
one that will gain the most if it succeeds, and lose the
most if it does not). It should be the person who will
manage that function on a day-to-day basis after the
system is successfully installed. The MIS Manager
should be Assistant Project Manager, to insure that
what the user wants is technically feasible. On a major
project, the Project Manager position involves a full-
time effort, especially when training commences. I
know that in the ‘‘Real World,” those people are often
totally busy just keeping the company running on a
day-to-day basis. But nobody else has the intimate
knowledge of how that department really functions on a
daily basis that is required for successful design and
implementation of the new system. Faultless top man-
agement backs this philosophy 100%, by saying that if a
department is not interested enough to furnish a Project
Manager, the project will not commence.

The Project Manager is responsible for writing the
functional specifications at the commencement of the
project. They form the basis for all subsequent devel-
opment. In my opinion, if a company does not have the

11—33—4

time to write its own Functional Specification, (or
RFP), and feels that it must hire a consulting firm to give
birth to a 250-page document, that company has no
business trying to implement any system that arises
from that document, because it will not be ‘“‘their” sys-
tem. That system stands, in my opinion, a better than
90% chance of failure.

The Project Manager must plan, organize, and control
(in other words, Manage) the day-to-day efforts of the
project. He must continually check to make sure that
detailed designs will meet the needs of his (and others’)
departments. He must monitor progress to schedule,
and adjust the schedule to the realities that intrude on
the best plans. He must control requests for changes by
sitting on most of them, and presenting the few worthy
ones to the Steering Committee. He must chair the
Project team at its weekly meetings, and the Steering
Committee at its bi-weekly meetings. As mentioned ear-
lier, the Project Manager is also the head trainer, and
trains either user personnel directly, or their managers
who in turn train their subordinates).

The Project Team is comprised of the Project Man-
ager (Chairman), MIS Manager (Assistant Chairman),
managers of all departments affected, and the analysts
and programmers assigned to the project. It is responsi-
ble for resolving differences of opinion that do not in-
volve policy or fundamental operating philosophies,
recommending policy and operations changes to the
Steering Committee, ensuring that the project prog-
resses as scheduled and results in the benefits prom-
ised, and prioritizing the myriad requests for changes,
modifications, enhancements, etc. that occur in such
projects. It must also monitor the creation and installa-
tion of internal controls, and contingency plans.

To be effective, the Project Team needs to meet
weekly (a standing meeting time and place is usually
appropriate). They need to keep a formal *‘Problem
List,” with the status of each problem, including its final
resolution and date. This will ensure that a problem
does not get ignored until it becomes extremely costly
to resolve. The Project Team must send minutes of its
meetings to the Steering Committee, with the Outstand-
ing Problem sheet attached, annotated to show how
each problem will be resolved. Finally, the members of
the Project Team must be the ones who train on the new
system first, and best. They will be assisting their sub-
ordinates to use the system correctly; they need to
understand well how it works. They also need to know
the inner workings of the new system so that the many
decisions that must be made during an implementation
will be the best possible.

The Steering Committee is comprised of the Project
Manager (Chairman), MIS Manager (Assistant
Chairman), the top executive of each department af-
fected (‘“‘mahogany row,” if you will), and the person to
whom those executives report (the ‘‘corner office’’).
This committee should meet bi-weekly (more frequently
during a ‘“‘crunch”), to monitor progress, set policy,

commit resources as needed, resolve any differences of
opinion that could not be resolved by the Project Team,
and approve/disapprove Project Team recom-
mendations. It should not get involved in the day-to-day
implementation effort; that is why the Project Team
exists. The Steering Committee must also ensure that
adequate contingency plans, internal controls, and
documentation exist as the system is being designed and
installed.

CONTROLLING

There can be no control without adequate plans, for
one must control to a predefined goal. There can be no
controls without proper organization, for there would
be no person held responsible. Given, however, that
plans and organization exist, control is absolutely man-
datory. Without control, there is no feedback to inform
management of deviations from plan to allow them to
redirect the implementation efforts appropriately, or to
measure the performance of the persons involved. Of
the three management functions, controlling is the most
difficult, and the one that is least well executed, in my
experience. More implementation efforts fail from lack
of adequate control than from the other two functions
combined.

We have discussed earlier that the Project Manager,
and Project Team, must control the project on a daily
basis. They must monitor progress against each of the
major requirements:

1. Time. To do this, each project must be subdivided
into tasks so small that each of them takes one
person no longer than two weeks. Each of these
tasks needs to be identified on a PERT chart, staf-
fed, and tracked. This avoids the surprise of learn-
ing, one week before scheduled conversion, that
the project is six months late. Progress must be
reviewed weekly.

2. Budget. The easiest way to monitor this is to use
project control software. Expenditures must be
reviewed weekly, in concert with progress and
projected completion dates.

3. Benefits. These need to be followed also, for if
they are not going to be achieved, the project
should be considered for immediate discontinua-
tion by the Project Team and Steering Committee.

4. System Performance. Same as Benefits. If the sys-
tem will not perform as expected, implementation
should be stopped unless reapproved by the Steer-
ing Committee.

5. Internal Controls, and Contingency Plans. In the
euphoria of system development, nobody wants to
think about such things. They are absolutely es-
sential. Internal controls can, and do, highlight
system deficiencies. After our new Order Entry
system had been installed for a year, our Con-
troller insisted on installing another simple internal
control. It revealed that on a very few occasions,

we were not invoicing our customers for goods
shipped! Contingency plans are required, because
the hardware will eventually fail. (Murphy was
correct; ours failed during our monthly close.) We
are still in business because we had developed
contingency plans.

Let me reemphasize that the Project Manager and the
Project Team need to continually keep the project
boundaries in firm focus. I suspect that more projects
have floundered and finally sunk from the mid-stream
addition of features, enhancements, etc. than from any
other single cause. Once the Functional Specification is
approved, there should be no major changes without
Steering Committee approval. Once the Detail Design is
finalized, there should be few if any changes allowed.

If a package is being installed, requests for change
should be segregated into three categories: a) Must
Have Before Implementation, b) Should Have As Soon
As Possible, and ¢) Nice To Have. There should be
very, very few changes in category a); these are the
ONLY changes that should be permitted before im-
plementation of the standard package. Once the pack-
age is installed and running, over half the requests in
categories b) and c) will disappear; they will no longer
be necessary. Each change that is permitted to delay the
installation of the package delays the benefits that will
be derived from installation, and increases future
maintenance problems.

The Steering Committee must measure progress
against plan for all major dimensions outlined above,
and ensure timely completion to specification. They
must resist the overwhelming urge to modify, or en-
hance, unless the benefits are extremely attractive.
They must be willing to scrap the project if the costs
grow, as is usually the case, and the benefits shrink, as
is also usually the case, to the point at which it is no
longer financially attractive, as is fortunately the case
only occasionally. Finally, they must ensure that old
systems are left intact until the new system has proven
that it really works. I visited a company some years ago
that demonstrated the validity of this last point. They
had destroyed the old system; the new one had not
worked for two months. The people in the plant were
playing cards.

CONCLUSIONS

Systems do not implement themselves; people im-
plement them. To succeed, a systems implementation
effort must be managed effectively, by applying stan-
dard management principles (Planning, Organizing, and
Controlling) with the intent to minimize risk. This is
accomplished by using a time-phased commitment ap-
proach that provides management three separate oppor-
tunities to review costs and benefits and schedules, and
to discontinue the effort with only the minimum possi-
ble resources having been expended at each of those
decision points.

11 —33—5

It is imperative that we, as MIS professionals, cause
systems to be implemented properly in our respective
companies. Qur companies cannot afford the disaster of
systems implementation failure. We cannot afford the
continued negative publicity, and the resultant scepti-
cism concerning our professional competence. Or, to be
more blunt, a manager is only as good as his ability to
deliver on his promises; we have proved for 20 years
that we still lack that ability. It is time for us to acquire
it, or face the consequences.

BIBLIOGRAPHY

Bliss & Laughlin Industries. Corporate Data Processsing Standards
Manual. Oakbrook, Illinois.
Edson, Norris W., “The Realities of Implementing MRP,” 23rd An-

nual Conference Proceedings (1980), American Production and In-
ventory Control Society, Inc., Washington, D. C.

Jones, Gary D., “Pitfalls to Avoid in Implementing MRP,” 21st An-
nual Conference Proceedings (1978), American Production and In-
ventory Control Society, Inc., Washington, D. C.

Lasden, Martin, “Turning Reluctant Users On To Change,” Computer
Decisions, January 1891, pages 92-100.

McFarlan, F. Warren, *Portfolio Approach to Information Systems,”
Harvard Business Review, September/October 1981, pages 142-
150.

Olsen, Robert E., *‘MRP Implementation — Doing It The User Way,”
21st Annual Conference Proceedings (1978), American Production
and Inventory Control Society, Inc., Washington, D. C.

Orr, Kenneth T., “*Systems Methodologies for the 80s,” Infosystems,
June 1981, pages 78-80.

Salmere, Mitchel B., “How to Improve a Management Information
System,” Infosystems, November 1981, page 90.

Wight, Oliver. The Executive’s New Computer, Reston Publishing
Company, Reston, VA, 1972

APPENDIX Al

The Functional Specifications can include any and all of the following topics:

® General Background

® Management Summary

® Problem Definition

® Present System Description
® Major System Objectives

® Proposed System Description
® Economic Justification

® Detailed Plan of Action

¢ Responsibilities

® Proposed Schedule

APPENDIX A2

Functional Specifications for a system can include
the following topics:

® Major Logic Chart(s)

® System Narrative

® Design Notes and Concepts

® Proposed Input and Output Layouts

® Proposed Controls

® Anticipated Throughput Volumes

® Future Capabilities

® Environmental Constraints on Expansion
Capabilities

® Hardware and Software Considerations

® Proposed Training Plan

® Cost Considerations and Assumptions

® Interface Considerations

® Audit Considerations

® Contingency Plan

APPENDIX A3

These items should be included in a Detail Design

Specification; others may be added at your discre-

tion:

® Detailed System Flowchart, defining input and
output for each program

® Detailed Narrative for each section of the
flowchart

® Program Run Sequences

® Audit Measures

® Quality Control Measures

® Internal Control Measures

® Security

11—33 —6

® File and Data Conversion from the Present System
® Recovery Procedures

® Programming Conventions

® Test Specifications

® Test Standards

® Hardware/Software Environment

® Program Narratives

® Program Functions

® Program Specifications

® Program Logic

® Detailed Project Implementation Schedules

APPENDIX B
BAR CHART

TRErrwwrgenen

11

01

L 9) 14 € 4 18/1o8/2T| T™X o1 6 | 08/8

dH IGO0
TINESNI DVId

(08/1/8 uey3 iajef 3jou Teaoadde ITd SOWNSSY)

.Bmcmu ANOLSTTIN NOILYINIWITAWI WILSAS

TANNOSYAd

LHOISTIOJ

110xkeq

S$319SSY PIXTJd

2TqeATa99Y SIUNOIIY

atqedied s3unosdy

I96PIT TeIDdUID)
TYIODNYNIA

stsATeuy sates
SISOD
ONILIRIVYH

butyozedstq

burjzoday xoqe]

D
ONIINLOYIANNYIN

SI9pIQ IseydaInd

95eaT3y I9PI0

BUTTNPIYDS IDISENW

JIW

WOOIYI03S

sbut3noy

STITd pue sixed
INTWIDUYNYR STVIHALYNW

JLIS YIALNdWOO THVdRId

JAYLS NIVUL

HLNOH

11—33 —7

APPENDIX B
©® PERT CHART

PARTL D

USTABLISH
OUANTITY

FiLE

e

PREPARE
NVENTORY

Cal
e
1

PAREL €

-

7

ESTARLISH,
ART ﬂ_‘r
ABLI

ESTABLISH REORDER/

SAFETY STOCK LEVEL

EVALUATE ORDER

FILE MAINTENANCE
't

nUN
ENQINEERNG

11 —33 —38

An Overview —

Networking Cost Performance Issues

Russell A. Straayer
President, Data Communications Brokers, Inc.
Champaign, Illinois

The purpose of this paper is to give managers a con-
ceptual overview of several key issues in datacommuni-
cations networking. We will focus on several practical,
useful guidelines. At the end we will address what is
practical and sensible today for most applications. As
managers, you cannot wait for the promises of 10 years
or even 5 years from now. A basic principle we will
stress is response time for the terminal user.

Response time will be stressed because the major
function of an HP3000 is to serve a human being, a
person using the computer through a computer termi-
nal. As human beings, we demand fast response times.
We take our cars instead of waiting for the bus. We take
the plane because the train or car is too slow for long
distances. We eat at fast food restaurants. We read
newspapers because we can scan vast amounts of in-
formation, pages and pages, in just seconds. We are
equally demanding of fast response and convenience
from our computers.

Getting to some practical information we can use to-
day, we will first look at 10 specific topics, and cover
them in rapid fire order. The 10 items could be full
blown topics in their own right. What we as managers
want to get out of the 10 points, however, are the practi-
cal guidelines. The technical staff folks and the vendors
all have their technical pitches, and we must distill out
sensible solutions that work today.

The 10 points, then are:

1. Telephone line cost trends

2. Data communications hardware cost trends

3. Technology trends of datacommunications hard-
ware

4. Local networking alternatives

5. Packet protocol caveats

6. Satellite communications caveats

7. Importance of fractional second response time
8. Bits per second versus speed

9. Point to point versus multipoint cost/performance
considerations

10. One large, efficient network

We will look at each one of these 10 points and high-
light the important points using a few charts, graphs and
illustrations. After we get through the 10 points, we will
have a better basis for quickly getting to some firm net-

work approaches. While there are many choices, many
of them correct, most fall within a narrow range of prac-
tical solutions. In the end, it is then the responsibility of
the manager to choose a solution that works. There will
be no right or wrong decisions, just some that fit better
than others. The ones that fit the best will be those made
by management that has a good idea of the direction in
which it is going and the destination it wishes to reach,
and then asks the right questions to get most directly to
the destination.

POINT 1. The trends in telephone company com-
munications line costs. The trend in costs is up. Costs
for lines are increasing at about 16 percent annually. We
have an example of Illinois local private line rates. In
1970, a local private line cost just $3.50 per month, went
to $15.00 by 1975 and is now up to $35.00 per month.
That is for a line that may just go across a street. Tele-
phone company charges for toll calls have not gone up
much at all in the same time frame. Take note, however,
that the phone company is slowly but surely working to
put even local calls on a usage charge basis. The local
call usage charges are already in place in Chicago, New
York, Washington and other cities, both in the United
States and elsewhere in the world.

The upward price pressure is clearly on dedicated
facilities. Today, many areas in the United States have
not yet caught up to Illinois, but will. You can look upon
the Illinois example as a benchmark for where rates will
go throughout the United States. The telephone com-
panies are going to the state public utility commissions
and gradually raising these private line rates.

Guidelines we can draw from this are:

1. Economize on lines using statistical multiplexers
2. Economize on lines using split stream modems

3. Be aware that local dial up lines can become much
more expensive
4. Satellite and private local facilities may not yet be
less expensive than telephone company private lines.
POINT 2. Datacommunications hardware trends.
Users have been spared the full impact of the rising
phone line rates by the reduction in the prices of
datacommunications hardware. You are all probably
familiar with the constant reduction in the prices of CRT
displays and printing terminals. The prices for modems
and multilexers, two key datacomm ingredients for on

11 —38 —1

line networks, have also seen prices come down. In
1970, a 9600 bits per second modem cost about $10,000,
or “‘a buck a bit.”” Today, some 9600 bps modems can be
purchased for as little as $3,000. The prices of 4800 bps
modems have dropped from $5,000 in 1970 to half or less
than half of that price. Statistical multiplexers, a prod-
uct just about 3 years old now, has seen a 25% price
reduction in its young product life.

Guidelines we can draw from the hardware trends
are:

1. Expect these approximate hardware costs;
¢ 0 to 300 bps dial up modems now cost $200 to $300
per unit,
® 1200 bps full duplex dial up modems, $700 to $900
per unit,
e 2400 bps synchronous 201 type modems, $700 to
$1,200 per unit,
e 4800 bps sync 208 type modems, $2,000 to $4,000
per unit,
® 9600 bps sync 209 or V.29 modems, $3,000 to
$6,000 per unit,
e 4 channel statistical multiplexers, $1,500 per unit,
¢ 8 channel statistical multiplexers, $2,400 per unit,
e Short haul synchronous modems, $600 per unit,
¢ Short haul asynchronous modems, $300 per unit,
2. Expect prices to come down, features to be added,
or both.

POINT 3. Technology trends. The technology trends
of datacommunications hardware have also been at
work to spare the user the full impact of rising phone
line rates. The statistical multiplexer just mentioned is a
perfect example. The stat mux, as it is called, has im-
proved the price performance of ASCII CRT’s and prin-
ters by more than a factor of two. The stat mux makes
more efficient use of the phone line, lets the async
ASCII terminal run faster than it could before, and often
at lower costs than some slower, less efficient methods.

Another technology improvement of just a few years
ago that we already take for granted is the 1200 bps full
duplex dial up modem, equivalent to the Bell model 212,
The 212 has been around for just about a half dozen
years. Look for 2400 bps full duplex dial up equipment,
at an affordable price, in the very near future.

The technology in datacommunications is making
more efficient use of existing facilities, facilities are get-
ting faster and more reliable, we are getting more con-
trol over the equipment, and more features. Mi-
croprocessors are showing up in more datacommunica-
tions equipment every day. We can do more and more
for less and less. Just look at how vendors are scrambl-
ing to stay profitable in the face of this trend by giving
you more and more features for the same prices, or even
lower prices. That is good news for all users.

It is useful to look at the changes in technology over
the years 1970, 1975, today, and what we may see in
1985.

11 —38 —2

1970
Frequency division multiplexers (FDM)
Time division multiplexers
103.113 type 300 bps modems
202 type 1200 bps modems
201 type 2000 to 2400 bps modems
208 type 4800 bps modems

1975

Same as 1970 plus

212 type 300 to 1200 bps modems
209 type 9600 bps modems

Short haul modems

Coaxial cable modems

First diagnostic tools

1980

Same as 1975 plus
Statistical multiplexers
Integrated technical control systems
Satellite
Value Added Networks (VAN)
1985
More software in datacomm products
More features
More cost effective local network products
® More cost effective fiber optics
® 2400 bps full duplex dial up modems

Guidelines drawn from technology trends:

1. Expect hardware to be very reliable, 20,000 to
50,000 hours Mean Time Between Failures
(MTBF)

2. Look for simple to use features. For example, test
functions that are useful but not too detailed if you
or your staff do not use the functions daily. What
good is it to know your bit error rate is 1 in 10 to
the 6th, if you are not sure if that is good or bad.

3. As time goes on, look for more features for you
money.

POINT 4. Local networking. Before we get to some
of the details about local networking, take note that
many local network products are still more promise
than reality. Most installations today cannot yet take
advantage of local networking technology because of
the costs, or lack of interface compatibility.

Local networking alternatives include protocol op-
tions such as ethernet collision/detection, token passing
methods, time division or frequency division. Links
available include coaxial cable, twisted pair, infrared,
microwave, and fiber optics. Hardware includes short
haul modems, coaxial cable modems, ethernet type of
interfaces, PABX's with data channel capability, and
more hardware appears with increasing regularity. A
good local networking overview article can be found in
the December, 1981 issue of Datacommunications
Magazine.

Guidelines concerning local networking:

1. For the HP3000, short haul modems are the most

practical local network product.

2. Fiber optics are usually too expensive.

3. Ethernet type solutions are usually too expensive
yet today.

4. Coaxial modems are often more expensive that
short haul modems.

5. The short haul modem solution is practical today
only within several miles of the computer. Beyond
that, long haul modems are usually required.

POINT 5. Packet Protocol Caveats: Packet protocols
that you hear about today include X.25, HDLC, SDLC,
and many of the protocols found in the Value Added
Network services such as Telenet and Tymnet. These
protocols have a place, but are not going to be a com-
plete solution. These protocols are:

e Designed mainly for message transfer, packets,

electronic mail

e Too slow for full duplex operation

e Not suitable for the HP ENQ/ACK terminal to

CPU handshake

As a practical guideline:

1. The packet protocols may have a place for
mainframe to mainframe communications.

2. The packet protocols are rarely practical for ter-
minal to mainframe communications.

POINT 6. Satellite Communications Caveats. The
basic fact to consider abvout satellites is that they sit in
a stationary orbit about 25,000 miles above the earth. It
is that physical fact that contributes to the plus and
minus features of satellites. First of all, satellite costs
are not mileage sensitive. It matters not whether you go
across the street or across the country, the cost is the
same. Keep in mind that because it is not mileage sensi-
tive, satellite is cost effective only on links of 500 miles
or more.

A major consideration for satellite is local distribution
of the data once you get it off of the satellite. From one
major point to another major point, satellites can be cost
effective, but not from many diverse points to many
other diverse points,

Satellites are not very good for highly interactive
data. Any transmission using satellite is bound by the
speed of light, 186,000 miles per second. A round trip
for data, via satellite, is 100,000 miles. Figure the round
trip time to be almost 3/4 second.

Guidelines for satellite transmission:

1. Because of the round trip delay time, satellite is

not suitable for the HP ENQ/ACK handshake or
polled terminals (MTS).

2. You may wish to use satellite to connect main-
frames, but not to connect terminals on line.

POINT 7. Importance of fractional second response
time. At first glance, it may seem improbable that peo-
ple need a 1/4 second response time or less to be effi-

cient in interactive applications. It is in fact rather diffi-
cult to really grasp just how long 1/4 is.

To illustrate the importance of such small portions of
time, consider the example of a radio call in show. We
have all heard the person who calls in, and while listen-
ing to himself on a background radio, gets confused.
The announcer says, *Please turn your radio down.”
Callers hear their own voices, fed back over the radio,
but the delay disorients and confuses the caller.

To site another example, a user typing at a terminal
will become very inefficient if the typed characters
echoed back are delayed by just 1/4 second. The termi-
nal user types ahead of the display rate of the characters
and experiences what feels like a spongy keyboard.
When a mistake is made at the keyboard, extra charac-
ters must be erased and retyped just to get back to the
incorrect character. '

When users are on line, say in a telephone order situa-
tion, it is important, if the person is to work at maximum
efficiency, to get feedback for each keypress in 1/4 sec-
ond or less. Typing at just 45 to 50 words per minute
requires a key press every 1/4 second. When the keys
do not get echoed back by the computer within that 1/4
second time window, the user slows down to match the
echo time.

Keep in mind at this point that a high bits-per-second
rate does not automatically mean fast response time.
This fact can be easily illustrated by considering a 300
megabyte disk that we send by mail. If the post office
delivers the disk in just 3 days, the transfer rate equals
9600 bits per second.

Guidelines for considering response time:

1. Response time over the communications link
should be measured in milliseconds for interactive
use. If the user operating a local terminal sees no
delay, then the remote terminal user should see no
delay, either.

2. For batch work, for file transfers and electronic
mail, response time is less important than the
bits-per-second transfer rate.

POINT 8. Bits per second versus speed. It may seem
contradictory at first, but 9600 bits per second may not
be as fast as 2400 bits per second. The difference is
response time difference.

A Bell 2400 bps modem, model 201 allows for much
faster polling in an MTS environment than does a 9600
bps modem, model 209. The difference in response time
is accounted for in the Request To Send/Clear To Send
delay functions of these modems. In a multipoint polled
(MTS) environment, the RTS/CTS delay allows the
modem at the central computer site to “‘tune” itself to
the incoming signals from modems at any one of several
remote sites.

The 2400 bps modem has an RTS/CTS delay of only 7
milliseconds, while the 9600 bps modem has a delay of
147 milliseconds. Given a typical poll of 12 characters
and a 3 character response (a total of 15 characters), the

11 —38—3

2400 bps modems allow for 3 times as many polls per
second. For short message traffic, the lower speed
modem may be a good bit faster.

Guidelines regards bits-per-second versus speed:

1. In a polled (MTS) environment, 2400 or 4800 bps is
often the best you can do for your money.

2. File transfers to an RJE station or mainframe to
mainframe can benefit from the 9600 bps modems,
since there is usually no concern about the RTS/
CTS delay.

3. Using statistical multiplexers and asynchronous
terminals, the typical best speed is 2400 bps for the
terminals, and 4800 bps for the composite modem
link, for up to 8 terminals. 9600 bps may be called
for if printers are heavily used.

POINT 9. Point to point versus multipoint (MTS). In
an HP3000 environment, point to point usually means
using asynchronous CRT’s and printers. Multipoint is
the MTS environment. What we want to do here is look
at the differences from the datacomm point of view.

We have a case study to look at comparing MTS with
point to point using statistical multiplexers. The user is
in Dundee, Michigan. The test involved 2 CRT’s and 1
printer, running on 4800 bps Bell 208 modems. The spe-
cific test was to evaluate how the user saw response
time, and to measure actual output volumes.

The results were clearly in favor of the statistical mul-
tiplexer method of operation, even when terminals were
slowed from 4800 under MTS to 2400 bps async. Meas-
ured output was more than double for the async mode
of operation. The users at terminals saw noticeable re-
duction in response time when the printer was running,
but not when using the asynchronous mode and statisti-
cal multiplexers.

It should be noted, too, that the async terminal opera-
tion is usually easier to set up, easier to diagnose, easier
to maintain.

Guidelines on point to point versus multipoint:

1. In most cases on an HP3000, point to point asyn-
chronous operation proves to be the most cost and
performance effective.

2. You may wish to consider MTS (polled terminals)
if you do very little printing along with CRT dis-
plays at remote sites and your response time can
reduced by a few seconds. The printer is the major
consideration.

POINT 10. One large efficient network. The network
we will examine here is the United States switched
phone network, the one we use when dialing local or
long distance calls. The US phone network, managed
primarily by AT&T, is well developed, efficient, and
employs the princples of good networking.

Examining the routing of a phone call from Cham-
paign, Illinois to San Antonio provides a good look at
the structure of the network. A typical call is routed:

11 —38 —4

1. From the local telephone station, over a station
loop to the central or end office.

2. The end office connects to a toll office via a toll
connecting trunk.

3. The toll office, say in Champaign, connects to
another toll office via an intertoll trunk. There are
several classes of toll offices in the network
hierarchy.

4. To avoid going through the entire chain of toll of-
fice command, the call may be routed from one
lower level office to another, close to the destina-
tion. The lower level offices are connected via
high useage trunks (HUT’s).

5. The toll office close to or actually in San Antonio
connects the call to the end office in the city,
which rings the local phone.

6. The callis completed when you pick up the phone.

This entire process is referred to as circuit switching,
since the call connection uses actual, physical circuits.
Packet switching, on the other hand, does not make a
connection via actual circuits, but packages up the data
and routes the databased on destination addresses in-
cluded in the packages.

Suggested guidelines based on the phone network:

1. Think of your HP3000 as though it is a PABX on
location in a business. Its purpose is to connect
terminals to files and terminals to terminals.

2. Terminals will almost always be connected to the
HP3000 the way phones are connected to a PABX
or central office, with one port per terminal, just as
there is one physical line per phone number or
extension.

3. Access through the HP3000 should be as standard
and simple as possible.

At this point, we will look at a specific network on an
HP3000. The user here is Johnson and Staley of
Nashville, Tenessee. This network takes all this infor-
mation and illustrates the kind of datacommunications
most practical for 90% of all HP3000’s.

The Johnson and Staley application is on line order
entry and inventory maintenence for a distributer of
school supplies.

The Johnson and Staley application embodies our 10
points in the following ways:

1. The line configuration is designed to keep the
phone line costs to a minimum.

2. The links between the multiplexers are 4800 bps,
about the best in price for the bits-per-second rate
needed. Five years ago Johnson and Staley would
probably have decided that the modem and multip-
lexer costs were to high to go on line.

3. The DDS, bandsplitting of DDS, and the stat
mux’s are all late 1970’s technology.

4. Local networking is not applicable here.

10.

. Satellite links are not cost or performance effec-

tive here.

Packet networks are not cost or performance ef-
fective here.

The on line order entry activity required very fast
response times.

. A link of 9600 bps per terminal grouping would not

improve performance in this application. The vol-
ume of data is small for this application. The need
is for instant access to the inventory and order
records.

Line cost savings that might otherwise be avail-
able only thru multidrop networking are acheived
by bandsplitting.

Terminals are connected on a per port basis to the
HP3000, much like extensions to a switchboard.

SUMMARY OF HOW 90% OF ALL
HP3000’S COMMUNICATE
HP3000 to HP3000 or larger mainframe:
® Synchronous facilities
® Private line
® 2400, 4800 or 9600 BPS
. ® Digital Data Service (DDS)
® Very few satellite links
HP3000 to terminals:
® Hardwired or within 100 miles of the mainframe
® Asynchronous, with dial up, single modems or stat
mux’s
® Speeds of 1200 or 2400 BPS

In conclusion, for all the choices and possible confu-
sion surrounding HP3000’s in a data communications
environment, 90% of all systems have the same config-
urations, with minor variations.

11—38—38§

LOCAL PRIVATE PHONE LINE RATES
ILLINOIS '

$35 —

25 I~

20 —

MONTHLY CHARGES

10 —

| |

1970 1975 1980

COST TRENDS OF

$10,000 .
DATA COMMUNICATIONS HARDWARE

9,000 |—

<—— 9600 BPS Modems
8,000 | _

7,000 —

6,000 —

5,000 f—
& 4800 BPS Modems

4,000 —
3,000 —
2,000 —

*%hanne] Stat Mux

1,000 [—

1970 1975 '78 '80 '81

11—38—6

~—

SHVHI 006
*03S 0¢

,l

oove

18109

AV

o8

ON3

XN
T000.L0¥d 13NdVvd

-—

ANVHSANVH XOV/DON3
QYVAIVd-113TM3H |

XN

OH[|94DS
pup bulyoms
}oyond Jo

SOI14S149}0DIDYD

ApjaQ

11 —38—7

18192

Ki9A119p ADp |DidASS
awnjoA abipj 410} poog -

9{D4 J9jsuDiy (8N 00¢E)
abpbiaAp sdq 0096 - @ WOVd

NVWLSOd 3HL ASIA

140

X
Nt NdD
A

= DO X

|

11—38—8

P3110d SNONONHONAS —#nd¢no 9A149DJ9JU| DONASY - 4ndyno

DJDP ‘S|DUIWID} ‘SWOpOW dWDS ~ D}DP ‘s|bulid} ‘swapow awbsg
aboiaAy sS40 Gl abousnay sS40 082

— Kjuo Buyysi) — Kjuo buiysi)

-*}ndino Apm auo |bjol --indyno Abm auo |bio]

NVOIHOIW "33aNNA "LN3W3D 33aNNG 1V 431S31

149 HOV3
n T} 002
YILNIYd INAS . 3TN INd |
1 802 J—s0z 000g 1 -30 | 802 =] 802} t-30 j=f 000E
008 dH s 10D 008 -
1 1
149
LINIOdILTNN /dOYAILTNIN 1NIOd Ol LNIOd

pa|10d S|DUJWIA} POXNW }D}S SNOUOIYIUKSY

SOAI|DUIR}|D YJOMBU 2

6.-21 A3INYVWHONEE

18'1'0°D

11 —38—9

CITY A
CHAMPAIGN, IL

Station

Station
Location
A

End

Location
B

/

Station Loop

Station

Office

Toll-
Connecting
Trunk

Toll

Inter-
Otfice
Trunk

End

Location

C

CiTYy B

SAN ANTONIQO, TX

Statiun Loop

\

Station

Office

End

Location
D

11 —38—10

Office

Toki-
Cunnecting
Trunk

Office

Intertoli
Trunk

Toll

Typical Routing for Connections

Office

*$°0°q ¥0
‘901VNY

+-30

VINIOYIA ‘GNOWHOIY

Y3111NdSANVE
HLlIM nsa

§d8 0096

ANVIANYIN
‘IYONILVE

NI '$'aQ

|

CETUTEEY
$140¢
'$°0°0 40
‘907WNY [
YILNIN |
s1H0¢

+-30

SLL3SNHOVSSVYN
‘NO1so8

H31117dSAONVE
HLIM NS

YILNIYd
SL¥0 ¢

O
O

111 S314¥3s
000€ dH

JISSINNIL ITAHSYN

11 —38 —11

Software Management Techniques
Janet Lind

There is currently much information available to
. document the fact that the cost of hardware is decreas-
ing dramatically, but the cost of software continues to
climb. When questioning the source of this problem, it
is necessary to consider that many hardware functions
are now being implemented in software or firmware. It
is also true that computers are constantly being used in
new applications, and computer users have increasingly
sophisticated needs.

Today’s software systems suffer from a variety of
problems. Often they are delivered later than originally
scheduled. The systems may cost more than the original
projections. The software may not meet the user’s re-
quirements, or may be unreliable. When the need arises
to correct or upgrade the system, the cost involved may
be in excess of the cost of the original system.!®

One of the most pressing problems in software proj-
ect management is the lack of a well-developed struc-
ture for guiding the individual programmer. Instead of
directing the programmer’s activities, the manager can
often only manage an idea until all parts of the project
are completed. This problem arises from the fact that
the only clearly defined point in the programmer’s work
is completion. More definition of the process is
needed.?

There is no reason why software development should
be exempt from the formats found in other engineering

fields. Lab notebooks, design reviews, and failure and

reliability analysis have proved their value.

The lack of a disciplined approach to software devel-
opment may produce programs which are difficult to
understand or maintain, affecting overall cost.
Therefore it is important to develop a more rigorous
framework to delineate the several steps in the prog-
ramming process. Knowing the proper steps to follow
will allow a programming team to develop more com-
mon objectives about the problem solution. This will
improve the product and the group motivation by allow-
ing the programmers to focus on more immediate goals.

Even though the approach being taken is to define a
series of programming steps, it is always important to
allow feedback to improve the product. A sequential
description of program development steps will be de-

fined here, but a problem found may cause a redefini-
tion in preceeding steps to provide a more correct solu-
tion.®

When first approaching a software project, it is nec-
essary to perform a problem analysis. Here the inputs
and outputs must be specified and the relationships be-
tween them must be described. A programming
notebook should be kept to indicate how decisions were
reached.*

Part of the problem analysis includes decisions about
the resources available. This includes both people and
computer power. When considering the hardware used,
it is no longer strictly correct to consider implementing
everything possible in software. To increase prod-
uctivity and to simplify code requirements, it may be
worthwhile to purchase or develop hardware to meet
the problem.

Another choice would be the use of multiple proces-
sors, which gives greater flexibility than implementing a
function in hardware. This could also decrease the
complexity of a given program, for it will no longer be
responsible for as many portions of the function. Pro-
grams could also run concurrently, reducing timing con-
straints on a single system. This would make program-
ming in higher level languages more attractive because
the added processor capabilities offset the less efficient
code produced. After completion of problem analysis, a
walkthrough should be performed.

The solution design is driven by the I/O and their
relationships defined in the problem analysis. Several
different documentation techniques and evaluation
criteria can be used in the structured design. Data flow
diagrams can be used at the high level abstraction to
model the flow of data through the system.® .

Higher order software notation, or HOS, which was
developed as part of the Apollo Program at Draper labs,
defines a very useful flowcharting technique. Each con-
trol structure has a horizontal block showing the pro-
gram flow in that structure. This type of flowchart does
not show extra arrows, and allows easy identification of
each possible branch. This notation also uses the same
identation as should appear in the actual code.?

11—63—1

S1

DO-WHILE .

Sn

Sn+1

HOS Example

Some of the evaluation criteria used in structured de-
sign include decisions about the possible program de-
velopment tools available. Certain programming lan-
guages may provide better support for the data struc-
tures to be used. They may also affect the amount of
coupling required between modules. It is important to
consider the capabilities of the computer system on
which the program will be run, including memory man-
agement techniques and I/O capabilities.

When doing structured design, the design team is
often tempted to perform just the top level abstraction
as a team, designing the lower levels individually. There
are some important reasons for doing a single integrated
design of the entire application. First, subdivision of the
design may result in excessive coupling of the major
systems. The resulting packaging into programs from a
subdivided design may be suboptimal. A complete
overall structural design could produce more efficient
and convenient packaging. Subdividing the design work
will very often result in duplicate programming. It is
particularly unfortunate when minor changes occur in a
few structures, yielding a new system which could have
shared entire subsystems and many levels of modules.®

Even though there are reasons for completing the en-
tire structural design as a single unit, this is not always
possible. In that case it would be best to produce a high
level abstraction of the program flow and identify the
more independent subsections. Those with few, un-
complicated interconnections could be treated indepen-
dently. To avoid duplication of code, frequent mutual
design walkthroughs and cross-checks should be per-
formed.

Either while the structured design is being developed,
or after its completion, the testing must be planned. It is
necessary to design the test cases before the coding is
begun. This allows peer review to verify that the de-
signed code can be tested.

If the HOS flowchart notation is used, each program
branch can be easily identified, and therefore tests can
be designed to exercise each branch. If each program
branch is numbered, a test matrix can be developed to
indicate which tests execute which branches. The input
and output to each test must also be specified.*

11 —63 —2

THEN
S1

IF

S2

ELSE

S3

Both the structured code design and the test design
should be carefully reviewed via structured
walkthrough techniques. When considering
walkthroughs, it is necessary to determine if it is more
economical for an error to be found by the programmer,
or by a group of 3 to 5 people. Part of the cost-benefit
calculation is the turnaround time for repairing errors.
Recent studies indicate that it is roughly ten times more
expensive to fix a design error after it has been coded
than to repair an error detected in design phase. It is
also quite possible that when looking for errors, the
programmer can repeat a logic error and never find the
bug. Walkthroughs can help avoid this.!®

Test Case | Input Branch Output
Viiv2|1]|]2]|3|4]5]|V1|V3|lvV4
1 010 oo o0
) 0 1 X| X 0102
1 0 X X 0]2 1
3 1 11X X X1 1 1

Test Matrix Example

There are other walkthrough benefits which must be
weighed against the cost. The product quality is im-
proved. The walkthrough participants are better trained
in the product and are able to exchange important in-
formation. This exchanged information increases the
probability that the product can be salvaged if a pro-
grammer leaves before completion. A walkthrough is
also a good environment for feedback into other areas.

After the designs have been accepted, coding and de-
bugging can begin. Here structured programming tech-
niques should be both understood and applied. Using
the HOS flowchart technique makes program flow and
structuring obvious at coding time.

It is too simple to believe that code without “GO-TO”
commands is always good. The language being used
should be well comprehended by the programmers to
ensure that the proper constructs are used. The code
within each module must be structured. Concurrent
documentation should also be kept.

With developing and testing code, it is also necessary

to choose between a top-down or bottom-up approach
to the overall structure. If hardware is being developed
concurrent with software development, the lower level
modules may be needed first to verify the hardware. In
most other cases, a top-down approach can provide a
more obvious visual presentation. This technique also
allows modules to be tested together sooner. The inter-
face between a node and its predecessor can be tested
as soon as the lower level node is developed, allowing
design or implementation errors to be detected and cor-
rected earlier.® :

A
11 2 I3
B1 B2 B3
Example
TOP-DOWN BOTTOM-UP
1. Code and debug A Code and debug B1
2. Code and debug B1 Code and debug B2
3. Test I1 Code and debug B3
4. Code and debug B2 Code and debug A
5. Test 12 Test 11
6. Code and debug B3 Test 12
7. Test I3 Test I3

A librarian function is helpful during coding and test-
ing. The librarian can be an appropriately trained per-
son, or an automated system. The librarian should
maintain source programs and listings, as well as or-
ganizing all other technical information.

An automated system would avoid mixing media,
which could be helpful in keeping a very accurate re-
cord of what changes are made. A record kept during
edit phase could record what lines were modified and
which variables were affected. A time stamp on this
information could help other programmers know which
version of code they were using. The knowledge that
this system is being used will encourage a programmer
to carefully analyze each change.

When the code can be tested, the test case matrix
should be used to direct the tests applied. It may be
useful to have the test run by the librarian. The test

results should match those predicted, and a run log
should be kept to document the test results. The pur-
pose of the run should be stated, followed by an analysis
of the run in terms of that purpose. This allows feed-
back for code correction and avoids haphazard modifi-
cation. Any corrective actions which must be taken by
the programmer should also be recorded.®

It may also be valuable to keep a time log to sum-
marize the time needed for each step. This forces the
programmer to review the actual effort expended in a
task, and helps for making more realistic future esti-
mates.

Throughout all activities, an independent auditing
function can be performed. This will help detect errors
unnoticed by the development team, and provides feed-
back.

The system described here is relatively involved and
may be difficult to implement all at once. A pilot project
could be chosen to use structured coding, structured
design, and informal walkthroughs. As the process is
implemented, it may be valuable to measure certain as-
pects such as the number of debugged lines of code
produced per day and the number of bugs found after
release. This can aid in future estimates. The amount of
time spent in each walkthrough and the number of bugs
found there should also be measured to help improve
the techniques used.®

BIBLIOGRAPHY

'F. T. Baker, “Chief Programmer Team Management of Productin
Programming,” IBM SYST. J., vol. 11, No. 1, 1972,

*F. T. Baker, “Structured Programming in a Production Environ-
ment,” IEEE Trans. Software Eng., pp. 241-252, June 1975.

M. Hamilton and S. Zeldin, “Higher Order Software — A Meth-
odology for Defining Software,” IEEE Trans. Software Eng., vol.
se-2, pp. 9-32, Mar. 1976.

4P. Hsia and F. Petry, “A Framework for Discipline in Program-
ming,” IEEE Trans. Software Eng., vol. se-6, no. 2, pp. 226-232,
Mar. 1980. ‘

SP. Hsia and F. Petry, “A Systematic Approach to Interactive Prog-
ramming,” Computer, pp. 27-34, June 1980. _

SM. Page-Jones, The Practical Guide to Structured Systems Design,
Yourdon Press, New York, N.Y., pp. 267-284, 1980.

’C. H. Reynolds, “What’s Wrong with Computer Programming Man-
agement?,” On the Management of Computer Programming, G. F.
Weinwurm, Ed., Auerbach, Philadelphia, Pa., pp. 35-36, 1971.

SM. Walker, Managing Software Reliability — the Paradigmatic Ap-
proach, A. Salisbury, Ed., North Holland, New York, N.Y., pp.
3241, 1981.

°E. Yourdon, Managing the Structured Techniques, Prentice-Hall,
Inc., Englewood Cliffs, N.J., pp. 10-88, 1979,

BE. Yourdon, Structured Walkthroughs, Prentice-Hall, Inc., En-
glewood Cliffs, N.J., pp. 87-100, 1979.

11—63—-3

Structured Analysis

Gloria Weld
Hewlett Packard Corporation

In any programming project, there are three areas of Today we will discuss Structured Analysis. In our
partition: Analysis, Design, and Implementation. All discussion, our underlying assumption will be that we
three of these areas can benefit from a systematic, are called upon to design (automate) a new system in
structured approach. order to replace an existing system.

ALL OF US WHO ARE INVOLVED WITH
PROGRAMMING AND PROGRAMMERS ARE
CONCERNED WITH MAKING SURE THAT
THE CODE WHICH IS WRITTEN
ADEQUATELY AND APPROPRIATELY
REPRESENTS THE SYSTEM WHICH IS
TO BE AUTOMATED.

STRUCTURED ANALYSIS IS A METHOD
TO ACHIEVE THAT GOAL.

Our Goal:

The program written must truly
represent the system to be automated.

M

System
to be [Program
automated e
e gl a

—
— L]
L =
\/D .//

g’

11 —84 —1

11 —84 —2

SOME TOOLS OF
STRUCTURED ANAL V515

DATA FLOW DIAGRAMS (DFD°S)
DATA DICTIONARY

STRUCTURED ENGLISH

DFD
NOTATION

DATA FLOWS, REPRESENTED BY NAMED
ARROWS

X

>

PROCESSES, REPESENTED BY NAMED
CIRCLES I.E. ("BUBBLES")

(D)

FILES, REPRESENTED BY NAMED STRAIGHT
LINES

z

DATA SOURCES AND SINKS, REPRESENTED
BY NAMED BOXES

LIS

I. A LANGUAGE

II. AN EXCELLENT TECHNIGUE FOR
UNCOVERING MISUNDERSTANOINGS
OURING THE ANAL YSIS PHASE OF
A PHOJECT.

COMMENTARY

HOW DO YOU ANALYZE A SYSTEM?
YOU TALK. YOU TALK TO THE PEOPLE
WHO ARE PART OF THE SYSTEM. YOU

ASK THEM WHAT IT IS THAT THEY DO.

Discussing “how things work” with a participant in a point. Thus, analysis derived from discussion with one
system can often lead to confusion. Quite naturally, participant will often conflict with analysis derived from
there are multiple views of the system. Each participant discussion with another participant.
in the system views the situation from his own vantage For example:

11 —84 —3

DESCRIPTION OF A
*HOSPITAL SYSTEM®

I AM CHIEF COOK IN THE HOSPITAL KITCHEN. ALL FOOD
G0ES THROUGH ME. EVERY DAY WE COOK BREAKFAST, LUNCH
AND DINNER. WE COOK SPECIAL FOODS FOR PEOPLE WHO ARE
ON SPECIAL DIETS, TOO. THAT'S THE HARDEST PARTI

From this description, we can derive a “Top Level” of analysis:

HIGHEST LEVEL
OF
HOSPITAL SYSTEM”

HOSPITAL -PATIENTS

HOSPITAL

N

DISCHARGED-PATIENTS

11 —84 —4

A “First Pass” DFD representing the HOSPITAL SYSTEM might look like this:

DFD of “Hospital System”
Pass | (Taken from Verbal Report
of a Participant)

As you can see, there are many empty spaces in our
first pass DFD. From the description given us by our
participant, we have created a DFD with data-flows en-
tering process bubbles and no data exiting. We also
have data flows coming out of process bubbles where
no data ever entered.

Our “Tests for Correctness’ which point out an in-
correct DFD immediately point out to us that our
understanding of this system is conceptually incorrect.
And we (for the most part) know exactly what it is we
don’t understand.

DFD of “Hospital System”
Pass | (Taken from Verbal Report
of a Participant)

11 —84—5

GUESTIONS WHICH COME UP WHEN TRYING
TO ANALYZE THIS PASS 4 DFD

0 WHAT HAPPENS TO A PATIENT WHO IS NOT VERY SICK?
AFTER HE CHECKS IN, WHAT DOES HE DO?

O DOES A PATIENT WHO IS TOO SICK TO CHECK IN
HIMSELF EVER GET CHECKED IN?

0 DO EMERGENCY ROOM PATIENTS WHO DON°T NEED
TRAUMA CARE EVER GET OUT OF THE EMERGENCY ROOM?

O HOW DOES A PATIENT (EITHER A REGULAR PATIENT,
MATERNITY PATIENT, OR EMERGENCY ROOM PATIENT)
EVER GET OUT OF THE HOSPITAL?

O HOW DOES THE KITCHEN KNOW WHAT SPECIAL FOODS
ARE NEEDED? WHERE DOES THE FOOD GO ONCE IT
LEAVES THE KITCHEN?

After asking those questions, we come to a DFD like rial representation of our system, a tool for discussion
this. True, it appears confusing. However, it is a picto- between the analyst and the participant.

DFD of “Hospital System”
Pass I

11 —84—6

We might wish to expand one of our process bubbles, TESTING OF PATIENTS).
in this case bubble number 5. (LAB AND XRAY

Expansion of Bubble #5 in
“Hospital System”

juennd-ol4ig

S}INSes- 180

N8I 180]

M L

Diagram 5.0: Lab and X-Ray Testing of Data

Our “Test for Correctness” of this expanded DFD in order to find out how the system really does work.
shows us that in the higher level DFD we had one input
to process bubble #5 (TEST-ORDERS), and one output occur in data-flow path analysis. Also, there can be con-
(TEST-RESULTS). fusion about the exact definition of a particular data-

Here, however, we see two outputs! (TEST- flow file, or process bubble.

RESULTS and BILL-TO-PATIENT). Structured Analysis contains a tool called the Data
Once again we immediately recognize an area of mis- Dictionary, which attempts to eliminate ambiguity of
understanding, and we return to talk to the participant definition.

As we have seen, areas of misunderstanding can

DATA DICTIONARY
A SET OF DEFINITIONS FOR:

O DATA
O FILES

O PROCESS BUBBLES
USED IN DFD

11 —84 —7

Here are some examples of Data-flow definitions in the Data Dictionary.

EXAMPLES OF DD ENTRIES
FOR
"HOSPITAL SYSTEM"

HOSPITAL-PATIENT = SICK PATIENT OR

(COMPOUND OR GROUP) EXPECTANT MOTHER OR
EMERGENY-ROOM PATIENT OR
VERY SICK PATIENT

DOCTORS ORDERS = TEST ORDERS
(ALIAS)

EMERGENCY-ROOM-PATIENT = "FLU"
(PRIMITIVE DATA "AUTO-ACCIDENT"
ELEMENT) "HEART-PROBLEM"

HIGHEST LEVEL
OF
"HOSPITAL SYSTEM"

HOSPITAL ~PATIENTS

HOSPITAL

N\

DISCHARGED-PATIENTS

11 —84 —8

DFD of “Hospital System”
Pass Il

Expansion of Bubble #5 in
“Hospital System”

weyied-o141g

sjnsel-isey

S} Nse.- 1884

chl"‘"“.

Diagram 5.0: Lab and X-Ray Testing of Data

11 —84 —9

11 —84—10

DFD of “Hospital System”
Pass Il

EXAMPLES OF DD ENTRIES
FOR
"HOSPITAL SYSTEM"

HOSPITAL-PATIENT = SICK PATIENT OR

(COMPOUND OR GROUP) EXPECTANT MOTHER OR
EMERGENY-ROOM PATIENT OR
VERY SICK PATIENT

DOCTORS ORDERS = TEST ORDERS
(ALIAS)

EMERGENCY-ROOM-PATIENT = *FLU"
(PRIMITIVE DATA "AUTO-ACCIDENT"
ELEMENT) "HEART-PROBLEM"

DFD of “Hospital System”
Pass I

COMMENTARY pansion shows more detail until we reach a level show-
As we level our DFD for a system, each level of ex- ing the primitive operations that act upon the data.

PRIMITIVE FUNCTIONS

PROCESS BUBBLES WHICH CAN NO LONGER BE EXPANDED
REPRESENT PRIMITIVE FUNCTIONS WHICH ACT UPON THE DATA

EXAMPLE:
SHOELACES-IN-SHOES
—TIED~-SHOES
SHOES—— >
EXAMPLE:
HAND-WITH-UNPOLISHED HAND-WITH-POL ISHED

NAILS ~\\\\\£§ ’////,;7 NAILS

11 —84 —11

Elements in the Data Dictionary which contain in-
formation about the process bubbles which are primi-
tive functions are called Mini-Specs. Mini-Specs are
written in Structured English.

Structured English

An Orthogonal Subset of English:

® Provides the minimum set of constructs needed to
describe rules governing transformation of data
flows for any functional primitive

® Provides one, and only one, possible way to de-
scribe rules governing transformation of data flows
for any functional primitive

Policy for Preparing Foods

For each order-to-kitchen-from-regular area:
® For each special order:

—Collect foods needed to fill order

—Prepare foods

—Send special foods back to appropriate room
® For each regular order:

—Prepare foods

—Send regular foods back to appropriate room.

11 —84 — 12

In summary, structured specification consists of:

® DFDs — pictorially shows relationship within the
system

® Data Dictionary — defines the data acted upon by
the system

® Minispecs — describes the primitive function
which make up the system. These are written in
Structured English.

Our Data Dictionary is a rigorous description/
definition of all Data Flows, files and primitive
functions which occur in the DFD which was derived
from our Structured Analysis of a system.

Structured Analysis is a large topic. In preparing this
paper, the most difficult task was in deciding what in-
formation to leave out.

I would suggest if you have further interest in the
topic of Structured Analysis and feel the technique
could be of use to you that you consult the following
references:

® Structured Analysis and System Specification by

Tom De Marco, foreword by P. J. Plauger

® The Practical Guide to Structured Systems Design

by Meilir-Page-Jones, foreword by Ed Yourdon.

