Volume 1 No. 5 January/February 1978

of the HP General Systems

Executive Board

Chairman
William Bryden
Inland Systems Engineering
424 Beverly Drive
Redlands, CA 92373
(714) 792-0323

Records
Barbara Rahe
Teledyne Systems Company
19061 Nordhotf Street
Northridge, CA 91324
(213) 886-2211

HP Interface
Tom Harbron
Anderson College
Computing Center
Anderson, IN 46011
(317) 644-0951, Ext. 331

Computer Usage
Gil Drynan
P.O. Box 313
Woodinville, WA 98072
(206) 773-8114

Library
Gary D. Anderson
Dept. of Epidemiology & Biostatistics
McMaster University
Hamilton, Ontario
Canada L8S 4J9
{416) 525-9140, Ext. 2434

Meetings & Regional Users Group
Gil Drynan
P.O. Box 313
Woodinville, WA 98072
(206) 773-8114

Publications and Journal
Gary Green
Research Coordinating Unit
Maryland Dept. of Education
P.O. Box 8717
Baltimore, MD 21240
(301) 796-8300

1978 Meeting Host
Joyce Pleasants
Aurora Public Schools
1085 Peoria Street
Aurora, CO 80011
(303) 344-8060

Past Chairman
Bill Gates
Longs Drug Stores, Inc.
141 North Civic Drive
Walnut Creek, CA 94596
(415) 937-1170

Jou urnal

Users Group

Inside this issue - Page

Featured Articles
Recursive Programming in FORTRAN, by Lonny B. Winrich. 2
PASCAL For The HP 3000, by John Earls. 5

Tips and Techniques
1000th HP 3000 Series |l: Central Node In a Network

of 5 Systems, by Editor. L 6
Treasure In The Contributed Library, by John Earls.. 6
COBOL Reserved Words, By GregGloss. 6
Need a Little More Data Stack Space?, by Jack Howard.... 7
Contributed Library Corner
Contributed Library To Be Enhanced, by Wayne Holt. 7
LISA — An Interactive Statistical Program For The

HP 3000, by James P.Schwar. 8
The Clearing House
SPSSForThe HP3000. i, 10
Message Facility. oL, 11
Tape Catalog System. 11
APL Component FileSystem........................... 11
APL Report Formatter. 11
APL Workspace Conversion. 11
QEDIT: Quick Program Editing........................ 12
Clearing House Responses.coin... 12
All About Us
Two Separate Questionnaires With Thisissue............ 13
Update to Regional User Groups Listing. 13
Users Group Now A Corporation........................ 13

Copyright Protection

The information in this publication may not be photocopied or
reproduced without the prior written consent of the HP General
Systems Users Group.

Copyright 1978 by the HP General Systems Users Group
Published By-Monthly
Contributions: Address the Journal Editor

Journal Editor Elias Zabor .
HP General Systems Users Group, c/o Hewlett-Packard Company,
5303 Stevens Creek Blvd., Santa Clara, CA 95050, (408) 249-7020

This publication is for the express purpose of dissemination of infor-
mation to members of the HP General Systems Users Group. The
information contained herein is the free expression of members. The
HP General Systems Users Group and Editorial Staff are not
responsible for the accuracy of technical material. Contributions from
Hewlett-Packard Co. personnel are welcome and are not considered to
be construed as official policy or position by Hewlett-Packard
Company.

Journal of the HP General Systems Users Group

Featured articles

Recursive Programming
In FORTRAN

by Lonny B. Winrich

Computer Science Department
University of Wisconsin-La Crosse
La Crosse, Wisconsin 54601

1. Introduction

For the adventurous FORTRAN programmer who
might like to try a recursive subroutine for implementa-
tion of a new algorithm, the literature of computing is
discouraging. Most books which treat advanced topics
in programming, like Wirth (Ref. 6, p. 128) and Good-
man and Hedetniemi (Ref. 2, p. 138), simply state that
recursion is impossible in FORTRAN. For many FOR-
TRAN compilers, they are, of course, correct. Even on
those systems which permit recursive programs in
other high level languages, the technique is usually
denied to the FORTRAN programmer.

The sad part is that there seems to be little reason for
not permitting recursion in FORTRAN. Stack oriented
machine architectures permit relatively natural imple-
mentation of subroutine linkage structures which
allow recursive techniques. The HP 3000 has such an
architecture and it was both encouraging and chal-
lenging to find the statement, “A subroutine is re-
entrant, that is, it can contain a CALL statement
which references, or calls, itself either directly or
indirectly.” in the FORTRAN reference manual (Ref. 3,
p. 11-4). The encouragement was short lived however,
for although several sections of the System Reference
Manual (Ref. 4, p. 4-26ff) are devoted to a discussion
of how to implement recursion in SPL, one searches
in vain for an exampie of recursion in FORTRAN.
Nevertheless, the challenge remains.

2. An Elementary Example

Since examples of recursive programs in FORTRAN
are nonexistent, it seems reasonable to look to
examples in other languages and adapt them to FOR-
TRAN. If that is done, for example in Tucker (Ref. 5, p.
50 or p. 262), one soon learns that the first recursive
program to be implemented in any language is the
familiar factorial function of mathematics. Or so it
seems from empirical evidence. The factorial function
is conveniently defined recursively as:

0! =1
N! = N(N=1)! forN > 1.

Since its rendition into FORTRAN seems obligatory,
the following program is offered as an elementary
example of recursive programming.

INTEGER FUNCTION FACT(K)
IF(K .LE. 1) GO TO 10
FACT = K*FACT(K- 1)
RETURN

10 FACT = 1
RETURN
END

A simple main program which invokes this function
for a few values of K will soon convince anyone that it
works, provided the program is run under a system
which permits recursion in FORTRAN such as the
HP 3000 Series Il. Encouraged by this result, one
naturally wants to apply recursion to the implementa-
tion of a more useful algorithm. After all, the occa-
sions for computing factorials are relatively limited.
There is also some question as to whether a function
such as the factorial should be computed recursively
(Ref. 6, p. 128) because of inefficiencies.

3. Preorder Traversal of a Binary Tree

Some of the most important and useful examples of
recursion in programming come from the use of data
structures which are defined recursively. One such
data structure is the binary tree, often used to assure
efficient searching of an ordered list. The use of this
example is motivated by history as well as by logic,
for the impetus for this paper came from a discussion
in a Data Structures class which the author was
teaching at the University of Wisconsin-La Crosse.

Throughout the rest of this paper, the binary tree
shown in Figure 1 will be used for examples. Its struc-
ture is intended to be representative albeit unre-alisi-
cally brief; note that there is at least one root node
with a missing left subtree and one with a missing
right subtree.

[[700 | [800 | [900]

Figure 1

Volume 1 No. 5 January/February 1978

Journal of the HP General Systems Users Group

The preorder traversal of such a tree is defined by
Elson (Ref. 1, p. 87) to consist of three steps:

a. Process the root node.
b. Traverse the left subtree of the root.
c. Traverse the right subtree of the root.

Although he offers an iterative algorithm for preorder
traversal (Ref. 1, p. 91) which does not require recur-
sion, Elson recognizes that the definition of the pro-
cess is recursive because the second and third steps
involve traversals of subtrees of the root of the tree
being traversed. Others offer recursive algorithms for
the preorder traversal but, of course, not in FORTRAN.

The first step in implementing the preorder traversal in
FORTRAN is to render the binary tree of Figure 1 as a
FORTRAN data structure. This can be done through
the use of a two-dimensional array: ITREE(11,3). The
first subscript will serve to identify a particular node
of the tree and the second subscript will indicate the
data element at that node, the left subtree link and the
right subtree link, respectively. Figure 2 gives the
structure of this array. — 1 is used as a null pointer in
this implementation.

2nd Subscript

1 2 3
1st Subscript
1 100 2 3
2 200 4 5
3 300 -1 6
4 400 7 -1
5 500 8 9
6 600 10 11
7 700 -1 -1
8 800 -1 -1
9 900 -1 -1
10 1000 -1 -1
11 1100 -1 -1
Figure 2

Followng Wirth (Ref. 6, p. 199), one is tempted to
implement a recursive preorder traversal in FORTRAN
with a program similar to the following:

SUBROUTINE PREORDER(l)
COMMON ITREE(11,3)
IF(l .GT. 0) GO TO 10
RETURN

10 DISPLAY “NODE = ”, ITREE(],1)
| = ITREE(I,2)
CALL PREORDER(])
| = ITREE(,3)
CALL PREORDER())
RETURN
END

= OOCO~NOOEAE WN=

—

Program 1

The basic logical structure is no more complicated
than Elson’s definition of preorder traversal. The vari-
able | is a pointer to the node of the tree which is to
be processed. The pointer is checked to determine
that it is not a null pointer (line 3) and the node proc-
essed, or in this example, simply displayed (line 5). If
the pointer is null, the subroutine returns to the
calling program. After processing, the pointer is first
set to link to the left subtree of the node and the
subroutine calls itself (line 7). After processing the left
subtree, the pointer is set to the right subtree and
again the subroutine recurses (line 9). The structure of
the program is delightfully simple and straightforward.

To test this subroutine, a main program is needed. In
this experiment the following main program was used.

COMMON ITREE(11,3)

DO 10 1=1,11 ,

ACCEPT (ITREE(1,J),J = 1,3)
10 CONTINUE

= 1

CALL PREORDER(l)

STOP

END

The array ITREE was filled as shown in Figure 2 and
the result of executing the program was the following
printout.

NODE = 100
NODE = 200
NODE = 400
NODE = 700

The printout is correct as far as it goes. Inserting
DISPLAY statements in the subroutine and the main
program indicates that the values of the node pointer
follow the pattern shown in Figure 3.

Depth of Recursion

| 1 2 3 4 5

1 1

2 2

3 4
Number of 4 7
Linkages 5 -1

6 -1

7 -1

8 -1

9 -1

Figure 3

In this table, linkages 1 through 5 are calls to the sub-
routine and linkages 6 through 9 are returns. The
values of | are obtained from execution of the pro-
gram. The problem seems to arise at the eighth link-
age. At this point the node pointer should identify the
right subtree of node 2 and recurse with a value of 5.
An explanation is clearly in order.

volume 1 No. 5 January/February 1978

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Journal of the HP General Systems Users Group

Since subroutine linkages are handled through use of
the stack in HP 3000 FORTRAN it would seem that the
appropriate values of the argument | should be pre-
served as the subroutine recurses. The calch is that
FORTRAN argument transfers are by location, not by
value.

The address of | is transfered to the stack with each
call to PREORDER. Since that address comes from
the main program, it is the same for each call and the
arguments are not preserved for return linkages. An
obvious solution is to transfer arguments by value
rather than location. Unfortunately the HP 3000 FOR-
TRAN compiler does not allow transfer by value.

To simulate the transfer by value, a programmer-
defined stack can be used in common storage. The
stack must be managed by the subroutine to transfer
the arguments. Program 2 is a version of such a
subroutine.

1 SUBROUTINE PREORDER
2 COMMON ITREE (11,3), ISTK (10), K
3 I = ISTK (K)
4 IF (1 .GT. 0) GO TO 10
5 K=K-1
6 RETURN
7 10 DISPLAY “NODE = ", ITREE(,1)
8 K=K+1
9 ISTK (K) = ITREE (1,2)
10 CALL PREORDER
1 I = ISTK (K)
12 K= K+1
13 ISTK (K) = ITREE (1,3)
14 CALL PREORDER
15 K=K-1
16 RETURN
17 END
Program 2

Except for the added lines associated with stacking

and unstacking arguments, the logic of this program
is identical to that of Program 1. | is still a pointer to
the current node of the tree but it is now a local vari-
able in the subroutine; K is the stack pointer.

With appropriate changes in the driving program, this
subroutine traverses the binary tree and generates a
correct listing of the nodes. The result seems to lend
credence to the explanation based on transfer by loca-
tion but it must be recalled that no such difficulty was
encountered with the factorial function. Why?

An examination of the factorial program indicates that
the function recurses by calling itself but the argu-
ment involved is an expression. The expression is
apparently computed and stored locally within the
subroutine before recursion and a unique local
address is transfered. The programmer generated
stack and the attendant manipulation needed to simu-

late transfer by value can be avoided if one is careful
to use local arguments in recursive calis. Program 3
provides another correct version of the preorder traver-
sal in FORTRAN. This version works with the original
main program written for Program 1.

SUBROUTINE PREORDER (1)
COMMON ITREE (11,3)

IF (I .GT. 0) GO TO 10

RETURN

DISPLAY “NODE = ”, ITREE (1,1)
CALL PREORDER (ITREE (1,2))
CALL PREORDER (ITREE (1,3))
RETURN

END

Program 3

O ONOON s WN =
-
(=]

4. Conclusion

Recursive programming is indeed possible in FOR-
TRAN. All that is required is a compiler such as

HP 3000 FORTRAN which handles subroutine linkages
in an appropriate fashion. To all the usual caveats
about the possible inefficiency of recursive subroutine
linkages, another must be added when working in
FORTRAN. The FORTRAN programmer must pay close
attention to the methods used to transfer arguments
to subroutines. If transfer by value is allowed, it would
seem to solve the problem. Where it is not, transfer by
value can be simulated by use of common blocks.
Alternatively, recursive calls can be written in such a
way as to use only arguments which are local to the
subroutine.

In retrospect it seems strange that the HP 3000 FOR-
TRAN compiler does not allow arguments to be
transfered by value. It is one of the few compilers
extant which allows recursion in FORTRAN and trans-
fer by value would be useful for such applications.
There are several FORTRAN compilers which allow
transfer by value but forbid recursion. This seems to
be an appropriate place to suggest an additional fea-
ture for the HP 3000 FORTRAN compiler.

REFERENCES
1. Elson, Mark, Data Structures. Science Research
Associates, Inc. Palo Alto. 1975,

2. Goodman, S.E. and Hedetniemi. S.T., Introduction
to the Design and Analysis of Algorithms. McGraw-
Hili Bok Company. New York. 1977.

3. HP 3000 Series Il FORTRAN Reference Manual.
Hewlett-Packard. Santa Clara. 1976.

4. HP 3000 Series Il System Reference Manual.
Hewlett-Packard. Santa Clara. 1976.

5. Tucker, Allen B. Jr., Programming Languages.
McGraw-Hill Book Company. New York. 1977.

6. Wirth, Niklaus, Algorithms + Data Structures = Pro-
grams. Prentice-Hall, Inc. Englewood Cliffs. 1976.

Volume 1t No. 5 January/February 1978

Journal of the HP General Systems Users Group

PASCAL For The HP 3000

by John Earls

Arthur A. Collins, Inc.
13601 Preston Road
Dallas, Texas 75240

PASCAL is an ALGOL-like programming language
defined in 1968 by Niklaus Wirth and others. The first
compiler was operational in 1970. The PASCAL User
Manual and Report, 2nd edition, by Kathleen Jensen
and Niklaus Wirth (Publisher: Springer-Verlag) defines
the “standard” PASCAL.

PASCAL is like SPL /3000 in many ways, but differs in
three main areas:

¢ Machine Independent
¢ Includes I/O Syntax
¢ Has extensive data structures

The first area has allowed the language to be
implemented on various machines, from Intel 8080’s to
the Clay-I.

The second area tends to make 1/0 operate like unfor-
matted FORTRAN 1/O; e.g., opens, closes, etc., are
done by runtime support.

The third area is illustrated by the following example
program.

program setop (output):
type days = (m,t,w,th,fr,sa,su);
week = set of days;
var wk,work, free : week;

d : days;
Procedure check(s : week);
var d : days;
begin write(*');
ford: = mto sudo
if din s then write('x’) else write('0’);
writeln

end; (*check*)

begin work :=[J; free:=[;
wk :=[m..suj;
d :=sa; free : =[d] + free +[su];
check(free);
work : =wk — free; check(work);
if free <=wk then write(‘0");
if wk >= work then write (‘k’);
if not (work >= free) then write (‘jack’);
if [sa] <= work then write (‘forget it’);
writeln

end.

As can be seen, this program (which is complete
except for control statements) defines “days” as m
thru su and defines a week as a set of days. Then the
program processes days directly without resorting to
programmer-defined mapping into bits or character
strings.

Much of the power of PASCAL is derived from its sim-
ple syntax and its ability to define data structure in
the terms of the problem at hand.

This short example will not give a real feel for
PASCAL. Instead, one should read the book by Jensen
and Wirth.

In addition, a very active PASCAL User’s Group exists.
The all-purpose coupon at the end of this article can
be copied and sent with $4 to get you on the mailing
list (for each academic year ending June 30th) for the
PASCAL News which usually contains about 100
pages of good information about the current state of
PASCAL.

There are at least two PASCAL compilers for the
HP 3000. At least one will be made available via the
Contributed Library shortly, if current plans continue.

PASCAL should be well suited to the HP 3000
because the language is designed around stack archi-
tecture. With some compiler effort, detail documenta-
tion and a little microcode help, PASCAL on the HP
3000 can be a very powerful tool.

Editor’'s Note: Readers wishing to contribute an article or opinion as
to usage of PASCAL at their installations may submit the contribution
to the Journal. Additionally, the PASCAL User’'s Group would wel-
come such an article; please note PUG’s address.

PASCAL User’s Group

c/o Andy Mickel

University Computer Center: 277 Ex

208 SE Union Street

University of Minnesota

Minneapolis, MN 55455 USA

[0 Please enter me as a new member of PASCAL
User’'s Group for Academic year(s) ending
June 30, I shall receive all 4 issues of
PASCAL News for each year. Enclosed please
find_______{$4.00 for each year). When
joining from overseas, check the PASCAL News
POLICY for a PUG “‘regional representative’.

[0 Enclosed please find a contribution which | wish
to submnit for publication in the next issue of
PASCAL News.

From: Name

Mailing Address:

Phone: Date:
Computer System(s)

[X X]
Volume 1 No. 5 January/February 1978

Journal of the HP General Systems Users Group

Tips & Techniques

1000th HP 3000 Series II: Central Node In A
Distributed Processing Network.

by Journal Editor

General Mills Consumer Food Group of General Mills,
Inc., purchased a fifth HP 3000 Series Il System; it will
be the central node of a distributed processing net-
work designed for production management and inven-
tory control, and will eventually link every major Con-
sumer Food Group Plant. The other four computers
are used for order entry, program development,
procurement and accounting, and meeting scheduling
tasks.

The network will be implemented using DS/3000, HP's
networking product for linking HP 3000s over com-
munication lines.

Treasure In The Contributed Library

by John Earis

Arthur A. Collings, Inc.
13601 Preston Road
Dallas, Texas 75240

The HP 3000 Users Group Library has been a very big
dividend on our Users Group membership.

We currently use about a dozen programs from the
Library — galley most often. We are a small organiza-
tion doing R&D (4 secretaries and about 16 staff
members). Everyone has a 2645 terminal. All typing is
input directly to the computer via Editor. Diablo 1620’s
are used for final output. This has provided us with
the ability to produce high quality revised papers on
very short notice.

We had very little problem with any of the programs
from the library. Our approach to using a program is
as follows:

(1) GETFILE (a program on the User Library) is
used to selectively bring into a convenient
account.

(2) The documentation is listed and read in detail.

3) File opens and closes are examined in the
source.Adjustments are made to suit our
operation.

(4) The program is recompiled and stored in our
User Program Group (xxx.P.SYS).

(5) Documentation is made available to potential
users.

The only time we have had problems occurred when
we attempted to use programs directly. Then, all of
those system parameter choices we made for various
reasons bite back.

We started using simple programs from the library.
Now with the above procedure, complex programs
such as “ECAP” and “PERT"” have been made opera-

tional in a few hours.
ooe0

COBOL Reserved Words

by Greg Gloss

HP General Systems Division
5303 Stevens Creek Blvd.
Santa Clara CA 95050

At a recent Regional Users Group meeting, a request
was made for a list of words which are not currently
on the COBOL/3000 Reserved Words list, but which
may be included in the future. The following two lists
show those words which are not currently reserved in
COBOL/3000 but which are on the ANSI-COBOL,
X3.23-1974 Reserved Word list and those words which
are tentatively planned for extensions to COBOL/3000

at a future date.

The following Reserved Words have been added to

ANSI-COBOL in the 1974 standard:

ALSO LENGTH
BOTTOM LINAGE
CANCEL LINAGE-COUNTER
CD MERGE
CHARACTER MESSAGE
CODE-SET NATIVE
COLLATING ORGANIZATION
COMMUNICATION OVERFLOW
COUNT POINTER
DATE PRINTING
DAY PROCEDURES
DEBUG-CONTENTS QUEUE
DEBUG-ITEM RECEIVE
DEBUG-LINE REFERENCES
DEBUG-NAME RELATIVE
DEBUG-SUB-1 REMOVAL
DEBUG-SUB-2 REWRITE
DEBUG-SUB-3 SEGMENT
DEBUGGING SEND
DELETE SEPARATE
DELIMITED SEQUENCE
DELIMITER SORT-MERGE
DESTINATION STANDARD-1
DISABLE START
DUPLICATES STRING
DYNAMIC SUB-QUEUE-1
EGI SUB-QUEUE-2
EMI SUB-QUEUE-3
ENABLE SUPPRESS
END-OF-PAGE SYMBOLIC
EOP TABLE

ESI TERMINAL
EXCEPTION TEXT
EXTEND TIME

INITIAL TRAILING
INSPECT UNSTRING

Voiume 1 No. 5 January/February 1978

Journal of the HP General Systems Users Group

The following words are tentatively planned for HP
extensions to COBOL at a future date. This list is sub-
ject to change.

Co1 INTRINSIC
C02 LABELS

Co3 NOLIST

Co4 SEQ

C05 SWO0

Cos6 SWi1

co7 Sw2

Ccos SW3

Co09 SW4

C10 SW5

c11 SW6

C12 SwW7

CC SW8
CONDITIONALLY SW9

EBCDIC UN-EXCLUSIVE
EXCLUSIVE VOL

EXDATE WHEN-COMPILED

FREE
o o O

Need A Little More Data Stack Space?
Try NOCB On Your RUN Statement

by Jack Howard. HP Neely Sales Region
Computer Systems

Systems Support Representative

P.O. Box 92105

Los Angeles CA 90009

NOCB on your RUN statement directs MPE not to put
your PCBX on your data stack. This increases your
usable data stack space by 258 to 768 bytes.

Note that the PCBX will be kept in an extra data seg-

ment; therefore, execution time will increase, but this
increase is usually relatively small.

Contributed Library Corner

Contributed Library To Be Enhanced

by Wayne Holt
Whitman College
Walla Walla WA 99362

The Library Committee will immediately begin a
Library design and restructure project, the completion
of which will be timed to coincide with the release of
MPE 1I-B. Because of this, the next Library release will
probably be delayed until May or June. Thereafter, it
should follow its normal cycle. The new Library will
incorporate at least two new items, and probably
more. First, a comprehensive data base will exist con-
taining all relevant data about Library contributions,
the clearinghouse, and all group publications. It will

initially be structured in an IMAGE base, allowing
users to run QUERY against it. In addition, a sequen-
tial print file will be available for those sites without
IMAGE/QUERY. Eventually, a KSAM base may also be
implemented.

Second, a grading system will be implemented and
applied to software in the Library and reported in the
Library data base. The following has been suggested
as a possible scheme:

A — Performs as documented under a specified
MIT. This grade indicates that positive user
responses have been received or that a qua-
lity review has been conducted.

B — Execution with sample data has been suc-
cessful under a specitied MIT. This grade in-
dicates that someone involved with the User
Group Llbrary has successfully executed the
program using sample data provided by the
contributor. No other quality reports are
available.

C — No quality statement is available. This grade
indicates that the program has not been sub-
mitted to any quality checks and no user
reports are available. Initially, all new contri-
butions (and all of the present library) would
start here.

D — Does not execute properly under a specified
MIT. This grade indicates difficulties with a
program due to an MIT update or for other
reasons.

Your help is needed to make this grading system
work. If your site would be willing to occasionally
review new contributions within a Library Class group,
please contact me as soon as possible:

Wayne Holt
Box F-69
Whitman College
Walla Walla WA
99362
(509) 527-5417

Volume 1 No. 5 January/February 1978

Journal of the HP General Systems Users Group

LISA — An Interactive Statistical Program for
the HP 3000

by James P. Schwar
Computer Center Director
Lafayette Coliege

Easton PA 18042

Introduction

Lafayette Interactive Statistical Analysis (LISA/3000) is
an interactive program designed for the statistical
analysis of a data matrix. Data handling as well as
statistical procedures are an integral part of the
program and over 30 such programs are available. The
source language is HP 3000 FORTRAN coupled with
calls to system intrinsics. The data matrix is copied
from a user file and saved for program use as a tem-
porary disk file. Source code for version .03 is avail-
able from the contributed library.

Data Matrix

The data matrix resides in a work area created by the
programmatically issued BUILD LISA15;DISC =
2000,10,1;REC =64, TEMP command. An identical
scratch file LISA16 is also built. Both files are purged
prior to exiting LISA. The data matrix is limited to 32
variables (maximumy) by 2000 observations (maximum).
A greater number of observations can be utilized if the
BUILD commands are issued prior to running the pro-
gram. The number of observations, for the external
BUILD command, is limited to 32767.

The original data matrix is a user created ASCII file.
LISA issues the file equation FILE FTN13 = filerefer-
ence, OLD where filereference is the name of the user
created ASCII file. Normally, filereference will be an
editor file where each line or record is an observation.
Input is in free form and each data item must be
separated from its neighbor by one or more blanks.
The first read from FTN13 scans record one and sets
the number of variables while the EOF terminates data
input and sets the number of observations. The
original data matrix has now been copied to LISA15
and FTN13 is reset and closed. Unused columns are
zeroed during the write to LISA15. The temporary disk
area beyond the row limit is unused but available for
future expansion of the data matrix. LISA16 is a
scratch file required by several of the statistical pro-
cedures.

LISA performs data handling and statistical analysis
by accessing user requested procedures. Each pro-
cedure has a unique identifier and the program
prompts for this identifier by asking

WHICH PROCEDURE?

A procedure will also prompt for data entry.

Data Handling Procedures

The data handling and utility procedures available in
LISA are:

APPEND allows the contents of an ASCII file to be
appended to the data matrix. The number of variables
is reset by the appended file. The number of observa-
tions will be the sum of the observations for the old
data matrix plus those for the appended data matrix.
DATA replaces the current data matrix with the con-
tents of the ASCII file specified. Column and row
limits are also reset.

EDIT allows the data matrix to be edited. Options
include add, change, delete, list, replace and verify.
EXIT terminates LISA/3000.

HELP briefly explains the procedures available in
LISA/3000.

PRINT displays all or part of the contents of the data
matrix.

PURGE will purge the file (name) selected.

RESET will reset the number of variables (column
limit) for the data matrix.

SAVE allows the data matrix to be saved as a binary
file whose code is 999.

SORT calls the SORT intrinsic thus permitting the
entire data matrix to be sorted on the variable
selected.

SUBSET permits a starting and ending row to be spe-
cified so that a subset of the data matrix can be
analyzed.

SYSTEM causes a program break so that MPE com-
mands can be issued.

TRANSFORM allows the selected variable to be trans-
formed into itself or a new variable. Approximately
twenty commonly used transformations are available.

TRAP enables the arithmetic traps. These traps are ini-
tially enabled.

UNTRAP disables the arithmetic traps.
VERIFY displays the status of the data matrix.

*COMMENT accepts up to forty characters following
the * and prints same as a comment.

*BINARY allows a saved file to be recalled.

*KEYIN permits the data matrix to be entered via the
terminal keyboard.

*NONE allows the user to issue the MPE file equation
FILE FTN13 = filereference,OLD.

Volume 1 No. 5 January/February 1978

Journal of the HP General Systems Users Group

Statistical Procedures

The following statistical procedures are available:

ANOVA performs a one-way analysis of variance on
the selected variable.

CANONICAL performs canonical correlation on the
data matrix.

CHISQ calculates a contingency table and chi-square
for a user generated table of occurrences.

CORRELATE calculates the cross products and cor-
relation coefficients for all variables in the data
matrix.

DISCR performs discriminant analysis on the data
matrix.

ELEMSTAT calculates for a selected variable or all
variables in the data matrix; mean, standard deviation,
standard error, variance, skewness, kurtosis, max-
imum, minimum and the range.

FACTOR performs factor analysis on the data matrix.

FREQUENCY outputs an open-ended frequency table
and histogram for the selected variable.

OCCUR analyzes a matrix of occurrences which is
generated by tabulating the number of occurrences of
an event. This count is generated within the pro-
cedure. CHISQ is an entry point of this procedure.

POLYNOMIAL regresses the selected dependent

variable Y against the selected independent variable X.

The polynomial thus fitted is of the form
Y=A0+A1T" X+ A2*"X**2+ ...

and may be of degree one through eight.

REGRESSION performs multiple linear regression on
the selected variables. One dependent and several in-
dependent variables may be specified. Output con-
sists of the regression coefficients, intercept, multiple
correlation coefficient, standard error, analysis of
variance for the regression and an optional table of
residuals.

SCATTER outputs a scatter diagram for the two vari-
ables selected.

SELECT will selectively delete rows (observations)
from the data matrix for the selected variable. These
deletions are specified by a ‘FORTRAN:-like’ logic test.

SMOOTH outputs a table of the triple exponentially
smoothed values for the selected variable.

TABULATE allows for the tabulation of the number of
occurrences of an event for the selected variable. This
tabulation or count uses a ‘FORTRAN-like’ logic test.
Procedure OCCUR calls TABULATE to generate the
occurrence matrix.

TREND performs elementary trend analysis on the
data matrix. Options thus far implemented are
selected a random subset of the data matrix, lag or
lead a variable and difference a variable.

Statistical References

Procedures CORRELATE and ELEMSTAT use the
equations found on pages 2-5 through 2-11 of the
HP3000 Scientific Library Reference Manual
(03000-90010). The IBM Scientific Subroutine Library
supplied many of the remaining statistical routines.
Some modifications to the IBM routines were neces-
sary so as to maintain compatibility with the data
matrix. These subprograms and their associated pro-
cedures are:

Subprograms Procedure
COORE,MULTR,ORDER REGRESSION
COORE,MULTR,ORDER POLYNOMIAL
TRACE,VARMX,LOAD FACTOR
DMATX,DISCR DISCR
CANOR,NROOT CANONICAL

The remaining procedures were coded specifically for
LISA. Real arithmetic is single precision and LISA
should run on both the CX and Series Il machines.
Changing to double precision arithmetic, particularly
in the REGRESSION module and matrix inversion,
would improve computational accuracy.

Volume 1 No. 5 January/February 1978

10

Journal of the HP General Systems Users Group

Timing Test

Several of the procedures were run against a random
data matrix 32 variables by 2000 observations. The ap-
proximate central processor time, as returned by the
intrinsic PROCTIME, was recorded for each procedure.
The following table summarizes these results as run
on a dedicated CX machine with 128K memory. The
data matrix was resident on a 47M ISS disk.

Procedure CPU Seconds Comments

ANOVA 30 1 variable; 4 groups
of 500 observations
each.

CANONICAL 160 32 variables; 2000
observations

CORRELATE 240 32 variables; 2000
observations

DATA 60 32 variables; 2000
observations

DISCR 500 32 variables; 4 groups
of 500 observations
each

ELEMSTAT 85 32 variables; 2000
observations

FACTOR 290 32 variables; 2000
observations

FREQUENCY 30 1 variable; 4 intervals;
2000 observations

POLYNOMIAL 110 2 variables; 2000
observations; any
degree

REGRESSION 135 2000 observations;
any combination of
variables

SCATTER 70 any 2 variables

SMOOTH 90 any variable; 2000
observations

SORT 50 any variable (ascen-

ding or descending);
2000 observations.

Corrections/Modifications
This latest release of LISA/3000 incorporates:

1. The new procedures
EDIT SYSTEM TRAP TREND

2. correction to procedure SORT

UNTRAP

An EOF mark is written at the logical end of file so
that the file (data matrix) is sorted correctly.

3. LISA formatted files are now saved with a file code of
999.

4. source documentation in the form of comment cards
has been expanded.

5. procedure CORRELATE was rewritten to reduce the
CPU time required for computation. Only the lower
triangular matrix is calculated for cross-products and
correlation coefficients.

o0 o

The Clearing House

SPSS for the HP3000

SPSS, the Statistical Package for the Social Sciences,
is presently in use at over 1,500 installations around
the world and is, undoubtedly, the most popular statis-
tical package in existence today.

The official FORTRAN version of SPSS 7.0 has been
converted to the HP3000 and is now available from
McMaster University.

Among the many statistical options within SPSS are
summary statistics, cross-tabulation, frequency distri-
butions, analysis of variance, regression analysis, fac-
tor analysis, canonical correlation and non-parametric
statistics. Also included within SPSS are many data
manipulation and data file management options.

For more information on SPSS for the HP3000, please
contact:

Gary D. Anderson,

Dept. of Clinical Epidemiology and
Biostatistics

McMaster University,

1200 Main Street West,

Hamilton, Ontario. L8S 4J9

Phone: (416) 525-9140 x 2437

Editor's Note: *SPSSHP developed at DePaul University was reported
in the Nov/Dec Journal issue.

Message Facility

This flexible package provides storage and retrieval of
lengthy messages between interactive users on the
HP 3000. Going far beyond the MPE capabilities, the
system provides these capabilities:

1. Sending messages of any length, and a “CC”
ability to copy the message to other users with-
out re-entering.

Volume 1 No. 5 January/February 1978

Journal of the HP General Systems Users Group

2. Scanning headers for messages coming in and
messages sent out.

Retraction of a message by the sender.
Defining distribution lists for messages.

Sending system-wide messages.

o o &~ w

Monitoring of messages to determine when they
are received.

7. A “tickler” to notify interactive users when there
are urgent messages waiting.

The message facility is an extremely effective tool for
communication and coordination among users on the
system; a similar package was used in the Carter
Presidential Campaign. Price $2500. Contact Binary
Associates.

Optional APL Module extends the message facility to
APL users and allows the sending of TELL and

* TELLOPS to and from APL users. Price $500.

Optional Conference Module allows interactive conver-

sations between any number of on-line users (includ-
ing APL users if the APL module is ordered). Price
$2000.

Tape Catalog System

Built around an IMAGE data base, this sytem provides
users and librarians with easy on-line access to tape
file information. it allows access to information by
volume, file name, user, group and account specifica-
tions, has provisions for handling cyclical tape files
such as system back up, and maintains security com-
patible with the HP-3000 accounting structure. A utili-
ty program is also provided to help keep track of
dormant and expired files, and aid in the prevention of
erroneous scratching of tape files. Price $2500.
Contact Binary Associates.

APL Component File System

APL users typically think of data in terms of variables,
from scalars to arrays of up to 63 dimensions. Many
who have used APL on non-HP systems are accus-
tomed to files which allow reading and writing of
whole variables (or "components”) at one stroke.
Binary Associates now provides a file system for APL
which functions in precisely this manner. Variables of
any number of dimensions are written to a file with a
single statement, without regard to the shape, size or
type of the data. The variables are read from the file
and/or updated by reference to the component number
(the position of the component in the file: 1st, 2nd,
3rd, etc.), allowing the APL user to treat the entire
variable as a single record, regardless of the data it
may contain. In addition, it is significantly faster than

the shared variable files provided with APL/3000. Price
$5000. Contact Binary Associates.

APL Report Formatter

This product gives the APL user access to a powerful,
easy to use formatter. It is especially suited for tabu-
lar report generation, and uses significantly less
C.P.U. time than any other APL/3000 format method.
The following formats are supported in the basic
module:

Character formatting

Double precision exponential

Exponential (scientific) notation

Fixed point

Fixed point/exponential as necessary

Integer

Fixed point with commas grouping every 3
digits to the left of the decimal point

Same as N with dollar signs

Spaces

Absolute column location

Literal strings embedded in formatted output

ZTOmnMmao»P

—-xZ

For a more complete description of these format

types, see the HP FORTRAN manual. Basic module 11
price is $3000, with custom formats or declarations

built in for a small additional charge. Contact Binary
Associates.

APL Workspace Conversion

A package of programs which will convert non-HP
workspaces to HP virtual workspaces is now available
from Binary Associates. The workspaces are first writ-
ten to a specially formatted tape on the external
system. The HP programs, running in background,
read the tape and re-create the workspaces on the
HP3000. As many as 50 workspaces can be converted
in a single day. Purchase price $20,000. Workspace
conversion performed at $40 per workspace, plus
machine time, with a minimum charge of $500.

Extensive discounts available on all software and ser-
vices. Documentation and 1 year of support and up-
date services included in price. Custom modifications
available on a fixed price basis. For further informa-
tion, contact:

Binary Associates

Software Products Division
311 Kenbrook Drive

Silver Spring, Maryland 20902
(301) 649-2367

Volume 1 No. 5 January/February 1978

12

Journal of the HP General Systems Users Group

QEDIT
Quick Program Editing
Small Appetite for Computer Time

QEDIT is a specialized text editor for HP 3000 pro-
grammers. According to its designers, the benefits
provided by this new product are:

1. REDUCED PROGRAMMER LOAD ON THE COM-
PUTER

The computer supports more terminals and/or
provides better response time because the pro-
grammers are using fewer system resources
(especially disc accesses).

QEDIT provides a compact workfile which can be
directly edited and compiled. The workfile thus
replaces both the standard HP source file and
the EDIT/3000 K-tile. By eliminating high-
overhead “TEXT” and “KEEP” operations, QEDIT
dramatically reduces the elapsed time, CPU time
and disc input/output required for development,
leaving more computer power for end-users.

QEDIT can be instructed by the System Manager
to restrict certain programmer actions (such as
CHANGE string in all) to low-priority subqueues,
and the programmer can switch subqueues
dynamically.

2. INCREASED PROGRAMMER PRODUCTIVITY

Programmers accomplish more because QEDIT
provides fast, simple features tailored expressly
for the editing and compiling of source programs
in COBOL/RPG/FORTRAN/SPL.

QEDIT takes into account the designated source
program language (COBOL, FORTRAN, RPG or
SPL) in all functions. For example, when per-
forming searches for strings in SMART mode, it
looks only for occurrences of the target string as
a valid identifier.

QEDITS cuts down waiting time. For example, a
programmer can switch from editing one file to
another in 1 second.

QEDIT is available for immediate delivery under a
rental plan. The rental fee is $100/Mo or $960/Yr, and
includes maintenance and a discount for pre-payment
of 4 to 16 months. QEDIT provides a price/perfor-
mance improvement even on instalfations with only
two on-line programmers.

For additional details, including a list of commands
and QEDIT performance, please write the source. Con-
tact:

Robelle Consulting Ltd.
#130-5421 10th Avenue
Delta, B.C., Canada V4M 3T9
(604) 943-8021

In case of Canadian postal strike:

Robelle Consulting Ltd.
P.O. Box 501
Point Roberts, Washington, USA 98281

Text Processing
PACKAGE: ALTER, a text processing language. With
over 50 commands oriented specifically
towards text handling; this procedure
can be called from any language. When
ALTER is called from the HP EDITOR/
3000, it provides superior editing capa-
bilities, and allows a user to construct
special commands.

PRICE: $1000 purchase; $120 annual mainte-
nance. Free evaluation trial provided (30
days).

CONTACT: Chuck Villa or Ross Scroggs
Alter* Ability

534 Rosal Ave.

Oakland, CA 94610

(415) 835-5603

Services
SERVICE: Installation training and consulting. Site-
and task-specific training of new users.
Development of tools and procedures
used to optimize system performance.
Expertise in data communications and
word processing for the HP 3000.
PRICE: Call for quotation. Special rates for
OEMs.

CONTACT: Charles J. Villa, Jr.

154 Laidley Street

San Francisco, CA 94131
(415) 282-8139

Volume 1 No. 5 January/February 1978

Journal of the HP General Systems Users Group

Services
SERVICE: Full range of consulting services for
both new and established HP 3000
users, and feasibility studies for
prospective users.
CONTACT: William Bryden
Inland Systems Engineering
P.O. Box 925
Redlands, CA 92373
(714) 792-0323
eo0
SERVICE: Full time-sharing services at competitive
rates on our in-house HP 3000.
SERVICE: Contract programming and consuiting.
Software development at your site or on
our in-house HP 3000 Il by our experi-
enced staff of professionals.
CONTACT: Coltier Jackson and Associates, Inc.
2909 Bay to Bay Blvd., Suite 210
Tampa, FL 33609
o0
Hardware
EQUIPMENT: Two ISS discs for sale. Interested?
CONTACT: Dennis Lamb, Director of Data Pro-

cessing
Universal Motor Oils
(313) 264-9387
o000
Miscellaneous

HELP! Anyone who has had experience utiliz-
ing a UCC 2000 (or Bromall 2000} X-Y
plotter with the HP 3000.

CONTACT: Mr. Charles Hodge

Boyle Engineering

P.O. Box 3030

Newport Beach, CA 92663
(714) 752-0505

All About Us

Two Separate Questionnaires With This Issue

Within the envelope that brought you this month’s
issue of the Journal, you should have received
SYSTEM BACKUP QUESTIONNAIRE and CON-
TRIBUTED LIBRARY QUESTIONNAIRE.

Please provide your best replies and return at the
earliest possible convenience — we've even included
an envelope: simply add postage and repeat the
envelope address.

Participate in creating a more effective users group.
We're trying to learn your needs, transmit them to HP,
and derive more benefits for you!

eeoe
Update To Regional User Groups Listing

The listing which appeared in Vol. 1 No. 4 (November/
December of 1977, p. 9) is modified as follows:

North America

CCRUG
Central Canada (Toronto)

Doug Wilson
Conestoga College
299 Doon Valley Drive
Kitchener, Ontario
Canada N2G 4M4
(519) 653-2511

The group now meets on a quarterly basis, on the
second Tuesday of the month, i.e., February, May,
August, November.

Europe

Belgium and Holland No present reference

coeoo
Users Group Now A Corporation

“This is a necessary and welcome step that takes
place in the transition from a club-type operation to a
professional business organization’, according to
William Bryden, Chairman of The Executive Board.

There are many reasons for taking this step, according
to Bill, and these include:

¢ Protection of the funds of the organization. The Ex-
ecutive Board is now in the process of trying to
establish the Users Group as a 'not for profit’
organization, and is attempting to obtain tax-
exempt status. A side benefit of such a designation
is that we may then petition the postal authorities
for special rate first class postage. When mailing
updated contributed library tapes, the conservation
of funds would be considerable if such a rating
were granted.

¢ Help clarify our independence from HP as a
separate entity.

¢ Limit the personal liability of individuals acting on
behalf of the Users Group.

¢ Raise the professional level of the organization.

The intent is also to increase services to users. In this
respect, the possibility is being studied toward the
establishment of an executive secretary and/or a
minimal staff — so that User Group commitments can
be met on a timely basis.

Volume 1 No. 5 January/February 1978

13

- 14

Journal of the HP General Systems Users Group

About The Name Change

You may have already noticed the name change on the
cover of the Journal. While undergoing the legalities
of incorporation, it was desirable to select a name
that would not exclude future users as prospects for
membership in the Users Group and to make available
the benefits of membership to all. In the past, HP 3000

designated the product of the HP General Systems
Division. This number will not necessarily be all in-
clusive of the range of products of the Division in the
future. Consequently, we allow for growth as the need
becomes evident, and part of that is by establishing a
name that will not need to change — hence, HP
General Systems Users Group.

Volume 1 No. 5 January/February 1978

Journal of the HP General Systems Users Group

Volume 1 No. 5 January/February 1978

