Volume 2 No. 2 October 1978

ourna

of the HP General Systems
Users Group

Executive Offices:
HP General Systems Users Group, Inc.
P.0O. Box 18313
Baltimore-Washington International Branch
Baltimore, Maryland 21240
{301) 636-6100
Rella M. Hines, Executive Director

Executive Board

Tom Harbron, Chairman
Anderson College
Computing Center
Anderson, IN

(317} 644-0951, Ext. 331

Gil Drynan, Vice-Chairman
Boeing Aerospace Company
Woodinville, WA
(206) 733-2230

William Bryden

Inland Systems Engineering
Redlands, CA

(714) 792-0323

John Eaton

London Graduate School of Business
Sussex Place, Regent’s Park

London NWI 4SA

England

(Tel.) 01-262-5050

Gary Green

Administrative Information Management Systems, Inc.
P.O. Box 73

Pasadena, MD 21122

(301) 544-0350

Sharad Heda
Vvydec, Inc.
Florham Park, NJ
(201) 822-2100

Joyce Pleasants, 1978 International Meeting Director
HP General Systems Users Group

P.O. Box 722

Aurora, CO 80040

{303) 344-8060

Copyright Protection

The information in this publication may not be photocopied or
reproduced without the prior written consent of the HP General
Systems Users Group.

Copyright 1978 by the HP General Systems Users Group
Published 4 times yearly

Contributions: Address the Journal Editor

Journal Editor Elias Zabor
HP General Systems Users Group, c/o Hewlett-Packard Company,
5303 Stevens Creek Blvd., Santa Clara, CA 95050, (408) 249-7020

Featured Articles
The Journey From Batch to On-Line Processing,

by MiltonW.Bowden 2
Structured Design and Segmentation,

by FredWaters 4
Programming For Regression Analysis,

by James P. Schwar and Stan J. Perambo 6
The Aims and Methods of the Management

Learning Project, by RichardBoot 11
Total Stack for a Main Program and Subprogram

>64KB?, by Jack Howard 12

Tips and Techniques
Principles for Optimizing Performance of On-Line

Programs, by Robert M. Green 15
Image Optimization Checklist, by Geoff Walker 20
About HP’s New VIEW/3000, by Jutta Kernke 20
A One Line Program, by Ross Scroggs 21
User-Defined Command Listing Program,

by Pete Fratus e e 21
HP 3000 Software: Keeping Current, by Tom Simon . . 22
Article Reprints, by Editor 23
Still More Literature on Computer Security, by Editor 23
Computer Security Conference, by Editor 24

ftware Spotlight -

DBREBILD: A Data Base Restructuring Package,
areportby JasonM.Goertz 24

The Clearing House
Controller Permits HP 3000 Computer Link to IBM

1403 Printer cii ittt e 25
DBREFORM: A Database Utility for IMAGE/3000

USBrS & v vttt it i e et e e e 25
UNIVAC-1004 Emulator for Remote Job Entry 25
Financial Planning and Accounting Packages 26
TSPOOL - Remote Printer Subsystem 26
Computerized Hiring and Rental System 27
ForSalettt itannnnnn 27

This publication is for the express purpose of dissemination of infor-
mation to members of the HP General Systems Users Group. The
information contained herein is the free expression of members. The
HP General Systems Users Group and Editorial Staft are not
responsible for the accuracy of technical material. Contributions from
Hewlett-Packard Co. personnel are weicome and are not considered to
be construed as official policy or position by Hewlett-Packard
Company.

Journal of the HP General Systems Users Group

Featured articles

The Journey From Batch to On-Line Processing:
One User’s Experience

by Milton W. Bowden

Director, Data Processing Services

Allan Hancock College

800 South College Drive

Santa Maria, CA 93454

This presentation might be better titled "IF YOU'RE NOT
SURE OF THE ANSWER, MUMBLE CONVINCINGLY.”
As you will see later during the presentation, | mumbled
often.

Allan Hancock is a California Community College located
on the Pacific Coast approximately 170 miles north of Los
Angeles. Our economy is largely agricuitural but we are
adjacent to Vandenberg Air Force Base where aerospace
activity is relatively high.

I came to the college in 1969 as the data processing man-
ager. At that time we had an IBM 1401 which was used
jointly by the administration and instruction. The 1401
stayed with us until 1974 since a purchase agreement with
a huge educational discount had been signed one month
prior to my employment, and if the machine was disposed
of prior to the end of a five-year period, the educational
discount (60%) had to be repaid. Had | known about the
purchase and iron-clad contract | would probably not have
accepted the job. We then resigned ourselves to AUTO-
CODER and COBOL and control-sequential file access and
came up with our student accounting package which has

evolved somewhat, but is, in large part, still with us today. ...

In late October of 1971, we were notified that some voca-
tional education grant money was available. We sat down
and hastily put together a project which was subsequently
funded and we installed an IBM 1130 in January 1972. This
was dedicated to instructional use and stayed with us until
June of 1973. Even though the project was statistically a
success, | never did view the 1130 seriously for production
work.

After we passed the mid-point in our contract payments on
the 1401, our monthly payments dropped off enough for
us to begin to plan for a replacement system. Phase | of our
replacement plan called for an IBM System 3 Model 10. It
was installed in September 1973. Phase || called for a mem-
ory and disk expansion and the addition of the dual pro-
gramming feature. Before this could be implemented, the
System 3 Model 15 was announced. We became one of the
first educational institutions to install a Model 15. This
occurred in July 1974.

In September of 1974, we said goodbye to the 1401 and
put approximately $40,000 in our pockets in the process.
It seems that someone had the perfect home for it. At this
point, we were quite pleased with ourselves since we had
survived a couple of major conversions and wound up with
a super-batch system that supported RPG, FORTRAN,
COBOL, and BAL quite nicely. The shock was to come
later.

In early 1973, we set a goal of having a terminal oriented
system by the fall of 1976. Toward this end we added 3340
disk drives to the Model 15 and started to explore things
like CCP, TOTAL, etc. At this time our configuration was a
128K CPU, two 3340 disks, a 2660 MFCM reader/punch,
and a 1403 Model 5 line printer. We had an additional
128K of CFl memory free because we agreed to test it for
them. Our monthly rent was approximately $6,500. The
shock came when we looked at the possibility of adding
two terminals and CCP and the other items required to
interface this equipment. The monthly rent would have
been very close to $9,000. This would have given us two
administrative terminals and nothing in the area of instruc-
tion. So at this point we resigned ourselves to being happy
with what we had.

In June 1975, | visited Hewlett-Packard’s exhibit at the
National Computer Conference. | saw the HP 3000 CX and
quite frankly could not believe either the price or what it
was supposed to be able to do. Bear in mind the exercise we
had recently gone through and the “we cannot afford it”
attitude we had at the time. Over the next few months we
did a lot of looking, comparing, and wishing. It was about
this time that rumors and information started to leak out
out on the HP 3000 Series {1. We bit the bullet and obtain-
ed permission to go out to bid for a terminal oriented sys-
tem as a replacement for the System 3/15. There was a pro-
viso that we shop with our current budget and not expect
any new money. It took me a month to write the bid speci-
fications, and | must admit that | woke up many nights
asking myself if | knew what | was getting into. Here | was
with 12 years of DP experience, all of it on nice comfort-

able, safe batch systems. Now | was busily putting together

a process which, if unsuccessful, could ruin what had been
a fair reputation and could even cost me my job. During
this period of time | did a lot of the mumbling mentioned
earlier.

When the bid specifications were finally finished and pub-
lished, one might think we could relax and wait for the
results. The fact that we were actually headed for a system
that would put the power and responsibility for creation,
maintenance, and use of the information that was their re-
sponbility in the hands of the user, was somewhat unnerv-
ing. Of course, there was the small item of our department
being responsible for providing the software, training, and
implementation necessary to make all of this possible.
Again—mumble convincingly. Add to this the realization
that we could no longer cover up our mistakes or problems,
re-runs, etc., so easy to do in a batch environment. Further,
consider the security problems associated with sharing a
system with three or four hundred inquisitive students. |
think you can start to appreciate the acute paranoia | start-
ed to experience.

By the time the day arrived for opening of the bids, | was
smoking two packs of cigarettes and drinking two plus
gallons of coffee each 24 hours. As it turned out, we wound
up with bids from IBM (370/115 Model 2), Burroughs

Volume 2 No. 2 October 1978

Journal of the HP General Systems Users Group

{Burroughs B-1700), and Hewlett-Packard (3000 CX}. Hew-
lett-Packard met all the bid specifications with a couple of
minor exceptions and was low, and proposed a five-year pur-
chase plan with annual payments in arrears. This gave us a
system that would handle 16 terminals, provide interactive
IMAGE/QUERY, six 2640 CRT terminals, two 7260 opti-
cal and/or punched card readers, a 600 LPM printer, two 47
megabyte disk drives, plus a beautiful tape drive for system
backup. | refer to the tape as "“beautiful” because our pre-
vious method of backup was to keep a copy of our critical
files on the same disk as the file in use. The remainder of
our limited backup was in cards, reports, etc. In addition to
the Hewlett-Packard equipment we purchased, there was
sufficient money to rent from General Telephone three
ADDS 520 CRT's, a teletype, and a GE Terminette 1200.

After Hewlett-Packard was awarded the contract, we came
to that point in one’s professional journey jokingly referred
to as “‘Ulcer Gulch.” We had 600 plus production programs
that required conversion from the System 3/15 to the HP
3000. About 90% of these programs used indexed sequen-
tial files. Approximately 85% were written in COBOL, 10%
in RPG and the other 5% in FORTRAN and BAL. We also
heavily used IBM's Sort which had sort select with include/
omit capabilities. Hewlett-Packard’s Sort did not have these
capabilities. To get around this, Hewlett-Packard wrote and
contributed a front end to their sort which took our sort
specifications as they were and gave us the same capabilities
we had previously on the Model 15.

Our conversion plan was quite simple; we put our source
into data files and wrote a program that would make the
obvious changes. We simply wanted the programs to func-
tion on the HP 3000. The enhancements and obvious
changes were to wait until we could say everything was
functional. In September 1876, we began a parallel opera-
tion and were successful in selling our purchase accruals on
the Model 15 so that we came away with approximately
$11,000 to help defray conversion costs. We chose the pay-
ment in arrears type of contract so that we had no payment
to Hewlett-Packard for the first year. This approach is ex-
tremely helpful if you have a cash flow problem.

MORE ABOUT CONVERSION

The nearest HP 3000 that we could use for conversion and
testing was located in Fullerton, California which is about
200 miles from our installation. We assigned both our pro-
grammers to the conversion project and starting in April
1976 a typical work week was as follows:

1. The source programs associated with a particular
application were identified and placed in data files on
the Model 15.

We then processed these source programs against a
conversion program which made all the known
changes required. Obviously this was not 100% effec-
tive, but it certainly reduced the effort required to
get a successful compile on the HP 3000.

All data files associated with a particular application
were also copied (in some cases only representative
portions were used) to disk.

2. The disk containing source and data was then trans-
ported to a friendly service bureau which had a
Model 15 with both disk and tape. We then copied
both source and data from disk to tape. Allowing for
travel time and time at the service bureau, Tuesday
was usually shot.

3. On Wednesday morning we arrived at the HP data
center with tape in hand and proceeded to load
everything into our account.

The scurce programs were compiled and, when neces-
sary, corrections made. Since we were performing this
work at an HP data center, there was usually an HP
System Engineer around to assist with particularly
difficult programming or operations problems. Our
programmers received a lot of training during this
time.

The data center closed at 5:30 p.m. daily, so in order
to optimize our time, we acquired a CRT and acoustic
coupler and continued our compiling and debugging
from our hotel room over the telephone.

4. By Thursday we usually had our source compiled and
stored in our account. The rest of the day was spent
testing, recompiling, retesting, etc. until we were
satisfied with the results.

On Thursday evening we returned home to ready our-
selves for the next round.

5. Fridays were spent reviewing and revising our plans
and schedule for the next week. The first couple of
weeks there was the feeling that we would never
make it. However, by the end of the third week our
learning curve was climbing steadily and more and
more was being accomplished in the same time period.

The conversion process required two persons for about two
and one-half months or five man-months. Our objective was
to convert all our programs straight across without attempt-
ing to take advantage of the new capabilities of the HP
3000. This approach assured us of being able to begin our
paralle! operation on schedule. This was a super conserva-
tive approach and I'm not sure | would do it the same way
if | were faced with the same decision again. It was neces-
sary, however, to write a few front-end type programs for
some of our batch programs. We fellowed these with speci-
fic interactive inquiry and update programs. Again, this is
not the most efficient approach, but when you have a staff
of seven people (two data entry, two operators, two pro-
grammers/analysts, and myself) who have zero experience
with on-line applications, it provides an excellent learning
experience and is relatively safe.

Almost two years have passed since we started the conver-
sion to the HP 3000, and in all honesty | must state that
“the journey from batch to on-line processing’’ was not

Volume 2 No. 2 October 1978

Journal of the HP General Systems Users Group

nearly as bad as | had imagined. We now have most of our
major applications on-line and acceptance by our users has
been very good. The large stacks of reports, as a status sym-
bol, have been replaced by CRTs.

One of our pivotal applications is our college catalog and
schedule preparation and maintenance system. Since the
college catalog is the only official source of information
concerning courses offered at the college, we decided first
to capture its contents in a machine format that would
allow us to maintain it on-line. The master files had to
contain all data required to support all applications making
reference to the catalog. This includes almost everything on
campus. So, rather than repeat course titles, units, hours,
grading options, etc., in many files, we have all our programs
access the single course master file for this information.

We start the preparation of our schedule with a “‘Section
Request Form’’ on which the department head enters the
number of sections of a particular course that is to be
offered. These are entered through a batch program which
produces the “‘Class Schedule Data Form’’ and assigns a
unique four-digit section or ticket number to each offer-
ing. During this process, a file is built minus the variable
information. The variable information is transmitted to the
Data Processing Department via the ““Class Schedule Data
Form.' These are processed through our OpScan 17 optical
mark reader. This data can also be entered or changed via

a terminal. After all the edits are completed, the schedule
is produced by department, by location, by hour of the
day, by instructor, and every other conceivable sequence.
The schedule runs are accompanied by a ""Room Utiliza-
tion Chart’’ that shows which classes are attempting to use
the same room at the same time. This report is also used
by most departments on campus to determine what rooms
are available at what times.

We now have some options available in this system which
allow us to carry the schedule from one semester to another
and simply update the variable data. This particular process
has saved considerable time.

QOur schedule is printed and distributed as an insert in three
local newspapers. This method gets our schedule into virtu-
ally every home in our district. We now print and distribute
over 60,000 copies of the class schedule less expensively
than just the printing cost of 20,000 copies employing our
former method.

Hopefully, some of the above may be useful to you. | will
be glad to answer any questions you may have. If, for
any reason you happen to be in our area, please stop by
and chat with us. We have so many ways of doing things,
you're bound to like something.

Structured Design and Segmentation T

by Fred Waters
Hewlett-Packard Co.
San Diego Division
San Diego, California

When | was asked to discuss application design, | didn’t
hesitate in selecting Structured Transaction Processing.
Even of greater importance to HP 3000 Users — How do
we relate structured programming to a ‘‘segmented’’ en-
vironment. Let's discuss these questions in turn.

Artists have an expression — “Form follows function.”” So
too does the software we write. What are the functions? —
To provide an efficient computerized solution to a users
need? —To reduce solution costs? —To provide an expedi-
tious solution? — Or to provide an easily maintained system?
All of these are objectives of our software and functions of
how we construct it. Structural programming approaches
are given as a tool to assist us in meeting these objectives.

Iu

Currently, there are two fundamental “'structural’’ tech-
niques available: (1) A horizontal technique which parallels
functions to be performed; (2) Vertical structure which
parallels the transaction performed upon.

Examples:

Horizontal Structure:
Control

Fun;tion Function 2

Each transaction “’performs’’ functions A through Z as
required. In COBOL this may appear as follows:

CONTROL-LVL Section 0.

If Transaction-1 then

Perform Function A,
[]
[]

Perform Function Z

Else
[
[]

[]
Function-A Section 1.

If Transaction-1 then

Else
(Etc.)

t Originally presented at Southern California Regional Users Group
Meeting, March 1st and 2nd, 1978.

Volume 2 No. 2 October 1978

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

F

Journal of the HP General Systems Users Group

Vertical Structure:

Control

Transaction Transaction
1 N
Function A Function A

As Relates To
Transaction N

As Relates To
| Transaction 1 [
]

1 '
O Etc. O Etc.

Each transaction has an “In-Line”’ flow which is structured.
The functions belonging to each transaction are grouped
together.

In a COBOL program this might take the following format:
CONTROL-LVL Section O.
If Transaction-Type-1 then
Perform Trans-Type-1
Else

Trans-Type-1 Section 2.

Function A
[]
[]

[]
Function Z

Etc.

Typically, what is taught as structured programming ignores
vertical structures.

The real world of how or which of these techniques is used
is greatly influenced by several internal/external factors:
A. Vendor hardware constraints and design.
B. Operating System Design.
C. Applications Design Objectives.
D. Standards Objectives.
E. Organizational Objectives.

The approach (technique) we chose is probably somewhere
between both methods. In making this choice we must apply
our understanding of the factors above.

Applying this to a segmented machine and considering
memory utilization, then the question of whether function
or transaction segmentation is germane. |If we decide that a
given function is of greater importance, then we should

organize functionally. If a transaction type is of greater
importance, then, organize along those lines. To help us
understand how this applies to the HP 3000, consider a
segment size of 6K words as our standard. Also consider
an analysis of proposed functions and transactions. To
do this, we formulate a function/transaction matrix.

Function 1 PR N
o - Where X,, X, ... etc. represents
A a5 VAT A8
the expected count for that
B Y8/% . Yely Sy
function by that transaction type
c ! e/l Sc
per transaction
¥ XV/Cl XV/CN SX Cy = The count of that trans-
7 Zv/cl ZV/CN SZ action type.
TNl TNT 57

The sum horizontally represents the total of these ratios
TNq ... TNy = The total transaction load per transaction
type/some time period. This table allows one to quickly see
where most processing time/effort will occur. Then we
apply the approximate structure. To help us with segmenta-
tion, then one may use a tree chart to locate that area of
the structure we wish to segment by.

Let’s use the transaction table example:

Transaction Type

Function 1 2 3 Time Est.
A 1/200 5/600 10/200 16 2 ms
B 3/200 3/600 1/200 7 1ms
o 5/200 25/600 2/200 32 4 ms
200 600 200 1000

Transaction 2 will require the maximum time and has the
maximum number of transactions, therefore, optimize on
transaction type 2. But Function C is the most heavily used.

Control

Trans 3

—
0 Trans 1

Volume 2 No. 2 October 1978

Journal of the HP General Systems Users Group

A segment table then takes this picture as a median:

Segment 1

Transaction 1 functions A, B

Transaction 3 functions A, B
Segment 2

Transaction 2 functions A, B
Segment 3

Function C

Using this method allows us to construct testing maodels to
verify systems performance as relates to a given application.

Programming For Regression Analysis T

by James P. Schwar and Stan J. Perambo
Lafayette College Computer Center
Easton, Pennsylvania 18042

INTRODUCTION

In many areas of scientific research, especially in the social
and biological sciences, regression analysis has become the
standard tool for determining the nature of the relationship
between a given dependent variable and some set of inde-
pendent variable and some set of independent variables.
This is due to the fact that regression analysis, if used prop-
erly, makes it possible to describe how one variable varies
with a set of other variables. Given an interval scale of
measurement for both the dependent and independent vari-
ables, regression analysis can therefore be a powerful pre-
dictive tool.

Prediction, of course, does not imply causality. To be able

to predict the value of variable A by knowing the value of

variable B does not imply that B causes A. However, it can
perhaps be argued that the ability to predict is an indicator
of understanding in the sense that as understanding (i.e.,

the ability to provide causal explanations) becomes hetter,
regression analysis will undoubtedly continue to be widely
used.

Because of the number and complexity of the calculations
involved, regression analysis is almost always done on a
computer. In this paper, the authors first discuss the gen-
eral equations and the model for multiple linear regression.
Then, two specific problems are mentioned: 1) calculation
of the multiple correlation coefficient when the data matrix
contains numerous observations that are an exact solution
to the regression equation, and 2) the impossibility of per-
forming a regression analysis when the data matrix contains
a column of constants. Finally, selected code for the regres-
sion procedure in the LISA statistical package is shown,
specifically those sections that test for the problems men-
tioned above.

t Editor’s Note: The authors have received a number of inquiries
regarding the regression analysis mode/ used in LISA, the statistical
analysis program contributed by Lafayette College to the Users
Group Library. In response the authors submijtted this article
which will be of value for users of L/SA as welf as to anyone inter-
ested in programming for regression analysis.

THE REGRESSION EQUATION
The general multiple linear regression equation is:

= + a, X, + a X, + + a X
Y =2, 171 2%2 n“n
where

Y = dependent variable
Xl .. X = nindependent variables
n
a = intercept
0]
al e an regression coefficients

Given a data matrix consisting of N observations (or rows)
and n variables (or columns), the regression coefficients are
to be computed such that the sum of the squares of the ob-
served Y's less the calculated Y's is minimized. The depen-
dent variable Y and the independent variables Xq ... X,
can be replaced by standard (or Z) variables, where

_Y-Y
Z0 = 7S

=<
1l
|

ZXn 2

X, % + Syx° N=T

N\

Y is the summation over all N observations. X or Y is the
arithmetic mean and S2 is the variance. The regression
eguation in terms of the standard variables is

YA =

0 + B, Z, +

B,Z, + B_Z e

11 272 272 n n
where By . .. B, are called beta weights. These beta weights
are the regression coefficients for the standard variables.

Beta weights also represent slopes and are simply the follow-
ing partial derivatives:

Volume 2 No. 2 October 1978

Journat of the HP General Systems Users Group

EEEQ.: B
321 1
Efiz = B
azn n

The regression coefficients are calculated such that

_— 2
)I[,Z0 (Blzl+ B222+. .. .+BnZn)]

is @ minimum. Performing this summation and setting each
partial derivative of this sum with respect to a beta weight
to zero the following matrix equation is obtained.

— — -
1 Tio Ty3---Typ B1 Toq
oy 1 Toge-eToo B2 . r02
r31 r32 1 "'r3n B3 r03
Thl Tho Tha: - 1 LBn Ton

L — - L.

where

1 r Tine..T _
12 13 In| . R = matrix of
1 intercorrelations
o1 Tog-e«Ton i among the inde-
pendent vari-
T . e ables.
T3y 32 1 Ts3n
r' .
Th1 n2 r113 1
By
B, | s |
2 = B = vector of beta weights
B
3
B
n
SR

=T = vector of intercorrelations of the depen-
dent variable with each dependent variable

s e

Solving for the beta weights, the matrix

— - -1 —
B =R r
results. The regression coefficients for the original regression
equation = g + a. X + ..,. + a
¥ 0 11 n
are calculated from
S
al = Bl S_Y
. 1
: S
- Y
a =B
n n 3;

and the intercept is given by

a.0=Y - alxl - a2X2 - ... a.an

The multiple corretation coefficient R is determined by tak-
ing the square root of the sum of the products of beta
weights, times the corresponding elements of the intercorre-
lation vector, that is

R i/f0131 *t TggBg * e T By
THE REGRESSION MODEL

The two variable regression model

Z. = B,Z

0 11
shows that B4 rnust lie in the range +1 to -1 inclusive and
that B¢ is numerically equivalent to the correlation coeffi-
cient. For the three-variable regression model
Z~ = B,Z, + B,Z
0 171 272
the beta weights can be obtained from the following
equations:

_ To27 01712

1-ryq

B - To1"Yo2r12 .

= 2= Y& -2 . g

1 1r 2 2
12

Volume 2 No. 2 October 1978

Journal of the HP General Systems Users Group

The beta weight will be equivalent to the correlation coeffi-
cient only if there is no intercorrelation among the indepen-
dent variables.

One potential problem area in regression analysis is when
the data matrix contains a high percentage of observations
that gives an exact solution. In this case, if the intercorrela-
tion among the independent variables is very high, the beta
weights may be greater than unity and the computed value
of the multiple correlation coefficient approaches one.
Another difficulty occurs when the data matrix contains a
column of constants. The standard deviation for that vari-
able will be zero and the associated regression coefficient

is undefined.

COMPUTER PROGRAM

LISA is a Fortran program written to perform general sta-
tistical analysis on a data matrix. One of the several statis-
tical options in LISA is multiple linear regression analysis.
Regression in LISA follows the techniques discussed pre-
viously, namely the computation of beta weights from
which, regression coefficients are determined. Figure 1
shows the procedure used for regression analysis. Regression
analysis in turn calls the following procedures:

GENTER PROCEDURE FOR REGRESSION ANALYSIS)

V

COORE

ORDER

MINV

MULTR

'

QUTPUT
REGRESSION RESULTS

Y

GXIT PROCEDURE FOR REGRESSION ANALYSIS>

Figure 1. Procedure for Regression Analysis Using LISA

COORE calculates the means, standard deviations, sums of
the cross products of the deviations from the means, upper
triangular portion of the correlation coefficient matrix and
the diagonal of the matrix of the sums of the cross products
of the deviations from the means. All calculations are for n
variables in the data matrix, summed over N observations.

ORDER constructs a subset matrix of intercorrelations
among the independent variables and the vector of inter-
correlations of the independent variable with each depen-
dent variable, for those dependent variables and indepen-
dent variables specified.

MINYV inverts the matrix of intercorrelations among the
independent variables.

MULTR performs multiple linear regression on the data
matrix using the variables specified. Output includes the
vector containing the regression coefficients; the vector
containing the standard deviations of the regression coeffi-
cients; vector containing T-values, intercept, multiple corre-
lation coefficient, standard error of the estimate, sum of
squares attributable to the regression (SSAR), degrees of
freedom for SSAR, mean square of SSAR, sum of squares
of the deviations from the regression (SSDR), degrees of
freedom for SSDR, mean square of SSDR and the F-value.

The procedure for regression analysis (see Figure 2) checks
for a multiple correlation coefficient greater than one. If
this condition is true the regression is aborted. Multiple
regression analysis runs can be made and procedure COORE
is called by the first run only. Procedures ORDER, MINV
and MULTR are called during each run since they are de-
pendent on the variables selected for a particular regression
run. Procedure MINV checks to see if all elements of the
intercorrelation matrix equal unity, and if true, sets the
determinant to zero and outputs the message INTERCOR-
RELATION MATRIX CONTAINS ALL ONES. This pro-
cedure also tests to determine if a pivot element is zero
during inversion of the intercorrelation matrix, and if true,
the determinant is set to zero and the message is displayed
PIVOT ELEMENT ZERO DURING MATRIX INVER-
SION. When zero is returned to the regression analysis
procedure, the regression run is aborted. The final check
performed by MINV is whether the determinant of the
intercorrelation matrix is less than 107'°, and if true, the
message INVERSE OF MATRIX MAY BE {(NEARLY)
SINGULAR is displayed. The determinant, however, is not
set to zero but remains unchanged so that the regression
run does not abort. Procedure MULTR (see Figure 3)
checks for beta weights greater than unity and outputs a
warning which is indicative of very high intercorrelation
among the independent variables. However, if a standard
deviation is zero, the multiple correlation coefficient is
set equal to two and this value returned to the regression
analysis procedure. The message STD DEVIATION IS
ZERO - UNABLE TO CALC REGR COEFF is displayed
and the regression run is aborted.

Source code and documentation for LISA is available from
the Users Group Contributed Library.

Volume 2 No. 2 October 1978

Journal of the HP General Systems Users Group

References 2. 1BM 1130/360 Scientific Subroutine Package-Program-
1. “Intermediate Correlational Methods,”” Baggaley, John mer’'s Manual.
Wiley and Sons (1964). 3. HP 3000 Scientific Library Reference Manual.

Crese s LISA/3000 SUEBR REGRESSION
SUBROUTINE REGRESSIONC(X)
COMMON AFFLEND,MOLE My CMAXy FNAMEyN»NTyREyRE»RL
COMMON TRNDy TRENDUSE » IMAXSAVE »y JMAXSAVE »yOSAVE (8, 8)
LOGICAL AFFENDyMODE» TRNIy TRENDUSE
INTEGER CMAXyREsRERL
CHARACTERXS FNAME
CHARACTER®Z2 REPFLY
DIMENSION XBARCSLA) ySTH(S4) yII(464) sy RY(64) y ISAVE(64)sB(64)y
1SEB(64)yT(4HA) IOUT (6H4)
DIMENSION RX{409286)yR{2080)»ANS(10)
C N=NUMEER OF ORSERVATIONS
C M=NUMERER OF VARIARBLES
CALL COORE(XEARySTOsRXyRyOyEByTy»15)
I=1
109 WRITE(S6,9002)1

* *

' CALL ORDER(RyNIOEFyKy ISAVEyRXsRY)
CALL MINV(RXyKsDET)
C IF DET =0 ABORT REGRESSION RUN
IF(DET.NE.O)GOTO 112
110 WRITE(&25014)
GO TO 200
112 CALL MULTR(Ks XEARsSTOyIsRXsRY s ISAVEyEBySEs Ty ANS)

cC CHECK IF MULTIFLE CORRELATION COEFFICIENT > 1
c ANDO IF TRUE ARORT REGRESSION RUN
IF(ANS(2) . .E.1.0)G0TO 113
WRITE(462080)

GOTO 200
113 MM=K+1

I+I+1

M
o o O e o o
O

*

-

RETURN 1
2002 FORMAT(/1HOy "MULTIFLE REGRESSION......SELECTION"»I3/)
9014 FORMAT(1HOy *"THE MATRIX IS SINGULAR - THIS SELECTION IS SKIFFELD")

. .

‘ 2080 FORMAT(1HOy "CANNOT REGRESS - THIS SELECTION IS SKIFFED®)
ENID

Figure 2. Regression Analysis Procedure

Volume 2 No. 2 October 1978

10

Journal of the HP General Systems Users Group

100

110

113
114

LISA/3000 SUER MULTR
SUEROUTINE MULTR (K»XBARsSTIrIsRXsRY s ISAVE,RsSErT)ANS)
COMMON AFFENIDy MODE » M» CMAX s FNAME » N+ NT s REyRE s RL

COMMON TRNI's TRENLUSE » IMAXSAVE » JMAXSAVE s 0SAVE(818)

LOGICAL AFFEND,HMODE» TRNIIy TRENDUSE

INTEGER CMAX»REsREsRL

CHARACTER¥B FNAME

DIMENSION XEAR(64)»STI(64) y[(64) yRX(4096) sRY(64) y ISAVE(64) y
1B(64) ySE(64) »T(64) yANS(10)

MM=K+1

[0 100 J=1sK

E(J)=0.0

D0 110 J=1sK

L1=K¥(J-1)

DO 110 I=1,K

L=L1+1

B(J)=B(J)+RY (1) ¥RX (L)

CHECK EETA WEIGHTS & IF GT 1 OUTFUT WARNING

[0 113 J=1sK

IF (ABS(E(J)).LE.1.0)G0TO 113

WRITE(659000)

IF C.NOT. TRNIDWRITE(659100) (E(J) y J=17K) ~
GOTO 114 13
CONTINUE

IF (TRNIDWRITE(659100) (E(J) 5y J=1,K)

RM=0,0

E0=0.0

L1=ISAVE (M)

D0 120 I=1,K

RM=RM+E(I)KRY (1)

L=TSAVE (T)

CXXXXXCHECK STD DEV FOR DIV RY ZERO & IF TRUE SET R»1 & RETURN

000
100
9200

IF(STO{L) NE.0.0)GOTO 115

WRITE(SyP200)

ANGS(2)=2,

RETURN

BCID=R{IIKR(STR(LL) /STH(L))

RETURN

FORMAT (1HOy "WARNING - BETA WEIGHT{(S) GREATER THAN ONE")
FORMAT(LHOy "RBETA WTSE"»S612.5/C10Xy5612.5))

FORMAT (LHOy *STDr DEVIATION IS ZERO ~ UNAEBLE TO CALC REGR COEFF®)
END

Figure 3. Procedure MULTR

Volume 2 No. 2 October 1978

Journal of the HP General Systems Users Group

The Aims and Methods of the Management
Learning Project *

by Richard Boot
London Business School
London, England

The overall aim of the Management Learning Project is to
encourage and support the use of management educational
methods designed to develop the skills and abitities required
of managers when operating in situations typified by am-
biguity. Inevitably, in such situations, management decision
making becomes more than an objective, rational or purely
analytical exercise. Individual values, personal judgment
and intuition take on a greater significance, as does the
ability to be aware of and understand the values and per-
sonal judgements of others. It is these aspects of the man-
ager’s role that the teaching methods of the Management
Learning Project have been designed to develop. It is not
intended that those methods should be regarded as alterna-
tives to, or in some way replacements for the various
approaches that already exist for teaching the analytical
skills required of managers, but rather that they should be
seen as complementary to them.

The methods themselves involve the use of a number of
computer assisted exercises which provide an opportunity
for the manager or management student to build on and
learn from his own experience. With this in mind their
focus is less on teaching appropriate ‘techniques’ to be
applied in any given decision-making or problem context
and more on developing a greater personal awareness of
the kinds of assumptions and interpretations made both
individually and collectively in such contexts.

In this sense they are likely to represent an addition to the
existing repertoire of teachers or trainers already familiar
with the use of experiential approaches to learning.

The Methods

The methods themselves are the output of an earlier devel-
opment project (The Management Decision Making Project)
jointly funded by the London Business School and the
National Development Programme in Computer Assisted
Learning. They can be thought of as falling into two dis-
tinct groups: feedback methods and simulations.

The feedback methods are based on the principles of
repertory grid analysis®*. They can be used either in a
reflective way to support the self-development of indivi-
dual managers or in a comparative way to help pairs and/or
groups of managers explore in detail their own understand-
ing of each others’ points of view in a given problem situa-
tion. The main method falling into this ‘feedback’ cate-
gory is known as “NIPPER.”

* The Management Learning Project is funded by the Training Ser-
vices Agency and located at the London Business School. More
information about the project can be obtained from Richard Boot,
Director of the Management Learning Project, London Business
School, Sussex Place, Regents Park, London NW1 4SA. Tel.:
01724 1517.

NIPPER is a flexible system which can be tailored by the
teacher/trainer to fit the particular learner needs and
learning context he is dealing with. It can be used in a
number of different ways. For example, in terms of the
individual it can help him reflect upon those past experi-
ences which are relevant to his current situation, be they
problems he was faced with, decisions he had to make or
whatever. In this way he can become more aware of, or
clearer about, the basic assumptions and value judgments he
makes, often implicitly, in such situations. Alternatively he
might focus on a current problem or decision point and
evaluate the options he sees as open to him at the time. In
this way NIPPER can help him formulate new options and
become clearer about.those criteria for choice which are
most important to him personally.

With a group of managers faced with the same situation
NIPPER makes it possible for that group, amongst other
things, to analyze clearly similarities and differences in
points of view, identify whose points of view appear most
misunderstood, and examine the extent to which assump-
tions about consensus are borne out in reality.

Finally it can be used to help pairs of individuals explore
more fully the extent to which they truly understand each
others ideas and views about a given subject.

in addition to NIPPER in the ““feedback’’ category there is
“INTERVIEW’" which is a self-contained exercise which
structures the exchange of views between two people to
achieve objectives mentioned for the last use of NIPPER.

Ideally the basic “’subject matter’’ for all these feedback
methods would be the learners’ real work experience. In
some circumstances, however, there will be insufficient
shared work experience for the ‘‘comparative’’ uses. In such
cases they can be used effectively in programmes involving
joint activity, problem-solving exercises, case studies and
the like. They could also be used within the context of the
simulations.

The simufations are of the “‘behavioural’” type which make
use of the computer solely to provide a realistic context for
the interactions between role-playing participants. This
means that learning derives explicitly from these interactions
and not, as is often the case, from any “model” of reality
programmed into the computer. In other words the simula-
tions are not about “‘success’’ in terms of “‘beating’’ the
computer but rather they provide learners with an oppor-
tunity to explore their own and others approaches to deci-
sion making, conflict handling, negotiating, etc. Separate
simulations have been designed to represent the energy
industry (THE POWER GAME), ball bearings manufacture
(BALL BEARINGS LTD) and the petfood industry
(OFFAL INDUSTRIES).

Full "user’”” documentation is available for all of these
methods.

**See Kelly G.A. ""The Psychology of Personal Constructs” Norton
1955 and Fransella, F. & Bannister, D. A Manual for Repertory
Grid Technique’’ Academic Press 1977.

Volume 2 No. 2 October 1978

11

12

Journal of the HP General Systems Users Group

The Aims of the Project

In their development these methods have been used success-
fully by a large number of managers in a variety of different
company and institutional settings. The Training Services
Agency, in funding the project, are reinforcing the belief
that these methods could represent a valuable addition to
the management training and development activities already
being carried out in many institutions and organizations
throughout the country. With this in mind the official brief
of the project is to “‘maximize the dissemination and effec-
tive utilization’’ of these methods. But what does this mean
in practice? It means that for their true value to be realized
the methods must become an established part of the reper-
toire of learning activities of teachers and trainers working
in those institutions and organizations.

The role of the Management Learning Project in this is to
give full support to those who would like to make use of
these methods and, perhaps more importantly, adapt and
develop them to suit their own particular applications. This
support is available both in terms of technical advice and
assistance in transferring and adapting the methods to the
users’ own computer systems®** and in terms of assistance
and advice in integrating the methods into existing training
activities, designing new training programmes and the devel-
opment of appropriate training approaches.

The T.S.A. funding enables the project to provide these
methods and all the necessary support for adapting them at
virtually no cost to the potential user.

As a final word, it is the longer term aim of the project to
help establish a self-supporting network of users of these
and similar management development methods within
which there would be a free exchange of ideas about appli-
cations and developments.

***Where potential users do not have access to thejir own compu-
ter it is possible to make arrangements for them to make use
of the London Business School Computer on a timesharing
basis.

Total Stack For A Main Program and
Subprogram >64KB?
Use An Extra Data Segment

by Jack Howard, HP Neely Sales Region
Computer Systems

System Support Representative

P. 0. Box 92105

Los Angeles, CA 90009

Editor’s Note: This is Part 2 of a two-part article. The first
part appeared in the May/June 1978 Journal issue, Vol. 2,
No. 1, (pp. 2-6), and dealt with the extra data segment con-
cept, system performance impact of using extra data seg-
ments, and the use of an extra data segment with a COBOL
main program.

Part 2 deals with the use of an extra data segment with a
main program and subprograms.

Now that we have covered the case of a single program re-
quiring a data segment (stack) greater than 64K bytes, let’s
look at the situation where a main program and its associ-
ated subprograms require a total data stack greater than
64K bytes.

This situation is shown in the printout labeled “‘Figure 7.”
Here, “MAIN" compiles successfully, and “SUB," as a sub-
program, compiles successfully. However, the greater than
64K byte requirement is detected during the program prep
phase (see highlight 17 in Figure 7).

PAGE CULU1 MEWLETT-PACRARD 32213C.02.0u CunuL/3u00 Thu, MAk 9, 14978, 2:9F

00100UdLInTHUL USLINIT

Vulluyu TOENTIFICATIUN LIVISION.

VUl20u PRuuKArN=]O. MalN,

Vuldy0 EnvIROWMENT DIVISTON.

Culauy UATA DIVINIUN,

U150V AURKINL=STORAGE SECTIOW.

OCisuy U} MALIN-HUGE-FIELUD.

Ov1Te0 09 FILLER PIC X(10) OCCUNS 400u.
V018UV 01 MAIN-PARM=FIELD.

voleve 05 MPF PIC X(30) VALDE "kwiUM MALw™,
V02uUl PruCEDunE DLIVISIUN.

U2y MAIN=PARA.

Queeuun
vuazeo O1SPLAY “Pakm SERT BY MaAIn = * FPF.
[ET

Qu2sSuvy CALL "sug"” USIus MAINSFARM-FlELU.
vu2euys

vuato0 D1SPLAY "PakM WELLIVED BY rAIN = 7 Muf,

Uueduus
viesuy STOP Wud,

DATA AxpcA 5 XUd7344 mukpS.

CHPU 118k = Giuui0l. wALL TIME = GiuUZle.
END CDbOL/3Uuu CUMPILATION, NO ERKUKS, KO waRNINGS.

PAGE 00Ul HEALETT-PaChAKRD 32213C.uc.vv CUbUL/30uy THu, Mak 9, 1978, 2:59

UVL00USCUNTRUL SUBPKUGKAM
GOL1uC IOENTIFICATION OIVISION.

udleuvy PRUGRAM=ID. SuB.

CUL300 ERYIKUNMENT DIVIS1un.

Quidvy UvATA DIVISIUGN,

QUl500 MURRING=5TURAGE SECTIUN.

Quieuy U1 SuB-HuLE-FlELD.

0017200 US FILLER PIL XLIU) GLCURS @v00.
U018UT LINKAGE SECTJUN.

001906 01 SUb-PaWM=FIELU.

vo2uie us SEF PIC x(3u),

ut2luv PROCEDURE DIVISION USING Sup-PARM=FltLu.
V02euy dSub=Paka,

vu23u0e

vuaacy DISPLAY "PAkM RECEIVED BY Sub = " Sk,
voesuus
vuabuy MUVE "FwuM SUE® TU SHF,
vueloun
vueoud DiSPLAY "PAKM SENT BY SUb = ™ Sk,
[ELI
vu3ouvo GUBACK,

DATA Akta IS 2vd732> mUkUS.

CPU TIME = UiUUiUl, wWaLL TIME = 0:00i1Y,

END LUBUL/3000 COMPILATIUN, WU EHRURS. WU mARNINGS.

ENU UF CUMPILE

SCUNTINUE

SPREP SULUPASS, ShEmfASS

axv ERMUK maw

ERRUR #3b 0ATA SEomENT UVERFLOW ‘{(i)
ERK 25U SthmEnTER Enruk ~-

Figure 7

A solution to the problem is to change the subprograms to
main programs, i.e., separate processes, thereby allocating
data stacks of up to 64K bytes for the original main pro-
gram and for each of what were the original subprograms.
An extra data segment provides the parameter passing capa-

Editing Clarification Note: Highlight numbers (@} where they ap-
pear are not necessarily continuous numerically; some highlights
have been removed in the editing process.

Volume 2 No, 2 October 1378

Journal of the HP General Systems Users Group

bility ordinarily provided by linkage sections, and process-
to-process communication provides the execution control
ordinarily provided by CALL and GOBACK statements.
(The routine shown in Appendix A of Part 1 contains the
extra data segment management routines, as well as the pro-
cess-to-process communication routines.)

If you are not familiar with parent/child process concepts
and communication between processes using Resource
Identification Numbers {(RINs), at this point it would be
beneficial to read the following sections of the MPE Intrin-
sics Reference Manual, part number 30000-90010:

Section VI Resource Management
Section VIl Process Handling Capability
Section VIl Data Segment Management Capability

The basic concept of the use of the extra data segment, for
passing parameter data between the ‘parent’-and-‘child’-
process data stacks, is shown in Figure 8. Required com-
munication between the parent-and-child process code, is
summarized in Figure 9. Note that path @of Figure 9 is
first time only, i.e., first time parent process code activates
child-process code; path@of Figure 9 is last time only.

PARENT EXTRA
PRICESS DATA
STACK SECTENT
“(DMOVOUT" " CDMOVIN"
01 LINKAGE-AREA,
05 ...
05 ... "COMOVINT “{DMOVOUT”

Figure 8. Data Transfer

PARENT PROCESS CODE CHILD PROCESS CCDE

CALL “CGETDSEG” ... ®ORNTRY "SUB™ JSTS
CALL "CCREATE" * LIRKAGE-ARZA
> CALL "CGETDSES". ..
COATINUE- CHILD.
CALL "CDMOVIN" ...
[F LINKAGE-AREA=

“FREE”
* CALL "SuB” USIN CALL “CFREEDSEG" ..
* LIHKAGE-AREA, STOP RUX,

CALL "CDMovOUT", .,
CALL “CACTIVATE"....
CALL “CDMOVIN“ ...

@ O

CALL "comMovouT” ... _J
CALL "CACTIVATE" ...
=>G0 TO CONTIHUE- CHILD,

MOVE "FREE™ TO

LIHKAGE-AREA,
CALL "CDMovouT” ... Q Tll“AET
CALL “CACTIVATE" .., =™ LY

CALL "CFREEDSEG”...

Figure 9. Process to Process Execution Flow

In the following example, the main program “MAIN’" and
its associated subprogram “SUB’* will be changed to two
separate processes ‘MAINMAIN" and ‘SUBMAIN.”

Modifications to program “MAIN"" are shown in Figure 10.
Explanations of the highlighted items of Figure 10 follow:

Computer
Museum,

PAGE Ouul

VOluvuaLuTRUL USLINIT

OUllue TUENTIFICATION LIVISIOH,
VUleuy PrULKAM=]D. MaTL,

Uul3uy EqvIRUGMENRT DIVISIUN,
UUlduG DATA DIVISIUiN,

VOL5UU wJRKING=STURALE SECTIUN.
UGIbUG 0 MAIN=HUSE=FIELU.

vultue U5 FILLER PIC XU1U) OLCURS WuGu,
VULBUU Uf MAIN-PAKM-FIELD. QE)
YulSuy US MPF PIC x(3u) VALUE "FNUN FAIRN".
00191un o
Gul9ev v CC PIC 59(1) CumMP,
LU183u 86 CLE VALUE u.
Lu194u 88 CLL VALUE 1.
Lul9sy B3 CCL VALUE =1.
uul%oy vl CC=9 Pl +9,
UU19TL ul EDS=inbex PLL $9(4) CuwP,
UUL9BC Ul EUS=TOTAL=mLNUY P1C S9(4) COMP VALUE 15.
UUl9Yu vl EUS=TU PIC Xle) vALut "Eu”,
Yul94i vl Sub PIC xt9) vaLur “SusHmalnt.
Uul9ve vl Sun=Plh FIC S9(a) Cuwr,
VUiYY3 g1 FLauy PIC S9L4) COMP vaLUE 3.
001994 ul EUS=UlSPLACEMET=] i=aUxLS PIC S9(u)} CuMP vALUE U,
UU1995 vl EUS-NUMBER=UF =kURDS FIC S4(4) COMF VALUE 15,
UUL9Ys ul o Suse PIC S4(4) CuMr vALut 2.
UUIYY? U1 ERR-LODE FIL xie).
Y01998 Ul b PIC » vALuc ™ ",

ps

vedbuy PRuCEOURE wIvISILL,
vieuly walnv SECT1uh. G!’
vuelyy Nalw=Pawa,

vueily CALL "CHETUSEL” udIlnt LC,

vueleu EOS=Inbex, t0S=TuTaL-#LNUS, EUS=1U,

vuel sv IF NUT CCt mUvYE "ul™ TU E~N=UCUUE LU Tu ExKe=2,
vigluy CALL "CUWEATL™ USING CL,

uuelby Sub, Dy SuB=~PIN, U, FLAULD,

vveley If NUl CCE MUVE "0¢" TU txx=COUE bU TU E<N=2.
vueeuun

vveluv L1SPLAY “PAkM SthT by Falh = " mPf.

veRuuun

uu2oube= CALL "Su¥” Uslny unw—mm-ﬂuu.«—@

vuesiv PEWFURM LCALL=COMOVUDT.

vu2Sen 1¥ Nui CCE muvr "u3" YU ERn=COJL Gu JU ExR=2.
vuessu Perbunm CALL=LACTIvATE.

vbesay IF NUT CLUE MUvE "uu® (U ERx=Cuvt bu Tu Exm=d,
vuesou PEKFUKRK CALL=CUMUVIN,

vuesb 1F wWOT CCE MDVE "ud" Tu e<x=C0ub 6J Tu ENn-1
uyleuun

vualuu SISHLAY "PAwtt RECEIVED oY mAIn 3 " MPE,

vvaduur

Lueolu MUVE "FNEk eXTrd DATA SEGMEWT® Tu MPF,

vva2aéu PexFukM CALL-COMUvLDT,

vuebsy 1€ Kul CCE myuve "ue® TU E9x=CuuE LU 10 ENR-2,
vuaBuy PERFUNNF CALL=CACTIvATE,

vuedal IF NUT CLE mUVE "u7" Tu EX<=-COUE_bU Tu Ern-2
uucdbl CALL "uFREEDSEL" udliG CLy

uuedlu t0S-INDEX, Eud=IU.

GueBov IF NuT CCE MuvE "uo® TL bRx=Cuubt oU U ERK=3,
ulesdvu STUP Ryw.

viedius

Vu292u CALL=LUMIVOUT.

PRF-L K1Y CALL "CLMOVOUT" ubLNbL LC»

QueSui EO5-INDEX, EDS-UISPLACEFEwT=IN=nUKLS,

uuessy EOS~NUMBER=OF =nUR0S, MAT-ParM=Ficil,

Vueyoy CALL~CACTIVATE. @
uo297y CALL "CACTIVATE™ USInG cc.«-@

Gueyou Sup=Fihy, SUSk.

vueyyL CaLL~Cumibving

Qu3uvy CALL "LUMUVIB® udIub CL.

uuldvlu EuS=1n0EX, EUS=UISFLACEMENT=1N=.uNDS,

0030y EDS=WUMOEN=GF =nUNDS, MAlL=Paxr-FlELU,

Vusuau k<R SECTION 99,
vu3ubu ERv-1.

2030eL PERFURM ERN=3,

vuluty MUVE YFREE EXTrA DAY SkuMEsT™ Tu 4Pk,
uuluoy PENFURM CaLL=COMUVDUT.

Vu3u9e MUVE "09" Tu ewr=COUE.

IR IR PERFUKM ERR-3.

L3ty PENFURM CALL-CALTIvATE,

vuldieo MOVE "3y TG ERN=CUDE,

Vu3130 bkm-2, @
Qusiuy PERFDRM enn=$.

vu3lsu CALL “"CFWEEDSES™ uSTwe CC»

vusioy EOS-1h0EX, tud=lu.

LIEIRAY MOvE *11" Tu Exw=CUDE.

Yu3l8L Enn=3,

usi19y Myve CC Tu CC=9.

vusery viISPLAY " Mala: trk=Cuyut = * erk-lLJle
vuldtiu ", L 2 " CLev.

vujleyv STLP=WuUh,

vuleso STUP huh,

CaTa AxEA 1> X0«75<¢u nOkUS.
Chy Tlmk = uiu0:ilo. waLl TIME = Uluviles
END CUBUL/SUUC CumPILATIUN, U ENkUKS, KD waBNINGS,

ENU UF LudPILE
TPREP SULUFASS,Mllwkhﬂ.‘:KL:QVLSUB.KL;E&P:]A,blr./S.PH

ENU DF PrEPake

1C0BuL PiuPous

Figure 10. Modified Main Program

Volume 2 No. 2 October 1978

REWLE]"=FACKAKD 5¢€13C,02.0y CusuL/sbuy TRU, Mam 9, 1970, 23

5

13

14

Journal of the HP General Systems Users Group

Explanations of highlighted items of Figure 10:

(::) THESE WORKING STORAGE FIELDS AKE NEEDED BY

THE SPL HUUTINES THAT MANAGE THE EXTKRA UDATA
SEGMEINT, AND PrOVIUE THE PROCESS TO PRUCESS
CUMMUNICATION.

(::) THE CALL Tu "(GETUSEL" GETS THE EXInA DATA
SELMENT,

(::) THE LALL 10 "CCREATE"™ CREATES A "CHILDL"
PRUCESS TU Br KiWUwN AS "SUBMAIN",

Sub
A BYTE STRING CONTAINING THE "CHILD"
PROCESS’S IvAME, "SUBMAIN", TERMINATED BY
A BLANK.

Su=FINn
FPROCESS=-w1DE "CHILD" PIN (PKRUCESS
IDENTIFICATION NUMBER) RETURNED BY
"CCREATE";
USED WHEN REFERRING TO THE "ChlLO"
PROCESS IN SUBSEGQUENT CALLS:
MUST BE 1 wORUD.

FLAGS
IF SET TO 1, AS SHOwi, THEN "MAINMAIN" MAY
BE REACTIVATED AFTER "SUBMAIN" SuSPEwUS,
TERMINATES, UR ABURTS;
MUST BE 1 wUKD.

THE PREVIOUS SUBROUTINE CALL IS REPLACED
BY

A CALL TO "CDMOVOUT"™ THAT MUVES THE
PARAMETERS TU BE PASSED FROM wOrKING
STORAGE TO THE SHAREABLE EXTRA DATA
SEGMENT;

A CALL TO "CACTIVATE"™ THAT PASSES EXECUTIOWN
CONTROL TO THE "CHILO" PROCESS "SUBMAIN";

A CALL TU "CULUMOVIN®" THAT MOVES THE RETURNED
PARAMETERS FRUM THE SHAREABLE EXTRA DATA
SEGMENT TO wORKING STURAGE.

®®

THIS SEQUENCE MUST REPLACE EACH CALL TO
"sug".

BEFORE "MAINMAIN" TERMINATES, "SUBMAIN" MUST
BE ALERTED TO FREE "SUBMAIN"’S CUNNECTION TO
THE SHAREABLE EXTRKRA DATA SEGMENT.

THE CALL TO "CFREEDSEG"™ RETUKNS THE EXTKA
DATA SEGMENT TO MPE; AND, NEED ONLY Bt DUNt
UNCE PEwk PROCESS.

FOR "CDMOVOQOUT" AND “CDMOVIN"

® ® 6

MAIN=PARM=-FIELD.
WORKING STORAGE FIELD THAT

CONTALNS THE INFURMATION TO BE
TRANSFERRED TO THE EXTRA DATA SEGHENT BY
"COMOVOUT"™; OR,

RECEIVES THE INFURMATION TRANSFERRED
FROM THE EXTRA DATA SEGMENT 3Y
"COMOVIN",.

@ FOR "CACTI]IVATE"

SUsSP

IF SET TO 2, AS SHUNN, "MAINMAIN" WILL
SUSPENUD UMTIL THE °CHILD"™ PRUCESS
"SUBMAIN" SUSPENDS, TERMINATES, OR
ABORTS:

MUST BE 1 wORD.

WHEN AN ERROR OCCURS,

AN ATTEMPT IS MADE TO RETURN THE EXTRA
DATA SEGMENT (IFf PREVIOUSLY GOTTEN):

ERRUR MESSAGES ARE DISPLAYED.,

NOTE THAY THe PREP MUST INCLUDE ThE DS AND

FH CAPABILITIES. THE USER PERFURMING THE
PREP MUST HAVE THE DS AND PH CAPARILITIES.
THE GROUP AND ACCOUNT IN wWhHICH THE FROCESS
EXECUTES MUST HAVE THE DS AND PH
CAPABILITIES.

Figure 11 shows the modifications to program “SUB-
MAIN."" Explanations of the highlights of Figure 11 follow:

PAGE uOC! HEALE TT=PACKAKY 522150,02,00 Cucll/s3vun Try, Hak 9, 1976,

.
VELOLO*=SCONTROL Subvxfw@
UulCluaLunTRJIL USLINLT
Uuiluu LLENTIFICATIUN UlvIslUn.
uUlelu PRUGRAN=TL, Sud.
wil3uu EfvvInUnmesl UlvISION.
Qul4wG UATA DIVISIUN,

UUISUU AUKKINL=5TURAGE SECTIUN.
UVOleul 01 SUb=HUwt=FlrLu,

vo1Tuy US FILLER PIC XU1L)_UCLURD <uvy,

CULBULe=LIkAbLE SECTTON.

uulSGuu 01 suUs=ParM-FltlLu, @

vuéouy 05 §PF PIL X(3V).

vueulux K

vuaveéuw 01 CL PEC 39(1) cuHAr.

vuedsu 8h CCE valUt V.

vueuvdw €8 LULL vALUE +1.

vudidy 85 Cueu vaLue -1,

vuguoy wi CC=y FIC +9.

wueliy vl bud~INvEX PIC >9(4) LuaP.

vueuol vl EDO-TUTAL=wURDS FIL 5944} Cumr vaALUE 19,

vueguw9r 1 BDS~ID FIZ x(2) vaLur "tuv®.

vuegu¥l o vi eDo~ulSPLALEMENT =T w=0dnus kil S91d) Cu~P vALJE v.

bugu9e Ul ELOS=wUMBER=UF =wlRLY FLC 59(u) CJU¥ VALUE 1o,

GuatYs Ul PARENT=FIN FLC 59L4) LudP vaLuE v,

vueuys Ul bude PIC SYL4) LusMP vALUE J.

uuev9s vl cRRsCulE FIC ale). o
PAGE uule Sub

VU2lvur=PFryLtuuke Div1S)0ON us NG Suo=warv=FlELL,

0uelly PRUCEUUKE LIVISIUN. “‘152)

woeley Sug SECTIUY,

vudeuu Supb-kAnA,

vugely LALL "LGETUSEL" UbINe CLy

vuaeey bOo=INubkX, EUS=TUTAL=vURUY, tud=Il.

vueesu IF Nul CLL MUVE "Uul™ Tu Ew®=CULE GU TU Exn=-1.

Gueedy CUNTIMUE=SOLB.

vvegase CALL "CLUMUVIN® ublnLG CCy

gugeou EUb-INDEX, EUS=DISPLACEMENT=IN=AURDS,

vieelu Eud=dUMBER=UF =nUrDo, Sus=raRM=kltiu,.

Gueent IF wOT CCe MUVE "U¢" Tu EXx=CO.E LU TU bxx=1.

uveduue

vu2duy LISPLAY "Pawm WECEIWED &Y Sud = " SPF.

viueuly IF SPF = "FKEE EXTrA UATA SEGMENT® 1——@

vuldeu CaLl “"CFREEDSEG™ Uoi v CLo

bueddy ELS=INUEX, ELS~10

vuedasy IF CCL kDVE "G3™ TU Exn=CLUE Ly Tu Exn=2

Quedsy eLot STUP HUN,

Lu2svue

vuenuy Mive "FRONM Sub™ Tu SFF.

uugluuse

vueltve CaLe “CumuvouT” uslie CCy

ugerey E0o-INUEX, EDS=UISFLACEMENT=IN=aUKrUS,

Guel sy EUS=NUMBER=DF =wUKUS, SUB-PAXM=FIELD.

uLgluy 1F Ul CUE Muvk "ya™ 1y Erx=CUut 60 YU ERK=1.

viasuy JISPLRY “kanM_SELT Y Sun = " SHEL

VLeIuUn

(UL IVEVIVE B GUp ALK,

ve3luu CALL “CACTIYATE" USThu Cc.

vo3liy PARENT=PLA, bSuSF.

ut3lev IF NUT CCE Muve "US5" TU Exk=tlut G6U Tu EKR=1.

EEN LU TU CONTINUE=Sub.

Uu3elu ERK SELTIUN 99,

LUs22y ExHe1.

vi323y PERFURM ERR=C.

vudeuy CALL "CFHEEUSEG" USING CC,

Gulesy EDS=1nDbX, EDS=1U. o
Vo326l PuvE "ub" TU ERw=Clut.

Lude7u bR,

vuseou MUYE LU TO CL-9.

vu329yu UISPLAY " Sub® ERw=COLE = " EWN-CuUb
vu33yvu ", CC = " CC=9,

©U3310 STUP=mUN.

ELEY-I0 STuP Ruw.

DATA ANEA 15 X0aTdbl wORUS,
CPU TIME = U:iUUiQ4, wALL Tlme = Uiu0:0e,
END CUBOL/300U (0~PILATION. NU EKRUKS, sl mARNINGS,

ENC UF LJmPILE

TPREP nuws:.auam1»-:~L:5PL>un.m:Lw:Jn.w,ub.rw

ENU UF PrEPaRE

Figure 11. Modified Subprogram

Volume 2 No. 2 October 1978

33

UL

Journal of the HP General Systems Users Group

Explanations of highlighted items of Figure 11:

THE SUBPROGRAM 3CONTKOL STATEMENT IS
REPLACED BY A MAIN PRUOGRAM SCONTROL
STATEMENT.

THE LINKAGE SECTION STATEMENT IS REMOVED
SINCE PARAMETERS wILL BE PASSED BETWEEN
"MAINMAIN" AND "SUsMAIN® V1A THE EXTRA DATA
SEGMENT .,

THESE WORKING STURAGE FIELDS ARE NEEDEUL BY
THE SPL RGUTINES THAT MANAGE THE EXTRA DATA
SEGMENT, AND PROVIDE PROCESS 10 PROCESS
COMMUNICATIUN,

THE SUBPRUGKAM PROCEDURE DIVISIUN STATEMENT
IS REPLACED BY A MAIN PROGKAM PRUCEDURE
DIVISIUN STATEMENT.

THE CALL 10 "CGLETUSEG" LOCATES THE SHAKREABLE
EXTRA DATA SEGMENT PREVIUUSLY GOTTEN BY
"MAINMAIN",

NOTE THAT A COUNDITION COLE OF CCL IS THE
"OK" RETURN.

THE CALL TO "CDMOVIN" MOVES THt 1INCOMING
PARAMETERS FROM THE EXTRA DATA SEGMENT TOU
WORKING STURAGE.

THIS SENTENCE TESTS WHETHER TO FREE THE
EXTRA DATA SEGMENT wWITH A CALL TO
"CFREEDSEG".

THE CALL TO "COMOVOUT"™ MOVES, THE OUTGUING
PARAMETERS FROM wURKING STOKAGE TGO THE EXTRA
DATA SEGMENT.

® e 060 6 ®0O

THE SUBPRUGRAM "GOBACK"™ STATEMENT IS
REFLACEL BY

A CALL TO "CACTIVATE",

®©G

"CACTIVATE" SUSPENDS "SUBMAIN" AND PASSES
EXECUTIUN CONTROL BACK TO THE “PARENT™
PROCESS "MAINMAIN",

NOTE THAT WHEN "SUBMAIN" IS REACTIVATED,
EXECUTIUN WILL BEGIN WITh THE
"GO TO CONTINUE=SUB" STATEMENT.

PARENT=PIN
"PAKENT" PIN;
ALWNAYS BINARY U
MUST BE 1 wORD.

SUSP
IF SET TO 1, AS SHUWN, "SUBMAIN" WILL
SUSPEND UNTIL REACTIVATED BY THE "PARENT"
PROCESS "MAINMAIN".

WHEN AN ERROR OCCURS,
AN ATTEMPT IS MADE TO RETURN THE EXTRA
DATA SEGMENT (IF PKEVIOUSLY GOTTEN):
ERROR MESSAGES ARE DISPLAYED,

®

NOTE THAT THE PREP MUST INCLUDE THE DS AND
PH CAPABILITIES. THE USER PERFORMING THE
PREP MUST HAVE THE DS AND PH CAPABILITIES.
THE GROUP AND ACCOUNT IN WHICH THE PROCESS
EXECUTES MUST HAVE THE DS AND PH
CAPABILITIES.

®

Figure 12 shows the execution of “MAINMAIN'’; it is exe-
cuted twice to demonstrate that the extra data segment is
obtained from MPE and returned to MPE successfully.

SRUN MAINMAIN

PARM SENT BY MAIN = FROM MAIN
PARM RECEIVED By SUB = FROM MAIN
PARM SENT @Y SUB = FROM SuB

PARM RECEIVED BY MAIN = FROM SUB

PARM RECEIVED BY SUB = FREE EXTRA DATA SEGMENT

END OF PROGRAM
SRUN MAINMAIN

PARM SENT BY MAIN = FRUM MAIW
PARM KECEIVED BY SUB = FRUM MAIW
PARM SENT BY SUB = FRUM SUB

PARM KECEIVED BY MAIN = FROM Sudg

PARM RECEIVED BY SUB = FREE EXTRA DATA SELMENT

END OF PRUGRAM
tEOJ

CPU (SEC) = 21
ELAPSED (MIN) = ¢
THU, MAR 9, 1978,
END OF JUB

3:00 Pm

Figure 12. “MAINMAIN"’ Execution

Some additional considerations regarding inter-process
sharing of extra data segments are worth noting. If the pro-
cesses sharing extra data segments are concurrently in exe-
cution, RINs {(Resource identification Numbers) should be
used to control access. That is, before modifying an extra
data segment, a RIN directed test should be made to deter-
mine if any other process is currently modifying the same
extra data segment thereby preventing simultaneous (i.e.,
erroneous) updating.

Tips and techniques

Principles for Optimizing Performance of
On-Line Programs

by Robert M. Green
ROBELLE Consulting Ltd.
#130-5421 10th Avenue
Delta, B.C. V4M 3T9
Canada (604) 943-8021

| apply five general principles in optimizing on-line pro-
grams:

Make each disc access count.

Maximize the value of each terminal input.
Minimize the run-time program size.
Avoid constant demands for execution.
Optimize for the common events.

Volume 2 No. 2 October 1978

15

16

Journal of the HP General Systems Users Group

FIRST PRINCIPLE: MAKE EACH DISC ACCESS COUNT

Disc accesses are the most critical resource on the HP 3000.
The system is capable of performing about 30 disc transfers
per second and they must be shared by system processes
(spooling, console operator}, memory management and user
programs. {This rate can be increased to 58 per second
under the best circumstances and degrade to 24 per second
when randomly accessing a large file.) Another interesting
fact is that a 4096 word transfer takes about the same over-
head as a 128 word transfer. Therefore it is better to read
4096 words in one transfer than to read 128 words 32
times.

Some of the operations that consume extra disc accesses on
the HP 3000 are:

Increasing the number of keys in a detail dataset, thus
causing IMAGE to access an extra master dataset on
each DBPUT.

Increasing the program stack size by 8,000 bytes, thus
causing the MPE memory manager to perform extra
swapping disc accesses to find room in memory for the
larger stack.

Improperly segmenting an active program, causing many
absence traps to the memory manager to bring the code
segments into main memory.

Defining a database or KSAM file with overly large block-
size, thus forcing each user terminal to access a large
extra data segment that must be swapped in and out of
main memory.

NOBUF Disc Accesses

When designing your next on-line application, see if there is
some way that a random disc file can be used instead of an
IMAGE dataset or a KSAM file. Then open that file with
NOBUF and access it via directed reads and writes to speci-
fic blocks. Normally when you open a file, the program is
assigned an extra data segment to hold the buffer space for
the file. Transfers between the file and the program are al-
ways done through this extra data segment. When the pro-
gram requires a record, MPE first checks to see if the record
is already in the extra data segment buffers; if so, it is mere-
ly transferred from the extra data segment to the user stack.
if the block containing the desired record is not in the buf-
fers, MPE issues a read against the disc to bring the block
into main memory.

Although this sounds very clever and efficient, it has one
major flaw: the extra data segment itself can be swapped.
This means that in order to do any file access on a busy sys-
tem, it may be necessary to read the extra data segment
into memory before accessing the data in the disc file. On a
heavily loaded system this could cause a large number of
unnecessary disc transfers. NOBUF access does away with
all this by providing a direct interface between the user
program and the disc files. Blocks are transferred to and
from the user stack and the disc without any intervening
buffer area. NOBUF is the fastest way to use random disc
storage from a user program.

The user program must provide its own buffer space in the
stack and call for transfers of data via the block number
within the file. When multi-record access is used, it is
possible to transfer multiple blocks at a time. The user is
responsible for determining which block contains the
record that he desires and where within the block the
record is focated. Simple subroutines can be written to han-
dle this transformation.

A typical use for this kind of file is as a data entry transac-
tion file. As the operator enters the data, it is buffered in
the stack until a block is full; then the entire block is writ-
ten to the disc in one operation. For even better through-
put and response time, you might try writing the blocks to
the disc with the NO-WAIT option; when this is used, MPE
overlaps the write operation to the disc with your next
print and read from the terminal. Without NO-WAIT your
program would be suspended until the disc write could be
completed by MPE.

Warning: Be certain that you know when the end-of-file is
updated, otherwise you might find that you have an empty
transaction file when the system crashes. | suggest that you
move the end-of-file to the limit of the file at the start of
the day by writing a null entry in the last record position
and then closing the file.) When the transaction file is full
(or the day ends), a batch program is used to put the trans-
actions into the final IMAGE dataset or KSAM file. This
job can be done in low priority or after hours.

SECOND PRINCIPLE:
MAXIMIZE THE VALUE OF EACH TERMINAL READ

Each time a program reads from the terminal it is suspend-
ed and may be swapped out of memory. When the operator
hits the carriage return key, the input operation is termi-
nated and the process must be dispatched again. In order to
dispatch a process, MPE must ensure that the data stack
and at least one code segment are resident in main memory.
If the process is going to access the disc, it may be neces-
sary to make an extra data segment resident also. Unless the
computer has enough main memory so that no user seg-
ments are ever swapped out, it is desirable to have the pro-
cess set as much work done as possible before it suspends
for the next terminal input (and is swapped out again).

The simplest way to program data entry applications is by
prompting for and accepting only one field of data at a
time. This is also the least efficient way to do it. The user
data stack must be made resident every time the user hits
‘return.’ (Therefore, the less often the user hits ‘return,’ the
larger your stack can afford to be.) Since it is inefficient,
fast response time cannot be guaranteed and the resulting
delays are very irritating to operators. They can never work
up any input speed, because they never know when the
computer is ready for the next input line. If response time
and throughput are the only considerations, it is always
preferable to keep the operator typing as long as possible
before hitting the ‘return’ key. Multiple transactions should
be allowed per line with suitable separators and multiple
lines should be allowed without a ‘return.’

Volume 2 No. 2 October 1978

0

Journal of the HP General Systems Users Group

THIRD PRINCIPLE:
MINIMIZE THE RUN-TIME PROGRAM SIZE

The HP 3000 is an ideal machine for optimizing because of
the many hardware features available at run-time to mini-
mize the effective size of the program. Even quite large
application systems (6000 lines of code) can be organized
to consume only a small amount of main memory at any
one time. Each executing process on the HP 3000 consists
of a single data segment called the “stack’’ and one or more
extra data segments for system storage such as file buffers.
Although a process is always executing some code in a code
segment, the code does not properly belong to the process,
since it can be shared by all processes in the system.

Large programs which are not logically segmented make it
harder for the memory manager to do its job and thus cause
many disc accesses to be consumed in swapping. In an ex-
treme case, the system can almost be brought to a complete
standstill by a very large program executing on many termi-
nals at the same time.

Many more terminals can be supported on a given system if
data stack sizes are kept modest (ex: less than 6000 bytes
on a 192K byte machine) and the code is properly segment-
ed (ex: all segments about the same size, say 4K bytes on a
192K byte machine). The simplest way to keep the stack
small is to make all data variables local (DYNAMIC in
COBOL) and to use global storage only for buffers and con-
trol values that must be accessed by all subroutines. The
reason that this is so effective is that dynamic local storage
is allocated on the top of the stack when the subroutine is
entered and is released automatically when the subroutine
is left. This means that if the main program calls 3 large
subroutines in succession, they all reuse the same space in
the stack. The stack need only be large enough for the
deepest nesting situation.

Since the amount of dynamic stack space that will be re-

quired by the program is not known at the start of execu-
tion, the 3000 provides methods (both automatic and pro-
grammatic) to expand the dynamic area. Whenever a stack
overflow occurs, MPE automatically allocates more space

(up to a MAXDATA limit). Unfortunately, there is no auto-

matic mechanism for reducing the stack size when that
additional space is no longer needed. The user application
program can include a check in the mainline and shrink the
stack back down to the desired size after returning from an
oversize subroutine. {(See Appendix for an example.)

The other major way to reduce the size of a data stack is to
ensure that constant data items (such as error messages,
screen displays) are stored in the code segment instead of
the data segment. Since they are never to be modified,
there is no logical reason that they must be in the data
stack. By moving them to the code segment, one copy of
them can be shared by all users running the program. In
SPL this is done by including =PB in a local array declara-
tion or MOVE'ing a literal string into a buffer. In COBOL
constants can be moved to the code segment by DISPLAY "
ing literal strings in place of declared data items. In FOR-
TRAN both FORMAT statements and DISPLAY ‘ed literals
are stored in the code.

FOURTH PRINCIPLE:
AVOID CONSTANT DEMANDS FOR EXECUTION

The HP 3000 is a multiprogramming, virtual memory
machine that depends for its effectiveness on a suitable
mix of processes to execute. Although the sizes of the seg-
ments to be swapped have an effect on performance, this

is dependent upon the frequency with which memory resi-
dency is demanded. Given the same overall configuration
and application program sizes, the system supports many
more terminals if each one only executes for 5 seconds
every 30 seconds than if each one must execute for 60
seconds at a time, Each additional terminal that is demand-
ing continuous execution (in high priority) makes it harder
for the operating system to provide proper response time to
all other terminals.

Here are some examples of the kind of operation that can
destroy response time if performed in high priority:

EDIT/3000, a GATHER ALL of a 3000 line source file.
QUERY, serial read of 100,000 records.

SORT, sorting 50,000 records.

COBOL, compiling on 4 terminals at once.

All of these operations should be done in low priority in
batch STREAM jobs. These jobs can even be created dyna-
mically by on-line programs. In this way, the on-line user
still requests the high-overhead operation, but the system
fulfills the request when it has the time.

FIFTH PRINCIPLE:
OPTIMIZE FOR THE COMMON EVENTS

In any application where there is a large variation between
the minimum and maximum load that a transaction can
cause, the program should be optimized around the most
common size of transaction. In any application with a large
number of on-line functions, it is likely that a small number
of functions are used most of the time. In this case, all opti-
mization efforts should be aimed at the commonly used
functions and all others left as is. This is especially feasible
on the HP 3000 because of code segmentation and dynamic
stacks.

If N is the average number of records in a transaction (i.e.,
the number of lines on a customer order, maximum is 500),
then allow room in your stack for N records. If you only
allowed for one record, then there would be unneeded disc
thrashing. Alternatively, if you provide room for the maxi-
mum number, then the data stack is much larger than actu-
ally needed most of the time. Having a larger data stack
may cause the system to overload, eliminating the benefits
of keeping the records in your stack. It is recommended
that room in the stack be atlowed for slightly more than the
average number and that a NOBUF disc file be used to
“‘page’’ this area on very large transactions.

Optimizing Case Study: QEDIT

QEDIT is a high-speed, low-overhead source program editor

developed by Robelle Consulting Ltd. The primary objec-

tive of QEDIT is to provide the fastest possible editing with

the minimum possible system load. Other objectives include

conservation of disc space, similarity to EDIT/3000 in com-
Volume 2 No. 2 October 1978

17

18

Journal of the HP General Systems Users Group

mand syntax, ability to recover the workfile following a
system crash or program abort and increased programmer
productivity.

QEDIT and the First Principle: Disc Accesses

In order to reduce disc accesses, QEDIT had to eliminate
the overheads of the TEXT, KEEP and GATHER ALL
commands of EDIT/3000. These three operations have the
most drastic impact upon the response time of the other
users. QEDIT attacks the problem of KEEPs by providing
an interface library that fools the HP compilers into think-
ing that a QEDIT workfile is really a ““card image”’ file. As a
result, it is never necessary to KEEP a workfile before com-
piling it. Since KEEPs are never used, most TEXTs are eli-
minated. TEXT is only needed when you want to make a
backup or duplicate copy of an existing file. It was antici-
pated that most users would maintain their source files
exclusively in workfile format, so the TEXT'ing of work-
files was optimized (by using NOBUF, multi-record tech-
nigues) to be at least 4 times faster than a normal TEXT

of a card image file. The GATHER ALL operation is slow
because it makes a copy of the entire workfile in another
file. QEDIT renumbers up to 12 times faster by doing
without the file copy.

Disc accesses during interactive editing (add, delete, change,
etc.) were minimized by packing as many contiguous lines
as possible into each disc block. The resulting workfile is
seldom over 50% of the size of a normal KEEP file or 25%
of the size of an EDIT/3000 K-file (workfile). Most QEDIT
users maintain all of their source programs in workfile
form, since this saves disc space, simplifies operations {there
need only be one copy of each version of a source program}
and provides optimum on-line performance.

QEDIT always accesses its workfile in NOBUF mode and
buffers all new lines in the stack until a block is full before
writing to the disc. Wherever possible in the coding of
QEDIT, unnecessary disc transfers have been eliminated.
For example, the workfile maintains only forward direction
linkage pointers, which reduces the amount of disc 1/0
substantially. Results of a logging test show that reducing
the size of the workfile and eliminating the need for TEXT/
KEEP reduces disc accesses and CPU time by 70-90%.

QEDIT and the Second Principle: Terminal Accesses

QEDIT allows multiple commands per line, plus multiple
data lines per data line input (i.e., you can enter 7 lines of
text without hitting ‘return’). All interaction with the ter-
minal is done directly through the READX and PRINT
instrinsics.

QEDIT and the Third Principle: Program Size

QEDIT is a completely new program, written in highly
structured and procedurized SPL. The resulting program
file consists of 7 code segments of 1780 words (decimal)

each. Only two code segments are required for most edit-
ing commands, while the most common function (adding
new lines} requires only one code segment most of the
time.

QEDIT uses a minimum data stack and no extra data seg-
ments. All error messages are contained in the code, iso-
lated in a separate code segment that need not be resident if
you make no errors.

QEDIT and the Fourth Principle: Constant Demands

Most QEDIT commands are so fast that they are over
before a serious strain has been placed on the host machine.
For example, a 2000 line source program can be searched
for a string in four seconds. For those operations which still
are too much load, QEDIT provides the ability to switch
priority sub-queues dynamically. In fact, the system man-
ager can dictate a maximum priority for certain operations
such as compiles or TEXT and KEEP commands.

QEDIT and the Fifth Principle: Common Events

The entire design of QEDIT is based on the observation
that program editing is not completely random. When a
programmer changes line 250, he is more likely to require
access to lines 245 through 265 next than he is to lines 670
through 710. This observation dictated the design of the
indexing scheme for the QEDIT workfile.

There are many examples of optimizing for the most com-
mon events in QEDIT: the blocksize will hold about a
screenful of data lines, built-in compiler, fast renumbering
command (600 lines per second) in place of a GATHER
command, faster TEXTing of workfiles than KEEP files {4
to 7 times faster).

Results of Applying the Principles:

In less than 7 seconds, QEDIT can text 1000 lines,
renumber them and search for a string. Commands
are 80% to 1200% faster than EDIT/3000, program
size is cut in half, and disc 1/O and CPU time are
reduced by up to 90%.

Programming of QEDIT began in March 1977 and
user-site testing in September 1977. At the present
time {June 1978) there are 13 QEDIT user instal-
lations. QEDIT shows what can be accomplished
by applying all of these optimizing principles in the
design of one system. In any given application sys-
tem it may not be possible to take advantage of all
five principles, but to whatever extent they can be
applied, the resulting system will provide better
service than it would have.

Volume 2 No. 2 October 1978

Journal of the HP General Systems Users Group

REFERENCES: PUBLISHED MATERIAL ON RocewRe enEnsTacKs ¢ sr)
- INTEGER ARRAY RUF ¥
OP-I 'MIZING BEG%IQFINF STRUCTURE/USE OF EBUF
NOUERLE AkRAY DBUF (k) = HUF$

LEFINE
[1] COMRUNICATOR No. 14, FRINTFLAG = BUF & +INITIAL’SFACE = RUF(1)#
Fage 87y Llock/Fede mode problems. ¢SHRINKCOCUNT = BUF(2)#% »Ch"COUNT = HUF(3)#
[2] UCOMMUNTICATOR No. 1.0 »OR‘SFACE = LBUF(2)# » SHRINN * SFACE = DBUF(3)#
Sedgmentation o LUROL ¥
[3] COMMUNTICATOR Nu. 5. INTEGER Zy0¢
Seamentlation ror Me;omum Efficiency
of Byslem—-Ture Frograms. IF NOT ¢ O-=PRINT‘FLAG: =3) THEN
[4] JOURNAL -3000 Vol Ly Hu, &, FRINT FLAG ¢ 1 “OEF
KSAM ve. 1MAGT
HF 3000 with Froct Eind Frovessor FUSH (ZsQ)i Z2:=TOS3 Q:=TOSH
FORTRAN Or Limacglron
[5] JOUKNAL-3000 Vol. Ly No.o O INIT1AL ' SFACE & - Qs -
QEDITs Nuick Frodram Eadrtinsdy HUF (2) = €3
Small Arpetite for Comeuter Time. MOVE RUF(3) 1= RUF(2)s(7)3
(6] JOURNAL-I000 YOL, ts NO. 4,
Usind Extra Data Sedmento. END} (CHEERSTACK1
Commare Frodramming Errors W&ibth IMAGE/3000. .
[?] CONTRIRUTED | IRRARYs VYol [/II
10EA Frodgrem FROCELURE CTHECKSTACK2 (BRUF) i
ITDEATT Frodram INTEGER ARRAY RUF§
Rt SF Frogram EEGIN
IDLE Frogram DEFINE STRUCTURE/USE OF EUF
FROGSTAT FROGRAM DOUBLE ARKRAY DEUF (%) = RUF}
[8] CONTRIRUTED LIBRAKYr Vol IIT DEFINE
$00 Frodram FRINT‘FLAG = BUF# »INITIAL "SFACE = BUF(1)%
(9] CONTRIBUTED LIBRARY: Jure 1978, +SHRINK ‘COUNT = BUF¢2)$¢ 0N COUNT = RUF(Z)$
DESTAT Frosiram sOK'SFACE = DIRUF(2)# s SHRINK“ SFACE = LRUF(3)#
DHCHANGE Frodram H
{10] SCRUG MEETING LIEKARY, March 1978. INTEGER Zr Q» STACKSIZESF
[11] SCRUG MEETING NOTES, March 1978, INTRINSIC ZSIZE+
Extra Data Sesments and Frocess Handling
Orerator Utilities PUSH (2R)% 1=T0SH RI=TOSH
[12] INTERNATIONAL USERS MEETING: 1977, STACKSIZE = Z - Qs
RSAM (see extra data sedment sizes losd times) IF STACKSIZE (INITIAL’SFACE + 512) THEN BEGIN
ITMAGE for the arivanced User ZSIZE ¢ Q + INITIAL‘SPACE)}
Ortimizing FOKTRAN IV/3000 SHRINK "COUNT := SHRINK‘COUNT + 1;
RFG/3000 Frodramming Optimization SHRINK’SFACE = SHRINK’SFACE + [OUELF(STACKNSIZE)}
Dsta Entry Techniaues LCND
Sedmentation ELSE REGIN
II Measurement and Ortimizaetion OK’COUNT != OK‘COUNT + 13
¢ Measurement and Omtimization OK‘SFACE := ON‘SPACE + DOUKLE(STACKSIZE)
[13) RNATIONAL USERS MEETING» Februarwy 1975 ENDG
Software Ortima b1on Throudh Sedwentation
[14] INTERNATIONAL USERS MEETING» Maw 1974 END CHECRSTACK?2

Frodram Ferformarnce
(15] CCRUG MEETING MINUTES, May 9» 1978
INEA Frodram
DEDRIVER Frodram
FROCEDUKRE CHECKNSTALKS BUF) 3
INTEGER ARRAY BUF'
HEG LN
LEF INE STRUCTURE/ZUSE QF RUF
UOUELE AKRAY LBUF (X3 - RUF 3

UEE TNE
FRINTFLAG - RUF # yINITEAL “GFACE uuF (14
ySHEINN "COUNT = EUF(2)# yONCOUNT KUF (30 #

APPENDIX: SHRINKING THE STACK SIZE JONSEACE = LBUFC2)# sSHIINNSFACE = LBUF (5)#

5
INTEGER ARKAY F(O138)5

$CONTROL LISTsSURPROGEAMs MATN | TKRSEGL, ERRAKS=9 BYTE ARKAY P Ok; :Ff
BEGIN INTEGER TERMINAL
CHECKSTACK LIEKARY SUBROUTINES INTLGER GLUKAL “SPACES
. ROBELLE CONSULTING LTD. INTRINSTE FRINTyFRTHTOR, ASCELyDASCLTy WHO s UATELINE
FURFOSE = CHECK FOR EXCESSIVE LYNAMTL STACN SFACE AF THk
SUBFROGRAN CALLS ANIN ADIJUST. [HIS FACKAGE CONSTSTS fI ERINTFLAG - O THEN RETUKNG
OF THREE RKOUTINES THAT ARE INILNDEL TO BE CAtLED
FROM THE MAINLINE OF AN AFFLICATION PROGRAM THAT 1IF FRINT'FLAG-2 OK FRINT'FLAG-3 THEN KELJRN
CALLS SEVERAL SUBFROGRAMS UF VARYING S1ZES. FRINT JLDENTIFYING MESSAGE ON THE UCONGULE
CONTAINS 3 ROUTINES: UHECRSTACANL, CHECNSIAURZy CHECRSTAURZ. Friz® 5 MOVE FC1)3=Fy(38)3
FARAMETEKS = WORKSFACE, 20 HYTES OF GLOBAL WORKSF, IN THE MOVE F ! -"CHECK-STACK: 'S
CALLING FROGRAM. THE FROFER CUBOL WORKNING-STORAGE NEFINITION IS: WHO Gy s b CL2Y P €200 b7 0300y s TERMINAL O 5
01 CHECK-STACKN-SFACE . MOVE F7/(39) & “ON*7
05 FRINT-RESULTS-FLAG FIC S9(3) COMF VALUEZ N ASCTICTERSINALY LOSF 7 (42)) 7
* N=0(NO FRINTOUT) »1(ON TERMINAL)y Frepors Frgeys Tty
* 2(ON LONSOLE)»3(ON KOTH). PRINTOF (Y 465004
05 FILLER EIL X(18). END3
HOW TO USE =
1. ADE THE WOKKSPACE TO THE DATA DIVISION OF YOUR FROGKAM v ts MUJE POLD ey CBE) G
AND SET THE DESIRED FRINT'FLAG VALUE (SEE STEF 43, MOUL F: "GLIRTS
2« AT START OF FROGRAM: FUSH Q)3
CALL 'CHECKSTACK1® USING CHECKR-STACK-SFACE. GLOKAL “GFALS 1= 1085
THIS CALL SHOULD OCCOR ONCE AT THE START OF THE ASCTITCGLORAILL " SEACE LOE (4)) 5
MAINLINE. THE FURFOSE 1S TO RECORL THE SIZE OF MOUE F“(LOY - *STR"H
THE LYNAMIC STACK AREA BEFORL ANY SUBFROGRAMS ARE ASCLITCINITIAL “SFACE» 10,87 (13205
CALLED. THIS SIZE IS DETERMINED HY STACK=XXXX IN THE MUVE F(19):-"BUN"S
SFREF OR (RUN COMMANDS. ASLITCON COUNTS100F 7 (20)) 5
3. AFTER EACH SUEFROGKAM CALLs MOVE b (2803 -“AVG® S
CALL "CHECKSTACR2" USING CHECN-STAUK~SFPACE. DASEIYCON ST ACL/ IOUBLE COK EDUNT) » Lusk (31025
THIS CALL COMPARES THE CURKENT DYNAMIC STACK AREA MOVE F/ (37054805
WITH THE INITIAL SIZE AND IF IT IS OVER 512 WORDS ASCTTCSHRINN GOUNT v LOYF v aLtr)s
LARGER (1024 BYTES), REDUCES IT BACK TO THE INITIAL. MOVE b7 caz) i "512%5
4. AT THE ENI OF THE FROGRAM» Das G UL CSHRINR Y SEACE /BOUBLE CHHICIMNK L UM T, o TQe P2 0D)y
CALL "CHECKSTACK3*' USING CHECN-STACK-SFACE.
THIS CALL FRINTS STATISTICS ON STACK USAGE ON TP PRINT FLAG 2 OF FRINTFLAGL- 3 THEN
EITHER $STOLIST Ok THE CONSOLE OR ItOTH. FORMAT= FRINTUR G o 5he0) ¥
GLOE99 STK99 $0OK9? AVG?? #ADIJ99 S1z99 LEPRINT FLAG 1 OR FRTHTFEALG 3 THEN
“GLORAL STACK SIZE IN DECIMAL WORDS FRINT R L6500
~ INITIAL DYNAMIC STACK SIZE
~ NUMHER OF 'OK® SUHFROGRAM CALLS {rns UHELLSTACKR A
AVERAGE WORDS OF STACK FER CALL ~ UND 5 pRkAlY .
NUMBER OF TIMES STACK WAS ALJUSTED ~
AVERAGE SIZE OF THE STACK WHEN ADJUSTED ~
START WITH THE DEFAULT VALUE FOR STACK=(ABOUT BO0) AND A LARGE MAXDATA=,
IFf ALL OF THE SUBPROORAM CALLS ARE ADJUSTED (I.E.s» On=0), INCREASE THE
STACK= VALUE. TRY TO FIND A VALOE WHERE MOST OF THE SUERFROGKRAMS CAN
EXECUTE WITHOUT HAVING TO SHRINK THE STACK AFTERWARDS, EUT NOT SO LARGE ® ° °
THAT THERE ARE NO LARGE SUBFROGRAMS TO ADJUST.

o

Volume 2 No. 2 October 1978

20

Journal of the HP General Systems Users Group

Image Optimization Checklist

by Geoff Walker

Hewlett-Packard Co.
Eastern Sales Region
Paramus, New Jersey

1.

10.

11.
12.

13.

Spend time up front on the design. Analyze the appli-
cation thoroughly. Consider needs vs. wants; batch vs.
on-line processing. Consider using a separate transac-
tion data base. Relate data sets to functions.

Use “IDEA’" {in the contributed library) early in the

game to estimate load time, response time, and through-

put.

. Use “DBDRIVER" {in Pub. Sys) on existing data bases

to get timings for each Image intrinsic.

Minimize the number of paths in the data base. Realize
that Query flexibility must be traded off against up-
date speed. Consider batch retrieval for non-time
critical reports.

Specify the most frequently accessed path as the pri-
mary path. Periodically dump and reload the data base
to maintain entries on the primary path in physical
proximity.

Minimize the use of sorted chains. If the application
demands sorted chains, keep the chains short, Sort data
before loading the data base. Use Sort/3000 on data
copied to MPE files for batch reporting.

Use a prime number for master data set capacity; don't
exceed 80% of capacity in order to minimize synonym
chains.

Vary the blocksize via the $Control Blockmax param-
eter to tune the data base for the environment. Consider
memory utilization, the number of users on the system,
the nature of data base access (serial/chained vs. highly
random calculated), and finally disc space utilization.

. Spread data sets among disc drives to minimize head

contention by using MPE Restore with the DEV
parameter.

When coding, minimize the number of Image calls.
Save data for re-use; save record pointers for repeated
access.

Use the DBGET list options, particularly "'«

Reading an entry with write access is faster than read-
ing it with read access. {f the application design permits
it, consider this both in schema design and in applica-
tion coding. However, remember that reading a data set
with write access updates the “/last modified’* date in
the file label and thus causes the data set to go out on
incremental backup tapes.

Minimize no-hits when using DBFIND. Don’t design a
DB access application which will find a match only 3%
of the time - instead aim for the highest possible hit
ratio.

. Don'tdo a DBDELETE & DBPUT when you could do

a DBUPDATE instead. Consider flagging records on-
line and then doing the actual deletion in a batch
processing run.

15. Use the mode 3 “rewind” function of DBCLOSE
instead of closing and re-opening the data base.

16. Don't use locking needlessly. Within timing constraints,
write code which accomplishes as much as possible
while the data base is locked - don‘t just surround each
image call with lock and unlock calls.

17. Image isn't always the best solution - consider alter-
nate data management methods: KSAM (INDEX), or
MPE Files.

About HP’s New VIEW/3000

by Jutta Kernke

Hewlett-Packard - General Systems Division
5303 Stevens Creek Blvd.

Santa Clara, CA 95050

This new product was introduced by Hewlett-Packard in
September 1978 and is the result of the implementation of
new advances in data entry technology and suggestions
gathered from more than 600 current DEL/3000 users.
DEL/3000 is the Data Entry Library introduced by HP two
years ago; VIEW/3000 is not an enhanced version of DEL/
3000, but a completely new product.

Whereas DEL/3000 offered a basic set of data entry capa-
bilities to improve user productivity in the development of
on-line transaction processing, VIEW/3000 takes advantage
of a new design approach and provides much more power-
ful forms-creation and data handling facilities than DEL/
3000.

Data entry applications have traditionally been designed
using a high-level programming language such as COBOL.
Data Editing was accomplished through the use of user-
specified edit routines. This process was very costly in
system development and overal! productivity. With VIEW/
3000, screen formats are created by simply drawing them in
an interactive fashion on the CRT and selecting edit rou-
tines from a standard set. Implementation does not require
programming effort or extensive training.

VIEW/3000 can help users implement straightforward inter-
active data entry tasks more easily and efficiently, and can
facilitate the development of more complex terminal-
oriented applications through the use of a high-level pro-
gram interface.

Designed both as a stand-alone source data entry facility
that can be implemented without programming effort and
as a "front-end’’ to transaction processing applications,
VIEW/3000 provides four important features:

e A FORMS DESIGN FACILITY utilizing most HP 264X
terminals, allows the creation of interactive screens from
“fill-in-the blanks’" menus and the use of function keys.
Simple edits are accepted by standard defaults and com-
prehensive data editing and validation can be specified
by the use of a free-form field of definition language.

Volume 2 No. 2 October 1978

Journal of the HP General Systems Users Group

o A SOQURCE DATA ENTRY FACILITY that allows im-
mediate on-line entry and modification of data through
forms created with the Forms Design Facility.

This facility controls the flow of forms to a terminal,
edits and validates the input data, and records that data
in a special file. The same facility allows the terminal

operator to “‘browse’’ through this file and to modify
already entered data as desired. This entire process is

completed without the need to write a single program,

and it makes data collection easier to implement on an

HP 3000 computer system.

o ADATA REFORMATTING FACILITY to change the
format of entered data to meet the input requirements
of existing application programs.

¢ A PROGRAM INTERFACE which aids efficient and

easy implementation of forms oriented interfaces for
transaction processing applications. This library of high-
level procedures is available to provide a simple program-
matic interface between an application program on the
HP 3000 computer system, the terminal, the forms and
edits created by the forms design facility, the entered
data, and the data file.

With the availability of VIEW/3000, Hewlett-Packard will
discontinue sales of DEL/3000.

In accordance with standard policy, although DEL/3000
will not be sold to new customers, Hewlett-Packard will
provide support of the product for five years, until Janu-
ary 1, 1984, This is important for existing users who wish
to continue to use DEL/3000 for new applications develop-
ment, or for those who choose not to use DEL/3000 for
new development but wish to continue to use their existing
DEL/3000 applications; both Comprehensive Software
Support and Software Subscription Service are offered. If
you choose to convert your existing applications to VIEW/
3000, and no longer desire support for DEL/3000, you may
at any time cancel your software contract for DEL/3000.

For those users who are currently developing applications
with DEL./300Q and choose to begin developing new appli-
cations exclusively with VIEW/3000, Hewlett-Packard wilt
provide a full trade-in value for the DEL/3000 initial pay-
ment of $300, or $900 if you had purchased the prepaid
option, to be credited toward the $1500 list price, of
VIEW/3000. The value of this trade-in applies to the list
price of VIEW/3000 prior to discounts, and extends until
April 1, 1979.

The right to use VIEW/3000 requires HP’s standard soft-
ware purchase agreement for either 12 or 48 months.

Hewlett-Packard’s number one objective is customer satis-
faction. The standard support policy, which guarantees the
availability of support services for five years after discon-
tinuing marketing a product, protects the software invest-
ment you may have made with DEL/3000. At the same
time, by offering the full trade-in value of DEL/3000 for
VIEW/3000, Hewlett-Packard presents an opportunity to
take advantage of the additional benefits of VIEW/3000.

If you have any questions concerning either DEL/3000 or
VIEW/3000, contact your local HP sales representative.

A One Line Program

For those of us interested in the power of SPL, here is a
one-line program,

by Ross Scroggs

Alter * Ability

154 Laidley Street

San Francisco, CA 94131

00001000 00000 © begin
00002000 00000 1
00003000 00000 1 lodical arrau
00004000 00000 1 str/(0I35)7+
00005000 00000 1
000046000 00000 1 bute arraw
00007000 00000 1 str(x)=str’j
00008000 00000 1
00009000 00000 1 intrinsic
00010000 00000 1 dasciisdbinargserrantyread:i
00011000 00000 1
00012000 00000 1 Print{etr’r-dascia(dbinarsistrrread(stir’y-72))
00013000 00007 1 ¥dbinary(strrreadulatr’ s 72)) 510,54 7) 9 %40)
00014000 00025 1
00015000 00025 1 enrd,
FRIMARY DF STORAGE=X002; SECONDARY DF STORAGE=%00044
NO. ERRORS5=0000; NO. WARNINGS=0000

PROCESSDR TIME=0:00:00% ELAPSED TIME=0:00:21

END OF COMFILE
END OF FREFARE

-24
125

-3000

END OF PROGRAM
isave $oldrassraneline

User-Defined Command Listing Program

by Pete Fratus
Senior Programmer
Futura Systems, Inc.
P. Q. Box 3485
Austin, Texas 78764

When the System Manager supplies one main User-Defined
Command (UDC) file in PUB.SYS for most system users, it
sometimes becomes necessary to know who has SETCATA-
LOG on that file. This program lists the UDCs set by each
user on the system.

CHD
10 FILES COMMAND,PUB,.SYS
20 DIM PS[u4],NS[Z26]}
30 ON END #1 THEN 998
40 LET I=2
50 READ #1,I;PS,NS
60 LET J=NKUW(PS([2;1}))
70 LET K=NUM(PS[4;1])
B0 1F X=1 THEN GOTC 110
S0 LET I=I+1
100 GOTO 50
110 PRINT LIN(1),NS{1;16]
120 LET J=J+1
122 READ #1,J;PS,KS
130 PRINT TAE(16),N¢
140 LET J=RUR(PS{2;1])
150 IF J<>0 THEN GOTO 120
160 LET I=I+1
170 GOTC 50
999 STCP

The proagrea reads COPFAND.PUPR.SYS and prints the folloving list:

Volume 2 No. 2 October 1978

22

Journal of the HP General Systems Users Group

MARIA SYS

UDCOE.PUB,LSYS
USER YXLRN

UDCO6.PUB.SYS
BILLC SIS

UDCOS.PUB.SYS
RETR 5YS

UDCO€.PUB.SYS

MAKAGER UFUT
UDCO6.PUB.SYS

KENT SIS
UDCOE.PUB.SYS

USER SYS
UDCOE.PUB.SYS

MANAGER YIGA
UDCOE€.PUB.SYS

PGRNC WARTADS

UDCOZ.BOOK.WANTADS
UDCOE.PUB.SYS

MANAGER WEUT
UDCO€E.PUB.SYS

HP 3000 Software: Keeping Current

by Tom Simon

HP General Systems Division
5303 Stevens Creek Blvd.
Santa Clara, CA 95050

You have all probably heard of the Software Status Bulletin,
the COMMUNICATOR 3000, and the Installation Tape
Note files. You may also know that all of these publications
deal with developments — particularly in connection with
software — in the HP 3000 environment. Now, what you
may not know is which of these offer you the most usable
information; that is, which are prepared from a perspective
similar to yours. To help you decide which publications fit
your information needs, this article provides a brief descrip-
tion of each publication’s orientation and of how it is re-
lated to the others.

Note Files

Users of HP 3000 computer systems receive periodic up-
dates to the Multiprogramming Executive Operating System
(MPE) and certain program and diagnostic files through the
Installation Tape (1T). This magnetic tape contains the cold
load version of MPE, the system and subsystem program
files in the account SYS, and the necessary diagnostics in
the support account. Some of these files are referred to as

Note or “noon’’ {* - explanation at end of article) files
which consist of written descriptions of how the current
version of MPE differs from the previous version,

COMMUNICATOR 3000

The COMMUNICATOR exists primarily to provide users
with a printing of the Note files a week or two in advance
of their release through the Installation Tape. The purpose
of this early release is to help users anticipate the effect
which the updated MPE could have on their operations.
Thus, the schedule for publishing the COMMUNICATOR
approximates that of the updates to MPE, preceding them
slightly.

The COMMUNICATOR also contains articles of general
interest to HP 3000 users: programming tips, announce-
ments of new products, and descriptions of changes (up-
dates, new editions, new publications) to manuals. Occasi-
onally, COMMUNICATORSs are published when there are
no corresponding MPE updates. These issues contain only
articles. And because of the demand for back issues of the
COMMUNICATOR, some articles from early issues may be
revised and reprinted.

Software Status Bulletin

The Software Status Bulletin {SSB) is published twice each
month and documents known probiems with HP 3000
supported software. Of the three publications mentioned
here, it contains the most current information regarding the
status of problems {and work-arounds) with HP software.
For keeping track of particular problems, or for checking if
some difficulty you've encountered has been verified as a
software bug, the Software Status Bulletin is the place to
look.

Software probiems submitted by HP 3000 users, field
system engineers, software developers, and quality assur-
ance engineers are assigned Software Maintenance Request
(SMR) identification numbers. Those Software Maintenance
Requests which are verified to document actual software
bugs are also referred to as Known Problem Reports (KPR)
and are listed in the Software Status Bulletin. The process
goes something like this:

Software Problem
1
lecenw > Sottvare Maintenance Reauest
|
lewaon > Known Problem Report

[EXEE > Software Status Bulletin

These verified software problems are listed in the Software
Status Bulletin by their Software Maintenance Request
number and by product, and are designated as open or
closed. An open problem is one which has no current fix (a
work-around may be indicated); a closed problem has a fix
which will be available in a specified version of the software
product. After being published as a closed probiem for two
successive Installation Tape distributions, a Software Main-
tenance Request is deleted from the bulletin. Open prob-
lems are listed until resolved.

Volume 2 No. 2 October 1978

Journal of the HP General Systems Users Group

Note that not every problem submitted is listed in the Soft-
ware Status Butletin, only new and verifiable problems.
Duplicates, misunderstandings, and so forth, are not enter-
ed. However, a response is made to each problem report
submitted, indicating whether the bug has been verified
and, if so, what is being done about it.

How They Fit Together

Since the COMMUNICATOR, the Installation Tape and the
Software Status Bulletin are all concerned with HP 3000
software, it's not surprising that any Software Maintenance
Request may appear in all three. Open Software Mainte-
nance Requests, which are documented in the Software
Status Bulletin, may also be referenced in the “Known
Problems’’ section of the Installation Tape Note files and,
consequently, in the printing of these Note files in the
COMMUNICATOR. Software Maintenance Requests noted
as closed in the Software Status Bulletin should also appear
in the Note files on the Installation Tape and in the COM-
MUNICATOR. In these cases, the software fixes will be
described briefly under the ““Corrective Software Changes’’
section of the Note files.

, 0 Installation Tape Note files

. - under “"Corrective Software
Changes”

Verified Software -=>, , , , 0 COMMUNICATOR

Maintenance Requests .
. - via advance printing
. of Note flles

.. o Software Status Bulletin

« description ot the fix
(closed) or of the problem
(open) and, possibly, of a
work-around

Which One And When?

In case all of this has only confused you more, try this ex-
planation. The Note files are written by lab personnel and
are designed to tell you what's new with software on the
HP 3000. You will receive these files on the Installation
Tape (which also contains the encoded changes) and, short-
ly before, in the COMMUNICATOR. The COMMUNI-
CATOR will also give you additional information concern-
ing changes to HP 3000 software and, generally to the HP
3000 systems. Lastly, the Software Status Bulletin, pre-
pared by lab and support personnel, provides the most
current information available about software problems,
new and old, and about fixes for those problems.

How To Get Them

All three of these publications are supplied to users with
Hewlett-Packard’s Comprehensive Software Support Ser-
vice (CSS) and Software Subscription Service contracts.
The COMMUNICATOR may be ordered separately, on an
individual issue basis (subject to availability) and through
subscription. Order forms are available in the COMMUNI-
CATOR itself and through the Software Subscription
Center of the Computer Systems Group (**).

» Note files are designated on the Installation Tape
by the tormat NOONyyz, where:

+
{
]
|
[} yy » last three digits of the product numbers
| Z ®= current version of product,
{
!
|
{
\
i

(e,g,, COBOL is HP32213, version B}
1ts note tile 1s NOON213B)

With little effort, "nOOn" translates "noon”®,

|
!
software Subscription Center 1
p.0, Box 61809 |
1
]

+
i
{ »x Subscription Supervisor - COMMUNICATOR 3000
|
|
| sunnyvale, CA 94088

]

Article Reprints

By Editor

'

“Minicomputer System Power Requirements,’
from Mini-Micro Systems/July 1976;

reprinted

What's Happening to UPS (Uninterrupted Power Supply),
reprinted from Modern Data/July 1975;

Protecting Minicomputers From Power Line Perturbations,
reprinted from Cornputer Design/June 1976,

are the titles appearing in a DELTEC Corporation publica-
tion, Bulletin 124, 8/76.

If interested, Deltec Corporation is located at 980 Buenos
Ave_, San Diego, Calif. 92110. Telephone (714} 275-1331.

Still More Literature on Computer Security
By Editor

The development, implementation, and self-audit of a com-
puter security plan requires time and effort. Since every
facility has unigue conditions and requirements, no single
plan or set of specific steps can be developed to apply uni-
versally. However, there are a number of reference docu-
ments which may prove of use in the development or self-
checking of the plan. The following publications are par-
ticularly recommended:

o National Bureau of Standards, Guidelines for Automatic
Data Processing - Physical Security and Risk Manage-
ment, NBS, Washington, D.C., 1974, 92 pages.

e American Federation of Infarmation Processing Soci-

eties, Security System Review Manual, AFIPS Press,
Montvale, N.J., 1974, 109 pages.

e Canadian Institute of Chartered Accountants, Computer
Control Guidelires, CICA, Toronto, 1970, 135 pages.

Volume 2 No. 2 October 1978

23

24

Journal of the HP General Systems Users Group

e Factory Mutual System, Loss Prevention Data - Elec-
tronic Computer Systems, 1971, 7 pages.

e James Martin, Security, Accuracy, and Privacy in Com-
puter Systems, Prentice-Hall, Englewood Cliffs, N.J.
1973, 626 pages.

Other steps which may prove helpful in self-auditing include
the check of the entire security plan against those of other
corporate facilities and the use of simulated conditions to
test security and recovery plans.

Internal Audit

In an audit of the computer center by members of an
audit staff, the manager of the computer center may be
expected to provide a written computer security plan.
Typically, the auditors will examine the plan to assess its
consistency with these guidelines. In addition they will use
procedures and techniques to test the elements of the plan
to be sure that they adequately deal with security aspects
and are being carried out in an appropriate manner. While
these guidelines form a basis for the audit of the center,
auditors exercise judgment in reviewing any areas not
fully covered in the document.

Computer Security Conference
By Editor

Computer Security Institute will hold its annual conference
and exhibition in New York City at The Statler Hilton
Hotel, November 6th through 8th. For additional informa-
tion, contact Mr. John C. O'Mara, at Computer Security
Institute, Five Kane Industrial Drive, Hudson, MA 01749,
Telephone (617) 562-7311.

Contributed Library Software Spotlight

DBREBILD: A Data Base Restructuring Package

A Report

by Jason M. Goertz

Computer Systems Programmer
Whitman College Computer Center
Walla Walla, WA 99362

This issue’s software spotlight deals with one of several
Image Data Base Ultilities that are available on the HP 3000
User’s Group Library. Submitted by Linford Hackman of
Vydec, Inc., DBREBILD is a data base restructuring tool
that is intended to supplement the HP utilities DBLOAD
and DBUNLOAD, in addition to providing several functions
which allow certain changes in data base security without
the necessity of complete purging and rebuilding of the
base.

DBREBILD has 5 entry points, each providing a different
function:

UNLOAD - This function reads data from the data base
and writes it to a magnetic tape, with no linkage or ac-

counting information. This is similar to DBUNLOAD, ex-
cept that the data set and item names, which are used by

the LOAD entry point, are also written to the tape.

LOAD - This function reads a tape created by the UN-
LOAD entry point, and writes it to the data base. No
account checking is done, so the destination base need not
have the same name as the source base. (Copying of data
bases, however, will be described later). The function of
LOAD is similar to DBLOAD, except that all items are
referenced by name. In this point lies the versatility of
DBREB!ILD. New data items and data sets may be inserted
anywhere in the schema, not necessarily at the end of the
data set or data base description, as required by DBLOAD.
(The rules of IMAGE, however, still cannot be violated. For
example, masters must still appear before details, etc.) If
a data item length is changed, the necessary truncation or
justification is performed. New data items are initialized,
and new data sets are ignored, allowing new manual masters
to be loaded before the existing details they are linked to.
Also, the order of existing data sets may be changed.

COPY - This allows copying of one data base to another,
i.e., across group or account boundaries. The bases must be
identical, however, and the user running the program must
be the creator of the destination base, as well as have Privi-
leged Mode and System Manager capabilities.

ALTSEC - Allows the user to alter the security (read/
write levels) of any data item or set, by directly accessing
the root file. The user must be data base creator and have
SM/PM capabilities.

ALTPASS - Allows the creator of the data base to change
passwords of the user levels, also by directly accessing the
root file. Again, SM/PM capabilities are required for the
user running the program.

Using DBREBILD, in conjunction with DBLOAD and
DBUNLOAD, a great amount of versatility in changing data
base structure can be realized. Certain operations, such as
changing security levels and passwords, may now be done
interactively, rather than by a complete unload, pburge, re-
build, and load.]The most important thing that can be said
for DBREBILD, however, is that it works. Our site uses
IMAGE extensively, and we have used DBREBILD numer-
ous times to change our data base in ways that would be
impossible by any means other than writing programs to
pull the data out, rebuild, then write more programs to load
the data back in — a time-consuming and laborious chore,
at best. Any questions on this utility, or others in the
library, may be addressed to:

Jason Goertz

Whitman College

Walla Walla, Washington 99362

(Telelphone) {509) 527-5417

Volume 2 No. 2 October 1978

Journal of the HP General Systems Users Group

The Clearing House

Controller Permits HP 3000 Computer Link to
IBM 1403 Printer

From:

Roger E. Holmes & Associates
7900 Cowan Avenue

Los Angeles, CA 90045

(213) 670-5450

A printer controller developed by Spur Products Corp., L.os
Angeles, has made possible the mating of a Hewlett-Packard
HP 3000 minicomputer to an IBM 1403 printer.

The data processing system was installed at executive offices
of the Aerospace Group of VSI Corp., Culver City, Calif.,
when the company decided to replace its central IBM 360
computer with an HP 3000 minicomputer complemented
by satellite computers at remote locations.

The Spur controller is plug compatible with the HP 3000,
as well as the 1403 printer it was designed to operate.

DBREFORM:
A Database Utility for IMAGE/3000 Users

DBREFORM is designed to work with Hewlett-Packard
IMAGE/3000 software to allow data base changes not pro-
vided with existing IMAGE/3000 utilities.

Changing a data base schema is very straightforward; how-
ever, except for relatively minor structural changes, moving
data from the old design to a new design has required com-
plex programs which are usually discarded after one use.
Also, there are cases where a data base is loaded from a file
rather than from the keyboard and the same conversion
problems arise.

Another consideration, especially for the remote terminal
user, is the requirement for the use of magnetic tape and
operator intervention. Given sufficient disc space, the
terminal user can control all DBREFORM functions from
the remote terminal. However, in the case of very large
data sets, or when loading data from another computer, use
of magnetic tape is a DBREFORM option.

When loading data sets from files, there has been the neces-
sity of editing and/or translating input data. DBREFORM
has nineteen editing/translation subroutines which operate
on specified fields of the input record, allowing a data set
load in a single pass.

Use DBREFORM in place of complex data base redvesign
and data transfer programs which are used once and then
discarded.

DBREFORM is specifically designed to provide at least the
following functions:

1. Load a data set from an MPE file
(With input editing, e.g., EBCDIC and packed decimal
data to ASCII or binary)

N

Offload a data set to an MPE file
(Chained or Serial mode)
Delete a data set from a data base
Add a data set to a data base
Re-name data sets, change master to detail or vice versa
. Re-name data items within a data set
Re-order data items within a data set
. Merge data items within a data set
Merge several data sets into one data set
{can overcome QUERY limitation re: retrieval from
multiple data sets)
10. Re-name a data base and/or move from one account to
another

©CENO T B W

(Some applications require multiple passes)

One-time license fee is $975 per CPU including documenta-
tion. Return ORIGINAL and one copy of completed license
agreement to:

ERIN ENTERPRISES
P. O. Box 201
Chantilly, Virginia 22021

DBREFORM package will be sent postpaid on a 1600 bpi
tape.

90 DAY LIMITED WARRANTY

UNIVAC-1004 Emulator for Remote Job Entry

“CSM-1004-E": A UNIVAC-1004 Emulator for Remote
Job Entry from an HP 3000 Il to a UNIVAC-1100 Compu-
ter System. (CENTRO SPERIMENTALE METALLURGI-
CO — CSM ROMA)

1. The “CSM1004E" lets you transfer data between HP
3000 tl computer system and a remote UNIVAC-1100
computer system in a full multiprogramming environment
over the public telephone (switched) network or a private
leased line.

2. You can transfer data at rates of up to 4800 bits per
second, depending upon your choice of modem. Higher
transmission rates can be supported for certain apptications.
However, such determination must be made on particular
specifications.

3. The emulator, which runs under the contro! of the
HP 3000 multiprogramming executive operating system
{(MPE/3000), makes your HP 3000 computer system appear
to the remote processor either as a UNIVAC-1004 or
UNIVAC-9200.

4. The emulator is more flexible than the UNIVAC-
1004 and the UNIVAC-9200 in that it allows you to use
greater variety of input/output devices, including disc and
magnetic tape.

5. You invoke the emulator with the “:RUN
CSM1004E;PARM=LDN-CHAN" MPE command as de-
scribed in “UNIVAC-1004 Emulator Reference Manual."”

Volume 2 No. 2 October 1978

25

26

Journal of the HP General Systems Users Group

6. Youcan operate the emulator in either the job (batch)

or session {interactive) mode. The session mode allows you
to perform interactive commands such as: HALT, HALT-
GO-VOICE, START, PUNCH-ABORT, PRINT-ABORT,
etc. {See UNIVAC-1004 PROTOCOLL}.

7. Provided that your HP 3000 computer system has
more than one synchronous single-line controller, several
people may use the emulator concurrently. The number of
concurrent users is limited by the number of synchronous
single-line controller which are available. Prior to invoking
the emulator, you can specify which synchronous single-

line controller you wish to use through the “PARM’" param-

TR

eter in the ‘:RUN" command.

8. The emulator transmits in XS3-UNIVAC code. It per-

forms automatic conversion from UNIVAC-CARD code or
ASCII-CARD code (only a 64 character subset available in
XS3-UNIVAC code).

9. The emulator receives XS3-UNIVAC and converts
to ASCII-SUBSET code.

10. The emulator transmits performing short-record
truncation, and compacts blank elements, that are obvi-
ously restored in output.

11. The emulator works in half-duplex; however, as far
as files are concerned, it can alternate input and output
blocks, thus increasing transmission efficiency.

12. Comparisons have been made between the perfor-
mances of the "CSM1004E" and of the previous facility
we used in connecting HP 3000 with UNIVAC-1100 com-
puters. This facility was the “IBM 2780/3780 EMULA-
TOR" of the HP 3000, coupled with a HANDLER-2780
(property of INTEMA S.P.A.) operating on the UNIVAC-
1100 computer system. In these comparison tests, the
""CSM1004E" halved both CPU and elapsed times. How-
ever, these tests were made without taking advantage of
the possibilities described in point 11}. In normal routine
work, when these possibilities are used, HP 3000 telepro-
cessing elapsed time appeared to be reduced to a much
greater extent.

13. Among other things, the 2780-HANDLER previ-
ously used required about 10 K-words in the UNIVAC-
1100 CPU: the “CSM1004E" is controlled by EXECS,
needing no UNIVAC extra-memory. Also, HP 3000 mem-
ory space requirements are strongly reduced.

The "CSM1004E", also provides automatic accounting of
UNIVAC time and resources used.

For more details, please contact:

Mr. Vanni Giovanni

Centro Sperimentale Metallurgico SPA
Via di Castel Romano

10747 Roma (ltaly)

Telephone: 0039 6 6495340

TELEX 62173

Financial Planning and Accounting Packages

Foresight Systems, Inc. offers five systems for use with the
HP 3000 Systems:

Foresight, a financial planning and Management Report-
ing System;

Infonational’s General Ledger with automatic budgeting
and responsibility accounting system;

Infonational’s Accounts Payable System with vendor
analysis, check reconciliation and purchase order;
Infonational’s Accounts Receivable/Sales Analysis
System;

Infonational’s Fixed Asset Accounting and Control
System.

Each package includes installation by technical staff, user
training by a consultant, complete user documentation, and
upgrades.

Also available are maintenance agreements, plus technical,
training and consulting resources, and a user group applica-
tions library.

For additional information, contact:

John Gewecke

Foresight Systems, Inc.
1901 Avenue Of The Stars
Suite 585, Century City
Los Angeles, CA 90067
Tel.: (213) 277-2722

TSPOOL — Remote Printer Subsystem

TSPOOL is a subsystem which enables a remote keyboard
terminal to be utilized in much the same way as a line print-
er. Output files may be queued up by output priority and
printed in turn with any number of copies specified. Addi-
tionally, TSPOOL is able to perform most of the carriage
control functions recognized by the line printer. This
enables the user to print compiler listings, special forms,
etc., on a hard-copy keyboard terminal and have the output
appear just as it would on the line printer. Most existing
programs can switch output from the line printer to a ter-
minal via TSPOOL without modification. Any number of
terminals can use TSPOOL simultaneously and each may
have its own characteristics such as page size, etc.

TSPOOL is available by mail for the mere cost of getting it
to you (i.e., mag tape cost, mailer, postage).

You will receive a magnetic tape containing the source code,
object code, IMAGE data-base schema and an EDITOR file
containing complete user documentation. The subsystem is
written entirely in SPL and is for use on HP 3000 Series I}
and subsequent HP 3000 models. It most likely will run on
cx and pre-cx models but has never been tried. The magnetic
tape containing all files will be recorded at 1600 bpi.

Volume 2 No. 2 October 1978

Journal of the HP General Systems Users Group

TSPOOL is being made available to all interested parties on
a non-profit basis and is neither supported nor guaranteed
in any way. Questions, however, may be directed to the
author:

Terry Branthwaite

12413 S.E. 173rd Place

Renton, WA 98055

Tel.: (206) 271-3495 (Evenings)

To receive a copy. of TSPOOL, please send $15.00 to the
above address stating clearly your name and address. Allow
at least two (2) weeks for delivery.

Computerized Hiring and Rental System

During the latter part of 1977 and the beginning of 1978,
Freightways Data Centre Ltd., designed, wrote and imple-
mented an on-line computer system for Transport Container
Pool Ltd. Although the system has been initially used for
the business of container hirage it can be modified to suit
general hirage. The following gives some indication of the
system capabilities.

SYSTEM OBJECTIVES:

1. UP-TO-DATE INFORMATION
Up-to-date knowledge of all items. Eesentially the where-
abouts and status are the key attributes to be recorded.
The information must be accurate and available at short
call.

2. CONTROL
Control of all item movements. (For containers this
helps ensure a logical succession of trips.) IHogical or
unconfirmed movements are held by the system and up-
graded to confirmed when the ‘missing’ information is
entered.

3. PERMANENT/CASUAL HIRE
Facilities for permanent/casual hire are included in the
system. Allowance is made for permanent hire items to
be used on casual hire. {Allowance is made for documen-
tation of movement of permanent hire items.)

4. DEBTORS
The system caters for standard debtors requirements
such as invoice/statements, credit control, trial balance,
hirer information, debtors control.

5. ITEM ANALYSIS
Analysis of item movements providing utilization, status
and hirer usage.

6. REVENUE REPORTS
Revenue reports by depot, item type, representative,
customer.

7. ENQUIRY
The facility to ‘interrogate’ the system asking for detaits
of the information. (e.g., item information, hirer infor-
mation.)

The system is written in COBOL using structured program-
ming techniques as a multi-user package. IMAGE and
QUERY are used extensively. The system is currently oper-
ating on a HP 3000 on a timesharing basis utilizing to leased
telephone lines. The company using the system has two
Hewlett-Packard display terminals and a DEC LA180
printer.

The system is available for purchase or lease.

For further information, please write to:
The Manager
Freightways Data Centre Ltd.
Private Bag
Penrose
New Zealand

FOR SALE:

Grumman Controller for IBM 1403-N1 Printer. Can be
used with standard HP interface and cable.

Contact:

Ernie Broudy

VSI Corporation
Culver City, California
Tel.: {(213) 838-2131

Volume 2 No. 2 October 1978

27

28

Journal of the HP General Systems Users Group
c/o Hewlett-Packard General Systems Divisio
5303 Stevens Creek Bivd. :
Santa Clara, CA 95050

U.S.A.

ADDRESS CORRECTION REQUESTED

Linford Hackman
VYDEC, Inc,

9 Vreeland Road
Florham Park, NJ

07932

Journal of the HP General Systems Users Group

Volume 2 No, 2 October 1978

