First Quarter 1984
Vol. IV, No. |

HP Genera! Systems

J()urnal

9
‘

HP General Systems Users Group

Executive Office

Rella M. Hines, Executive Director
Empire Towers

7310 Ritchie Highway

Glen Burnie, MD 21061

US.A.

Executive Board

Jan Stambaugh, Chairman
Multnomah County Education
Service District

Portland, OF

Wayne Holt, Vice Chairman
Whitman College
Walla Walla, WA

Jerry Davis

Embry-Riddle Aeronautical

University
Daytona Beach, FL

John Eaton
London School of Business
London, England

Doug Mecham
Inland Systems Engineering
Redlands, CA

Ivan Rosenberg
Systems Design Associates
Morro Bay, CA

Chuck Van Ausdall
Commercial Office Products
Denver, CO

Users Group

Computer
Museum

CONTENTS
SPOTLIGHT
Image Locking and Application Design
Gerald W. Davidson
FEATURE ARTICLES

System Performance and Optimization
Techniques for the HP/3000
John Hulme

News About Pascal on the HP/3000
David J. Greer

Indexing Bryn Mawr's First Dean: An Essay In
Data Entry and Text Formatting
Jay Martin Anderson

In the Beginning
Marc Covitt

CONTRIBUTED LIBRARY CORNER
By Mark Wysoski
TIPS AND TECHNIQUES

Set Up Ideas for Local Users Groups
Marc Covitt

RETURN CARD
Bug/Enhancement Poll

The information in this publication may be reproduced without the prior
written consent of the HP General Systems Users Group, provided that

proper recognition is given to HPGSUG.

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

The 1981 JOURNAL Publication Schedule, as given below,
includes the deadlines for receipt in the Executive Office
of articles submitted for publication. Also given are the
months of publication.

HPGSUG JOURNAL PUBLICATION SCHEDULE

Article Quarterly Month of
Submission Date lssue Publication
October 15 First January
January 15 Second April
April 15 Third July

July 15 Fourth October

Contributions: HPGSUG Executive Offices

This publication is for the express purpose of dissemination of infor-
mation to members of the HP General Systems Users Group. The
information cantained herein is the free expression of members. The
HP General Systems Users Group and Editorial Staff are not respon-
sible for the accuracy of technical material. Contributions from
Hewlett-Packard Co. personnel are welcome and are not to be
construed as official policy or the position of the MHewlett-Packard
Company.

SPOTLIGHT

IMAGE LOCKING AND
APPLICATION DESIGN

Gerald W. Davison

9700 South Cass Avenue
Argonne National Laboratory
Argonne, lllinois 60439

When designing IMAGE-based applications it
is quite natural to design the database as the first
step. However, when the application is complex and
the number of on-line users will be large, the design-
ers should go immediately into a second iteration
of database design before designing the applica-
tion programs. This second iteration should involve
defining how locking will be enforced in the applica-
tion.

Once large-scale program design, and worse yet,
programming, is underway, the process of refining
the locking discipline will become an unexpected
and expensive exercise. A well-though-out locking
discipline will return benefits in reduced program-
ming and testing efforts. It will also simplify your
explanation to the users who may have a hard time
understanding what locking is or what it has to do
with the application in the first place. And once in
production, it is never pleasant to explain to the
users that the strange occurrences of degraded
responses and aborts are really locking difficulties.

IMAGE LOCKING The concept of locking as
implemented in IMAGE is fairly simple, and Hewlett-
Packard does a good job of explaining the concept
in the IMAGE manual. A brief summary is provided
here for later reference.

IMAGE can lock at three levels:

— The whole database.

— One dataset.

— A specific data entry within a datasef.

The calling program can request one of two lock
types:

— Unconditional (program waits until lock com-
pletes).

— Conditional (IMAGE returns immediately and
tells the session if the lock succeeded).

The calling session can have one of two capabili-
ties when locking:

— One lock before an unlock is required.

— Multiple locks before an unlock is required
(requires MR capability for the session].

If the database is opened in access mode |, which
is highly desirable when forming a locking discipline,

IMAGE enforces the following locking rules:

— No locks are required for reading even if
another session has the data locked (locking
may be desirable to ensure consistent datal.

— To modify a data entry using DBPUT,
DBDELETE, or DBUPDATE requires a look at
the database, dataset or data entry level.

— To add or delete a data entry in a manual
masfer dataset using DBPUT or DBDELETE
requires a lock of the entire dataset.

— IMAGE does not require the program to lock
associated automatic masters when a detail
dataset entry is added or deleted.

Several important things to remember about

IMAGE locking are:

— Successful locks on the same locking set queue
behind the current active lock causing all
requesting sessions to suspend.

— One DBUNLOCK removes ALL locks for the
requesting session on the specified database.

— All programs must lock on the same data item
it data entry level locking is used.

— A program can control locks and unlocks on
multiple databases independently.

— And, of course, when using multiple locks per
session all deadlocks require a halting of the
system in order to clear the deadlock for the
sessions involved.

LOCKING DISCIPLINE CONSIDERATIONS

Assuming that the application definition has enough
detail to design an initial database, how does one
design the locking discipline to go along with it?
Since the application is assumed to be complex
with many on-line users, it is very likely that the
database design and transactions will also be com-
plex. The following initial goals will help to ensure a
locking discipline that is flexible and one that
minimizes situations leading to poor user response
due to locking:

— All sessions will open the database(s) in access
mode | to ensure enforcement of the locking
discipline.

— All sessions will be given multiple lock capa-
bility via the MR capability; multiple locks
are required for complex transactions on
complex databases.

— If the application will allow, the usage of the
database locking level should be forbidden
when on-line sessions are executing (some
batch processes may use database locking
to keep all other conflicting users out).

— Since dataset locking prevents all other
sessions from updating the locked dataset,
the usage of the dataset locking level should
be kept to an absolute minimum when on-line
sessions are executing.

— To avoid lengthy session waits on data locked
for extended periods by other sessions, use
conditional locking whenever it is possible and
unconditional locking when required.

At this point the definition of the locking disci-
pline becomes application dependent. Several con-
cepts are very helpful when defining the locking
discipline for an application with dozens or scores
of datasets and scores, if not hundreds, of programs:

— Key lockable entities.

— Bidding for access to key lockable entities.
— Bidding priorities.

— Terminal user think time.

In the discussion of key lockable entities, consider
an application that integrates the purchasing, re-
ceiving, and accounting functions of a large organi-
zation. Instead of thinking of scores of lockable
entities, one per dataset, it is beneficial to think of
key entities such as requisitions, purchase orders,
receipts, and invoices. These broader concepts can
cover a large portion of the datasets in the applica-
tion.

In the preceding example a particular purchase
order is a key lockable entity which a unique
terminal session can bid for via locking at a data
entry level. These entities can be requested or bid
for via conditional locking as soon as the entry is
identified to ensure that no other session has the
desired data associated with the purchase order.
If the particular entity is busy, no great harm is
done if the terminal user is told to retry later. If
the bid succeeds, then the session can proceed
with the transaction.

The idea of priority of bidding on key lockable
entities is also very important to the locking dis-

cipline. Using an example of a terminal session
bidding on a receipt associated with a purchase
order, the session bids conditionally on the higher
priority purchase order number before locking on

the lower priority receipt associated with that @7

purchase order,

The concept of terminal user think time {when
the user goes to lunch in the middle of the trans-
action] is essential to the definition of the locking
discipline. Disregard for think time can cause severe
user response degradation if key entities are held
by one session for extended periods of time. Typi-
cally, these key entities are of great interest to many
sessions working on totally different functions or
the same function but with a different key value.
Examples could be one session undating vendor
information at the same time a session creating a
purchase order is trying to update vendor totals.
Or two sessions trying to create a purchase order
and both trying to get at the next purchase order
number to be assigned. This situation is troublesome
due to the absense in IMAGE of the ability to selec-
tively unlock specific locked entities. It is an all or
none situation when using DBUNLOCK. Even though
the situation is difficult, the locking discipline re-
quirement is very clear. (DO NOT LOCK THESE
ENTITIES OVER TERMINAL USER THINK TIME!)

DATABASE AND APPLICATION DESIGN CON-
SIDERATIONS Once the locking discipline has been
thought out initially, the designer should consider
the two locking constraints imposed by IMAGE that
affect database and application program design.
Briefly stated, these considerations are:

— The need to lock manual master datasets in
their entirety for any add or delete.

— The automatic removal of ALL locks on a

given database when DBUNLOCK is issued.

The first consideration involves the basic design
of hashed keys and synonyms in IMAGE. It appears
unlikely that it will ever change. The second con-
sideration involves the option to selectively unlock
entities, and this should be on every IMAGE user's
list of highest priority items to be changed by
Hewlett-Packard.

The need to lock entire manual master datasets
for an add or delete suggests changes to the date-
base design. Since it is highly probable that key
locking entities will be held for extended periods of
time, including across terminal user think time, it 0

is desirable that these entities reside in detail data-
sets and not in manual masters to avoid conflicts
with sessions that must lock entire manual masters.

A general solution to the problem of locking an
entire manual master dataset is to keep the usage
of manual master datasets to an absolute minimum
by using only detail datasets with automatic mas-
ters. This requires one extra disk access to retrieve
the data initially or to add or delete it. However,
the usage of detail datasets will simplify the design
and reduce the probability of locking difficulties.

The need to unlock all locked entities before a
complex transaction is complete usually is the result
of a desire to free an entity which is of general use
to many sessions as quickly as possible. One solution
is to require the application program to set an in-
process flag at the highest priority key locking entity
associated with the transaction. This will allow the
session to retain control of the transaction data
without another session claiming it during the un-
locked period. This solution is dangerous since
session aborts will leave the in-process flag set. This
will cause the key locking entity, such as a purchase
order and all of its associated data, to be unavaila-
ble to any session until the in-process flag is cleared.

A secondary solution would be fo move these
high-usage entities o another database which would
allow the session to unlock only those entities that
other sessions may need. Although secondary data-
bases have associated overhead, the simplified
application program design and reduced code to
relock may be substantial considerations.

CONCLUSICN Although the design of a locking
discipline may seem to be a secondary concern
when designing your application database and pro-
grams, several IMAGE considerations and the need
to provide reliable programs with good user re-
sponse should place this task very early in the design.
In order to be effective, the design of the applica-
tion locking discipline must take place in concert
with the database design.

FEATURE ARTICLES

SYSTEM PERFORMANCE AND
OPTIMIZATION TECHNIQUES
FOR THE HP/3000

John E. Hulme
Applied Cybernetics, Inc.

INTRODUCTION The purpose of this paper is fo
introduce the reader to certain techniques which
can improve system performance, throughput, and
run-time efficiency on HP/3000 computers. These
improvements will typically reduce response time
and increase data processing productivity.

This paper will not simply tell you what to do and
what not to do. In many cases there are trade-offs
involved and it is more important to understand the
principles behind the techniques than the techniques
themselves. And because analogies often help us to
learn by giving us a new perspective, we will make
use of a non-data-processing illustration.

SOME BASIC PRINCIPLES The first thing to under-
stand is that any given computer can execute a
finite number of instructions in a fixed amount of
time. When that theoretical limit is reached, no
amount of tuning can ''squeeze’ extra instructions
into the computer. For the most part, however,
computers do not bog down because we ask them
to do too much, but rather because we cause them
to trip over themselves in the process of doing it.
This leads to the second important principle: At
any moment the computer is either (1) doing pro-
ductive work, (2] getting ready to do productive
work, or (3] waiting on some external action before
it can proceed with productive work. As a program
is initiated, thereby causing a certain sequence of
instructions to be executed, we will call the execu-
tion of those instructions ''productive work".
Whether the "productive work" is really necessary
or not, and whether it is efficiently or inefficiently
organized, are issues to be addressed later. But a
more significant fact of computer life is that usually
only a small percentage of the computer's time is
spent executing application program instructions.

A CRUDE MODEL To illustrate these principles,
imagine a "library for the blind”". The librarian sits
behind the desk waiting for a blind person to walk
into the library. This is the ""waiting period". When
the blind person arrives, the "getting ready'" period
begins. The blind person tells the librarian which
book to retrieve and by one method or another the
book is retrieved. The librarian now begins the

"productive work" phase, reading to the blind per- &

son from the selected bcook. When the reading is
completed, the librarian may return the book to the
shelf or leave it on the desk. Then a new waiting
period begins.

If the library is a busy one, we can imagine that
one or more assistants might be hired to transport
the books between the librarian’s desk and the book
shelves. Let's imagine that there is one assistant for
each wing of the fibrary. The librarian can do more
PRODUCTIVE WORK [reading to the patrons),
spending less time GETTING READY (still looking
things up in the card catalog, but now dealing with
the assistants instead of transporting books). A new
type of waiting is introduced, however: waiting for
assistants to bring books back.

In this analogy, the librarian represents the com-
puter's central processing unit (CPU), by which all
the productive work is accomplished. Like our
imaginary library, the HP/3000 has only one CPU.
To improve throughput we must maximize the
CPU's productive time.

Each patron represents a log-on session or job.
The librarian's desk represents the computer's main
memory. It is of a limited size, merely a workspace,
in comparison to the stacks of book shelves which
correspond to the mass storage devices. Finally,
each assistant represents an i/o channel transferring
data to and from disc, for example.

While illustrating some important concepts, this
analogy does not accurately model the run-time
environment of the HP/3000, or any other com-
puter. How could we refine the model to make it
more realistic?

THE MODEL REFINED At the risk of distorting
the human situation, let me suggest four refinements
which make our model more nearly resemble the
actual computer processes:

I. The "library" should be regarded as a collec-
tion of

(a) read only instruction manuals and
reference tables (programs and con-

stants) and
(b) numerous loose leaf volumes (files) con-
taining sheets of current figures and
data (records) which may be period-
ically replaced, revised, removed, or

added to.
2. The "librarian’s" job should be generalized to
include any type of service that can be per-

)

formed on the basis of pre-printed instructions
and supplied data.

3. The computer always deals with a COPY of
whatever is stored on the disc, and usually
just a few records at a time. So let's imagine
that instead of asking a library assistant to
fetch a particular book, the librarian will
specify a limited number of paragraphs or
data sheets and will ask the assistant to bring
a photocopy of the desired paragraphs
(colored paper for instructions: white paper
for data).

4. Because the processing speeds of a computer
are so great, our model operates in slow-
motion by comparison. Allowing that the
librarian can do in one hour what an HP/3000
can do in one second [i.e., using the scale of
one hour for each second), the assistant could
handle 20 to 60 requests per hour, and the
equivalent of a 60-word-per-minute typist
could enter one character every |12 minutes.
A 2400-baud rate would be equivalent to a
maximum of 5 characters transmitted per
minute, and a 600-line-per-minute printer
would correspond to one line every 6 minutes.

SLOW-MOTION PERFORMANCE SIMULATION
Visualize this scenario from the patron's point-of
view (refer to figure 1): You walk into the library,
find an empty cubicle (terminal), and make yourself
comfortable. You begin to formulate and transmit
your library card number and password (log-on) at
the rate of no more than 5 characters per hour. (If
it will relieve the agony, you may imagine that you
spend the time drawing very large, very elaborate
block letters). Depending on the facilities available
in the cubicle, you will either transmit each letter as
it is formulated or accumulate several characters
(maybe even hundreds) and transmit them in a burst.
In either case, you transmit each letter separately
by ringing a bell, and, when you have the librarian's
attention, holding up the card with the letter on it.
The librarian records each character of your mes-
sage on a notepad corresponding to your cubicle,
then continues with his other business. Finally you
send a character which means ''that's the end of
what I'm sending you"'.

The librarian eventually verifies that you are a
qualified user of the library and sends you back a
standard message which allows you to proceed.
This process may require the librarian to send his
assistant to the book shelves several times, e.q., to
get a procedures manual, index of users, table of
passwords, welcome message, etc.

BOOK SHELVES

Figure |. The Library

Next, you painstakingly tell the librarian the name
of an instruction manual [program) you want him to
follow in performing some service for you. He has
the assistant get him a copy of the first paragraph
(segment) of the instruction manual (unless a copy
happens to be sitting somewhere on the desk
already). He also gets a copy, your own personal
copy. of a worksheet (your date stack) associated
with the specific instruction manual you have
specified.

In case there is not enough empty space on the
desk for these papers, the librarian first clears some
space by either (a) throwing away one of the instruc-
tion sheets, (b) having his assistant put the worksheet
for some other patron in a special holding file
[virtual memory), or (c) having his assistant take one
of the data sheets back to the loose-leaf it was
copied from and replace the original with the new
version.

The librarian now goes to work following the in-
structions you have requested. This will continue
until (a) he comes to a point in the instructions which
specifies he is to send certain information to you
and/or ask you for additional input; [b) he comes
to the end of the page or is otherwise instructed to
refer to another page, one which is not currently on
the desk: (c] the instructions require that informa-
tion be fetched from the book shelves, taken there
to be filed, or sent to some output device; (d) a
predefined length of time elapses (a 500 micro-
second quantum corresponds to one-half hour in our

model); or (e] the librarian completes his assignment
and disposes of your worksheet.

In any of these cases, the librarian will go back
to work for one of the other patrons, provided he
has all the resources necessary to do so. If not, he
will wait {until the necessary information is fetched
by the assistant or transmitted by one of the pa-
trons). Depending on what you've asked the librarian
to do, and how busy he is doing things for the other
patrons, it may take hours or even days before he
gets back to you. But then again, it may take days
for you to formulate the equivalent of one screen
of input, too (at the rate of 5 characters per hour).

THROUGH THE EYES OF THE CPU Now let's
reverse roles and look at the situation from the
librarian's perspective. Try to imagine yourself as a
calm, unemotional, purely methodical being who is
never responsible for mistakes because he does
precisely as he is told. You couldn't care less if
someone gets poor response fime; you aren't to
blame, because you only rest when there's nothing
for you to do. In fact, you purposely set things
aside during peak demand periods to do in your
spare time. But you can't take credit for that either

— you're only following directions from the MPE
handbook.

2:08:17 Ring! There's the bell in cubicle five.
He's holding up the letter "R, Write

it down on memo pad #5 {line buffer).

2:08:20 Here's the library assistant with the rec-
ord session # 12 requested. Qops! The
worksheet for session # 12 has been set
aside (swapped out to the system disc).
Send the assistant for it and wait a

minute.

2:08:24 A ring from cubicle #8. That's a car-

riage return. Time to reinitiate session
#8. Make a note to send the assistant
for the worksheet when he gets back.

2:08:29
2:09:00
2:09:16

Wait some.
Wait some more.

Oh good, something to do (the observ-

er's feelings, not yours). A ring from
cubicle #3. A "'7". Write it down.

Here's the assistant. Put worksheet # 12
on the desk. Send him back for work-
sheet #8 — no, there's not room for it.
Give him the worksheet for session #5
and send him to file it (we're waiting for
input from cubicle #5). We'll send him
for worksheet #8 next time.

2:09:20

2:09:24

2:09:28

2:09:40

2:09:52

2:10:04

2:10:14

2:10:16
2:10:19

2:10:26
2:10:28

2:10:40

2:10:52

2:11:04

2:11:09

Okay, now to get to work on task #12.
First set the timer for 30 minutes. Now
add | to J and put the result in K.

Move W6 to W2. Move . . . hold it, e
there's another ring from #3. Say 47
that's only a few seconds . . . must be

a block-mode terminal. Write down the
"'9" and go back to work. Move X to Y.
Call the procedure "XFORM". Oh, it's

on the desk already — it hardly ever
gets thrown out, that's because nearly
every program uses if.

Another ring from cubicle #. This time
it's @ minus sign. Continue with
"XFORM". Convert the first letter of
Y to upper-case. Now the second letter.
Now the third. Now the fourth. That's
all. Return to the main program. It's
still in memory. Move the new Y to F3.

Another ring from cubicle #3. A field
separator. Resume task #12. Perform
FLAG-SET subroutine. It's in another
segment, one that's not in memory.
Make a note to send for it. Suspend task
#12 for a minute.

Cubicle #3 again. Just a blank, but e
write it down anyway. That's "'7-9-minus- *t
field separator-space’, so far.

The assistant has finished filing work-
sheet #5. Send him now for worksheet
#8.

Cubicle #3. Another space.

Interrupt from the printer saying the last
line has printed successfully. Now re-
activate the spooler job —it's instruc-
tions are still on the desk and so is the
buffer containing the print-line. Initiate
i/o transfer.

2-second wait.

Cubicle #3. A third space.

| 2-second wait,

Cubicle #3. A fourth space.

[2-second wait.

Cubicle 3. A fifth space.

[2-second wait.

Cubicle #3. A field-separator. ﬂ

5-second wait.

Worksheet #8 is here. Send assistant
to get a copy of FLAG-SET routine.

'2:||:|6

Now to process this input from cubicle
#38.

Edit first field. OK. Edit second field.
OK. Move first field to RI.

Cubicle #3. The letter "H".

Move second field to K2. Edit third field.
Isn't numeric but should be. Transfer to
error handler in same segment.

2:11:29 Cubicle #3. The letter "O".

Prepare output to tell cubicle #8 about
error. Comment: It's a shame, but since
he's in block-mode, he'll have to retrans-
mit the whole screen again, after cor-
recting the error in field 3. And who is
to say other errors might not be
detected after that? And vyou, the
librarian, can receive those 873 char-
acters, one every |2 seconds for nearly
three hours. But you don't mind. It's
only a job.

2:11:40 Cubicle #3. The letter "'V".

Finish putting error message in the out-
put buffer. Initiate transfer to cubicle
#8. Mark task #8 eligible to be
swapped out,

2:11:47 Cubicle #11. The letter "P".

2:11:52 Cubicle #3. The letter "E'".
FLAG-SET routine is here. Continue
with task #12. Move | to FLAG. Add
| to COUNT. Exit back to mainline.
What! The assistant had to fetch a

separate segment just so we could do
+h43+?

2:11:59 Cubicle #11. Oh, oh. Two block-mode
devices transmitting at once! Record
the letter "'

2:12:04 Cubicle #3. The letter "R".

Comment: Stop, |'ve had enough of dinging bells!
This place sounds like a hotel lobby, not
a library!

OBSERYATIONS As this analogy indicates, there
are three factors which reduce overall system per-
formance:
a. unnecessary disc i/o (most serious),
b. unnecessary terminal i/o (too common), and
c. unnecessary CPU usage [rarely the problem
in an on-line environment).

EXCESSIVE DISC I/O The primary cause of exces-
sive disc i/0 is INADEQUATE MAIN MEMORY to
hold the required work space (stack and data

segments) for each concurrent process, plus all
frequently referenced program segments, plus a
reasonable mix of infrequently referenced program
segments.

The HP/3000 is very good at handling multiple
concurrent users, even when they won't all fit in
memory together. In fact, the use of virtual memory,
combined with a well-designed algorithm for select-
ing which segment to overlay, allows the system to
operate efficiently even in cases where a single
program exceeds the limits of main memory.

The thing to remember, however, is that code
segments put a relatively small load on the system
while data segments put a potentially disastrous
load on the system. In the first place, code segments
can be split up and made as small as the program-
mer wants them to be. Secondly, they do not have
to be rewritten to virtual memory when the main
memory space is to be re-used: they are simply
overlaid. Data segments, on the other hand, tend
to expand, and can be split only with difficulty.
Since their contents may change, they must be
rewritten each time the process is swapped out,
and reread each time it is swapped back in. Finally,
whatever data space is required must be repeated
for each process that is active. Therefore, if you
are supporting 20 terminals, any reduction in data
requirements would produce 40 times the benefit
that an equivalent reduction in code requirements
would produce.

Aside from upgrading to a large machine, a
shortage of main memory can be averted by:

a. reducing the number of concurrent processes
(not an attractive option),

b. reducing the average stack or data segment
size,

c. reducing the size of the average program
segment,

d. organizing program segments better so that
out-of-segment transfers occur less often to
non-resident segments and so that often-used
code is collected in compact segments that
are likely to stay in memory, or

e. some combination of the above.

When adequate main memory is available, swap-
ping is unnecessary, and disc accesses (which are
very expensive in terms of time) wlll be expended
strictly for data retrieval and storage. Once swap-
ping begins, the computer's "productive' activities
are at the mercy of "waiting". In the worst case,
"threshing" occurs, which means that every time a
session gets a turn at execution, either the program
segment has been overlaid or the session's work
space has been swapped out.

It is worth noting that the use of IMAGE (or of
KSAM) causes the allocation of extra data seg-
ments. Specifically, each IMAGE data base that
is open requires a data segment large enough to
hold one copy of the root file plus four complete
data base buffers. If a program accesses multiple
data bases, or if the root file or buffers are large,
the memory requirements will be substantial, and
with many terminals running data base applications,
the memory requirements can add up very quickly.
Granted, the advantages of using a powerful
access method may outweigh the costs of additional
memory demands, but such tools should be used
carefully and not indiscriminantly.

It should also be noted that the use of block-
mode requires extensive buffers in the stack {at least
as large as the largest screen to be transmitted). The
use of VIEW/3000 may add another 6000 bytes of
buffer in each user's stack, not o mention the extra
data segments created by its use of KSAM. If you
have 20 users, this amounts to 120K extra bytes of
memory or more.

EXCESSIVE TERMINAL |I/O Major causes of

excessive terminal i/o include the following:

a. Transmitting unnecessary characters (trailing
spaces, leading zeroes, insignificant digits,
etc.] fo the computer, a necessary conse-
quence of fixed-format or block-mode input.

b. Transmitting the same data to the computer
more than once, as occurs in block-mode when
a whole screen is retransmitted to correct an
error in a single field.

c. Retransmitting to the computer data which
has not been changed since it was received
from the computer. This too is the result of
block-mode transmission.

d. Repeatedly displaying prompts at the term-
inal instead of using protected background
forms.

Since each character of input consumes critical
resources, every effort should be made to ensure
that only significant data is transmitted (no extra-
neous zeroes or spaces and only those fields that are
new or have been modified).

It is not only wasteful of computer power, but
also destructive of operator morale, to wait until a
whole screen of data has been entered and trans-
mitted to the computer before discovering that the
screen is invalid due to a duplicate key or an unre-
cognized search-item value, etc.

It is equally inefficient (for the computer, that is)
to display a screen of data, have the operator
update a single value and transmit the whole screen

back to the computer. In an extreme case, this could
amount to over a thousand characters transmitted
just to change one or two characters.

EXCESSIVE CPU USAGE Besides the costly i/o £

overhead, it is altogether possible that a retrans-
mitted screen will be completely re-edited, values
packed and unpacked, and fields reformatted even
though only a single field was updated, and maybe
even if NOTHING was updated. This is one cause
of unnecessary CPU usage.

Most editing and reformatting done in COBOL
subroutines requires excess usage to begin with, and
it is far better to allow such work to be done in SPL
subroutines, where it can be done efficiently. Includ-
ing such subroutines in the COBOL programs also
causes bulkier segments, which is likely to increase
the need for swapping. The best solution is to incor-
porate all editing within the ferminal-handling
module itself, since it is already being shared by all
on-line programs and is therefore likely to remain
constantly in main memory. There are a multitude
of factors which can unnecessarily increase the so-
called "productive work' which the CPU has to do.
Because computers are seldom CPU-bound in an
on-line environment, few people exert the effort to
truly optimize CPU performance anymore. When-
ever it is a problem, more careful analysis of the
program(s) in question will usually yield a more
efficient method of solving the application problem.

Often, more careful analysis will also yield a
better solution from the point of view of disc i/o
as well, both in terms of swapping, code-segment
switching, and data retrieval and storage. One
word of warning, however: more efficient solutions
(CPU-wise] are very often more complex, and to the
extent that they increase stack space, or code-
segment size, or they require more transfers from
one code-segment to another, they may prove
counter-productive.

One situation in which heavy CPU usage can be
very detrimental is when on-line processes are com-
peting with batch applications for CPU resources.
This can be vividly illustrated by running a COBOL
compile, an Editor GATHER ALL, a sort, or the
BASIC interpreter at the same time on-line pro-
grams are running. Block-mode applications exhibit
many of these same tendencies and can severely
impede response-time for character-mode applica-
tions when both types are running concurrently.

SPECIFIC OPTIMIZATION TECHNIQUES

I. Re-segment programs so that no segment
exceeds %5000 words.

2. Set the blockmax parameter on
schemas as low as possible.

IMAGE

N

i)

o,

10.
.
12.

Use extra data segments where possible and
free them up when finished, rather than
increasing stack space for large temporary

buffers.

Don't keep files open unnecessarily.

Don't abuse IMAGE:

a. eliminate sorted chains where possible.

b. carefully evaluate tradeoffs of increasing
or eliminating secondary paths in detail
data sets.

c. use "'@;" or at least "*;" for item lists
wherever possible.

d. only use binary keys (in master file) when
overlapping keys can be avoided.

e. don't let synonym chains get very long.

f. when loading master data sets, store only
primaries on the first pass, making a
second pass for secondaries.

keep master data sets less than 85% filled.

periodically reorganize detail data sets
that have long chains associated with a
frequently-accessed path (puts consecu-
tive records in the same physical block).
i. keep the number of data sets in a data
base as small as practical without requir-
ing many programs to open multiple data
ases.

SO

i. keep IMAGE record lengths to a minimum.

Have operators exit programs when not in
use.

Use a field-oriented terminal handler which
performs standard edits for you.

Use formatted screens with protected back-
ground whenever the application is appro-
priate to such use.

Keep terminal i/o buffers small; if possible,
eliminate block-mode /0 altogether. (Don't
use block-mode and character-mode i/o at
the same time.)

Don't use VIEW without a lot of memory.
Don't use DEL at all.

Run CPU-intensive jobs (including compiles,
preps, and Editor GATHER ALL) when on-

line applications are not running, or at least
run them in a lower-priority sub-queue.

Set the system quantum for a shorter period
than recommended in the MPE manual [but
don't overdo it — some experimentation may
be necessary).

NEWS ABOUT PASCAL ON THE HP/3000

David J. Greer
Robelle Consulting Ltd.
#130-5421 10th Ave.
Delta, B.C.

V4M 3T9

Recently, there has been much talk about the pro-
gramming language PASCAL. This article discusses
which PASCAL compilers are available on the HP/
3000, what kind of state these compilers are in, and
where PASCAL is going on the HP/3000.

HISTORY PASCAL was developed by Niklaus
Wirth in Zurich. The principal aims were to provide:
(1) a language in which structured concepts could
be taught easily; and, [2) a language that would be
relatively easy to implement on many machines.

Both these original aims have direct application
to business and scientific programming. The
language supports structures which emphasize
structured coding concepts. Programs written in
PASCAL tend to be structured, which in turn makes
them easier to maintain and understand. Because
STANDARD PASCAL has been implemented on
many different machines, including the HP/3000, it
is a good vehicle for writing portable software.

PORTABLE PASCAL P4 In order to make PASCAL
available on many machines, Urs Ammann, K. Nori,
Ch. Jacobi, K. Jensen and H. Nageli wrote the
portable PASCAL-P4 compiler, which is written in
PASCAL itself. Approximately 80% of the PASCAL
compilers in the world are based on this compiler.
The P4 complier takes PASCAL source code and
compiles it into symbolic code for a hypothetical
stack machine called a "'P-machine'". The individual
implementer of PASCAL writes an assembler or
interpreter for the "pcode". Later, the original
compiler source is changed to generate the host
machine's object code directly. The following is a
schematic description of how pcode works.

PASCAL > PCODE

Source

> Object
Code

Assembler or
Interpreter

HP/3000 PASCAL-P4 In the HP/3000 contributed
library, there is a version of PASCAL developed by
Grant Munsey, Jeff Eastman and Bob Fraley. This

Compiler

[continued on page 19)

PASCAL 2.7-V

HISTORY PASCAL 2.7-V is another version of
PASCAL for the HP/3000, developed in Vancouver
as a project in compiler design at the University of
British Columbia. This compiler is a modified version
of the one that is available in the contributed
library.

MAJOR PROBLEMS Two of the problems in using
the Contributed library PASCAL are that it is
somewhat difficult to specify all of the command
sequences for invoking the compiler {although this
has been fixed with UDCs), and the compiler is very
slow. Both of these problems stem from the long

process involved for getting from PASCAL source
code to USL files.

PASCAL 2.7-V does away with the assembly
stage of the compilation process. Instead PASCAL
source code is translated directly into SPL code.
The PASCAL compiler then invokes the SPL com-
piler to produce the USL file.

PASCAL > SPL

Source

> USL

SPL
Compiler

Compiler

By eliminating the pcode stage of the process,
20-40% savings in elapsed compilation time were
realized. Also, by having all of the compilation stage
in the compiler, it was easier to use the compiler.
The SPL stage of the compilation process was not
eliminated because it was too difficult to work with
USL files directly.

MINOR PROBLEMS The original contributed com-
piler did not print error messages. The compiler now
prints a summary of all of the error numbers which
occurred during compilation, along with their
associated error messages. Also, a compiler option
has been provided which causes all PASCAL
reserved words to be underlined. This greatly en-
hances the readability of PASCAL programs.

ATHENA COMPATIBILITY With the Athena MIT
release of MPE {2011), all Pascal programs on the
HP/3000 ceased to work, including all of the con-
tributed versions of Pascal. The cause of this was
that, as of the Athena release of MPE, Qinitial was
two words higher in the stack. Since Pascal made
certain assumptions about where Qinitial would be
in the stack, Pascal programs stopped working. Pas-
cal 2.7-V fixes this bug by making no assumption
about where Qinitial should be.

STANDARD PASCAL There is a large effort world
wide to provide a comprehensive standard for
PASCAL. Any compiler which claims to compile
STANDARD PASCAL must compile all parts of the

defined standard correctly. In order to help imple- €
menters and users of PASCAL find out whether

their particular compiler meets the standard, A.
Sale and R. Freak have written a suite of PASCAL
programs to test PASCAL compilers.

The suite consists of approximately 300 PASCAL
programs. Each program is compiled and executed
by the PASCAL compiler. The results of each pro-
gram are analyzed for errors. If a compiler meets
STANDARD PASCAL completely, then there will
be no errors from any program in the suite.

PASCAL 2.4-V was tested using the suite. [t had
approximately as many errors as other compilers
based on the original P4 compiler. This is to say that
the compiler did about average. Several errors were
fixed with PASCAL 2.5-V and later versions.

USAGE My version of PASCAL is currently is use
at about a dozen installations around the world.
Many installations are using Pascal-S (see Appendix
) for teaching PASCAL. Also there are two instal-
lations using PASCAL to convert software from
other machines to the HP/3000.

AVYAILABILITY Because we need a PASCAL com- 0

piler to develop programs now at Robelle Consult-
ing, | have been and will be maintaining this PASCAL
Compiler. This is not a supported Robelle product:
but, for $100 U.S. (to defray costs), we will send a
1600 BPI copy of the latest version to interested
users ($200 if we have to send a bill or convert the
tape to 800 BPI). As of November 1980, the latest
release was VERSION 2.7-V [bugs fixed regarding
large VALUE parameters, programs with only one
simple global variable and production of the SPL
listing; ARRAY OF FILE is now supported). The
previous version 2.6-V provided support for the
ATHENA release of MPE. Inquiries can be directed
to me at Robelle Consulting Ltd., #130-5421 |0th
Ave., Delta, B.C., V4M 379, Canada. Phone: {604)
943-8021.

FUTURE ENHANCEMENTS Two major problems
(as well as many minor ones) remain to be fixed in
the compiler, if it is fo be used in a commercial
environment. The first is that character strings must
be stored with one character per word, rather than
one character per byte. This needs to be fixed so
that variables take up less room, and so that

PASCAL programs can communicate directly with
HP subsystems such as IMAGE.

)

The second problem has to do with PASCAL's
definition of parameters to procedures and SPL's
definition of parameters to procedures. SPL is known
as a programming language with weak type check-
ing. This gives the programmer more flexibility, but
provides more opportunity for making mistakes. It
also allows IMAGE parameters to be defined very
loosely. For example, a data set can be defined by
a character string representing the name of the data
set, or by an integer variable with the set number.
PASCAL does not allow such flexibility in param-
eter passing, so that some mechanism will have
to be set up to allow procedure calls to subsystems

such as IMAGE,

MERGING CONTRIBUTED PASCAL
WITH HP/PASCAL

At the Swiss Hewlett-Packard General Systems
Users Group (HPSUG) meeting, HP representatives
said that HP would provide a supported PASCAL
compiler for the HP/3000 some time in the next
six to eighteen months. Because of this, PASCAL
2.7-V should be viewed as a temporary measure
which will be replaced once HP introduces its com-
piler. It can be used for staff training and for the
development of programs that will be recompiled
on the HP unit when it becomes available.

PASCAL/3000 The HP compiler is to be based on
an internal HP standard for PASCAL. The HP/ 1000
PASCAL compiler which was recently introduced is
also supposed to follow the internal HP PASCAL
standard. Any comments | make about PASCAL
for the HP/3000 are taken from how things are
done on the HP/1000.

If PASCAL/3000 looks very similar to PASCAL/
1000, then we can all look forward to an excellent
implementation of the language. PASCAL/1000
provides for all of the features which take advan-
tage of the HP/1000 operating system, but they
stay within the confines of PASCAL. Of special
importance is the inclusion of a compiler option to
permit the compiler to compile STANDARD PAS-
CAL only. By turning this option on, only the
PASCAL source that followed the standard would
compile.

Storage allocation in PASCAL/ 1000 is done in
a very flexible manner. Two restrictions of the con-
tributed versions of PASCAL are that they do not
allow for double word integers, or for sets with
greater than 62 elements. PASCAL/1000 permits
sets with up to 32767 elements, and only allocates
as much storage as needed. Similarly, both single
and double word integers may be declared in a
way that is very natural for the PASCAL language.

PASCAL/ 1000 also allows for character strings
to be stored as one character per byte, instead of
just one character per word. Procedure calls are
allowed to external procedures written in either
PASCAL or HP/1000 assembler.

Assuming PASCAL/3000 will follow the lead of
PASCAL/1000, it should be a very successful com-
piler. The only problem that | don't know the solu-
tion to is how PASCAL/3000 will permit calls to
HP subsystems like IMAGE, while working withig
confines of PASCAL type checking. Smpute
WHAT TO WATCH FOR If you are only interested
in using the contributed versions of PASCAL to
write portable software, then there should be no
problems converting your PASCAL programs to
work with PASCAL/3000.

If your programs are designed to work on the
HP/3000 only, and if they make any assumptions
about the internal storage of PASCAL, or the pa-
rameter passing mechanism, then problems could
arise. For example, all variables declared INTEGER
will take up more storage in PASCAL/3000. Also,
the way in which direct access is done to MPE files
will change with PASCAL/3000, and file param-
eters will most likely not be passed in the same
manner as they are now.

The users who will be affected the most are those
that call SPL or FORTRAN routines using the cur-
rent PASCAL compilers. After recompiling with the
new compiler, the programs may not work.

WHAT TO DO NOW

Since it may be some time until the HP PASCAL/
3000 is available, you want to look at PASCAL
2.7-V as a filler. PASCAL 2.7-V will compile almost
all features of STANDARD PASCAL and provides
a means of learning the language. Included with
PASCAL 2.7-V is "A Programmer's Introduction to
PASCAL" by Bary Pollack and David Greer. This
very brief document reviews the language PASCAL
in terms of other languages, such as ALGOL or
SPL. Interested people can discover some of the
very useful features of PASCAL by reading the
document and testing out small PASCAL programs
using PASCAL 2.7-V.

Another incentive for having a PASCAL com-
piler available is that more and more software in
the Contributed library is being written in PASCAL.
One of the major ones is PASCAL-S, which is a load
and go compiler of a complete PASCAL subset.
PASCAL-S is being used by several colleges to
teach PASCAL (see Appendix | for more details).

Computer

Appendix |

MAKING PASCAL PORTABLE—TWO
EXAMPLES

l. PASCAL-S
PASCAL-S is a subset of STANDARD PASCAL.

The compiler itself is a complete system which com-
piles the PASCAL program, and if there are no
errors, executes the program (interpretively]. PAS-
CAL-S itself is written in PASCAL by Wirth.

The major problem in getting PASCAL-S running
on the HP/3000 was the difference in the character
set on the CDC series of machines and the character
set of the HP/3000 [ASCII). In the CDC character
set, blank collate after letters; but in the ASCII
character set, blank collates before letters. Also,
the internal numeric representation of characters
differs from the CDC to the HP/3000; and this
caused further errors in the compiler.

The lesson to learn from this is that writing
portable programs, even in PASCAL, takes some
thought and effort. Even when using STANDARD
PASCAL, problems can arise. One of the major
ones to watch out for is that no assumptions are
made about character sets, as they vary widely
from machine to machine.

ll. PROSE

PROSE is a text formatter published in PASCAL
News No. I5. It is written entirely in STANDARD
PASCAL and pays particular attention to the
character sets of different machines. The solution
in PROSE was to store all text internally using the
ASCI| conventions; and each implementation of
PROSE must have a different set of routines to
convert from the external character set to the inter-
nal one.

PROSE is approximately 3500 lines long, and it
is just now being completed on the HP/3000. The
main problems encountered in implementing PROSE
were finding and eliminating typing mistakes, and
understanding the conversion from the external
character sets to the internal set. Even though the
external and internal character set are the same on
the HP/3000, it took some time to find and change
the conversion routines accurately. The main prob-
lem in this area was a lack of understanding of how
the CDC character sets work, since the version of
PROSE written in PASCAL News No. |5 was for
CDC character sets.

Bibliography

There has been a great deal published about
PASCAL over the last few years. The following is

a short list of useful documents, especially for those ™
wanting to know more about the language itself and

about PASCAL on the HP/3000 in particular.

(1)

(10)

Wy

PASCAL User Manual and
Report, Second Edition

Kathleen Jensen and Niklaus Wirth

Springer-Verlag, New York, 1974

Programming in PASCAL

Peter Grogono

Addison-Wesley, Don Mills, 1979

The PASCAL Programming Language

Bob Fraley

Proceedings of the North American Meeting,
February 1980

PASCAL-P on the HP/3000

Bob Fraley

lbid.

A Programmer's Introduction to PASCAL

Bary Pollack and David Greer

Available through Robelle Consulting Ltd.

PASCAL News

c/o Rick Shaw

Digital Equipment Corporation

5775 Peachtree Dunwoody Road

Atlanta, Georgia 30342

Subscription rates are $6.00 per year

A Draft Proposal for PASCAL

A. M. Addyman

SIGPLAN Notices Vol. 15 No. 4, April 1980

Association for Computing Machinery,

1133 Avenue of the Americas, New York,
NY 10036

PASCAL for the HP/3000
John Earls

JOURNAL-3000 Vol. | No. 5
PASCAL/ 1000 Programmers's

Reference Manual

Hewlett-Packard part number 92832-90001
The PASCAL (P) Compiler:

Implementation Notes
Order from William Waite
Software Engineering Group
Electrical Engineering Department
University of Colorado
Boulder, Colorado 80309
PASCAL-S: A Subset and its Implementation
Niklaus Wirth

See order information above

N

INDEXING BRYN MAWR'S FIRST DEAN:
AN ESSAY IN DATA ENTRY AND
TEXT FORMATTING

Jay Martin Anderson
Bryn Mawr College
Bryn Mawr, PA 19010

BACKGROUND The first dean and second presi-
dent of Bryn Mawr College, M. Carey Thomas
(1857-1935), was a figure of some stature in
women's rights at the turn of the century, and
especially in the field of women's education. Besides
her strong leadership in the founding and early years
of the College, Thomas was also a leader in the
women's suffrage movement. It is not surprising that
her personal and professional papers, especially
while dean and president of the College, would
prove an important resource to scholars interested
in those issues or that period.

Under a grant from the National Historical Pub-
lications and Records Commission, the College was
able to collect and edit Thomas' papers, and to
prepare them for microfilming. This work was di-
rected by Lucy F. West, now archivist for the Col-
lege. West also provided notes to accompany each
reel of microfilm. However, to make the microfilm
edition of Thomas' papers more easily accessible
and useful to the scholarly community, the archival
staff of the library, together with the office of
computing services, embarked on a project to
create an index of the papers, and to print that
index. This index is believed to be the first com-
puter-generated index to the microfilm edition of
the papers of a famous American.

The microfilm edition of Thomas' papers, West's
reel notes and guide, and the computer-generated
index will be published by Research Publications,
Inc., Woodbridge, Conn., in 1981.

INTRODUCTION Unlike many data-processing
tasks, the M. Carey Thomas Index is characterized
by uniqueness: once done, the project will never be
repeated. Consequently, the project was designed
to minimize programmer'’s time, even at the expense
of less efficient processing tools. Furthermore, the
project was undertaken with full awareness of the
DP naivete of the archival staff of the library com-
bined with the biblicaraphic naivete of the com-
puting staff. During the course of the project, many
mistakes were made and much interdepartmental
education took place. Finally, the project was under-
taken on a new, and lightly-loaded Hewlett-Packard

HP 3000 computer. The project would have been
impossible for lack of computing resources had it
begun six months earlier; it would have been imprac-
tical if not impossible because of the crowding of
those new resources had it bequn six months later.

These conditions led to a project designed with
the following criteria:

(1) Use to the greatest extent possible, simple,
HP-supported utilities and subsystems.

(2) Avoid writing programs; when necessary, use
FORTRAN (the language best known to the
author).

(3) Use sequential files; don't force the author to
learn KSAM or IMAGE when he's yet a novice
HP 3000 System Manager.

(4) Use a text-formatting program supplied in the
HPGSUG Contributed Library; there was no
budget for new software.

(5) Use a letter-quality printing terminal which can

deliver printed output as close as possible to
typeset, as fast as possible, at the least expense.
The Agile A-1 terminal was selected for this
device.

To give the reader some feeling for the scope of
the project, we cite the following. Nearly 52,000
items of Thomas' correspondence were entered by
a staff of over a dozen students and library workers
over a three-month period. After initial processing
(principally reformatting, sorting, and merging), a
raw index was printed for proofreading. The accu-
mulated data amounted to about 20 Mb. The raw
data was edited by one worker over a two-month
period. After examining many samples, the pub-
lisher, the archival staff, and the computing staff,
agreed upon an output format. The text-formatting
and printing was carried out in seventeen hours over
two days, operated by the author's twelve-year-
old son. About 1200 9!/, by 14" pages, and nearly
a dozen ribbons, were consumed.

The project was divided into six phases: entry,
assignment, sort-merge, proofread, edit, and
format-print. Because the project was unique, neither
documentation nor transportability of code or
procedures were deemed important. A brief
description of each phase follows.

ENTRY Four different source documents were used:
fileslips, on which were recorded data about cor-
respondence in Thomas' office files, usually dated:;
5x8 cards, describing the majority of Thomas' per-
sonal and professional correspondence, with refer-
ence to the scrapbook or letterbook in which the
original correspondence was preserved; corres-
pondence referred to only by the number of the

reel of microfilm on which it was recorded; and
bibliographic "see'' and ''see also" references.

V/3000 was used for data entry. Four simple
forms were designed, one for each of the four
types of documents. Simple field processing was
used for data verification, and to simplify entering
records for more than one piece of correspondence
to or from a given individual.

Four analogous reformat-specifications were de-
signed to transform the captured data simply to
364-byte sequential records.

ASSIGNMENT Simple FORTRAN programs were
written to assign microfilm reel numbers to data in
the "file" and "card'" classes. In the former case,
dates in the form ddmmmyy were converted to
Julian form, and a table-lookup procedure used to
discover the reel number. In the latter case, the
letterbook number (a Roman numeral) was con-
verted to an integer, and a table-lookup performed.

In addition, one of five record types [integers
|.5) was assigned to identify the three kinds of
source data and the two kinds of bibliographic
references. This step was an afterthought: it could
have been accomplished in the entry phase. All of
the "assignment'' tasks could have been accom-
plished in the entry phase, had the V/3000 intrinsics
been used within a FORTRAN program.

SORT-MERGE Using HP-supported utilities, the
individually reformatted batches of data were
merged and then sorted. It is perhaps noteworthy
that the final sort, of about 52,000 records, on
seven fields spanning 131 bytes, was accomplished
in 25 cpu-minutes and 70 wall-minutes. The sort was
done by carrying both an all-uppercase and a mixed
upper- and lowercase version of all personal name
fields, and sorting on the uppercase version. The
new release of HP's sort-merge would make this
extra overhead unecessary. After sorting, the up-
shifted fields were strioped off, leaving 240-byte
records. Finally, in anticipation of the use of the
EDITOR, the 52,000 records were divided into four

smaller files, and line-numbered.

PROOFREAD A FORTRAN program was written
to provide formatted output of the data for proof-
reading. At this point, the manual procedure of
examining each record and marking it for correc-
tion followed.

EDIT The corrections marked on the proofreader's
list were accomplished with batch edits using the
HP EDITOR. Records out of place were moved with

the GATHER command. This proved to be cumber-
some, and was the only phase where the criteria of
using sequential files and HP subsystems proved to
be awkward.

The source data also included four small sets of &

data which were entered and sorted under abbre-
viated names (BMC — Bryn Mawr College: MCT
— M. Carey Thomas; St. = Saint; and US =
United States). These data were treated exactly as
the main body of data through the proofread phase,
and then GATHERed into alphabetical order in this
phase.

Format-print. Printing was planned for 234" wide,
13" long columns on 14" [legal size] paper, at twelve
characters per inch, six lines per inch. An extensive

FORTRAN program:

e issued margin information and sent an initial
escape sequence to the AGILE terminal;

e read each record of the edited data, and

e issued control breaks for each change of name
or change of record-type;

e formatted each name with appropriate punc-
tuation and compressed blanks;

e formatted each data element with appropriate
punctuation and compressed blanks;

e issued control-characters for the automatic
underlining of the reel number and of the
words ''see'’ and "see also" in references;

* issued a top-of-form and reset the AGILE
terminal when done.

* copy a subset of the edited data to a new file;
accomplished these steps:

To allow the operator to change ribbons and
paper, and to pace the work throughout the two
days of printing, the format-print job was run once
for each letter of the alphabet. A simple UDC

* process the data with the aforementioned pro-
gram, placing the output in a second file;

* use the text-formatter FORMAT from the
contributed library to control printing.
Final products. At the risk of belaboring the
point, the project was unique. Consequently, the
only products are these:

* edited data, captured just before printing, and
now archived on magnetic tape;

* a single copy of the printed index, now in the
hands of the publisher;

e this article, and listings of the programs and
procedures which support the six
the work.

phases of ﬂ

IN THE BEGINNING

by Marc Covitt — HP/San Diego Division

As part of a project at the San Diego Division
to review our present Account Structure on the
HP3000 we did a great deal of research to deter-
mine just how we got our current structure. Our
archivist, Marc Covitt, says he found the following
document in a dusty urn buried beneath the raised
floor.

In the beginning the movers delivered the HP-
3000. And the machine was without complete form
and darkness was upon the face of the switch regis-
ter. And the spirit of the technicians moved about
the machine; and the CE said, '"Let there be
power''; and there was power. And the CE saw that
the power was good (or at least within specs) and
the machine was operational. And he divided the
operational state from the non-operational state.
And he called the operational state "'working' and
he called the non-operational state "down." And
it was down and it was working a first day.

And the CE said, "'Let there be a System Mana-
ger for the working machine and let him partition
the system for its users.'" And there was a System
Manager and he collected all the files given to him
by the CE in the SYS and SUPPORT accounts from
all the files given to him by users. And he called the
files given to him by the CE "MPE" and he called
the users files "in development." And the system
was working a second day.

And the System Manager said, "'Let the users be
gathered unto many places' and it was so. And the
places he called terminals and the connecting
together of the terminals he called cabling, and he
saw that it was good (or at least neat.) And he said
"Let the users bring forth files from their terminals,"
and the terminals brought forth programs and data
and many files; and the data yielded more data
after its kind, and these were databases. And it was
still working.

And the System Manager said, "Let there be
technicians to divide the system from those that it
served." And he called the technicians — program-
mers and programmer/analysts and Data Base

Administrators; and he called those that it served
— users and user/analysts and also those turkeys.
And the system manager started two great pro-
grams upon the system so as to cause utilization of
the machine. One program he called COBOL and
the technicians compiled much and cursed the
machine for it gave bad diagnostics. And the other
he called QUERY and the users inquired much into
their databases and were much confused but still
impressed. And the System Manager saw that it
still might work.

Soon the users brought forth applications in
abundant nature and all manner of files were upon
the system. These were PROC files and XEQ files
and text of much documentation, and test data and
also real data. And users brought forth more users
and shared information amongst them. And the
programmers saw that it was easy and they too
created many files. And the programmers were
clever and knew how to multiply and expanded
their staff. And there were files on all of the discs
and the discs were full. And the System Manager
saw that it might not work.

And the hardware was upgraded and made more
powerful and more discs were added. And the users
required new applications and wanted more ac-
counts. And the technicians received many files but
little support from other technicians on high at
Corporate. And the users began to create program
files and it was difficult to separate these from those
of the technicians. And the auditors were much dis-
pleased. So the System Manager said ''Let us
separate the files and the programs. Those that
have a priority on the system and are needed we
shall call 'Production’ and those that are not of this
domain we shall call 'Development’ and also 'Test' .
And he intended to give Production dominion over
the whole machine and with the power to keep cut
compilers and other beasts of response time. And
he thought this would work.

Thus the environment was established and the
account structure had control over all. And the
System Manager rested and looked over all he had
done. And he was not well because now he knew
that it would not work. So he went to his manager
and they commissioned a project called the
"Revised Account Structure."

CONTRIBUTED LIBRARY

USING "SPECIAL ACCOUNTS"
by Mark Wysoski

Too often, users of the Contributed Software
Library either tend to ignore or are completely
unaware of the "'special accounts' provided on the
Release Tape. This is unfortunate because most
of the elaborate contributed systems are in this
format. The abstracts identify this fact by indicat-
ing in which account the contribution is found.
However, because the "special acounts' need not
follow accepted Library standards, the group struc-
ture and naming conventions usually tend to com-
plicate restoration procedures. It is hoped that the
selective restore utility LIBREST. INFOBASE.
MAINLIB will help to alleviate some of these restora-
tion problems (by allowing restoration of all files
related to the contribution); and should be remem-
bered that further modifications of restoration
procedures are slated to be made for future releases
of the Library. For whatever reasons, the "special
accounts" generally tend to be bypassed.

In an attempt to introduce the user to these
"lost" contributions, this article will describe one
of the "special accounts", LITSCAN, which is a
bibliographic retrieval system based on a keyboard
approach.

The first step will necessitate building the
appropriate account structure to allow restoration
of the files. This is most easily accomplished by
following the instructions in the INSTALLATION
GUIDE which came with Library Tape. Of specific
importance are the commands —

: NEWACCT LITSCAN, MGR; CAP=IA,
BA, SF, ND, GL, AL, AM, PM
: STREAM GROUPS

The jobstream GROUPS will create the groups
DATA and SOURCE under the account LITSCAN,
as well as the group structure for all the other
Library accounts. One may find it as easy to
examine GROUPS. INFOBASE. MAINLIB, and in-
voke any appropriate commands interactively. This
would save the overhead of creating unnecessary
group structure,

Once the account structure has been built, the
second step involves the actual restoration of the
files. There are two major methods which can be

used. The first is using the LIBREST utility (while

logged on as MGR. MAINLIB, INFOBASE} and ¢~
restoring the contribution LITSCAN. The second ¥

method is using MPE : RESTORE using the fileset
@.@.LITSCAN. The files are in compressed format
on the tape and will require 4904 sectors to restore
in this format. They should be UNPRESSed and,
once converted back to Fixed ASCII format, will
require 6452 sectors of disc storage.

Next it would be advantageous to review the
documentation. This is accomplished by logging on
as MGR.LITSCAN and invoking the following

commands —
: FILE PRINTER;DEV=LP
: RUN FCOPY.PUB.SYS
>FROM=DOC.DATA;TO=*PRINTER;CCTL
>FROM=INDEX.DATA;TO=*PRINTER
>SEXIT

The documentation, installation procedures, and
an index describing each of the files in the account
will be printed on the output device designated as
LP. Reading this documentation should provide the
user with enough information to make LITSCAN
operable.

There are a few points which should be clarified. =

LITSCAN was developed on an HP3000 Series |l
and Il under MITs 1918 and 201 1. LITSCAN uses
KSAM/3000 and VIEW/3000 [(KSAM version).
Only the initial input program requires a block
mode terminal; all other programs in this system
are compatible with any type of terminal. Privileged
Mode is used by LITSCAN to extract the USER
name (this routine has been in operation at WHIT-
MAN COLLEGE for over one year and has pro-
duced no negative effects).

The input program LITMAINT allows the user to
enter a 200 character description, three authors,
journal information and date for each article that
is to have an entry on the data base. Keywords are
automatically extracted using the following rules:

Words under 3 characters in length are eliminated
Numbers and special characters are eliminated
Special characters are considered delimiters of
words

Words found in the "dictionary of bad words" are
eliminated.

The author fields are also extracted and are con-f ’

sidered keywords. The "dictionary" is found in the
subroutine KEYWORDS and currently has three

words — "THE", "SOME", and "AND". Keywords
can also be added through another program, KEY-
MAINT, which will accept any entry as a keyword.

All entered information can be recalled by key-
word using the LITSCAN program. Security has
been provided which allows anyone to examine the
file, but allows only the original creator of the data
to change the data or associated keywords.

The LITSCAN contribution is very flexible as it
stands. While fields have been labelled, they are
actually quite arbitrary. Keywords are essentially
a tabbing system, and allow as many tabs to be
affixed to one article as desired. The applications
for the LITSCAN system are bounded by the crea-
tivity of the user.

A data base has been contributed which contains
the articles from past HPGSUG Journals. It allows
a good method for testing the LITSCAN system
while providing a useful product to the user base.

This article was not meant to give adequate
instructions to operate the LITSCAN system; that
is the task of the contributed documentation. The
purpose of this article was to call to attention, the
existence of the "special accounts" on the Library
Tape, by highlighting one of them.

Any questions concerning either 'special ac-
counts" or the LITSCAN contribution should be
directed to:

. Mark C. Wysoski
Manager
HPGSUG Contributed Software
Whitman College
Walla Walla, WA 99362
(509) 527-5360

(continued from page |1}

compiler is a modified version of the PASCAL-P4
compiler, which fixes several bugs in the original P4
compiler, as well as providing several extensions to
STANDARD PASCAL. Some of the important ones
are: built-in procedures to do direct access to MPE
files, an "otherwise" label in the CASE statement,
and calls to PASCAL procedures which were com-
piled externally, as well as procedures written in
other languages.

The process of compiling PASCAL programs on
the HP/3000 is slightly different from the one
described above. Instead of assembling pcode into
object code, the assembler of the contributed ver-
sion assembles pcode into SPL, which is then com-

piled into USL files.

PASCAL > PCODE > SPL > USL
Source
Compiler Assembler SPL
Compiler

(continued on page 12)

TIPS AND TECHNIQUES

SET UP IDEAS FOR LOCAL USERS GROUPS

Mare Covitt
HP San Diego Division

The HP3000 users in San Diego County (and Baja,
California) get together about 2-3 months for tech-
nical meetings. San Diego and Baja (Tijuana and
Mexicali) has 35 installations of HP3000 equipment.
A typical meeting will have 20-25 sites present.

Like many volunteer groups, its organization and
effectiveness depend on continuing involvement of
a few key individuals. When a prime motivator of
the group left, it was hard to get things rolling
again, In order to try and maximize user effort and
involvement, we tried to establish a structure and
some simple procedures to keep things moving
smoothly.

At a prior meeting, we presented some ideas to
keep things running. The approach was developed
by Jim New and Hez Michel, from Beckman Instru-
ments, and Marc Covitt, from HP San Diego
Division.

(A) Develop a package for the meeting chair-

person.

|. The package includes a checklist for set-
ting up the meeting:
(a) The best days are Tuesday through
Thursday in the second or third week
of the month.

(b) Luncheon meetings are preferred since
we usually can get conference space
at no charge from a hotel or
restaurant.

(c) An optional activity (typically a site
tour or demo)] should be planned by
the host for after the luncheon. Occa-
sionally, the meeting topics may be
be planned to continue into the
afternoon.)

(d) For help in distribution/mailing, the
chairperson of the group or HP
will help.

2. The package includes sample agendas
from prior meetings.
(a) Usual meeting is
— Welcome and introduction of all
attendees

3.

— HP new products or announcements
— Users group business meeting
— Regional or international users
group announcements
— Featured topic
— Luncheon
— Tour and demos optional
(b) Plan enough breaks during meeting so

that attendees get good opportunities
to talk and exchange ideas.

(c] Announce next meeting site date and
host.

The package should also include mailing
labels for sending announcement and
agenda to members. New names and
addresses and changes should be pro-
vided by chairperson prior to mailing.

(B) Identify duties and responsibilities of chair-
person.

()

Serve for one year (first chairman serves
only until December 1980).

. Maintain current name and address list

of members.

. Contact next meeting chairperson approx-

imately one month prior to meeting fo see
if everything is running smoothly.

4. Serve as primary contact for the group.

Keep historical records of all communiques
and meeting handouts.

Keep schedule of future meeting dates
and hosts.

Pass meeting host aids on to next meeting
host.

Help with topic ideas and aid meeting
host as needed.

|dentify additional responsibilities for the
meeting host, including:

R
2.

Selecting topic

Contacting and coordinating facility
arrangements.

Preparing maps and directions to be sent
with meeting announcement.

Handling R.S.V.P.'s for meals and collect-
ing funds.

Providing a meeting recap and keeping
user group folder current.

(D) Schedule future meetings.

|. Based on bimonthly meetings, schedule at
least two meeting dates for future (next
meeting plus the one after that).
(At our March meeting we were able to e
schedule meetings and meeting hosts a|m
the way through until January '81).

Setting up a local user group meeting does in-
volve some work. We hope that by simply iterating
the steps that it takes we will make the job that
much easier for future meeting hosts. If other local
groups are interested in finding out more about our
structure please contact our chairperson, Chuck
Stillwell at Union Carbide, {714} 279-4500 or Marc
Covitt at Hewlett Packard, San Diego Division,
(714) 487-4100, ext. 498,

20

The JOURNAL of the HP General Systems Users Group depends
upon contributed articles to fulfill its purpose of disseminating
information to members of the association. Current articles are
uniformly of high quality and provide excellent information for the
membership. However, the Executive Board and the Publications
Committee would like to expand these offerings.

This request is addressed to those readers with ideas to be shared.
The Publications Committee encourages all readers to contribute
the results of their work. The JOURNAL offers an excellent vehicle
for publication of current work for the established computer person
as well as for the beginning user. Articles of all types are needed.
As installations increase, the need to know, to share ideas, and to
establish written communications among members of the Users
Group increase at an even faster rate.

Remember, the areas where problems and failures have a high
probability of occurring are of interest to a large number of other
HP users. Share information on your success and indicate the future
direction of your work by writing articles for the JOURNAL.

Fold aiong line

BUG/ENHANCEMENT POLL

NAME: . COMPANY:
PHONE: () ADDRESS: —
TELEX: —

Please indicate the BUGS that critically affect the
operation of your HP3000. Include any number of bugs
but indicate only those with greatest impact. The bugs
should be identified by their Known Problem Report
(Service Request) number as found in the most recent
Software Status Bullztin. Please include BUGS with an
“open” status only.

21

Piease include one brief ENHANCEMENT Request (hard-
ware/software/service/other) you would like HP to
address. Be brief and include a Keyword that classifies
your request as specifically as possible, e.g., 7925
Disc/COBOL/CE support.

KEYWORD:

REQUEST:

8J8y o|dels

Fold along solid line

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 8 GLEN BURNIE, MD.

POSTAGE WILL BE PAID BY ADDRESSEE

HP General Systems Users Group
Empire Towers
7310 Ritchie Hwy.
Glen Burnie, MD 21061
USA

22

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Executive Offices

HP General Systems Users Group BULK RATE m

Empire Towers U.S. POSTAGE
7310 Ritchie Highway

PAID
Glen Burnie, Maryland 21061 PERMIT NO. 8241
USA. BALTIMORE, MD
Tel. (301} 768-4187

ADDRESS CORRECTION REQUESTED

LINFORD HACKHAN

VYDEC, INC,

30 TARN DRIVE

MORRIG PLAING, NEW JERSEY
07950, LSA

Announcing

HP General Systems Users Group
Spring International Meeting

Orlando, Florida

April 27-May 1, 1981

M

JOURNAL e HP General Systems Users Group First Quarter 1981

Vol. IV, No. 1
24

