JANUARY/MARCH 1983

VOL. 6, NO. 1

CONTENTS

- Using COBOL, VIEW and IMAGE
A Practical Structured Interface
for the Programmer
Peter Somers
Cape Data Inc.

- IMAGE/COBOL: Practical Guidelines
David J. Greer
Robelle Consulting Ltd.

Techniques for Testing On-Line
Interactive Programs
Kim D. Leeper
Wick Hill Associates Ltd.

Implementation of Control Structures
in FORTRAN/3000
James P. Schwar

'(' Lafayette College

The Performance of Image Reporting Programs
Roger W. Lawson
Harris-Queensway PLC

IURNA],

URNA

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

(JURNA

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JURNA

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

J

A

OF THE HP 3000 INTERNATIONAL
USERS GROUP. INCORPORATED

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

J
J
J
JOURMA
J
J
J

PUBLICATIONS COMMITTEE MEMBERS

Dr. John Ray, Chairman

Editor

College of Education

Dept. of Curriculum & Instruction

The University of Tennessee at Knoxville
Knoxville, TN 37996-3400

Dr. Lloyd Davis

Associate Editor

Director of Academic Computing Services
The University of Tennessee at Chattanooga
Chattanooga, TN 37402

Gary H. Johnson

Brown Data Processing
9229 Ward Parkway

Kansas City, Missouri 64114

Mr. Ragnar Nordbert

Department of Clinical Chemistry
University of Gothdenburg
Sahlgren’s Hospital

S-41345

Gothdenburg, Sweden

Mr. Michael J. Modiz

Hayssen Manufacturing Company
Highway 42 North

Sheboygan, WI 53081

Ms. Marjorie K. Qughton
Supervisor of Data Processing
Alexandria City Public Schools
3801 W. Braddock Road
Alexandria, VA 22302

Mr. Douglas Swallow
Baltimore Sunpapers
501 N. Calvert St.

Baltimore, MD 21278

John M. Knapp
Publisher

Art Production:
John Bird, Jennifer Case

HP 3000 International Users Group
289 S. San Antonio Road, Suite 305
Los Altos, California 94022 USA
415/941-9960

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

HP 3000

INTERNATIONAL USERS GROUP
BOARD OF DIRECTORS

Chairman

Sandra S. Manewal

Liberty Communications, Inc.
2225 Coburg Road

Eugene, Oregon 97401 USA
503/485-5611

Vice-Chairman

John True

Computer Center

University of Tennessee at Chattanooga
Chattanooga, Tennessee 37402 USA
615/755-4551

Secretary

Lana D. Farmery

Quasar Systems Ltd.

275 Slater Street, 10th Floor
Ottawa, Ontario K1P 5H9 Canada
613/237-1440

Treasurer

Michael Lasley

Hinderliter Industries, Inc.
4524 E. 67th, Bldg. #9
Tulsa, Oklahoma 74135 USA
918/494-0992, ext. 303

Jane A. Copeland

Tymlabs

211 East 7th Street

Austin, Texas 78701 USA
512/378-0611 (Austin)
512/340-6101 (San Antonio)

N.M. (Nick) Demos

Demos Computer Systems, Inc.
12 Hilisview Drive

Catonsville

Baltimore, Maryland 21228 USA
301/468-5693

Association Manager (ex officio)
William M. Crow

HP 3000 International Users Group
289 S. San Antonio Road, Suite 205
Los Altos, California 94022 USA
415/941-9960

Hewlett-Packard Representatives
(ex officio)

Jan Stambaugh

Hewlett-Packard Company
Cupertino, California USA

Jo Anne Cohn

Hewlett-Packard Company
Business Computer Group
19447 Pruneridge Avenue
Cupertino, California 95014 USA
408/725-8111, ext. 3006

JOURNA]

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

Editor’s Note -

This issue of your Journal is devoted to Programming
Languages and Applications. These articles are repre-
sentative of work, thought and results in the field.
They offer a broad look at the issues and provide
some new ideas.

As always, your comments are welcome.

JOURNAJ,

OF THE NP 3000 INTERNATIONAL
USRS GROUP, INCORPORATED

sing COBOL, VIEW and IMAGE
Practical Structured Interface for
the Programmer

Peter Somers

Cape Data, Inc.

Ocean Drive

Cape May, New Jersey 08204

Introduction

VIEW or V/3000, Hewlett-Packard’s screen handler
offers a convenient and versatile method of data col-
lection. To fully utilize the capabilities of VIEW
requires the application programmer to go beyond the
routines available using the ENTRY program. Ideally
the data entry routine will inciude complete editing
including IMAGE data base checking and comprehen-
sive error messages.The routine should allow the pro-
grammer to quickly “plug in” new applications and
easily perform maintenance. Additionally the program
will provide utility routines for data confirmation,
screen refreshing, paging, etc.

At our shop, Cape Data, we developed a general pur-
pose VIEW and IMAGE interface program. This pro-

am written in structured COBOL allows new

plications to go up, with custom editing, in a
fraction of the time previously required. The following
discussion will cover this interface routine and its
application. | will assume that the user has basic
knowledge of both VIEW and COBOL.

Screen Design

When designing your VIEW input screens using
FORMSPEC, the following techniques will help you
get the most out of VIEW.

A. Error Message Fields: Add error message fields
during form design wherever needed. Place the error
message field next to or under the corresponding data
field. The error message fields will remain invisible
unless your program writes a message to the field.
Create the field with an enhancement of B (blink) and
a field type of D (display) and an initial value of spaces
(Fig. 1, Field 3). The last 24th line of the screen is
reserved for program error messages.

B. VIEW Editing: As a general rule let VIEW do as
much editing as possible. On numeric fields let VIEW
zero fill and test for numeric input during the FIELD
portion of VIEW’s editing. On alpha-numeric input
fields allow VIEW to left justify the data and optionally
.oshift lower case characters (Fig. 1, Field 2).

C. Title: We reserve a Title area on all forms using
Field #1. The title field is initialized by VIEW to a save
field value. The VIEW forms file can contain the title
and any other constants in SAVE FIELDS.

Function Keys

When using a formatted screen program with a
Hewlett-Packard 2640-2645 type terminal, a special
set of function keys are used by the programs. The 8
function keys are located on the upper right hand side
of the terminal’s keyboard. They are labeled with blue
letters f1 through f8 in 2 rows. A blank Hewlett-
Packard template labels the function keys
(#7120-5525). On the 2620 family of terminals, the
keys are labeled programmatically.

°
SKIP CLEAR HELP REFRESH
1 f2 3 f4
MAIN
CONFIRM NEXT MENU EXIT
5 6 7 f8
Function Keys

The function keys are used as follows in the interface
program: f1 SKIP - This key will cause the cursor to
skip to the next block of data. This is useful if you
have a number of fields to skip. The tab key only skips
a field at a time where the SKIP key will skip to the
next block of data.

f2 CLEAR (RESET) - This key causes the screen to
clear all fields and set the initial field values (usually
blanks). This key is useful if you have created a mess
on the screen and want to start over again.

f3 HELP - This key will cause the program to display
an instruction screen. A special set of instructions
can be displayed relating to the particular form on the
screen when the HELP key was pushed. When you
have finished reading the HELP instructions, push the
ENTER key to return to the last form or the MENU (f7)
key to return to the MAIN MENU.

f4 REFRESH - This key resets the terminal, erases the
screen and brings up a fresh copy of the form. If you
loose your form due to a power or line failure or the
terminal hangs up, the REFRESH key will restore the
terminal to normal operation.

f5 CONFIRM - This key is used when you have chang-

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA],

ed a record in the EDIT mode, or if the program wants
confirmation that the data on the screen is accept-
able. The program will prompt with a message at the
bottom of the screen when a CONFIRM is desired.
Before a CONFIRM is requested the data must pass
all normal program edits.

Note: The terminal normally does not read data when
the function keys are pushed. If you need to read the
screen contents after a function key has been pushed
call the IMMVREADFIELD Subroutine to force a read.

f6 NEXT - This key will cause the program to go to the
NEXT form or next step.

f7 MAIN MENU - This key causes the program to dis-
play the MAIN MENU SELECTION form. Use this key
to change from one program mode to another.

f8 EXIT - This key ends the program.

COBOL Application Program

A. General: The attached COBOL program has suffi-
cient structure to allow the programmer to readily
plug in applications without having to spend
additional time coding VIEW procedures. At Cape
Data, | have used this program layout to do extensive
data entry routines which edit against the IMAGE data
base, and provide detailed error messages and help
routines. The program procedure division consists of
3 parts:

1. Opening
2. Main Loop
3. Closing

The program contains routines which call the VIEW
procedures listed in Fig. 7. The program also contains
special VIEW data fields in working storage.

1. Opening - The program opens the terminal, forms
file, the data base and displays the MENU screen.

2. Main Loop - After opening the program performs
the Main Loop until either the 8 (exit) function key is
pushed, or the program encounters a fatal error. The
Main Loop consists of 3 parts:

a. Read Keys and Screen
b. Edit Input
c. Process Input (if valid) and Refresh Screen

3. Closing - The program closes the terminal file,
forms file and data base.

B. Program Data Division Considerations: The
working storage area contains the buffers needed by
the various VIEW procedures used. Every VIEW proce-

dure called uses the VIEW-COM buffer (Fig. 2). Most
of the fields useful to the programmer have self-
explanatory names. Remember the V-Language field
must be set to zero for a COBOL program.

The data area passed between the program and VIEW
(using VGETBUFFER and VPUTBUFFER calis) is
defined as DATA-BUF (Fig. 3). This Buffer is redefined
for each screen layout. Note the title field and error
message fields.

The program uses a forms table which contains the
MENU selection character, form number, next form
number, and help form number for each routine. When
the user makes a selection from the Screen Menu, the
program scans this table to find the corresponding
screen references (Fig. 4). The program picks up the
Form Name corresponding to the Screen Number
from the Form Name Table (Fig. 6). Additional routines
and forms can quickly be added by making additional
entries in the tables.

Program Main Loop

The program goes to the MAIN LOOP and remains

there until the user pushes the f8 (exit) function key.

The program performs a terminal read (VREA[L™
FIELDS) each time either a function key or the ent&:
key is depressed. The program then tests to see if any

function keys were pushed (VIEW returns the key

number pushed into the last key field of the VIEW-

COM buffer).

if the ENTER key was pushed (key zero) the program
will perform the edit routine corresponding to the
screen routine selected. Within each edit routine the
program does the following steps (Fig. 5):

1. Zeros the field error array and set the field
count.

2. Performs VIEW edits (VFIELDEDITS).

3. Get the data buffer from VIEW (VGETBUFFER).

4. Clear the error message fields.

5. Performs any user defined edits (if an error is
detected, a flag is set in the field error array and
a message is moved to the appropriate error
field).

6. The data area is sent back to VIEW (VPUT-
BUFFER).

7. Perform VIEW edits again (VFIELDEDITS). Thug
zero fills and justifies data.

8. The field error array is scanned and any error
fields are set to blink (VSETERROR).

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

_—

9. The screen is updated and displayed (VSHOW:-
FORM).

JOURNA],

Figure 2
If the routine passes all edits, the program then goes o
H H H b 01 v lev=LU,
to the corresponding valid record routine. If an error nes Poleet Sl wa(ds Cowp vaLUE sEwb.
i +i by 03 VeLANGIUAGE PIC S9(4) COMP vaL“E 7ERO,
exists or a function key was depressed, the program b VI eTeRbasE DIC huler COup vaLoR TEM
will do the appropriate error and screen enhancing hed o5 fILLER PIC S9(u) Coue valLuE ZENi.
. 7 Ny vIkEy=nOyk PIC 89 {u) COMP vAlUE 7ERO,.
routines. 7.1 0S LAST=KEY PIC N9ta) COMP vaLUE 7ERD.
1.2 un Ve A=EARS PIC S9(4) COowp VA[LLUE 7ERU,
[G ven N a=F A PIC S9(4) COuP VAl UE JERD,
H 1.4 uS FILLER PIC S9(4) CNP val HE JERU.
4. SPL Forced Read Subroutine IS us FILLER PIC $9(4) CDMP VALUE ZERU.
S 05 ve=CkyadE PIC x(15) VALLUE SPACES,
1 ECONTRUL SUuFROGRAM 7.7 05 FiLLEx Plg X vaLuE SPACES,
2 << KEPT AS [MMRLAD >D 7.8 03 ve=uF HAME PIC x(19) VALUE SPACHS,
3 << TH[S ROUTINE IS CALLED TO FORCE >> 7.9 vy FILLER eLe x VALVE SPACES,
4 << AN IMMCDIATC Rf A0 (RE-RCAD FOR DATA) > 8 By VerkPEAT=0PT PIC 59(4) CNMP valLUk 7ERU,
5 << IN PARTICULAR CASES WHEZRE THE USER > 4.1 Us venFe0RT PIC Su(4) COMP VvALUE T7ERD,
6 << USED A SOFT KEY TO INDICATE ACTIONS >> 8,2 05 vendR=L{NES PIC $9(4) COUP VALUE ZERU,
7 €< HI/SHI WANTS PERFORMED WITH THE DATA >> 4.8 03 veusuF =LEN PEC S9(4) COMP vaLuE ZERO,
8 << THAT HAS BECN ENTERED ON THE SCREEN >> B4 us FILLER PIC S9(4) COMP VALME ZERO,
9 << SINCE THE HITTING OF A SOFT KEY DOES >> 8.5 05 FILLER PIC $9(4) COMP VALUE ZERO,
10 << NOT TRANSFER THE ACTUAL BUFFER DATA >> 8.6 09 v=UELETE=FLAG PIC $9(4) COMP VALUE ZERO,
11 << & CALL TO THIS ROUTINE OR ONE LIKE >> 8.7 05 VeSHUN=CUNTRGL PIC $9(4) COMP VALWE ZERO,
12 << 1T IS NLEDED TO GET THE SCREEN DATA >> 8.8 05 FILLER PIC 59(4) COMP VALUE ZERO,
13 << INTO THE PROGRAM WHERE IT CAN BE > 8.9 05 FILLER PIC 59(4) COMP VALUE ZERO,
1a << WORKED ULPON > 9 05 FILLER PIC S9(4) COMP vapLlJE ZERD,
15 << IN COBOLs THE CALL WOULD BE » 9.1 05 FLLLER PIC s9(4) COMP valLUE ZERO.
16 << CALL "IMMVREADFIELOS™ USING VCONT >> 9.2 US FILLER PIC 89(4) COMP vaLUE ZERO,
17 << WITH VCONT BETNG THE V/3000 CONTROL >> 9,3 us FILLER PIC S§914) CNUP vaLUE ZERU,
18 << ARL A > 9,4 05 FLLLER PIC S9(4) COMP VALUE ZERO.
19 << IN THE USER PROGRAM, THIS SHOULO BE >> 9,5 0> FILLER PIC 59(4) COMP VvALUE ZERU,
29 << TREATED EXACTLY AS I[F 1T HAD BEEN A O>> 9.6 05 v=nUM=RECS PIC S9(6) COMP VALUE ZERU,
21 << CALL TO "VREADFIELDS® » 9.7 05 v=rEC=43R PLC $9(e) COMP VALUE ZERO,
22 BEGIN PROCFGURE TMMVREAOFIELDSC(CONTIS 9.8 vy FLLLER PIC §9(4) CNUP valuE lERO,
23 INTEGER ARRAY CONT: 9,9 S FLLLEX PIC S9(4) COMP VALUE ZEROU,
28 BEG LN 1 05 velERM=FILE=NBR PIC S9(4) CDMP VALIE 7RO,
25 PRGCEDURE VREAOFIELDS(CY3 1041 95 FLLLER PIC S49(4) COMP vaLUE ZERU,
26 INTEGER ARRAY C3 10,2 05 FLCLLER PIC 59(4) CDMP vaLUE 7ERO,
27 OPTION EXTERNALG 10,5 05 FILLER PIC $9(W) CNMP VvALUE ZERO,
28 CONT(55).€1332)2=al13% 10,4 05 FILLER PIC 89(a) COWP vaLUE ZERO,
29 VREADFIELDS(CONT) 10,5 05 FILLER PIC $9(4) COWP VALUE ZERO,
30 CONT(55).¢13:2):=03 10.6 05 FLLLER PIC $9(4) COMP VALUE ZERD,
31 END; 10,7 US FILLER PIC $9(4) CN¥P VALUE ZERO.
32 END. 10,78 G5 FILLER PIC 59(4) CNMP VALUE 7ERO.
10,9 05 FILLER PIC $9(4) CNYP VvALUE 7ERO.
Figure 1 11 05 FILLER PIC S9(4) COMP vALUE ZERO,
11,1 05 FILLEK PIC S9(4) COMP VALUE ZERU,
FUIVSPEL VEWS10UV A UUL0) .2
FORYS FlLES HUNGF UM UEVELNP (FORYLLIP
FORM: VENIUR DATA
EPEAT OPT1UN:G N
NEXT FUORM OPTIONI C Figure 3
NEXT FOSM: HUUMALINT _HELP
VENDOR MASTER SPECIFICATONS, INPUT & EDITING 14,5 0t NAjA=dUF .,
Caserenen ;;;:E. ¢ sesressss seserasan s 15oa 0o FILLER SIC a9,
VERDOR I RS TER TR F o RATTToN ‘;-“ iy vala-1n Pl «tasdy,
13,6
VENDUR NUMHER Y _NAR YEND _ERR 18,7 0) MEAU=JATA REDEFINES NATA=WOF,
14,8 05 FlILLER PIC x(69),
VEVDUR’S NAME YENQMAME 15.9 1y SELECT=1N PIC %,
VENDDR ADDRESS YEND_ADDK 14 Bo SELECT=FRR BIC x(26).
¥END_ADDH2 1a.1
VENDOR’S C1VY NEND CII¥o ... STATE: 81 21Py ¥ 1JR____. 1a,2 0t VEVD-IN RENEF [HES DATa=31F,
14,8 05 FILLER PIC x(69),
PAYMENT AQDRESS B_ADRRESS 14,4 45 vEND=NHR P1C K{n).
P_AQRRESSZ, 14,95 05 vEND=NER=ERR PlC x(2h).
PAYMENT CITY {35 5 A, STaTEzr 25 21P: B QA2 ___. 14,6 V5 VEd0=NAME PIC X(S$0).
) R , ta,7 U5 S=ADDRESS FIC «(30),
(PAYMENT ADD®ESS USED ONLY IF YOU NANT PAYMENTS GD TO A DIFFERERNT ADDWRESS) Lal8 03 BeADUNESS2 BLE cis0) .
VENDOR'S PHONE MUMBERY (AL_) EXC-RHQY 14,9 0S S-Cl1Y FIC x(20).
15 a5 S=§TAlE PIC x(2).
15.1 Vs S=l1P pIC x(10),
1099 CODE Iy VENDDR COOE YL VENDOR 8TATUS ¥§ 15,2 05 P=AUDRESS PIC X(30),
CORE_EKR alatus _ere 15.5 0S P=ADNDNESS? PIC x(30),
ANENENRAE HENAARAAS RARARNAAA AAAASARaR SRAANENAN AaSaNNENt andtnfeang arsagnntan lS.u uS PeCITY PIC ‘(e“,'
15.5 09 P=STATE FIC x(2),
FIELDY TITLE 15.6 05 P=21P PIC X(10),
Nuvr 1 LEN: b4 NAMED TITLE ENAL NONE FTYPES D DTTPED CHAR 15,7 05 PHONE=NBR,
INIT VALUER 15.8 10 PHDNE=AC Pic x(3},
eas PROCESSING SPECIFICATIONS eex 15.9 10 PHONE=EX PIC x(3),
INIT 16 10 PHAUNE=NO PIC x(4),
SET T0 SFTITLE 1641 05 FLAG=1099 PIC x(2),
1642 05 VEND=-COOE PIC x(2),
FIELD: v_woR 16.3% 05 VENOOR=STATUS P x{(2).
Nuv: 2 LENS o NAMED V_VAR EvA:] FIYPE: R OTYPE: 0JG 16,4 4% VEND=CODE-ERR? PIC x(26},
INIT vALUES 16,5 905 VEND=STATUS=ERR PIC x(26),
ses PROCESSING SPECLFICATIUNS see 1h.6
SL;;?” A 16,7 01 AUDS=IN REDEF[UES DATA-BUF,
EL A 16,8 US FILLER PIC X(69).
ILL LEADING "o 16.9 05 ALCT=NHR PIC £(20).
17 u% SUDG=NBR~ERR PIC x(26).
FIELD: VEND_ERR 17,1 05 BUOG=NY=AMT PIC x(13),
WyM: 5 LEv: 26 NAME: VEND_E<R ENH: R FTYPE: 1 DYYPES CrAR 17.2
INIT vALODE:

FIELD: VB 1D _AME
NuME W LEN: Su NAAE D VEND_MAE [REEE FIYPE: ® DIYFED CHAR
INIT VAL L:

J

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

DURNAJ,

llllllllllllIIIlIlllllllllllIIIIIIIlIlllIllIllllllIllllIllIlllllIlllIIIlIllllIlllllIIllllIllIlIlllIlIIlllIlIllIlIIllIIIIIllIIIIIIllIIIIIIIIIIIIIIIIIIIIIIll

Figure 4
1y M1 FUSMSlARLE,
19,1 US FURG=,
19,2 16 FTLLER
19,8 10 FILLEx
19,4 1y FILLCR
19,5 to FILLER
19.6 05 FORM=2,
19,7 10 FILLER
19,4 10 Flickew
14,9 10 FILLER
20 10 FILLER
20,1 05 FURM=3,
20.2 10 FILLER
20,3 10 FILLER
20.4 10 FILLER
20.5 10 FILLER
20.6 05 FORM=4,
20,7 10 FILLER
20,8 10 FILLER
20.9 10 FILLER
21 10 FILLER
2l.1 05 FORMeS
2).2 10 FILLER
21.3 10 FILLER
21,4 10 FILLER
21.5 10 FILLER
2t.6 U5 FInMep,
21,7 1o FlLLE=R
21.8 10 FlLLeR
21,9 10 FILLER
2e 10 FILLE~
22,1 US FURM={/,
ee,.e 10 FILLER
22.3 10 FILLF=
22.4 10 FILLER
22.5 10 FILLER
22,6 05 FuRMeH,
22.7 10 FILLER
22.8 10 FILLER
22,9 10 FILLER
23 10 FILLER
23,1 0y FORM=9
23,2 e FliLex
25,3 10 FliLew
28,4 lo FlLLex
23.5 10 FlLLER
23.6 05 FURMe1n,
23.7 10 FlLLew
23.8 1 FILLEw
24,9 o FILLe=
e tv FliiLkw
24,1
24,2 U1 FlORMeSPEC=-a<RAY
24,3 0>y FURM=4PFCS
24,4 10 Furw=1,
24,5 10 FurRv=ign
24,4 Lo FORA=vroT
24,7 L0 FUsm=<fLP
Figure 4a
Pag 1 OFUQHM= a8 AF=1AR(E,
2> Gy FukMsl,
5.1 Ju FILLER
29.¢ PO FILLew
29.3 ua FOrw=2,
Ah.n 10 FILLER
25.5 1v BiLLrx
25.6 05 FORm=4$,
25.7 10 FILLER
25,8 10 FILLER
25.9 05 FORM=q,
26 10 FlLLER
eb.l 1V FILLER
26,2 05 FORM=S,
26,3 10 FILLER
26,4 10 FILLEX
26,5 05 FURMes6,
26.6 10 FILLER
2b,? 10 FILLER
2b,A 05 FORM=/,
26,9 10 FILLER
27 10 FILLER
er.] 05 FURM~8,
1.2 10 FlLLeR
27,3 10 FILLER
27,4 US FURM=9,
27,5 10 FILLER
27.6 10 FILLER
er.7 05 FuRM=10,
er.n 10 FILLe®
27.9 10 FILLER
28 us FORW=-11,
28.1 10 FILLER
28,2 10 FILLER
28,3 05 FORM=12,
28,4 10 FILLER
28,5 10 FILLEW
28,6 0S5 FORM=13,
28,7 10 FILLER
28,8 10 FILLER
28.9 05 FURM=14,
ey JO FlILLexw
29,1 10 FILLER

PIC % VALLE W,

PIC 904a) CIYP vaLIE 1.

PIC 9(4) COMP valnt 3,

PIC 904) COMP vapLue 1da
PIC X VALUE "a",

PIC 9(4) COYP vALUE 2,

PI1C 9(4) COMP yALUE 1,

PIC 9(4) COMP VALINE 13,
PIC X VALUE *8",

PIC 9(4) COMP vallE 3,

PIC 914) COMP vALUE 1,

PIC 9(a) COMP vaLUE 13,
PIC x VALUE "C".

PIC 9(4) COMP vaLUE a4,

PIC 9(4) COMP vaLNE 1,

PIC 9(4) COMP VALUE {1,
PIC x VALUE *"n",

PIC 9(4) COMP vaLUE 2,

PIC 9(4) COMP vaLuE 1,

PIC 9(d4) COMP VALUE 13,
PIC X VALUE "F",

PIC 9(4) COMP vaLlt s,

PIC 9(u) CUMP VALUE 1.

PIC 9(4) COMP VALUE 2.
PIC x VALUE ™7™,

PIC 9(4) COMP vaLuE 1,

PIC 9(4) COMP valut t,

PIC 9(4) COvP vaLUE 12,
PIC x VALUE 7%,

PIC 3(4) CO¥P VALUE 1,

PIC 9(4) COMP yaLilE 1,

PIC 9(4) COMP vaLUE 14,
PIC X VALLUF "7",

PIC 9(4) COD"P vaLUE 1.

PIC 9(4) COvP vaLIE 7,

PIL 9{(d) COvP vaL L 10,
PlIC X VALHE 7",

PIC 9(4) cOvP VALUE 1,

PIC 9(4} CO%P vaL.I& 1.

PIC 9(u4) COMP vaLuUE 14,

RENDEFINES FOIM-TABLE.

vic
PIC

PlC
PlC

Plc
Pic

PIC
Plc

PIC
PIC

Plc
PIc

PiC
PIc

PIC
plc

Plc
PIC

Plc
PIC

PiC
Plc

PIC
PIC

Pic
PliC

2CCURS
P1C %,
pIC
PIC
PiC

1(15)
9(a)

1(15)
9(4)

x(13)
9(4)

xX{15)
9(4)

xX(1%)
9(4)

x{15)
9(4)

x(15)
9{4)

x{(15)

9(8)

x{15)
904)

x(15)
9(4)

xX(1%)
9(4)

X(15)
9(4)

x(15)
9(4)

x(15)
9(u}

9(ud)
9(a)
Gy

1 VIvMES,

cove,
cuvp,

Cuve,

vaLIIE
Cawp

AHNMAT T _ME 1)
VALIE 9A,

VALUE “VENDNR_DATA
COvP VaALIIE $57,

VALUE "9ANK_MSTR_DATA
CDvP VALUE 325,

VALUE "9UOGET_LDAU
COMP VALUE 128,

VALIE
COMP VALUE 94,
VALUE *
COwP VALUF 96,
VALUE "
COMP VALHE 98,
VALUE "
COMP VALUE 94,
VALUE »
COMP VALUE 96,
VALUE *

COMP VALUE 96.

VALUE "HELP_BANK_DATa
CUMP VALUE 69,

VALUE "HELP_BUDG_LOAD
COMP VaALUE 69,

VALUE "=ELP_VENDOR
COMP VALUE 49,

VALUE "BUDMAINT_MELP
COMP VaLiE 69,

"

29,2 03 FURM=15,
23.3 1o FILLER PIC (1%} VALUE “HELP_CREODIT_suP™,
29,4 10 FILLER PIC 9(4) CUMP vaLuE 69,
29.5
29.6 Ul FUORM=NAME=ARRAY RENEFIVES FOR“=vAME=]ARLE,
29,7 U3 FURM=d&4b=TNFO 0CCu<S 15 TIvES,
29,4 19 FuRM=VA4E PIC x(19),
29.9 10 FOxA=)ATa~LF PIC 9Y9(4) cCOM2,
30
Figure 5
48,3 Tugnvy=tall=A,
4Hu MIVE JE R T CHECK-RESULT,
4n s MOVE LUwU 10 FEELD=T7ERD,
48,5 Have In 13 FIFLD=CNT,
48,7 PERFURM BUSODU=VIFER=EDTT,
48,8 PERFURM 807000~=GET~HUFFEKR,
48,9 MOVE 3SPACES 10 VEND=NAR=FWR, VEND=STATUS=ERR,
49 PERFURY 102100~CK=VEND=NOR,
49,1 PERFORM 102200~CK=VEND-CUDE,
49,2 PERFOUKM 102300-CK=VEND=3TATUS,
49,3 PERFORM 102400«CK=VEND~1099,
49,4
49,5 PERFORM B09000=PUT=BUFFER,
49,6 PERFORM B805000-VIEW=EDIT,
as,7 IF VeNUM=ERRS NOT = ZER0 MOVE § TO CHECK~RESULTY,
49.8 MOVE 2€ERO TO FIELD=-LOC,
49,9 PERFORM 813000-SET=-ERROR=-FIELDS FIELD=CNY TIMES,
S50
50,1 102100=CX=VEND=NBR,
50,2 MOVE VEND-NBR OF VEND=IN TD ARGUMENT,
50.3 PERFORM 831000~GET=VEND=MSTR,
50.4 IF COND=wWORD = 17 NEXT SENTENCE
50.5 ELSE MOVE “INVALIDI DUPLICATE NUMBER®™ TOD VEND=NBR<-ERR
50,6 MOVE 1 TO FIELN=ERR (2)
50,7 YOVE 1 TO CHECK=RESULT,
50,8
50.9 102200-CK=-VEND=CODE,
51 IF VEND=CODE OF VEND=IN = "yN" OR = "yM"™ QR = "pP"
S51.1 NEXT SENTENCE
51.2 ELSE ™MOVE "INVALID VENDOR CODE!"™ TO VEND=CODE=-ERR
51,3 MOVE 1 TO FIELD=ER®R (19)
S1.4 MDVE 1 TO CHECK=RESULT,
51.5
S1.6 102300=CX«VEND=STATUS,
S1,.7 IF VENDOR-STATUS OF VEND=IN =z “CR" DR = "xx*
51.8 NEXT SENTENCE
51.9 ELSE MOVE "[NVALID STATUS CODE!"™ TO VEND=STATUS=ERR
52 MOVE 1 TO FIELD=ERR (20)
52.1 MOVE 1 TD CHECK=RESULT,
Se.e
52.3 102400=CK=VEND=~1099,
52.4 IF FLAG=1099 NF VEND=IN = 3PACES DR = "y =
52.9% NEXT SENTENLCE
Se.b ELSE
S2.7 MUVE 1 TO FIELD=ERR (14)
S2.8 MUVE 1 TO CHECX=-KESULT,
52,9
53
Figure 6
S ry of VIEW Proced
PROCEDURE FUNCTION
VCLOSEBATCH Closes batch file.
VCLOSEFORMF Closes forms file.
VCLOSETERM Closes terminal file.
VERRMSG Returns massage associsted with error code.
VFIELDEDITS Edita field data and performs otber field processing.
VFINISHFORM Performs final processing specitied for form,
VGETBUFFER Reads contents of data buffer into user program.
VGETFIELD Reads field from data buffer into user program,
VGETNEXTFORM Reads next form into form definition area of memory; window and data butfer are not
affected.
VGETtype Reads tield from data buffer to user program, converting dats to specifisd type.
VINITFORM Sets deta butfer 1o initial values for form,
VOPENBATCH Opens batch file for procesting.
VOPENFORMF Opens torms file for processing.
VOPENTERM Opens terminal file for processing.
VPRINTFORM Prints current form and data on offline list device.
VPUTBUFFER Writes dats from user program to data butfer.
VPUTFIELD Writes data from user program to field in data buffer.
VPUTtype Writes data of specified type from user program to data butfer, converting data to ASCI|.
VPUTWINDOW Writes message from user program to window area in memory for later display.
VREADBATCH Resds record from batch file into data buffer.
VREADFIELDS Reads input from terminal into data buffer.
VSETERROR Sets error flag for data field in error; and moves error message to window ares.
VSHOWFORM Updates terminal screen, merging the current form, any data in buffer, and any mestage
in window.
VWRITEBATCH Writes data from data buffer 10 batch file.

OF THE NP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA],

. R

P R N

EEEEEEE

DXE NV B~

R NP MR
DET~NIAS e L I~NIPLE O ~NT VL sy

CO NP P LW -

PR EEERE

V® ~NT WL -

O O P O OO L O L O LI I EPPIRPRPEP A NN~ "d =N N ~PTITTPIIPCTSIASNVT NN e

cooco
DR
e W -

1u.6

o
~

10.9

—-0c
x

11.6

COBOL VIEW Application Source Program

KRCONTRJIL LISH, «aSOUNRCE , DSLINTT,ANIINS

LOENTIFELATIU G

PRJgikav=1p,
LAYQUT,

asTHIS PRIGRAM

QIvIstns,

PROVIDES A LAYOUT FQw

«r (HE PRUGRAM DISPLAYS, ENITS, awn
*xe VERS U,ul aPRIL 9,1980,
AUTHOR,
P SUOMERS,
INSTALLATION,
CAPE DATA [INC,
*xa (C)CUPYRIGHT 1980 CAPE DATA INC,
DAYE=COMPILED,
ENVIRONMENT DIVISION,
CONFIGURATIUN SECTION,
SOURCE=CUMPUTER, HP=3090,
OBJECT=-COMPUIER, HP=3000,
INPUT=JUlPUl SECTION,
DaTA OLlvISlUvN,
AURKING=STORAGE SECTION,
77 FBASE PIC x(13) vaLut
71 PASSAQKD PIC X(B) VALUE
17 DSEl=NaME PTIC X(16) VALUE
11 NJ=Ll1EM PIC x(2) VALuE
17 1TeM PIC x(16) VALUE
17 L1SsI PIC X(30) VALUE
711 ALL=11EMS PIC x(2) VALUE
77 SAME-ITEMS PIC x(2) VALUE
7! ARGUMENT PIC X(20) VALUE
71 MOJEL PIC 9(u) COMP
17T MQLER PIC 9(4) COvP
71 MDDES PIC 9(4) Ccawe
77 MODES PIC 9(a) COMP
71 M0Oe7 PIC 9(a) (COvP
77 M0Qt=FLAG PIC X,
7?1 LOC=FOR™ PIC 9(4) COwP,
77 LOC=FURM=NAME PIC 9(4) COwP,
77 LIC=FIND PIC 9(a) (COwP,
17 FJIuRE=FLAG PIC 9.
11 NEA-FLAG PIC 9,
77 LASTeRCSULT PIC 9 .
7/ CHELX=RESULI! P1C 89(u) CovP,
61 AELL PlC X vaLuk
Ul STATUS=aKEA,
05 COND=ADRD PIC SI(4) cudr
By D=L PIC S9(49) COxP
N5 Rew P1C 39(9) cnvp
0y C=L PIC S9(9 coMR
0y Hed PIC 59(9) coue
>y FeA4 PIL S9(9) comp
vy viEa=COM,
05 veSTAT Iy PIC s9(u
gy veLaiG laGE PIC S9(4)
3 velumenarEa=LEn #1C s9(n)
99 FILLENR yIic s9(a)
09 VIiEw= 410k PIC sa(qa)
05 LAST=r2Y PIC S9(4)
LY VaNUM=ERRS PLC 59(u)
05 VeulhUdi=ENn PIC 59(4)
05 FIlLLER i sa(4)
08 FLILLER P1C S9(4)
08 V=CFN&AME Plc x(15)
05 FlLLEN PlC x
0% V=NFNAME PIC x(19)
0y FILLER PIC x
0% V-REPEAT=0PT PIC s9(4)
US venF=uPT PIC 59(4)
05 VenBR=LINES PlC S9(4)
US veDBUF=LEN PIC S9(4)
05 FILLER PIC S9(4)
05 FLILLER PlC 59(4)
05 VeUELETE=FLAG PIC 89(a)
05 VeSHOW=CONTROL PlC 59{a)
05 FILLER PIC $9(4)
09 FILLLER PIC s9(a)
05 FILLER P1C 359(4)
0y FILLER PIC 59(4)
05 FiLLER Pit §9(W)
Uy FILLER PIC $9(4)
0S FI1LLEw PIC s9(4}
05 FILLER PIC S9(4)
05 V-NUM=RECS PIC S9(6)
05 V=REC=VHR PIC 59(e)
05 FILLER PIC s9(a)
0S FILLEw® PIC S§9(w)
05 v=TERM=FILE=NBR PIC S9(4}
05 FILLER PIC 59(4)
05 FILLER PIC $9(a)
05 FILLER PIC S9(4)
05 FLlLLEwX PIC $9(4)
us FILLER PIC $9(4)
05 FILLER PIC S9(a)
0y FILLEW PIC $9(a)
05 FILLEK PIC $9(4)
U5 FILLER PIC S9(M)
us FleLer PIC 5704}
0> FILLER PIC S9(4)
U1 V=FlLE=wAME PIC X($6),
O] EXR=9ES5=AUF PTC x2(7o).

V) LEv=tRK=nuUFf

PIC S3(4) C

NSING VIEwW FORMS WITH COHOL,
IIPDATES YANY FORMS,
CAPE MAY,NEA JERSEY 08204
" BUOGET,.,PUB:™,
"aBC123as",
SPACES,
"o,
SPACES,
SPACES,
gy,
tapt,
SPACES,
VALUE 1,
VALUE 2,
VALUE 3,
VALUE S,
VALUE 7,
"
.
COMP VALUE 7ERD,
COMW VAILUE ZEHu.
CuvP vaLE ko,
Lovwe VALJE JF WU,
COMP VALNE 2ERU, .
COMP VALUE 7FRU,
COvP VALIE ZERO,
CovP VALIE ZFROU.
COMP vALUL ZERV.
COMP VALUE 2ERU,
VALUE SPACES,
VALUE SPACES,
YALUE SPACES,
VALIIE SPACES,
COMP vALUE ZERO,
COWP VALUE ZERO,
COMP VALUE ZERU.
CD¥P VALUE Z2ERO,
COMP VALYUE ZERO,
CO4P VvALUE 7EROU.
CHV¥P VALUE ZEWU.
CovP VALUE ZFRU,
COoM® VALUE ZERO,
COMP VALUE Z7ERU,
COMP VALUE ZERO.
COMP vaLUE ZERD,.
COoMP valLUE Z7ERO.
COMP VALUE JERU,
COMP VALWE ZERO,
CoMP vaLUE ZERO.
CN4P vALUE ZEROC,
CO4P VALUE Z2€ERO.
COMP vALUE ZERU,
COMP VALUE ZERU.
COvP VALUE ZFRO.
COMP VALUE ZERU.
COMP VALUE 2ERO.
CoMP vALDE ZERU,
COMP VALYE ZERU,
COwP vALUE ZERO.
CoOMP vALYE ZERO,
COvMP VALUE ZERO.
COMP vALUE 7ERU.
COvMP vALIE ZERU.
Chue vaALuk 7€R0.
COve valHE 2FRO.
IMP VALUF Tb,

22,5

01 LEu=ERRr=1ES PIC $9(a) CI4P vALUE ZERO,
Bl TFRA=FLLE PIC % (8) VALUE SPACES,
VY1 DATA~LEN PIC S9(u) Ca4P
Gy FlELO=NB~ PIC 59(4) CIMP VALUE JExN,
Y1 ACT=FIELJ=LEN PIC S9{u) CIYP VALNE 2ERN,
U1 MR K=k LLL DR PIC S4(4) CIVP yalLUE ZERN,
W1 ¥N=4rsbalt PIC 8904) C)4P VALIE =1,
P BT O PIC AL18).
@1 iMeuul PIC $9(9)VI9,
Ul NUM=0 1SR -1 % PIC =e=== -=4,99,
U1 ACLT=M51R CurPY ACCTYSTR,
Ul VeyO=msTR ChPY VENDYSIR,
01 DATA=gyF,
0S5 FILLER PIC X(69),
05 DATA=IN PIC X(adal3),
Ul MENU=DATA REDEFINES UATA-HUF,
vy FILLER PIC x(69),
05 SELECT=IN PIC X,
05 SELECT=ERR PIC x(26).

01 VENO=IN REDEF [NES DATa=3UF,

05 FLILLER PIC x(69).
05 VEND=NBR PIC X(6),
05 VENND=NHR=ERR PIC x(26),
05 VEND=-NAME PIC x(350),
05 S=-ADDRESS PIC x(30},
05 S-ADNRESS? PIC x(30),
05 S=C1TyY Pic x(eu),
05 S=STalE PIC x€2),
05 S-Z1P PIC x{10),
US P=ADDRESS PIC x(30),
05 P=ADDRESS? PIC x(30),
05 P=CLTY PIC x(e2n),
05 P=STATE PIC x(?),
0% P=21P PIC x(10).
05 PHUNE~VER,

10 PHONE=AC PIC x(3),

10 PAONE=EX PIC X(3),

10 PHONE=NO PIc x(a),
0S FLAG=1039 PIC x(2}.
us vENN=CODE PIC x(2),
Uy VENDOR=STATYS PIC x(2),
05 VEND=CUDE=ERR PIC x(2Ah),
05 VENO=5TATUS=ERR PIC x(26),

21 BUDS=1n RFOEFINES OATA~RUF,

S FlLLEX PIC x(63),
Uh ALCTeudR PIC x(20),
05 dUDG=nAR=FRR PIC x(26),
035 Bu0G=NY=AMT vIc x(I13%),

AN A AR RN AR AR AR R AN AR A RSP TR AR RPN A NN RN AR
FJIM TAHLE LAYNUTS
SFLECTIDS CHARACIER

Y

LA FURM JIMHER
e NEXT FORM NUMHER
" HELP FNRY NIIMIFR

ann
AR R RN R AN A RN P AR A R A RN R NP AN A E AR A RN AN AN

Mparhabaane NNk A R AR RN

AR Lanso R ANt R RN N

Foka ya4dE TasLE LavyInuls
FURM NAGE (VELs F02% NAWE)
* LENGYH OF DATA FILELIS

Xy
AEARANcRca RN ARt e R AN NN L ko RN R AR AR N

01 FORM=1agLE,
09 FORM=1,

10 FILLER PIC X VALUE "I",
10 FILLER PIC 9(u4} COMP VALVE
10 FILLE® PIC 9(4) COMP VALUE
1V FILLER PIC 9(4) COMP VALUE
05 FURM=2,
10 FILLER PIC x VALUE "a%,
10 FILLER P1C 9(4) CDMP VALUE
10 FILLER PIC 9(4) COMP vaLlE
10 FILLER PIC 9(4) COMP VALUE
05 FORM=3,
10 FILLER PIC X VALUE "B",
10 FILLER PIC 9(4) COvP VALUE
10 FILLE®R PIC 9(1) COMP VALUE
10 FILLER PIC 9(u) COMP VALUE
US FUORM=4,
10 FILLER PIC n VALUE "C",
10 FILLER PIC 90(4) COMP VALUE
10 FILLER PIC 9(4) COMP vaLUE
10 FILLER PIC 9(4) COMP vALUE
5 FORMaS,
10 FILLER PIC X VALUE "n",
10 FILLER PIC 9(4) COuP VALIE
10 FILLER PIC 9(4) COMP valLUE
10 FILLER PIC 9(4) COMP VALUE
05 FURM=6,
10 FILLER PIC X VALUE "F",
10 FILLER PIC 9(4) COMP VALUE
10 FILLER PIC 9(4) COMP VALUE
10 FILLER PIC 9(4) COMP VALUE
05 FDRM=/,
10 FILLER PIC X VALUE "7%,
10 FULLER PIC 9(4) CumP vALIE
10 FILLEN PIC 9(4) COMP vaLUE
10 FloLex PIC 904) COMP vaALIE

1.
14,

2.

13,

3.

13,

4,

1.

2.

13,

S

12,

te

12,

J

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

DURNA],

22.h
22.7
22.A
22.9
24

231
23,2
23,3
e3.u
25,5
23,5
24.7
23.n
25,9
24

24,0
24,2
24,3
24,4
24,5
24, h
24,7
24,8
24,9

25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
25,9
26

26.1
26,2
26,3
26,1
26,5
26,6
26,7
26,8
26,9

27.1
e7l.2
27.3
27.4
27,5
2745
27.7
27.8
27.9
28

28,1
23,2
28,3
28,4
24,5
LY
eh.7
268,14
M.
293

23.1
29.2
29,3
29,4
[-]
24,k
23,7
29,4
29,49
30

30,1
30,2
30,3
30,4
30.5
30,6
30,7
30,8
30,3

3.
31.¢2
31.3
31,4
31.5
3.6
51.7
31.8
31.9

32.1
32,2
32.3
32.4
32.5
32,6
32,7
32.8
32.9

13,1
13,2
13,13

09 FurRt=n,

10 FILLER PIC X VALUE "7v,

10 FILLER PIC Y04) COvP vaLt 1.

b0 FIELEw PIC 9(4) LOMP valE 1,

1o FILLER PIC 9(4) COMP vaLlE 14,
fiYy Fuws=y,

19 FlLLER pic x VALUE 7",

10 FILLER PIC 9(4) COMP vaiuE 1,

10 FILLER PIC 9(4) COYP vALUE 1,

10 FILLER PIC 9(u4) COVP vaLUE ta,
uy FORM=10,

10 FlLe< PIC X VALUE "

10 FlLiew PIC 9(4) COVP VvALUE 1.

10 FlLiew PIC v(a) CO™P vaLDE 1.

oo RFiLLr< HIC 9(d) Cu4dP valLuf 1d.

REDEF INES FORM=TA4LE,
QCCUNS 10 Tiues,

U1 FRMeSPEC=ARRAY
05 FURM=SPECS

10 FOM=1D PIC X,
10 FOHM= 48R PIC 9(4) COmMP,
10 FORM=VEXT PIC 9(4) COvP,
10 FORM=HELP PIC 9(4) COMP,
01 FORA~NAME=TABLE,

05 FORM=1,
10 FILLER PIC X(15) VALUE "BUDMAINT_MENU ",
10 FILLER PIC 9(4) COwP vaLUE 9e,

05 FORM=2,
10 FILLER PIC X{15) VALUE "“VENDDR_DATA “e
10 FILLER PIC 9(4) COMP VALUE 357,

05 FORM=3,
10 FILLER PIC X(15) vALUE "danNK_MSTR_Data ",
10 FILLER PIC 9(4) COMP VALUE 325,

05 FORM=4,
10 FILLER PIC x(15) VvALUE "BUDGET_LDAD “.
10 FILLER PIC 9(4) COMP VALUE 12A,

05 FURMaY,
10 FILLER PIC x(15) vaLuE " .
to FILLER PIC 9(4) COMP VALUE 96,

Ny FURM=6,
v FILLER PlC x(15) vaLUuE " ".
10 FILLER PIC 9(4) COMP VALUE 96,

U5 FURM-7,
10 FILLER PIC x{15) VALUE " "
10 FILLER PIC 9(4) COMP VALUE 9s,

0S FURM=8,
10 FILLER PIC x(15) VALUE * “.
10 FILLER PIC 9(4) CDMP VALIE 9&,

05 FURM=9,
1u FILLER PIC X(15) vALDE * e
10 FILLER PIC 9(4) COMP VALUE 96,

05 FURM=10,
1o FILLER PLIC x(15) VALUE * .,
10 FILLER PIC 9(4) COMP VALIIE 96,

09 FORM=11,
10 FILLER PIC X{19) VALUE "HELP_HANK_UATA *,
10 FILLER PIC 9(4) COMP VALUF k9,

05 FurRM=12,
10 FILLER PIC x(15) VALUE "HELP_BUNG_LDAD ™.
10 FILlLeR PIC 9(d4) CNMP VALIIE A9,

us FORW=13,
10 FILLER PIC x(1%) vALUE "WFLP_VENDUR "
1V FILLER PIC 9(4) CHYP vALUE 69,

05 FURN=14,
10 FILLER . PIC X{1S) VALUE "3IDMAINT_HELP ",
10 FILLER PIL 9(4) CDMP VALUE A9,

05 FURNM=11, -

10 FICLER PIC x {15} VALUE ®nFLP_FREDLIT_SHP™,
tu FluliRr PIC Y(a} [OMP VALUE b9,

Ut FURM-AME = ARRAY REDEF [RFS FURM=NAME = TAALE,

0N FurRMenA AR =] F D GCCHRY 15 TIMES,
1V FuKkMe=NAME PIC X(19),
10 FORM=DATA=LE™ PIC 9(4) COYP,

01 FOMar-CNIL CORY FORMTCTL,

01 FOQ4AT=-13,

05 FILLER PIC §9(4) COMP vaLUE 1,
05 FILLER PIC $9(4) COvP vaLUE 13,
05 FILLER PIC 89(4) COMP valLUE o,
05 FILLER PlC x VALUE " ",
05 FILLER PIC x VALUE SPACES,
05 Ul3=FQR4aT,
10 FILLER PIC S9(4) COMP vaLuE 11,
10 FILLER P1C $9(4) LCOMP vaLUE ZERO.
10 FILLER PIC X VALUE SPACES,
1V FILLER PIC x VALUE ®*N",
10 FILLER PIC X VALUE *17,
10 FILLER Plc x VALUE 2",

01 ERROR=ARRAY,
05 FIELD=ERR
01 FIELD=ZERU

OCCURS S5k TIVES
REDEFINES ERROR=ARRAY

PIC 9.
PIC Xx(Shk},

PIC 99 COwP,
PIC 99 CQuP,

01 FIELD=CNT
01 FIELD-LOC

Ry T R R N R R YO Y e e Y]

SPAGE

33,4
33.5
33,5
33,7
s3.4
33,9
3y
341
34,2
a3
34,1
Su,5
34,5
3a,l
4.5
34,9
35
35.1
3.7
45,4
35,4
35.9
3h.hk
35,7
35.8
15,9
36
36,1
36.2
36.3
36,4
36.5
36.6
36,7
36.8
36,9

37.1
37,2
37.3
37.4
37.5
37.8
37.7
37,4
37.9
38

38,1
38,2
38,3
38.4
38,5
38.6
38,7
38,8
38,9
39

39,1
39,2
39,3
39,4
39.5
39,6
39,7
39,8
39,9
49

40,1
40.2
40,3
40.4
au,s
40.6
40,7
4u,A
4i) .3
4

41,1
41.0
d1.3
41,4
a1.5
41,5
at,7
a],.r
41,9
ae

42.1
42,2
42.4
42,4
42,5
42,6
42,7
42,8
42,9

43,
as,2
43,13
43,4
43.5
a3.6
43,7
43,8
43,9
44

44,1

PROCEDUNE DIVISION
000000~AalN=PART SECTTION 01V,
DQOV0U=PRULRAM=LOGIC,
PERFURM GD0DOD=ORPEN=PROGRAM,
PERFURY 100GU0O=-READ=LNOP UNTIL LAST=xEY = B,
PERFURYM 970000=CLOSE=PRUGKAN,
S13IP RuW,

1TOU00Y=REAND-LINP,
PERFI< S HOluhu=REAG=TFRY,
IF Layl=XFEY = O
NEXT SENTENCE
ELSE IF (AST=-xtY =
PERFURM 481000=KEY=]
ELSE IF LaSTekky =z 2
PENFOURY AH2000=KET =D
ELoe 1F (aStl=xtY = 4
Pokburd HHESBO0=XLY=S
ELSE fF LAST=REY = 4
PewFuyra adqopusst Y=
ELSE IF LA3T=XEY = 5
PERFURM 885000=KEY=S
ELSE IF LAST=xEY = &
PERFORY ARKOLU=KEY=h
ELSE IF LAST=KEY = 7
PERFURM 887000=-XEYe?
ELSE
PERFORM 88B000=xEY=B,
IF CHECK=RESULT NOT = 0 OR LAST=XEY = 9
NEXT SENTENCE
ELSE IF LOC=FOR™M =
PERFOKM 101000=EDT T=MENI
ELSE [F LOC=FORM = 2
PERFURY 102000=EDIT=4
ELSE IF LOC=FORM = 3
PERFURM 103000=FDIT=-0
ELSE IF LUC=FORM = 4
PERFORY 104000=EN1T~C
ELSt IF LOC=FORM = &
PERFOKRM 105S000=-EDIT=N

ELYE IF LNC=FORYM = &
PERFORM 10a000-E£N]1T=E
ELSE

MUVE 4 TO CHECK=RFSULT,

1F CHECK=RESULT NOT = ZERD
NEXT SENTENCE

ELSE 1F LOC=FORM = 1t
PENFURY 150000=vALID=MENY

ELSE 1F LOC~FORY = 2
PERFORM 151000=VALTD=4

ELSE IF LOC=-FDIM =z 3
PERFORM 152000=vALID=H

ELSE I+ LOC=FORM = 4
PEKFORM 153000=vALID=C
ELSE 1+ LOC=FORM = &

PERFOKM 155000=-vALID=E
ELSt IF LAST=EY NOT = S
PERFO=Y gBO000=a5K=CONFIRY

ELSE IF LUL=FDRM = 5
PERFORM 154000=vALID~D
ELSE

MUVE 4 TO CHECK=RESULT,

IF CHECK=RESULT = 3 PFRFDRY BS10UG=REFRESH=TERM,

1F CHECK=RESULT = 4 MOVE 3 10 V=§A04=CONTROL
MUVE "L" 10 AODE=FLAG,
IF CHECK=RESULY = 0 PERFUKM B11000=-FORM=INITIALIZE,

IF CHECK=RESULT = 2 R = 4 OR = 6 PERFORM RS2000~NEXT=FUNM,
JF CHECK=RESILT NOT = 9

PERFORA BRDAOQ0=SHO oF UKW

PERFURA AYEg)N=CLEAn=AN] $J00a,
AUVE ZERD 1O CAECK=HESILT, veSnlda=COMTIROL,

101 U0U =0 T=ME vu ,
MIVE ZERO Tu CHECK=RESULT,
PERFURYM Bys000=vibw~EDIS,
PERFURM 8070n0=GET=HUFFER,
MOVE SPACES TO SELECI=-ERR,

IF SELECT=IN = "X" MOVE 8 TO LAST=KEY
MOVE 9 TO CHECKX=RESULT
ELSE

PERFUK" 101]100-ED1T=MENU=DATA,

101100=EUll=4EN)=DATA,
PERFORM 10]11]10=MENU=SCAN VARYING LDC=FIND FROM 1 BY 1
UNTIL LUC=FIND » 15
OR SELECT=IN = FORM=ID (LOC=FIND).
IF LOC-FIND > 15 PERFOKM 101120=vENU=ERRUR
ELSE PERFDKM A0300U~CLEAR-WINDOA,

101110=-MENU=SCAN,
Ex[Vi.

101120-4ENU~ERROR,

MOVE
"PLEASE SELECT ONE OF InE ABOVE LETTERS AND RE=ENTER®
1J ERR=MES=RUF ,

MIVE 51 [0 LEN=ERR=BUF.

MIvE 2 TU FIELD=NBR,

PERFURM 812000~SET=ERROK,

ADD 1 TU v=NUM=ERRS,

MOVE 1 [0 CHECK=RESULT,

JOURNA],

USERS GROUP, INCORPORATED

"II'L.Z

44,3
44,4
44,5
44,6
ad,7
44,8
44,9
45

45.1
45,2
45,4
45.4
45,5
4h.6
45,7
49,R
45.9
46

46,1
46.2
46,3
4h .4
4.5
4k k
46,7
4b.h
46,1

a7t .1
ar,2
4’3
a7 .4
a1.5
47.6
47,7
47,8
47,9
48

48,1
48.2
48.3
48,4
48,5
4B.b
u8,7
48,8
48,9

Yl
9.2
9.3

49,4
49,5
49,6
49,7
49,8
49,9
S0

50,1
50.2
50.%
50.4
50.5
50,6
50,7
Su.8
50,9
51

51,1
S1.2
51,3
51,4
Slen
Sl.h
5107
S1.4
51,9
52

52,1
S5e.2
N2. 8
NeL i
2.
92.h
5¢2.7
52,8
S52.9

53,1
53.2

53.3

.
"
"
-
"
"
"
-
.
.
.
"
.
.
»
.

Iy
arn
e
arn
waw
*aa
*aa
'
wnw

axe
aun
e
aw
Y
Yy
can

MODE SFLECEIONS
ADD VENNOR YMASTER
ADD BANK ™MASTER
40D NEXT YR,BUDGFT
EOLT VENDUR MASTER
LOAD QuDGET

-~ DD VO«

EXIT PROGRAM

AFAL—1OTMTMOO I

[T T T TR T TR T U LR Y R TR

R

= MATN MENJ

R R YT R T T S T F Ry

RN A A AN RN S A AR R AN R AR R RN R RN R RN AR RN RN RN R AR R AN AR R AR R RN,

CHECK RFSULT CUDFS avn
u T g ERRDHY : 5 = aaa
1S heR NG, RE=<PADL AT VEXT FOKA wan
e = dn G e NES B 72 "
3 = wEFREDH TER] AL Az eng
W= ke LR 1O AATw bty 9 2 EXT1 PROGRAM *wa

Anw

L R T T T T T P P TS

AR A RN R R AN R AR R A RN R R RN AR E AN A A RA AR R AR AA RO AR AAR R AR A AR R A AR

FUNCTIUN KEY CODES
Fl SK]P FS = CONFIRv ENTRY
Fe CLEAR (INITIALILZE) Fb = NEXT FORM
F3 HELP FT = ¥MaIN MEnNU
Fda = REFRESH SCRFRA F8 = EXIT

"
"
"
"
"
"
"
-
-
.
-
"
-
-
-
"
"

Xx3
L2
ran
LR 2]
LT}
an
LT

RN RN R RN R AR NN RN AN N RN RN R A R AR N A AN R AR N R AN AR R R AN AR AR AR R R R R AR AR

1v

10

10

I

19

2000=EDIT~4A,
MOVE (ERO TU CHECK-RESYLT,
MOVE ZERD TO FIELN=ZERO.
MUVE 16 U FIELD=-CNT,
PERFURM H05000=VTIEN=FNIT,
PERFORM BUTOO00~=GET=BUFFER,
MOVE SPACES Tu VEND=NHR=-ERR,
PERFURKM 102100=CR=VEND=NBR
PERFUKY 102200=CX=VEND=CONE,
PERFURM 1923u0=CR=VEND=STATUS,
PERFLURM 102400=Ch=VENDN=1099,

VEND~STATUS=ERR,

PERFORM BN99u0=PUT=BUFFEN,
PEIFORY 8uS000=VIFA=ENTI,

IF VenNygM=LRRS NNT = ZERD YOVE 1
MUvE ZEROD 10 FIELD=-LOC,

PERFORM #813000~SET=ERROR=FIELOS FIELD=CNI

TO CHECK=RESULT,
TIMES,

2100=CK=VEND=NHR,
MOVE VEND=UBR OF VEND=I~ TD ARGUMENT,
PERFURY #31000=HET=VENN=MSTR,
IF COND=WORD = 17 NEXT SENTENCE
ELSE AOVE "INVaLTN! DUPLICATE NUMBER™
MOVE 1 1) FIELO-ERR (2)
MUVE 1 10 CHECK=RESULI,

TO VEND=MNBR=ERR

22Uu=Cr=vEnD=C0E,

IF venD=CU0k OF VE DIy = "ya™ 01 = "yu® R = "np"
NEAT SENTENCE
ELSt MavE "INVALTO VENDOR CODE!™ TN VEVN=CONE=ERK
MUvE bt TO FIELN=Ewx (19)

4dvE 1 TO CHARCX=RESULT,

PRYUSCReVEIil=STATNS,

IF VLA0OR=5TATHY DF VEAD=IN = “CR" OR = "xx"
NEXT SEvTEvCE
ELSE ~ovE "LavaLIn STATYS CODE!™ TO VEAN=STaluS=ERR
MUVE U T) FIELI=LRK (24}

MUvE 1 B CHECKR=RESLLI,

2aty=CA=vE8e]080,

IF FLAG=1099 OF VF“Oe]lyu = SPALES LR = "v "

NEx1 SEWIENCE

ELSE
4UVE 1 TO FlELPD=FRR (18)
MUvE 1 TO CHECK=RESULT,

103000=-ED]IT~-B,

MOVE ZERO TU CHECK=RESILT,
M3VE ZERU 10 FIELND=ZERD.
MOvei 3 TU FIELDeCNT,
PERFURM B05000=VIEwW=ENTT,
PERFURY B0TUV0=GET=BUFFER,
PERFORM 105100=-CK=~VEND=NBR,
PERFORM 102200~-CK=VEND=CODE,
PERFURM 102300=-Cx=VEND=5TATUS,
PERFORM 102400«Cx=VEND=]V99,
PERFORM B09000=PUT=HUFFER,
PERFURM B0S000=VIEA=EDIT,
1IF V=NUM=ERRS NOT =z ZERQ

MOVE | TO CHECK=RESULT,
MOVE 2ERO tU FLlELPeLOC,
PERFURM Al 3000=3ET=-ERROR=F{ELDOS FIELD=CNT TIMES,

55
S55.1
55,2
55,3
55.4
55,5
55.6
55.7
55.8
55.9
56
S56.1
56.2
56,3
56,4
56.5
Sb.6
56.7
56,8
56.9
5!
S57.1
57,7
57,3
SI,4
57,4
Sles
S1.17
S5/.4
S7.4
a8
941
SH.2
58.3
S8,
58,5
58,6
b8,
58.8
58,9

59.1
59,2
59.3
SY.4
59.5
59.6
59,7
59.8
59,9

60,1
60,2
60,3
h0,4
60,5
60,k
60,7
60,8
60,9

61,1
61,2
61,3
bl,4
61,5
bl.6
b61.7
61.8
61.9

62,1
62,2
62.3
62,4
62,5
62.5
62,7
LT-2%:1
2.y
63
63.1
63,2
63,3
68,4
h5.5
63.h
LR
68,8
hi,9
b4
bhd,
64,2
64,3
64,4
64,5
64,6
ba,7
64.8
64,9
65
5.1
5.2
65.3
65,4
5.5
65,4

103100=Ck=vEND=VBR,

IF NEw=FLAG = ZERN NEXT SENTENCE

ELSE IF VEWI=NAR OF VFEND=IN = VEND=NBR OF VEND=MSTR
MOVE 1 TO NEw=FIAG

ELSE MOVE ZERD 10 NEw=FLAG,

MOVE VEND=NRAR OF VENDeIN TO &ARGUMENT,

PERFURM B31000=GET=VEND=MSTR,

IF CUND=wORD = ZERO AND NEW=FLAG 3 |
NEXT SENTENCE

ELSE IF COND=¥0RD = ZERO
PERFORM 103110=SETUP=VENDOR

ELSE
MOVE "NUN=EXISTENT VENDOR NUMBERI* TO VEND«NBR=ERR
MOVE 1 TO FIELD=ERR (2)
mOvE 1 TO CHECK=RESULT,

103110=5eTUP=VE¥DUR,
MIVE CURR VENN=STR
MJvVE 1 TJ ~NEweFLAG,

TO vEND=IN,
CHECK=RESHLT,

10400yu=ED1=C,
MIVE JERO TU CHECK=RESULT,
Mivk ZERU 19 FLELO=ZERU,
mJve 8 1) FLELD=CNT,
PERFURY 805000=VIEw=ENTIT,
PERFORY 807000=GET=31FFER,
MJvE SPALES T FRROI NISPLAY FIELDS
PE<FURY EDEL RIUTIVES
PERFURM 89300n=PUTasUFFE,
PERFURA anaG00=VIFI=EDIT,
IF VewUMeER<N NI = 7ERL
AUvE 1 1)) CHETK=RESULT,
MYVE ZLKU 106G FLELD=LOC.
PERFUKM 51 4000=SET=ERROR=FJELDS FIELD=CnNT TI4ES,
10500u=-E0]1=0,
MUVE ZeRU TU CHECK=RESULT,
HOVE ZEWRU TO FIELN=ZERD,
MIVE 3 TO FIELD=CNT,
PERFLRM 805000=VIEN=EDIT,
PERFORM 807000-GET=BUFFER,
MOVE SPACES TO ERROR DISPLAY FIELDS
PERFORM EDIT ROUTTNES
FERFURM 809000=PUT-RUFFER,
PERFURM H05000=VIEN=ENIT,
1F VeNUM=ERRS HWOT = 2ERO
MOVE 1 TO CHECK=RESULT,
MOVE ZtRQ T0 FJELD=-LOC,
PERFOKM 813000~SEI1=ERRNN=F]ELDS F1ELD=CNT TIMES,
10600u«EVIT=E,
MOVE ZERU TO CHECKeRESILT,
MOVE ZERO TO FIELD=2ERQ.
MOVE 3 TO FIELD=CNT,
PERFORM 505000=VIFa=EN]T,
PERFURM B30T000=GET=3UFFER,
MOVE SPACES T0 ERROR DISPLAY FIELODS
PERFONmM £DIT ROUTINES
PERFOURM 80900U=PUT=HUFFER,
PERFURM 805000=vIEW=EDLT,
IF VeNUM=ERRS NOT = ZEWO
MOVE | TO CHECK=RESULT,
MOVE ZERO TO FILELD=LDC,
PERFDRM 813000=SET=ERROR=FIELVS FIELD=CNT TIMES,

150000-vALID=RECORD SECTINN 03,
150000=vAL JD~MENU,
MOVE 2 TO CHECK=HRESULT,
MOVE LOC=FIND TO LUC=FORM,
MOVE ZEROQ TO NEW=FLAG,

1510up=vaLIn=a,
152000=vALID=3,
15300u=vaLIN=C,
154000=VAL D=0,

196000-vALID~E,

RPON0u=ulILLITES SeCIINKN 02,

HOlUyu=nEb&D=lEad,
CaLL "vREADFIRELDS™ OS1UG viEa=Co4,
1F vestalys vl 5 0 PERFIIM 992000=-VIEW=ERRNR,

BURoun=PUTeAsL i,
CALL “VPUTATANDA"

B030uU-CLEAR=WINDUNW,
MOvE SPACES TQ ERR=HMES=HUF,
PERFURM 802000=PUY=aINpUA,

804000=SHOW=FORM,
CALL "VSHOAFORM"
IF v=STATUS NODT =

USING VIEW=COM,
N PERFURM 992000-VIEm=ERROR,

B0SH0U-VIEW=EDIT,

CALL "VFIELDEDITS® USING VIEWN=CDV,

USTNG VIE~«COM EIN=MES=RUF LEN=LRR-BUF,

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNAJ,

65.7 806000=FINISH~FORM, 76.5

65,8 CALL "VFINISHFORM" USING V]Ew=COM, 76,6 8600N00=START=HELP,

65,9 16,7 MOVE FURM=HELP (LDC=FORM) TO LOC=FORM=NAME,
b6 B07000=-GET=HUFFER, 76,8 MOVE FONMeNVAME (LOC~FORM=NAME) TD veNFNAME,
6b.1 CALL "VGETAUFFER™ USING VIEN-COY DATA=RUF V<DRUF~LEN, 76,9

66,2 IF v=STATUS NOT = 0 PERFUIM 992000=VIEN=ERROR, 17 B61000=HELP=DLISPLAY,

66,3 77.1 PERFORM 810000=GET=FORM=FILE,

66,4 809000=PUT=8UFFER, 17,2 PERFURM 854000=PUT=-TITLE,

66,5 CALL "VPUTBUFFER™ USING VIEv=COM DATA=BUF v=DBUF=-LEN, 77.3 PERFORM 804000=SHUW=FORM,

bb.b IF v=STATUS «0T = 0 PERFURM 992000-VIEN=ERROR, 77.4 CALL "VREAQOFIELDS™ USING VIEw=COM,

66,7 17,5 IF v=3TATUS NOT = 0 PFRFORY 992000=VIEN=-ERROR,
66,8 810000=GE1 =FORM=FILE, 77,4 IF LASTexEY = A&

66,9 MOVE 0 10U VeREPFAT=0PT, 17.7 MUVE 9 TO CHECK=RESULT

67 MOVE 0 {0 v=NF=QOPT, 77,8 ELSE IF LASTexkEY =z 7

67.1 CALL "VGETNEXTFORM®™ USING VIEW=COM, T7.9 MOVE 4 TO CHECK=RESULT

67,2 IF Vv=STATUS NOT = 0 PERFORM 992000=V]IEwW<ERROR, 78 ELSE IF LASTexKEY = 4

67.3 7841 _MOVE 3 10 CHECK=RESULT

bT.4 811000=FURM~INITIALIZF, 78,2 ELSE

67,5 MIVE 6% T0 Vv=wINDOA=ENR, 78.% MUVE 2 TO CHECK=RESuLT,

b7.6 CALL "VINJIFORM™ USING VIEN=CUM, 78.4

67,7 » ADD INDIVIDIAL FORMS TNTIALIZATION HERE AS REQ, 78,5

67,8 IF v=STAIUS NOT = 0 PERFNRY 9920¢N-VIEW=ERRNOR, 78.6 865000=INITIAL=VENODR,

6l.9 PERFURM BUSDOG-CLFAR=rINODA, 78.7 " MOvE VEND=VHBR OF VENO=MSIR TQ VEND=NBR OF VEND=IN,
Y] MIVE 1 11 LAST=RESULT, 78,8 L] MOVE VEND~NAME 0OF VEND=MSTR TO VEND=NAME NF VEND-IN,
68,1 78,9 » PERFORM 808000=PUTHUFFER,

68.2 B12000-SET1~ERRUR, 79 N -

68,3 CALL "VSETERROR® USING VIEs=Clid FIELD=NAR ERR=-MES~BUF 79,1

68,4 LEN=ERR=BUF, 19,2 B7000U=UPDATE=ACCT=4STH,

68,5 VF v=STATUS NOT = 0 PERFORY 992000~VIEw=ERROR, 19,3 CALL "OHUPDATE™ USING FHBASE NSET=NAME MQDF)
nH.h 19,4 STAIUS=AREA &l =fTEMS ACCI1=4STR,

b4, 7 B13060=5t | =ERRUK=FIELDNS, 719,95 IF CUNU=4DR0 = ZERO HFxT SENTENCE

b8.8 ADD 1 Tu FIELD=LOC, 19,6 ELSE PERFIRM 991000=STA[YS=CK,

63,9 1F FIELD=ERR (FLELD=LOC) = 1 19.7

K9 CALL "VSETERRUKR™ NSING yIEw=GOM FTELO=-LOC ERR=MES=AU} 79.8

h9,1 Nit=tt 55AGE 719.9

59,0 IF v=STATyS NOT = ZERQ Bu BALO0U-REY =],

69,8 PERFNRM 992000V 1t AeERRUR 80,1 MOVE 1 O CHECK=RESULT,

ban ELse 8u.2 MUVE "luvaLID XEf SELECTED, (GHONED® TN ERR=MFS-ALF,
hY.5 MEXT SENTE dnF B0,.3 MOve 29 [0 LEveERR=3:F,

bY.h ELSE 80,4 PERFURM au2000eP lasiunie,

69,7 NEXT SE ITENCE, BU,S

b9 M B,k EEELETEYN S S

69,9 H1a0v0=CUNF IRM=READ, BUL7 4JvE 1 10 CARCK=RESHLT,

Tu CALL "1MMVREANDFIELOS™ UuSIiG vIEa=COM, 40,8 PexrumR4 dlluou=Fix=TaiTiaglze,

1041 1F V=STA(ySs NOT = ZERN PEWFORM 992000=-vIEW-ERROR, 80,9

7.2 81 B 3uny=KkEr=4,

70,3 81,1 PERFUR™M BANVIY=START=HFLP THRU A461UN0=HELP-D]SPLAT,
70,4 620000=SPACE~NUMBER, 81,2

70.5 MOVE FONRMAT=18 TO FORMAT=CNTL, 81,3 AB4NDY=KEY=0U,

T0.86 CALL “CAPE’ENTRY™ USING FORMAT=CNTL Nu¥eIN NUM=OUT, 81,4 MIVE § 10 CHECK=RESULT,

70.7 IF CFIELU=ERR (1) = ZFROU AND CENTRY=ERR = ZERD 81,5

10,8 MOVE WUM=nUT TQ NuMenISPe13 81,6 BBS0ND=KEY=5,

0.9 ELSE MOVE | TO CHECK-RESULT. 81,7 IF LASI=RESULT = ZERD

71 81,8 PERFORY 814000~CONFJR4=READ

71.1 830000=-GET=ACCT=9STR, 81.9 MUVE 5 TO LAST-XtY

Tt.2 MDVE "ACCOUNT=4STR;™ TO DSET=-NAME, 82 MOVE ZERO 10 CHECK=RESWHLT

71.3 CALL "DBGET™ USING FAASE DSET=WAME MODE? STATUS=AREA 82,1 ELSE

71.4 ALL=1TEMS ACCT=MSIR ARGUMENT, 82.2 PERFORY BY0000=INVAL INCONFIRM,

71.5 IF COND=wORD NOT = ZERD AND NOT = 17 82.3

T1.6 PERFURM 991000=STATUS=~CK 82.4 886000-KEY=b,

1.7 ELSE 82,s MOVE & TU CHECK=RESULT,

T1.8 NEXT SENTEACE. 82,6 MOVE FORM=NEXT (LDC~FORM) TO LOC=FDRM,

T1.9 82,7

12 B31UUU=GE1=vE ND=1STR, 82,8

72,1 MOVE "VENDOR=MSTR:" T0 DSET=waME, 82.9 BB7000~KEY=T7,

12,2 CALL "DHGET™ USING FUASE DSET=NAME MODE? STATUS=AREA 83 MOVE 2% 10 MONE=FLAG.

12.3% ALL=ITEMS VEND=MSTR ARGUMENT, 83.1 UOVE d 10 CHECK=RESULT,

T2.u IF CUND=NURD = ZERQ OR = 17 83,2

12.5 NEXT SENTENCE 83,3 RBBO0U=KEY =8,

12.6 ELSE 85,4 MIVE 9 10 CHECK=RESUIT,

72.7 PERFOKY 991000=STATUS=Cx, 83,5

72.8 83,6 B8900u=ASK=LUNF [RM,

72.9 841000=0B=L0CK, 83,7 MOVE

13 CALL "DBLOCK™ SING FBASE DSET=NAVME MODE3 STATUS-AREA, 83.8 "vALIU RECURD, PuSH COMFIRM KEY (FS) TO POST AS SHDAN"
73,1 IF CONU=WORD NOT = ZERD PERFORM 991000=STATUS=CK, 83,9 TU ERR=MES=ARF,

73,2 84 MOVE 52 TO LEN-ERR=BUF,

73.3 842000~0B-uUNLNCK, 84,1 PERFURM B02000=PUT~wINOOW,

73.4 CALL "DBUYLOCK™ USTHG FAASE DSET=NAME MDDE] STATUS=AREA, 84,2 MOVE 1 TO CHECK=RESULT.

73,5 IF CUND=40RD NNT = 2600 PERFORM 991000~STATIS=CX, 8a.3 MOVE ZERKQ TO LAST=RESULT.

73,4 84,4

75.7 84,5 B90000=1NVALIN=CONFIRH,

73,4 84,6 MIVE 1 TO CHECK=RESULT,

75.9 B5100U-KEFRESH=-TER4, 8.7 MOVE

74 PERFURM 940000-LL0SE~TERY, 84,8 "INVALIU USE OF CONFIRA XEY! [ONFIRM NOT REQUESTED!™
ra. PERFUR® 902000=0PEN=TERM, 84.9 TO EWR=MES=RUF .

14,2 MIOVE § 1) ¥=S=HDA=COTHOL, 8 MIVE 82 TO LEN=ERR=3UF,

Td,. PERFURY H1)000=FURM=11TTIALI/E, 85,1 PERFURM B02000=Pyl=alNnia,

T4.4 45,2

T4,5 85200u=wk x1=F0RY, 85,3 R L S P Y P A T T R RS R s
Td,n 1F LreCk=RESULT = 4 ~iave 1 12 LOC=FORw, 85.4

74,7 MOVE FORM=YHR (LOC=FNR4)} TO LUC=FUR%=NAME, 85.9 YUUOUL=51AKT=5TOP SECTION 51,

Tu,s MIVE FORM=%AAE [LNC+FORM=JAME) [0 V=NFNAME, BY.h FONNN0=0PE v=PRIIGRAY,

14,9 PERFURA B1IN00y=GEl=FUR4=FILE, 85,7 DISPLAY “VIEA4/COROL LAYUUT PROGRAYM VERS, 0,01%,
14 PERFUKY d11000=FORI=T1Tlat T1/E, 45,4 PEXFOR™ 901 un=0PEN=NATA=3ASE ,

5.1 85,9 PERFURNM Y0200u=0PEN=1FRM,

Iv.° ASXAYU~t VI T=ERRIR, 8n PERFURM YD S00u=NRPENVFORY

5.8 CaLl "VERIAGG™ SV VIikEa=CO4 EIR=MES=~nUF LEVeFRK~BUF Bo.t PERFUKM Q0406G0=SFART =vENL,,

.4 LEN=ERR=4ES, LLIS

[ATE IF veSTATUS 40T = 0 PERFURY 992000 =vIEN=ERRDR, Ab,3 YH1vuUeUPE y=1tATA=ASF,

5.6 CALL “vPUTNINNONAT 05ING VIEA=CUA ERR-MES=AUF LEN=-tRR=-BUF, Bk, 4 Call "DuPEN" (ASLIG FRaSE PASSAUAD MONDE) SYATS=AREA,
79.7 Ha,S IF Counli=wwd = JZEwA

19,8 B54000=PUT=T1ILE, LI AT SEAIEICK

15.9 * MIVE 1 TO FIELD=NAR, 6o, 7 ELSE

16 - CALL "VPUTFIELD" USING VIEW-COM FIELD=NSR TITLE=-BUF Hh, 4 PERFUNY 991000=8TaTIIS=CX

76.1 * FITLE~LEN ACT=FIELN=LEN NEXI=FlELD=NBR, 86.9 S0P kilu,

76,2 * 1F v=STATUS NOT = 0 PERFURM 9492000=VIEW=ERROR, B/

76.3 87,1 90200 0=UPEnN=TERM,

16,4 87,2 MIVE ZEKU TO v=STATUS, V=_ANGUAGE,

10

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNAY,

87.3
87,4
87,5
81,6
87,7
37,8
87.9

88.1
88,2
88.3
B8.4
88,5
88,6
88,7
88,8
88,9
a9

89,1
89,2
89,3
89,4
89.5
89.6
89,7
89,8
89,9

.1

90.2
90.3

VIEA=MUDE, LAST=KEY, V=NiyM=ERRS, V-REPEAT=0PT
VeNF=0P1,
CALL "VOPENTERM® USING VIEN=COM TERW-FILE,
IF v=STAluS5 = ZEKD
NEXT SENTENCE
ELSE
PERFORY 992000=V]JE+“=ERROR
CALL “VCLOSEFUORMF™ USING vItw=COM
DISPLAY ERR=-MES=RUF " STOPPING RUN! "
PEKFORM 990000=STOP=PAR,

903000=0PEN=VFURM,
MOVE "BUDGFORY,RUDGET ,PROGLIA™ 1D VeFILE=NAME,
CALL "VOPENFORMF®" USING VIEA=COY VeF [LE=NAME,
IF v=STATUS = 2ERO
NEXT SENTENCE
ELSE
PEREORY 992000-VIEN=ERRDR
CALL “VCLOSETENM™ USING VIEAN=COY
DISPLAY ERR=MES=HIF " STQPPING RUN] *
PERFUKRM 990000-5TOP=-PAR,

904H00=STARI=MENY,
MOvE 1 T1) LOC=FORA,
PERFURM 852u0N=NEXT=FORM,
PERFURM BO400C=SHOX=FORM,
MIVE JERO TO CHECK=-RESULT,

970000-CLOSE=-PROGRAY,
PERFURM 9ROUND=CLOSE~TFR™,

90.4
90,5
90,6
99,7
90,8
90.9
9t

91.1
91,2
91.13
91,4
91,5
9.6
9.7
91,8
91,3

9e.u
92,5
92.¢
92.7
92.8
92,9

93,1
93.2
93,3
93,4
93,5

PERFURM 981000~CLOSE=VFORYV,
PERFORY 990000=STOP=PAR,

IBOQ0U=CLUSE=TERY,
CALL "VCLOSETERM"™ 1SING VIt a=COv,
LF vebTalus HDI = 0 PERFORV 992000-vIEN-ERROR,

981000«CLUSE=VvFORM,
CALL "vCLOSEFORMF®" USING v]Fa=CiOM,
LF VeSTATHS 0T = 7ERU PERFOIM 992000=V]EW=-ERROR,

990UHU=51UP=-PAR,
CALL "2BLLNSE™ USING FBASE DSET=VAME MODE] STATUS=AREA,
STUP wuw,

99 uvuy=0lalus=Cx,
PEIF DA 9H0000=CLISE=THI4,
PERFJRAM 941000=CLDSE=VFOR™,
CALL "DgExPLATW® DSIus STaTys-anEa,
PEXFURY 9900GUN=S1NP=PAR,

99200u~VIEA=ERKUR,

CALL "VERRMSG" USING VIFW=COM ERR=MES-BUF LEN=-ERR=BUF
LEN=ERR=MES,

DiSPLAY BELL "VIE# ERRORIII™,

OISPLAY ERR-MES=BUF,

DiSPLAY BELL "PROGRAM TERMINATED DUE TO AROVE ERROR[}!("™,

PERFORM 990000=-STOP=PAR,

1

OF THE MP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA]

IMAGE/COBOL: Practical Guidelines

David J. Greer

Robelle Consulting Ltd.
27597-32B Avenue
Aldergrove, B.C.
Canada VOX 1A0

Summary

This document presents a set of practical “rules” for
designing, accessing, and maintaining IMAGE data-
bases in the COBOL environment. This document is
designed to aid systems analysts, especially ones
that are new to the HP 3000, in producing ‘“good”
IMAGE database designs. Each .“rule” is demon-
strated with examples and instructions for applying it.
Attention is paid to those details that make using the
database trouble-free for the COBOL programmer,
and maintaining the database easier for the database
administrator.

Database Design

IMAGE/3000 is the database system supplied by
Hewlett-Packard [6]; it is used to store and retrieve ap-
plication information. A database does not suddenly
appear out of thin air; it develops through a long and
involved process. At some time, a logical database
design must be translated into the actual schema that
implements a physical IMAGE database. This phase is
the most difficult of the database development cycle
[7]. The IMAGE/3000 Reference Manual [6] contains a
sample database called STORE, which demonstrates
most of the attributes of IMAGE. Throughout this
document, the STORE database will be referenced
when examples are needed.

Logical Database Design

The foundation of a new database is a logical design,
which is created by examining the user requirements
for input forms, for on-line enquiries, and for batch
reports. The database should be viewed as an inter-
mediate storage area for the information that comes
from the input forms and is eventually displayed on
the output reports [9,10].

Database design is normally done from the bottom
up, as opposed to structured program design, which
is usually done from the top down. The starting point
for a database is the elements (items) that will be
stored in the database. These data elements
represent the user's information. In the early stages,

12

the size and type of these elements are not needed,
only the name and values.

Rule: Start your logical database design by naming
each data item, then identify what values it can
have and where it will be used.

Here is an example of a subset of data items for the
STORE database:

CUST-STATUS Two characters, attached to each cus-
tomer record. Valid values are: 10 =advanced,
20 = current, 30 = arrears and 40 = inactive.

DELIV-DATE Six numeric characters; Date, YYMMDD,
attached to every sales order as the promised delive
date.

ON-HAND-QTY Seven numeric characters, attached
to every inventory record to show the current quantity
of an inventory item available for shipping.

PRODUCT-PRICE Eight numeric characters (6 whole
digits, 2 decimal places), attached to every sales
record. This is the price of a product sold, on the date
that the sale was made.

As the logical database design develops to deeper
levels of detail, the elements needed should eventual-
ly reach a stable list. These elements shouid then be
combined into records by grouping logically related
items together.

It is important that ‘“‘repetition’ be recognized early in
the design. An example of this is a customer’'s ad-
dress. The most flexible method of implementing
addresses is a variable number of records associated
with the customer account number. Another method
is to make the address field an X-type variable (e.g.,
X24) repeated 5 times (e.g., 5X24). Repeated items are
often the most natural way to represent the user’s
data, so the use of repeated items is encouraged.

After the records are designed, enquiry paths must
assigned. During the early stages of database desig
it is important to use elements that are readable and
easy to implement with the tools at hand. This permits
testing of the database using tools such as QUERY,
AQ, and PROTOS.

JOURNA]

OF THE MP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

IIIIIIllllllllIIIllllIlllllllIlllllllllllllllllIlIlllllllllIlIIIlllllllllIIIIlllllllIIIIIIllIIIlllIlllIIIIIIIllIIIIIllllIIIIIIIIIIIIIIIIIIIIIIII

Physical Database Design

After the logical database is designed, the IMAGE
schema must be developed. The restrictions of
IMAGE must now be worked into the database design.

IMAGE requires that all items needed in the database
be defined at the beginning of the schema, and a size
and type must be associated with each. Initially, de-
clare each item as type X (display); later, the data type
may be altered.

Records are implemented as IMAGE datasets. Start
by treating each record format as a master dataset.

Rule: /f a record is uniquely identified by a single key
value, start by making it a master dataset (e.g.,
customer master record keyed by a unique cus-
tomer number).

The STORE database assumes that each CUST-
ACCOUNT field is unique. Furthermore, there is only
one customer record for each CUST-ACCOUNT. All of
the information describing one customer is gathered
together to result in the M-CUSTOMER dataset:

NAME : MANUAL (1/2); CCPREFIX = MCS>>
ENTRY:
CITY
,CREDIT-RATING
L CUST-ACCOUNT(1)
L CUST-STATUS
 NAME-FIAST
 NAME-LAST
,STATE-CODE
,STREET-ADDRESS
,Z1P-CODE

M-CUSTOMER,

<CKEY FIELD>>

CAPACI%Y: 21°; (<M-CUSTOMER,PRIME; ESTIMATED>>

Rule: /f a “natural” master dataset will require on-line
retrieval via an alternate key, drop it down to a
detail dataset.

The detail dataset will have two keys: the key field of
the original master dataset, and the alternate key. You
will have to create a new automatic master for the
original key field, and you may have to create an auto-
matic master for the alternate key (unless you already
have a manual master dataset for that item).

Take the M-CUSTOMER dataset as an example. As-
sume that in addition to needing on-line access by
CUST-ACCOUNT, it is also necessary to have on-line
access by NAME-LAST. The following dataset struc-
ture would result:

NAME: A-CUSTCMER, AUTOMATIC (1/2), C(PREFIX = ACS»>
ENTRY:

CUST-ACCOUNT(2) <CKEY FIELD>>
CAPACI%Y: 211, <C(A-CUSTOMER,PRIME; ESTIMATED>>
NAME: A-NAME-LAST, AUTOMATIC (1/2), CCPREFIX = ANL>>
ENTRY:

NAME-LAST(1) (CKEY FIELD>>
CAPACI%Y: 211 <<A-NAME-LAST,PRIME; CAP(A-CUSTOMER)>>

13

NAME DETAIL (1/2); <CPREFIX = DCS>>
ENTRY:

CITY

,CREDIT-RATING

,CUST-ACCOUNT(!A-CUSTOMER)

D-CUSTOMER,

<<KEY FIELD, PRIMARY>>
,CUST-STATUS
 NAME-FIRST
 NAME-LAST(A-NAME-LAST)
,STATE-CODE
,STREET-ADDRESS
,Z1P-CODE

<<KEY FIELD>>

CAPACI%Y: 213; <<D-CUSTOMER; CAP(A-CUSTOMER)>>

Rule: If an entry can occur several times for the pri-
mary key value, store it in a detail dataset.

Detail datasets are for repetition and multiple keys.
Master datasets can only contain one entry per
unique key value. An example of repetition in a detail
dataset is a customer address field. The customer
address can be stored as a repeated field in a master
dataset, but eventually there will be an address that
will not fit into the fixed-size repeated field. Instead of
a repeated field, use a detail dataset to store multiple
lines of an address. For example:

An individual line of address. This
item is used in D-ADDRESS to provide an
arbitrary number of address lines for
each customer.

ADDRESS-LINE, X245 <K<

Customer account number. This field
is used as a key to the M-CUSTOMER
and D-ADDRESS datasets.

>>

CUST-ACCOUNT, 8;

LINE-NO, Xe; << Used to keep address lines in D-ADDRESS
in the correct order. This field also
provides a unique way of identifying
each address line for every

NAME: D-ADDRESS DETAIL (1/2); <CPREFIX = DAD>>

ENTRY:

ADDRESS3-LINE
,CUST-ACCOUNT(!M-CUSTOMER(LINE-NG))
,LINE-ND

<C(KEY FIELD, PRIMARY PATH>>
C<CSORT FIELD>>

CAPACI%Y: U4y ((D-ADDRESS; 4 * CAP(M-CUSTOMER)>>

Dataset Paths

The following definition of PATHs and CHAINs comes
from Alfredo Rego [11]:

A PATH is a relationship between a MASTER
dataset and a DETAIL dataset. The master and
the detail must contain a field of the same type
and size as a common ‘“bond’’, called the
SEARCH FIELD. A path is a structural property of
a database.

A CHAIN, on the other hand, contains a MASTER
ENTRY and its associated DETAIL ENTRIES (if
any), as defined by the PATH relationship be-
tween the master and the detail for the particular
DETAIL SEARCH FIELD. ...A chain is nothing
more than a collection of related entries (for
instance, a bank customer would be the master
entry and all of this customer’s checks would be
the detail entries; the “chain’ would include the
master AND all its details; the chain for custom-
er number 1 would be completely different from
the chain for customer number 2).

OF THE HP 3000 INTERNATIONAL
USERS GROUP. INCORPORATED

JOURNA]

Paths provide fast access at a certain cost: adding
and deleting records on the path is expensive. The
more paths there are, the more expensive it gets [11].
Another restriction of paths is that there can be a
maximum of 64,000 records on a single path for a
single key value. This sounds like a large number, but
it can be very easy to expand a chain to this size if a
key is specified for a specific, reporting summary pro-
gram (e.g., billing cycle, in monthly billing trans-
actions).

Rule: Avoid more than two paths into a detail dataset.

There are some instances where three paths are
necessary, but these should be avoided as much as
possible. Before adding a path, examine how the path
is going to be used. If it is added just to make one or
two batch programs easier to program, the path is not
justified. The batch programs should serially read and
sort the dataset, then merge the sorted dataset with
any other necessary information from the database.

The date paths of the SALES dataset of the STORE
database are good examples of unnecessary paths.
Because the chain lengths of paths organized by date
are almost always very long, such a chain is rarely
allowed. Also, users are often interested in a large
range of dates (such as a month, quarter or year), not
just a specific day.

In order to obtain the same type of reporting by date, it
is possible to do one of the following: 1) read the data-
base every night and produce a report of all records
entered every day; 2) keep a sequential file of all
records added to the dataset on a particular day. This
file can then be used as an index into the database.

These are not the only solutions to removing the date
paths, but they indicate the kind of solutions that are
possible. Because of the high volume and length of
the average chain, date paths are prime candidates for
removal from a database.

The following example demonstrates how the SALES
dataset should have been declared:

<< The D-SALES dataset gathers all of the sales records
for each customer. The primary on-line access is by customer,
but it is necessary to have available the product sales
records. The PRODUCT-PRICE is the price at the time
the product is ordered. The SALES-TAX is computed based
on the rate in effect on the DELIV-DATE.
>>
NAME: <<PREFIX =
ENTRY:
CUST-ACCOUNT(tM-CUSTOMER)
,DELIV-DATE
, PRODUCT-NO(M-PRODUCT)
+PRODUCT-PRICE
, PURCH-DATE
s SALES-QTY
, SALES-TAX
,SALES=TOTAL

D-SALES, DETAIL (1/2); LsSa>>
<<KEY FIELD, PRIMARY PATH>>

(KKEY FIELD>>

CAPACI%Y: 600; <<D-SALES; 3 * CAP(M-CUSTOMER)>>

Rule: Avoid sorted paths.

14

Because sorted paths can require very high overhead
when records are added or deleted, they should be
avoided as much as possible. There are some instan-
ces when a sorted path makes the system and pro-
gram design much easier, but this convenience must
be traded off against the higher cost of maintaining
sorted chains.

The most important criteria in evaluating sorted
chains are: 1) whether the chain is needed for batch or
on-line access. In batch, it is possible to read and sort
the dataset, rather than relying on sorted chains. In an
on-line program, this is usually not possible, so sorted
chains are required. 2) How long is the average chain
going to be? The longer the chain, the more expensive
it is to keep sorted. If chains have fewer than 10
entries per key value on average, sorted chains can be
permitted. 3) How are records being added to the
dataset? If a sorted chain is present, and data is
added to the dataset in sorted order, there is very little
extra overhead in the sorted chain. If, on the other
hand, data is added in random fashion, there is a very
high cost associated with the sorted chain [11,13].

Locking Strategy

Early in the database design, it is important to identif)‘
the locking necessary for the application. The easiest
choice is to use database locking. Unless specific
entries are going to be modified by many users, data-
base locking should work. Remember: locking is only
needed when updating, adding, or deleting entries
from the database, not when reading entries. Never
leave the database locked when interacting with the
terminal user.

The next level of locking to be considered is dataset
locking. This takes more programming, but provides
for a more flexible locking strategy.

Rule: Avoid MR capability; instead, use lock descrip-
tors (and a single call to DBLOCK) to lock all
datasets needed.

For large and complex systems (e.g., an inventory sys-
tem with inventory levels that must be continually
updated), record locking should be used. The data-
base design should help the application programmer
by making the easiest possible locking strategy avail-
able for each program [2].

Passwords

Most application systems go overboard in their use of
database passwords. The simplest scheme to imple
ment is a two-password system. The database is de-
clared with one password for reading and one for writ-
ing. Each password is applied at the dataset level; and
item-level passwords are not used.

JOURNA]

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

R EE——

‘(ule: Use the simplest password scheme that does
not violate the database integrity.

The advantages to this scheme are that there are
fewer passwords to remember, IMAGE is more
efficient (because all security checks are done at the
dataset level, instead of the data item level), and the
user can still use tools such as QUERY, by being
allowed the read-only password.

In sensitive applications, a separate dataset or data-
base can be used to isolate data requiring special
security. This still permits the simplest password
scheme possible, with an extra level of security. The
following example shows how to declare passwords
for read-only access and read/write access on a
dataset level:

PASSWORDS: 1 READEFR;

2 WRITER;

The declarations for the M-CUSTOMER and the
D-SALES datasets contain ‘(1/2)” on the line that
declares the name of the datasets. The *‘(1/2)" indi-
cates that the READER and WRITER passwords are in
effect for the whole dataset.

Early Database Testing

‘he early database design should allow the user or
analyst to experiment on the database design with
test data. User tools such as QUERY or AQ should be
used to access the database. At this stage, the item
types may be left approximate, so long as the user or
analyst gets a chance to interact with the database
design. The analyst should check that all require-
ments of the user can be met by the database design.

Rule: Build your test databases early. Use an applica-
tion tool to verify that the database design is
correct.

In some cases, the end user may not be able to access
the database, but the database designer must go
through this testing process. This examination of the
database design may uncover design flaws which can
be fixed easily at this early stage. After the logical
database design has been roughly packaged as an
actual IMAGE database and verified against the user
requirements, the design should be optimized and the
finishing touches added (see next section).

Very Complex Databases

IMAGE has a number of size restrictions that it im-
poses on the database design. For example, the num-
ber of items in a database is limited to 255, and the

umber of datasets in a database is limited to 99. For

any applications, these limits pose no problems;
but with the larger databases being designed today, it
is not difficult to imagine databases which exceed

15

these limits. What can you do to get around this pro-
blem?

Bottom-Up Design

The design method outlined above must be extended.
For small projects, it is adequate to simply group
related data items into datasets, because the entire
application will fit into one database. However, for
large projects, another step is required: related
datasets must be grouped into separate databases.

Multiple databases introduce new problems for the
application programmer. These include larger pro-
grams, which result in larger data stacks, as well as
problems with locking. In designing a multiple data-
base system, it is best to minimize the number of pro-
grams that must use more than one database.

If an application decomposes into independent sub-
units, few programs will require more than one data-
base. The design of the system and the database may
have to be revised to increase the independence of
the sub-systems.

Polishing Database Design

The database designer has two main concerns in
completing the database design. Will the application
programs be able to access the database within the
defined limits of the HP 3000? Does the database take
best advantage of COBOL and other tools available
[3,8,11,13]?

Overall Performance

Rule: Estimate on-line response times and elapsed
times for batch jobs. If the project will need
more hardware, it is better to know so before
the project goes into production.

The following material is taken from [9], with com-
ments and examples to expand on the original. The
HP 3000 is able to perform approximately 30 1/Os per
second. On various machines under different operat-
ing systems, it may be possible to obtain more than
this. Because it is extremely difficult to obtain the
theoretical maximum of 30 I/Os per second, it is best
to plan for a maximum of 20 I/Os per second.

Each IMAGE procedure results in a specific amount
of 1/0. Before going ahead with a large application, the
total 1/0 required for the application must be com-
puted and compared against the maximum. This is
done by estimating the 1/0 for each on-line function,
then summing the 1/0Os of the functions that might
reasonably occur concurrently. Also, the total elapsed

OF THE NP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA]

time for batch jobs must be estimated to ensure that
they will complete in the time available.

The following gives an approximate measure of the
number of 1/Os necessary for each IMAGE procedure
in an on-line environment:

Procedure reo
DBGET 1
DBFIND 1
DBLOCK 0
DBUNLOCK o]
DBUPDATE 1
DBPUT 2
DBDELETE 2

+ 2 * Number of keys in the dataset.
+ 2 * Number of keys in the dataset.

The figures for DBPUT and DBDELETE do not take
into account sorted chains. If sorted chains are kept
short, the above figures will work. If sorted chains are
long, the following formula gives an approximate
measure of how many I/Os are required to add records
in random fashion to a sorted chain:

2+ 2 % (number of keys) + (average chain length)/2

All of the above figures for the number of 1/0s for each
IMAGE procedure are the same in batch, with one
exception. If a batch program reads a dataset serially,
the 1/0s required will be:

Serial DBGET 1/0s = (number of records)/(blocking
factor)

If the batch program also does a sort of all of the se-
lected records from the serial DBGET, the number of
1/0s will be increased.

Batch Calculation Example

The following example computes how long a specific
batch program will take to run; the program makes the
following IMAGE calls:

125,000
80,000
80,000
30,000
80,000

DBGETs serial; blocking factor is 5.
DBPUTs to a detail dataset with two keys.
DBFINDs.

DBGETs to the dataset with the DBFIND.
DBUPDATESs .

Total 1/0s required =

1/0s
i/0s
1/0s
1/0s

DBGET
DBFIND (30,000 X 1) plus
DBPUT (30,000 X 6) plus
DBUPDATE(80,000 X 1).

for
for
for
for

(205,060 / 5) plus

equals 681,000 I/0s.
We can do approximately 20 I/0s a second so

681,000

_______ = 34,050 seconds = 9.5 hours

This batch program is intended to run overnight, but is
unlikely to finish in one evening, because time is also
needed for backup and other daily functions.

Improving Performance
How can the total time of this program example be re-

duced to 3.9 hours? One way is to replace the DBPUT
with a DBUPDATE. In many instances it is possible,

16

through changes in the application and databas.
design, to use a DBUPDATE instead of a DBPUT. This
is especially true in environments where there are
recurring monthly charges, which change only slowly
over time.

There is another advantage to using DBUPDATE. For
each DBPUT, a record is added to the database, and

-this record must later be deleted using DBDELETE.

Because it takes as long to delete the record as it did
to add it in the first place, the DBUPDATE can provide
as much as an eight-fold decrease in running time,
compared with DBPUT/DBDELETE.

COBOL Compatibility

When designing a database, keep in mind how the
database is going to be used (COBOL, QUERY, AQ,
PROTOS, etc.). The following rules apply to item types
and should be used throughout the database.

Numeric Fields

When the database was first designed, all fields were
initially declared as type X (display). By now you
should know the likely maximum value for each data
item. Once the size of each data item is fixed, the time
has come to specify a more efficient data type fo‘
numeric fields.

The type of field used for numeric values depends on
the maximum size of the number to be stored (i.e., the
number of digits, ignoring the sign). The following
table should be used in determining numeric types:

Nunber of Digits IMAGE Data type
<5 41

<19 j2

J
>=1¢C Packed-decimal of the appropiate size.

Rule: For numeric fields, use J1 for fewer than five
digits; use J2 for fewer than ten digits; other-
wise, use a P-field (packed-decimal) of the
appropriate size.

In COBOL, an S9(2)V9(2) COMP variable is considered
to have a size of 4, or J1. The one exception to this
rule is sort fields. All sort fields must be type X. If a
numeric sort field is required, it must be declared as
type X and redefined as zoned in all COBOL programs.
Remember that packed fields in IMAGE are always
declared one digit larger than the corresponding
COBOL picture (S9(11) COMP-3 becomes P12) and
must be allocated in multiples of four.

COBOL databases must not contain R-fields, because
R-fields have no meaning in the COBOL language.
Instead of an R-type field, a J-type or P-type field mus
be used. The STORE database contains an R-type
field, CREDIT-RATING, which should have been
declared as:

JOURNA],

CREDIT-RATING, Je; << Customer credit rating. The larger
the number, the better the customer's
credit.

>>

Used to five decimal places.
Key Types

Every key, whether in a master or detail dataset, must
be hashed to obtain the actual data associated with
the key value. Hashing is a method where a key value,
such as customer number 100, is turned into an ad-
dress. The method used tries to generate a different
address for every key value, but in practice this is
never possible. The choice of the type of key has a
large bearing on how well the hashing function will
work.

Rule: Type X, type U, and type Z keys give the best
hashing results, especially if the key length is
greater than 6 bytes. Avoid keys of type |, J, K,
P, and R.

When using a Z-type for a key, leave it as unsigned in
all COBOL programs. Because key values rarely have
negative values, there is no effect on the application
by removing the sign from a zoned field. The advant-
ages to leaving off the sign are: 1) displaying the field
in COBOL or QUERY results in a more “natural” num-
Qer, and 2) problems between positive, signed, and
nsigned zoned numbers are avoided.

Date Fields

Rule: Dates should be stored as J2 (S9(6) COMP) in
YYMMDD format.

This format provides the fastest access time in
COBOL and takes the least amount of storage. Use a
standard date-editing routine to convert from internal
to external format and vice versa [4].

The only exception to this is when a detail chain must
be sorted by a date field. Because IMAGE does not
allow sorting on J2 fields, X6 is used. For the chain to
be sorted correctly, the date must still be stored in
YYMMDD format.

Other Item Types

The only item types that should be used are J- or
P-types for numeric values, and X-, U-, or Z-types for
keys. The K-, |-, and R-types should never be used in
a commercial application where COBOL is the
primary development language.

‘xample

Earlier, in the discussion of logical database design,
four items were described: CUST-STATUS, DELIV-
DATE, ON-HAND-QTY, and PRODUCT-PRICE. The fol-
lowing example gives the actual IMAGE declaration

for each of these items, according to the rules of this
section:

CUST-STATUS, X2;

~

<< Defined state of a particular customer
account. The valid states are:
10 = advance
20 = current
20 = arrears
40 = inactive

(¢ Promised delivery date.

~

DELIV-DATE, J2;

~

ON-HAND-QTY, J2; Amount of a specific product currently
onhand. Only updated upon

confirmation of an order.

PRODUCT-PRICE, Je2;

~

Individual product price, including
two decimal points.

Primary Paths

Rule: Assign a primary path to every detail dataset
(select the most frequently accessed path with
more than one entry per chain).

IMAGE organizes the database so that accesses
along the primary path are more efficient than along
other paths. The primary path should be the path that
is accessed most often in the dataset.

If there is only one path in a detail dataset, it must be
the primary path. If there are two paths that are
accessed equally often, but one is used mostly in on-
line programs and the other mostly in batch programs,
assign the primary path to the one that is used in on-
line programs. A primary path is indicated by an
exclamation point (!) before the dataset name that
defines the path. A path with only one entry per chain
should not be selected as a primary path.

The Schema

The IMAGE schema is the method by which you tell
both IMAGE and the programmers what the database
looks like. The schema should be designed with maxi-
mum clarity for the programmer, because IMAGE is
only partly concerned with the schema'’s layout.

Rule: The schema file name is always XXXXXXSC,
where XXXXXX is the name of the database.

This naming convention makes locating the schema
easier for all staff. The file is always located in the
same group and account as the database. If the data-
base name was STORE and the STORE database was
built in the DB group of the USER account, the
schema name would be STORESC.DB.USER.

Layout

A clear layout of the schema makes the programmer’s
job easier. Some requirements of the layout are im-
posed by IMAGE, but there are still a number of things
that the database designer can do to make the
schema more understandable.

Every database schema should start with a
$CONTROL line. The $CONTROL line must always

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA],

contain the TABLE and BLOCKMAX parameters. The
default BLOCKMAX size of 512 should always be used
when first implementing the database. Later, after
careful consideration, the BLOCKMAX size may be
changed. When first designing the database,
CONTROL NOROOT should be used.

The CONTROL line should be followed by the name
of the database. This is followed by a header
comment. This comment describes the designer of
the database, the date, the conventions used in
designing the schema, abbreviations that are used
within IMAGE names, and sub-systems with which
the database is compatible and incompatible.

The following are the opening lines of the example
STORE database:

$CONTROL L1ST,NORGOT
BEGIN
DATA BASE STORE;

<« STORE DATABASE FROM THE IMAGE MANUAL
AUTHOR: DAVID J. GREER, ROBELLE CONSYLTING LTD.

DATE: SEPTEMBER 1, 1981

CONVENTIONS:

This schema is organized in alphabetic order. All mas-
ter datasets are listed before detail datasets, and
automatic masters come before manual master
datasets.

All dates are stored as J2, YYMMDD, except where
they are used as sort fields. If a date is a sort field, it is
stored as X6, YYMMDD.

The following abbreviations are used throughout the
schema:

NO = Number
CUST = Customer
QTY = Quantity

This database can be accessed by COBOL, QUERY,
AQ and PROTOS. Note that the STREET-ADDRESS
field is incompatible with QUERY, but AQ can correct-
ly add and modify the STREET-ADDRESS field.

Naming of Items and Sets

Rule; Names should be restricted to 15 characters.
The only special character allowed in names is
the dash (-). This ensures that the names are
compatible with VIPLUS and COBOL.

The percent sign (%) should be replaced with the
abbreviation “~PCT”, and the hash sign (#) should be
replaced with the abbreviation “-NO”.

18

The easiest layout to implement, maintain and under-
stand is to declare everything in the database sorted
in alphabetic order. The items in the database should
begin with a $PAGE command to separate the ‘items
from the header comment. Each item appears sorted
by its name, regardless of the item’s type or function.

Item Layout

In many IMAGE applications, the schema also acts as
the data dictionary. For this reason, it is very impor-
tant that every part of the database design be com-
pletely documented in the schema. Document each
item as it is declared. To make each item stand out,
the following layout should be used:
(< Tne customer number is used as a

kKey field in the M-CUSTOMER dataset.

It is also the defining path in
the D-ORDER-DETAIL dataset.

CUST-NO, 710;

The item name, its type, and the comment start in the
same column for every item. Each part of the item
definition will stand out, and because the item names
are in sorted order, the applications programmer can
easily find a particular item.

Every dataset declaration must be preceded by a
header comment that describes the use of the dataset
and any special facts that the programmer should be
aware of.

Dataset Layout

When accessing the dataset from a COBOL program,
it will be necessary to have a COBOL record which
corresponds to the dataset. In order to prevent
confusion between two occurrences of the same item
as a field in several datasets, a prefix will be assigned
to each of the variables in the COBOL buffer
declaration. This prefix is selected by the database
designer and must appear on the same line as the
name of the database. For example:

<< The M-CUSTOMER dataset gathers all of the static information
about each customer into one dataset. A customer must exist
in this dataset before any sales are permitted to the
customer. This dataset also provides the necessary path
into the D-SALES dataset.
>>
NAME HM-CUSTOMER, MANUAL (1/2); <<CPREFIX=MTSY>
The AUTOMATIC, MANUAL or DETAIL Keyword must always appear in the
same column. This makes reading the SLhema easier, and by search ng
the file for a string (by using /L"NAME:" in QEDIT) it is possible to
produce a nice index of dataset names, their types, and their
prefixes. The following example prints an index of the STORE dataset
names;

:RUN QEDIT.PUB.ROBELLE
/LQ STORESC.DB "NAME:"

NAME: M-CUSTOMER, MANUAL (1/2}), CCPREFIX = 4CS>>
NAME: M-PRODUCT, MANUAL (1/2); CCPREFIX = MPR>>
NAME: M-SUPPLIER, MANUAL (1/2); C<PREFIX = MS3U>>
NAME: D-INVENTORY, DETAIL (1/2); (C(PREFIX = DIN>>
NAME: D-SALES3, DETAIL (1/2); CCPREFIX = BSA>>

Rule: Automatic master datasets have names that
start with “A-"".

OF THE HP 3000 INTERMATIOMAL
USERS GROUP, INCORPORATED

JOURNA],

They must be declared immediately after the item
declarations, separated from item declarations by a
$PAGE command, and they must appear in alphabetic
order.

Rule: Manual master datasets have names that start
with “M-".

The manual master datasets follow the automatic
master datasets, again preceded by a $PAGE com-
mand. Like the automatic masters, the manual master
datasets must be declared in alphabetic sequence.

Rule: Detail dataset names start with “D-"".

The detail datasets follow the manual master data-
sets, and the two are separated by a $PAGE com-
mand. The detail datasets also appear in alphabetic
order.

Field Layout

Without exception, the fields in every dataset must be
declared sorted alphabetically. There is a strong ten-
dency to try to declare the fields within a dataset in
some other type of logical grouping. Because this
logical grouping exists only in the mind of the data-
base designer and cannot be explicitly represented in
IMAGE, it should never be used. By declaring fields in
sorted order, the applications programmer can work
much faster with the database, since no time has to
be spent searching for fields within each dataset.

The database designer can still group fields together
in a dataset by starting each field with the same
prefix. If a dataset contains a group of costs, they
might be called VAR-COSTS, FIX-COSTS and TOT-
COSTS. To group these items together in the dataset,
call them COST-VAR, COSTS-FIX and COSTS-TOT.
This maintains the sorted field order in each dataset,
while allowing for logical grouping of fields.

Most datasets contain one or more key fields. A key
field is specified by following it with (). Because the ()
pair is sometimes hard to see, a comment should be
included beside every key field, indicating that the
field is a key. In a detail dataset, the primary key
should include a comment to that effect. The follow-
ing example shows how to declare the fieids in a
dataset:

<< The D-SALES dataset gathers all of the sales records
for each customer. The primary on-line access is by customer,
but it is necessary to have available the product sales
records. The PRODUCT-PRICE is the price at the time
the product is ordered. The SALES-TAX is computed based
on the rate in effect on the DELIV-DATE
>>
NAME: <CPREFIX = DSA>>

D-SALES, DETAIL (1/2);

19

ENTRY:

CUST-ACCOUNT(!M-CUSTOMER)
.DELIV-DATE
,PRODUCT-NO(M-PRODUCT)
,PRODUCT-PRICE
, PURCH-DATE
,SALES-QTY
+SALES-TAX
, SALES-TOTAL

<(KEY FIELD, PRIMARY PATH>>

<<KEY FIELD>>

CAPACI%Y: 500; <(D-SALES; 3 ®* CAP(M-CUSTOMER)>>

Capacities

Analysis of the data flow of the application should
result in an approximate capacity for each dataset.

Rule: The capacity of master datasets should be a
prime number.

To see if a number is prime :RUN the PRIME program
contributed by Alfredo Rego. Master datasets should
never be more than 80% full (see DBLOADNG below,
under “Database Maintenance”), and detail datasets
should never be more than 90% full.

The line with the capacity must be formatted in the
following way:

CAPACITY: 211; <<{M-CUSTOMER, PRIME; ESTIMATED>>

The comment after the capacity gives a method for
determining the approximate capacity of the dataset.
Most detail datasets have a capacity that is related to
the master datasets having paths into the detail data-
sets. These relationships should be described in the
capacity comment.

By doing a /L“CAPACITY”, it is possible to obtain
quickly an index of the capacity of each dataset in the
schema. Because the capacity is always the last line
of each dataset declaration, doing a /L‘‘M-CUS-
TOMER” will identify the beginning and ending
declarations for the M-CUSTOMER dataset. The fol-
lowing example lists the capacity of the datasets in
the STORE database:

:RUN CEDIT.PUB.ROBELLE
/LQ STORESC.DB "CAPACITY:"

CAPACITY: 211, <(V-CUSTOMER,PRIME; ESTIMATED>>
CAPACITY: 307; <K¥-PRODUCT,PRIME; ESTIMATED>>
CAPACITY: 211, ((V-SUPPLIER,PRIME; ESTIMATED>>
CAPACITY: 450; (KC-INVENTORY; 2 * CAP(M-SUPPLIER)}>>

CAPACITY: 600; ((D-SALES; 3 * CAP(M-CUSTOMER)>>

Final Checkout

After the schema is entered into a file, it must be
:RUN through the schema processor, and any typing
mistakes should be eliminated:

:FILE DBSTEXT=STORESC.DB

:FILE DBSLIST;DEV=LP;CCTL

:RUN DB3SCHEMA.PUB.SYS;PARM=3
The table produced at the end of the schema should
be studied. The following anomalies should be check-
ed:

1. Large-capacity master datasets with a blocking fac-

OF THE WP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA],

tor less than four (either increase the BLOCKMAX size
to 1024, or change the master dataset to a detail
dataset with an automatic master dataset).

2. The blocksize is too small (IMAGE optimizes the
blocking factor to minimize disc space); use RE-
BLOCK of ADAGER to increase the blocking factor.
The blocksize of all dataset blocks should be as close
to the BLOCKMAX size as possible.

3. Are there more than two paths into a detail dataset?
If there are, can some of them be deleted?

Establishing the Prograrnming Context

By using IMAGE, the COBOL programmer’s job
should be simpilified, since all access to the database
is done through the well-defined IMAGE procedures.
Like most powerful tools, IMAGE (and COBOL) can be
abused by the unsuspecting user.

Rule: Define a standard IMAGE communication area
and put this area in the COPYLIB. Use 88-levels
for common errors [15,17,11].

The starting point for using IMAGE is the standard
parameter area, which includes the IMAGE status
area, the various access modes used, a variable for
the database password, and a number of utility vari-
ables which are needed when using IMAGE. For
example:

DB-ALL-LIST
DB-SAME-LIST
DB-NULL-LIST
DB-DUMMY-ARG
DB-PASSWORD
D8-MODE1
DB-GET-KEYED
DB-STATUS-AREA.

10 DB-COND-WORD
DB-STAT-0K
DB-END-OF-CHAIN

PIC
PIC
PIC
PIC
PIC
PIC
PIC

X{2) VALUE »@ .

X(2) VALUE n%

S9(4) COMP VALUE 0.
S9(h) .
X(8).
Sg(%)
S9(W)

COMP VALUE 1.
COMP VALUE 7.

COMP.
ZEROS.
15.
4.
17.
1.
10.
COMP.
COMP.

PIC SG(4)
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
PIC S9(4)
PIC S9(9)
PIC S3(9) COMP.
VALUE ZEROS.

PIC S9(9) COMP.
PIC S9(9) COMP

DB-BEGIN-OF-CHAIN
DB-NO-ENTRY
DB-END-FILE
DB-BEGIN-FILE
10 DB-STAT2

10 DB-STAT3-4

10 DB-CHAIN-LENGTH

88 DB-EMPTY-CHAIN
DB-STAT7-8
DB-STAT9-10

10
10

Rule: Establish naming standards for all variables
associated with IMAGE databases.

Standard prefixes must be used on all database vari-
ables, including the database, dataset, data field and
dataset buffer declarations. A suggestion is to start
all database variables with “DB-", all dataset names
with “DB-SET-", and all database buffer declarations
with “DB-BUFFER-"". Data field names are prefixed by
the special dataset prefix (which the designer estab-
lished in the schema), so that each field has a unique
name. For example:
01 DATASET-M-PRODUCT.

05 DB-SET-M-PRODUCT PIC X(10) VALUE "M-PRODUCT;".

20

05 DB-BUFFER-M-PRODUCT.
10 MPR-PRODUCT-DESC
10 MPR-PRODUCT-NO

PIC X(20).
PIC 9(%8).

Field Lists

The selection of the type of field lists depends on the
answer to this question: Can your total application be
recompiled in a weekend?

Rule: Use “@" field list if you can recompile in a
weekend (prepare a COPYLIB member for each
dataset); use ‘“*” field list otherwise and hire a
Database Administrator!

If the answer to the question if “yes”, the at (“@")
field list and full buffer declarations should be used
when accessing the database. This method requires
that all dataset buffers be declared and added to the
COPYLIB. If a dataset changes, the buffer declaration
must be changed in the COPYLIB, and all affected
programs must be recompiled. The simplest solution
is to recompile the complete application system
whenever a dataset changes.

There should be two complete COPYLIBs available for
every application. One is for production, and one is for
development.

Rule: Use a test COPYLIB during development.
Double-check that all existing programs will
recompile and :RUN correctly before moving
the new COPYLIB into production!

When a database is restructured, the buffer declara-
tions are first changed in the development COPYLIB.
When the new database is put into production, the
development COPYLIB is also moved into production,
as well as any programs that required modification or
recompilation.

If the application system is so large that it cannot be
recompiled in a weekend, it should use partial field
lists and the same (““*”) field list. This requires that an
application program declare a matching field list and
buffer area for each dataset that it accesses. The field
list declares the minimum subset of the dataset that
the application program needs.

Because partial field lists are more expensive at run
time, the applications programmer must code a one-
time call to DBGET for every dataset that the applica-
tion program will use. The same (““*”) field list is used
on all subsequent DBGET calls. Note that this can
cause problems if a common subroutine is called that
uses one of the same datasets, but with a different
field list.

In order to maintain an application with partial field
lists, there must be a way to cross reference every

JOURNA],

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATID

#

program/dataset relationship. When a dataset
changes, the cross reference system is checked to
see which programs use the dataset. Each of these
programs must be examined to see if it is affected by
the change to the dataset. It is not enough to fix the
COPYLIB and recompile, since the field declarations
are in the individual source files, not in the COPYLIB
file.

Dataset Buffers

The database designer assigns a short, unique prefix
to each dataset of each database. These prefixes are
used in the declaration of the database buffers for the
datasets. In addition, dataset buffer declarations
must include all 88-level definitions for flags, and
sub-definitions for IMAGE fields that are logically
subdivided within the application.

The following is the full buffer declaration for the
M-CUSTOMER dataset of the STORE database. Note
that each variable is prefixed with “MCS-", which is
the prefix that was assigned by the database
designer.

01 DB-BUFFER-M-CUSTOMER.

05 MCS-TITY PIC X(12).
05 MCS-CREDIT-RATING PIC S9(4)IVI(5) COMP.
05 MCS~CUST-ACCOUNT PIC §(10).
05 MCS-CUST-STATUS PIC X(2).
88 MCS-CUST-ADVANCE VALUE "1G".
38 MCS-CUST-CURRENT VALUE »20".
88 MCS-CUST-ARREARS VALUE »30".
88 MCS-CUST-INACTIVE VALUE "uo".
05 MCS-NAME-FIRST PIC X(10).
05 MCS-NAME-LAST PIC X(163.
05 MCS-STATE-CODE PIC X(2).
05 MCS-STREET-ADDRESS PIC X(25 OCCURS 2.
05 MCS-1IP-CODE.
10 MCS-ZIP-CCDE-1 PIC X(3).
10 MCS-ZIP-CODE-2 PIC X(3).

Repeated items should be declared with an occurs
clause, or sub-divided, whichever the application
requires. For example, a cost field may be declared as
a repeated item representing fixed, variable, over-
head, and labour costs. Rather than declare the costs
field as a repeated item in the actual buffer
declaration, sub-divide it into the four costs. For
example, assume a declaration for costs such as:

<(Cost of an item. Each cost has two
decimal points and the cost item
is broken down as follows:
COSTS(1) = Variable costs
COSTS(2) = Fixed costs
COSTS(3) = Overhead costs
COSTS(4) = Labour costs
>

COSTS, 4J2;

Assuming that the COSTS field was declared in the
D-INVENTORY dataset, which has a prefix of “DIN”,
the following buffer declaration would be used for the
COSTS field:

01 DB-BUFFER-D~-INVENTORY.

05 DIN-COSTS.
10 DIN-VARIABLE-COSTS PIC S9(¢7)V9(2) COMP.
10 DIN-FIXED-COSTS PIC S9(7)v9(2) COMP.
10 DIN-OVERHEAD-COSTS PIC S9(7)vg(2) COMP.
10 DIN-LABOUR-COSTS PIC S9(7)Vv9{2) COMP.

21

Rule: Prepare sample COBOL calls to IMAGE in
source files, with one IMAGE call per file. Make
the calls with one parameter per line.

The sample IMAGE calls should be organized with
one parameter per line. When programming, these
template IMAGE calls must be copied into the COBOL
program and modified with the database name, data-
set name, and any other necessary parameters.

General purpose SECTIONS, declared in the COPY-
LIB, should NOT be used for the IMAGE calls. These
SECTIONS obscure the meaning of the COBOL code.
In addition, they can cause unnecessary branches
across segment boundaries.

A scheme for handling fatal IMAGE errors must be
declared, and the sample IMAGE calls should refer to
the fatal-error section. Here is a sample call to the
IMAGE routine DBFIND:

CHKLL "DBFIND"™ USING

DB~

DB-SET-

DB-MODE?

DB-STATUS-AREA

DB-KEY~

DB-ARG-

IF NOT DB-STAT-CK AND NOT DB-NO-ENTRY THEN
PERFORM 99-FATAL-ERROR.

The fatal-error section (99-FATAL-ERROR) should call
DBEXPLAIN. It should also cause the program to
abort, and the system job-control word should be set
to a fatal state. Note that just using STOP RUN will
not set the system job-control word to a fatal state.
The following is an example of a fatal-error section.
The routine MISQUIT calls the QUIT intrinsic, which
causes the program to abort.

$PAGE "[99] FATAL ERROR"
M R L T e e R R R R R R R R LR AR R R AL

* TEIS SECTION DOES THE FOLLOWING: *
j. CALLS DBEXPLAIN WITH THE IMAGE STATUS AREA. *
2. CALLS MISQUIT TO ABORT THE PROGRAM. »

HAS OCCURED WHEN CALLING AN IMAGE ROUTINE. *
]

*
)
) *
* NOTE: THIS MODULE MUST ONLY BE CALLED AFTER A FATAL ERROR®
.
.
A REEEN R RN R AR RN RN R AR RN RN RN RN R RN R R R R RN RN RN R R

99-FATAL-EREOR SECTION.
CALL "DBEXPLAIN"™ USING DB-STATUS-AREA.
CALL “"MISQUIT"™ USINS DB-COND-WORD.

99-FATAL-ERROR-EXIT. EXIT.

Rule: Avoid tricky data structures, especially if they
cannot be easily retrieved and displayed with
the available tools (QUERY, AQ, PROTOS, QUIZ,
ASK, SUPRTOOL, etc.).

Some examples of data structures to avoid: 1) julian
dates; 2) bit maps; 3) alternate record structures
(REDEFINES); 4) implied and composite keys/paths;
and 5) implied description structures. The more com-
plex the database structure, the more likely it is that
programming or system errors will be created as a
result of the database design.

JOURNA],

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

§

Rule: Establish house standards for DBOPEN modes
(e.g., 1and 5, or 4 and 6, etc.).

Rule: /solate the code for getting passwords in a
single SL routine.

The easiest way to implement these two rules is to
have one subroutine which obtains the database
password, and opens the database for either read or
read/write access. The passwords can be obtained by
prompting the user, by looking them up in a special
database, or by hard-coding the name into the routine.

Whatever method is used, it should be easy to change
the database password without changing ANY
application program. The open subroutine should be
the only code which should need to be changed by a
change in the database password.

Rule: If any dataset will contain more than 50,000
entries, get SUPRTOOL/Robelle for fast
extracts.

SUPRTOOL/Robelle is a high-speed utility program
that can selectively extract entries from an IMAGE
database (or KSAM file or MPE file) at speeds up to 10
or 15 times faster than a COBOL program calling
DBGET.

Database Maintenance

There are a number of steps that the database admini-
strator must take in order to guarantee that a database
remains clean after it is implemented. A number of
standard programs must be run against each produc-
tion database at least once a month; others must be
run daily.

Backup

A number of other people have commented on the
backup problem of databases [12], but the problem is
important enough to deserve comment again. Most
HP 3000 shops do a full backup once a week and a par-
tial backup once a day. This is normally sufficient for
most purposes (e.g., source files, PUB.SYS, utilities),
but it is not adequate for most IMAGE applications.
An IMAGE database consists of several interrelated
files. A database that is missing one dataset is nearly
useless.

Rule: EVERY backup tape should include ALL of the
files of ALL of the databases that are used in
day-to-day applications. If you use IMAGE log-
ging, backup with DBSTORE.

There should be an easy way to store complete
databases onto partial backup tapes, without having

22

to do selective stores. The BACKUP program (avail-
able from the San Antonio Swap Tape) helps solve
this problem. The BACKUP program is run once a day
against every production database. It accepts the
database name as input and causes the last-modified
date to be changed to today’s date on every file of the
database. This causes the entire database to be
included on the daily partial backup.

In addition, the BACKUP program prints a listing with
the following information: the dataset name, the cur-
rent number of entries in the dataset, and the capacity
of the dataset. Further, the BACKUP program exam-
ines the relationship between the number of entries
and the capacity of each dataset, and prints a warning
if it thinks the capacity is too small. This listing must
be checked daily, in order to have time to expand the
capacity of a dataset before it is exceeded.

Measuring Database Performance
(DBLOADNG/HowMessy)

The performance of a given database will change as
the database matures.

Rule: The performance of every application database
should be measured at least once a month.

There is one program that will measure, in great
detail, the performance of an IMAGE database. This
program is DBLOADNG [1,12], and it is available from
the HPIUG contributed library.

DBLOADNG examines the performance of both mas-
ter and detail datasets, and reports a large number of
statistics. The most important are the percentage of
secondaries in master datasets, and the elongation of
detail datasets.

If there are a large number of secondaries in master
datasets, either the hashing algorithm is not working
well, or the capacity of the dataset needs to be in-
creased. Note that the hashing performance of a key,
such as customer number, can be improved by adding
a check digit to every customer number.

The ‘“‘elongation’ of a detail dataset indicates
whether logically related records are being stored
physically adjacent. For primary paths, the elongation
factor should be very small (1 = perfect), since IMAGE
tries to place records of a primary-path in the same
disc block (see the DBLOADNG documentation and

1.

If the performance of detail datasets is very poor
because logically related records have been spread
around the disc, there is only one solution: RELOAD
the database using DBUNLOAD/DBLOAD. This will
cause the detail dataset to be organized along the

primary path, and could result in significant perfor-
mance improvements.

A very fast version of DBLOADNG is available from
Robelle Consulting Ltd. This version is called How-
Messy (‘““HowMessy are things inside your
database?”). The HowMessy program produces the
same report as DBLOADNG, but with reductions in
CPU and elapsed time of up to 90%. The HowMessy
documentation is more detailed than the documenta-
tion available for DBLOADNG, so that performance
problems with your databases can be isolated and
repaired.

Logical Database Maintenance

During the design phase of an IMAGE database, many
logical assumptions are made about the data in the
database. Some assumptions might be: 1) status
fields, which are two characters long in a detail data-
set, but have a long description in a master dataset; 2)
keys that are stored in detail datasets, but do not have
an explicit path into a master dataset; and 3) IMAGE
chains that are limited to a specific length (e.g., one
address per customer) or a range of lengths (e.g., no
ore than 10 items per order).

Rule: When designing a database, keep a list of logi-
cal assumptions (such as the maximum and
minimum chain lengths for each path).

These assumptions are dangerous, because they
must be maintained by the application software, not
by IMAGE.

Rule: A program to check logical assumptions should
be implemented for every application system.

This program is often called DBREPORT, and its pur-
pose is to check these logical assumptions.
DBREPORT is often left until last, and often never
implemented. This is unfortunate, since the
DBREPORT program is the most important program in
an application system.

in Alfredo Rego’s paper, DATABASE THERAPY: A
practitioner’s experiences [12], he describes periodic
checkups for a database. The following is taken from
his paper:

Please notice that a good diagnosis system must
be nasty and sadistic by nature. It has as its
primary objective to FIND ERRORS, not to certify
a system as being error-free (there is no such
system anyway!). A good diagnosis system must
also be extremely patient and humble, since it
will fail many times. Please keep in mind that
there is a psychological inversion in effect here:
A good diagnosis system fails if it does not

23

JOURNA],

OF THE HP 3000 IMTERNATIONAL
USERS GROUP, INCORPORATED

#

detect any errors. And most of the time it will not
detect any errors, since we hope and assume
that the entity being tested is reasonably error-
free [12].

The DBREPORT program must be designed with
Alfredo’s philosophy in mind. It should check EVERY
dataset in an application, and it should check EVERY
record for logical consistency. This includes simple
checks to see that every field in every dataset is
within a reasonable limit. Examples of this are status
fields that take on values from 1 to 10, but which are
implemented as J1. A J1 variable can take on values
from -32768 to + 32767, which is certainly a larger
range than 1 to 10.

The DBREPORT program must check all logical
dataset relationships. What happens if every cus-
tomer record has its address in a detail dataset? If the
system crashes while the user is adding a new cus-
tomer, the address record may not be added.
DBREPORT must check for these types of relation-
ships (what will your billing program do when it can’t
find an address?).

ADAGER

Rule: /f an application system depends on IMAGE,
get ADAGER.

ADAGER provides all of the restructuring facilities
necessary to maintain IMAGE databases, these trans-
formations cannot be accomplished with DBLOAD/
DBUNLOAD. Without ADAGER, numerous conversion
programs must be written.

While DBLOAD/DBUNLOAD can be used for some
simple database restructuring, it is prone to err.
ADAGER is designed to be friendly to the end user,
but, more importantly, ADAGER guides the user
through every phase of the database restructuring
process.

ADAGER provides a powerful facility, but it can also
be misused by the unsuspecting. In order to make
ADAGER changes effectively, test them first on a
development database. Following changes to the
database structure, the application programs must be
recompiled (with buffers changed in the development
COPYLIB), and each program must be tested against
the new database.

Currently, ADAGER cannot be run from batch (at
least, not conveniently), nor does it produce a hard-
copy audit trail of the changes to a database.

OF THE HP 000 INTERMATIONAL

JOURNAJ,

USERS GROUP, INCORPORATED

Rule: ADAGER must be run on a printing terminal or
in batch.

Keep the listing of the ADAGER changes to the test
database. Use it to verify that the changes to the pro-
duction database match exactly the changes to the
test database. After changing the production data-
base, move the development COPYLIB into produc-
tion and recompile all affected programs. File the
hard-copy listing of the ADAGER changes and keep it
for future reference. Another useful item to produce is
to use SCHEMA.IMAGE.REGO to save a copy of the
database schema, prior to the changes (this is espe-
cially important if you use transaction logging).

Because the schema is also used as the data dictio-
nary, it must be modified to indicate the new database
design. ADAGER’s SCHEMA function can be used to
double check that all schema changes were made
properly. When modifying the database schema, be
sure to apply all of the rules in the Schema section of
this paper.

Summary

These practical rules for building, programming, and
maintaining IMAGE databases should be kept as an
easy reference of things to do, or not to do, when
using IMAGE.

Database Design

1. Start your logical database design by naming each
data item, then identify what values it can have and
where it will be used.

2. If a record is uniquely identified by a single key
value, start by making it a master dataset (e.g., cus-
tomer master record keyed by a unique customer
number).

3. If a “natural” master dataset will require on-line
retrieval via an alternate key, drop it down to a detail
dataset.

4. If an entry can occur several times for the primary
key value, store it in a detail dataset.

5. Avoid more than two paths into a detail dataset.

6. Avoid sorted paths, except where entries are added
to each chain in sorted order anyway.

7. Avoid MR capability; instead, use lock descriptors
(and a single call to DBLOCK) to lock all datasets
needed.

8. Use the simplest password scheme that does not
violate the database integrity.

24

9. Build your test databases early. Use an application
tool to verify that the database design is correct.

Polishing Database Design

1. Estimate on-line response times and elapsed times
for batch jobs. If the project will need more hardware,
it is better to know so before the project goes into
production.

2. For numeric fields, use J1 for fewer than five digits;
use J2 for fewer than ten digits; otherwise, use a
P-field (packed-decimal) of the appropriate size.

3. Type X, type U, and type Z keys give the best hash-
ing results, especially if the key length is greater than
6 bytes. Avoid keys of type |, J, K, P, and R.

4. Dates should be stored as J2 (S9(6) COMP) in
yymmdd format, or as X6 if the field is a sort item.

5. Assign a primary path to every detail dataset (select
the most frequently accessed path with more than

one entry per chain).

1. The schema file name is always xxxxxxSC, where
xxxxxx is the name of the database (xxxxxx00 is
reserved for the ILR file).

The Schema

2. Names should be restricted to 15 characters. The
only special character allowed in names is the dash
(-). This ensures that the names are compatible with
VIPLUS and COBOL.

3. Automatic master datasets have names that start
with “A-"",

4. Manual master datasets have names that start with
“M_H'

5. Detail dataset names start with “D-"".

6. The capacity of master datasets should be a prime
number. If you note the dataset name in a comment
on the capacity line, you can list all lines containing
“CAPACITY” for a quick review.

Establishing the Programming Context

1. Define a standard IMAGE communication area and
put this area in the COPYLIB. Use 88-levels for con@
mon error numbers [15,1.7,11].

2. Establish naming standards for all variables assoc-
iated with IMAGE databases (e.g., DB-SET-xxxx for
dataset names).

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA]

3. Use “@"” field list if you can recompile in a
weekend (prepare a COPYLIB member for each
dataset); use ‘“*” field list otherwise and hire a
Database Administrator!

4. Use a test COPYLIB during development. Double-
check that all existing programs will recompile and
:RUN correctly before moving the new COPYLIB into
production!

5. Prepare sample COBOL calls to IMAGE in source
files - one call per file. Make the calls with one param-
eter per source line.

6. Avoid tricky data structures, especially if they can-
not be easily retrieved and displayed with the avail-
able tools (QUERY, AQ, PROTOS, QUIZ, ASK,
SUPRTOOL, etc.).

7. Establish house standards for DBOPEN modes
(e.g., 1 and 5, or 4 and 6, etc.).

8. Isolate the code for getting passwords in a single
SL routine.

9. If any dataset will contain more than 50,000 entries,

‘ get SUPRTOOL/Robelle for fast extracts.

Database Maintenance

1. Every backup type should include all of the files of
all of the databases that are used in day-to-day appli-
cations. If you use IMAGE logging, backup with
DBSTORE. -

2. The performance of every application database
should be measured at least once a month. Use either
DBLOADNG from the contributed library or How-
Messy/Robelle (high-speed version of same report).

3. When designing a database, keep a list of logical
assumptions (e.g., minimum and maximum chain
lengths for each path).

4. A program to check logical assumptions should be
implemented for every application system.

5. If an application system depends on IMAGE, get
ADAGER,; run it on a printing terminal or in batch, in
order to keep an audit trail of all database changes.
Use SCHEMA.IMAGE.REGO to save the database
schema prior to the changes.

Database Programming

‘ 1. Place each IMAGE call near its point of use; do not

use generic access SECTIONS.

2. Check for errors after every call to IMAGE; perform
an error SECTION for unexpected errors.

25

3. DBFIND may succeed, even if there are no entries
for the value specified, so check the status area for
the chain length.

4. Use null field list with a mode-7 get (hashed) to
validate existence of key values without retrieving any
values.

5. Be careful with all IMAGE calls between a DBGET
and the matching DBUPDATE (or DBDELETE). Other-
wise, you may update (or delete) the wrong entry if you
move the current record pointer.

6. After your DBLOCK, use mode-7 (masters) or
mode-4 (details) to DBGET entries again before
updating (or deleting) them (do not use mode 1).
Otherwise, you may update (or delete) the wrong entry
if the entry has moved or been deleted.

Bibliography

To gain a complete understanding of IMAGE, study
the references in this bibliography. A suggested order
of study is: [6,7,9,10,11] for more ideas on database
design, [5] for some hints on common programming
errors, and [1,3,8,12,13] for notes on optimizing
IMAGE databases and application systems in general.
[1] is an excellent introduction to database optimiza-
tion, and it includes a discussion of the DBLOADNG
program.

[1] Rick Bergquist, Optimizing IMAGE: An Introduction, HPGSUG
1980 San Jose Proceedings.

[2] Gerald W. Davidson, Image Locking and Application Design,
Journal of the HPGSUG, Vol. IV, No. 1.

[3] Robert M. Green, Optimizing On-Line Programs, Technical
Report, second edition, Robelle Consulting Ltd.

[4] Robert M. Green, SPLAIDS2 Software Package, contains date
editing routine (SUPRDATE) available from Robelle Consulting Ltd.

[5] Robert M. Green, Common Programming Errors With
IMAGE/3000, Journal of the HPGSUG, Vol |, No. 4.

[6] IMAGE/3000 Reference Manual, Hewlett-Packard.

[7] Karl H. Kiefer, Data Base Design - Polishing Your Image,
HPGSUG 1981 Orlando Proceedings.

[8] Jim Kramer, Saving the Precious Resource - Disc Accesses,
HPGSUG 1981 Orlando Proceedings.

[9] Ken Lessey, On Line System Design and Development, HPBSUG
1981 Orlando Proceedings.

[10] Brian Mullen, Hiding Data Structures in Program Modules,
HPGSUG 1980 San Jose Proceedings.

[11] Alfredo Rego, Design and Maintenance Criteria for
IMAGE/3000, Journal of the HPGSUG, Vol. lll, No. 4.

[12] Alfredo Rego, DATABASE THERAPY: A practitioner’s experi-
ences, HPGSUG 1981 Orlando Proceedings.

{13] Bernadette Reiter, Performance Optimization for IMAGE,
HPGSUG 1980 San Jose Proceedings.

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA]

e ——

Appendix | - Revised STORE Database

The following is the example STORE database from
the IMAGE manual [6]. It has been revised to reflect
the rules for layout and naming conventions for
schemas. A close comparison between the IMAGE
example and this example will show how easy it is to
change your current database design to the one sug-
gested in this document.

$CONTROL LIST,NOROOT

BEGIN

DATA BASE STORE;

<< STORE DATABASE FROM THE IMAGE MANUAL
AUTHOR: DAVID J. GREER, ROBELLE CONSULTING LTD.
DATE: SEPTEMBER 1, 1981

CONVENTIONS:

This schema is organized in alphabetic order. All mas-
ter datasets are listed before detail datasets, and
automatic masters come before manual master
datasets.

All dates are stored as J2, YYMMDD, except where
they are used as sort fields. If a date is a sort field, it is
stored as X6, YYMMDD.

The following abbreviations are used throughout the
schema:

NO = Number
CUST = Customer
QTY = Quantity

This database can be accessed by COBOL, QUERY,
AQ, and PROTOS. Note that the STREET-ADDRESS
field is incompatible with QUERY, but AQ can correct-
ly add and modify the STREET-ADDRESS field.

>>
PASSWORDS: 1 READER;
2 WRITER;
$PAGE "STORE - DATA ITEMS®
ITEMS:
BIN-NO, Ji; << Actual bin number where each product
is stored.
>
CITY, X12; << City name, in full, of each customer
account.
2>
CREDIT-RATING, Ja; << Customer credit rating. The larger
the number, the better the customer
credit. Used to five decimal places.
2>
CUST-ACCOUNT, 8; << Customer account number. This field
is used as a key to the M-CUSTOMER
and D-SALES datasets.
>>
CUST-STATUS, X2; << Defined state of a particular customer
account. The valid states are:
10 = advance
20 = current
30 = arrears
40 = inactive
>>
DELIV-DATE, J42; << Promised delivery date.
>>
LAST-SHIP-DATE, Je; << Last date that a specific product
was shipped.
>>
NAME-FIRST, X10; << Customer first name.
>>
NAME-LAST, X16; << Customer last name.
>>

ON-HAND-QTY, Ja; << Amount of a specific product currently
onhand. Only updated upon
confirmation of an order.

>>

PRODUCT-DESC, X20; << Description associated with each
product. This 1s never allowed to
equal blank.

>>

PRODUCT-NO, 18; << Individual product numbers. Used as
a key in M-PRODUCT, M-SALES and
M-INVENTORY.

>>

PRODUCT-PRICE, Ja; << Individual product price, ineluding
two decimal points.

>>

PURCH-DATE, J2; << Date that a specific product was
originally purchased.

>>

SALES-QTY, Ji1; << Quantity purchased on specific
sales.

>

SALES-TAX, Ja; << Computed sales tax, based on the
current rate in D-SYSTEM-CONTROL.
Includes two decimal points.

>

SALES-TOTAL, J2; << Total amount of each sale, including

sales tax.
>>

STATE-CODE, Xe; << Two-letter state abbreviation.

>>

STREET-ADDRESS, 2X25; << Customer street number and
address.

>

SUPPLIER-NAME, X16; << Name of the supplier of esch product.

>>

UNIT-COST, P8; << The cost per unit of each product.

>>

ZIP-CODE, X6; << Postal zip code.

>>

>>

$PAGE "STORE - MANUAL MASTER DATASETS"
SETS:

<< The M-CUSTOMER dataset gathers all of the static information
about each customer into one dataset. A customer must exist
in this dataset before any sales are permitted to the
customer. This dataset also provides the necessary path
into the D-SALES dataset.

>>
NAME: M-CUSTOMER, MANUAL (1/2); <CKPREFIX = MCS5>>
ENTRY:

CITY

,CREDIT-RATING
,CUST-ACCOUNT(1)
,CUST-STATUS
 NAME-FIRST
 NAME-LAST

, STATE-CODE
,STREET-ADDRESS
,ZIP-CODE

<<KEY FIELD>>

capaciTy: 211; <<M-CUSTOMER,PRIME; ESTIMATED>>

<< The M-PRODUCT dataset provides a description for every
product available for sale. This dataset also provides the
necessary paths for inventory levels (D-INVENTORY) and for
sales records (D-SALES).

>>

NAME @
ENTRY:

Y-PRODUCT, MANUAL (1/2); <KPREFIX = MPR>>
PRODUCT-DESC
s PRODUCT-NO(2) <<KKEY FIELD>>

;

CAPACITY: 307; <{M-PRODUCT,PRIME; ESTIMATED>>

<< The M-SUPPLIER dataset provides the static information
which must be known about every supplier of inventory
items. Note that none of the fields of this dataset are
valid 1f they are blank. This dataset provides a path
into the inventory levels of all of the products of
an individual supplier (D-INVENTORY).

>>
NAME: M-SUPPLIER, MANUAL (1/2); <<PREFIX = MSU>>
ENTRY:

CITY

s STATE-CODE

ySTREET-ADDRESS
s SUPPLIER-NAME(1)
,ZIP-CODE

<<KKEY FIELD>>

CAPACI%Y: 211, <<M-SUPPLIER,PRIME; ESTIMATED>>

$PAGE "STORE - DETAIL DATASETS"

<< The D-INVENTORY dataset keeps a record of the items in
inventory, and the location of each inventory item (BIN-NO).
This dataset also provides a linkage between every product and
each supplier. Note that it is possible for one product to

be supplied by more than one supplier. Each product in this
data set must have one, and only one, record.

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNAL

IIIIIIIllIllllllIlllllllllIlllllllllllIIIlIIlllllllllllllllllIIIIllllIlllIlllllllllIIIIllllllllllIlllllIIIIIIIIIIIIIllIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIII

NAME:
ENTRY:
BIN-NO

D-INVENTORY, DETAIL {(1/2); <CPREFIX = DIN>>

,LAST-SHIP-DATE
,ON-HAND-QTY
,PRODUCT-NO(M-PRODUCT)
,SUPPLIER-NAME(!M-SUPPLIER
JUNIT-COST

<<KKEY FIELD>>
(CKEY FIELD,PRIMARY PATH>>

CAPACITY: 450; <<(D-INVENTORY; 2 * CAP(M-SUPPLIER)>>

<<¢ The D-SALES dataset gathers all of the sales records

for each customar. The primary on-line access is by customer,
but it is necessary to have available the product sales
records. The PRODUCT-PRICE is the price at the time

the product is ordered. The SALES-TAX .s computed based

on the rate in effect on the DELIV-DATE.

>>

NAME :
ENTRY:
CUST-ACCOUNT(IM-CUSTCMER)
,DELIV-DATE
,PRODUCT~NO(M-PRODUCT}
,PRODUCT-PRICE
,PURCH-DATE
,SALES-QTY
L SALES-TAX
,SALES-TOTAL

D-SALES, DETAIL (1/2); (KPREFIX = DSA>>

(CKEY FIELD, PRIMARY PATH>>

CCKEY FIZLD>>

V
CAPACITY: 600; ((D-SALES; 2 * CAP(M-CUSTOMER)>>

END. <(DATABASE STORE>>

Appendix Il - Using Sorted Paths
Introduction

The decision to use sorted paths is largely dependent
on the application. Therefore, this discussion can
only serve as a general guideline.

There are two main questions which must be address-
ed before using sorted paths. The first is: will the data
on the sorted paths be added during peak hours, or
during off hours? The second is: what are the
attributes of the data on the sorted path?

The more data that is added to a sorted path during off
hours, the more likely it is that the expense of the
sorted path can be tolerated. This guideline has to be
modified according to the data that must be added (or
deleted) from the sorted path.

There are three questions regarding the attributes of
data: 1) how much data is to be added; 2) how much
data is going to be added for every key value; and 3) is
the data already in sorted order whenit is added to the
sorted path?

The amount of data being added to sorted paths must
be minimized. If the sorted path is there only for the
ease of programming one or two reports, it is very like-
ly that the COBOL SORT verb should be used, with a
sequential search of the dataset instead.

The average chain length of the sorted path must be
minimized. If the average is greater than 10, the cost
of the adding records to the sorted path could rise
exponentially.

The data should be in sorted order before being added
to the database. IMAGE optimizes adding already
sorted records by checking to see if the record to be
added goes after the last record on the chain. If it
doesn’t, IMAGE searches up the chain until it finds
the proper spot for the new entry.

The Costs

There is no disc space cost associated with using
sorted paths, except that you must use “X” type
instead of “J” as the type of the sort field. The major
cost associated with sorted paths is the cost of find-
ing the correct place in the chain for a new record, and
the fact that sorted records may be spread over many
disc blocks if the data is added in random fashion.

Without specific measurements of user data, it is very
difficult to predict the amount of I/O involved in using
sorted paths. If the data is added in sorted order, the
I/O cost of the sorted path should be approximately
the same as for the same path, unsorted. If the data is
added in a random fashion, the total I/Os used to add a
record to the sorted path is:

2 + 2 % (number of keys) + (average chain length/2)

The best guides to using sorted paths are: 1) keep the
volume of data on sorted paths to a minimum; 2) keep
the percentage of inserted entries to entries added to
the beginning or end of the chain very small; and 3)
add or delete records on sorted paths during off hours

[8].

© 1982, Robelle Consulting Ltd. All rights reserved.

27

JOURNA,

OF THE HP 3000 INTERNATIONAL

USERS GROUP, INCORPORATED

Techniques for Testing On-Line
Interactive Programs

Kim D. Leeper
Wick Hill Associates Ltd.
Kirkland, Washington

Abstract

This paper will describe various strategies for testing
on-line interactive programs. These strategies include
acceptance/functional testing, regression testing and
contention testing. The paper will also discuss the
mechanics of testing including testing by human
intervention and various forms of automated testing.
This information will allow you to create a viable test
plan-for software quality assurance in your shop.

Introduction

Program Testing. Those two words undoubtedly con-
jure up thoughts of long boring hours sitting in front
of aterminal typing in all kinds of data looking at error
messages produced by the program. This paper will
present alternatives to this type of program testing. It
will also describe a prototype test plan or quality
assurance cycle which may provide the reader with
ideas for implementing his/her own test plan for
his/her own shop.

We must make sure we are all talking the same lan-
guage so some definitions are in order at this point.

What is testing?

Software testing may be thought of as a series of data
items which when presented to the program under
test (PUT) cause the software in question to react in a
prescribed or expected fashion within its intended en-
vironment. The purpose of testing is to expose the
existence of mistakes in the program or to show the
absence of any such bugs. If the software does not
act in the expected way then one has found a bug or
mistake in the program.

Vocabulary

SCRIPT - a list of inputs or data items given to the
PUT for testing purposes.

DATA CONTEX OF BUG - the collection of inputs
required to cause the PUT to fail or return results
which are not expected.

28

Types of Testing

Acceptance/Functional Testing

This type of testing is used to demonstrate that the
various functions of a given software package
actually work as described in the documentation. This
is not exhaustive testing as it only examines one or
two transactions per function. This is the typical type
of testing the vast majority of users perform now.

Regression Testing

This type of testing can be used to test all the various
logical paths within a given software system. Regres-
sion testing tries all the data extremes per function
that the program could be expected to respond to,
This type of testing is rarely performed because it is
resource, that is tqQ say hardware and personnel, inten-
Sive.

Contention Testing

This type of testing is used to determine if the data-
base or file locking strategies that are used in your
application programs actually work. Two programs are
executed at the same time, one performs a transac-
tion which locks a given item in the database. The
second program attempts to access this same data
that is secured by the lock via another transaction
type different than the one used in the first terminal.
The designer in this instance is interested in the mes-
sage of action of the software to this challenge. This
type of testing becomes particularly relevant when
the installation has many programmers implementing
many systems dealing with the same database.

The Test Plar or Quality Assurance Cycle

The keystone of-any successful testing program is to
have a viable test plan. This plan should describe all
the phases a software development project goes
through and then ties all the phases together in one@
comprehensive flow of data and actions. The plan

should extensively use feedback loops so that when
problems are discovered there are clear paths for the
problem rectification process to follow. One possible

JOURNA],

Of THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

quality assurance cycle that can be proposed may be
seen in Figure 1.

The diagram indicates that the test script should be
generated along with the design of the software.
Many times in the design process the designer
realizes some weakness in the design and will want to
specify a special test in the scriptfile. S/he is
encouraged to do so. Many companies that use this
methodology specify programs by a test script and
Vi3000 screens.

Examining this diagram more closely one can see that
the flow of debugging actions is closely tied to the
design/maintenance of the-original test script. The
reason for this is to force the implementors to keep
track of the bugs they discover and place them inthe

test script. This script should then be run against the.

application program whenever a new-fix or correction
has been applied to the original program. This script
will constantly force the program to re-execute all the
previous transactions which caused bugs to occur in
the past, to assure the program maintenance team
that no additional mistakes have been introduced by
fixing the last bug.

this version of the QA cycle the users are always in.

n
‘ mode of testing the delivered software. Eventually

he users will find a bug which will start the whole
cyclic process over again. If they don’t find a bug,
don’t think it is not for trying. The users have eight
hours per day per person to find bugs. It does not take
very long before they have more execution time on the
application software than the designer/implementator
has. This is the time when more bugs can and will be
found which will start the cycle once again.

The Mechanics Of Testing

Obviously, the type of testing that is currently being
used is human intérvention testing. This is where a
programmer or analyst sits in front of a terminal and
simulates a user by following a handwritten script.
This approach to testing is less than desirable for a
number of reasons, among those being:

1. input data error due to arrogance/boredom in
applications tester;

2. non-repeatability of exact timing due to human test-
er;

3. the tester might not record everything happening

‘ff the screen;

4. an expensive employee is being utilized for testing
purposes when s/he could be
designing/implementing more applications.

start

design software

modify test
script to
include bug

design test script

implement software
implement fix

]

-
-

\J

acceplance test

J F

Y

\J

contention test

J F

deliver to users

>
users find bugs

N Y

29

Figure 1: Quality Assurance Software Cycle

A possible solution to the dilemma outlined above is
to mechanically examine the software by exhaustively
testing all the paths in the program by computer.
Using completely random data types ds input you
could automate the testing process. However, as
there is only so much time available during a 24 hour
day it might take all day to exhaustively test a very
small application program. This technique is machine
bound in terms of both creating the random data and
testing ail the paths in the application code.

A saner approach would be to combine the above two
techniques into a testing procedure that utilizes a
human being’s capacity for creative thought and a
machine’s capacity for highly efficient repetition. This
technique would rest in the programmers designing
the scripts used for automated testing at the same
time as they design the application itself. Once the
test script is produced then the machine itself tests

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNAJ,

out the application program under the watchful eye of
a human. In fact, the script can be used as a specifica-
tion for implementing the system. As Yourdon has
written, “What we are interested in is the minimum
volume of test data that will adequately exercise our
program,’’?

It is now possible, using VTEST/3000, to automate
this testing procedure and achieve a real manner of
quality control. VTEST/3000 includes full V/3000 test-
ing capability. The compiled code runs as though it
were in a live situation with VTEST/3000 providing full
documentation of all errors occurring on the screen of
the terminal.

in order to use VTEST effectively one must appreciate
the diagram in Figure 2. There are two types of tests
that VTEST can perform, block mode testing for those
programs that use V/3000 and non-block mode testing
for those not using V.

The first type of testing that will be discussed is non-
block mode application testing. In this case VTEST
looks like a non-block mode glass TTY terminal. The
script file contains the actual commands and data
that a user would normally type into the screen of a
real terminal, everything between and including
HELLO and BYE. This script file is bujlt and main-
tained by the standard HP EDITOR. The script file is

input to VTEST. VTEST transmits this file a line at a,

time to the application and VTEST prints out a report
of the terminal screen before the return key was
depressed and after along with the number of
seconds that the response took to come back to
VTEST.

The second type of testing that will be discussed is
block mode application testing. In this case VTEST
looks like a HP 2645 block mode terminal. The script
file is the same as above with an important extension.
The script file now can tell VTEST when it must trans-
mit data to a V screen. The data for a V screen must
come from a different type of file. This file is called
the BATCH file. BATCH is created and maintained by
another program called CRBATCH. CRBATCH allows
the user to specify the formfile name and the form to
be displayed. Data is then entered and CRBATCH
reads the screen and puts the data into a BATCH file.
CRBATCH allows the user to insert screens, to delete
screens and modify the data in screens already in the
BATCH file. It is a general purpose maintenance pro-
gram or editor for BATCH files. Whenever the applica-
tion program under test wants some block mode data
the next record is read from the BATCH file. VTEST
then transmits this record complete with all the spe-
cial characters that V requires to the application.
VTEST prints out a report for every transaction before
the ENTER key was depressed and after the next

V3000
FORMSPEC At completion, a fully documented
@ print-out is produced.
FORMFILE
CRBATCH EDIT 3000

o 4

BATCH W
,7//
VTEST ATC/ADCC
LINK
W APPLICATION
|
Figure 2

screen was received along with the number of
seconds that the response took to come back to
VTEST.

One can see quite easily that VTEST fits right into a
well designed quality assurance cycle.

References

1. Edward Yourdon, Techniques of Program Structure and Design,
Prentice-Hall, 1975.

2. Software Research Associates, Testing Techniques Newsletter,
(415) 957-1441.

JOURNA]

OF THE MNP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

llllIllllllllllllIllllllllllIIIIllllllIlllllllIlllllllllllIIIIIIIIIIIIIllllllllllllllllllllIIIIIIIlllllllIlllIIIIIIllllllllllIIIIIIIIIIIIIIlllllllllllllllllllllllll

Implementation of Control Structures
in FORTRAN/3000

James P. Schwar
Lafayette College
Easton, Pennsylvania 18042

The four recognized control structures available for
writing structured code are the IFTHENELSE,
DOUNTIL, DOWHILE, and CASE.

In FORTRAN/3000 these control structures can be
implemented using the logical IF, unconditional GO
TO, DO loop and the computed GO TO.

The IFTHENELSE is of the form IF condition THEN
true statements ELSE false statements, where condi-
tion is a logical expression. This control structure, as
shown in Figure 1, represents a simple decision. In
FORTRAN/3000, the IFTHENELSE becomes

IF(.NOT.condition)GO TO Sl
true statements
GO TO S2

S1 false statements

S2 CONTINUE

Qonsider, for example, the calculation of the real
roots of F(X)=A*X**2+B*X+C=0 for any AB,C.
The decision to be made is IF B*B-4.0*A*C> =0
THEN calculate and output the real roots ELSE output
“not two real roots.”

PAGE @081 HP32102B.01.94 FORTRAN/3008 (C) HEWLETT-PACKARD CO. 1989

C ROOTS OF THE QUADRATIC EQUATION

DISCR=B*B-4.@*A*C
Cc BEGIN IFTHENELSE

IF(.NOT.DISCR.GE.$.8)GO TO 14
ROOT1=(-B+SQRT(DISCR))/(2.0*A)
ROOT2=(-B-SQRT(DISCR)}/(2.@*A)
WRITE(6,*)'REAL ROOTS ARE',ROOTI1,ROOT2
GO TO 20

19 WRITE(6,*)'NOT TWO REAL ROOTS'

20 CONTINUE

C END IFTHENELSE
STOP
END
PROGRAM UNIT MAIN' COMPILED

kA k
Ekkk

ok
kA k

GLOBAL STATISTICS
NO ERRORS, NO WARNINGS
TOTAL COMPILATION TIME ©:00:01
TOTAL ELAPSED TIME Q:99:02

END OF COMPILE

One aiternative implementation would be to replace
NOT.DISCR.GE.0.0 with logical expression DISCR.
LT.0.0. A second alternative would be to interchange
the position of the true and false statements and use
DISCR.GE.0.0 as the logical expression. Neither
qrternative matches the flowchart logic as well as the
plementation that uses the .NOT. condition.

The contro! structure DO statements WHILE a condi-
tion is true is shown in Figure 2. The FORTRAN/3000

31

implementation becomes

S1 IF(.NOT.condition)GO TO S2
statements
GO TO S1

52 CONTINUE

Consider the caiculation of NI, where
N!=N(N-1}N-2) ... (1)
This calculation proceeds from left to right WHILE

there is a value > 1. Given N, the FORTRAN/3000
statements are

PAGE @081 HP32102B.01.04 FORTRAN/3008 (C) HEWLETT-PACKARD CO. 1988
[CALCULATION OF Kl
DATA N/1@/
FACTORIAL=1.98
[BEGIN DOWHILE
18 IF(.NOT.N.GT.1)GO TO 28
FACTORIAL=FACTORIAL*N
N=N-1
GO TO 1@
20 CONTINUE
[§ END DOWHILE
WRITE(6,*) 'FACTORIAL IS',FACTORIAL
STOP
END

PROGRAM UNIT MAIN' COMPILED

ko
ok

(223
ok

GLOBAL STATISTICS
NO ERRORS, NO WARNING3
TOTAL COMPILATION TIME @:00:01
TOTAL ELAPSED TIME 9:00:02

END OF COMPILE
END OF PREPARE

FACTORIAL IS .36288Q0E+87

END OF PROGRAM

This code yields 1 for N < = 1.

The control structure DO statements UNTIL a condi-
tion is true is shown in Figure 3. In FORTRAN/3000
this control structure becomes

S1 statements
IF{.NOT.condition)GO TO Sl

and the preceeding factorial calculation becomes

PAGE @@@1 HP321@2B.01.84 FORTRAN/3066@ (C) HEWLETT-PACKARD CO. 1980
c CALCULATION OF NI
DATA N/16/
FACTORIAL=1.0
c BEGIN DOUNTIL
18 FACTORIAL=FACTORIAL*N
N=N-1
IF{.NOT.N.LE.1)GO TO 18
c END DOUNTIL
WRITE(6,*) ‘FACTORIAL I1S', FACTORIAL
STOP
END

PROGRAM UNIT MAIN' COMPILED

JOURNAJ,

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

i GLOBAL STATISTICS kil

NO ERRORS, NO WARNINGS
TOTAL COMPILATICON TIME @:00:01

chkh P}

TOTAL ELAPSED TIME B:99:02
END OF COMPILE

END OF PREPARE

FACTORIAL IS .362880E+07

END OF PROGRAM

The DO loop in FORTRAN/3000 which is of the form

DO S counter=initial value, increment statements

S CONTINUE

final value,

also implements the DOUNTIL as shown in Figure 4.

The calculation of N!, using the DO loop, becomes

PAGE @061 HP32102B.91.04 FORTRAN/3000 (C) HEWLETT-PACKARD CO. 1980
o CALCULATION OF NI

DATA N/1¢/

FACTORIAL=1.0

DO 14 1=N,2,~1
FACTORIAL=FACTORIAL*I
CONTINUE
WRITE(6, *) 'FACTORIAL IS',
STOP

END

10
FACTORIAL

PROGRAM UNIT MAIN' COMPILED

ol GLOBAL STATISTICS bl

el NO ERRORS, NO WARNINGS ****
TOTAL COMPILATION TIME @:00:01

TOTAL ELAPSED TIME 0:00:93

END OF COMPILE

END OF PREPARE

FACTORIAL IS .36288QE+07

END OF PROGRAM

The DOUNTIL requires that 0! be treated as a special
case.

The CASE structure, as shown in Figure 5, offers mul-
tiple paths. The selected path is based on the value
assigned to an integer variable. As many paths as
needed can be specified. It is common practice to
assume that when the integer variable is outside its
allowable range, e.g., one to four for Figure 5, the
CASE structure is ignored. The computed GOTO can
be used to implement the CASE structure, as illustra-
ted by the following FORTRAN code.

C J=INTEGER VARIABLE
C J IS PREVIOUSLY DEFINED
GO TO (1@,20,392,408),J
GO TO 59
19 [statements]
GO TO 58
20 [statements]

GO TO 58
3¢ [statements]
GO TO 50
49 [statements]
58 CONTINUE

32

false true
false true
statements statements
Figure 1. IFTHENELSE Control Structure
true
’ statements
false

Figure 2. DOWHILE Control Structure

References

FORTRAN/3000 Reference Manual, Hewlett-Packard Company
(1977).

Applied FORTRAN for Engineering and Science, James P. Schwg
and Charles L. Best, SRA (1982). -

Fortran/3000 and Fortran 77: A Comparison, James P. Schwar and
Charles L. Best, Journal of HP General Systems Users Group
Winter, 1980, pp 14-15.

JOURNA]

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

statements

!

condition false

true

<«

Figure 3. DOUNTIL Control Structure

statements | —»

statements | —»

statements | —»

statements | —»

Figure 5. FORTRAN CASE Structure

33

initialize

l

counter =
initial value

statements

l

increment

l

false

counter =
counter + increment

is count > final value
(increment positive)

lytrue

is count < final value
(increment negative)

Figure 4. DO Loop

OF THE HP 3000 INTERMATIOMAL
USERS GROUP, INCORPORATED

JOURNAJ,

The Performance of Image Reporting
Programs

Roger W. Lawson
Harris-Queensway PLC
76 High Street
Orpington, Kent

BR6 OLX, England

Introduction

Most HP 3000 installations use IMAGE extensively.
One of the reasons for this is because of the ease of
production of reports by the use of QUERY or other
report processors. Where QUERY is being used to
process large numbers of records its performance
can be a significant factor in the load on an HP 3000.
This article provides some performance data on
QUERY. It also compares it to other products such as
the new REPORT and INFORM parts of the RAPID
package.

Test Environment

The performance data was obtained by producing var-
ious reports from large databases on a HP 3000 Series
Il of 1 mbyte memory and a HP 44 of 1 mbyte memory.
The test reports were selected as representative
samples from the large number in use by my com-
pany. Obviously the data-base designs and report for-
mats only test a very limited selection of the possible
designs that could be in use at other installations. The
absolute run times should therefore only be used as a
guide to what can be achieved. However, the relative
performance of the different report processors are
likely to be similar on any HP 3000 systems. In all
cases the tests were run in the DS sub-queue and the
machines were generally only lightly loaded (only one
test was run at a time). The other workload on the ma-
chines was found to only affect the elapsed time
slightly and the CPU time to a negligible extent. For
this reason only a few repeat tests were performed
and an average result calculated.

MPE versions used were HP32033C.00.01 on the Mod-
el 44 and HP3200C.00.01 on the Series Ill.
Products Evaluated
The following methods and products were tested:
* QUERY/B (version B.00.07). This is probably
well known to most readers so | will not

describe it here.

* ASK (version C.03.82). This is a proprietary pro-

34

duct available from COGELOG. It is generally
compatible with QUERY. However, because it
was designed before QUERY/B was released it
handles multi-dataset reporting in a different
manner (and as will be seen below, in most
cases in a much more efficient manner).

REPORT (version A.00.00) and INFORM (version
A.00.00). These are complementary products
within the RAPID package. REPORT is orien-
tated towards production of standard reports
and INFORM to ad hoc reporting. The versions
tested were the first official release of these
products and some difficulty was experience"
in using them due to bugs and inadequate
documentation. For these reasons not as many
tests were performed on these products as on
the others. Also it was found impossible to
copy the equivalent QUERY reports exactly in
all cases. This was due to the inflexibility and
lack of features in these products as they
presently stand. However, most of the report
features could be copied sufficiently for the
performance figures to be comparable. The
relative merits of REPORT and INFORM as
against QUERY are really outside the scope of
this article but to a fairly unskilled new user
they did not impress for ease of use or
flexibility.

COBOL /I (version A.00.04). In all cases a
COBOL program was written and compiled
equivalent to each QUERY procedure. No par-
ticular optimisation of the code was performed.
However, as this was found to run the fastest in
all cases the run times for these versions were
allocated a value of 1 and all other runs related
to those. Thus a relative run time expressed as
a multiple of the COBOL object code run time
was calculated for each test.

OTHER SOFTWARE. A very limited test wag
undertaken by writing an equivalent program in
TRANSACT. Although in theory, the code
should be much more efficient than an inter-
preted process such as QUERY, in practice the
run times were comparable with ASK (i.e., no-

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

JOURNA]

#

where near as fast as expected). Due to the
work involved in writing TRANSACT code it is
probably not worth considering this for report
writing alone.

A limited test of REX (a proprietary product
from Gentry, Inc.) enabled a report to be coded
that was comparable to the COBOL code in run
time. This is obviously a possible substitute for
rewriting in COBOL as it is much less verbose
than COBOL.

| have not evaluated QUIZ (a proprietary product
from QUASAR, LTD.) or AQ/3000 (a contributed
library program) which are probably the other
major report writing languages in use on the HP
3000. | would be interested to hear from other
users who may have any information on their
relative performance. Note that AQ/3000 ap-
pears to operate in a manner similar to
QUERY/B for multi-dataset retrieval and report-
ing and has probably therefore got similar per-
formance problems (see discussion of test
results below).

ist Details

T re following describes each test that was performed
(the tests are referred to only by their number in the
section giving performance data). In all cases the re-
port output was directed to a spooled line printer.

Test 1.

Serial search of a detail dataset to retrieve 7000 rec-
ords out of the dataset of 59,000 records. Report was
an unsorted list of the records with no totalling and
limited editing. Run on Model 44.

Test 2.

Same as Test 1 except that the records were sorted
and only totals printed (one level of sort and totalling).

Test 3.

Same as Test 2 except that in addition a single data
item from another dataset was printed in the report
total lines. This data item could be obtained by a link
to another detail dataset via a common master search
key.

Test 4.

erial search of a detail dataset to retrieve 13,600 re-
rds out of the dataset of 92,000 records. Report
records were sorted and totalled at one level with a
data item obtained from another detail dataset-as in
Test 3. Run on a Series Ill.

35

Test 5.

Serial search of a detail dataset to retrieve 6600 re-
cords out of a dataset of 59,000 records. Report
records sorted and totalled at one level. Data item
also obtained from a master dataset linked to the
detail dataset by a search key and included in the
report totals. Run on a Series lll.

Note also that other tests of a less detailed nature
were also conducted for which the results are not
included here. However, they indicate that the tests
used are not unrepresentative.

Conclusions

The first surprise is how inefficient QUERY is in com-
parison to an equivalent COBOL program. Even on the
simplest report it is over twice as slow. This is
obviously partly due to the interpretative nature of
QUERY as opposed to compiled code but is probably
also due to the record handling used in QUERY (I
understand that on a FIND it only retains record
addresses and accesses the records again later to
actually produce the report).

QUERY is particularly poor (4 to 6 times slower) when
data has to be retrieved from more than one dataset to
produce a report. Although some performance degra-
dation could be expected in such circumstances it
can be seen from the results of ASK that QUERY is
much worse than it need be. The major probiem with
QUERY in this situation is that it appears to retrieve
all the records it needs to first form a dummy file,
before doing any sorting and totalling. This can, for
example, be exceedingly wasteful if certain data
items only need to be accessed for total level
reporting.

The new JOIN/MULTIFIND commands of QUERY/B
attempt to impose relational database concepts on a
non-relational form of database. The theory may be
fine but in practice it is pretty inefficient.

As regards INFORM and REPORT they seem to be
comparable in performance but only slightly better
than QUERY. They presently have even more pro-
blems than QUERY in handling multi-dataset
retrievals.

Note that with QUERY, INFORM and REPORT it would
appear practical to improve their performance sig-
nificantly. However, for the present there appears lit-
tle alternative to writing report programs in COBOL, or
some other compiled language, if you really want to
produce reports quickly.

Acknowledgements

The author would like to thank M. Kenneth Clark for
the means whereby he was able to produce the neces-
sary COBOL programs.

OF THE HP 3000 INTERNATIONAL
USERS GROUP, INCORPORATED

——————————————————————— R

JOURNA],

TEST RESULTS

CPU Seconds (relative performance in brackets)

Co30L QUERY REPORT INFORM ASK
TEST 1 325(1) 809(2.5) 598(1.8) 678(2.1) 604(1.9)
TEST 2 323(1) 825(2.6) 636(2.0) 688(2.1) 637(2.0)
TEST 3 330C1) 1602 (4.9) 2860(8.7) 2625 (SEE 6645(1.9)
NOTE 1)
TEST 4 842(1) 4237(5.0) N/ A N/A 1684(2.0)
TEST 5 525(1) 2361(4.5) N/ A N/A 1026(2.0)

Elapsed Time in minutes (relative performance in brackets)

CoBOL QUERY REPGRT INFORM ASK
TEST 1 11¢1) 32(2.9) 20(¢1.8) 24(2.2) 18(1.6)
TEST 2 10¢1) 23(2.3) 4004.0) 17¢1.7) 19¢(1.9)
TEST 3 1001 60(6.0) 113¢11.3) 173(SEE 23(2.3)
NOTE 1)
TEST 4 24 (1) 150¢6.2) N/A N/A 50(2.1)
TEST 5 14(1) 52(3.7) N/A N/ A 24(1.7)

Note 1- The test of Inform on test job 3 failed after
generating a sort file of 200,000 records (file simply
became full) - reported as a possible bug to Hewlett-
Packard.

N/A = Not Available as test not performed.
36

