JOURNAJ,
JOURNAJ,
JOURNAJ,
JOURNAJ,
JOURNAJ,
~ JOURNA],
JOURNAJ,

JOURNA],

PUBLICATIONS COMMITTEE MEMBERS

CONTENTS

Chairman

Dr. John R. Ray

College of Education

Department of Curriculum & Instruction
University of Tennessee at Knoxville
Knoxuville, Tennessee 37996-3400 USA

Gary H. Johnson

Brown Data Processing

9229 Ward Parkway

Kansas City, Missouri 64114 USA

Ragnar Nordberg

Department of Clinical Chemistry
University of Gothenburg
Sahlgren’s Hospital

S-41345 Gothenburg, Sweden

Michael J. Modiz
Hayssen Manufacturing Company
Highway 42 North
Sheboygan, Wisconsin 53081 USA

Marjorie K. Oughton
Supervisor of Data Processing
Alexandria City Public Schools
3801 Braddock Road

xandria, Virginia 22302 USA

Technical Editor
Dr. John Ray

Editor
Christine M. Dorffi

An HP 1000 Series building equipment
preventative maintenance program 2

Harry McLean

Testing compares new half-inch tape drive

to existing drives 9
Bob Gilbert
Pascal stringsand MPE 13

Joseph Berry

Introduction to systems programming
on the HP 3000 using Pascal 16

Stephen Tucker

EDITOR’S NOTE

As usual, the Publications Committee is grateful to the
authors for the quality of their efforts, as evidenced in this
issue. Your Journal is a major vehicle for sharing information
about what works and what needs work.

We are especially pleased to have an article featuring
an HP 1000 application. This represents a first since the
recent merger of the Users Groups.

Keep the material coming!
—John Ray

This publication is for the express purpose of disseminating information among members of Interex and the editorial staff are not responsible
r the accuracy of technical material. Contributions from Hewlett- Packard personnel are welcome and are not to be construed as official

0
‘Iicy nor the position of the Hewlett- Packard Company.

The editors of the Journal are interested in your comments and suggestions, as well as contributions to future issues.
The information in this publication may be reproduced without the prior written consent of Interex, except where a copyright is

indicated, provided that proper recognition is given to Interex.

INTEREX, 2570 EL. CAMINO REAL WEST, FOURTH FLOOR, MOUNTAIN VIEW, CALIFORNIA 94040, (415) 941-9960

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

DURNAJ,

An HP 1000 Series building equipment
preventative maintenance program

Harry McLean

Hewlett-Packard
Vancouver, Washington

ABSTRACT

Preventative maintenance (PM) is a critical program for any
modern facility. Unscheduled downtime can be very costly
and has a great impact on operational efficiency. Following
is a program that will produce a written PM procedure for
each piece of equipment in the month it is scheduled for
preventative maintenance. It is written in the terminology
familiar to maintenance personnel.

COMPUTERIZED PM

Although potentially a valuable tool, the computer has been
overlooked in many building maintenance departments. Soft-
ware programs presently available can automate and enhance
the productivity of the building maintenance department.
One of them is a Preventative Maintenance (PM) program
developed at the Vancouver Division of Hewlett-Packard.
Various modules in this program “massage” PM information
and present data for both the repair person and the depart-
ment manager.

One of the obstacles in implementing a computerized
PM program is the reluctance or resistance of personnel who
don’t use computers. Nonusers often see the computer as a
threat to their livelihood. This is a real problem, and one of
the ways to deal with it is to make sure the user accesses
programs that are friendly and forgiving. In other words, by
using messages and terms that are not foreign to the user, the
program will be perceived as a helpmate.

The entire PM system operates on a Hewlett-Packard
1000 computer system. The system requires either the RTE-
6V/M or RTE-IV operating system, with FORTRAN 4 or
FORTRAN 7, and the HP Assembler or Macro. Figure |
lists the hardware required to implement this system, al-
though it can call for additional hardware for specialized
applications—facilities energy management, workorder and
project management, project management, weather data
analysis, and so on. Now to the PM program.

All of the programs can be activated after logon by
pressing the appropriate softkey. From this point on, all of
the programs are driven via menus that are displayed on the
user’s terminal. If a numeric input is expected for a response
and an alpha input is typed, a friendly error message will be
displayed. The user can then retype the correct value and
continue, without aborting the program or displaying an

error message that has no significance to the user. The var-
ious listings are all produced on 80-column paper.

There are eight programs that can be activated by
pressing the appropriate softkeys. Six of these are available
to the general user, and the other two are available to
department managers as a tool for better managing each
group’s labor hours. The six user programs follow:

1. The main PM program has the following capabilities. 1t can:
add a device to the system database

modify a device on the system database

delete a device on the system database

clear the PM due flag.

list devices that are on the system database

add or modify repair histories. Q
update PM labor and material costs

update calibration times.

(A device is an item, such as a return fan, for which
PM is deemed necessary).

2. The PM codes program can do the following:
¢ add a PM code
e modify a PM code (code description or number)
e list the PM codes.

3. The PM check program allows the users and managers to
check the progress of the PM during the month. After the
appropriate softkey is depressed, the program displays a
message and searches the PM database “due or overdue”
devices. The results, by group, are then displayed and
totaled. The user can then opt to list the devices that are
due or overdue on the system printer or terminal or to
exit the program.

4. After accumulating repair histories, the user or manager
can selectively list—in various formats—the repair records
for a particular device and the repair records for all devices,
sorted by device number or sorted by repair record number.
This program can help to determine if a device should be
obsoleted, or if the PM schedule should be revised.

5. Repair histories can contain as many as four failures in
each repair record. These can be combined as mechanical,
electrical, or other types of failures on the same repgs
record. The program that creates or adds failure co
also allows for the changing of a failure code or the listing
of the failure codes.

JOURNA]

6. In the event that someone forgets to set the line paper to
top-of-form or loses the PM report, all is not lost. This
program, when run, will produce the entire listing of PMs
due for the month, either in its entirety or by device number.

The PM program automatically searches the device
database for all of the devices that are due for preventative
maintenence on the first day of every month. If the device is
due, a PM report is listed (see Figure 2), and a software flag
is set for that device. With this report the entire PM can be
performed on the device within the current month. 1If the
person either doesn’t perform the PM or forgets to clear the
PM flag (see the fourth item under the main PM program),
this device will be listed, and a message will be printed that it
is overdue on all subsequent months until its flag is cleared.

Included in the monthly PM report for each device are
many valuable bits of information, such as:

e the entire device specifications;

e year-to-date PM labor hours and PM material costs;

o date PM last performed and by whom;

® repair history summary, i.e., number of mechanical, elec-
trical, or other failures, total repair material costs, and
labor hours. Also, if any, all repair history record numbers
are listed;

comments: a 10-line by 70-charcters/line “scratchpad.”

‘ The user may include information such as additional pre-
cautions to take during the PM or use it as a mindjogger.
Each line can be modified independently by the user, and
each device has its own comment field;

e the PM operation codes associated with the particular PM
interval, with their descriptions, i.e., PM code 10 could be
“Verify oil level and fill if necessary.” The PM standard
labor hours for each operation/code are also listed.

Each device must be stored on the PM database via the
main PM program. If any particular information is lacking
or incorrect at the time of storage, it can be modified or
added at a later time. There are six different PM intervals,
and any combination may appear on one device. They are:

monthly

bimonthly (every other month)
quarterly

semiannually

every nine months

6. annually.

AW =

If a device is to have monthly as well as quarterly PMs, the
quarterly PM codes will be printed on the PM report on the
month when both the month and quarterly PMs are due. In
other words, the monthly PMs will be listed by the PM
scheduling program every month until a quarterly PM is
e. For that month, the PM report will contain operations
nd codes that are unique to a quarterly PM. This holds true
for any PM when a monthly and some other PM frequency
are due simultaneously.

In order to delete a device and/ or its repair histories from
the databases, a special password is needed. Even after the
correct password has been typed in, the computer will ask if the
user is sure he or she wants to delete that device! This feature is
important because the user may inadvertantly enter a delete
routine and wish to exit without destroying any PM data.

Listing devices to the system printer can be done
through the main PM program. The choices are to list all
devices, list one device, or list a block of devices. All of these
listings will include all the device specifications, comments,
and, if desired, the repair history summary. An additional
listing (Quick-list) can obtain a list of all of the devices on
the PM database with their device number, identifier, group
number, location, and building number (see Figure 3).

The two programs available only to the supervisor are
the Workload Distribution Analysis and Cost and Labor
Totals for each device. The Workload Distribution Analysis
report is originally run by the monthly PM scheduling pro-
gram. During the search and listing of the devices, the PM
standard labor hours for each device is accumulated by
maintenance group (see Figure 4). This summary includes—
for each maintenance group—the total number of devices
due and overdue and their total standard hours, by PM
priority and zeros in all the columns (repair, workorder,
overtime hours), except the net hours, which will have a
negative of the standard hours. The supervisor next needs to
determine the workorder, regular, and overtime hours for
each group and to save this information via the Workload
program. The program will then calculate the correct net
hours and list each maintenance group’s workload schedule.
As device repair histories are added to the PM system and
workorder hours become known, the Workload program
can be run as often as necessary. All of the repair hours by
maintenance group will then be accumulated and the new
net hours calculated for each group. On the first of every
month, the workload listings for each group are listed
according to the last available information, the accumulators
cleared, the device PM reports produced, and then the cur-
rent month’s workload listings are produced. Each supervisor
can assign a unique password to each of the group’s workload
files for security measures.

The Cost and Labor Totals program (Figure 5) will
produce a listing of all of the devices on the PM database
with their descriptions, the date the device was entered on
the system, and labor hours for repair, with year-to-date and
prior PM labor hours and material costs for the same. This
listing can be of value in determining where the PM labor
hours are being spent. The prior PM labor hours and prior
PM material costs are values accumulated from times before
the start of the current year.

This PM program has been used by the technical main-
tenance group (electrical, plumbing, electronics, industrial,

JOURNA]

HVACQC) at Hewlett-Packard Vancouver Division since Au- (auto maintenance, landscaping, and general maintenance)
gust, 1982. Comments have been favorable and have sup- also started using the system. Ten other HP divisions cur-
ported the program: Enhancements and changes to the PM rently are using this system. and another is in the process of
programs have been implemented as a result of suggestions purchasing a computer that will allow it to implement the
from this group. Recently, the general maintenance group Preventive Maintenance system.

HP
262X OR 264X

TERMINAL
7N

A4
HP HP HP

[_
7925M | S 1000F K J 7970E

125MB 1600BPI
DISC COMPUTER MAG TAPE

7N
HP
59309A
HPIB CLOCK
Y4

HP
2563A
PRINTER

Hardware for Preventative Maintenance System .

Figure 1

JOURNA,

PREVENTATIVE NAINTENANCE NONTHLY FILE LISTING PRIORITY: C DATE RUN 02/01/8¢ ON SYSTEN DATE : 882

LAST REV DRTE :1083

Pr Y10 --
* L0G & IDENTIFIER TYPE ASSET & PHYS LOC BLD GPR LOC~ »FREQ START LAB HRS NTL COST DOME TECH*
118 HOT HATER PIRIP 7 PUNP KORE EWL/T7 1 3 39140 4 883, 0.00 0.00 184. LS+
WOTOR SPECIFICATIONS ----------ceesecesmcccas coccmccccecoccoo- PRIOR PR
nre RATINGS FLA NODEL & SERIAL & * {AB HRS= 1.22 NTL COST= 0.00x
6.E. 2/4860/3 2.9 18371y I143BL 22660
PUNP SPECIFICATIONS PRESSURE
144 NODEL & SERIAL & COUPLING IN T
PACC SEE COMMENTS BZHATBP79117 DIRECT 16 42
* PHCODE # PH STD DESCRIPTION *
8 .030 CHECX NOTOR FOR UIBRATION
9 L0350 CHECK/RECORD NOTOR ANPS .__hnps
L] .0%0 CHECK BEARINGS FOR HEAT AND HEAR AND WOISE
n .030 RECORD INLET P.S.1I. (LOOX FOR EXTREANS) P.S.1.
76 0.00¢ RECORD EXAUST P.S.I.(LOOK FOR EXTREANS) PS.I.
39 0.000 CHECK SEALS FOR LEAKS
ki) .050 CREASE NOTOR BEARINGS AS PER PN SCHEDULE
Total PY hours= .250
* CONNENTS OR NOTES : *
PUNP NMODEL CAT#16209557301011562
* REPAIR STATISTICS : LABOR HRS= 0.00 HTL COST= 0.00 # REPAIRS= 0 *

HUMBER OF ELECTRICAL REPAIRS= 0 MATERIAL COST, $ 0.00 LABOR HOURS 0.00

NUNBER OF NECHANICAL REPAIRS=

=

MATERIAL COST, ¢ 0.00 LABOR HOURS 0.00

NUNBER OF OTHER REPAIRS= O ~ MNATERIAL COST, S 0.00 LABOR HOURS 0.00

REPAIR HISTORY RECORD MWUMBERS : *

THIS BEVICE IS OVERDUE FOR PR

Figure 2

JOURNA]

PREVENTATIVE MAINTENANCE ABBREVIATED FILE LISTING

LOG #

15

16

17

18

19

20

39

40

41

42

43

44

45

46

47

48

60

61

62

IDENTIFIER

HAND TAPER

TOUCH

TOUCH

TOUCH

TOUCH

TOUCH

TOUCH

DOMISTIC HOT

DOMESTIC HOT

DOMESTIC HOT

DOMESTIC HOT

DOMESTIC HOT

TAPER 1

TAPER 2

TAPER 3

TAPER 4

TAPER S

TAPER 7

IRRIGATION PUMP

SUMP PUMP

AIR RECIVER TANK

COMPACTOR

TORK LIFT

HANKINSON AIR DRYER

WATER

WATER

WATER

WATER

WATER

PUMP

PUMP

PUMP

PUMP

PUMP

(PORTABLE}

ATLASCOPCO COMPRESSOR 2

INGERSOLL/RAND COMPRESSOR 1

HOUSE

VACUUM

VACUUM PUMP 1

)

wn

LIQUID RING VACUUM PUMP 2

EMERGENCY GENERATOR

CUT-OFF BAND SAW

WYSONG POWER SHEAR

DO ALL BAND SAUW

Figure 3

TYPE

3

DAT

LOCATION

UL/TPM

SHIPPING

SHIPPING

SHIPPING

S.PARTS

KITTING

SHIPPING

WML/B3

EML/U9

EML/U4

EML/U4

WML/C9

COMMENTS

LS 109

BASEMENT

OUTSIDE RC

OUTSIDE RC

BASEMENT

BASEMENT

BASEMENT

BASEMENT

BASEMENT

BASEMENT

S$-109

MODEL SHOP

MODEL SHOP

MODEL SHOP

E

GROUP

n

03/21/84

BLDG #

1

JOURNA]

Srolip Mo Sroup Description

2 INDUSTRIAL MAINTNCE

Priority R
Priority B
Priority C
Priority D
Priority W

Other

Totals

e e o S i i o e R A e o e e

HORKLORD ANALYSIS HORKSHEET DATE RUM : 03/21/84

wikikikkioriookTotal Hours

Yedr ek

Total Mo devices PN std

due overdue Hrs repair urkordr regular o'tine net
142 0 32.23
61 0 28.20
0 14.95
10 0 3.60
2 ¢ .80
1 0 .40
) 0 82.20 0.00 0.00 0.00 0.00 -82.20
Figure 4 _

JOURNA]

PREVENTATIVE NAINTEMANCE COST & LABOR REPORT DATE RUN : 03/21/84 PAGE
mevne PN YT ~ovne > K==== PN PRIOR =-=-) (--=o- REPAIR ----- >
DEVICE # DESCRIPTION ON SYS DATE LABOR HRS MATERIAL ¢ LABOR KRS MATERIAL S LABOR HRS WATERIAL S
1 HAND TAPER 883 .40 0.00 1.40 0.00 0.00 0.00
s TOUCH TAPER 1 383 A0 0.00 1.90 0.00 0.00 0.00
3 TOUCH TAPER 2 383 .40 0.00 1.9 0.00 0.00 0.00
q TOUCH TAPER 3 383 .40 0.00 2.3 0.00 0.00 0.00
3 TOUCH TAPER 4 983 .40 0.00 1.20 0.00 0.00 0.00
] TOUCH TAPER 5 1283 .40 0.00 .20 0.00 0.00 0.00
7 YOUCH YAPER 7 284 0.00 0.00 0.00 0.00 0.00 0.00
14 DONISTIC HOT WRTER PUNP 1 882 .30 0.00 1.24 0.00 0.00 0.00
15 DONESTIC HOT MATER PUAP 2 882 .30 0.0 1.24 0.00 0.00 0.00
16 BONESTIC HOT WATER PUNP 3 882 .30 0.00 1.24 0.00 0.00 0.%0
17 DONESTIC HOY WATER PUNP 4 882 .30 0.00 1.24 0.00 0.00 0.00
18 DONESTIC HOT WATER PURP 3 882 .30 0.00 1.24 0.00 0.00 0.00 .
19 IRRIGATION PUNP 882 .30 0.00 1.28 0.00 .60 40.00
20 SUNP FUNP (PORTABLE) 883 .30 0.00 .40 0.00 0.00 0.00
39 RIR RECIVER TARK 184 0.00 0.00 0.00 0.00 0.00 0.00
40 COMPACTOR 887 1.60 0.00 6.80 0.00 0.00 0.00
41 TORK LIFT 882 1.60 0.00 4.2% 0.00 0.00 0.00
42 HAMKINSON AIR DRYER 882 1.23 0.00 2.3 0.00 0.00 0.00
13 ATLASCOPCO CONPRESSOR 2 882 1.23 0.00 8.40 91.30 0.00 0.00
44 INGERSOLL/RAND COMPRESSOR 1 882 1.2 0.00 1.75 0.00 0.00 0.00
43 HOUSE vACUUR 882 1.23 0.00 2.33 0.00 0.00 0.00
46 UACUUR PARIP 1 882 : 1.23 0.00 7.10 0.00 0.00 0.00
47 LIQUID RING VACUUM PUNF 2 882 1.25 0.00 4.40 3.00 1.30 63.00
48 ENERGENCY GENERATOR 882 1.20 0.00 6.99 0.00 0.00 0.00
60 CUT-OFF BAND SAN 882 .30 0.00 2.17 0.00 0.00 0.00
61 WYSONG PONER SHEAR 88z .30 0.00 2.47 0.00 0.00 0.00
62 DO ALL BAND SAN 882 ’ .90 0.00 2.22 0.00 0.00 0.00
Figure 5

JOURNA]

Testing compares new half-inch tape drive to existing drives

Bob Gilbert

Hewlett-Packard
Lake Stevens Instrument Division
Marysville, Washington

Performance data on new products is an essential part of the
development cycle. Hewlett-Packard recently introduced the
HP 7978A, a one-half inch tape drive. Offered at half the
price of the HP 7976A, the current high performance drive,
the HP 7978A maintains approximately the same per-
formance.

In order to validate the performance of the new tape
drive, PCP (Plug Compatible Peripheral) tests were performed
using six different filesets and eight different tape drives. The
overall objective was to verify the performance of the HP
7978A, by determining sensitivity to fileset characteristics and
system configuration and by making these measurements

ithin a framework that allows comparisons with existing
pported HP 3000 tape drives. Tests done in compliance with
guidelines developed at HP’s Computer Systems Division,
where the HP 3000 is manufactured, measure performance
in best-case and worst-case configurations (separate GIC
versus shared GIC), using tape drives with the HP 3000/44.

SUMMARY OF RESULTS

The HP 7978 transfer data rate is within plus or minus 10
percent of the HP 7976 for the same filesets in a typical
standalone STORE configuration. For a typical fileset as
measured by the benchmark fileset #1, this data rate is 20.2
Mb/min (337 Kb/sec), as compared to 20.9 Mb/min (348
Kb/sec) for an HP 7976. Measurements were made on an
HP 3000/44, running MPE V/P+ with an HP 7933 discon a
separate GIC from the HP 7978 tape drive. Measurements
made earlier on an HP 3000/ 64 with an HP 7933 disc were
only about two to three percent faster.

Configurations that are not optimized for backup per-
formance will yield a lower performance than the above con-
figuration (best case). One such configuration is specified in
PCP performance testing, where the HP 7978 and disc(s)
share a common GIC. In this case the HP 7978 has markedly
lower data rates, as does the HP 7976.

This amounts to a worst-case configuration, where the
system is incapable of supplying data fast enough for any
CR drive, regardless of streaming or nonstreaming mecha-
ism. To accurately describe performance in this shared GIC
configuration (or other nonoptimized configurations), a rel-
ative comparison of various tape drives is imperative.

DISCUSSION OF THE PERF60 GRAPH

Graph PERF60 will first be discussed before interpreting the
results because it is a single, comprehensive (detailed) pre-
sentation of completed PCP testing. The graph’s detail allows
comparisons among the various HP tape drives currently
supported by the HP 3000. The following text should make
test result imterpretation clear and allow simple interpreta-
tion of other configurations/test. Definitions for notations
included on the graph are:

® BURST = tapespeed * density
The burst transfer rate is widely used in data sheets
because it is the largest, most impressive performance
number and does not reflect system-related perfor-
mance dependencies. It is the maximum instantaneous
writing date attainable within a record;

® MAX = tapespeed*density*(record-length/(record-
length+gap-length))
This data rate is calculated for each drive according to
its corresponding tape speed, maximum record size,
and gap length. It is the maximum writing rate attain-
able within a file.

Six different filesets on eight different tape drives were
run, using two different configurations. The two configura-
tions, based on doing separate and shared GIC tests, were
measured using an HP 3000/44 with an HP 7933 disc. Pre-
vious tests showed little performance difference between
using an HP 3000/44 or HP 3000/ 64 computer; limitations
appear to be I/O-related, and both computers share the same
I/0 architecture.

Filesets are annotated on the graph and are basically of
two types; #1 is a typical customer fileset, and #2 through #5 are
filesets with progressively smaller file sizes. Another fileset was
involved in the testing, but since it ran at almost the same speed
as #3. it was not graphed. Fileset #1 provides benchmarking of
actual customer filesets and realistic estimation/comparison
among HP’s drives. Filesets #2 through #5 allow estimating
sensitivity of (1) the system’s ability to deal with progressively
smaller files and (2) evaluation of how drives compare relative
to each other within a given system configuration.

Tape drives are annotated along the x-axis, with desig-
nations of whether they operate in NRZI (800cpi), PE

JOURNA]

(1600cpi), or GCR (6250cpi). It is interesting to note that
GCR and PE formats on the HP 3000 allow 16,384 bytes
and 8,192 bytes respectively as the maximum record sizes,
while the HP 7974 and HP 7978 tape drives will support
16,384-byte records in either format. Therefore, about five
percent more performance is available for PE formats.

The drive marked “INFINITE” needs more explana-
tion. This is an HP 7978 prototype-running firmware with
the write-record and write-file-mark procedures stubbed, so
that after data has passed from the host to the drive it is not
actually written on tape. This allows analysis of actual peak

data-transfer rates given the configuration, fileset, tape drive,
current STORE program architecture, and 1/O channel pro-
tocol. It is a good comparison of how well a drive is perform-
ing relative to the HP 3000 system limit.

Each drive is graphed with the five filesets plotted in
Mb/min with the HP 7933 and tape drive on separate GICs.
Shaded portions within these measurements show the values
for running the same stream job in a shared GIC configura-
tion, with the HP 7933 and tape drive operating on the same
GIC. Basic run information is annotated on the graph. Addi-
tional run related details follow the graph.

STORE performance measurements using HP 7970, 7974, 7976, and 7978 tape drives

30
25 -
T L
Eop
o -
+ -
> -
Q
> -
~ 15 |-
wo [
-
E —
o -
x 18 :
]
[-‘- -
< |
5 [— -
a 12049 uu 18248 12049
a] w] W
N a a a a
™ < < < -
z
- ® <+ w ©
~ ~ ~ ~
+ o o o @
~ ~ ~ ~ ~
R
TAPE DRIVES
- KEY POINTS -

1. The 7978 performs within +/-10% of 7976 for same filesets (non-shared GIC).

Basic Run Information

1. BURST - density * tapespecd (calculated)

2. MAX - density * tapespeed * (] - over
head)

- calculated quantity
PE assumes 8192 bytes reeord and

0.6 inch gap
- GCR assumes 16384 bytes record
and 0.48 inch gap
3. Filesets
21 @.@.FILES: 252 files @ 44.%5
Mbyte
22 . @.@ PCPAOODO: 21 files @ 52.43
Mbyte
23 @@ PCPBO000; 205 files @ 52.43
Mbyte
74 - @.@ PCPDO00O; 2048 files @
52,43 Mbyte
#5 @.@.PCPFEO000: 20,450 hlew @
52.43 Mbyte

4 INFINITE speeds are measured on a
modified 7978

3. Measured single and multiple GIC con-
figurations shaded portion shared
GIC configurations

<9 249 2349
22 1 ! " 6. Mbyie = 1.000.000 bytes

o o

¥ =) -

(L 1) zZ

~ ~ -
t

o m® Z

N (5 -

[+4] [+4]

N N

2. Performance degradation occurred for GCR drives in shared GIC configuration.

10

JOURNA]

STORE performance measurements using HP 7970, 7974,
7976, and 7978 tape drives

1. HP 3000 information:

e HP 3000/44 running MPES/P+

¢ STORE version = PO6PMPE4 (pass 2); SHOW option
off

e STORE fileset;*T;NUMBUF=X;TIME’

® STORE listing provided the timings needed

® STORE buffers = 6 @ 16kW (16kW= 32768bytes)

2. Disc information:

disc 1= 7925; system disc
disc 2= 7933; all test files loaded only on 7933
discs 1,2 share GIC 11
system reloaded

3. Tape drive information:
® 7970; gap= .60 in; speed= 45 ips
® 7974; gap= .60 in; speed= 50 ips stop/start; 100 ips
streaming
® 7976; PE gap= .60 in; GCR gap= .35 in; speed= 75 ips
e 7978 (#0064); code=A0.00(final); PE gap= .60 in; GCR
gap= .48 in; speed= 75 ips
® INFINITE (modified 7978) write code inactive; pro-
. tocol with host active
® drives are on GIC 9 normally; on GIC 11 for shared
tests
o PE measurements used 8192 bytes/record; GCR used
16384 bytes/record

4. Workload estimate:

e standalone environment; OP.BUCKIE and MANA-
GER.SYS only sessions active

5. Miscellaneous:

e Dslines shut; disc caching off

e Mb= 1,000,000 bytes

e MAX value for each drive= 16kb records, no tape
marks

e drives in PE showed no performance gains for increas-
ing the number of STORE buffers beyond the current
value

e multiple and single GIC configurations are plotted
together.

SUMMARY OF PCP TEST RESULTS

The objective of PCP testing is to determine sensitivities of a
peripheral tape drive to fileset characteristics and system
figuration, and to make these measurements within a
mework that will also allow comparisons with existing
supported HP 3000 tape drives. Testing was initiated on
earlier MPE-4 versions but completed on the latest release of

11

MPE V/P+. Although two different MITs were used, it is
interesting that speeds have varied only plus or minus three
percent using identical test setups.

An “infinite speed” drive was created by modifying an
HP 7978, thus allowing measurement of the STORE pro-
gram architecture, tape driver, immediate response channel
protocol, and HP 7978 firmware overhead. This allowed
measurement of the maximum possible backup rates for a
given fileset, workload, and host configuration/architecture.
The HP 7978 runs within about 30 percent of the infinite
data rate and the HP 7976 within 25 percent. The implication
is that changes in the either the current STORE program or
HP 7978 tape drive will result in small performance increases.

Fileset characteristics influence performance. Measure-
ments were made on an HP 3000/44 with an HP 7933 disc
(measurements made earlier on an HP 3000/64 with an HP
7933 disc were only about two to three percent faster). These
tests were run using fileset #1, representing typical customer
filesets, with all data contained on a single HP 7933 disc. The
fileset was reloaded so locality was very high. Using this
fileset and nine others, there was about a seven percent per-
formance increase for the HP 7976 and about twenty percent
increase for the HP 7978 for a reloaded versus highly frag-
mented system.

The HP 7978-GCR drive data rate is within plus or
minus 10 percent of the HP 7976, for the same filesets in a
typical standalone STORE configuration. This data rate is
20.2 Mb/min as compared to 20.9 Mb/min for an HP 7976.

PE drives are almost insensitive to fileset structure, due
to the low data rates of the drives. See the following sections
for more details.

EFFECT OF FILESET SIZE

To measure the effect of fileset size, several more filesets
were created. Varying the size of files and keeping them at
one extent/file allowed interpretation of the file boundary
overhead between system and drive. For each fileset, look at
the INFINITE drive to determine the maximum data rate
the HP 3000 will deliver.

Fileset #2 is best case as it keeps doing contiguous disc
I/Os without any file boundary overhead. In comparing the
HP 7978-GCR and HP 7976-GCR, one sees almost no per-
formance difference, and each drive operates within one per-
cent of the theoretical maximum.

Fileset #1 (typical) or Fileset #3 (256,000 bytes/file) are
not appreciably different.

Fileset #4, which is a 25,600-byte file, shows the effect
of the file size on the system, because the INFINITE drive
shows no higher data rate than the HP 7978-GCR.

JOURNA]

Fileset #5, which is a 2,560-byte file, is totally system-
limited, even for PE drives. PE drives perform at near their
BURST data rates for all filesets except #5.

The transfer rate is so low for single-user workloads, as
specified in PCP testing, that PE drives are relatively config-
uration insensitive. The HP 7974 streamed almost the entire
time, even in shared GIC configurations.

STORE PERFORMANCE WEAKENED
WITH SHARED GIC

Shared GIC configurations were measured not only for the
typical fileset (Fileset #1) as specified by the PCP document,
but for all filesets and for all of the drives. Many installations
operate with the discs spread across all GICs, a configuration
HP recommends for online disc I/O reasons, with the tape
drive hooked up on the non-sysdisc GIC. In particular, beause
the HP 3000/44 1/O system only allows two high speed GICs
(Series 64 supports two IMBs and therefore four GICs), these
installations in the worst case will see GCR backup perfor-
mance not much different than PE performance.

So what does shared GIC testing mean? It is actually a
lower bound for performance. If a site is set up with two GICs,
an HP 7933 disc on each GIC, and a tape drive on one of these
GICs, the system data rate will be higher than the above shared
GIC PCP test results, but less than the multiple GIC configu-
ration test results.

Shared GIC configurations for the HP 7978 should be
avoided for performance-oriented systems, if possible. Even in
this configuration, though, the HP 7978 for all filesets is

12

faster than the HP 7974 (which is streaming). For multi-user
or non-STORE tape operations, user will not see a great deal
of performance difference between shared GIC or multiple
GIC configurations, because data rates may be less than
160,000 bytes/sec.

CONCLUSIONS

Performance tests indicate that the HP 7978 data-transfer rate
for the same filesets is typically within plus or minus 10 percent
of the HP 7976, which validates the price/performance claims
for the new drive.

Configuration and fileset sizes do affect performance.
There is a performance degradation when the tape drive oper-
ates in a shared GIC configuration as opposed to being on a
separate GIC. If STORE performance must be optimized, it is
recommended that the tape drive operate on a separate GIC.
For other operations, performance is not noticably different
between shared and nonshared GIC configurations. It must be
noted that this applies mainly to GCR operations; PE perfor-
mance is relatively configuration-insensitive.

The structure of files within a fileset does directly affect
the backup performance. As files become progressively smalle
performance worsens on all drives, dramatically so in the m
extreme case of Fileset #5. Additionally, GCR drive perfor-
mance increased when backup was done on a reloaded disc
with high locality in comparison to a highly fragmented one.
Because of the slower data rates of the PE drives, they are not
really affected by fileset structure.

JOURNA]

Pascal strings and MPE

Joseph Berry

Motorola/Hewlett-Packard
Tel Aviv, Israel

A number of examples are found in the Pascal 3000 manual
that explain how to interface Pascal to the rest of the MPE
world. Specifically. the appendices contain examples of
interfacing to MPE intrinsics, IMAGE, V/PLUS. and so
forth. In these examples. the variables used in the procedure
calls are typically of type PACKED ARRAY of CHAR.

If one were to enter the IMAGE example that appears
in the manual, a number of identical Pascal warnings would
appear. saying:

BYTE TO WORD ADDRESS CONVERSION HERE (531)

QC program works. Everything is as it shoud be. The listing.
wever. looks horrible, and there’s a sense of untidiness in a
computer listing with dozens of warnings. One also has to
look through the listing carefully for any error that is not a
#531.

After having encountered this problem too many times.
I set out to find a solution. I've found two workable solutions
thus far.

USING RECORD STRUCTURES

The following simple example demonstrates one solution. It
is representative of how Pascal and IMAGE are used
together:

Sushnit$
Sstandard_level ‘HP3000'$
program PASTEST(output);

type

pp = packed array [1..80] of char;
single_int = -32768..32767;

var
base L pp:
password : pp;
mode : single_int;
status : packed array [1..10] of single_int;

procedure dbopen;intrinsic;

begin

base = "BASE;"

13

password = 1"

mode =1

dbopen(base, password, mode, status);
end.

When this program is compiled. it will generate the warning
message described above. However, by using RECORD
structures. we can force Pascal to recognize that we are
indeed starting our variables on word boundaries. Here is an
example of how the new program might appear.

Suslinit$
Istandard_level "HP3000'$
program PASTEST (output);

type
pp = record
db : packed array [1..80] of char;
end;

single_int = -32768..32767;

var
base : pp;
password : pp;
mode : single_int;
status : packed array [1..10] of single_int;

procedure dbopen;intrinsic;
begin
base.db =" BASE;"
password.db :=";";
mode =1
dbopen(base, password, mode. status);
end.

When compiled, this program produces no error mes-
sages. Everything works as advertised.

USING STRING DATA TYPE

The second technique is to take advantage of the Pascal’s
STRING data type. This solution is somewhat cleaner.
because we do not have to create unnecessary RECORD
types. The following example demonstrates this:

JOURNA]

$uslinit$
$standard_level ‘HP3000’$
program PASTEST (output);

type
pp = string [80];
single_int = -32768..32767;

var
base : pp:
password : pp;
mode : single_int;
status : packed array [1..10] of single_int;

procedure dbopen;intrinsic;

begin
base ;=" BASE;;
password :=7’;
mode =1,
dbopen(base, password, mode, status);
end.

Knowing that the above example compiles is only half
the question. Will it execute properly? We are passing a data
type (STRING) known only to Pascal to a non-Pascal
procedure. In order to more fully understand the answer to
the execution question, I conducted four tests. They demon-
strate the usability of STRING data-types with non-Pascal
procedures (specifically, with intrinsics).

When using arrays together with intrinsics (this in-
cludes IMAGE procedures), four different combinations
exist. An array can either be a byte array or a logical array; it
can be either an array that the intrinsic reads from or an
array that the intrinsic writes to. The following examples
demonstrate each case.

Passing a logical array to an intrinsic

The intrinsic PRINT reads data from a logical array and
prints the contents to the CRT. The Pascal example of this
case is presented as follows:

var
S1 : string[80];

begin
S1 := This line is to be printed.’;
print(S1, strlen(S1), 0);

end.

The second parameter of the PRINT intrinsic is the length,
in bytes, of the logical array. The function STRLEN satisfies
this requirement. The code generated by Pascal is correct.
Here is a sample of the code that is generated:

LRA DB+10,I {load the address of S1; strings are stored
as with word addresses, not byte ad-
dresses}

INCA {add one to the address; i.e., point to the

14

data and not to the word containing the
string length }
LOAD DB+10,I{load the address of S1; this, of course,
points to the length of the string; it’s the
second parameter in the PRINT intrin-
sic}
{load zero on top of stack; this is the
third parameter}

ZERO

PCAL PRINT

Passing a byte array to an intrinsic

The intrinsic BINARY converts ASCII digits into a pure binary
number. BINARY expects the ASCII characters to be passed
as a byte array. A Pascal example of this case is as follows:

type

single_int = -32768..32767;
var

S1 : string[80];

N1 : single_int;

begin

S1:="15

N1 := binary(S1, strlen(S1));
end.

The second parameter of the BINARY intrinsic is the len
in bytes, of the logical array. The function STRLEN sati;b
this requirement. The code generated by Pascal is again cor-
rect. Here is a sample of the generated code:

LRA DB+10,1 {load the address of S1; strings are stored
with word addresses, not byte addresses}

LSL 1 { left-shift the address by one; this is equiv-
alent to multiplying by two or converting
a word address to a byte address}

LDI 2 {place 2 on top of stack; see next line}

LADD {add 2 to the byte address; in other words,

calculate the address of the data and not
the address of the string length}

LOAD DB+10,I {load the address of S1; now we want the
address of the string length}

PCAL BINARY

Reading a byte array from an intrinsic

In the previous two examples, we stored data into arrays
that were then accessed by intrinsics. What about retrieving
information from byte arrays that were filled by intrinsics?
The ASCII intrinsic returns the character representation of a
binary number in a byte array. The Pascal example is pre-
sented here as follows:

type

single_int = -32768..32767;
var

N1, N2 : single_int;

S1 : string[80];

JOURNA]

begin
N2 :=23;
N1 := ASCII(N2, 10, S1);
setstrlen(S1, N1);

end;

Note that we have one peculiarity in this example. Specifi-
cally, we have to use the SETSTRLEN function after the
ASCII intrinsic. The ASCII intrinsic returns the length of
the string that was created from the binary number N2. Pas-
cal has no way of knowing how long S/ is or is supposed to
be. Without initializing the length of the string S/, Pascal
will use whatever value was in the length part of the variable.
Typically, this will be either garbage or zero. The code gen-
erated by Pascal appears below.

LLOAD DB+7 {load the address for N2}

LDI 12 {load the number 10, decimal, to top of
stack }

LRA DB+10,I {load address of S1 onto the stack }

LSL 1| {left-shift one bit; i.e., multiply by two to
get a byte address }

LDI 2 { put 2 onto the stack for later addition to
point to data, not count }

LADD {add 2 to the address of SI; i.e., point to

‘P data}
CAL ASCII

Reading a logical array from an intrinsic

The problem that occurs in the third example above also
occurs when reading data from a logical array. Specifically,
the length previously established for the string array must be
manually set. This is seen in the following example:

15

type
single_int = -32768..32767,
var
N1 : single_int;
S1 : string[80];
begin
N1 := read(S1, -80);
setstrlen(S1, N1);
end.

In this example, we are reading up to 80 characters from
$STDIN. The actual number of characters read are returned
from the READ intrinsic in variable NI. The expanded
assembly code is as follows:

LRA DB+10,1I {load the top of stack with the address of

S1}

INCA {increment by one word to point to the
data}

LDNI 120 {put -80 on top of stack}

PCAL READ

SUMMARY

We see from the above tests that working with STRING
data types is an acceptable technique for communicating to
the MPE world. It has its place not only in bypassing useless
warning messages, but also in expediting programming.

The only caveat is that Pascal must be aware of the
exact data types of the procedures being called. With intrin-
sics, this is straightforward since Pascal looks in the file
SPLINTR.PUB.SYS for the intrinsic definitions. Users must
be careful about defining their own non-Pascal procedures
so that Pascal will generate the correct code.

DURNAJ,

Introduction to
systems programming on the HP 3000
using Pascal

Stephen Tucker

Faculty of Business
Royal Melbourne Institute of Technology
Melbourne, Australia

ABSTRACT

This paper introduces Pascal as a tool for systems program-
ming on the HP 3000. It shows that Pascal contains features
that are necessary and desirable for solving systems program-
ming tasks.

INTRODUCTION: SOME GOOD REASONS
FOR USING PASCAL

Pascal has not had a great penetration into the field of sys-
tems programming. This is attributable mainly to the view
that strong data type rules and systems programming do not
mix. This paper contends that strong typing and the many
other features that exist in Pascal are not only desirable, they
are essential where the programming of tasks is critical to the
smooth and uninterrupted running of a computer.

Pascal guards the programmer from making mistakes,
such as examining the wrong bit in a word, by making it easy
for the programmer to define types that reflect the desired
meaning of data stored in the computer. This means that the
logic of interpreting information is embedded in the defini-
tion of a structure, rather than in the executable procedural
portion of code. This also makes the meaning of a program
much clearer to anyone reading the program.

PASCAL VARIABLE MAPPINGS

To successfully program systems applications in Pascal, it is
essential to know what format the compiler will use for vari-
able storage, and what addressing mode it will use to refer-
ence variables. The Pascal/3000 Reference Manual contains
useful information on both these topics. The Pascal/3000
compiler option “STABLES ONS$” can also be used for veri-
fying that the compiler has allocated storage in the manner
intended for each particular variable.!

The following table summarizes Pascal type-storage
allocations as given in the reference manual.?

16

Storage Unit

Type independent unPACKED PACKED
boolean 1 word I byte 1 bit
integer 2 words 2 words 2 words
inleger 1/2 words 1 2 words minimum bits
subrange
enumerated I word I byte | word minimum bits
real 2 words 2 words 2 words
longreal 4 words 4 words 4 words
char I word I byte I byvie
pointer I word I word I word

In most applications PACKED structures will be used.
These are usually suitable, but have one major drawback:
The packing of PACKED structures into PACKED struc-
tures is not performed. This means that some structures—
such as the user attribute bits of the user capability word.
which logically are one unit but do not occupy a full word—
cannot be defined as a RECORD to stand alone. When a
record such as this is included as an element in a more com-
plete description, the Pascal. 3000 compiler will align the sub
element on a word boundary. Thus the correct mapping
cannot be achieved.

Addressing mode considerations only becomes a factor
when accessing structures outside the program’s normal
scope. In these cases. such as accessing system tables. it is
necessary to ensure that the compiler will address the desired
structure correctly.

By using pointer variables for system table acce%
the compiler will generate the correct code, provided

correct DB relative address is placed into the pointer variable
first. This is so because for all dynamic variables, that is.

JOURNA]

pointer variables, the compiler must use indirect addressing.3

SOME EXAMPLES OF VARIABLE MAPPINGS

(1) PACKED RECORDs/ARRAYs of booleans for bit-
maps, that is, the capability word passed from the WHO
intrinsic.*

The following variable definition

user_capability :
PACKED RECORD
sm, am, al, gl, di, op, cv, uv, lg,
resl, res2, res3. resd, cs, nd, sf,
resS, res6, res7. res8, res9. resl0, rest!,
ba, ia, pm, res|2, res|3, mr, res14, ds, ph : boolean;
END;

will allow expressions of the following form
IF user_capability.am THEN...

(2) Integer subranges for small numbers contained in table
definitions, that is. the system date passed from the CALEN-
DAR intrinsic.5

The following variable definition

PACKED RECORD
. year_of_century : 0..99;
day_of_year : 1..366;
END;

will map exactly onto the return from the CALENDAR
intrinsic

(3) Enumerated rvpes can be used when a clearer definition
of the possible values of variables is desired. that is, the

foptions parameter of the FOPEN intrinsic call can be
defined as a PACKED RECORD of enumerated types.®

The following fragment of a variable definition

foptions :
PACKED RECORD

domain :

(new_file,
old_permenant_file,
old_temporary_file,
old_file);

END;

will allow statements of the form

All the examples discussed so far use strict data structures
that do not allow for different interpretations of the data

foption.domain:=new_file;

VARTABLE REDEFINITIONS

17

represented. Yet in systems programming it is often necessary
to interpret variables in different ways.

The mechanism in Pascal for achieving this is a
RECORD structure using an undiscriminated union or, as
the Pascal’ 3000 reference manual calls them, free union var-
iant records.” Pascal’s undiscriminated union allows the same
variable to have different interpretations defined for it. The
procedural code can then select any defined interpretation.
by using the field identifier it requires.

A Simple Example

Consider the situation where you would like to see the binary
representation of a decimal integer number. There are two
basic ways to tackle this problem: The first uses shift (DIV
MOD) operations on the integer to isolate each binary digit;
the other interprets the storage of that number in a different
way.

Example | (see page 18) illustrates such a problem: All
the information is really contained in the variable, and it is
up to the programmer to determine how to interpret the
information—decimal, binary, octal, or other formats. The
idea of interpreting variables in several ways, using an undis-
criminated union. is central to systems programming in Pas-
cal. With this method, it is possible to do machine level
referencing. while still retaining the strong typing. range
checking qualities of Pascal.

A More Advanced Example

The whole concept of several different interpretations for a
single variable is important to systems programming, because,
at the machine level, this is what actually occurs. Consider a
word in memory: The value stored in that word could have
many different meanings depending on the interpretation. It
could contain a machine instruction, ASCII characters. a
numeric value, and so forth, and these could then be subdi-
vided again. For instance, a numeric value could be data for
a program or it could be the address of data for a program.

Example 2 (see page 20) illustrates one such situation.
This example accesses MPE’s PXGLOB table, which exists
for every user process in the area below DL on the user’s
stack.®* The PXGLOB table is part of the PCBX table. and
its address can be found in the PCBX table at memory loca-
tion DL-1. The address found at this location is a DL relative
address. and so must be subtracted from the value of the DL
register, to obtain a correct DB relative address. Studying
Example 2. we can see that the table accessing variable is
used in three different ways:

® as an integer subrange so that arithmetic can be per-
formed using the variable as the result;

® as a pointer to an integer subrange so that indexed
address references can be performed;

JOURNA]

® as a pointer to the PXGLOB table, the real purpose of
the exercise.

It should be noted that all three representations occupy
exactly one word of memory on the HP 3000.

Some other points to note about Example 2 are that
the value of the DL register is obtained as the result of an
SPL function. Pascal can’t perform some operations prop-
erly, such as obtaining the values of registers. The other
point to note is that the procedure needs to be in privilege
mode to address beyond the DL register.

SUMMING UP

The examples described demonstrate only a tiny range of

EXAMPLE |

systems programming applications using Pascal. The busi-
ness faculty at Royal Melbourne Institute of Technology is
involved in building a library of Pascal types and high-level
procedures suitable for systems programming and interfacing
with MPE. The systems programming types can be included
in programs using Pascal;3000’s “include™ compiler com-
mand, while the systems programming procedures are stored
in RLs. ready to be included at “PREP” time.

The key quality these types and procedures are striving
for is readability and maintainability. Pascal has helped us
more than any other language available on the HP 3000 to
achieve these goals.

HEWLETT-PACKARD, HP32106A4.00.05, PASCAL/3000, © HEWLETT-PACKARD CO.

1.000 $uslinity
2.000

3.000

4.000

5.000

6.000 *
7.000 **
8.000 **
9.000 **
10.000 **
11.000 **
12.000 **
13.000 **
14.000
15.000
16.000
17.000
18.000
19.000
20.000
21.000
22.000
23.000
24.000
25.000
26.000
27.000
28.000
29.000
30.000
31.000
32.000
33.000
34.000
35.000
36.000
37.000

* O O O OO

*
*

}
CONST
TYPE
binary_digit = 0..1;

decimal_number =
-32768..32767,

(binary, decimal);

word =
RECORD

binary :
(binary_representation :

O OO OO OO OO0 OO

=W N N R e R e B o B o B e B e B = B = 2K =K == == i o I e i = i e e e

CASE word_representations OF

PROGRAM word_representation(input,output);

{ This program is intended to demonstrate the possibilities of the Pascal undiscriminated union by
presenting a simple example. The example takes a one word integer value and prints out its decimal
and binary values without any conversion calculations taking place.

bits_per_word = 16; {number of bits to HP 3000 word}

{one word integer representation }
binary_number = {one word binary representation }
PACKED ARRAY [l.bits_per_word] OF binary_digit;

word_representations = { possible word representations }

{ actual word representations }

binary_number);

JOURNA]

w

]

]

(=]
OOV OO -IANANNDWWNND= =000 O
= NN DNMNMDNMDMOMNNMMOMNOMDNMNDNONN— ——= = 000000 COCC

decimal :

(decimal_representation

END;

VAR

sample :

word,;

index : integer;

BEGIN
writeln

(output,

: decimal_number);

" Sample Decimal and Binary Representations’);

writeln

WHILE NOT eof(input) DO

(output),

BEGIN
readln(input, sample.decimal_representation);
writeln(output);
writeln(output, * Decimal value is ’,

sample.decimal_representation:16);

write(output, * Binary value is ’);

FOR index:=1 TO bits_per_word DO

END.

NUMBER OF ERRORS = 0
PROCESSOR TIME 0: 0: 3
NUMBER OF LINES = 63

Run of the above program

write(output,

sample.binary_representation[index]:1);
writeln(output);
END;

Sample Decimal and Binary Representations

Decimal value is
Binary value is

Decimal value is
Binary value is

Decimal value is
Binary value is

Decimal value is
Binary value is

Decimal value is
Binary value is

Decimal value is

"'\ary value is

Decimal value is
Binary value is

0
0000000000000000

2
0000000000000010

4
0000000000000100

8
0000000000001000

16
0000000000010000

32767
Ot1TtIItIItLIntL1

-32768
1000000000000000

NUMBER OF WARNINGS = 0
ELAPSED TIME 0: 0: 7
LINES/MINUTE = 1260.0

Example by:
Stephen Tucker
Faculty of Business,

19

JOURNA]

EXAMPLE?

PROCEDURE read_pxglob(VAR pxglob_table : pxglob);

{ This procedure ‘reads’ the pxglob table, it returns the table value in the variable pxglob_table

}
TYPE
smallint = -32768..32767
ptr_types = (table_ptr, indexed_address, value),
pointer =
RECORD
CASE ptr_types OF
table_ptr : (pxglob._ptr: “pxglob);
indexed_address : (address : “smallint);
value : (ptr_value : smallint);
END;
VAR

pxglob_pointer : pointer;

FUNCTION dlregister : smallint;
external spl;

BEGIN
pxglob_pointer.ptr_value := dlregister - 1;
pxglob_pointer.ptr_value := dlregister - pxglob_pointer.address™
pxglob_table := pxglob_pointer.pxglob_ptr™;

END;

NOTES

HP 3000 Computer Systems: Pascal]/3000 Reference Manual (Cupertino, Calif.: Hewlett-Packard, 1981). p. 8-47.

Ibid., pp. 9-2-9-10.

Ibid., p. 9-23.

. HP 3000 Computer Systems: Intrinsics Reference Manual, 3rd ed.. update #1 (Cupertino, Calif.: Hewlett-Packard. 1981). p. 2-195.
. Ibid., p. 2-15.

. Il?id., p. 2-80.

. Pascal/3000 Reference Manual, pp. 2-13, 2-31.

. Hp 3000 Computer Systems: Systems Tables Reference Manual, 2nd ed. (Cupertino, Calif.: Hewlett-Packard. 1981). pp. 7-10.

REFERENCE
Jensen, K., and N. Wirth, Pascal User Manual and Report. New York: Springer Verlag. 1975.

20

OURNAJ,

— JOURMA

A

INTEREX BOARD OF DIRECTORS

Chairman

Phil Hardin

Lynx Corporation

1400-112th Avenue S.E., Suite 100
Bellevue, Washington 98004 USA
(206) 451-1998

Vice-Chairman

N. M. (Nick) Demos

Performance Software Group

P. O. Box 1464

Sandy Spring, Maryland 20860 USA
(301) 977-1899

Secretary

F. Stephen Gauss

U.S. Naval Observatory

34th & Massachusetts Avenue N.W.
Washington, D.C. 20390 USA
(202) 653-1510

Treasurer

Michael A. Lasley

HMS Computer Systems

4524 East 67th Street

Tulsa, Oklahoma 74136 USA
“18) 496-0992, extension 303

Sandra S. Bristow
Chambers Cable Com., Inc.
2225 Coburg Road

P. O. Box 7009

Eugene, Oregon 97401 USA
(503) 485-5611

Jane A. Copeland

P. O. Box 1749

Beeville, Texas 78102 USA
(512) 287-3328

Ivor Davies

10 Healey Wood Gardens

Brighouse, West Yorkshire HD 63 SQ
United Kingdom

0484-721191

Lloyd D. Davis

University of Tennessee at Chattanooga
Academic Computing Services

Hunter 209C

Chattanooga, Tennessee 37402 USA
(615) 755-4387

Lana D. Farmery

Cognos

275 Slater Street, 10th Floor
Ottawa, Ontario K1P SH9 Canada

'13) 237-1440

Graham K. Lang
Laboratories RCA Ltd.
Badenerstrasse 569

CH-8048 Zurich, Switzerland
41/1/526350

Jack McAlister

TDC-Texas Group

624 Six Flags Drive
Arlington, Texas 76011 USA
(817) 461-1242

Glen A. Mortensen

Intermountain Technologies, Inc.
1400 Benton Street

P. O. Box 1604

Idaho Falls, Idaho 83403-1604 USA
(208) 523-7255

Ted Varga

Sperry

455 West Center

Bountiful, Utah 84010 USA
(801) 298-5851

Alan Whitney

MIT Haystack Observatory

Route 40

Westford, Massachusetts 01886 USA
(617) 692-4764

Interex Executive Director

William M. Crow

HP International Users Group

2570 El Camino Real West, 4th Floor
Mountain View, California 94040 USA
(415) 941-9960

Hewlett-Packard Liaison

Jo Ann Cohn

Hewlett-Packard Company
Systems Marketing Center

19447 Pruneridge Avenue
Cupertino, California 95014 USA
(408) 725-8111, extension 3006

Journal
Interex
2570 El Camino Real West, Fourth Floor

Mountain View, Califorma 94040
U.S.A.

PERMIT NO. 382
MOUNTAIN VIEW, C
and Other Locations

