uuuuuuuuu

JOURNAJ,
JOURNAJ,
JOURNAJ,
JOURNAJ,
JOURNAJ,
JOURNAJ,

JOURNAJL

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

JOURNA]

Leon Leong

David J. Greer

Betsy Leight

This publication is for the
express purpose of
disseminating information
among members of Interex. The
editonal staff is not

responsible for the accuracy of
technical material. Some
techniques may have HP
support ramifications and
should be implemented with
care.

Contributions to the Journal
are encouraged; send your copy
to the attention of the

editor.

Information from the Journal
may be reproduced without the
prior written consent of Interex,
except where a copyright is
indicated, provided that proper
recognition is given to Interex.

Using DICTIONARY/3000 as a 3
COBOL programmer’s tool

LISP tutorial: some basic 7
functions

Preparing the HP 3000 data center 13
for an audit

Publications committee members

Chairman: Dr. John R. Ray, College of Education.
Department of Curriculum & Instruction, University of
Tennessee at Knoxville. Knoxville, Tennessee 37996-
3400 USA.

Gary H. Johnson, Brown Data Processing, 9229 Ward
Parkway, Kansas City, Missouri 64114 USA.

Ragnar Nordberg, Department of Clinical Chemistry,
University of Gothenburg, Sahlgren’s Hospital. S-
41345 Gothenburg, Sweden.

Michael J. Modiz, Hayssen Manufacturing Company,
Highway 42 North. Sheboygan. Wisconsin 53081 USA.
Marjorie K. Oughton, Supervisor of Data Processing.
Alexandria City Public Schools. 3801 Braddock Road,
Alexandria, Virginia 22302 USA.

Interex, 2570 El Camino Real West, Fourth Floor,
Mountain View, California 94040, (415) 941-9960.
Editor Christine M. Dorffi

Technical Editor Dr. John R. Ray

2

JOURNA,

Using DICTIONARY/3000
as a COBOL programmer’s tool

Leon Leong

Information Networks Division
Hewlett-Packard
Cupertino, California

® USA

INTRODUCTION

Data dictionaries are a central repository for data resources
on a computer system. A programmer or database adminis-
trator documents databases, files, record layouts, and data
items, as well as the applications utilizing those data defini-
tions in the data dictionary.

Data dictionaries can be more than just a documenta-
tion tool, however. The information found in a data diction-
ary can be used as the basis for a set of programmer produc-
tivity tools. One example of the type of tools that can be
serviced by data dictionaries is the set of new DICTION-

RY /3000 utilities recently released by Hewlett-Packard.

hese utilities aid in the generation of COBOL source code
data declarations and in populating the dictionary with data
definitions from VPLUS, 3000 forms files.

COBOL DATA DECLARATION GENERATION

The new DICTIONARY 3000 utility, Dictcde, will generate
COBOL data declarations into a COBOL copylib file. A
programmer will specify the entity in the dictionary; Dictcde
extracts the definition of the entity, formats the definition
into a COBOL data declaration, and writes it to a copylib
module that the user specifies. The COBOL statements and
clauses generated are dependent on the entity, its dictionary
type. the values of its attributes, as well as any relations it
has with other dictionary entities.

Dictcde generates a WORKING-STORAGE SECTION level-
number | record description for IMAGE /3000 data set enti-
ties. Every data item that is related to the data set in the
dictionary will be generated as a level-number 5 field in the
record description. Dictcde gives the programmer the option
of also having the data item names as well as the data set
name generated. This is useful for constructing the LIST
parameter to pass to IMAGE/ 3000 intrinsics. Another fea-
ture is the specification of a prefix term for the fields in the
record being generated: this facilitates coding without quali-
fication. See Listing | for an example of the source generated
‘)r an IMAGE/3000 data set.

When the programmer specifies a dictionary database
entity, Dictcde will generate COBOL source declarations for

all data sets related to the database. The programmer has the
option of putting each data set in a separate copylib module,
and of skipping source code generation on selected data sets.

Dictcde generates a record description for VPLUS/ 3000
form entities similar to that of an IMAGE/3000 data set
entity. However, instead of an option for generating data
item names, a VPLUS/3000 field number table can be
generated instead. If the programmer specifies a forms file
entity, Dictcde will generate source declarations for each
form related to the forms file.

For MPE and KSAM files, Dictcde gives the pro-
grammer the choice of generating declarations for the INpPUT-
OUTPUT SECTION in the ENVIRONMENT DIVISION, the FILE-SECTION
of the DATA DIVISION, the WORKING-STORAGE SECTION of the
DATA DIVISION, or a combination of all three. Each section
can be generated into a different copylib module. Every file
defined in the dictionary has a set of attributes associated
with it; these attributes describe pieces of information about
the file. Table 1 outlines the mapping between the dictionary
file attributes and the COBOL clauses. In addition, if Dictcde
finds the File entity related to a Location entity, it will use
the Location entity attributes in the ASSIGN clause generated
in the ENVIRONMENT DIVISION. See Listing 2 for an example of
the source that is generated for an MPE file.

Dictcde generates Element entities as level-number |
declarations. Nested element definitions start at level-number
5, and each further nesting level increments the level-number
by 5. The programmer may specify a prefix for the nested
levels to facilitate coding without qualification. The attribute
values of the Dictionary Element entity is used to generate
the WORKING-STORAGE SECTION clauses. Table 2 shows how the
attributes are mapped into the COBOL clauses.

Other options of Dictede include:

® source code generation of the VPLUS/3000 coma-
rea,

® source code generation of the IMAGE/3000 stand-
ard parameters,

® commenting the declarations with creation date,
modification date, and person responsible,

JOURNA]

Table 1 Dictionary file attribute mapping

Dictionary file COBOL COBOL COBOL
attribute division section clause
FILE NAME ENVIRONMENT INPUT-OUTPUT ASSIGN
RECORD FORMAT DATA FILE RECORDING MODE
MINIMUM RECORD SIZE DATA * | FILE RECORD CONTAINS
MAXIMUM RECORD SIZE
UNIT DATA FILE BLOCK CONTAINS
MINIMUM BLOCKING
MAXIMUM BLOCKING
RECORDING MODE ENVIRONMENT INPUT-OUTPUT ASSIGN
DATA STORAGE TYPE DATA FILE CODE SET IS
CCTL ENVIRONMENT INPUT-OUTPUT ASSIGN
DEVICE ENVIRONMENT INPUT-OUTPUT ASSIGN
DEVICE CLASS ENVIRONMENT INPUT-OUTPUT ASSIGN

® source code generation using the alias names in the
dictionary,

® generation of explicit and implicit redefines based
on the definition found in the dictionary.

Dictcde will log a programmer’s interaction with
Dictcde to a file. The programmer can redirect Dictcde’s
input device from the terminal to the log file. The feature is
useful for regenerating the data definitions whenever they
change in the dictionary, with a minimum of effort.

LOADING VPLUS/3000 DEFINITIONS

Another utility recently released with DICTIONARY/ 3000,
Dictvpd, automates the entry of VPLUS/3000 forms defini-
tions. Dictvpd takes definitions of forms and fields in a
VPLUS/3000 forms file and loads them into the dictionary.
Dictvpd operates in a manner similar to Dictdbd, the utility
that loads the dictionary with the definition of an IMAGE/
3000 database from a root file. Dictvpd gives the programmer
the option of loading all the forms or selectively choosing
forms. Dictvpd will load the form and field definitions, as
well as the relationships between the two.

PROGRAMMER PRODUCTIVITY

Some of the tasks in developing an application involve the
specification of the database and the forms the end user will
interface with. The programmer then codes the programming
language declarations for accessing the database and forms
file. The coding portion of these tasks can take days or weeks
on an extensive application involving hundreds of forms and
a large database definition.

Table 2 FElement entity attribute mapping into COBOL

®

clauses
Dictionary
element WORKING-STORAGE
attributes SECTION clauses
TYPE USAGE IS
SIGN
POSITION SIGN IS
SIZE PICTURE IS (on binary types)
DECIMAL PICTURE IS
STORAGE
LENGTH PICTURE IS (on alpha types)
COUNT OCCURS
EDIT MASK PICTURE IS
BLANK WHEN
ZERO BLANK WHEN ZERO
RIGHT
JUSTIFY JUSTIFIED RIGHT
SYNCHRO-
NIZED SYNCHRONIZED

JOURNA]

A programmer can use the data dictionary and a com-
bination of the utilities mentioned above to increase the pro-
ductivity on coding tasks. For example, a programmer can
design forms with Formspec, use Dictvpd to load the infor-
mation into DICTIONARY /3000, and then use Dictcde to
generate the COBOL source declarations for those forms.
These new tools can reduce the coding time for declarations
to just minutes.

OTHER BENEFITS

Names for data entities can be standardized in the source
code more easily, especially across applications and pro-
grammers, since the data declarations are being generated
from one central location. The dictionary will also provide a
good documentation tool and will aid in the analysis of
enhancements and maintenance of applications. Other HP
products that run off of DICTIONARY /3000 can leverage
off the same definitions, such as INFORM/3000 and RE-
PORT/3000. In addition, Dictcde can now be run through
HP TOOLSET/3000 to provide programmers with an inte-
grated development environment.

SUMMARY

.As data dictionaries become more central in the management
of information on a computer system, more and more uses
of the dictionary are surfacing. One of these uses is as a
programmer productivity tool. DICTIONARY/ 3000 allows
programmers to concentrate more of their time on the design
and specification process, using existing data definitions
where applicable, and less time on the coding aspects of
application development.

Listing 1

:run dictcde.pub.sys

DICTIONARY/3000 DICTCDE HP32244A.02.00 - © Hewlett-

Packard Co. 1983
Type ? at any prompt for help.

Dictionary password>

Copylib file name> lib

File, Element, Parameters, Options, or EXit (F/E/P/O/EX)>{
File name> ordmgt

File ORDMGT is an IMAGE data base

Define all data sets in one module (N/Y)>y

Copylib module for ORDMGT> ordmgt
000100

000200 0] CUSTOMER-DATA.
000300 05 ACCOUNT.

00400 10 FIRST-SALE PIC S9(10).
‘OOSOO 05 FIRST-NAME PIC X(I8).
000600 05 FIRST-INITIAL PIC X(2).
000700 05 LAST-NAME PIC X(20).
000800 05 STR-ADDRESS PIC X(22).
000900 05 CITYNAME PIC X(14).

001000 05 STATE PIC X(2).

001100 05 ZIP PIC X(10).

001200 05 CREDIT PIC X(2).

001300 05 FIRST-SALE PIC S9(10).

001400

001500 01 DS-CUSTOMER PIC X(9) VALUE “CUSTOMER™.
001600

001700

001800 01 PRODUCT-DATA.

001900 05 PROD-NO PIC X(8).

002000 05 DESCRIPTION PIC X(30).

002100

002200 0! DS-PRODUCT PIC X(8) VALUE “PRODUCT™.
002300

002400

002500 01 DATE-MASTER-DATA.

002600 05 DELIV-DATE PIC X(6).

002700

002800 01 DS-DATE-MASTER PIC X(12) VALUE “DATE-
002900 MASTER™
003000

003100 01 SALES-DATA.

003200 05 ACCOUNT.

003300 10 FIRST-SALE PIC S9(10).

003400 05 PROD-NO PIC X(8).

003500 05 TOTAL PIC S9(11) COMP-3.
003600 05 PURCH-DATE PIC X(6).

003700 05 DELIV-DATE PIC X(6).

003800 05 PURCH-NO PIC X(6).

003900

004000 01 DS-SALES PIC X(6) VALUE “SALES™.

004100

004200

004300 01 INVENTORY-DATA.

004400 05 PROD-NO * PIC X(8).

004500 05 BACKORDERFLG PIC X(2).

004600 05 UNIT-COST PIC S9(11) COMP-3.
004700 05 SHIP-DATE PIC X(6).

004800

004900 01 DS-INVENTORY PIC X(10) VALUE "INVENTORY™.

005000

005100

005200 01 DB-ORDMGT PIC X(20) VALUE
“ORDMGT.PUB.DSUSER"™.

005300 01 ORDMGT-PWD PIC X(10) VALUE *:

005400

005500 01 DI-ACCOUNT

005600 01 DI-PROD-NO

005700 01 DI-DELIV-DATE

PIC X(8) VALUE “ACCOUNT™.
PIC X(8) VALUE “PROD-NO™.
P1C X(11) VALUE “DELIV-
DATE™
PIC X(I1) VALUE “PURCH-
DATE™.
005900 01 DI-SHIP-DATE PIC X(10) VALUE “SHIP-DATE™.

File, Element, Parameters, Options, or EXit (F/E/P/O/EX)> ex

005800 0t DI-PURCH-DATE

Save file DICTLOG to keep log of responses.

END OF PROGRAM
run pscreen.pub.sys

Listing 2
:run dictcde.pub.sys

DICTIONARY 3000 DICTCDE HP 32244A.02.00 - © Hewlett-

Packard Co. 1983
Type ? at any prompt for help.

Dictionary password>

Copylib file name> lib

File, Element, Parameters, Options, or EXit (F/E/P/O/EX)>f
File name>> warranty

JOURNA]

File WARRANTY is an MPE file 000200 01 WARRANTY-DATA.
) 000300 05 WARRANT-ACCOUNT PIC X(10).

Copylib module for SELECT statement> warrantl 000400 05 WARRANT-PROD-NO PIC X(8).
Copylib module for FILE SECTION entry> warrant2 000500 05 WARRANT-DESCRIPTION PIC X(30).

l 000600 05 WARRANT-TOTAL P1C S9(11) COMP-3.
Define WARRANTY in FILE SECTION as FD or SD file (F S)> { 000700 05 WARRANT-SHIP-DATE PIC X(6).
Copylib module for WORKING-STORAGE record> warrant3 000800 05 WARRANT-WRNTY-NO PIC X(6).

l 000900 05 WARRANT-OWNER PIC X(40).
Prefix for data items in WARRANTY>> warrant- 001000 05 WARRANT-QTY PIC S9(7) COMP-3.
000100 001100

S . w NTY . . o

ggg%gg gELE/SJSIG/I\VR‘ENAARRANTY“ File. Element, Parameters, Options, or EXit (F/E/P/O/EX)> ex

000400 ORGANIZATION IS SEQUENTIAL. Save file DICTLOG to keep log of responses.
000100

000200 FD WARRANTY END OF PROgR{\M

000300 RECORDING MODE 1S F. “TUN pscreen.pub.sys

000400 01 WARRANTY--REC PIC X(110). **SCREEN CONTENTS @: SUN. JAN 29, 1984, 2:55 PM (53724)
000100 PSCREEN (B00.03)

JOURNA,

LISP Tutorial: some basic functions

David J. Greer

Robelle Consulting Ltd.
Langley, British Columbia

Canada

The programmer’s world is undergoing massive changes.
COBOL and FORTRAN still hold sway in many shops, but
so-called fourth generation languages like QUIZ, PROTOS,
and TRANSACT are replacing them for many purposes. If a
programmer walits to stay employable, he must discover
what kinds of programming knowledge will be needed in the
future. It is possible that a radically different language, such
as LISP, will be the common tongue of programmers in the
next two decades.

To illustrate the different styles of programming lan-
guages, we have written this tutorial on LISP. LISP stands
for List Processing, and it is as unlike COBOL as it can be
while remaining in the same category, programming lan-
guages.

As part of the Pascal/ Robelle compiler and program
library, we include a complete interpreter for the language
LISP, written in Pascal. This interpreter is rich in built-in
functions and power, but limited in data space. It is suitable
for learning LISP, but not for writing large artificial-intelli-
gence programs. The examples in this paper are based on
our LISP interpreter. Although the same functions should
exist in most LISP implementations, the specific syntax may
require some changes; LISP is not standardized. (There is a
good textbook on LISP, which inspired some of the ideas
below: LIS P, by Winston and Horn, Addison Wesley, 1982.)

LISP is like a calculator: when you type into it, LISP
looks for functions to perform now. When you want to define
new functions that will be evaluated larer, you must switch
modes, like switching into PROGRAM mode on your pro-
grammable calculator. The difference between LISP and a
calculator is that the “something™ that LISP looks to evaluate
is a symbolic expression (s-expression). An s-expression may
include numbers or strings, but gains most of its power from
the fact that it can consist of words. After LISP has evaluated
your s-expression, it prints the result. For example:

>10
10
>

In this example, the s-expression was the number 10. The
greater-than symbol (>>) is the prompt character.

Here is an s-expression with an error:

>A
Error: unbound atom

The result of evaluating a number is the number itself. The
result of evaluating an identifier is the value associated with
the identifier. In this example, the identifier A was created
the first time that LISP saw it. When this happens, LISP
assigns an “undefined” value to A. The evaluation of A
caused the error “unbound atom” because A had no value.
We can easily assign a value to A:

>(SET "A 10)

The quote mark is required here. 1t tells LISP “do not evalu-
ate the s-expression that follows.” If the quote mark were left
off, we would get the “unbound atom” error. We can obtain
the value of A by the following:

>A
10

LISP uses post-fix notation to do arithmetic. To add two
numbers together, we use the predefined function PLUS.
For example:

>(PLUS 10 20)
30

In post-fix, the arguments are after the function name, as in
a function call of FORTRAN or Pascal. This contrasts with
arithmetic expressions in FORTRAN and Pascal, which use
algebraic notation: 10 + 20. HP calculators, on the other
hand. use pre-fix notation, with arguments before the func-
tion.

We had to surround our LISP example with paren-
theses. If we had just entered PLUS 10 20, LISP would try
to evaluate the identifier PLUS. This would result in the
value of PLUS, but we wanted the value of evaluating the
function PLUS on the arguments 10 20. When LISP sees a
parenthesis, it creates a list. When the list is evaluated, PLUS
is invoked as a function with two parameters.

We have been entering all of our examples in uppercase
letters only. Input to LISP can be in lowercase or uppercase
letters; LISP always shifts its input to uppercase.

Before writing our first LISP function, we need two
more predefined functions. The function QUOTIENT re-

JOURNA]

turns the quotient of dividing the first number by the second.
The function DIFFERENCE returns the difference of two
numbers. For example:

>(DIFFERENCE 10 5)
5

>(DIFFERENCE 5 10)
—5

>(SET'A 10)

10

>(DIFFERENCE A 5)
5

>(QUOTIENT 10 5)

2

>(QUOTIENT A 2)

5

In the example (DIFFERENCE A 5), we did not put a
quote before A because we wanted the value of A, which is
10.

We will now define a LISP function to convert Fah-
renheit temperatures to Celsius. To create a function, we use
the predefined function DE, called DEFINE in some LISP
dialects:

>(DE NAME (PARAMETERS)
(FUNCTION CODE))

There is no quote before the name of the function, because
DE always takes its first argument unevaluated. Here is our
F-TO-C function:

>(DE F-TO-C (TEMP)
(QUOTIENT (DIFFERENCE TEMP
32) 1.8))
F-TO-C

The result of the DE function is a new function name. We
have only defined the function. To invoke it, we use:

>(F-TO-C 75)
23.88889
>(F-TO-C 32)
0

Success! We have written our first LISP program.

Our function does convert temperatures from Fahren-
heit to Celsius, and the answer 23.88889 is accurate within
the limits of the HP 3000 and Pascal/ Robelle. But 23.88889
is not a friendly answer. We need a function that will round
floating-point numbers to their nearest whole digit.

How do we build this function? When using LISP, we
construct one small piece of the solution at a time. First, we
need to obtain the fractional part of the real number. We will
use the predefined function FIX, which returns the whole
portion of a real number.

>(FIX 12.5)

12

>(FIX 12.4)

12

>(DIFFERENCE 12.5 (FIX 12.5))
0.5

>(DIFFERENCE 12.0 (FIX 12.0))
0

Now we need to be able to make a decision. If the fractional
part is less than 0.5 we just return the whole part, otherwise
we return the whole part plus one. Fortunately, LISP con-
tains a method for making decisions: the predefined function
COND. The general form of the COND function is:

>(COND (<CONDITION-1> <STATEMENT-12>)
(CCONDITION-2> <STATEMENT-2>)
(KCONDITION-N><STATEMENT-N>))

A condition in LISP is any function that returns the value T
or the value NIL. The value NIL is a value used many times
in LISP. It can be represented by the empty list ().

We need to know if the fraction is less than 0.5. Therc
is a predefined function LESSP that returns T or NIL,
depending upon whether the value of the first argument is
less than the second. For example:

>(LESSP 0.4 0.5)

T

>(LESSP 0.50.5)

NIL

>(LESSP 0.6 0.5)

NIL

>(LESSP (DIFFERENCE 12.4 (FIX 12.4)) 0.5)
T

The last example shows that the fractional part of 12.4 15 0.4
and that 0.4 is less than 0.5.

Finally, we put these pieces together to create a function
called ROUND. Its definition would be:

>(DE ROUND "(X)
(COND ((LESSP (DIFFERENCE X
(FIX X)) 0.5) (FIX X))
(T (FIX (PLUS | X))

ROUND

How does this function work? It obtains the fractional
part of the value of X-—(DIFFERENCE X (FI1X X)). Then,
it checks to see if this value is less than 0.5. If the fractional
part of X is less than 0.5, the whole part of X is returned
(F1X X). The T in the COND function means, if all of the
other conditions are nor true do this statement. Round adds
| to the value of X and returns the whole portion of the
result. To try the round function, do the following: g

>(ROUND 12)
12

JOURNA],

>(ROUND [2.4)
12

>(ROUND 12.5)

13

>(ROUND 12.999)
13

>(ROUND 12.49999)
12

We built the ROUND function so that we could use it in our
F-TO-C function. One way would be to do the following:

>(ROUND (F-TO-C 75))
24

Even better would be to always round the result of the F-
TO-C function. The new F-TO-C function becomes:

>(DE NEW-F-TO-C (TEMP)
(ROUND (F-TO-C TEMP)))

NEW-F-TO-C
>(NEW-F-TO-C 75)
24
>(INEW-F-TO-C 65)
18
>(NEW-IF-TO-C 32)
Qo

This example demonstrates the expressive power of
LISP, but a more efficient version of F-TO-C could be writ-
ten in SPL, Pascal, or even COBOL. The power of LISP is
not in its number-processing ability, but in its ability to
manipulate symbols.

As an example of how LISP handles symbols, we will
build some routines to maintain a list of telephone numbers.
Our general scheme is to keep pairs of names and telephone
numbers. To start, we need to learn more about the basic
elements of L1SP.

We create lists by surrounding them with parentheses.
For example, we can create some lists using the letters of the
alphabet:

>(A B)
(A B)

>(C D)

(C D)

>((A B) (C D))
((A B) (C D))
>(A B C D)
(ABCD)

There are two basic elements to LISP s-expressions:
lists and atoms. A list is specified with a left or open paren-
Qesis and an atom can be an identifier, a number, or a

ring. Our first example is a list—specified with a left paren-
theses (—of the two atoms A and B. The second example is
another list with the two atoms C and D.

The quote mark shows up again. We use it to stop
LISP from trying to evaluate the letter A. When LISP reads
an s-expression it always tries to evaluate the expression. If
LISP reads a list, that is, (A B), LISP will assume that if the
first item in the list is an atom it should be executed as a
function.. We use the quote mark (which is really a function)
to stop LISP from trying to use the atom A as a function.

It is important that the last two examples be under-
stood. The first example shows two lists: the first is (A B),
and the second is (C D). The last example is one list, (A B C
D). For our phone list, we want a list of lists ((A B) (C D)).

You should be able to start your phone list now. We
will choose the name PHONELIST to hold the list of names
and phone numbers.

>(SETQ PHONELIST ((GREEN 5335500)
(GREER 7347589)
(OVERTON 6883993)))
((GREEN 5335500) (GREER 7347589) (OVERTON
6883993))

We have not specified the dash within the phone number.
Because the dash represents the negative sign, it is difficult to
use within LISP without special programming. For our
examples, we will treat phone numbers as one large number
(that is, a numeric atom to LISP).

We have introduced a new LISP function SETQ. This
function is identical to SET, but the first argument to SETQ
is not evaluated. This means that we do not have to specify a
quote mark before the name that receives the new value. For

example, we will set the atom A to the value 20 using both
SET and SETQ:

>(SET "A 20)
20

>(SETQ A 20)
20

In the second case, we did not need the quote mark before A.
From now on, we will use SETQ instead of SET.

Our phone list is small. To find the phone number of a
specific person, we just print the entire list and look up the
person’s name by scanning the list. It would be more efficient
if we had a function that would return the phone number for
a specific name.

The list that we have built (a list of pairs) is an associa-
tion list. LISP has a function ASSOC to search an associa-
tion list.

>(ASSOC ‘A ((A B) (C D))
(A B)

>(SETQ LISTI (A B) (C D))
((AB)(C D))

>(ASSOC ‘A LIST1)

JOURNA]

(A B)

>(ASSOC 'GREER PHONELIST)
(GREER 7347589)

>(ASSOC ‘'OVERTON PHONELIST)
(OVERTON 6883993)

>(ASSOC 'SMITH PHONELIST)
NIL

The final example shows what happens if a name does
not exist on the phone list. While NIL means something to
LISP users, it is not friendly to general users. The name
ASSOC will be difficult for users to remember when they
want to look up a phone number. Therefore, we will write a
user-friendly routine to find telephone numbers.

Before starting, we need a method for returning an
error message. In LISP, we enclose strings of words within
double quote marks (”). For example,

>“This is a string”
“This is a string™
>“No such person”
“No such person”

LISP treats a string as an atom. The words within the string
are not examined by LISP. A string can be returned as the
value of a function by specifying the string. Unfortunately,
LISP prints the string with the quote marks.

Now we can write our find telephone number routine.

>(DE GETPHONE (NAME)
(COND ((NULL (ASSOC NAME
PHONELIST))
“No such person”)
(T (ASSOC NAME
PHONELIST))))
GETPHONE
>(GETPHONE '‘GREEN)
(GREEN 5335500)
>(GETPHONE "'OVERTON)
(OVERTON 6883993)
>(GETPHONE 'SMITH)
“No such person™

How does this function work? We call GETPHONE with the
name that we are interested in. We check if the associated
name on the phonelist exists. If it does not, we return a
message. Otherwise, we return the information associated
with the name.

Over time, we will want to add new phone numbers to
our list. We need a method of adding a new phone number
to the phone list without typing our entire phone list over
again. LISP has the function CONS to add new items to a
list:

>(CONS (E F) ((A B) (C D))
((E F) (A B)(CD))

10

>(SETQ LISTI “((A B) (C D))
((A B) (C D))

>(CONS "(E F) LIST1)

((E F) (A B) (C D))

>LISTI

((A B) (C D))

Are you still confused about the quote mark? Don't
worry, understanding the use of QUOTE is difficult. When
LISP sees (CONS “(E F) ((A B) (C D))), it starts evaluating
the s-expression that starts with (CONS. It checks that value
of CONS and finds that it is a function with two arguments.
The CONS function wants both of its arguments evaluated.

LISP then evaluates '(E F). The result if (E F), which is
passed as the value of the first parameter of CONS. The
second parameter is evaluated and, because of the quote
mark ((A B) (C D)), is passed as the value of the second
parameter of CONS.

If we had left the quote marks off, LISP would have
evaluated the first argument to CONS as (E F). This would
mean that E was a function that expected one parameter. If
E were really a function, LISP would evaluate F and pass its
value as a parameter to the function E.

In our case E is not a function, it is an atom. If LIS

had tried to evaluate the expression (E F), an error wo#
have been produced. In the expression (CONS (E F) LISTI). '
we did not want to put a quote mark before LIST1. Why
not? If we had entered:

>(CONS “(E F) 'LIST1)
((E F) LISTI)

would have been the result. What we wanted to do was to
CONS together (E F) and the value of LISTI. By not having
a quote mark before LISTI, LISP evaluates LISTI and
passes the value of LIST| as the second parameter to CONS.

Note that CONS is nondestructive. Remember, LISP
works like a calculator; It always evaluates an s-expression
and prints the results. Using cons does not change the value
of LIST!. To replace LIST1 with LISTI plus (E F), we must
do the following:

>(SETQ LISTI (CONS '(E F) LIST1))
(EF) (A B)(CD))

>LISTI

((EF) (A B) (C D))

For our purposes, it doesn’t matter if we add new phone
numbers to the beginning of our phone list or to the end. We
will create a function that adds the phone number to the
beginning of the list (later we will show why we made this
choice).

>(DE ADDPHONE (NEWPHONE)

(SETQ PHONELIST (CONS
NEWPHONE PHONELIST)))

JOURNAL,

ADDPHONE

>(ADDPHONE (SMITH 8884567))

((SMITH 8884567) (GREEN 5335500) (GREER
7347589) (OVERTON 6883993))

There is a problem with this routine. Every time that we add
a new phone number, the entire phone list is printed. It
would be better if ADDPHONE returned only the name and
phone number of the new person.

To do this we must introduce a new LISP function. The
function CAR returns the first element of a list. The strange
word CAR comes from the early history of LISP, and its
meaning must be memorized. Some examples of using CAR:

>(CAR (A B))

A

>(CAR ((A B) (C D))

(A B)

>(CAR "((SMITH 8884567) (GREEN 5335500)
(GREER 7347589)))

(SMITH 8884567)

Using CAR, we can modify the ADDPHONE function
to return the new name and phone number only:

>(DE ADDPHONE (NEWPHONE)
. (CAR (SETQ PHONELIST
(CONS NEW-

PHONE PHONELIST))))

ADDPHONE

>(ADDPHONE (SMITH 8884567))

(SMITH 8884567)

>(ADDPHONE (JONES 4572311))

(JONES 4572311)

We now have the ability to check our phone list for the
phone numbers of specific individuals. We can also add new
phone numbers. To obtain a complete list of phone numbers,
we enter the name of our phone list.

There are problems with this. One is “information hid-
ing.” By building a nice user interface to our phone number
list, the user should never need to know the name of our
phone list. Another probleni is that the user has become used
to entering questions within parentheses and typing the name
of the phone list is different from all of our other functions.
We may want to change the format of the listing for the
phone list. Defining a function will permit us to change the
format later withour affecting the user.

Here is a function to print out the list of telephone
numbers:

>(DE PRINTPHONE () 'PHONELIST)

‘ PRINTPHONE

>(PRINTPHONE)

((GREEN 5335500) (GREER 7347589) (OVERTON
6883993))

11

There are two special points to note about this function.
There are no parameters to PRINTPHONE. The parameter
list must be specified, but we do not put any names in the list
(that is, it is empty).

The second point is that the body of the function is not
a list! We used 'PHONELIST to stop LISP from evaluating
PHONELIST when it was defining the PRINTPHONE
function. When we enter (PRINTPHONE), LISP evaluates
PHONELIST, which just returns its value.

We would like to be able to delete phone numbers.
This requires more functions from our LISP bag of tricks.
Our new function is CDR, the opposite of CAR. While CAR
returns the first element of a list, CDR returns the rest of the
list.

>(CDR (A B))

(B)

>(CDR ((A B) (C D)))

(C D))

>(CDR ((GREEN 5335500) (GREER 5347589) (OVER-
TON 6883993)))

((GREER 5347589) (OVERTON 6883993))

A picture may help you understand what we plan to do
with our internal phone list. Assuming that we have two
names on our list, it would look like this:

phonelist

— nil

“GREEN” 5335500 “GREER” [—=| 7347589

In fact. this diagram is abbreviated. The lists that start with
GREEN and GREER both end in nil. Actually, all lists in
LISP end in nil.

This diagram should help show how CAR and CDR
works. If we do:

>(CAR PHONELIST)
(GREEN 5335500)

we obtain the /ist with GREEN and his phone number. If we
do:

>(CAR (CAR PHONELIST))
GREEN

we obtain GREEN because we went down two levels in the
internal LISP structure. To delete a person from our phone

JOURNA]

list, we must do two things: We must find the person’s name
on our list, and we must generate a new list with everything
before the person and after the person on our phone list.

We will need a LISP function to test if one item is
equal to another. The name of this function is EQUAL.

>(EQUAL 'GREEN "GREEN)

T

>(EQUAL 'GREEN 'GREER)

NIL

>(EQUAL ‘GREEN (CAR (CAR PHONELIST)))
T

>(SETQ NAME '‘GREEN)

GREEN

>(EQUAL NAME (CAR (CAR PHONELIST)))
T

It is tiresome to always type (CAR (CAR PHONE-
LIST)). Because this is a verv common operation in LISP
programs, there is a function to do this for us, CAAR:

>(CAAR PHONELIST)

GREEN

>(EQUAL 'GREEN (CAAR PHONELIST))
T

How should our DELPHONE function work? It should
be given the name of the person to delete and a list to search
and delete from. We check the first item on the list to see if it
matches the name. If it does, we return the rest of the list (the
CDR). Otherwise, we take the beginning of the list (the CAR)
and add it together with the rest of the phone list (the CDR)
that does not contain the name (using our old friend CONS).

The statement of how this function works is recursive.
We will keep calling our DELPHONE routine with “the rest
of the list,” until we reach the end of the list or we have
found the name that we want to delete. The resulting LISP
code looks like:

12

>(DE DELPHONE (NAME PLIST)
(COND ((NULL PLIST) NIL)
((EQUAL NAME
(CAAR PLIST)) (CDR PLIST))
(T(CONS(CAR PLIST)
(DELPHONE
NAME (CDR PLIST))))))
DELPHONE

This is the most complicated function that we have deve-
loped. Work through each line of code and check that you
understand what is going on. Use the diagram on page 10
and the following LISP function calls to test your knowledge
of the DELPHONE function:

>(DELPHONE "GREEN PHONELIST)
({(GREER 7347589))
>(DELPHONE 'GREER PHONELIST)
((GREEN 5335500))

This function i1s nondestructive because we use CONS. A
new phone list is created when we call DELPHONE. We
need an intermediate function that sets the value of the
phonelist for us and that is more user friendly.

This routine will be called DELPHONE; the one that
we just developed is DELPHONEI. We will use code frorg
GETPHONE to check that the name we want to delet
already exists on our phone list.

>(DE DELPHONE (NAME)
(COND ((NULL (ASSOC
NAME PHONELIST))
“No such person™)
(T(SETQ PHONELIST
(DELPHONE1 NAME PHONELIST)))))

With these functions you can add, retrieve, list, and
delete telephone numbers for individuals. More importantly,
you should be able to develop your own LISP functions.

JOURNA,

Preparing the HP 3000 data center
for an audit*

Betsy Leight

Operations Control Systems
Palo Alto, California

INTRODUCTION

The word auditor has unfortunate connotations. The data-
processing professional facing an internal audit is often
reminded of an Internal Revenue Service agent meticulously
scrutinizing tax forms in a desperate search for illegal deduc-
tions.

In fact, the DP auditor is more correctly defined as an
efficiency expert. By analyzing the various aspects of the DP
department from an objective viewpoint, the auditor can
make recommendations that will benefit both DP operations
and the company as a whole.

The responsibilities of the DP auditor can range from
questioning the integrity of an immensely complicated soft-
are system to advising DP personnel to take their coffee
cups off the line printer. The auditor’s concerns will vary
with his or her expertise. While ideal DP auditors are as
comfortable with the internal workings of an HP 3000 as
they are with basic accounting principles, ideal auditors are
scarce. But whatever the extent of his or her technical
knowledge, the most important qualifications for effective
DP auditing are nothing more complex than common sense,
a systematic approach, and some basis for comparison with
similar data-processing environments. As long as the auditor
isn’t afraid to ask questions, all the pertinent information
will be available somewhere.

Various articles on the auditing function have divided
the DP auditor’s concerns into lists ranging from 7 to 65
relevant items. There are actually only two: efficiency and
security. These two categories do split into quite a few sub-
sections, and the purpose of this paper is to provide a list of
the concerns most often overlooked by the typical HP 3000
shop. In addition, we will focus specifically on data center
operations rather than on other areas, such as systems and
programming.

STANDARDS AND PROCEDURES

The DP auditor can be particularly helpful in ensuring the
xistence and enforcement of proper standards and proce-
ures. If everyone does things the same way, it’s even money

they’re doing them right.

Standards and procedures in the data processing center

13

should include getting the right program in operation at the
right time; inserting changes into programs at the right time:
getting the correct data to the right program at the right
time; protecting the data and program from accidental or
intentional destruction; and determining that the data pro-
cessed is complete and accurate.

Other standards should specify methods of physically
moving inputs and outputs; procedures for controlling data,
programs, and the flow of work; methods of scheduling
work; methods of getting work rerun in the event of error or
disaster; record-keeping of work accomplished and resources
available to do the work; determining that there are sufficient
resources available to do the work; and maintenance and
other housekeeping associated with the operation of the
computer center.

Furthermore, the DP auditor should verify that formal
standards exist for system development and maintenance,
program/system testing, file conversion, program/system
change control, library operations, computer operations, and
documentation.

OPERATIONAL WORKFLOW AND CONTROLS

There are quite a few items for the DP auditor to investigate
in this area. Firstly, is input data from other departments
complete and entered on time? Does the data center keep
job-accounting information, and is it evaluated and used by
management?

The control of errors is scanned: Is anyone notified in
case of a production processing error? Are errors docu-
mented? Are error statistics accumulated or ignored? Finally,
the auditor checks that errors are followed up on so that they
do not reoccur.

The auditor also checks that downtime is reported and
statistics maintained on it. There should be a log of late
reports and/or jobs.

Communication between departments is studied. The
auditor monitors whether there is a formal communications
channel between operations and other departments. He or
she also looks into whether operation tips and gotchas get
passed around to all operators through a formal channel.

*Adapted from a recent presentation

JOURNA]

Similarly, the auditor checks that problems encoun-
tered at the computer are documented, along with the effec-
tive action taken to prevent recurrence, if any. Operators
must get feedback as well on reported problems. The auditor
further checks that headers and $STDLIST information gets
used and checked.

Distribution and disposal is scrutinized: How is it
known whether all reports and/or microfiche have been dis-
tributed to the proper user? Have procedures been estab-
lished to control the distribution of sensitive output? Do
procedures include the method of disposing of confidential
reports when they are no longer required?

Finally, the auditor reviews whether jobstream-run
instructions are kept up-to-date.

SCHEDULING

Efficient production scheduling is extremely important in
providing a high level of reliability and predictability to the
data-processing operation. Ensuring efficient scheduling is
an important function of the technical auditor.

Among the points the auditor will raise are whether daily
processing activities are scheduled and if there is a daily con-
tingency schedule. For batch production, are actual run times
recorded? Is this data used to calculate expected run times for a
given day? Are expected run times compared against actual run
times to ensure that runs have not been terminated abnormally?
The auditor further notes whether a firm nightly/batch schedule
has been established and adhered to.

The auditor investigates whether unscheduled runs are
supported by a work request or some other written authori-
zation. Documentation of schedule deviations and follow-up
by a supervisor are also checked.

With regard to the online environment, the auditor
notes whether user-submitted jobs are recorded to allow
forecasting of future schedules, resource requirements, and
special processing considerations.

All jobs should be submitted through or controlled by
operations. Another review item is whether all output is
routed by operations to the appropriate destination or picked
up by the users.

Lastly, the DP auditor checks that there are standards
for the type, quality, and quantity of forms kept on hand.

DATA SECURITY AND ACCESS CONTROL

It may come as a surprise, but many successful businesses
have information in their databases that should be protected
from loss and kept from the competition. With this end in
mind, the DP auditor investigates several concerns.

Firstly, are data-processing employees instructed as to
their responsibilities concerning confidential information?

14

Management must further periodically review and update
controls and security provisions relating to data. Live pro-
duction programs should be physically separated from devel-
opment programs, and all staff should be prohibited from
running test programs against live files. Operations personnel
should also be denied access to sensitive data files.

Are procedures in effect covering the acceptance and
transference of programs from development into production?
Are program library changes approved and accounted for?
The auditor also checks that the acceptance testing of
changed programs is approved by operations before trans-
ference to production libraries, and that the approval includes
assurance that production documentation is updated.

Operators should be prohibited from renaming or
transferring programs without prior supervisory approval.
Internal labels must be used for all data and program files.

In addition, accounts, users, and data files should be
protected by passwords and lockwords. Auditors expect pro-
cedures that will maintain passwords and ensure that they
are changed on a periodic basis. Access violations must be
logged and reported to the security manager. An automatic
logoff feature assures that unattended terminals no longer
present security threats. Passwords, lockwords, dates. and
constants should be inserted into jobstreams as they ¢
launched, eliminating the need to “hardcode” sensitive d:’
into jobstreams.

The auditor looks into the area above the suspended
ceiling in the computer room—is it accessible only from that
room?

Finally, the auditor investigates blank checks and other
negotiables: Are they issued on run-schedule basis only? Are
they kept in a secure area when unattended? Are they con-
trolled by access forms and periodically inventoried?

EQUIPMENT UTILIZATION AND EFFICIENCY

One unit of measurement for DP efficiency is the U.S. dollar.
Auditing is, after all, a business function, and one measure
of business success is money earned. So when we say effi-
ciency, we mean cost-efficiency.

Once it has been determined that the entire data-process-
ing department is following an impeccably implemented set of
standards and procedures, the auditor’s attention turns to cffi-
cient equipment utilization. This can be a particularly tricky
area, especially if the auditor is an MBA graduate with no
previous computer experience. The key here is for the auditor
to ask questions openly about procedures and daily phenomena.

How much machine time is spent on reruns, for exam-
ple. Are reruns analyzed? Are certain jobs especially susce
ible to reruns? The auditor should also check whether thgg
are programs or jobs that are inefficient in the area of file
design or utilization. Another item to check is if the full

JOURNA],

multiprogramming capability of the HP 3000 is being utilized
for batch production. Are multiple job streams run concur-
rently? Are CPU-bound and 1/ O-bound jobs mixed to max-
imize overall throughput? The auditor then reviews whether
many jobs are restartable without rerunning the entire job.

PERSONNEL UTILIZATION AND EFFICIENCY

This is a sensitive subject. The auditor is not likely to make
many friends if he or she wanders around the DP department
with a clipboard in hand and jots notes while the operators
discuss football scores. Here are some delicately phrased
personnel questions that the auditor may use to guide his or
her investigation.

Do operations personnel require extensive training and
experience in order to be effective in processing daily pro-
duction work? Do operators require extensive knowledge of
each application they run?

Is there a system to schedule and monitor normal daily
processing? Is the system effective? Does it operate without
excessive manual involvement? Or do operators spend a large
percentage of their time tracking jobs in execution, replying
to program messages, changing the fences, and so on? Are
‘ﬁperators required to modify jobstreams at run time?

Are all necessary tapes, forms, and other resources
available when needed?

Is there excessive turnover? s daily production depen-
dent on any specific individual(s)?

Is the operations department treated as a stepchild of
the data-processing department? (After all, the HP 3000
doesn’t require an operator!)

DISASTER PLANNING AND RECOVERY

This is a catch-all category that includes everything from
proper insurance planning to keeping terrorists out of the
computer room. The first item to investigate is the existence
of an emergency plan that is adequate in relation to the risk.
This plan should be kept current and distributed on a “need-
to-know"” basis only.

The plan shouid include action for offsite storage of

15

files and documentation. It should specify

® the conditions for use of offsite processing
® application priority

® resource requirements

® job scheduling

® run documentation

® and required tapes, forms, and supplies.

Finally, formal written procedures for hardware backup
should be instituted.

ENVIRONMENT

Now here is something for the nontechnical auditor to sink
teeth into. It doesn’t take a great deal of scientific expertise
to mention that people shouldn’t have to climb over the disc
drives to get to the water cooler.

A basic concern is that the workspace is adequate. In
addition, it should be neat, and supplies should be quick to
locate when needed.

Tape drives should be cleaned and reels certified regu-
larly.

Auxiliary items located outside the computer room,
such as bursters and decollators, should be accessible for the
flow of work of the department. Tapes, discs, and the like
should be stored in a closed, fire-protected, and limited-ac-
cess area.

ASSISTING THE AUDITOR

The best way to assist a DP auditor, assuming you are so
inclined, is to provide as much information as possible. This
can be done by reviewing the previous pages and answering
any questions or gaps in advance.

A more efficient method of providing the auditor with
information is to implement a software system that leaves
clearly defined audit trails and that issues a wide variety of
reports. This saves valuable time from being wasted ferreting
out information.

In fact, perhaps the first suggestion of each data-pro-
cessing audit report should be the installation of a better
system to gather the proper data and make the job easier the
next time.

Journal
Interex
2570 El Camino Real West, Fourth Floor

Mountain View, California 94040
U.S.A.

BULK RATE
U.S. POSTAGE
PAID
PERMIT NO. 382
MOUNTAIN VIEW, CA
and Other Locations

