HP General Systems
Users Group

m Jo rna

| ‘ WINTER 1980

Executive Office SPOTLIGHT ARTICLES

? HP General Systems Users Group : Lyon Proceedings
: Empire Towers Interactive Project Analysis..............c..coeveeeeennnn. 3
7300 Ritchie Hwy. and Control System
Glen Burnie, MD 21061 Jerry Smithers
USA
Design and Implementationc.cc........ 4
Rella M. Hines, Executive Director of REX/3000
Lance Carnes
HP General Systems Users Group Dollar-Flow: HP3000 Financial 9
Executive Board Planning
Gary Green, Chairman Jack Damm
st s (nformation Management Systems, Inc. - FEATURE ARTICLE -....voeeeeeeeeeeeeeeeeoo. 14
_ ' FORTRAN/3000 and FORTRAN 77:
John Eaton, Vice-Chairman ‘ A Comparison
London Graduate School of Business James P. Schwar and Charles L. Best
London, England
on, =ngian LIBRARYCORNERcoooeiiiiiiniiieiieieniinnnn, 16
Bill Bryden Software Exchange
Inland Systems Engineering at San Jose
edlands, CA Wayne Holt
Gil Drynan TIPS&TECHNIQUESccoocneneieeieivniieeenennnne, 17
Boeing Aerospace Hints on IOSTAT2
Woodinville, WA . Robert M. Green
Sharad Heda RETURN CARD ...t veeeeeneans 23
VYDEC, Inc. Bug/Enhancement Poll
Florham Park, NJ Ross Scroggs

Jan Stambaugh

Multnomah County Educational
Service District

Portland, OR

C. R. Van Ausdall
Commercial Office Products
Denver, CO

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

THE JOURNAL NEEDS YOU!

The JOURNAL of the HP General Systems Users Group
depends on contributed articles to fulfill its purpose of
disseminating information to members of the organiza-
tion. Current articles are uniformly of high quality and
provide excellent information for the membership. How-
ever, the Executive Board and the Publications Committee
would like to expand these offerings.

This request is addressed to those readers with ideas to
be shared. The Publications Committee encourages all
readers to contribute the results of their work. The
JOURNAL offers an excellent vehicle for publication of
current work for the established computer person as well
as for the beginning user. Articles of all types are needed.
As installations increase the need to know, to share
ideas, and to establish written communications among
members of the Users Group increases at an even faster
rate.

Remember, the areas where probiems and failures have a
high probability of occurring are of interest to a large
number of other HP users. Share information on your
successes and indicate the future direction of your work
by writing articles for the JOURNAL,

The information in this publication may not be photocopied or
reproduced without the prior written consent of the HP General
Systems Users Group. Copyright ©1979 by the HP General Systems
Users Group. The JOURNAL is published four times yearly.

The 1980 JOURNAL Publication Schedule, as given

below, includes the deadlines for receipt in the
Executive Office of articles submitted for"
publication in each issue. Also given, is the issue in

which the article will be published and the month in
which HPGSUG members will receive each issue.

Please note that additional time has been allowed
for any delays caused during peak mail periods. If

you do not receive your JOURNAL during the time
allowed, please notify the Executive Office at (301)

768-4187.

1980 HPGSUG JOURNAL PUBLICATION SCHEDULE

Articles Members
November 16 Winter January 1980
February 11 Spring April 1980

April 18 Summer June 1980

July 18 Fall September 1980
October 17 Winter January 1981

Contributions: HPGSUG Executive Offices

ATTN: Carol W. Taylor

Publications Manager

This publication is for the express purpose of dissemination of
information to members of the HP General Systems Users Groupg
The information contained herein is the free expression of members;
The HP General Systems Users Group and Editorial Staff are not
responsible for the accuracy of technical material. Contributions from
Hewlett-Packard Co. personnel are welcome and are not considered to
be construed as official policy or position of Hewlett-Packard
Company.

L

SPOTLIGHT ARTICLE

‘Intorcctivo Project Analysis and

Control System
Jeremy Smithers
London Business School
London, England

BACKGROUND

Network Analysis is one of the oldest computer
applications particularly in the management science
field. Over the past twenty five years a large number
of packages have been developed for large
mainframe computers. These packages were
extensively modified to include new facilities as the
technique grew more sophisticated. As a result of
this project engineers either had to make a
considerable investment in understanding how to
use these systems or be assisted by a specially
trained operator. These systems were also designed
for batch processing and although interactive front-
ends were added, they were mainly simple file
edltors.

With the advent of large scale time-sharing systems
new packages were developed with specific
interactive capabllities. However, it has proved
difficult to control the cost of project management
using these systems. However, the same benefits
may be achieved by using a suitable package on an
in-house mini-computer with the advantage of being
able to control the cost.

The major requirements for such a package is that it
should be easily usable directly by the project
engineers, at the same time providing enough
facilities to realistically simulate the project
environment.

INTRODUCTION

Interactive Project Analysis and Control System is
an on-line package for planning and control of a
project written in FORTRAN and designed to operate
in a mini-computer time-shared environment.

It is derived from a package called ACSPERT which
was deveioped in 1971 to provide interactive
PERT/CPA facilities via a time-sharing bureau. This
package has been in operation since 1972 and has
been extensively upgraded to meet the requirements

.of a number of large users. Consequently IPACS

derives the benefit of considerable experience of
interactive network analysis.

ACSPERT main features are ease of use and

«+»gffichency of operation. These features have been

retained in IPACS but considerable enhancements
have been made to the project control area. IPACS
provides sufficiently detailed facilities to allow it to
control individual resources to the nearest manhour.

IPACS has been developed in a modular open-ended
format. This means that new facilities and extra
options in existing facilities may be added with the
minimum disruption. The file layouts have been

designed to record most detailed information but the

program is written so that extra information may be
easily stored.

There are no absolute limits on the size of network
that may be analyzed, this being dependant on the
amount of memory available. On a 64K byte mini-
computer with a time-shared operating system it is
designed to handle networks between 3000 - 4000
activities.

FEATURES

* Free format input with default values for all items
* Activities with multiple (complex) resources
* Imposed milestones
* Holidays
* Responsibility codes and costs
* Resource man-hours/week and costs
* Interactive analysis of dates
* Sub-networks
* Hammock activities for overheads
* The Report generator has control facilities
- to select, group and sort activities
- to specified special headings and non-standard
time periods '
* The Report generator produces the following
planning reports:
- Time Analysis
- Bar Chart .
- Resource Analysis (tabular/histogram)
- Cost Analysis
- Event/Milestone Report

CONTROL FEATURES

* Both the original plan (budget) and the actual
implementation may be stored;

* The Field Progress report shows the actual and
expected progress over the reporting period;

* Only exceptions from the forecast progress need
be input via the progress commands to up-date
the project;

* The management cost report shows actual
against budget progress over the reporting period

* Resource and cost reports show actual and
projected actual against budget.

SYSTEM OVERVIEW

IPACS provides a system for maintaining a database
on a project. The database is contained in two

separate files. Firstly the Project Network Details
(PND) which contains an entry for each activity.
Secondly the Project Reference details which record
all other information (e.g. titles, milestones, holidays,
resources, responsibility codes, costings, etc.).

A new project is initially set up by using the NEW
command. This will ask for some reference.details
and a specification of each activity. After a new
project is established HOLIDAYS and MILESTONES
may be ~entered and RESOURCE- and
RESPONSIBILITY CODE profiles defined. These
commands also provide facilities for editing -and
listing all these detaiis.

The network data may be subsequently EDITED
where there are a set of facilities -for
adding/overwriting activities, modifying individual
fields and listing selected activities based on-criteria
about individual fields. Activities may also be
entered as SUB-NETWORKS from a library. This
means that standard tasks need not be redeflned
each time they occur.

A project may be ANALYZED to establish the
earliest and latest dates for each activity taking into
consideration imposed milestones and holidays. All
activities are considered to start at this earliest date
unless they are SLIPPED back.

Once a time schedule has been established for a
project then a series of reports may be produced.
These show the time schedule of the project in clear
tabular form (TIME ANALYSIS) or in graphical form
(BAR CHART). The resource requirements
(RESANAL) and costs (COSTANAL) can be shown in
tabular or histogram form. An EVENT (or Milestone)
report shows key dates. Each report may be
controlled as to which activities should be analyzed,
the sequence and grouping of the activities, the
dates covered, and special formatting requirements.

The initial analysis of the project is the planning and
evaluation stage. Once a plan for the project has
been finalized then the updating mode is changed to
ACTUAL. This preserves the initial plan as a budget
against which to measure the actual progress of the
project.

Updating and monitoring the project is done on a
reporting cycle. Firstly a Field Progress Report is
produced showing for all current activities the actual
and forecast progress up to the reporting date. This
report is used on an exception basis;, only
differences from the forecast need be recorded by
the field supervisors. These differences are entered
via the PROGRESS command which automatically
progresses all other activities in line with the
forecast. At the same time as the project is
progressed, a Management Cost Report is produced
showing the actual progress compared with the
budget. At this time the next FPR can be produced
which starts the next loop of the reporting cycle.

Design and Implementation

of REX/3000

A Natural Language Report Writer
Lance Carnes Q
Gentry, Inc. ‘
Kensington, CA

This paper presents a natural language report writer,
REX/3000 (Report Expediter), designed for the casual
user as well as the experienced programmer. The
language design and compiler implementation is
discussed from the point of view of meeting the
needs of the two user classes. For the casual user,
the language is natural and English-like. For the
programmer, the language is a mixture of natural and
procedural constructs. The PASCAL-based compiler
has been implemented to serve each user class
appropriately.

INTRODUCTION

REX was developed to facilitate writing reports from
IMAGE databases and MPE files. The user will range
from the casual (infrequent) non-programmer
attempting to formulate reports to the experienced
programmer with more complex goals.

The time allotted for the design and implementation
was eight man-months. The project consisted of th
following:

1) Design the syntax of REX, i.e. the form of the
language.

2) Design the semantics of REX, i.e. the function of
the compiled programs, to properly execute for
both the casual user and the programmer.

3) Write acompiler for REX.

This seemingly tight schedule was supported by
several resources:

1) The author of a report writer similar to the
required package (though unfortunately written
in IBM 360 assembler language [1]) was available
for consultation;

2) A PASCAL compiler had been transported to the
HP by a user, and graciously contributed to the
user’s library [2];

3) A copy of the production PASCAL-P compiler
source (written in PASCAL) had also beengf
contributed to the users library.

This paper will treat these topics, discussing the
design considerations, and the solutions

“implemented.

(REX/3000 continued)
SYNTAX

The careful design of the syntax of a language is
important. From the compiler writer's point of view,
the syntax should be simple and have as few rules
and exceptions as possible. From the language
user’'s point of view, especially the casual user, the
syntax should be natural and English-like as well as
consistent and unambiguous.

The syntax of a language is the way the elements of
the language are put together to form statements.
For example, in English many statements have the
syntax

subject verb object.
In computer languages the syntax of assignment
statements are commonly:

variable = number
or variable = number + number
or, in the general case,

variable = expression

The syntax of REX lies somewhere between a typical
programming language and a natural language. The
total logical precision of a programming language is
not wanted, since the casual user is not trained in
the use of these languages. Nor do we want the full
complicated syntax of English, since the language
must be translated by a computer program (the
compiler).

The syntax of REX is modeled after the syntax of
many of the currently used ‘“natural language’ report
writers: SYNTAX |l [1], QUERY [3], NATURAL [4], R11
[5], and RAMIS Il [6]. The intent of all the natural
language report writers is to avoid the “procedural”
or programming details of programming languages
and to allow the user to formulate English-like
specifications which can be interpreted by a
compiler.

Consider Example 1, a REX program which reads and
prints selected values from a database called
PAYROLL.

<< LIST EMPLOYEES IN SALES DEPARTMENT FROM MARIN COUNTY >>
database PAYROLL rassword °READER' access &
dataset EMPLOYEES
print "SALES PERSONNEL RESIDING IN MARIN COUNTY®
set EMPLOYEES with DEP) = *SALES®
select ZIF isbetuween 9410094199
rrint EMFL-NAMEy EMPL-ADDRs EMPL-NUM
end.

[RS- S N

Example 1. A comrlete REX Program.
(Words in lowercase are kewwords - in actusl Fractice
urPer and Iower case letters are treated the saame.)

This is a complete REX program and will produce a
listing of the desired values. (Its actual function will
be discussed in the next section, “Semantics”. See
Appendix B for sample programs with printed
output.)

The point here is that REX has an English-like syntax

... Which serves the casual user. Notice that there are

no procedural steps (i.e. there is no explicit opening
or closing of the database, no explicit test for end-of-
chain, etc). In a sense, the syntax closely resembles
the specification of the program.

For the experienced programmer, who must deal
with more complex programming requests, there are
more complete constructs available. However, these
constructs are not always “natural language” in
nature and would not be used commonly by the
casual user. The constructs are available for
completeness and are not in ordinary demand by the
non-programmer.

For example, suppose the user wishes to read an
MPE file containing employee numbers, iook up
each employee number in the PAYROLL database,
and write a new file with employee name, address
and number. '

1 << READ EMFLOYEE #, LOOK UP # IN PAYROLL DATABASE:,

2 << WRITE NeﬂEv ADDRESS» EMPLOYEE #

3 file EMP#FILE = "EMFLNO.PUE.ACCOUNTS® f10 << INPUT FILE >>
4 EMP# 1-4 n7 << 4-BYTE FIELDs 7-DIGIT INTEGER >

S database PAYKOLL rassword *READER" access 8

6 dataset EMFLOYEES

7 file EMP-NAME-FILE = °*EMPLNAMS.PUB® 172 << QUTPUT FILE >>

& E~-NAME 1-20 320 << 20-BYTE ALFMHA FIELL >

b4 E-ADDR 21-50 a0

10 E-NUM 51-54 n? << 7-DIG1T INTEGER >>

11 progvar REC-CTR n8 << 8-DIGIT COUNTEKR, KECOKDS READ >>

12 NOT-FOUND nB << B-DIGIT COUNTER:» LNVALID EMPL #'S >:
13 bedgin << MAIN PROGRAH >

14 REC-CTR = REC-CTR + 1 << COUNT 1NPUT RECORUS >>

15 get first EMFLOYEES with EMPL-NUM = EMP# << LOOK UP >> &
16 at end bedin

17 NOT-FOUND = NOT-FOUNL + 1 << LOOK UF FAILED »>
18 print "EMPL # * EMP# * NOT IN FAYROLL®

1y end

20 E-NAME = EMFL-NAME << MOVE VALUES TO QUTFUT RECORD >>
21 E-ADDR = EMPL-ADOR

22 E-NUM = EMFL-NUM

23 write EMP-NAME-FILE << WRITE OQUTPUT RECORL »>

24 loop << DO NEXT read EMPS#FILE >>

25 << ALL RECORDS FPROCESSED» PRINT TOTALS >>

26 if NOT-FOUND <> O then &

27 print *TOTAL EMPL #°S NOT FOUND = * NOT-FOUND &

28 else print °ALL EMPL #°S FOUND

29 print "TOTAL RECUORDS PROCESSED = * REC-CTR

30 end.

Examrle 2. A comrplex prodram,

This example illustrates many of the constructs
available to the programmer or the adventuresome
casual user. See Appendix A for a summary of the
REX language.

SEMANTICS

The syntax of a language provides a framework of
correctly formatted statements which may then be
converted to meaningful, functioning programs. The
conversion of statements into functional programs
is called the semantics of the programming
language. The semantics for REX are such that the
constructs used by the casual user require a great
deal of implicit function, while the procedural

constructs for the experienced programmer are
explicit.

For example, in English the request :
“Look at your watch and recite the exact hour and
minute.” may also be stated as
“Tell me the time.”

The first form is correct English syntax and there is
no difflculty understanding what is desired,
although this is not the usual way to ask the time.
The second form has the same meaning and can be
understood with slightly more effort; i.e. you must
subconsciously recall that you need to look at your
watch, and reclte the hour and minute. The first form
is procedural and explicit; the second form is natural
and requires a great deal of implicit function.

The semantlcs of REX are designed to cover both
cases - the casual user can express a natural request
while the programmer can code the same function
procedurally. To illustrate, recall Example. 1.
Nowhere was it indicated explicitly that the dataset
was to be read using a chained read on the DEPT
search item, looping back to the “get EMPLOYEES”
statement after each entry had been printed. The
explicit statement of this program is shown in
Example 3.

datsbase PAYROLL
datsset EMPLOYEES
print *SALES PERSOUNNEL RESIDING IN MARIN COUNTY*
find EMPLOYEES with DEPT =: "SALES®" << FIND CHAIN HEALD >3
gat next EMPLOYEES st end stor << NEXT ENTRY ON LHAIN >
salect Z1P isbetsveen 94100594199
print EMPL-NAMEs EMPL-ADDRs EMPL-NUN
loor << END OF get LOOP >>
end.

VENDIU DN -

Exsarle 3. Exrlicit statement of Exsarle 1.

The program in Example 3 will produce the exact
same result as the program in Example 1. Details are
described which were filled in by the compiler in
Example 1. The clause “‘at end stop” indicates that
processing is to cease at the end-of-chain. The
“loop” statement indicates that the processing loop
ends precisely here, so that statements may be
written following the loop which are not executed
until the loop is terminated (see Example 2).

In all aspects of REX, the functions which are most
used by the casual user have a “natural language’ or
non-procedural default. Another example of this
aspect of REX is the report block. The following
program produces a result similar to the program in
Example 1 - except here the output is sorted by
employee name, and a report title and column
headings are provided:

database PAYROLL
dataset EMPLOYEES
rerort "SALES PERSONNEL RESIDING 1N MARIN COUNTY
select ZIP isbetween 94100,94199
list EMPL-NAME, EMPL-ADDR, EMPL-NUM &
sorted by EMPL-NAME
end
set EMPLOYEES with DEPT = °SALES®
end.

LN LWN -

Examrle 4, A sorted rerort.

Here we have specified the contents of a report
(report...end) and the method of obtaining items for
the report (get EMPLOYEES...). What Is left out of the
specificatlon (but included in the implicit function)
is the linkage between the “report” and the “get”,

and the indication of when to sort the data and print =®

the report.

Conslder the explicit version of this same program:

dastsbsse PAYROLL
dataset EMPLOYEES
rerort MARIN-RES °*SALES PERSONNEL RESIDING IN MARIN COUNTY®
select ZIF isbetween 94100,94199
list EMPL-NAMEs» EMFL-ADDRs» EMPL-NUM 8
sorted bw EMPL-NAME
end
gdet EMPLOYEES with DEPT = "SALES®
call MARIN-RES << UPDATE REPORT DATA >>»
10 loor
11 print MARIN-RES << SORT AND PRINY THE REPORT >
12 and.

CONOCLDLN R

Examnrle 5. Exrlicit statesent of Exasrle 4.

Notice that the report block now has an identifier
“MARIN-RES"” which allows it to be “call”’-ed, much
as a procedure block. The statement ‘“‘print MARIN-
RES” explicitly specifies the exact point at which
the report is output.

Thus the semantics of REX are intended to appeal to
both the casual and programmer user. The
programmer is not saddled with a restrictive
language set and may tackle more complicated
programs; the casual user may ignore the procedural
aspect of REX or may, with some assistance ora
experimentation, improve his results by venturing
into the procedural constructs of the language.
Acceptable results may be achieved from either level
of expertise.

THE COMPILER

One of the original goals underlying the
implementation of REX was the Ilow-cost
development of a compiler which could be
transported to other machines. Most of this goal was
achieved. The compiler was developed at low cost
(eight man-months) and is transportable (written in
PASCAL). However, since the object code produced
by the compiler is SPL, the package will run only on
the HP at present.

A compiler is a program which processes source
text in a pre-defined language to produce some
form of object code. The syntax and semantics of
the language to be compiled can greatly affect the
complexity, and therefore the cost, of developing
and maintaining a compiler. When alming at low cost
development, it is important to keep it as simple as
possible without sacrificing the utility of the
language. ¥

REX is not an easy language to compile. However,
the task was reduced because a production compiler
was used as a model (the PASCAL-P compiler

written in PASCAL). Also, some language design
decisions eased the translation effort without
reducing the capability of the language.

As an example, the element (expression) was used
everywhere that it made sense. This allows any
production in the language which uses {expression)
to share a common compiling procedure. Of course, if
the statement needs an expression of a certain type,
say logical in the case of “if <(expression)”, the
compiler will flag any expression of any other type as
an error.

In contrast, the language SYNTAX Il [1] has several
expression types which are compiled distinctly,
depending on the expected type. In the case of the
assignment statement SYNTAX Il has several
different syntactic forms depending on the
destination data type.

A EQ B
SETA=B+1orA=B+1
RECODE A TO R

T TEST A < R

AyE CHARACTER 1 YFE

AsE NUMERIC TYPE

ArE ANY SAME TYFE
T LUGICAL TYPE

B GRS=

Fidure 1. Samrle assidnment statements from SYNTAX II.

The result is that there are several additional
compiling procedures that must be developed and
maintained.

Using a construct wherever it makes sense is
desirable from the compiler writer's point of view
and also from the user’s point of view [7] [8]. When
the user must formulate his idea differently for each
data type used, the language designer has burdened
the user with additional effort. For example, in the
SYNTAX Il “SET"” statement it is legal to write

SET A = B % 100
while in the “TEST” statement it is not legal to write

T TEST A < (B ¥ 100)

even though A and (B * 100) are of the same type. The
user must remember which operators can be used in
which contexts.

This requires an additional level of expertise that we
wish to avoid. However, if there is only one set of
rules for the formation of expressions, the user need
not recall a lot of exceptions to the rules.

The REX compiler was implemented in PASCAL, a
high-level recursive language [9]. The production
PASCAL-P compiler source code [10] was used as
the basis and as a model for writing the REX
compiler. SPL was chosen for the compiler's object
code primarily because it is the language closest to
the machine level. SPL compiles to produce the
most resource-efficient run-time programs. It runs
with the least memory usage and fastest execution
time compared to other compiled object code
(FORTRAN or COBOL). Output in relocatable code
was not chosen since there is no documentation

currently available from HP on its format.

The appearance of the compiler from the user’s
standpoint is much like any other HP compiler.
There are UDC’s for invoking the compiler which
resemble the commands for invoking the SPL,
COBOL or FORTRAN compilers. Error messages are
clear and point to the place in the text where the
error occurred:

select ZIP isbetwee 94100,94199

**** unknown symbol (GCPERR 72)
Should the user want more information, he can refer
to the user’s manual under “GCPERR 72",

CONCLUSIONS

REX has many powerful features which will allow the
user to generate accurate, timely, and complete
reports with a minimal program development effort.
Results with comparable packages show a decrease
in development time by as much as a factor of ten [6],
compared with developing the same application in
COBOL or FORTRAN.

The casual user can benefit greatly from bypassing
the data processing department and writing his own
ad hoc reports. The programmer can increase his
productivity by reducing the development effort
required to produce routine reports and queries.

At the time this paper was written, REX had been
implemented with all features except the cross-
tabulation, which will be completed by the time this
paper is presented. There had been no casual user
experience with REX, but by the time of presentation
there should be real feedback as to its effectiveness
with this user class.

There is no data at present regarding acceptance
by experienced programmers. Due to its close
resemblance to the “ALGOL-like” languages, it is
expected to be successful with programmers with
this type of experience. Data will be forthcoming as
to its acceptance by programmers experienced in
COBOL, FORTRAN, BASIC and other languages.

Future extensions include full IMAGE access
(DBPUT, DBDELETE, DBUPDATE), and full KSAM
access.

REX will be marketed by:
GENTRY INC.
609 Kearney Street
Kensington, California 94530
U.S.A.

The first release of REX will be available January
1980.

ACKNOWLEDGEMENTS

My thanks to John Fitz, Richard Genfry, and Ron
Frankel for many valuable discussions during the

language definition phase of the project; and my
special thanks to Grace Gentry, who provided me the
opportunity to do this project and who assisted in
the preparation of this paper.

1. John Fitzy SYNTAX II USER’S GUIDE. University of
Californiss 1977.

2. Bob Frsleus PASCALPs HP User’s librerw.

3. GQUERY, Heulett-Psckard Product ¢ 32214A,
4, NATURAL Users Mamialy Softwere AGy 1978.
%, RII» Comruter Sciences Cors,’

&+ RAMIS IIy» Mathematics Core,

7. G, Weinbers» 1lhe Pswcholosy of Cosruyter Prograsminds
Van Nostrand Reinhold» 1971,

8. W.M. HcKesmsny °*Prosrammeing Lsnsusse Desisn® from
[» F.L.Bauersed.»
Seringer-Verlads 19764,

9. K. Jensen snd N. Wirth, PAGCAL User Msnual snd Remori,
Serrinder-Verlad, 1974, -
10. Urs Ammenns PASCAL P4 comriler source codes Zurichr 1976,

APPENDIX

Arrendix A! Susmsrw of REX/3000 Lansuase.
REPORT °TITLE®

L1ST 440
SORTED BY ,..

Sorted rerort. ¢

END

TABLE °TITLE®
ROW ...
COLUMN .

END

Cross-tabulstion.

PROCEDURE name
vee

END

Procedure.

DATABASE basenane
DATASET setname

IMAGE declaration.

FILE filename
fieldl ...
field2 ...

HPE file declaration.

PROGVAR varl ...
var2 e

Usrisble declsration.

Dastasbase sccess.

GET setname C[WITH searchitem = exrressionl
FXND CAT END ctatement)

READ filensme [AT END statementl
WRITE filensme File sccess.
PRINT exrression [» exsressions ...l Unforastted srint.
Sort/Merse.
SORT filename CINTO filenamel
BY kowlr kew2r ...
MERGE filename, filensme (v filenamer ...]
INTO filename
BY kewls kewZy ...

IF expressiori THEN statement
[ELSE statementl]

Control statements.
GOTO label

CALL blockname

REFEAT statement [ststementi ..,.] UNTIL exrression

WHILE exrression [0 statement

FOR ident = exrression TO exrression DO statement

EEGIN [(statementi statementi ...J END Comround ststement.

ident = exrression Assisnment statement.

+ - % / IV MOD Arithmetic orerators.

GT GE LT LE EQ NE ISBETWEEN CONTAINS Relational orerators.

> »= £ <= a <> IR <>)

AND OR NOT Losical omperators.
Data twres.

Nw w <= 10 Inteser

Fu.d d <= u <= 15 Real

L Losical

Aw w <= 256 Alrhe

AFPENDIX B! SAMPLE REX/3000 REFORTS.

The following are seversal rerorts denerated by REX/3000
from MPE files and IMAGE datsbases,

Samrle 1. Sorted rerort using MPE file.

FILE PARTS! F80

FN °PART NO* 1-4

PU *PART DESC*® 5-14

FL °*LOCATION® 15-17

QTY "QUANTITY® 18-22 NS
REPORT °"WAREHOUSE PARTS SUMMARY®

LIST PNy SX» PLs 2X» FD» 2X» QTY H
SORTED BY PN» PL &
SUMMARIZING GTY ON PN &
TOTALING °*TOTAL® 4Ty

END

READI! PARTS << READ' FILE RECORD »>>

END.

1785BOLT 1 X 1/4 101 2000 -

2142BRACKET 100 750

J122MANUAL #177 101 100 Contents of the
2142BRACKET 102 250 PARTS file.
2142BRACKET 101 100

1785BOLT 1 X 1/4 100 1000
The REX/3000 PEPOP£3

WAREHOUSE PARTS SUMMARY

PART NO LOCATION PARY DESC QUANTITY
1785 100 BOLT 1 X 1/4 1000.
101 BOLY 1 X 1/4 2000 @
- 1785 3000 4
2142 100 BRACKET 750
101 BRACKETY 100
102 BRACKET 250
2142 1100
3122 101 MANUAL #177 100
3122 100
TOTAL 3200

Sanrle 2. Sorted rerort with IMAGE/3000 database.

The following is an 1MAGE/3000 scheme for a datsbase
to hold the same informstion trom Samrle 1!

BEGIN DATABASE WAREHUUSE S

ITENMSS

PART-NO» X419
PART-DESCs X104
PAKT-LOC» X4
PART-QTY, 124

SETS?

NAME! PARTSs DETAIL)
ENTRY?
PART-NQO»
PART-DESC,
PART-LOC»
PART-GTY}S
CAPACITY?! 1003

END.

The followinsg REX/3000 rerort specification will produce the
sane rerort as in Ssarle 1t

DATABASE WAREHOUSE
DATASET PARTS

REPORT °*WAREHOUSE PARTS SUMMARY*

LIST PART-NOs SX» PART-LOCs 2Xs PART-DESC,» 2X» FART-QTY NS i
SORTED BY PART-NOr PART-LOC i
SUMMARIZING PART-GTY ON PART~NO i
TOTALING *TOTAL® GTY

END
EET PARTS << READ DATASET >>

Sample 3. Cross-tabulation with iHAGE/SOOO database.
This samrle uses the same database as in Saarle 2.

DATABASE WAREHOUSE
DATASET PARTS

TABLE "FARTS DISTRIBUTION®
ROW PART-NO BINS("1785°y"2142"y°3122°)
COLUNMN FART-LOC BINS(100,101,102) ACCUMULATE PART-UTY
TOTAL-PARTS LABEL °TOTAL FARTS® ACCUMULATE FART-QTY
END
GET PARTS << READ FROM DATABASE >>
END,

The followind cross-tabulation will be produced!

PARTS DISTRIBUTION

PART-LOC

PART-NO 100 101 102 TOTAL PARTS
1785 1000 2000] 3000
2142 750 100 250 1100
3122 (4] 100] 100
Dollar-Flow:

HP3000 Financial Planning
Jack Damm

The Palo Alto Group

Sunnyvale, CA

The financial planning on the HP3000 with the
Dollar-Flow planning language is discussed with
particular focus on these three areas: 1) What
financial planning is, and why there is a need for
computerized planning; 2) Design considerations for
friendly user-oriented applications; 3) How the
‘language Dollar-Flow is used for applications such
as profit planning.

THE NEED FOR FINANCIAL PLANNING

First, let’s start with two questions: What is financial
planning? And why is it necessary? Financial
planning is making decisions about allocating the
scarce resources of an organization so as to best
achieve its goals. In the private sector, this usually
means how best to allocate money and people to
achieve profitability goals. In the public sector, it
may mean how best to allocate people and dollars to
provide a desired level of service. The main idea here
is that the resource is scarce and, as a manager, hard
decisions have to be made about how to use it. More
specifically, financial planning is setting budgets,
making pricing decisions, and estimating future
demand for products and services, in order to
achieve profit and /or performance goals.

Why is formal planning necessary? First, of course,
because a scarce resource (typically money) is
Involved. If we had enough money for everything,
then we could simply raise our salaries and retire
early. Secondly, it is very important to have general
agreement within an organization about how goals
are to be achieved. No assumptions should be made

o ._r\(v\llthout clearly stating and documenting them. With

a good financial plan, trouble signs can be spotted
earlier and corrective action taken sooner.
Businesses which fail to plan effectively are the best
illustration of the need for planning.

Let me offer one last reason why planning is
important. For many companies, planning is a
necessity because of the complexity of their
operations. A typical manufacturing company may
purchase thousands of parts for use in a vast variety
of products, and assemble them in many different
locations. They cannot wait until there is no money
in the till to decide that it's time to raise prices. And
the current rates of inflation make this an even more
important consideration.

THE TYPICAL PLANNING PROCESS

Okay, let’s assume that one accepts the need for
financial planning. So, what’s the big deal? Well let’s
look at the typical planning process and I'll show
you.

First, planning involves lots of numbers. And these
numbers change often. Financial planning involves
projections into the future and is a very uncertain
process. When you’re uncertain, then you have to do
contingency planning. Play ‘“what if’ games. What if
sales are 20% higher than planned? What if the cost
estimates are too optimistic? What if our product
sales mix is different? Because of uncertainty,
alternative plans are necessary, increasing the
amount of work required to plan several times over.

And that’s not all. The attempt to reach a targeted
objective such as profit adds to the work. It may take
several passes before all of the budgets combined
with the sales estimates, cost estimates, and so
forth, sum up to the desired results. The task soon
becomes monumental.

The following is not an uncommon occurrence: You
work many hours preparing budgets and doing sales
forecasts. With a board meeting just a few days
away, you finish your plan. The company president
takes one look at the results of the combined
numbers and gives it back, requesting a 15% cut in
the budget. You prepare a revised budget, repeat all
of the calculations, this time under increasing
pressure to get the job done fast. The day before the
board meeting, marketing revises the forecast. All of
the budgets must be revised again. And now it is
getting late into the evening the day before the
meeting. Does this seem like a doomsday tale? It’s
not. I've seen this happen many times. No wonder
people dread budgeting time.

Combine the sheer effort required to plan effectively
with the requirements for a good plan: It must be
TIMELY. In a dynamic, growing company, a plan
must reflect today’s expectations, not yesterday’s. it

must be ERROR FREE. Late-night, reworked plans
suffer from simple calculation errors. Errors due to
using the wrong set of estimates, because they keep
on changing. Imagine the embarassment of a
summation error. And with all this, the plan must
remain FLEXIBLE. | worked on a profit plan for a
company a few years ago which added an-entire
* product line between iterations of the plan. And
finally, when you are all done, a good plan must be
WELL DOCUMENTED. What factors were used for
overhead? What was the basis for the final sales
figure? How was a particular number calculated? All
too often, there is little documentation on how-a plan
was actually prepared.

To summarize: A typical financial plan involves lots
of numbers, which change often. The need for many
iterations makes this process time consuming and
exhausting. At the same time, the plan must be
timely, error free, and well documented. In-short,
good financial planning is not easy.

WHAT IS THE BEST WAY TO PLAN?

Given that this is the nature of planning, what is the
best way to plan? How can it be done with a
minimum of difficulty? Traditionally, there have been
two ways of planning. Planning by hand (and
calculator) and planning using the computer. Let’s
take a look at both of these methods and evaluate
the pluses and minuses of each.

Preparation of plans manually has several
drawbacks. First, because of the amount of data
involved and the number of iterations, it is slow and
time consuming. After many iterations, accuracy
becomes a problem. The wrong estimates may be
used, particularly if they keep changing. Calculation
errors seem to increase with each iteration. And
documentation is usually not very good.

On the other hand we have financial planning on the
computer using the traditional programming
languages like BASIC, FORTRAN, or COBOL. Once
set up, a model written in one of these languages
will run on the computer in a matter of minutes or
seconds. Great! But here’s the catch. The model will
run very quickly once it has been set up, but it may
take months to get it developed. And you need a
programmer. Let's see what can happen. You start
your plan well in advance of the next budgeting
cycle. With six months lead time you give a precise
set of specifications to an enthusiastic programmer
who dutifully sets about coding your model. At the
end of the first three months, he comes back to you
with his first try. You patiently point out where the
model is not consistent with the specifications,
settle on a set of revisions, and the model is
reprogrammed to your satisfaction. All set, right?
No. As you begin using the model, the company
president starts to change his mind (even though he

10

reviewed the original specifications). Add a decimal
place here, another line item there. Why aren’t all
twelve columns of data on the first page?
Frustration.

What is the moral of our story? Programming a
planning application with the traditional
programming languages lacks flexibility. The
programmer needs lead time to set up the
application and has difficulty in reacting to short
term changes. How about adding another division to
a multi-divisional company? Try changing every
format statement in the model in an hour. And add to
that the bother of documentation.

To summarize, manually prepared plans can be
flexible, but they take a long time to do and lots of
effort, especially if several passes are done. They
often lack documentation. Planning with traditional
programming languages takes too long to set up, is
inflexible, and requires the services of a
programmer.

PROBLEM ORIENTED LANGUAGES

Let me digress for a moment. For several decades
now, computer scientists have been searching for a
“universal” programming language. ALGOL? PLI?
APL? PASCAL? The search goes on. Each has its
merits, each its disadvantages: But these
“procedure oriented” languages have one thing in
common: You have to be a programmer to use them.
And it is altogether too easy to include bugs in even
the simplest of programs. As long as there is a
programmer acting as middleman between the user
(or analyst) and the computer there are going to be
communication problems. Maintenance problems.
Resource and priority problems.

What's the answer? A planning oriented application
language which incorporates the good aspects of
traditional programming, but eliminates the
problems. Where plans can be set up and revised
easily, without having to be a programmer. What I am
describing here is one example of another class of
programming languages, ‘‘problem oriented”
languages. Languages which have been designed to
provide solutions in a general way to classes of
problems. Simple enough to be used by non-
programmers. Easier to debug. Self-documenting.
QUERY is an example of a problem oriented
language. It provides access to IMAGE data bases in
a fashion simple enough to be used by non-
programmers. Dollar-Flow is a problem oriented
language, designed as a tool for non-programmers
who want to set up tabular planning reports.

Financial planning is an area well suited to problem
oriented languages. There is a considerable amount
of generality in what planners do, although no two
plans are the same. A financial plan typically

involves mathematical calculations. And the burden
of planning in any other way gives the financial
planner considerable incentive to try new
approaches.

This is a good start. But we still have to get the
planner onto the terminal and communicating with
the computer. How is this done? By giving him an
effective tool. One which is both friendly and
enables him to get the job done in a way that he
understands.

DESIGNING FRIENDLY SYSTEMS

This leads us to the next point: What makes a
system “friendly”’? How can a system be designed
so the novice or non-computer type feels
comfortable with it? | offer here a few of my ideas and
techniques for developing friendly systems.

SIMPLICITY

Keep the system simple at all cost. Do not let the
internal structure on the computer dictate how a
system looks to the user. Let him express his ideas
in his own terms. For example, the original design
for the Dollar-Flow language was based on a set of
documentation which | prepared for a group of
accounting types. This documentation described
the workings of a particular customized model on a
line by line basis. | figured: What could be a better
set of design specifications for a language than
actual documentation? As you document your
model you are also writing your program! Another
example. Dollar-Flow re-orders calculation rules
automatically. Thus, line 1 on a report can reference
data on line 10, which, in turn, can reference data on
line 20. Dollar-Flow automatically figures out the
proper sequence for calculations (calculate 20, then
10, then 1) without any intervention by the user.

It is important that the application be self
documenting. For example, Dollar-Flow is a menu
driven system. At each step of operation, the user
knows his alternatives. There is little need for a
“pocket guide” to the language. This is not to say
that there is no need for manuals. A good manual is
important. But it is a fact that few people actually
read manuals. The less a system forces a user to
read the manual, the more usable it will be.

Not only should the user be told what his
alternatives are, the system should also help him to
choose the proper response. Throughout the Dollar-
Flow prompts, the most likely response is shown in
brackets as the ““default” response. In some cases,
he can use the default response without bothering to
even understand the question! For example, the
prompt:

USE STANDARD OVERALL REPORT FORMAT

. <Y ,N,W-WIDE PAGE)?

11

In one brief prompt, the user can see his options and
pick one. A simple carriage return will cause the
system to use the default response. And his entire
report format is set up. No PRING USING or
FORMAT statements. Very simple. And it can be
changed easily. As the user becomes more familiar
with the language, he can begin to exercise more
options. With an ‘N’ response, Dollar-Flow leads the
user through a review of the many formatting
alternatives. Report formatting can even be done on
a trial and error basis. Start off with the standard
format, then change the column width or number of
decimal places shown as needs require.

As | already mentioned, the design for the Dollar-
Flow calculation rules was based on a set of user
oriented documentation. Ask a user to describe how
the values on the report are to be calculated in his
own terms. With the addition of a few quote marks
here and there, he has already written a program in
the Dollar-Flow language. Self-documenting
languages not only save the effort required for
documentation, but make debugging easier as well.

One last comment about simplicity. Save the user
concerns about internal structure through structure
independent (or data base) approaches to data
relationships. One of the beauties of QUERY is that
the user doesn’t have to concern himself with all of
the details of the data base to get a simple report. in
Dollar-Flow, all reports are programs, all saved
programs are files, and all save files contain reports.
To reference data on a saved Dollar-Flow report,
simply indicate the line name and the report save
file name:

MARKETING BUDGET = ‘BUDGET’ OF ‘MKTG’

There is no need for the user to know how the data is
stored or even which line on the ‘MKTG’ report is the
‘BUDGET' line which he is using.

ERROR HANDLING

Okay, so let’s say you have implemented a simple
system. Does this mean that users won’'t make
mistakes? Of course not. In fact, the friendlier a
system is, the greater the likelihood that the users
will not be computer types. So, keep in mind that “To
err is human, to forgive is good systems design.” Of
course, you must edit all inputs. But then use a
friendly approach when the user has made an error.
Because Dollar-Flow is menu driven, simple typing
errors cause the system to repeat the prompt. Errors

- of amore complex nature, such as where a report is

referenced but does not exist, generate intelligible
error messages. Along with each error message give
a message number. And provide a glossary with the
documentation which gives even greater detail on
the possible cause of the problem.

At the same time that it is informative, a system
should help the user to work around problems. For
example, in the case of an invalid report reference in
Dollar-Flow, the user can interactively specify a

different report name, or values, or zeroes. He can

also indicate that computation should cease after a
scan for further errors. Again, unless a particular
error is extremely serious, warn the user ‘and
proceed (with his permission). Another example. As
far as the mathematician is concerned, division by
zero gives unworkable results. In Dollar-Flow,
division by zero yields ‘invalid’ numbers (which print
as asterisks), but doesn’t stop computation. It’s
amazing how much more satisfying a user finds a
report filled with asterisks than just a list of error
messages. At least he can look at the format to see if
it’s to his liking. '

If you must tell the user that he has made an error,
tell him as early as possible. One of the most
enlightened things done by the MPE operating
system is to edit the job statement when a job is
being streamed from an interactive session. It sure
is better to find out right away than waiting-for the
JOB statement. Report development in Dollar-Flow
is completely interactive. If a user is setting up a
report and he enters a calculation rule with invalid
syntax, the system responds with a message
immediately, and permits him to edit his error (not
unlike the BASIC interpreter). It is not necessary to
go into the computation step to find many errors.

MAINTENANCE AND SUPPORT

Let us assume that as an enlightened designer of
friendly systems you have now designed -and
implemented your masterpiece. Are you done? Of
course not. This is only the first step. There-are two
more important aspects which are critical for good,
friendly systems: Continuing improvement and good
support. Let me talk about continuing development
first. No system is great on the first try..| am a
believer in the iterative approach to systems
development, if you can afford it. | am not talking
about sloppy design. | am talking about the
tremendous wealth of ideas that you can get from
your users, AFTER you have implemented a system.
Try to be receptive to the suggestions of your users
(even if they are infeasible). Never give a critical user
the impression that you think he has just offered a
bad idea. Go out of your way to solicit ideas from
your users. If the situation merits it, get involved in
several of their applications. You can learn about
ways the system is being used that you never thought
about. Ways in which its use may be awkward.
Which messages are more annoying than -useful.
Which features are badly needed. | send periodic
questionnaires to my users (some of them even
respond). This helps to prioritize new features. And
users group meetings are a great boon to
information flow.

12

How should this wealth of new ideas be integrated
into an already developed system? Carefully. Do not
rush a new version of a system out to users just
because they need a particular feature. You must let
a new version of a system be “burned in” first by a |
test site. Software bugs cost you credibility. Once
lost, credibility is very difficult to reestablish, so
reliability is extremely important. After all, would a
user prefer a system with the bells and whisties he
wants but doesn’t work, or one which works with a
few less features?

Speaking of bugs and user suggestions leads me to
the question of support. There is nothing more
frustrating to a user than to get 95% of the way to his
computer solution only to be stopped by the
application package he is using. For any reason. If
you can afford to do it, good support pays great
dividends. Dollar-Flow is supported in an “on-line”
fashion. This means that.if a user has a problem, he
picks up the telephone and calls. If the problem is
with an existing report, we may even log onto his
system and take a look at that report. This kind of
support not only helps to find and eliminate system
problems quickly, but we also find out about areas
where the documentation may be confusing (or
incorrect). Where another feature might simplify the
user’s application. In short, on-line support can be
another source of good ideas from users.

Let me summarize these techniques for creating
friendly systems. First KEEP IT SIMPLE. Try to think
like the user instead of a computer expert. Use his
terms. Assume that he won't read the manual. Try to
make it self-explanatory. Second, be INFORMATIVE
but FORGIVING with your error handling. Edit all
inputs, but don’t bother the user with minor errors.
When the application merits, CONTINUING
ENHANCEMENT will make a much more usable
system. Respond to user suggestions. But exercise
good judgment in the trade-off between adding new
features and degrading SYSTEM RELIABILITY.

PROFIT PLANNING

I am not going to take too much time on this last
part. | am just going to show you a few sample
reports which were prepared using Dollar-Flow. (At
the risk of violating my agreement not to make a
sales pitch, | invite you to visit the PALO ALTO
GROUP’s booth during the vendor exhibits for a
demonstration of Dollar-Flow in action.)

Let me first describe the typical company profit
planning cycle and the environment in which a
planning tool like Dollar-Flow is used. The typical
Dollar-Flow user is the accountant or company
controller who is responsible for preparing the
reports. Not a programmer. Most users are working
on in-house HP3000 systems. With access to CRT’s
and a system line printer nearby. Reports are written

3

interactively, and manual inputs are also entered via
the terminal. Usually, reports are printed on the CRT
for review then saved when the user is satisfied with
the report. If hard copy is desired, the reports can be
routed to the line printer. For generating large
numbers of reports, the “batch command mode” is
used, where with very little terminal input a large
number of reports can be generated.

Profit planning typically begins with a preliminary
sales forecast. Preliminary. Sales forecasts always
change. And at the last minute, too. Often the sales
forecast is done on a product-by-product basis for
the first year or so, then combined with overall dollar
sales projections further in the future. The near term
unit forecasts are sometimes adjusted based on an
overall dollar figure. The forecast is iterated several
times. To make a change, the product manager just
runs Dollar-Flow, inputs whichever figures have
changed, pushes a few buttons, and the new sales
forecast is ready. Since many parts of the profit plan
depend on this sales forecast, the typical plan is
usually set up with reports referencing the sales
forecast report. If the figures are changed on the
sales forecast, these changes will be automatically
reflected on the other reports the next time they are
run. Some manufacturing companies even use a
multi-level sales forecast step, where a build plan (or
production plan) is generated from the sales
forecast.

Meanwhile, departmental budgets are prepared.
Some Dollar-Flow users centralize the budgeting
function and only distribute budget worksheets to
each department or location. This is usually done if
there are only one or two budget iterations. On the
other hand, some of our customers distribute the
budget preparation, with each location setting up its
own budget in Dollar-Flow. In this case, figures can
be input to Dollar-Flow, changes can be made, and
several iterations of the budget can be done all in a
matter of minutes. And budget consolidations are
fun! With a few simple commands to Dollar-Flow, a
whole series of budgets can be consolidated into a
departmental or divisional budget. When changes
are made to the low level budgets, they
automatically are reflected on the consolidated
budget the next time it’s run.

The profitlloss projection is next. Using the data
from the sales forecast, the build plan, and the
budgets, and adding factors for items like sales
discounts and returns, a pro forma operating
statement is prepared. Often the bottom line (profit)
on this report determines what (if any) changes need
to be made to the budgets. With a flexible tool like
Dollar-Flow, a financial executive can even do
sensitivity analysis: What if sales are 20% lower
then forecast? What if our discount schedule is
more aggressive and our volume is larger?

SQQQ,QQmpanies that rely on substantial amounts of

13

debt to finance their operations combine the
profit/loss projection with a cash flow projection.
This is because interest paid (an item of expense on
the profitlloss statement) has an impact on the
amount of money required to run the business. This
determines the level of borrowing, which, in turn,
affects the amount of interest which is paid. Dollar-
Flow, and most good financial planning languages,
can solve the “simultaneous equations” this circular
logic represents, and determine a level of debt and
debt service which are consistent with each other.
This is far more difficult when done manually.

Another procedure which is laborious when done by
hand is the aging of accounts receivable and
accounts payable projections. Using Dollar-Flow,
once the rules for aging have been set up, a change
in the sales forecast or the build plan will
automatically be reflected in new. receipts and
payables projections.

And, finally, some companies prepare pro forma
balance sheets as the last step in their profit
planning cycle. This is not necessarily the way ali
companies plan. Or even the way all Dollar-Flow users
plan. In fact, many Dollar-Flow users are not even
responsible for profit planning. Instead, the system
is used for a wide variety of ad hoc applications
involving calculations on rows and columns of
numbers. It is even used as a design tool for systems
which will later be hard-coded in COBOL, FORTRAN,
or BASIC.

Some of the other applications of Dollar-Flow that |
am aware of include:

Product pricing. Comparing alternative prices for a
single product (the plotting capability is great for
comparisons). Or comparing profit percentage
across an entire product line. Financial ratio
analysis. Comparing selected financial ratios
against industry standards or company objectives.
Capital budgeting. Rates of return and discounted
cash flows can be calculated easily using built-in
financial functions.

Performance reporting. Variance reports showing
actual budgets or profits versus plan. How sales are
doing against target. (One Dollar-Flow user
generates 500 graphs every month showing product
line sales performance for every branch of every
distributor who markets his products!)

SUMMARY

Let me leave you with a few parting thoughts.
Financial planning is not an easy process. Figures
change. The whole approach to a plan may change.
And you need your results yesterday. Traditional
systems design and programming methods are not
going to be effective in this kind of situation. Use a
better approach. With a friendly, problem oriented
planning language like Dollar-Flow, applications
nightmares can become applications successes.

FEATURE ARTICLE

FORTRAN/3000 and FORTRAN77:

A Comparison

James P. Schwar and Charles L. Best
Lafayette College

Easton, PA 18042

INTRODUCTION

A new standard Fortran was approved- as an

American National Standard by the American

National Standards Institute on April 3, 1978. Since
the technical work on this standard was completed
in 1977 the designation Fortran 77 is commonly used
to distinguish this standard from previous Fortrans.
Many, but not all, of the features found in Fortran 77
are incorporated in Fortran/3000. Some of the major
new features of Fortran 77 and their relationship to
Fortran/3000 are discussed in the following
sections.

THE STANDARD

The Fortran 77 standards are found 'in the
publication: American National Standard
Programming Language Fortran, ANSI| X3.9-1978.
This publication presents the detailed specifications
for Fortran 77 in 18 sections, with the full language
appearing on the righthand pages and subset
Fortran appearing on the lefthand pages. it also
includes 6 appendices with a summary of Fortran 77
syntax. Subset Fortran will not be considered in the
following discussion.

CHARACTER SET

The Fortran 77 character set consists of the twenty-
six letters, A through Z, the ten digits 0 through 9,
and thirteen special characters.

blank

equals

plus

minus

asterisk

slash

left parenthesis

right parenthesis

comma

decimal

dollar sign

apostrophe

colon

The quote (*‘) does not appear in the new standard.
The collating sequence is A less than B....Z and 0
less than 1.....9. There is no collating sequence
implied for the special characters. Letters and digits
must not be intermixed although all the digits
should follow Z or precede A. ‘

T

[

- .

14

STATEMENTS

A line in Fortran 77 is a sequence of 72 characters.
Comment lines may contain a C or * in column 1.

Continuation lines have not changed and statement)

are in fixed-field format written only in columns 7
through 72. A statement must contain no more than
1320 characters (Fortran/3000 also allows up to 20
lines for a statement). Statement labels remain as
unique positive integers in the range 1 to 99999 in
columns 1 through 5. The required order of
statements and comment lines is summarized in the
Fortran 77 standards by the following chart:

FUNCTION, SUBROUTINE or
BLOCK DATA Statement

PARAMETER IMPLICIT

Comment statements

and

statements [other specifica-

Lines tion statements

ENTRY

statements statement

DATA functions

statements executable

statements

END statemént

Vertical lines delineate statements that may be
interspersed, while horizontal lines delineate
statements that must not be interspersed. The END
statement, as in Fortran/3000 is now executable.
This chart essentially reflects the statement order in
Fortran/3000. '

Arithmetic statements are handled essentially as in
Fortran/3000. Variable names are still limited to six
alphabetic or numberic characters, the first of which
must be alphabetic. Data types are: integer, real,
double precision, complex, logical and character.

The character data type corresponds to the
CHARACTER specification in Fortran/3000. There is,
however, a difference in handling substrings.

-Fortran 77 substring designators specify the

leftmost and rightmost character respectively in the
substring. For example A(2:4) specifies characters
two through four of character variable A, and
B(4,3)(1:6) specifies characters one through six of
the character array element B(4,3). Note that square
brackets are not used. The concatenation operator
for the character variable is the double slash // in
Fortran 77. Partial-word designators are not part of
Fortran 77.

Arrays in Fortran 77 may have up to seven
dimensions and allow both an upper and lower
bound to be specified in the dimensioning
statement. If the lower bound is omitted, the
default value is one.

DIMENSION A(-1:8),B(10,10),C(8)
The one-dimensional A array has elements from -1 to
8, where the fourth element is A(2), while the fourth
element of the one-dimensional C array is C(4). Bis a

two-dimensional array whose first element begins at
1,1.

3

Subscripts must be integer expressions and a
subscript may itself be a subscripted variable.
Fortran 77 does not permit real subscripts as is the
case in Fortran/3000.

Control statements form the major difference
between Fortran 77 and Fortran/3000. Fortran 77
permits the block IF statement which is an
implementation of the IFTHENELSE programming
structure familiar to SPL, BASIC and COBOL users.
The general form of this statement is

IF (logical expression) THEN
block

ELSE
block

ENDIF

Optionally, the ELSE block may be omitted.

The DO statement (or DO loop) has been modified to
allow integer, real, or double precision data types
not only for the indexing parameters, as currently
available in Fortran/3000, but also for the DO
variable. For example

DO 10 A=1.0,0.0,-0.1

is now valid in Fortran 77. Execution of a DO loop
proceeds essentially as in Fortran/3000, however,
the execution follows the DOWHILE programming
structure with initialization outside the loop and
incrementation (stepping) at the end of the loop.

List directed input/output is part of Fortran 77. An
allowable format for list directed input/output
permits replacing the format statement number with
an asterisk. In general, input/output statements have
been expanded to include statements such as
OPEN, CLOSE and INQUIRE, as well as the more
famillar READ, WRITE, BACKSPACE, ENDFILE and
REWIND found in -Fortran/3000. The OPEN
statement, an auxiliary input/output statement,
connects an existing file to a unit (similar to FOPEN
intrinsic). The CLOSE statement, another auxiliary
input/output statement, terminates the connection
(similar to FCLOSE). The auxiliary statement
INQUIRE permits a determination about the
properties of a particular file (similar to FGETINFO).
The reader is referred to section 12.10 of the Fortran
77 Standards for details on the auxiliary input/output

statements. Several minor additions have been made

to the format specifications, most notable of which
are the edit descriptors:

(1) TL (tab left)and TR (tab right);

.(.2) S, SP and SS used to control option plus

characters in numeric field output;

(3) BN and BZ used to specify interpretation of
_blanks other than leading blanks;

15

(4) the A or Aw is used for character data, where w is
the field width.

The Ow, Zw, Nw.d, Mw.d, Rw and S edit descriptors
familiar to the 3000 Fortran programmers are not part
of Fortran 77.

FUNCTIONS and SUBROUTINES

The ENTRY statement and RETURN n are now
supported in Fortran 77. A SAVE statement, which
allows local variables, local arrays and labelled
common blocks to be saved between calls to
subroutines and functions has been added in
Fortran 77. Section 15.10 of the Fortran 77 Standards
lists these intrinsics. Most of the generic names are
the same as those found in Fortran/3000. An
exception is that Fortran 77 includes the intrinsic for
arcsine and arccosine. There are a few minor
differences between Fortran/3000 and Fortran 77 in
the naming of generic functions.

CLOSURE

The full impact of Fortran 77 can only be appreciated
by a careful examination of the new standards. There
are many improvements, both major and minor, to
the language. Fortran/3000 contains many of the
features associated with Fortran 77. The major area
of difference are the: ,

(1) ability to specify a lower bound for an array;

(2) block IF statement;

(3) extended DO statement.

REFERENCES

1. HP3000 Computer System, Fortran Reference
Manual 30000-90040.

2. American National Standard Programming
Language FORTRAN X3.9-1978.

LIBRARY CORNER

LIBRARY ALERT

If you are an HP3000 Series | user [Installation Member] or
your site has not yet installed the 1906 IT on your Serles i
or lll, you may have a problem with Release 06 of the
Contributed Library. The Library is produced using 4K
blocking factor, whlle your machine Is expecting 1K.

If you are a Serles | user or do not have an SPL compiler,
the tape sent to you would have been In the right format
except that we do not know who you are! Your solution Is
to call the Executive Office at (301) 768-4187 and a
usable tape wlll be sent to you at no charge in exchange
for your present Release 06 tape.

The HPGSUG Board policy requires that each release of
the Contributed Library will be compatible with-the most
current HP operating system installed at the majority of
members sites. Therefore, for Series Il and Il users who
have not installed the 1906 IT, a replacement tape of the
Release 06 may be purchased for the nominal fee of $25.
Notity the Executive Office, return the origlnial Release 06
and a compatible tape wiil be forwarded to you.

If you are an HP3000 user [Installation member] and do
not have an SPL compiler, you will have a problem with
Release 06 of the Contributed Library. Based on
information glven HPGSUG by HP at the time Release 06
was being prepared, the decision was made to use SPL
for the Library utilities as SPL was the only compiler
distributed with HP's Fundamental Operating System
[FOS]. As SPL Is no longer Included with HP’s FOS, those
sites which do not have an SPL compller will be provided
a PROG version of the Contributed Library [at no Charge]
by notlfying the Executive Office and returning your
orginial Release 06.

For tuture releases of the Contributed Library, due to the
above change and other changes by HP, which Include
Run Time Library, the Library Committee will reconslider
the type of code placed on the Contributed Library for
Release 07.

Please note: Allow two weeks for delivery for any
replacement tape.)

Software Exchange at San Jose -
Wayne Holt

An organized software exchange will take place at
the February, 1980 North American meeting of the
User Group in San Jose, California. This is your
chance to share tips, techniques, and that special
program you’ve been telling everyone about.
Participation is simple as long as you observe the
following rules:

1. Contributors should try to follow the standard
HPGSUG Library guidelines when submitting
their software. This includes:

16

* standard naming conventions for files and
groups, i.e., SOURCE, PUB, DOC, DATA, and
JOB;

* asigned software contribution release form;

* a copy of extended documentation if
necessary.

Check the INFOBASE account on the library
for instructlons.

All submissions MUST be in :STORE format. The
name of the account is SANJOSE and the creator
of all files MUST be in MGR.

)

3. Text files are welcome. Although they will not be
placed in the HPGSUG Library, they will be of
interest to those sites that participate in the
swap.

4. Any individual contributing to the Exchange will
receive a copy of the Swap tape. Depending upon
the size of the swap, every effort will be made to
return your tape before the end of the
convention. This is subject to available labor and
computer timel

5. An attempt will be made to submit the software
in the Exchange to the HPGSUG Library. This will
be successful only if the contributions follow
submission standards and are well documented.
Include your name and address in your DOC filel

6. All contributions are due as soon as possible
after registration. Contributions made after
Monday will be handled on an as-time-allows
basis. All tapes submitted should be clearly
marked as to your name, address, and hotel room
while at the Convention. It is strongly advised
that you use a 2400 ft. reel of tape, since some
swaps have been “hefty’’ in size.

7. If you do not wish to contribute, but still want a
copy of the tape, an effort will be made to
accomodate you on a serve yourself, first in - first
out basis. In the closing hours of the Convention,
if time allows, a special job will be set up to make
copies. There are no guarantees!

8. PLEASE. Remember that this is a volunteer
project for the convenlence of the Group
members. Time and available labor are scarce;
the only promise that we can make is that we
shall try our best. With your help and
particlpation we can make the software
exchange at San Jose the best ever!

See you in San Jose February 25th thru 29th

TIPS & TECHNIQUES

: Hints on IOSTAT2
" Flobert M. Green

The SCRUG79 swap tape contains a very interesting
program called IOSTAT2, but no documentation for
the program. After trying it and talking to a user who
had used an earlier version of the program, | was able
to deduce the following operating instructions. This
program appears to be perfectly safe, but it does use
privileged mode to access the I/O tables.

IOSTAT2: REAL-TIME I/O MONITOR

VERSION: 1.06

SOURCE: Not Available

INSTALL: Copy to an account/group with
capabillities like PUB.SYS. UTIL. SYS is suggested.

HISTORY: This program was found on the SCRUG79
swap tape. There was no documentation; what
follows was discovered via phone calls to an
anonymous source. The program has only been run
on the 1906 MIT by us.

PURPOSE: IOSTAT2 allows you to monitor the 1/0
activity of your HP3000 (MPEIIl) by taking
“snapshots” of the /O Queue Table. You can see
which logical device numbers have the most activity,
and how much disc activity the memory manager is
causing (MAM). You can see if all disc drives are
setting equal activity (if not, perhaps you should
move some files). You can examine selected
functions (READ, WRITE, FOPEN, FCLOSE) and
sielected programs (via the PIN).

EXAMPLE (your replies are enclosed in (())).

:run iostat2
IOSTAT2(TEW) VERSION 01.06 05 JAN79

(C) HEWLETT-PACKARD COMPANY 1979
SPECIAL HEADINGS (Y OR N)?

y
ENTER: LDEV,HDG -OR- DRIVER,HDG
‘)14,Iss
)1,8ys
)

((As you will see below, IOSTAT2 classifies each
loglcal devise into a class. To request a different
classification, you enter the commands above. |
have requested that device 14 be separated as “ISS”
disc, and device 1 be separated as “SYS” disc. You
could separate each disc to see how disc accesses
are distributed.

»

- FREEORINUSETOBE EXAMINED(F ORI): f

17

((The 10Q table is used to “queue” input/output
requests for all devices. The size of this table is
specified in SYSDUMP. At any given moment in
time, some of the entries will be “IN USE” for /O
requests that are waiting or in progress. The rest will
be FREE (released from previous requests). To
examine queuing problems, answer “I”’ above; to
examine overall activity, answer ‘‘F’’ above.

)

PIN TO BE EXAMINED: return

((Carriage return selects all processes. Or, you can
enter a selected PIN (process id number) to monitor.
See the SHOWQ command, or the OVERLORD
program. This option is not used in this example.

)
SPECIFIC FUNCTION? return

((Carriage return means all functions. | think the
possible functions are READ, WRITE, FOPEN,
FCLOSE. If you select a specific function, you can
see what percentage of the activity it reads, versus
writes. Since FOPENs are very expensive, you can
also use this to monitor opens.

)

HDG CNT LDEVS

UNUSED 13 15 16 17 18 19

DISC 62 34511 12

LP 16

MT 478910

TERM 48 20 21 22 23 24 25
26 27 28 29 30....

ISS 1 14

SYS'11

((IOSTAT2 prints your heading table, showing which
logical devices are included in each heading class.

)

((IOSTAT2 now begins sampling the 10Q at 15-20
second intervals (the interval can be changed; see
below). After each sample; one line of summary is
printed.

)

TIME COUNT FREE EXMND
09:06:41 40 40
09:06:55 334 40 40
09:07:20 636 39 39
09:07:48 710 43 43
09:08:11 547 43 43
09:08:33 578 41 41

MAM ISS SYS DISC TERM
26 4 29 2 5
12 8 10 15 7.
24 4 20 1 4
31 7 23 4 9
32 1 31 4 7
22 6 22 2 1

((Column headings have this meaning:

TIME: time of the sample

COUNT: total I/O requests since last sample. If this
number is greater than the FREE columns, you are
only examining a portion of the I/O requests.

FREE: total free entries in the table (or INUSE, total
inuse entries in the table).

EXMND: how many of the free entries were included
in this summary line; some entries may be left from a
previous sample period when the system is not busy

MAM: how many of the requests (of all specific
functions, ‘| think) were on behalf of Memory
Management this includes reading in code
segments from the System SL (LDEV1) and other
SLs, and program files, and swapping data segments
(LDEV1).

ISS: how many requests on the ISS disc (LDEV14);
could include some MAM requests.

SYS: how many requests on the LDEV1; mostly MAM
requests and directory searches.

DISC: how many requests on the other 79xx disc
drives; could include MAM requests.

TERM: other device type.

Please note that in the first sample, 26 of the 35 disc
requests were for MAM. This machine needs
memory.
)

CONTROL Y control y

((I hit dontrol-y on the terminal.))
CONTINUE? n
END OF PROGRAM

(I stopped the program by answering “N”. But, there
are other options.

)
Robert M. Green

ROBELLE CONSULTING LTD.
#130-5421 10th Avenue
Delta, B.C. V4M 3T9
Canada (604) 943-8021

18

SPECIAL REPORTS

Bug/Enhancement Poll
Ross Scroggs

The Interface Committee of HPGSUG has initiated
the polling procedures through which the members
of the Users Group can indicate which defects in
current HP software products critically affect the
operation of their HP3000. Included in each issue of
the JOURNAL will be a prestamped return card on
which you will list your most critical bugs. The
responses will be collected and forwarded to HP for
their consideration. HP plans on using this
information as one of the variables in the bug
prioritization function. The results of each poll will
be published in a subsequent issue of the
JOURNAL.

Included on the poll card is space for an
enhancement request. You should include a brief
description of an enhancement you would like to see
in a current HP software, hardware, service, or other
product. These responses will be classified and
distributed to the appropriate HP personnel. These
requests, along with those received through other
means, should provide HP with information
concerning the direction they might want to take

when planning future enhancements. These

requests may also be used to formulate
questionnaires that will address specific product
areas.

HP will respond in subseqtent issues of the
JOURNAL as to how they are using the information
gathered in the polls and will provide general
indications as to what direction they are taking with
regards to specific problems or products.

The Interface Committee urges you to complete the
enclosed poll card as soon as possible so that the
results can be provided to HP in a timely manner.

Please note that this poll does not replace the
normal bug reporting mechanism, you should
promptly report all new bugs through the regular bug
reporting procedure. The purpose of this poll is to
determine the number of people affected by a
particular bug.

Editor's Note: The BUG/Enhancement Poll Card is
found on the back cover of the
JOURNAL. Clip and malil today! (No
postage is required if mailed in the
United States.)

! %

DONN PARKER TO GIVE KEYNOTE ADDRESS

Donn B. Parker will deliver the keynote address at the
Hewlett-Packard General Systems Users Group 198
North American Meeting. Parker, an internationally
renowned expert in the field of computer crime, is a
senior management systems consultant at SRI
International, Menlo Park, California. He specializes in
the area of computer abuse research, security in
computer systems, programming methodology, and
management of computer services. He is the author of
the report Computer Abuse, prepared for the National
Science Foundation and has written what is
considered the definitive book on computer security,
Crime By Computer.

Make your plans now to attend the 1980 HPGSUG
North American Meeting and hear this outstanding
specialist in our industry.

KEEP IT RUNNING

.T‘wo years ago the Bay Area Reglonal Users Group spon-
sored a user-oriented Hardware Familiarization and
Maintenance Course with the HP Technical Support
Group. Those of us involved in the presentation are
excited for we have implemented the skills learned from
the orginial course which our theme says most
succinctly: ‘Keep It Running’.

All of us In the Data Processing industry must depend on
computers for our “daily bread.” Thus, the intention of
these seminars is to pass along Information to the
HP3000 user which will enable him/her to deal effectively
with, or even more importantly, avoid completely
computer problems.

The series participants will be shown the most effective
way to deal with problems by utilizing user-run
cdiagnostics. There will be an opportunity to find out the
rmost intimate details of hardware and software architect-
ure, and the intricacles of system dispatching and
queuing. Learn everything you ever wanted to know about
saving data, file system security, and the “How To's” of
placing effective service cails. See what makes “Mr.

Goodbyte” (your CE) tick, and meet the technical experts

who back him up.

The 1980 series, presented by HP-Neely Santa Clara’s
- Technical Support Group, under the direction of Frank
. Steiner and Ed Canfield, wlll be relocated to San Jose to

. man the ‘experts’ tables and give you a glimpse of what

" goes on ‘behind the HP service scenes’.

You will find the presentations the answer to your
questions about “keeping it running,” and wiil provide the
Iggg to leaklng yours a smoother operation.

13'4:°d HP General Systems Users Group

19

Pers Group Meeting are Jack Craig of Medi-Data
Services in Santa Cruz, and Dave Moirao of Longs
Drug Stores in Walnut Creek. Jack and Dave, and
their system operators, will preside over the Hewilett-
Packard computer systems from HP's General
Systems Division, providing computational power to
vendors who need system access to display and
demonstrate their products. Additionally, access
will be available to Meeting attendees who want
“hands-on’’ time on the systems.

The HP250 systems installed will feature 160 to 448
Kbytes of random access memory and up to 39.2
Megabytes of disc storage. This system also utilizes
a double density flexible disc drive with 1.2
Megabytes of storage.

Also, the HP300 will be on display. It occupies a
small physical space but provides powerful
computing capabilities. The system features up to 1
Megabytes of disc storage. Like the HP250, the
HP300 utilizes a double density flexible disc drive for
system utility, system backup, and offline storage of
data.

An HP3000 Series 30 is the newest addition to the
HP3000 family. This is HP’s entry level system which
features up to 1024 Kybtes of random access
memory and up to 960 Megabytes of disc storage.
The Series 30 can support up to 32 on-line terminals,
from 1 to 4 magnetic tape drives, a 100 to 400 Ipm
(line per minute) printer, an integrated flexible disc
drive with 1.2 Megabytes of storage, and remote
diagnostic capability.

The HP3000 Series llls, each featuring an
expandable memory configuration from 256 Kbytes
to 2048 Kbytes of random access memory and from
50 to 960 Megabytes of disc storage. Each system
can support up to 64 on-line terminals, 8 magnetic
tape drives, and up to 4 printers with speeds from
300 to 1000 Ipm.

Peripheral systems on display include: 2621A,
2621P, 2635A, 2645A, 2647A, 2648A, 2649E and
3076A terminals; the 2608A, 2619A and 2631A
printers; the 7970B and 7970E magnetic tape drives;
the 7906A and 7925A disc drives; and the 7310A and
9872B plotters.

Housing Information | HOTEL SINGLE RATE DOUBLE RATE

) Holiday Inn $33 $37
The cost of housing is NOT included in the cost of the Meeting Reg- Park Center Plaza (King Room $37) (King Room $41)
istration fee. A separate form is included for housing. Duplicate it as (Adjecent 1o the
necessary where additional rooms are required by several attendees. Convention Center)
Please fill it out completely and submit it to the San Jose Convention (408) 998-0400 .
Bureau whose address appears on the form. Do not include your
housing request form or any payment for housing with your Meeting Holiday inn ' $32 $36 $
pre-registration. Airport(San Jose)

(408) 287-5340
The hotels listed here have agreed to make a certain number of rooms
available at a special convention rate; these will be provided on a first- Hyatt House Hotel $46 $50
come, first-served basis. However, in order to make it possible for the {Meeting Headquarters)
Housing Bureau to meet hotel deadlines, your housing request form (408) 298-0300
must be recelved no later than Juanuary 30, 1980. After this date, any
available rooms will be released by the hotels to general occupancy at their Le Baron Hotel $42 $48
higher standard rates, and the Housing Bureau will no longer be involved in (408) 288-9200
handling reservations for our meeting. As a consequerice, housing
reservations after January 30 are to be made directly by attendees as best Vagabond Motel $36 $42
they can. Telephone numbers are provided in the event you miss the (San Jose)
January 30 deadline. (408) 294-8138
[-] .

Room Reservation Form DEADLINE: JANUARY 30, 1980
Please Reserve: SINGLE - DOUBLE - DOUBLE/DOUBLE (Phone reservations not accepted)
Hotel/Motel Preference: 1st Choice 2nd 3rd
Dates of: Arrival ; After 6 P.M.? Departure

A DEPOSIT OF $45°(U.S.) FOR EACH ROOM MUST ACCOMPANY RESERVATION.
ONE RESERVATION PER REQUEST FORM.

Make check(s) payable and send to: San Jose Convention Bureau/HPGSUG
P.O.Box 6178, San Jose, CA 95150 U.S.A.

NAME ’ PHONE
ADDRESS ‘
STATE(COUNTRY) ’ POSTAL CODE

COMPANY

Registration Fees

$200. U.S. when this form is postmarked no later than December 31, 1979. Registrations postmarked after that date
will be assessed a $40.00 balance-due fee at the door. Please make check payable to HP GSUG 1980 NORTH AMERICAN
MEETING. Payments from locations outside of the USAshould be drawn in US funds on your bank’s correspondent U.S. bank.

RegiS'l'l‘GﬁOI'l Form Please print — leaving one space between words.
Last Name initial First Name
Title Send Registration form to:

Company

| HEWLETT-PACKARD GENERAL
Street Address SYSTEMS USERS GROUP

[| I | | | | I | I I | I , 1980 North American Meeti A
City State/Province P.O. Box 3010

[T T T T T T T T T T T T T T T T TTTT] stanford, California U.S.A. 94305
Country Zip or Postal Code February 25-29, 1980

HEEEEEEE HEEEEEE

(Duplicate this form for additional persons registering for the meeting.)

20

HP GENERAL SYSTEMS USERS GROUP

. INFORMATION THROUGH INTERFACE AND INVOLVEMENT
APPLICATION FOR MEMBERSHIP

(Please print or type) (Copy this form for additional names)

NAME

(Voting individual)

TITLE

COMPANY

STREET ADDRESS

CITY STATE/PROVINCE ZIP

COUNTRY POSTALCODE_______

TELEPHONE NO. ()

TYPE OF MEMBERSHIP (ch;ack items desired)

[1 General Member Total [1 Installation Member Total
$20AnnualDuescc.0vnen $§ 20 $200 New MemberDues $ 200
Includes: (Annual renewal $150)

1. Journal Includes:
2. Newsletter 1. Journal
. . Li d 2. Newsletter
. [1] Sozl:; of Master Contributed Library and one 3. Contributed Library
paate. x $200 s 4.Voting Privileges
no. of copies 5. Conference Proceedings
Check media type:

[1800 bpior[]1600 bpi

[1 Additional subscription{s) to the Journal and
Newsletter to the same name and address

Check media type:
[1800bpi or[] 1600 bpi
Additional subscription(s) to the Journal and

X$15 ..o $ Newsletter to the same name and address
no. of copies x$16............. $
Total $ Total $_____
If you are a member of a Regional Users Group, please specify
TYPE OF MACHINE (check one)
[1HP 3000 [JHP300 [JHP 250
Are you interested in having your name on:
1) A commercial mailing list? e e e e e et e [lyes []no
2) A membership roster circulated to other members for non-commercial purposes? []Jyes []1no
[JCHECK ENCLOSED [1PURCHASE ORDER # ENCLOSED

Payment should be made to “HP General Systems Users Group”. Payments from organizations outside
of the United States must be drawn in U.S. Funds and on your bank’s correspondent U.S. bank.

As a condition of membership, | hereby agree not to distribute the Contributed Library to any person without the prior written

approval by the HP General Systems Users Group.

.. EMPIRE TOWERS 7300 RITCHIE HWY.

Date

GLEN BURNIE, MARYLAND 21061

Signature

301-768-4187

HP General Systems Users Group
Membership Price Schedule
Effective January 1, 1980
(One Year Basis)

General Member instaliation Member
New: $20 ‘ New: $200
Renewal: $20 ; Renewal: $150
Includes: Includes:
1. Journal Subscription* 1. Journal Subscription*
2. Newsletter Subscription 2. Newsletter Subscription

3. Contributed Library
4. Voting Privileges

* Note: Both General and Installation Members are entitled to additional

subscriptions of the Journal and Newsletter to the same address for
$15/subscription.

Any individual or organization may purchase the Contributed Library for $200.

—————— . T B B S S S S S GRS T SR S S FOLD HERE oo cts s s e s s s e s s S s S S S s e S m— m—

Return Address
HP General Systems Users Group
Empire Towers
7300 Ritchie Highway
Glen Burnie, MD 21061
U.S.A.
ATTN: Rella M. Hines
Executive Director

22

Y s e o

.__....._'________..____________

NAME: COMPANY:
PHONE: (} ADDRESS:
TELEX:

Please indicate the BUGS that critically affect the
operation of your HP3000. include any number of bugs
but indicate only those with greatest impact. The bugs
should be identified by their Known Problem Report
(Service Request) number as found in the most recent
Software Status Bulletin. Please include BUGS with an
“open” status only.

Please include one brief ENHANCEMENT Request (hard-
ware/software/service/other) you would like HP to
address. Be brief and include a Keyword that classifies
your request as specifically as possible, e.g., 7925
Disc/COBOL/CE support.

KEYWORD:
REQUEST:

23

HP General Systems Users Group _

Empire Towers , BULK RATE
7300 Ritchie Highway : U.S. POSTAGE
Glen Burnie, Maryland ' PERM”@'SO "
21061, USA , GLEN BURNIE, MD.

RELLA M. HINES, EXECUTIVE DIRECTOR
(301) 768-4187

ADDRESS CORRECTION REQUESTED

LINFURD HACKMAN !
VYDEC, INnC. ;
9 VREELAND Ry,
FLURHAM PARK, NEw JEKRS

o Y
07932, Usa £

Clip along dotted line ,

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 8 GLEN BURNIE, MD.
POSTAGE WiLL BE PAID BY ADDRESSEE

HP General Systems Users Group
Empire Towers

7300 Ritchie Hwy.

Glen Burnie, MD. 21061

