

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Volume lii
Issue 2

HEWLETT-PACKARD
COMPUTER SYSTEMS

COMMUNICATOR/1000

OPERATING SYSTEMS

COMPUTATION

EDITOR'S DESK

USER'S QUEUE

BIT BUCKET

BULLETINS

Feature Articles

18

24

32

49

BLOCKMODE INPUT WITH 264X SERIES TERMINALS
Frank Slootweg/HP Amstelveen

“TWEAKING” INTERNALS
Harvey Bernard/HP Rockuville

A METHOD FOR SMOOTH CURVE FITTING
Larry W. Smith/HP Fullerton

MICROPROGRAMMING BASE SET SECRET
Joel Dubois/HP Grenoble

Departments @

2
4

14
15

53

ABOUT THIS ISSUE
BECOME A PUBLISHED AUTHOR
IN THE COMMUNICATOR/1000. . .

LOCUS CHANGES AND ADDITIONS
LETTERS TO THE EDITOR

SOFTWARE SAMANTHA
INVERSE RELOCATABLE ASSEMBLER FOR
RTE AND DMS

INTERNATIONAL TRAINING SCHEDULES

EDITOR’S DESK

ABOUT THIS ISSUE

Volume llI, Issue 2 of the Communicator/1000 showcases four very fine Feature Articles, two each in the areas of OPERATING
SYSTEMS and COMPUTATION.

For this issue's OPERATING SYSTEMS category, Frank Slootweg of Hewlett-Packard Amstelveen, The Netherlands, has written
an article which presents his solution to the problem of performing blockmode reads on HP 264X series CRT terminals. Frank
has included the source code for two programs, one of which handles the problem on 2645A terminals (and similar). His other
program works on 2640A/B terminals. Also in the OPERATING SYSTEMS section is a fine article by Harvey Bernard of the HP
Rockville (Maryland) Eastern Technical Center. Adopting an informal and light manner, Harvey discusses the method of
accommodating the testing of user-written drivers in RTE-IV.

The COMPUTATION section features two equally excellent articles. Larry W.Smith of the HP Fullerton (California) Sales and
Service Office has submitted an article describing his method of fitting a curve to a series of data points. While the article
succeeds in satiating the appetites of students of theory (Larry gives a conceptual demonstration of his method), pragmatists
will also be happy to note that the source code of the subroutine appears at the end of the discussion. The second article of this
section was contributed by Joel Dubois of HP Grenoble (France). Joel enlightens all of us to the “secrets” of the mi-
croprogramming base set, and astutely pinpoints a possible stumbling block for microprogrammers. His discussion is not only
interesting, but timely as well.

Again, as in past issues, the field of Feature Articles for this issue was equally excellent all-around. And once again, it remained
a difficult task to select the best articles to receive prizes of HP-32E hand-held calculators. A panel of three judges, all of whom

are members of the HP Data Systems Technical Marketing Department, have selected the following two articles as this issue's
winners:

Best Feature Article by an A METHOD FOR SMOOTH
HP Employee in the Field CURVE FITTING

Larry W. Smith
Best Feature Article by MICROPROGRAMMING BASE
an HP Division Employee SET SECRET
not in Data Systems Joel Dubois

Technical Marketing

Unfortunately, we had no articles for this issue contributed by customers of Hewlett-Packard, but we encourage our customers
to do so. There is a calculator to be won in that category!

Finally, an error in Volume I, Issue 6 stands to be corrected. An inaccurate flowchart appeared in Larry W.Smith's article
“Shared EMA for RTE-IV”, Figure 3, page 40. The corrected flowchart is herein printed. We regret the illustration error.

The Editor

EDITOR’S DESK

Schedule SHEMA
and pass program
name, page #,

and function.

Restore all

entered programs
main ID values.

Print lot of
all entered
programs.

= 0 Enter participating program.

Retrieve program
name from RU
Command and
convert.

GETST,PARSE

Print Program
Error Loaded IDGET
Message ?

ﬂ

Is it
Disc-Resident
?

NO

Is it
Dormant
?

Main ID

NO
segment words

Does it
require EMA
?

YES

Save main
—p| ID address and IGET
value in local table.
Null programs
EMA requirements IPUT
in main 1D word.

v

Set-up starting
page # of
shared-EMA area
in ID extension.

Schedule program

and pass old
main 1D value.

Terminate and
save resources.

Figure 3
3

EDITOR’S DESK

BECOME A PUBLISHED AUTHOR IN THE COMMUNICATOR/1000. ..

The COMMUNICATOR is a technical publication designed for HP 1000 computer users. Through technical articles, the direct
answering of customers’ technical questions, cataloging of contributed user programs, and publication of new product
announcements and product training schedules, the COMMUNICATOR strives to help each reader utililize their HP 1000's
more effectively.

The Feature Articles are clearly the most important part of the COMMUNICATOR. Feature Articles are intended to promote a
significant cross-fertilization of ideas, to provide in-depth technical descriptions of application programs that could be useful to
a wide range of users, and to increase user understanding of the most sophisticated capabilities designed into HP software.
You might think of the COMMUNICATOR as a publication which can extend your awareness of HP 1000’s to include that of
thousands of users worldwide as well as that of many HP engineers in Data Systems factories at Cupertino, California and
Grenoble, France.

To accomplish these goals, editors of the COMMUNICATOR actively seek technical articles from HP 1000 customers, HP
Systems Engineers in the Field, and Marketing and R&D Engineers in the factories. Technical articles from customers are most
highly valued because it is customers who are closest to real-world applications.

WIN AN HP-32E CALCULATOR!

Authoring a published article provides a uniquely satisfying and visible feeling of accomplishment. To provide a mare tangible
benefit, however, HP gives away three free HP-32E hand-held calculators to Feature Article authors in each
COMMUNICATOR/1000 issue! Authors are divided into three categories. A calculator is awarded to the author of the best
Feature Article in each of the author categories. The three author categories are:

1. HP 1000 Customers;
2. HP employees not in Data Systems Division (e.g., HP Systems Engineers, users in other HP Divisions, etc.);

3. HP Data Systems Division employees not in the Technical Marketing Dept. (from which the COMMUNICATOR Editor is
chosen).

Each author category is judged separately. A calculator prize will be awarded even if there is only one entry in an author
category.

Feature Articles are judged on the following bases: (1) quality of technical content; (2) level of interest to a wide spectrum of
COMMUNICATOR/1000 readers; (3) thoroughness with which subject is covered; and, (4) clarity of presentation.

What is a Feature Aricle? A Feature Article meets the following criteria:
1. lis topic is of general technical interest to COMMUNICATOR/1000 readers;
2. The topic falls into one of the following categories —

OPERATING SYSTEMS

DATA COMMUNICATIONS
INSTRUMENTATION
COMPUTATION
OPERATIONS MANAGEMENT

3. The article covers at least two pages of the COMMUNICATOR/1000, exclusive of listings and illustrations (i.e., at least 1650
words).

EDITOR’S DESK

There is a little fine print with regard to eligibility for receiving a calculator; it follows. No individual author will be awarded more
than one calculator in a calendar year. In the case of multiple authors, the calculator will be awarded to the first listed author of
the winning article. An article which is part of a series will compete on its own merits with other articles in the issue. The total of
all articles in the series will not compete against the total of all articles in another series. Employees of Technical Marketing at
HP's Data Systems Division factory in Cupertino are not eligible to win a calculator.

All winners of calculators will be announced in the issue of the COMMUNICATOR/1000 in which their articles appear. Again, all
Feature Articles are judged by an impartial panel of three DSD Technical Marketing Engineers.

A SPECIAL DEAL IN THE OEM CORNER

When an HP 1000 OEM writes a Feature Article that is not only technically detailed and insightful but also application-oriented
as opposed to theoretical, then that OEM may ask that the article be included in THE OEM CORNER. A Feature Article included
in THE OEM CORNER may contain up to 150 words of pure product description as well as a picture or illustration of the OEM’'S
product or its unique contribution. HP's objective is twofold: (1) to promote awareness of the capabilities HP 1000 OEMs’
products among all HP 1000 users; and, (2) to publish an article of technical interest and depth.

IF YOU'RE PRESSED FOR TIME . ..

If you are short of time, but still have that urge to express yourself technically, don't forget the COMMUNICATOR/1000 BIT
BUCKET. It's the perfect place for a short description of a routine you've written or an insight you've had.

THE MECHANICS OF SUBMITTING AN ARTICLE

If at all possible please submit an RTE File containing the text of your article recorded on a Minicartridge (preferrably) or on a
paper tape along with the line printer or typed copy of your article. This will help all of us to be more efficient. The Minicartridge
will be returned to you promptly. Please include your address and phone number along with your article.

All articles are subject to editorship and minor revisions. The author will be contacted if there is any question of changing the
information content. Articles requiring a major revision will be returned to the author with an explanatory note and suggestions
for change. We hope not to return any articles at all; if we do, we would like to work closely with the author to improve the article.
HP does, however, reserve the right to reject articles that are not technical or that are not of general interest to
COMMUNICATOR/1000 readers.

Please submit your COMMUNICATOR/1000 article to the following address:
Editor, COMMUNICATOR/1000
Data Systems Division
Hewlett-Packard Company
11000 Wolfe Road

Cupertino, California 95014
USA

The Editor looks forward to an exciting year of articles in the COMMUNICATOR/1000.
With best regards,

The Editor

USER’S QUEUE

LOCUS CHANGES AND ADDITIONS

This article updates the Data Systems LOCUS Program catalog (22000-90099). The following changes have been made in
existing LOCUS programs.

The “DBLST-RTE2/3 Image Data Base Information Lister” program has been revised. It is now available on
minicartridge:

22682-13380 Minicartridge $35.00

The "F8-Fairchild F-8 Assembler for the HP2100-21MX" program has been revised. It is now available on
minicartridge:

22682-13381 Minicartridge $35.00

The “MEMAL-RTE2 Memory Allocation Diagram’ program has been revised. It is now available on
minicartridge:

22682-13383 Minicartridge $40.00

The "ENTPT--Alphabetic List of Entry Points in RTE-2” program has been revised. It is now available on
minicartridge:

22683-13302 Minicartridge $40.00
The "PASCAL-S Compiler/Interpreter” program has been revised. It is now available on magnetic tape:

22683-10905 800 bpi Magnetic Tape $70.00
22683-11905 1600 bpi Magnetic Tape $70.00

The new contributed programs listed below are now available in LOCUS. Contact your local HP sales office to order
Contributed Library programs (see LOCUS ORDERING INFORMATION at the end of this article).

22683-XXX24 RDWRT

“"RDWRT" is a complete program which demonstrates the mass storage and file handling capabilities
of the HP 1000 when used with the 3582A Spectrum Analyzer. Supplied with the package is a user
program which prompts the operator to respond to the commands shown below:

SD — SAVE THE DISPLAY BUFFER IN A DISC FILE

ST — SAVE THE TIME BUFFER IN A DISC FILE

RD — RESTORE THE DISPLAY BUFFER TO THE 3582A FROM A DISC FILE
RT — RESTORE THE TIME BUFFER TO THE 3582A FROM A DISC FILE

The program allows the raw time waveform or the transformed frequency domain waveform from the
3582A to be stored in an HP 1000 disc file. At some time later these files may be restored to the
instrument for comparison or they can be re-analyzed. The program allows:

1. storage and retrieval of frequency spectra.

2. storage and retrieval of the original time waveforms for
a. later analysis,

USER’S QUEUE

22683-XXX25

22683-XXX26

22683-XXX27

22683-XXX28

b. later analysis of the experiment using different transfer functions (Flat Top, Hanning, or
Uniform) or,

c. modification or preprocessing of the time waveform (i.e., passing it through a simulated filter)
before spectrum analysis.

22683-13324 Minicartridge $40.00
SHEMA

This program allows any number of EMA programs to share as much physical memory that is allowed in
any given configuration. This capability uses standard HP supplied software and requires only one
subroutine call in each program before EMA sharing can be done. The scheme developed for this
capability allows any program type to participate and does not make use of any other area of memory.
22683-13325 Minicartridge $40.00
IMBUI

Several functions and parameters are needed in fast neutron time-of-flight spectroscopy; they are
referred to as scatterer integrals. The following quantities are computed by IMBUI for a disc scatterer:

a) The neutron time-of-flight spectrum T (t4),

b) The distribution of scattering angles, B (8.).

¢) The distribution of primary neutron energies, F (E,),

d) The scattering probability, P, and

e) The integral ®.

22683-13326 Minicartridge $40.00
SYSTK

Enables message communication between two terminals in a MTM environment. Up to ten 80-
character message lines may be sent from one terminal to another. Control may be maintained at one
terminal or passed along with or without a message to the second terminal. Functions are determined
through four commands preceeded by a program prompt (?):

1) TEXT — Read the current control TTY's message (Ten lines or a ?? at the start of a line returns the
prompt).

2) SEND — Output the current message buffer and retain control.
3) GIVE — Output the current message buffer (if any) and pass control to the next user.
4) END — Terminate SYSTK.

22683-13327 Minicartridge $40.00

SMESS

Enables system console (or initiator) to output a message to all TTY's in a MTM environment. Up to ten
80-character message lines may be sent via the TEXT/SEND command. The first message sent also
includes the Gregorian date and current time. SMESS functions are determined through three com-
mands preceeded by a program prompt (?):

7

USER’S QUEUE

22683-XXX29

22683-XXX30

22683-XXX31

1) TEXT —Read up to ten lines of message from the system console (or initiator). Ten lines or a ?? at
the start of a line returns the prompt.

2) SEND — Output the message to all online terminals.
3) END — Terminate SMESS.

22683-13328 Minicartridge $50.00

MESIO--Interactive /O Subroutines

Three subroutines which allow the user to perform interactive and/or batch I/O along with alpha to
numeric and numeric to alpha conversions.

MESIO — Outputs messages and accepts single or multiple entries according to several different
structures. Direct writes and reads are also supported for batch mode.

ATON — Interrogates any alpha string and returns either a real or integer value.
NTOA — Formats either real or integer numbers into an alpha string.

22683-13329 Minicartridge $50.00

CMPCT--Absolute Binary Compactor

Pack absolute binary code in records of up to 128 words in length. Arrange the load in ascending
memory location order. Provide a means to identify undefined areas and to selectively preset these
areas.

The binary input file is examined and a table having one bit for each word found is constructed. The
bounds and number of records found are output. If requested, this table is searched for undefined
strings and a list of the undefined strings is output on the selected logical unit.

The format of the listing is as foliows:

String number, size, decimal and binary begin and end. Following completion of the preset, the input
file is rescanned, retrieving N pages of data per scan. The data is then formed into binary absolute
records using the previously constructed table as a guide. The value of N in this version is set to four
(4096) but the user can change N if more or less memory is available.

22683-13330 Minicartridge $50.00

UNBLK--DEC RT-11 to HP RTE Source Converter

This program converts Digital Equipment Corporation (DEC) RT-11 source files on magnetic or paper
tape into HP RTE disc files. The original source can be FORTRAN, RT-11 assembler, text, data, or
results. The program converts carriage returns, line feeds, tabs, nulls, and apostrophes into accepta-
ble RTE syntax. However, there are other RT-11 peculiars that the program cannot resolve into
acceptable RTE format. Therefore, the user must further modify the resufting disc file as required.
However, much time is saved by autormatically converting most of the source first with this program.

USER’S QUEUE

22683-XXX32

22683-XXX33

22683-XXX34

22683-XXX35

22683-XXX36

This conversion also includes suggestion of an appropriate RTE disc file name based on the RT-11 file
name and extension (type). For FORTRAN files, the control statements FTN4,L,C and END$ are placed
at the beginning and at the end of the file, respectively.

22683-13331 Minicartridge $40.00

JKEYS--Define User Softkeys

This program allows the HP 264X terminal user to interactively define the contents of all softkeys and to
store the results in a file. The file can then be dumped to the terminal with a two line leader describing
each softkey. The program is completely self-explanatory and performs all necessary error checking.

22683-13332 Minicartridge $40.00

LDISC--FMP Corrupt File Analyzer

This program allows the user to analyze and verify the integrity of all files on a cartridge, for files that are
not of Types 0, 1, 2, or 6. The program opens each file and reads all records and reports any errorsto a
list device. A resulting statistical printout occurs showing such items as total storage, number of files,
average record length, and others. The program will also work for files contained on LU 2 and LU 3.

22683-13333 Minicartridge $40.00

DIRC--Edit FMP Disc Assigned Space

The DIRC program is an HP/1000 interactive RTE Fortran-1V program that is used to edit FMP assigned
disc space for 7900 and 7905 disc subsystems. The program permits disc file editing by sector by
addressing the file track and sector addresses. Disc file entries in the directory can be edited within
specified restrictions such as not permitting file address modifications.

22683-13334 Minicartridge $50.00

JFORM--CRT Forms Creator

This program allows the HP 264X terminal user to interactively create forms and store the result in an
FMP file. The program loads soft keys with various enhancement options that are used to create the
desired form. The program is self-explanatory and performs extensive error checking.

22683-13335 Minicartridge $40.00

RELIA--Inverse Assembler

This program will perform an inverse assembly of a relocatable module which can exist in an FMP file or
the disc-resident library. The relocatable code can be generated by an assembler or compiler and can
be input via an FMP Type 0 file. The program uses approximately 9.5K of memory and 3.5K of table size
for evaluating 700 unique symbols. The base page requirements are approximately 1000 octal. The
program can be scheduled interactively or from a RELIA command file. Included is a comprehensive
help processor which gives information on ail commands.

22683-10936 800 bpi Magnetic Tape $50.00
22683-11936 1600 bpi Magnetic Tape $50.00

9

USER’S QUEUE

22683-XXX37

22683-XXX38

22683-XXX39

22683-XXX40

22683-XXX41

FRSEQ--Fortran Source Label Resequencing

This program accepts Fortran source language statements and sequentially resequences all statement
labels as they occur in columns 1 through 5. The program is interactive and the resulting output is also
printed on the terminal. The only syntax check performed in the area of errors is to check for an
undefined label.

22683-10937 800 bpi Magnetic Tape $50.00
22683-11937 1600 bpi Magnetic Tape $50.00

DISC--Disc Track Configuration Printout

This program locates the physical disc track map table entry point ($TB32) on disc and then proceeds
to print a compact table of all defined disc subchannels ordered by subchannel number. The program
requires no interactive input, but checks for a corrupt system.

22683-13338 Minicartridge $40.00

LOADR--RTE2 Interactive Relocating Loader

"LOADR” is a RTE-Il interactive relocating loader. It reads relocatable code from any input device or
FMP file and produces an absolute load module that is ready for execution. In addition to its linking
functions, the LOADR'’s command parameter options may also be used to list all active programs in the
system, purge permanent programs, and add or replace permanent programs.

22683-10939 800 bpi Magnetic Tape $70.00
22683-11939 1600 bpi Magnetic Tape $70.00

CAMP--Motorola M6800 Assembler for the 2100/21MX

The program CAMP runs on an HP 2100 or 21MX series computer and assembles Motorola M-6800
microprocessor source code. It is a two-pass assembler which will run in a DOS, RTE, or BCS
environment. An 8K computer is required for BCS, and 16K for DOS.

The input to CAMP is a paper tape source containing symbolic language instructions. The output is a
line printer (or TTY) listing of the symbol table, the code generated by the assembler, and the source
code. The tape punch output (formatted output) is ready for loading. This is a modified version of a
previously contributed assembiler for the Intel 8080 microprocessor.

22683-13340 Minicartridge $40.00

UCU--Users' Code Utility

This group of five utility programs aid in housekeeping of files stored in FMP disc files under RTE. A two
character user code can be attached to each file (UCODE), the FMGR directory can be selectively
listed (ULIST,ALIST), file names having common UCODEs can be collected (UFILE) or directory sorted
in order of file size (BLIST).

UCODE is an interactive program that adds a character pair (UCODE) to a type 3, 4, or 5 file. The
UCODE is stored in the directory in the place normally used for record size in type 2 and type 6 files.

10

USER’S QUEUE

22683-XXX42

22683-XXX43

22683-XXX44

ULIST is a program which can selectively list the file names in the file directory, with their associated
UCODES.

ALIST is similar to ULIST except an in-core sort is performed before listing.
BLIST provides a directory list of the file names in order of size of each entry in blocks.

22683-13341 Minicartridge $70.00

PURGE--FMGR File Purge Utility

Program PURGE is an RTE utility program which allows the user to quickly purge a group of files with
similar names. If the user wishes to purge %FILE1, &FILE1, #FILE1, FILE1, he enters "-FILE1" as the
gualifier. If he wishes to purge all files beginning with the characters XYZ, he can enter "XYZ---". It does
not work on the system LU’s (LU 2 or LU 3). Before a file is purged, a message is printed so that the
operator is sure of what is about to be purged.

22683-13342 Minicartridge $40.00

GSAVE/GRSTR--Disc LU Save/Restore

GSAVE, GSAV2, GRSTR, GRST2 are RTE utility programs which save (verify) and restore (verify) any
file manager disc cartridges. GSAVE (GSAV2) allows from one to twenty disc LU’s to be save to mag
tape with a minimum of operator entry. The operator enters the string of disc LU's and the starting mag
tape file number. The program then saves and verifies each disc LU, prints appropriate messages to
the TTY, and in the event of a verify error, it will automatically proceed to the next LU (after printing a
message to that effect). It also creates its own header with TBG time, date, LU number, CR number, CR
label, first FMGR track, and the next available track.

GRSTR (GRST2) will selectively retrieve a GSAVE file from tape and restore it to any disc LU. It will
restore a different LU, different size LU, or a different system. In the event that the destination disc LU is
not large enough, GRSTR will print a message and abort.

GSAVE/GRSTR use a 6144 word buffer, while GSAV2/GRST2 use a 2048 word buffer. These programs
do not work on LU 2 or LU 3.

22683-13343 Minicartridge $50.00

DL--Alphabetized Directory Listing

Program DL is an RTE utility program which will give an alphabetized directory listing on the line printer.
It works on any file manager disc LU (including LU 2 and LU 3), and will not modify the disc LU in any
way. It gives only one entry per disc file (i.e. no extents are shown). All of the following information is
listed:

1) File name

2) File type

3) Number of extents for this file

4) Total number of blocks in this file
5) Security code (alphanumeric)

1

USER’S QUEUE

22683-XXX45

In addition, the following information is listed in the header:

Cartridge label
LU number

CR number

Next FMGR track
Next sector

First FMGR track

DO A~ WN =
Bt AR NN

22683-13344 Minicartridge $50.00

RAT4--FTN4 Preprocessor
RAT4 is preprocessor which inputs RATFOR source code and produces FTN4 code. RATFOR is a
structured language which can be easily understood by anyone famiiiar with FORTRAN. It is described
in the following reference:

Kernighan, B. and Plauger, P., “Software Tools”, Addison-Wesley, 1976.

This version of RATFOR runs on an HP/1000 under RTE-IV, and requires a 22 page partition. It has a
built-in macro processor which allows user expansion of the language.

22683-10945 800 bpi Magnetic Tape $70.00
22683-11945 1600 bpi Magnetic Tape $70.00

LOCUS ORDERING INFORMATION

Starting May 15, 1979, the LOCUS programs are not orderable anymore by direct mail. Please direct all your orders to the
nearest sales office. These orders will be forwarded to Data Systems Division for further processing.

12

USER’S QUEUE

LETTER TO THE EDITOR

To the Editor:

Here is a Fortran-1V compile and load transfer file which | have found to be quite useful. Parameters are defaulted so that for a
single compile and load, one need only type

TR,*FTNCL,&FILE

For less simple cases, provision has been made for specifying the list unit, the compiler option string, command input for the
loader, and the file name or LU for the relocatable output.

18V,2,9,1H

HE

¢+ FTN4,COMPILE AND LOAD PROCEDURE FOR RTE-IV
e

:+ R.B. GILBERT

:#+ PRINCETON UNIVERSITY

:» VERSION OF 4/19/79

HE

:+ USAGE:

:+ TR,+FTNCL,P1,P2,P3,P4,P5

xS P1 IS THE SOURCE LU OR FILE

T e P2 IS THE LIST LU OR FILE (DEFAULTS TO USER’S CONSOLE OR
HE S TO LU 6 IF FMGR NOT SCHEDULED FROM A CONSOLE.)

R P3 IS THE COMPILER OPTION STRING (OPTIONAL)

S P4 IS THE LOADER COMMAND INPUT FILE OR LU

s PS IS THE RELOCATABLE OUTPUT FILE OR LU. (IF THE SOURCE
T e FILE NAME BEGINS WITH AN AMPERSAND, PS5 DEFAULTS TO THE
HE SOURCE FILE NAME WITH-THE FIRST CHAACTER CHANGED

S TO A PERCENT SIGN. PS5 MUST BE SPECIFIED IF THE

R SOURCE IS READ FROM AN LU
:+IF,5G,NE,,3

+ REPLACE FIRST CHAR OF SQURCE FILE NAME WITH A PERCENT SIGN.
:CA,5,16

:CA,-19:P,-35P,AND,377B,0R,22400B
:IF,2G,NE, ,S5

:# LIST LU WAS NOT SPECIFIED, DEFAULT IT.
:1IF,-40P,NE,1,2

:CA,2,06

:IF, ,EQ, ,1

:CA,2,6

RU,FTN4,1G6,2G,-,48,36

:# WE WILL SKIP LOADR IF THE COMPILE FAILS
:1F ,2P,EQ,0,1

. IF, ,EQ, ,1

:IF,3P,EQ,0,2

:AN, LOADR NOT EXECUTED DUE TO COMPILER ERROR
:IF, ,EQ, ,1

RU,LOADR,4G,56G, 26

:CN, 26

:SV,96, ,IH

:SE

Sincerely,

Richard B. Gilbert
Princeton University
James Forrestal Campus
Princeton, New Jersey

13

BIT BUCKET

oftware ¢~
amanthna < -

x4

Software Samantha

HP-1000 Communicator

Hewlett-Packard Data Systems Division

11000 Wolfe Road, Cupertino, California 95014

.
J

Dear Samantha,

| am somewhat puzzied by your response to Ranjana Shah's question regarding disc space on LU 2 and LU 3 (Volume 1i,
Number 6).

I agree that one should load and save programs on-line instead of permanently loading at generation. However, | do not see
how your suggested transfer file will serve to save space on LU 2. When a Type 6 file is RP'ed, the ID part of the file is copied to
a free ID segment. The program'’s disc address pointer (ID Word 26) is set to point to the beginning of the absolute program
code in the Type 6 file. Therefore, the Type 6 file is not truly “purged” as long as an ID segment points to it (FMGR does not
release that space). Furthermore, the PK command will generate an error if there are program ID segments which point to LU 2.

Sincerely,

Hans Abendschoen

HP Frankfurt

Dear Hans,

| stand corrected. It appears that there is no way to conserve space on LU 2 and LU 3 given a large number of Type 6 files
executing simultaneously. Thanks for your interest and keen attention.

Sincerely,

Samantha

14

BIT BUCKET

Inverse Relocatable Assembler For RTE and DMS

Larry W. Smith/HP Fullerton

Have you always wanted to know what the contents of a relocatable module looks like? Or, perhaps, has it always been
somewhat of a mystery as to what object code the FORTRAN compiler produces? This article will present a program that will
convert “any” relocatable module into assembly language source statements. The name of this program is RELIA. It was
developed by Roy Murphy of Hughes Aircraft Company, Culver City, and exhibits a rather complete set of features.

The term “inverse assembly” was given several years ago to that process which performs the opposite of a language translator
or assembler. A traditional inverse assembler converts relocatable (non-directly executable or non-linked) object code back
into source statements of a language, usually assembly language. Using two examples, this article will illustrate how the inverse
assembler RELIA operates in an RTE-IV, IIl, il, or M environment.

Earlier inverse assemblers were used in situations where source level conversion from one language to another was either
extremely difficult and/or prohibitively expensive. In some cases, they were written to recover original source code which was
lost or not easily obtainable. Although the resulting output of most compilers or assemblers usually results in a more condensed
(yet functionally equivalent) form where most of the source level identification such as comments are lost, it still could be more
feasible to work with the inversely assembled output rather than with the the condensed or object version. This is especially true
if changes need to be made.

The program RELIA has many useful features. Some of these include the ability to handle the entire EIG instruction set,
command files, module searching, and automatic record checksum. The program can be run interactively or from a previously
prepared command file. A comprehensive and thorough error analysis is made for all commands as they are received and the
operator 'BR’ command is recognized. If a command format and or its usage is forgotten, the help command ?? can be entered
to give information on a specific command or all commands. The program is completely self-contained, requiring no external
subroutines.

The following is a list of all commands available to RELIA:

?? - REQUEST INFO ON COMMAND CODE STRUCTURE

BS - BACKSPACE INPUT FILE TO BEGINNING OF CURRENT MODULE
CL - CLOSE THE CURRENT INPUT FILE

CR - CREATE AN DOUTPUT DISC FILE

EX - EXIT RELIA

FM - FIND MODULE IN CURRENT INPUT FILE

IA - DO INVERSE ASSEMBLY OF CURRENT INPUT FILE

LB - DD INVERSE ASSEMBLY OF DISC RESIDENT LIBRARY ROUTINE
LC - CHANGE COMMAND LU

LL - CHANGE LU OF OUTPUT LIST UNIT

LM - LIST MODULES

LD - CHANGE LOG LU

P1 - DO PASS 1 OF INVERSE ASSEMBLY

P2 - DO PASS 2 OF INVERSE ASSEMBLY

PA - LINE PRINTER PAGE EJECT

PU - PURGE A DISC FILE

RE - OPEN AN INPUT FILE

RW - REWIND INPUT FILE

SE - SEARCH FOR ENT NAME IN RELOCATABLE FILES

SN - SEARCH FOR PROGRAM NAME IN RELOCATABLE FILES
ST - PRINT SYMBOL TABLE OF CURRENT INPUT FILE

SX - SEARCH FOR EXT NAME IN RELOCATABLE FILES

TR - TRANSFER TO/FROM AN FMP COMMAND FILE

FOR MORE INFORMATION ON ANY COMMAND, TYPE:
??,<COMMAND CODE>

15

BIT BUCKET

The above printout was obtained by entering the help command "??. The numerous functions that can be performed on a
relocatable FMP file or directly on the disc-resident library are apparent. As an example, let's assume that you have a
relocatable file that contains several modules and you're not exactly sure what you have. The command ‘LM’ can be used to
scan the file and produce a listing of all modules along with entry points and external references. in order to do this, an FMP file
must first be opened. This requires the 'RE’ command, similar to the relocating loader. The complete console session with

operator inputs underlined is as follows:

:RU,RELIA

/RELIA RE,%XLUPRN::13

/RELIA THM

”

END OF FILE
/RELIA EXIT

The LM command produces an abbreviated listing with no inversely assembled source code. To obtain the inversely
assembled listing, the IA command could be used after first rewinding the file with the RW command.

1

NAM
ENT
EXT
EXT
EXT

NAM
ENT
EXT

NAM
ENT
EXT

NAM
ENT
EXT

NAM
ENT

NAM
ENT
EXT

LUPRN, 3,90

LUPRN
.MPY,.DIV,.DIO.,.I1O0.,.1AY.,.DTA.,EXEC
CLRIO,IOR,IAND,IO0ODVC,RMPAR,PAGE, IGET
DATE ,MEMSZ,DVICE

DVICE,7,99
DVICE
.MPY,.ENTR

DATE, 7,99
DATE
.MPY, .DIV, .ENTR

PAGE,7,99
PAGE
.ENTR,EXEC

1opve, 7,99
1abve

MEMSZ,7,99

MEMSZ
.ENTR,$MATA

16

BIT BUCKET

The following example demonstrates searching for NAM, EXT, AND ENT names on FMP cartridges. This capability allows the
user to mount a series of FMP cartridges and search one or all for a specific name. Assume that a cartridge contains all the RTE
relocatable modules for system generation. Let's further assume that you suspect there might exist duplicate NAM records in
more than one file. The following console session will illustrate how this can be done:

/RELIA SN,DSTAT (Search all mounted CRN’s for 'NAM DSTAT'")
SEARCHING LU #41
SEARCHING LU #2
SEARCHING LU #3
SEARCHING LU #42

ZGPSCM ON LU #42 CR #99
%ZFMPC ON LU #42 CR #99
%FMPC2 ON LU #42 CR #99
%DSTAT ON LU #42 CR #99

/RELIA SX,LOGLU (Search for "EXT LOGLU"™)
SEARCHTNG LU #41
SEARCHING LU #2
SEARCHING LU #3
SEARCHING LU #42

%DBUGR ON LU #42 CR #99
%4LDR ON LU #42 CR #99
%BAINT ON LU #42 CR #99
%ZGPSCM ON LU #42 CR #99
%ZGCBIM ON LU #42 CR #99

/RELIA SX,REID
SEARCHING LU #41
SEARCHING LU #2
SEARCHING LU #3
SEARCHING LU #42

%FF4.N ON LU #42 CR #99
AMSAFD ON LU #42 CR #99
%ZRLIB1 ON LU #42 CR #99
AZRLIB2 ON LU #42 CR #9°
%4SP01 ON LU #42 CR #99
%4SP02 ON LU #42 CR #99
%BMLIB ON LU #42 CR #99
%X4LDR ON LU #42 CR #99
%SDLS4 ON LU #42 CR #99
%SDS4 ON LU #42 CR #99
%BAIN1 ON LU #42 CR #99
%ZBASLB ON LU #42 CR #99

This program will soon be available from the Library of Contributed User Software (LOCUS) in the near future. Check with your
local Hewlett-Packard Sales Representative.

17

OPERATING SYSTEMS

BLOCKMODE INPUT WITH 264X SERIES TERMINALS

Frank Slootweg/HP Amstelveen, The Netherlands

The HP 264X Series CRT terminals give the user two different methods of performing blockmode input when using drivers
DVRO05 and DVAQS. These two modes of operation are LINE mode and PAGE mode.

Line Mode

In line mode, the terminal transmits one line at a time to the computer. The advantage of this method is that only small buffers
are required in System Available Memory (SAM) when performing input via re-entrant /O (REIO) or via Class /0. However, this
method has the following disadvantage: for each additional line of input data there is an overhead of two characters (ESCd) for
triggering the transmission of these lines to the computer.

This situation becomes even less optimal when multiple protected and unprotected fields are used per line because then only
one unprotected field (e.g. part of a line) at a time is transmitted to the computer.

Page Mode

In page mode, the terminal transmits all the data on the screen from the current cursor position to the end of memory or to the
next Record Separator, whichever occurs first. If the screen contains both protected and unprotected fields (e.g. format mode
is on), only the data in the unprotected fields will be transmitted to the computer. The advantage of this method is that the
transmission overhead is much less than it is for line mode. The disadvantages of page mode are:

e The subroutine REIO is limited to a maximum (input) buffer size of 260 characters. In many instances, the user's screen will
contain much more than 260 characters. If REIO is used with an input buffer of more than 260 characters, it will use the
"usual” method of performing input {(calling EXEC 1), which means that the calling program cannot be swapped out of its
partition during the input operation. Since it will take several minutes for an operator to input the data into the screen, this
non-swappable condition is normally unacceptable.

e IfClass I/O is used to overcome the 260 character limitation of REIO, ancther problem occurs. In this case during the time it
takes the operator to fill in the screen, a block of SAM will be allocated to the terminal. For example, if each screen contains

1000 characters of unprotected fields and the system has eight terminals, then 8000 bytes of SAM will be allocated to the
terminals nearly all of the time. Since SAM is a precious resource in RTE, this situation is also quite undesirable.

Alternate Methods

Unguestionably, it would be highly desirable to use only the advantages of each of the methods and to eliminate the
disadvantages. The alternate methods which will be described below are intended to realize these goals.

1. ALTERNATE METHOD FOR 2645A AND SIMILAR TERMINALS

This method is intended for 2645A and similar terminals (e.g. 2648A). A sample program A2645 appears in Figure 1. The
procedure is described below:

e Retrieve the LU number of the user's terminal (lines 38,39).

e |ssue an escape sequence to the terminal to put it in line mode and issues an update terminal configuration control
request to the driver in order to inform the driver of this change (lines 43,44).

18

OPERATING SYSTEMS

e Display the message “/A2645: BLOCKMODE WILL NOW BE SWITCHED ON" on the terminal for five seconds and
then sends an escape sequence to the terminal to turn on block mode (lines 48 through 51).

e Send escape sequences to the terminal to home-up the cursor, to clear the display, and to disable the keyboard (lines
55 through 57).

o Write the form to the screen. In this example, the form consists of unprotected fields #1 and #2 on the first line, and
fields #3 and #4 on the third and fifth lines respectively. All unprotected fields are thirty characters wide. The second
and fourth lines are blank. (lines 61 through 64).

® Send escape sequences to home-up the cursor, to turn on format mode, and to enable the keyboard (lines 69 through
71).

e [ssue a dummy read request of one word to wait until the operator has pressed the ENTER key. This read request
requires only a few words of SAM and if necessary, the program can be swapped out of its partition during the time it
takes the operator to fill in the screen.

e After the program continues (after the ENTER key has been pressed), disable the keyboard, home the cursor, switch
the terminal to page mode, and inform the driver of this change of status (lines 77 through 80).

e Perform a “program enabled block read” by first sending the escape sequence ESCd to the terminal foilowed by a
read operation with bits 9 and 10 of ICNWD set (lines 81 to 83). Note that for program enabled block read, the operator
does not have to press the ENTER key again since this function is performed by the ESCd sequence.

® For purposes of demonstration, write the transmission log and the contents of the input fields to the display (lines 88
through 95).

e Perform “clean-up” operations by switching the terminal back to line mode, informing the driver of this change,
enabling the keyboard, displaying a message, and switching off block mode (lines 100,108).

The described method has accomplished the following goals:

a) Only a few words of SAM are required during the operator input period (line 72).
b) The program is swappable during the operator input session.
¢) The transmission overhead is as low as possible.

The only “disadvantage” is that the program is not swappable during the actual data transmission time if the user's input
buffer is more than 260 characters. This is not critical since actual data transmission will typically take less than one
second.

ALTERNATE METHOD FOR 2640A/B TERMINALS

This method is intended for 2640A/B terminals which cannot be switched from line to page mode by program control.
However, this method is transportable to the 2645A and similar terminals. An example program B2640 appears in Figure 2.
The major differences between A2645 and B2640 are highlighted below.

® The terminal is hardware-strapped for page mode (switch D on the Keyboard Interface Card is open). If this strap is
never changed during on-line operation, the update terminal configuration control request in line 37 is not necessary.

Switch E on the Keyboard Interface is in the open position (pressing CNTL is not required when using the function
keys).

® The operator is asked to press down the block mode switch (lines 42 through 44).

19

OPERATING SYSTEMS

e The program waits/loops until the F1 function softkey has been pressed. in this case, this key performs the equivalent
of the normal “ENTER” function.

e The operator must manually release the block mode switch.

Conclusion

With a little special programming, the user can take full advantage of the versatile features of both the 264X series of terminals
and the RTE operating system to accomplish a very efficient method of performing block mode input.

0001 FTN4,L

0002 PROGRAM A2645S

0003 ¢C

0004 C PROGRAM TO DO BLOCK/PAGE MODE INPUT WITH A 2645A TERMINAL.

000S C

0006 C WRITTEN BY FRANK SLOOTWEG , HP/AMSTELVEEN, THE NETHERLANDS , 11DEC78
0007 C

0008 DIMENSION IBUF1(¢100),LUCS),ILOG(5)

0009 INTEGER HOME(2),CLEAR(2),KBDOF (2),KBDON(2),FMTONC2) ,FMTOF (2)

0010 INTEGER ESCD(2),PAGE(3),LINE(3),BLKONC(3),BLKOF(3),STRTUN,ENDUN
0011 DATA HOME/15550B,57440B/,CLEAR/15512B,57440B/ ,KBDOF /15543B,57440B/
0012 DATAKBDON/15542B,57440B/ ,FMTON/15527B,57440B/ ,FMTOF /15530B,57440B/
0013 DATA ESCD/15544B,57440B/ ,PAGE/15446B,71461B,42137B/

0014 DATA LINE/15446B,71460B,42137B/,BLKON/15446B,65461B,41137B/

0015 DATA BLKOF/15446B,65460B,41137B/,STRTUN/15533B/ ,ENDUN/15535B/

0016 C

0017 ¢C THE FOLLOWING TERMINAL/DISPLAY CONTROL FUNCTIONS ARE AVAILABLE
0018 C IN ARRAYS WITH THE NAMES

0019 C

0020 C HOME IS ESC h (LITTLE H) CURSOR HOME

0029 C CLEAR IS ESC J CLEAR DISPLAY

0022 ¢C KBDOF IS ESC ¢ (LITTLE C) DISABLE KEYBOARD

0023 C KBDON IS ESC b (LITTLE B)Y ENABLE KEYBOARD

0024 C FMTON IS ESC W FORMAT MODE ON

0025 C FMTOF IS ESC X FORMAT MODE OFF

0026 C ESCD IS ESC d (LITTLE D) BLOCK TRANSFER ENABLE FROM COMPUTER
0027 C PAGE IS ESC &s1D (LITTLE S) SET KEYBOARD INTERFACE SWITCH D TO
0028 C PAGE MODE

0029 C LINE IS ESC &s0D (LITTLE S)> SET KEYBOARD INTERFACE SWITCH D TO
0030 C L INE MODE

0031 C BLKON IS ESC &k1B (LITTLE K> SET BLOCK MODE ON

0032 C BLKOF IS ESC &k0B (LITTLE K> SET BLOCK MODE OFF

0033 C STRTUN IS ESC [START UNPROTECTED FIELD

0034 C ENDUN IS ESC 1] END UNPROTECTED FIELD

0035 C

0036 C GET LU NUMBER OF TERMINAL

0037 C

0038 CALL RMPARCLU)D

0039 IFCCLU.LT.1).0R.CLU.GT.63)) LU=1

0040 C

0041 C SWITCH TERMINAL TO LINE MODE AND UPDATE TERMINAL CONF IGURATION
0042 C

0043 CALL REIO(C2,LU,LINE,-6)

0044 CALL EXEC(3,LU+2500B)

0045 C

0046 C DISPLAY MESSAGE FOR FIVE SECONDS , THEN TURN ON BLOCK MODE

20

OPERATING SYSTEMS

0047
0048
0049
0050
0051

0052
0053
0054
005S
0056
0057
0058
0059
0060
0061

0062
0063
0064
0065
0066
0067
0068
0069
0070
0071

0072
0073
0074
0075
0076
0077
0078
0079
0080
0081

0082
0083
0084
0085
0086
0087
0088
0089
0090
0091

0092
0093
0094
0095
0096
0097
0098

1000

OO0

OO0

1010

1020

OO0OO0

OO0

OOOO0

1030

1040

OO0 N

WRITECLU,1000)

FORMAT("/A2645: BLOCKMODE WILL NOW BE SWITCHED ON !'')
CALL EXEC(12,0,2,0,-5)

CALL REIOC(2,LU,BLKON,-6)

HOME CURSOR , CLEAR DISPLAY AND DISABLE KEYBOARD
CALL REIO(2,LU,HOME,-3)

CALL REIOC(2,LU,CLEAR,-3)

CALL REIOC(C2,LU,KBDOF ,-3)

WRITE THE FORM TO THE SCREEN

WRITECLU,1010)STRTUN,ENDUN,STRTUN, ENDUN

FORMATC"FIELD 1 : ",A2,30X,A2,"FIELD 2 : *,A2,30X,A2)
WRITECLU,1020)STRTUN, ENDUN,STRTUN, ENDUN
FORMAT("FIELD 3 : ",A2,30X,A2,//,"FIELD 4 : *,A2,30X,A2)

HOME CURSOR , TURN FORMAT MODE ON , ENABLE KEYBDARD AND WAIT FOR
THE ENTER KEY TO BE PRESSED

CALL REIOC2,LU,HOME,-3)
CALL REIO(2,LU,FMTON,-3)
CALL REIO(2,LU,KBDON,-3)
CALL REIOC1,LU,IDUMY,-2)

DISABLE KEYBOARD , HOME CURSOR , SWITCH TERMINAL TO PAGE MODE ,
UPDATE TERMINAL CONFIGURATION AND DO A PROGRAM ENABLED BLOCK READ

CALL REIOC(2,LU,KBDOF,-3)

CALL REIOC2,LU,HOME,-3)

CALL REIO(2,LU,PAGE,-6)

CALL EXEC(3,LU+2500B)

CALL REIO(2,LU,ESCD,-3)

CALL REIOC1,3000B+LU,IBUF1,-200)
CALL ABREG(IA,IB)

TURN FORMAT MODE OFF , WRITE TRANSMISSION LOG AND INPUT FIELDS TO
DISPLAY

CALL REIOC2,LU,FMTOF,-3)
WRITE(LU,1030)IB

FORMAT(/,"/A2645: LOG = ",I16)
WRITECLY,1040)

FORMATC("FIELDS 1 THROUGH 4 ARE :',/)
DO 4S5 I=1,4

CALL REIO(2,LU,IBUF1(¢C(I-1)%15+1),-30)
CONT INUE

SWITCH TERMINAL TO LINE MODE , UPDATE TERMINAL CONFIGURATION ,
ENABLE KEYBOARD , TURN BLOCK MODE OFF AND FINISH

21

OPERATING SYSTEMS

0099
0100
0101
0102
0103
0104
010S
0106
0107
0108

0001
0002
0003
0004
000S
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044

1050

1060

FTN4,L

OO0

sXoNoNoNeoNoNoNoNoNoNoNoRoN e NeNe]

o NoNoNoNe!

OO0

1000

CALL REIDC(2,LU,LINE,-6)

CALL EXEC(3,LU+2500B)

CALL REID(2,LU,KBDON,-3)

WRITECLU,1050)

FORMAT("/A2645: BLOCKMODE WILL NOW BE SWITCHED OFF AGAIN 1)
CALL REIOC2,LU,BLKOF,-6)

WRITE(LU,1060)

FORMAT(/,"/A2645: END",//)

END

Figure 1

PROGRAM B2640

PROGRAM TO DO BLOCK/PAGE MODE INPUT WITH A 2640B TERMINAL.

WRITTEN BY FRANK SLOOTWEG , HP/AMSTELVEEN, THE NETHERLANDS , 11DEC78

DIMENSION IBUF1¢100),LU(5),IL0OG(5)

INTEGER HOME(2),CLEAR(2),KBDOF(2),KBDON(C2),FMTONC2),FMTOF(2)
INTEGER ESCD(2),STRTUN, ENDUN

DATA HOME/15550B,57440B/,CLEAR/15512B,57440B/ ,KBDOF /15543B,57440B/
DATAKBDON/15542B,57440B/ ,FMTON/15527B,57440B/ ,FMTOF /15530B,57440B/
DATA ESCD/15544B,57440B/,STRTUN/15533B/ ,ENDUN/15535B/

THE FOLLOWING TERMINAL/DISPLAY CONTROL FUNCTIONS ARE AVAILABLE
IN ARRAYS WITH THE NAMES

HOME IS ESC
CLEAR IS ESC
KBDOF IS ESC
KBDON IS ESC
FMTON IS ESC
FMTOF IS ESC
ESCD IS ESC
STRTUN IS ESC
ENDUN IS ESC

(LITTLE H) CURSOR HOME
CLEAR DISPLAY
(LITTLE C> DISABLE KEYBOARD
(LITTLE B) ENABLE KEYBOARD
FORMAT MODE ON
FORMAT MODE OFF
(LITTLE D> BLOCK TRANSFER ENABLE FROM COMPUTER
START UNPROTECTED FIELD
END UNPROTECTED FIELD

-0 xXEOOCT

GET LU NUMBER OF TERMINAL

CALL RMPAR(LU)>
IFCCLU.LT.1)>.0R.(LU.GT.63)) LU=1

UPDATE TERMINAL CONFIGURATION TO BE SURE THAT THE DRIVER KNOWS
THAT THE TERMINAL IS STRAPPED FOR PAGE MODE (SWITCH/STRAP D

ON KEYBOARD INTERFACE IS OPEN/NOT-INSTALLED)

CALL EXEC(3,LU+2500B)

DISPLAY MESSAGE FOR FIVE SECONDS TO ALLOW OPERATOR TO PRESS DOWN
THE BLOCK MODE SWITCH

WRITECLU,1000)
FORMAT("/B2640: PLEASE PRESS DOWN BLOCK MODE SWITCH!*")
CALL EXEC(12,0,2,0,-5)

22

OPERATING SYSTEMS

0045
0046
0047
0048
0049
0050
0051

0052
0053
0054
0055
0056
0057
0058
0059
0060
0061

0062
0063
0064
0065
0066
0067
0068
0069
0070
0071

0072
0073
0074
0075
0076
0077
0078
0079
0080
0081

0082
0083
0084
0085
0086
0087
0088
0089
0090
0091

0092
0093
0094
0095
0096
0097
0098

o NeNe]

O0O00

1030

1040

OO0 b

1050
1060

HOME CURSOR , CLEAR DISPLAY AND DISABLE KEYBOARD
CALL REIOC2,LU,HOME,-3)

CALL REIOC2,LU,CLEAR,-3)

CALL REIOC2,LU,KBDOF,-3)

WRITE THE FORM TO THE SCREEN

WRITECLU,1010)STRTUN,ENDUN,STRTUN, ENDUN

FORMAT("FIELD 1 : ",A2,30X,A2,"FIELD 2 ; *“,A2,30X,A2)
WRITECLU,1020)STRTUN,ENDUN, STRTUN,ENDUN
FORMAT("™F IELD 3 : *,A2,30X,A2,//,"FIELD 4 : ",A2,30X,A2)

HOME CURSOR , TURN FORMAT MODE ON , ENABLE KEYBOARD AND WAIT FOR
THE "F1' FUNCTION KEY TO BE PRESSED

CALL REIOC2,LU,HOME,-3)

CALL REIOC(2,LU,FMTON, -3)
CALL REIOC2,LU,KBDON,-3)
CALL REIOC1,LU,IDUMY,-2)

CHECK FOR RIGHT FUNCTION KEY , IF WRONG KEY THEN IGNORE INPUT
IFCIDUMY.NE.15560B> GOTO 10
DISABLE KEYBOARD , HOME CURSOR AND DO A PROGRAM ENABLED BLOCK READ

CALL ReIOC2,LU,KBDOF ,-3)

CALL REIOC2,LU,HOME,-3)

CALL REIOC2,LU,ESCD,-3)

CALL REIOC1,3000B+LU,IBUF1,-200)
CALL ABREG(IA,IB)

TURN FORMAT MODE OFF , WRITE TRANSMISSION LOG AND INPUT FIELDS TO
DISPLAY

CALL REIOC2,LU,FMTOF ,-3)
WRITECLU,1030)IB

FORMAT(/,*/B2640: LOG = ",I6)
WRITECLU,1040)

FORMATC"FIELDS 1 THROUGH 4 ARE :",/)
DO 45 1=1,4

CALL REIOC2,LU,IBUF1C¢C(I-1)%15+1),-30)
CONTINUE

ENABLE KEYBOARD AND FINISH

CALL REIOC2,LU,KBDON,-3)

WRITECLU,1050)

FORMAT("/B2640: PUT BLOCK MODE SWITCH BACK IN UP-PQSITION !')
WRITECLU,1060)

FORMATC(/,'"/B2640: END",//)

END

Figure 2

23

OPERATING SYSTEMS

“TWEAKING” INTERNALS

Harvey Bernard/HP Rockville
There are two types of HP 1000 programmers: those who make use of the operating system through standard methods, and
those who are content only when they can “tweak” the internals of the system. | suspect many of our “standard” users would
secretly delight in a bit of tweaking and are envious of their counterparts, the “systems types.” This article is for those of us in
the former class, who, Walter Mitty-like, dream about *'going privileged” or “doing our own mapping” and other fantastic things.
We will reference the code in Figure 1 by number throughout this article.

Map driver partition into ADDVR's address space:

———— DX $DLTH Get driver partition size
I LDA D32
ADA $DVPT Compute 1st ADDVR driver partition page
[LDB $DVMP Get 1st physical page of driver
ADB EQTN partition to be written into
L LDB 1,1 B-Reg = Physical page
[SSB Skip if driver in driver partition
JMP N1 Driver resides in SDA, no special mapping
[JSB $LIBR Turn memory protect off
—— Nop
L XMS Map driver partition into user's address
@ l LDA SBUF Save user map into temp buffer
usa Save map
LDA D33 Map Reg(1) = Map Reg(0) to access hidden BP
LDB LBUF,] Get Map Reg(0)
LDX B1 Change 1 Reg
XMS
LDA LBUF Move temp buffer to system DMS bufter
LDB B3740 in hidden base page
MVW D32
@ I LDA LBUF Restore user map from temporary buffer
USA
JSB s$LIBX Turn memory protect back on
DEF #+1
DEF #+1
N1 NOP
B1 0cT 1

D32 DEC 32
D33 DEC 33
B3740 0OCT 3740

EQTN NOP ‘
\LBUF DEF BUFF Set up to load from BUFF with USA
_SBUF DEF BUFF,] Set up to store to BUFF with USA

BUFF BSS 32

Figure 1
24

OPERATING SYSTEMS

This tricky little specimen was written by David Hoffman of Data Systems Division to supplement a program used in the “Driver
Writing" course. Putting ourselves in Dave’s place, we will try to develop the same code from scratch.

The problem is as follows: A program called ADDVR, written for RTE-IIl (originally written by Gary McCarney, HP Rockville),
allows a user to overwrite an RTE driver with the absolute code of a user written driver on-line for the purpose of testing it.
However, unlike RTE-Il, RTE-IV maps in the driver a program needs only when it needs it. Hence, to convert ADDVR for RTE-IV,
we need to map the driver to be overwritten into ADDVR's 32 page address space. More precisely, we need to put the page
numbers of the appropriate driver partition into the right mapping registers. Figure 2 illustrates our objectives.

PHYSICAL MEMORY

USER PARTITION M{1<M<64)

. 32-REGISTER
. USER MAP

USER PARTITION 1(& USER BP)

SAM EXTENSION ADDVR (TYPE 3)

MEMORY RESIDENT PROGRAMS

RESIDENT LIBRARY TABLE AREA 11

|
: w
MEMORY RESIDENT BASE PAGE }
DRIVER PARTITION N {INCLUDES SYSTEM DRIVER | W
DRIVER TO BE OVERWRITTEN) AREA :
® BG COMMON

DRIVER PARTITION 2

SYSTEM AVAILABLE MEMORY

OPERATING SYSTEM $DVPT DVROS e
—_——
SAM
TABLE AREA I]
SYSTEM DRIVER AREA TABLE AREA |
BACKGROUND DISC RESIDENT
REAL-TIME BASE PAGE
SUBSYSTEM GLOBAL AREA BEFORE DOING OUR MAPPING
DRIVER 1S MAPPED IN TO ALLOW
DRIVER PARTITION 1 CRT INPUT TO ADDVR.

SYSTEM AVAILABLE MEMORY

TABLE AREA |

SYSTEM BASE PAGE

AFTERWARDS
DRIVER TO BE OVERWRITTEN IS
MAPPED IN.

Figure 2
25

OPERATING SYSTEMS

Having defined our objectives, we will need the following manuals: “RTE-IV Programmer’s Reference Manual” (Rev. 1840), to
show us how driver partitions and the base page are structured (I will refer to this manual as “"RTE-IV"); “RTE-IV Student
Workbook” for the Advanced RTE course, to describe various system entry points (this will be reterenced as the "Workbook™);

and finally, the “21MX-E (or F) Series Computer Operating and Reference Manual” (to be referred to as “21MX-E"), and used to
explain dynamic mapping.

Now we can plan our attack. When the user runs ADDVR, he passes the program the LU of the driver to be overwritten, so that
we can obtain the corresponding EQT from the Device Reference Table (see page V-7 of "RTE-IV”). Then we can find the page
number of the correct driver partition from the Driver Mapping Table (DMT). Refer to Figure 3.

DRIVER MAPPING TABLE
16 14 13 12 11 0 9 8 ? 6 5 4 3 2 1 O

— 1 SD IRESERVED) ™M
2 sD (RESERVED) M
k]
WORD 1 SD (RESERVED) M
OF DMT
ENTRY _ .
FOR
EQT .
ENTRY:
L]
L. N [s] (RESERVED) M
1 MR (RESERVED) P
2 MR (RESERVED) P
WORO 2
OF DMT .
ENTRY N
FOR
EQT ¢
ENTRY
L 3

L N ;MF\‘ (RESERVED) 3 j

WHERE:
sb = 0 IMPLIES DRIVER RESIDES IN A DRIVER PARTITION, AND
M = STARTING PAGE NUMBEHA OF PARTITION IN BITS 0-9
SO = 1 IMPLIES DRIVER RESIDES IN SYSTEM DRIVER AREA, AND
M = 0 IMPLIES DRIVER NOT DOING ITS OWN MAPPING
M =1 IMPLIES DRIVER DOING ITS OWN MAPPING
MR = 1 IMPLIES THAT THE 1/0 REQUEST BUFFER 1S LOCATED IN
A MEMORY RESIDENT PROGRAM.
(P VALUE NOT SIGNIFICANT — RESERVED FOR FUTURE USE)
MR = O IMPLIES THAT THE 1/O REQUEST BUFFER 18 NOT LOCATED
IN A MEMORY RESIDENT PROGRAM. BUFFER LOCATION IS
INDICATED BY THE VALUE OF P, AS FOLLOWS:
P=0 IMPLIES BUFFER IS IN THE SYSTEM AREA
P NOT ZERO IMPLIES BUFFER IS LOCATED IN A DISC
RESIDENT PROGRAM. P IS THE PHYSICAL
PAGE NUMBER OF THE PROGRAM'S BASE PAGE
N = NUMBER OF EQT ENTRIES IN SYSTEM (BP 1651}
$DVMP = ADDRESS OF DRIVER MAPPING TABLE
$OVPT = LOGICAL START PAGE OF DRIVER PARTITION
$DLTH = $ PAGES PER DRIVER PARTITION

Figure 3
26

OPERATING SYSTEMS

The entry in the DMT tells us whether the driver is in SDA (System Driver Area) or in a driver partition. If in SDA, our job is done,
because ADDVR is a Type 3 program and therefore has SDA already mapped in. Otherwise, the DMT entry gives us the starting
page number of the driver partition.

“How do we find the DMT?", you ask. On page 3-8 of our “Workbook’ we find the system entry point $DVMP pointing to it. Voila!
Below is the code to get the DMT entry and check for SDA.

LDB $DVMP

(No. 3, Fig. 1) ADB EQTN Get right entry
LDB 1,1

(No. 4) SSB Check for SDA.
JMP N1

Okay, that was easy. Now let's track down the appropriate mapping registers for our driver parition. Figure 4 demonstrates the
mapping registers numbering scheme.

177g 12719
PORT B MAP
140 {32 REGISTERS) 9%
137 95
PORT A MAP
100 {32 REGISTERS) 64
77 63
USER MAP
40 A (32 REGISTERS) 12
37 31
SYSTEM MAP
(32 REGISTERS)
0 Iy(0
BASE PAGE

Figure 4

The number of registers needed to map the entire driver partition carresponds to the number of pages in the partition, which
according to our "Workbook is contained in $DLTH. Typically, this length will be two, which is the default size set at system
generation.

(No. 1) LDX $DLTH

Slowly, the pieces are beginning to fit together.

According to our "Workbook” on page 3-8, $DVPT contains the relative page number of the driver partition in the user map (see
Figure 2). Hence, 32+$DVPT should give us the right register number. Here is the code:

(No. 2, Fig. 1) LDA D32
ADA $DVPT

27

OPERATING SYSTEMS

All we need is one super instruction to put the right numbers in the right places. It just so happens

XMS TRANSFER MAPS SEQUENTIALLY

15[1413 12[1110 9|8 7 6|5 4 3|2 1 0
1[0]ofo]1

The XMS instruction works as follows:

USER MAP REGISTERS DMT
[]
[]
[]
PAGE # OF DRIVER PT'N -€— 1 EQTN
XMS |
[
PAGE # + 1 | +

$DLTH |

PAGE # OF DRIVER PT'N |

-

A A
32+$DVPT — L sovwmp

All we have to do to make the instruction XMS perform is to load the A, B, and X registers as in Numbers 1, 2, and 3 in Figure 1.

There is one hitch. As “21MX-E" indicates, XMS is a "privileged instruction”; that is, it will generate a DM (dynamic mapping)
error in normal mode. To suppress the DM violation interrupt we need to turn off the interrupt system. On page X-3 of “RTE-IV”
we find a powerful system library routine, $LIBR, which will do this for us. Below is the correct format:

(No. 5) JSB $LIBR
NOP
XMS

We would be finished tweaking but for one small detail. RTE saves a copy of the user map in what has become known as “the
hidden base page,” which is the upper 32 words of the user or local base page (see page V-15 of "RTE-IV"). In this way, the
system does not have to rebuild the user map after each external interrupt. To be consistent with this procedure we must store
our recently created user map in our partition's base page. Unfortunately, the 32 words in question are truly "hidden.” As Figure

5 illustrates, the logical base page consists of a portion of the system base page (see A) and part of the user's base page (see
B).

No matter how we try to access the upper 32 words of the physical base page (C of Figure 5), instead we get the system
communication area. As explained in “21MX-E,"” the culprit is the “base page fence,” preventing our entrance to the upper part
of the base page. In that case, let us enter through the back door. Hypothesize page 51 to be the user's base page and
consider the following diagram:

28

OPERATING SYSTEMS

SYSTEM'S PHYSICAL
BASE PAGE (PAGE 0)

SYSTEM
COMMUNICATION

| unmAPPED
PORTION

DRIVER/SSGA,
TABLE AREA LINKS

SYSTEM LINKS
1/0 TRAP CELLS

BASE PAGE STRUCTURE

USER LOGICAL
BASE PAGE

SYSTEM
COMMUNICATION

DRIVER/SSGA,
TABLE AREA LINKS

USER BASE PAGE

Figure 5

USER PROGRAM’'S
PHYSICAL BASE PAGE

COPY OF THE
USER MAP
{32 WORDS)

RESERVED

MAPPED
PORTION

USER BASE PAGE

By moving our new 32-word map into logical page 1 (see previous diagram), we will not be hindered by the base page fence.
Furthermore, moving itto location 3740 octal (as illustrated) will move it, in reality, to the upper 32 words of the local base page.

PAGE 1

PAGE O

USER MAP

PHYSICAL PAGE #51

PHYSICAL PAGE #51

29

-¢———LOGICAL ADDRESS 3740

OPERATING SYSTEMS

STEP ONE to accomplish our task is to write our user map into a memory buffer. We use the instruction

USA LOAD/STORE USER MAP PER A
15114 13 12]1110 918 7 6|5 4 3]2 1 ¢

Blof K

The code is:
(No. 6) LDA SBUF
usa
where
(No. 12) SBUF DEF BUFF,I
BUFF BSS 32

STEP TWO is to move the contents of register 32 (user map--base page) to register 33 (page 1) using the XMS instruction as
shown below:

LDA D33
(No. 7 and 11) LDB LBUF,I
LDX B1
XMS

STEP THREE is to move the 32-word memory buffer to address 3740.
(No. 8 and 11} LDA LBUF

LDB B3740
MVW D32

and we have saved the user map on the “hidden base page!”

All that remains is to restore our former user map . . .

(No. 9) LDA LBUF
USA

and turn the interrupt system back on
JSB $LIBX

(No. 10) DEF #+1
DEF #+1

(See page X-3 of “RTE-IV")
and ADDVR can overwrite the driver of its choice to its heart's content.

| hope this article has been enlightening and perhaps enjoyable. Looking back at Figure 1 you can see that everything we have
discussed happened in thirty lines of code. The entire matter is quite straightforward, isn't it?

30

OPERATING SYSTEMS

References:

1. "RTE-IV Programmer's Reference Manual”, 92067-90001, Rev. 1840.
2. “RTE-IV Student Workbook” for the Advanced RTE Course, 22999-90200, Print Date August 1978.

3. "21MX-E Series Computer Operating and Reference Manual”, 02109-90014, Print Date August 1977,

31

COMPUTATION

A METHOD FOR SMOOTH CURVE FITTING

Larry W. Smith/HP Fullerton

A number of HP 1000 users have expressed the need for a good point-to-point curve fitting routine. Since there is not an HP

designed routine nor a contributed one in LOCUS, | have done considerable research and found a method that appears both
simple to understand and flexible to use.

The contents of this article presents a mathematical method of fitting a smooth curve to a set of given points in a two-
dimensional plane. The FORTRAN subroutine which implements this method appears at the end of this article.

Introduction

In order to determine the relationship between two variables (i.e. two entities that have the ability to change from one value or
state to another), we usually perform computations or make measurements to determine the nature of the relative change. The
resulting data could be represented as a set of discrete (known) points in a plane. If we know that the relationship between
these points can be mathematically described and visually represented by a smooth curve; then our next step is to try to fit a
smooth curve to this set of points. The result desired is a curve which passes through all the given points. This process is best
known as Interpolation. Before the advent of computers, these curves were manually drawn by well-trained scientists and
engineers and usually resulted in a reasonably good looking graph. In order to let the computer draw a curve, we must provide
the points themselves and a complete set of detailed instructions.

Existing Curve Fitting Methods

There are several well known mathematical methods for interpolating the value of a function expressed by a given set of values.
Some of these can be found in F. B. Hildebrand’s Introduction to Numerical Analysis (1956) in chapters 2, 3, 4and 9; in W. E.
Milne's Numerical Calculus (1949) in chapter 3; and, in A. Ralston and H. S. Wilf's Mathematical Methods for Digital Computers,
Volume Il (1967), in chapter 8. The application of any of the above methods sometimes results in a curve that is visually quite
different than one drawn manually. That is to say, the resulting curve sometimes appears strange and unnatural. The technique
presented in this article will describe a method of interpolation that produces a smooth and natural looking curve.

A Brief Discussion of Existing Methods

Let's assume that the values of X and Y at 11 points taken from a sideband distortion study are as shown in Figure 1.

X | o 1 2 3 4 5 6 7 8 9 10
Y =YX | 0 10 10 10 10 10 108 15 50 60 85
Figure 1

32

COMPUTATION

Assuming that we know the physical phenomena (i.e., variations in sideband frequency distortion) can be represented by Y(X),
a single-valued smooth function of X, we must fit a smooth curve through all the given points by interpolating the value of Y(X). If
we use the method of interpolation based on polynomials (Milen, Hildebrand) or several other variations by Newton-Cotes,
Lagrange, Aitken, or Nevilie, each with its own advantages and disadvantages, we must realize that each is based on the
common assumption that Y(X) can be closely approximated by a polynomial of X of order N-1, where N is the number of points.
This might lead one to assume that they should all give the same result since the uniqueness of a polynomial of N-1 with given
values of Y(X) at N points has been proven by Hildebrand (page 44). If we apply a 10th order Lagrangian polynomial to the set
of 11 points in Figure 1 by collocating each, the result is shown in Figure 2.

T LU

POLYNOMIAL

1 I

1 1 i A1

.] L d 1 i

Figure 2

The next method is based on a ratio of two polynomials (called a “Rational Function”) by Hildebrand (sections 9.9-9.12).
Although this method produces a better looking and closer approximated curve at each point, its function does not always
exist; and, non-singularity of the function cannot be guaranteed. If we were to omit the first point (0,10), then the function would
exist and appear as shown in Figure 3.

L L L L L
RATIO OF i
POLYNOMIALS

| 4
‘L[\
S e 1. It | —, L
Figure 3

33

COMPUTATION

The problem is that if we make any assumptions concerning the functional form for a whole set of points other than continuity
and smoothness of the curve, it is inevitable that the curve will behave strangely. On the other hand, when we try to fit a smooth
curve manually, we do not make any assumptions about the functional form for the whole curve. We draw a portion of the curve
based on a small amount of the whole curve without using the whole set of points. This local procedure is the basis for the
method described in this article. As a further illustration, you might note that although the Spline function empioys a piecewise
function composed of a set of polynomials, all polynomials are evaluated simultaneously on the basis that the function and its
derivitives are in the whole range, and that no individual polynomials can be determined locally.

The New Curve Fitting Method

To best iliustrate how this method works, you might visualize creating a computerized computational procedure that emulates
the skill of the best human curve-fitter in the world. This method is devised such that it can handle a single-valued or a
multiple-valued function depending upon whether we know in advance that the given data points represent one case or the
other.

The method is based on a piecewise function given by a third order polynomial for a single-valued function, and by a pair of
third order polynomials for a multiple-valued function. For a single-valued function, continuity of the function and of its first-order
derivative (i.e. the direction of the tangent to the curve or the slope of the curve) is assumed. For the second order derivative, we
determine the direction of the tangent locally under certain assumptions. By doing this we can fit a curve piecewise to the given
set of data points without having discontinuties in the curve and its slope.

The portion of the curve between any pair of points is assumed to be determined only by its coordinates and slope. However,

since the siope of the curve should be determined at the end points as well, estimation of two more points at each end point is
necessary.

Direction of the Tangent

Let's assume that the direction of the tangent to the curve (i.e. the slope) at a given point p; is determined by the coordinates of
five points, pPi—2, Pi-1, Pi Pi+1, @nd pica. In other words, the points more than two intervals away are assumed not to effect the
determination of the slope.

Consider five points, 1,2,3,4, and 5 as shown in Figure 8 below:

N
Figure 8
36

COMPUTATION

Let the point of intersection of the two straight lines extended from line segments 12 and 34 be denoted by A and a similar point
corresponding to line segments 23 and 45 be denoted by B. Our task is to seek a reasonable condition for determining the
direction of the tangent CD at point 3.

It seems plausible that the direction of CD should approach that of 23 when the direction of 12 approaches that of 23, and that
the angle 23C (i.e. the angle between 32 and 3C) should be equal to D34 when 123 is equal to 345. With these reasonable
assumptions as a guideline, the condition of determining the direction of CD is still not unique. For simplicity, we assume that
the tangent CD is determined by the condition:

2C 4D

CA DB

However, this condition does not exist for certain configurations of five points as illustrated in Figure 9.

5

Figure 9
In this case the alternate condition,
2 _ 4D
CA DB

does exist and we shall use this condition.

Summarizing the above two conditions, we assume that the direction of the tangent CD is determined by the following general
condition:

2C 4D
TA = * DB (1)

i+

The sign (i.e., + or —) to be used depends on the configuration of the five points. The sign for which the condition exists should
be selected.

37

COMPUTATION

Examples

An example of the application of this method is shown in figure 7 where the curve is very close to the one in figure 6 determined
manually:

Figures 10-15 gives some examples of the application of the method in different modes. Two curves drawn for single-valued
functions Y=Y(X) (MODE=1) and X=X(Y) (MODE=2) appear in figures 10 and 11, respectively. Two examples for multiple-
valued nonclosed curves (MODE =3) are shown in figures 12 and 13. A circle and an ellipse are drawn in figures 14 and 15,
respectively, as examples for the case of a closed curve (MODE=4).

- -1 — -1
I S 1 - L ‘L B R I] 1 1 -
Figure 10 Figure 11
T I T I T I LB T L !
. MODE =3 4 MODE =3
- 4
B |
- 4
L 4
1 _4 | j I 1 l ul . -l i —— 1
Figure 12 Figure 13

40

COMPUTATION

—T T T T T T 1 T T 1 T 1 L 1 1 LS L

FMODE=4] . MODE =24

= J - -

- -4 r_ —e

= - - 4

B 7 B .
—l. Y L L 1 1 1) L j I T S L L il A L . L

Figure 14 Figure 15

Concluding Remarks

We have described a method of smooth curve fitting. For proper application of this method, the following aspects should be
taken into consideration:

1.

The curve obtained by this method passes through all the given points; Therefore, the method is applicable only to the
case where the piecewise values of the point coordinates are given;

Use of this method is not recommended when given data points manifest apparent regularity or when we have a prior
knowledge on the regularity of the data;

As is true for any method of interpolation, no guarantee can be given of the accuracy of the interpolation, unless the method
in question has been checked in advance against precise values or a functional form;

The method yields a smooth and natural-looking curve and is therefore most useful in cases where manual, but tedious,
curve fitting will do in principle;

For a single-valued function, the resultant curve is invariant under a linear-scale transformation of the coordinate system. In
other words, different scalings of the coordinates result in a similar (if not the same) looking curve;

For a multiple-valued function, the resultant curve is variant under a linear-scale transformation of the coordinate system;
the scalings of the coordinates should be coincident with the actual size of the graph.

An HP 1000 subroutine written in FORTRAN 1V, named CRVFT, has been programmed to implement the method reported in this
article. This subroutine as follows:

41

COMPUTATION

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
oo2zs
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053

FTN4 ,L

c

0000000000000 OO0OOOO0

SUBROUTINE CRVFT(MODE,LO,X,Y,M0O,NO,U,V,IERR)

SUBROUTINE DESCRIPTION

THIS IS A CURVE FITTING SUBROUTINE ILLUSTRATING THE TECHNIQUE AS
DESCRIBED IN THIS ARTICLE.

CALLING SEQUENCE

CALL CRVFT(MODE,LO,X,Y,M0,NO,U,V,IERR)

MODE ---> MODE OF THE CURVE:

1 - SINGLE-VALUED FUNCTION Y=Y(X)
2 - SINGLE-VALUED FUNCTION X=X(Y)
3 - MULTIPLE-VALUED FUNCTION, NONCLOSED CURVE
4 - MULTIPLE-VALUED FUNCTION, CLOSED CURVE
LO ----- > NUMBER OF INPUT POINTS CONTAINED IN X & Y ARRAYS
X,Y ----> ARRAYS CONTAINING THE ABSCISSAS AND ORDINATES OF L INPUT
POINTS
MO ----- > NUMBER OF DIVISIONS BETWEEN EACH PAIR OF INPUT POINTS
NO ----- > NUMBER OF OUTPUT POINTS FOR U & V ARRAYS
U,V ----> ARRAYS WHERE THE ABSCISSAS AND ORDINATES OF N QUTPUT

POINTS ARE TO BE PLACED

IERR ---> ERROR RETURN: 0 - NUMBER OF INPUT POINTS AND NUMBER QOF
DIVISIONS BETWEEN POINTS WITHIN RANGE.
-1 - NUMBER OF INPUT POINTS AND/OR NUMBER OF
DIVISIONS BETWEEN POINTS LESS THAN OR
EQUAL TO ZERO.

EXTERNAL FUNCTIONS

SCR(SIJ,CIJ) = ABS(SIJ)-ABS(CIJU)+1.08E-8

s

DIMENSION AC€1),Y(1),UC1),V(1),A0¢2),B0(2)

EQUIVALENCE (A,A0¢1)),¢(B,A0¢2)),(C,B0(2)),(P0,X2),(Q0,Y2),(DX,A2),
- (DY,B2)>,(FLM,TS5,2>,(JP,JS),(DU,DA,D,X1),(DV,DB,R,Y1),
- (s2,520,A1),(S3,503,B1),(P1,512)>,(P2,C12),(P3,R12),

- (Q@1,513),¢(s2,C€13),(Q3,R13)>,(B,B0C1))

42

COMPUTATION

0054
0055
0056
0057
0058
0059
0060
0061

0062
0063
0064
0065
0066
0067
0068
0069
0070
0071

0072
0073
0074
0075
0076
0077
0078
0079
0080
0081

0082
0083
0084
0085
0086
0087
0088
0089
0090
0091

0092
0093
0094
009S
0096
0097
0098
0099
0100
0101

0102
0103
0104
0105
0106
0107

o0

OO0

PRELIMINARY PROCESSING ...

MD=MODE
L=L0O
LPS=L0
M=MO

IF(L.LE.0.OR.M.LE.O0> GD TO 200

KP1=LeM+1
IP=L+1

DO 10 JP=1,L
KP1=KP1-M
IP=1P-1
UCKP1)=X(CIP)
10 V(KP1)=Y(IP)

KP2=1
KP3=1

DO 20 I=2,L
KP2=KP2+M

IFCUCKP2).EQ.UCKP3).AND.V(KP2).EQ.V(KP3)) GO TO 20

KP3=KP3+M
UCKP3)=U(KP2)
20 V(KP3)>=V(KP2)

L=KP3/M+1

N=KP3

IF(N.EQ.1)> GO TO 890
IF(MD.NE.2) GO TO 50

30 DO 40 KP4=1,N,M
TS=U(KP4)
UC(KP4)=V(KP4)

40 V(KP4)=TS

SO0 MM1=M-1
FLM=M
DZ2=1.0/FLM
IFC(L.EQ.2) GO TO 100
LM1=L-1
GO TO 200

SMOOTH CURVE FITTING FOR L=2

100 DU=CUCN)-UC1))+D2Z
DV=(V(N)-V(1))+DZ

DO 110 KS=1,MM1
U(KS+1)=U(KS)>+DU
110 V(KS+1)=V(KS)+DV

GO TO 800

43

COMPUTATION

0229 B4=B3+DB

0230 AS=A4+DA

0231 BS=B4+DB

0232 GO TO 280

0233 480 AS=A3

0234 A4=A3

0235 B5=B3

0236 B4=B3

0237 G0 TD 280

0238 C

0239 C... DETERMINATION OF THE DIRECTION ...

0240 C

0241 500 SGN=1.0

0242 IF(R23.LE.0.0) GO TO S50

0243 IF(R12.LE.0.0.AND.R34.LE.0.0) GO TD 580
0244 IF(R13.LE.0.0.AND.R24.LE.0.0) GO TO 580
0245 IF(R12.LE.0.0.0R.R24.LE.0.0) GO TO 560
0246 IF(R13.LE.0.0.0R.R34.LE.0.0) GD TD 570
0247 S2=512+524

0248 S3=5134534

0249 1F(S52+53.LT.0.0) S3=-53

0250 A=S2+A3+A3-53+A2+A2

0251 B=S2#A3+B3-53+A2+B2

0252 C=52+B3+B3-53+B2+B2

0253 D=523+#SART(S2453)

0254 IF(B+D.LT.0.0) D=-D

025S B=B+D

0256 S20=A2+B0C1)-A0(1)+B2

0257 S03=A0(1)+B3-A3+B0(1)

0258 IF(S20+4S03.LE.0.0) GO TO S10

0259 C0S3=A0¢1)

0260 SIN3=B0(1)

0261 GO TO 520

0262 S10 S20=A2+B0(2)-A0(2)+B2

0263 C0S3=A0¢2)

0264 SIN3=B0(2)

0265 520 IF(S20+523.GT7.0.0) GO TO S90

0266 C0S3=-C0S3

0267 SIN3=-SIN3

0268 GO TO 590

0269 S50 IF(C23.LT.0.0) SGN=-1.0
0270 S60 C0S3=A2

0271 SIN3=B2

0272 GO TO 590

0273 570 Cas3=A3

0274 ’ SIN3=B3

0275 GO TD 590

0276 580 C0S3=A2+A3

0277 SIN3=B2+B3

0278 S90 IF(MD.LE.2) GO TO LBL
0279 R=SART(COS3+COS3+SIN3+SIN3)
0280 C0S3=CO0S3/R

0281 SIN3=SIN3/R

0282 GO TQ LBL

0283 C

46

COMPUTATION

0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314

>€ 0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342

OO0

OO0

OO0

600

610

620

660

670

800

810
890

200

INTERPOLATION IN A SECTION .

KS0=(I-2)«M+1

Z2=0.0

IF(MD.GT.2) GO TO 660

KS1=KS0

P1=DX

Q1=P1+SIN2/C0OS2
G2=3.0#DY-2.0+Q1-P1+SIN3/C0OS3
@3=DY-Q1-Q2

DO 620 JS=1,MM1

KS1=KS1 +1

Z=2+D2

UCKS1)=P0+Z+P1
V(KS1)=Q0+Z+(Q1+Z2+(Q2+Z2+Q3))
GO TDO 290

K52=KS0

R=SQRT(DX+DX+DY+DY)
P1=R+C0S2
P2=3,0#DX-R+(2,0+C0S52+C0S3)
P3=DX-P1-P2

Q1=R«+SIN2
02=3.0+#DY-R+(2.0+SIN2+SIN3)
@3=DY-Q1-@2

DD 670 JS=1,MM1

KS2=KS2+1

Z2=2+D2
UCKS2)=2P0+Z2CR1s.22(R2+24L3)).

V(K82)=00*21(01+Z~(02+2003))
GO TD 290

NORMAL RETURN
IF(MD.NE.2) GO TO 890
DO 810 KR=1,N
TS=UCKR)
UCKR) =V(KR)
V(KR)=TS
LO0=LPS
NO=N
IERR=0
RETURN

ERROR EXIT ...
ERROR=-1

END
FUNCTION SCR(SIJ,CIP

SCR=ABS(SI1J)-ABS(CIJ)+1.08E-8

END
ENDs

47

COMPUTATION

References
1. Hildebrand, F. B. (1956), Introduction to Numerical Analysis, ch. 2,3,4, and @ (Mc Graw-Hilt Co., New York, N.Y.).
2. Milne, W. E. (1949), Numerical Calculus, ch. Il (Princeton University Press, Princeton, N.J.).

3. Ralston, A, and H. S. Wilf (1967), Mathematical Methods for Digital Computers, Vol. I, ch. 8 (John Wiley & Sons, New York,
N.Y.).

48

COMPUTATION

MICROPROGRAMMING BASE SET SECRET

Computer ;

Museum'

Joel Dubois/HP Grenoble

Have you ever thought, when you looked at the execution time for the 1000 E-Series computer instructions, “Why does a LDX
instruction take longer than a LDA instruction’? If you examine the microcode of the base set you will certainly find the answer.
However, you can fall into a trap when you follow the base set listing and then it is not easy to exit because some hardware
information has been omitted from the Microprogramming Reference Manual (P/N 02109-90004). This article will illustrate.

Before | expose this situation let me give you some basic definitions of microprogramming.

As you know, to access the contents of a memory location, the address of this location must be put into the M-Register. A read
operation is started, and at the end of the read cycle the data (memory location contents) is stored in the T-Register (data
register). You also know that the A- and B- Registers can be accessed as Address 0 and 1 respectively. In a program, if you
execute a “LDB 0" instruction, the computer must know that it is not the contents of memory location O but the contents of the
A-Register to be loaded into the B-Register.

How does the processor “know" this?

Every time you store an address into the M-Register, a check is made to see if this address is a“0" ora 1", If itis “0", a flag will
be set which is called the “A-Addressable Flip-Flop” (AAF). If it is “1", another flag is set, the “B-Addressable Flip-Flop™” (BAF).
As you can see, only one of the two flip-flops can be set at any given time.

When a microprogrammer writes microcode for a LDB instruction, he does not know if ater the instruction will be a LDB 1008 or
a LDB 0. He must take into consideration every case, and for this reason he will use a micro-order called "TAB”. This is the
abbreviation of the T-Register (data register) or A-Register or B-Register. According to the state of the A- and B- Addressable
Flip-Flops, the computer knows which of these three registers it has to use. The decision is made using the following table:

ADDRESS FLIP-FLOP STATES REGISTER
STORED REFERENCED
IN THE BY
M-REGISTER AAF BAF TAB
0 1 0 A
1 0 1 B
ANY
OTHER 0 0 T
VALUE

Now that you know how the computer interprets the TAB micro-order, you have to know where the programmer can use it.

49

COMPUTATION

One of the main differences between a routine written in assembier code and a microprogram is the fact that in assembler you
can code only one instruction per line of code, but in a microprogram you have five fields. This allows execution of several
operations, such as arithmetic, logical, shift-of-result, and start-of-read operation in the same microinstruction. The function of
these fields is described below.

OPERATION SPECIAL ALU STORE S-BUS
FIELD FIELD FIELD FIELD FIELD

From the fight, the fields are as follows:

THE S-BUS FIELD:

In the computer the main data path is called the S-Bus. When you want to put the contents of a register on this bus you just
specify the name of this register in the S-Bus field.

THE STORE FIELD:

In this field you specify the register which is the destination for the data. The data can come from one of three sources, (1) the
S-Bus, (2) the Arithmetic/Logic Unit, or (3) the rotate shifter. Which source is used depends on the destination specified.

THE ALU (ARITHMETIC/LOGIC UNIT) FIELD:

In this field you will specify which operation to perform in the ALU (e.g. ADD, SUB, XOR). This operation will be executed on the
data on the S-Bus and the contents of another register called the L-Register (Latch Register).

SPECIAL FIELD:

In this field you may specify operations like COV (Clear OVerflow), L1 (shift left one place on the data leaving the ALU), RTN
(return from a subroutine or to Control Store Address 0).

OPERATION FIELD:
In this field you will specify operations such as READ, WRITE, ARS (arithmetic shift), CRS (rotation).

The above description is specific to one type of microinstruction. The E-Series has four types. The format for a JUMP
microinstruction is not the same. However, let us return to the discussion of the TAB micro-order.

The TAB can be used in two of these fields.

e |n the S-Bus field, to get the result of a READ operation (you get the contents of the A- or the B-Register depending on
whether the M-Register contains a zero or one).

e Inthe STORE field, when you want to store a value into the T-, the A-, or the B-Register, depending on the address in the
M-Register.

Now that TAB is no longer mysterious, let us see how an instruction is executed in the computer.

The first step for the computer is to bring into the instruction register the binary code of the instruction which is in memory and
then update the program counter. This sequence of events is called the FETCH routine. Microcode at Control Store Addresses
0 and 1 is the FETCH routine. This part of microcode will be executed for each assembler instruction, and at the end of this
routine a branch will be performed to the appropriate microcode according to the contents of the instruction register. This is the
execution routine which is specific to each assembler instruction.

50

COMPUTATION

Let us now review the processing of the instruction “LDA 100B”. To add some challenge, suppose we have put this instruction
in the A-Register itself. Thus,

ADDRESS INSTRUCTION OCTAL CODE
0=A REG LDA 100B 060100

We will use the front panel to store this instruction in the A-Register, and then set the program counter *‘P” equal to zero. When
PRESET and the RUN is pressed, the computer will execute an initialization routine in the base set. This routine is present at
Control Store Address 3258, and stores the contents of the P-Register in the M-Register. A READ operation is initiated, the
P-Register is incremented and control is transferred to the FETCH routine. When the FETCH routine commences, a READ
operation is performed on the address which is in the M-Register and the P-Register is set to M+1. In this particular case, M=0
and P=1.

For the purists, when you press the RUN button, the FETCH routine is not started at Control Store Address O, but rather at
Control Store Address 1, because the operations performed at Address 0 have already been performed at Address 332B in the
initialization routine. However, in this discussion, let us assume that the execution starts at Address 0, which is the common
case in instruction execution.

The following microcode will be executed:

CONTROL STORE OPERATION SPECIAL ALU STORE S-BUS
ADDRESS FIELD FIELD FIELD FIELD FIELD
0 READ FTCH PASS IRCM TAB FETCH
1 JTAB INC PNM P ROUTINE
;17 READ PASS CAB TAB EXECUTION
50 RTN ROUTINE
FOR LDA

The explanation for this microcode is as follows:
ADDRESS 0:

e The contents of the A-Register (060100B) is put on the S-Bus. Since the initialization routine has stored a zero in the
M-Register, the AAF (A-Addressable Flip-Flop) has been set.

e The value which is present on the S-Bus is stored in the instruction register because “IRCM” is present on the STORE field.
This micro-order also means store the lower ten bits of the S-Bus in the M-Register (M=100B). At this point, the AAF and the
BAF are cleared.

e The "FTCH” in the special field will execute some initializing operations.

® The “READ” in the Operation Field will start a READ operation on memory location 100B.

ADDRESS 1.

e The content of the P-Register is put on the S-Bus (P=1).

® "PNM" in the Store Field and “INC” in the ALU Field have the following meaning: store the contents of the S-Bus in the
M-Register, increment the value through the ALU and store the result in the P-Register. In our example, a 1" is put on the

S-Bus, and stored in the M-Register. The BAF will be set. A “2” will be stored in the P-Register.

51

COMPUTATION

e The “JTAB” in the Special Field will force a branch to Control Store Address 47 (the destination address of the jump is
found according to the contents of Bit 15 through Bit 8 of the Instruction Register).

ADDRESS 47:

¢ Onthe S-Bus Field is a TAB micro-order. If we apply the rule of a “TAB” micro-order (see above table), the content of the
B-Register should be put on the S-Bus because the BAF is set. You then store the S-Bus in the A-Register ("CAB” means
conditional A or B according to Bit 11 of the Instruction Register). After this, a READ is started in Memory Location M=2.
This read can be considered the beginning of the FETCH routine for the next instruction. Control is then transferred to
Control Store Address 0 to execute the next instruction.

Now if you consider what happened in the computer, you have put the contents of the B-Register into the A-Register, but the
instruction to execute was a “LDA 100B”. Is it a problem in the firmware?

If you go into your computer room and try this example, it will work (you will find in the A-Register the contents of Memory
Location 100B). Therefore, what is wrong with the preceding discussion? Actually, nothing in the philosophy, but [just failed to
specify that at Control Store Address 1, when “1” is stored in the M-Register, the BAF is not set because the JTAB inhibits the
clock for this flip-flop. This information appears to have been left out of the Microprogramming Reference Manual. In
conclusion, at Control Store Address 47, it is the content of the T-Register (Data Register, which contains the contents of
Memory Location 100B due to the read which had been started at Control Store Address Q) that is put on the S-Bus.

| took this example to show you a special situation. Normally when you go through a microprogram, you do not run into this kind
of problem. Now you should be able to follow the execution for a expected results, look at the function of "JTAB", and your
problems will be resolved by this very special micro-order.

Good Microprogramming!

52

BULLETINS

Since all domestic training information is contained in a separate publication, we will no longer duplicate those schedules in the
Communicator. The Computer Systems North American Customer Training Schedules (5953-0841) is published quarterly —
June, September, December and March. This booklet is automatically sent to all Communicator subscribers on the Software
Subscription Service and all HP training centers worldwide. It is our intention to continue to increase the usefulness of the CSG
Schedule by including more information about prerequisites and the classes themselves in an attempt to make it a stand-alone
document. International schedules, in-so-far as we receive them, will continue to appear in this publication.

53

BULLETINS

INTERNATIONAL TRAINING CENTER ADDRESSES

AUSTRIA

(Vienna)

Handelskai 52

Postfach 7

A 1205 Wien

Tel: (0222) 35 16 21-32
Telex: 75923

Cable: Hewpack Wien

AUSTRALIA

(Blackburn) B

CUSTOMER TRAINING CENTER
31-41 Joseph Street

Blackburn, Victoria, Australia
(Pymble) P

CUSTOMER TRAINING CENTER
31 Bridge Street

Pymble, New South Wales, Australia

BELGIUM
(Brussels)

Avenue du Col Ver, 1
Groenkraaglaan
B-1170

Brussels, Belgium
Tel: (02) 672 22 40

ENGLAND
(Altrincham) A
Navigation Road
Altrincham

Cheshire WA14 1NU
(Winnersh) W

King Street Lane
Winnersh, Workingham
Berkshire RG11 5 AR
Tel: Workingham 784774
Cable: Hewpie London
Telex: 8471789

FINLAND
(Helsinki)
Nahkahousuntie 5
00211 Helsinki 21
Tel: 90-692 30 31

54

FRANCE

(Grenoble) G

5, avenue Raymond-Chanas
38320 Eybens

Tel: (76) 25-81-41
Telex: 980124

(Orsay) O

Quartier de Courtaboeuf
Boite Postale No. 6
F-91401-Orsay

Tel: (01) 907 7825

GERMANY

(Boeblingen)

Kundenschulung
Herrenbergerstrasse 110

D-7030 Boeblingen, Wurttemberg
Tel: (07031) 667-1

Telex: 07265739

Cable: HEPAG

ITALY

(Milan)

Via Amerigo Vespucci, 2
20124 Milan

Tel: (2) 62 51

Cable: HEWPACKIT Milano
Telex: 32046

JAPAN

(Osaka) O

Chuo Building

5-4-20 Nishinakajima
Yodogawa-Ku, Osaki-shi
Osaka, 532 Japan

Tel: 06-304-6021

Telex: 523-3624 YHP OSA
{Tokyo) T

2205 Takaido Higashi 3-chome
Suginami-Ku, Tokyo 168

Tel: 03-33-8111

Telex: 232-2024 YHP MARKET TOK

BULLETINS

NETHERLANDS
(Amsterdam)

Van Heuven Goedhartlaan 121
Amstelveen 1134

Netherlands

Tel: 02 672 22 40

SPAIN

(Madrid)

Jerez No. 3
E-Madrid 16

Tel: (1) 458 26 00
Telex: 23515 hpe

SWEDEN
(Stockholm)
Enighetsvagen 1-3, Fack
S-161 20 Bromma 20
Tel: (08) 730 05 50
Cable: MEASUREMENTS
Telex: 10721

For course prerequisites and registration information contact one of the HP training centers listed above.

55

BULLETINS

INTERNATIONAL TRAINING CENTER SCHEDULE

&
3
v
& L3
& &
< @

22941A Jul 02 (G)
21MX/XE Maint QOct 22 (G)
5 days/$500

22943A Jul 23 (G)
7970B/E Maint
5 days/$500

22945A Jul 09 (G)
7905/06 Maint Oct 29 (G)
5 days/$500

229518 Sep 03 Jul 16 Aug 27 Qct 08
Intro to HP Mini's Sep 24
4 days/$400

229528 Sep 24 Jun 11 (P) Jun 25 Jun 11 (T) Jun 11 Oct 22 Sep 03
1000 ASMB Jul 30 (B) Sep 03 QOct 01 Nov 12
5 days/$500 Oct 08 (P)
Nov 12 (B)

229618 Oct 01 Sep 24
DS/I1000
Theory of Operation
4 days/$500

229628 Ocl 05 Sep 28
DS/1000 to HP 3000
Theory of Operation

1 day/$100

229658 Jun 11 (0) Jun 18
RTE-1/111
10 days/$1000

22965B-HO1 Jut 23 Oct 15
FORTRAN IV Oct 08
5 days

22977 Jui 09 (P) Jun 25 (O) Jul 09 Jun 25 (T) Jul 16 Nov 12
IMAGE Aug 20 (B) Sep 24 (0) Oct 08
5 days/$500 Nov 12 (P)
Dec 03 {B)

22980C Jul 23 Aug 20
HP-18 Minicormputer
Environment
4 days/$400

22984A Jul 16 (G)
7920 Maint
5 days/$5000

22985A Jun 18
RTE-M Sep 10
5 days/$500

22987A Oct 22 (P) Sep 17 Jun 18 (T) Sép 17
DS/1000
User's Course
5 days/$500

22990A Jun 18 (P)

RTE Driver Writing Aug 06 (B)
3 days/$300 Qcet 01 (P)
Nov 19 (B)

22991A Sep 10 Jul 09 (B) Oct 01 Jul 09 Jun 04 (O) Jun 25 Oct 29 Sep 10
HP 1000 DISC Sep 17 (P) Jul 30 Sep 03 Oct 15
RTE-lvA Qct 22 (B) Aug 20 Qct 15 Nov 18
10 days/$1000 Sep 10
Oct 01
Oct 15

22992A
HP 1000 Memory
RTE
10 days/$1000

40270A Jul 02 (G)
Intro to HP Computers
5 days

91302A
2645 Maint,
3 days/$300

56

HEWLETT/PACKARD
COMPUTER SYSTEMS COMMUNICATOR ORDER FORM

TOTAL DOLLARS

TOTAL ORDER DOLLAR AMOUNT

Please Print:

Name Date

Company

Street

City State Zip Code

Country

HP Employee Account Number Location Code

DIRECT SUBSCRIPTION
List Extended Total

- Part No. Description Qty Price Dollars Dollars

5951-6111 COMMUNICATOR 1000 $48.00

(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6111
BACK ISSUE ORDER FORM (cash only in U.S. dollars)
(subject to availability)
Issue List Extended Total

Part No. Description No. Qty Price Dollars Dollars

5951-6111 COMMUNICATOR 1000 $10.00
10.00
10.00

SERVICE CONTRACT CUSTOMERS

You will receive one copy of the COMMUNICATOR 1000, as
part of your contract. Indicate additional copies below and have
your local office forward. Billing will be included in normai
confract invoices.

Number of additional copies

57

FOR HP USE ONLY

‘Approved

CONTRACT KEY

5951-6111

Number of additional copies

HEWLETT-PACKARD
COMMUNICATOR SUBSCRIPTION AND ORDER INFORMATION

The Computer Systems COMMUNICATORS are bi-monthly systems support publications available from Hewlett-Packard on an
annual (6 issues) subscription.

The following instructions are for customers who do not have Software Service Contracts.
1. Complete name and address portion of order form.

2. For new direct subscriptions (see sample below):

a. Indicate which COMMUNICATOR publication(s) you wish to receive.

b. Enter number of copies per issue under Qty column.

c. Extend dollars (quantity x list price) in Extended Doliars column.

d. Enter discount dollars on line under Extended Dollars. (If quantity is greater than 1 you are entitled to a 40% discount.”)
e. Enter Total Dollars (subtract discount dollars from Extended List Price dollars).

To qualify for discount all copies of publications must be mailed to same name and address and ordered at the same time.

SAMPLE
O DIRECT SUBSCRIPTION

List Extended Total
Part No. Description Qty Price Dollars Dollars

5951-6111 COMMUNICATOR 1000 $48.00
(if quantity is greater than 1 discount is 40%)

TOTAL DOLLARS for 5951-6111

3. To order back issues (see sample below):

Indicate which publication you are ordering.
Indicate which issue number you want.
Enter number of copies per issue.

. Extend dollars for each issue.

. Enter total dllars for back issues ordered.

All orders for back issues of the COMMUNICATORS are cash only orders (U.S. dollars only) and are subject to availability.

cap o

SAMPLE

[] BACK ISSUE ORDER FORM (cash only in U.S. dollars)
(subject to availability)

Issue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 10.00
10.00
10.00

TOTAL DOLLARS

4. Domestic Customers: Mail the order form with your U.S. Company Purchase Order or check (payable to Hewlett-Packard
Co.) to:
HEWLETT-PACKARD
Computer Systems COMMUNICATOR
P.O. Box 61809
Sunnyvale, CA 94088
U.S.A.

5. International Customers: Order by part number through your local Hewlett-Packard Sales Office.

58

Although every effort is made to ensure the accuracy of the
data presented in the Communicator, Hewlett-Packard can-
not assume liability for the information contained herein.

Printed in U.S.A. 5/79

Prices quoted apply only in U.S.A. If outside the U.S., contact
your local sales and service office for prices in your country.

Part No. 5951-6111

)

J

