i

| sateRIAL
REQUIRMENTS
PLANNING

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

HEWLETT-PACKARD
COMPUTER SYSTEMS

jsoue 4 COMMUNICATOR/1000

Computer

Museum

Feature Articles

OPERATING SYSTEMS 17 LOADING PROGRAM SEGMENTS FROM FMP FILES
Larry W. Smith/HP Fullerton

28 CONVERSION OF COMPUTER PROGRAMS
TO HP 1000 RTE-IV
Jack B. McAlister/Technology Development Corp.

INSTRUMENTATION 32 THE FUNDAMENTALS OF HP-IB ADDRESSING
Neal Kuhn/DSD Applications Development

OPERATIONS MANAGEMENT 38 REMOTE DATA BASE ACCESS:
HOW DOES IT WORK?
Carol Jonas/DSD, Technical Marketing

Departments

EDITOR'S DESK 2 ABOUT THIS ISSUE
3 BECOME A PUBLISHED AUTHOR
IN THE COMMUNICATOR/1000

USER’'S QUEUE 5 LOCUS ADDITIONS
7 LETTER TO THE EDITOR

BIT BUCKET 8 SOFTWARE SAMANTHA
10 DS/1000 TIME GETTER
12 IDCHK UTILITY PROGRAM

BULLETINS 42 INTRODUCING THE NEW IMAGE/1000 DBMS
44 ANNOUNCING DATACAP/1000 SOFTWARE
PACKAGE FOR REAL-TIME DATA CAPTURE
46 HP SOFTWARE SUPPORT — FLEXIBLE
AND USER ORIENTED
48 HP 1000 USERS ESTABLISH A USER GROUP
50 JOIN AN HP 1000 USER GROUP
52 HP 1000 SOFTWARE COURSES
57 INTERNATIONAL TRAINING SCHEDULES 79/80

EDITOR’S DESK

ABOUT THIS ISSUE

This issue of the Communicator/1000 features two articles in the category OPERATING SYSTEMS and one each in OPERA-
TIONS MANAGEMENT and INSTRUMENTATION. The two OPERATING SYSTEMS articles come from the field; one from an HP

systems engineer and one from an HP customer. The other two articles were written by HP employees within Data Systems
Division.,

In the OPERATING SYSTEMS section, Larry W. Smith of HP's Fullerton, Ca. sales and service office contributes once again with
an excellent article on a method he devised for overcoming the limit to the number of executable programs on an RTE system.
His subroutine SLOAD allows programs to be stored on any disc LU, and executed without an ID segment being created for
each program. Our customer contributor, Jack B. McAlister of Technology Development Corporation presents a step-by-step
approach to converting Fortran programs from other operating systems to run on an RTE-IV system. Conversion of programs
from one operating system to another can result in considerable time savings for customers who own several different systems,
or who frequently interact with owners of other systems.

In the INSTRUMENTATION section, Neal Kuhn of HP’s Data Systems Division writes an article which makes HP-IB addressing
easy. His article will be extremely helpful to new HP-IB users who may be confused about the protocol for issuing different
commands to various devices. Neal first explains how commands are structured, and then shows several methods of sending
them to devices.

Lastly, in the OPERATIONS MANAGEMENT section, Carol Jonas of DSD’'s Technical Marketing Department submits an
excellent articie on remote access of IMAGE/1000 data bases. She outlines two separate ways to accomplish remote access;
with QUERY and with programmatic RDBA calls.

As of this issue there has been a change in the separation of competition for calculators. HP field personnel will no longer be
competing against HP divisions. HP division employees, including those in the Data Systems Division will be competing against
each other. Of course, DSD'’s technical marketing department will still be ineligible for prizes.

Now, the moment you've all been waiting for! The winners of HP32E Calculators are:

Best Feature Article by CONVERSION OF COMPUTER PROGRAMS
a Customer TO HP 1000 RTE-IV
Jack B. McAlister
Best Feature Article by THE FUNDAMENTALS OF
an HP Division Employee HP-IB ADDRESSING
not in Data Systems Neal Kuhn

Technical Marketing
Unfortunately, we had no competitors in the category of HP Field Employees since Larry Smith became ineligible after winning a
calculator earlier this year. We hope to have other HP field personnel contributing to later issues, as well as continued
correspondance from HP customers.

Hope you enjoy this issue of the Communicator/1000!

The Editor

EDITOR’S DESK

BECOME A PUBLISHED AUTHOR IN THE COMMUNICATOR/1000 . . .

The COMMUNICATOR is a technical publication designed for HP 1000 computer users. Through technical articles, the direct
answering of customers’ technical questions, cataloging of contributed user programs, and publication of new product
announcements and product training schedules, the COMMUNICATOR strives to help each reader utililize their HP 1000's
more effectively.

The Feature Articles are clearly the most important part of the COMMUNICATOR. Feature Articles are intended to promote a
significant cross-fertilization of ideas, to provide in-depth technical descriptions of application programs that could be useful to
a wide range of users, and to increase user understanding of the most sophisticated capabilities designed into HP software.
You might think of the COMMUNICATOR as a pubfication which can extend your awareness of HP 1000's to include that of

thousands of users worldwide as well as that of many HP engineers in Data Systems factories at Cupertino, California and
Grenoble, France.

To accomplish these goals, editors of the COMMUNICATOR actively seek technical articles from HP 1000 customers, HP
Systems Engineers in the Field, and Marketing and R&D Engineers in the factories. Technical articles from customers are most
highly valued because it is customers who are closest to real-world applications.

WIN AN HP-32E CALCULATOR!

Authoring a published article provides a uniquely satisfying and visible feeling of accomplishment. To provide a more tangible
benefit, however, HP gives away three free HP-32E hand-held calculators to Feature Article authors in each
COMMUNICATOR/1000 issue! Authors are divided into three categories. A calculator is awarded to the author of the best
Feature Article in each of the author categories. The three author categories are:

1. HP 1000 Customers;

2. HP field employees;
3. HP division employees not in the Data Systems Division Technical Marketing Dept.

Each author category is judged separately. A calculator prize will be awarded even if there is only one entry in an author
category.

Feature Articles are judged on the following bases: (1) quality of technical content; (2) level of interest to a wide spectrum of
COMMUNICATOR/1000 readers; (3) thoroughness with which subject is covered; and, (4) clarity of presentation.

What is a Feature Article? A Feature Article meets the following criteria;
1. lts topic is of general technical interest to COMMUNICATOR/1000 readers:
2. The topic falls into one of the following categories —

OPERATING SYSTEMS

DATA COMMUNICATIONS
INSTRUMENTATION
COMPUTATION
OPERATIONS MANAGEMENT

3. The article covers at least two pages of the COMMUNICATOR/1000, exclusive of listings and illustrations (i.e., at least 1650
words).

EDITOR’S DESK

There is a little fine print with regard to eligibility for receiving a calculator; it follows. No individual author will be awarded more
than one calculator in a calendar year. in the case of multiple ‘authors, the calculator will be awarded to the first listed author of
the winning article. An article which is part of a series will compete on its own merits with other articles in the issue. The total of
all articles in the series will not compete against the total of all articles in another series. Employees of Technical Marketing at
HP's Data Systems Division factory in Cupertino are not eligible to win a calculator.

All winners of calculators will be announced in the issue of the COMMUNICATOR/1000 in which their articles appear. Again, all
Feature Articles are judged by an impartial panel of three DSD Technical Marketing Engineers.

A SPECIAL DEAL IN THE OEM CORNER

When an HP 1000 OEM writes a Feature Article that is not only technically detailed and insightful but also application-oriented
as opposed to theoretical, then that OEM may ask that the article be included in THE OEM CORNER. A Feature Article included
in THE OEM CORNER may contain up to 150 words of pure product description as well as a picture or illustration of the OEM'S
product or its unique contribution. HP's objective is twofold: (1) to promote awareness of the capabilities HP 1000 OEMs’
products among all HP 1000 users; and, (2) to publish an article of technical interest and depth.

IF YOU'RE PRESSED FOR TIME . ..

If you are short of time, but still have that urge to express yourself technically, don't forget the COMMUNICATOR/1000 BIT
BUCKET. it's the perfect place for a short description of a routine you've written or an insight you've had.

THE MECHANICS OF SUBMITTING AN ARTICLE

If at all possible please submit an RTE File containing the text of your article recorded on a Minicartridge (preferrably) or on a
paper tape along with the line printer or typed copy of your article. This will help all of us to be more efficient. The Minicartridge
will be returned to you promptly. Please include your address and phone number along with your article.

All articles are subject to editorship and minor revisions. The author will be contacted if there is any guestion of changing the
information content. Articles requiring a major revision will be returned to the author with an explanatory note and suggestions
for change. We hope not to return any articles at all; if we do, we would like to work closely with the author to improve the article.
HP does, however, reserve the right to reject articles that are not technical or that are not of general interest to
COMMUNICATOR/1000 readers.

Please submit your COMMUNICATOR/1000 article to the following address:
Editor, COMMUNICATOR/1000
Data Systems Division
Hewlett-Packard Company
11000 Wolfe Road
Cupertino, California 95014
USA
The Editor looks forward to an exciting year of articles in the COMMUNICATOR/1000.
With best regards,

The Editor

USER’S QUEUE

LOCUS ADDITIONS

The new contributed programs listed below are now available in Locus. Contact your local HP sales office to order Contributed
Library programs.

22683-XXX47 P1640
P1640 is a program to expand the capabilities of the 1640 serial logic analyzer by providing:
e storage of data from the 1640 on memory,disk,tape,etc.
e galterable formatting of saved data for any type of code.
e formatted output to the line printer or a file.
® automatic initialization of the 1640 through transfer files.
® user doesn't need to know HP-IB but must have the hardware and software in the system.

The program is designed to be used interactively, but could be run by batch.

22683-10947 800 bpi mag tape $50.00
22683-11947 1600 bpi mag tape $50.00
22683-XXX48 DVM33 — RTE-M Disc Driver

DVM33 is a RTE-M disc driver which transfers data to and from expanded memory instead of the 9885
floppy disc drive. This provides the user with the capability of having an operating system completely
memory resident, including program data files.

DVMB33 supports standard read and write requests (EXEC 1 or 2) and is compatible with the existing
RTE-M subsystems (FMGR, EDITM, ASMB, FTN4, etc).

Program INITL is used to initialize DVM33 after boot-up. It prompts the system console for the number
of pages in physical memory and the number of pages in the operating system (MIll only).

Equipment, LU and interrupt table entries are the same as the floppy disc driver DVR33 exept DMA,
buffering and time out should not be specified in the equipment table and the interrupt table requires
only one (DUMMY) select code. Program INITL expects the disc to be LU2. DVM33 does not support
equipment subchanges.

22683-13348 Minicartridge $40.00

22683-XXX49 CAMAC DRIVER PACKAGE

The CAMAC driver package operates on a HP 2100 or HP 21MX computer under RTE-II, RTE-IIl, or
RTE-IV.The package consists of

1. A CAMAC driver (/O handler) (DVA54). This is a system resident routine allowing user program
access to CAMAC compatible equipment.

USER’S QUEUE

22683-XXX50

2. Aninteractive diagnostic program (CAM2). This is an interactive program used for testing CAMAC
equipment and the driver.

3. Anarray initialization subroutine (FILL). This subroutine will initialize an array to any desired value.
All entries in the array will contain the same value. This subroutine is called by CAM2.

22683-13349 Minicartridge $40.00

LTAPE--HP 1000 Mag Tape Dump Analyzer

This program allows a 9-track or 7-track magnetic tape of any density to be analyzed for such items as
record lengths, parity errors, number of files, and tape controller status. The program performs a
complete hardware and software check and prints resulting tape statistics as to total number of records
and average record length.

22683-13350 Minicartridge $40.00

USER’S QUEUE

LETTER TO THE EDITOR

Dear Sir,

With reference to the article FAST REAL TIME I/O UNDER RTE by John Pezzano in Communicator 1000 Vol. II, Issue no. 5, |
noted that he states that DMA is not available when using $LIBR/LIBX calls to turn off the interrupt system. | would appreciate an
expansion of why this is so, as | think that provided no DMA operation was currently in progress when $LIBR is called, then the
DMA system is usable for I/O.

Yours sincerely,

K. Murdoch

for DIRECTOR:
NATIONAL ACCELERATOR CENTRE

Dear Sir,

You are entirely correct; the DMA system continues to be available after a $LIBR or $LIBX call is used to turn off the interrupt
system. In fact, available DMA channels are denoted in the interrupt table by a zero entry.

Thanks for writing.
With best regards,

The Editor

BIT BUCKET

goftwa e (.~
amantha < -/

Software Samantha

HP-1000 Communicator

Hewlett-Packard Data Systems Division

11000 Wolfe Road, Cupertino, California 95014

Dear Samantha,

Those of us here at Helical have really appreciated the article entitted CREATING AND CLEARING EXTENTS from Volume |1,
Number 1. The program has been extremely helpful in keeping our disks organized and cleared out.

The program has prompted several questions from our staff, however. We would be grateful if you could question Alan Housley
and any others on your staff to provide us with some answers.

First, where is the routine LOGLU described in the manuals? We have been unable to discover any references to the routine
and would appreciate a description of its usage. We are using RTE-Il on our system.

Second, it would be extremely beneficial to have a version of the CLEXT program which would work properly for LU's 2 and 3.
Can the current version be easily adapted, and if so, how? Or, would you be able to publish another version which would do a
more appropriate job for the system LU's? | am sure that there are many other users who could benefit from such a routine.

Third, could you pass on a suggestion that the CLEXT routine modified to work for alt disc LU's be included in a future update to
RTE-1I/111?

Thank you.
Sincerely,
David W. Palmerston
Administrative Assistant
Helical Products Company, Inc.
Dear David,

The routine LOGLU is described in the RTE-IV manual as follows:
LOGLU — RETURNS LU OF SCHEDULING PROGRAM.
This routine returns the logical unit numbers of the terminal at which the currently executing program was scheduled.

8

BIT BUCKET

The calling sequence in Assembly Language is:
EXT LOGLU
JSB LOGLU
DEF RTN
DEF IDUMY
RTN
The calling sequence in RTE FORTRAN 1V is:
LU=LOGLUCISES)
Upon return:
LU = A-register = LU number of device at which program was scheduled.

B-register = ASCII LU number

ISES = Dummy value reserved for future use by HP.

Comments:

Note that LOGLU must be called as a function. LOGLU will return the LU number of the console from which the
currently executing program was scheduled. This LU number is passed down from the Father program to the Son
program when one program schedules another program for execution. If the program was scheduled by interrupt or
from the time list, the scheduling LU will be LU 1, the system console.

The answer to your second question regarding the program CLEXT is that yes, it can be modified to work properly for LU's 2
and 3. Simply, remove line 42,

IF(DLU.EG.2.0R.DLU.EG.3)> GO TO 10
s0 that no check will be made for these LU’s.

However, since LU's 2 and 3 cannot be packed there is another modification you may want to make to CLEXT so that there will
be more usable space on the disc. Keep in mind that when a file is purged the space released can only be used by a file of size
smaller than or equal to the purged file. If the new file is smaller than the purged file then chances are the difference in size will
be left as unused space. Eventually, of course, the disc cartridge will have to be packed to obtain this leftover space. So, we
recommend using a standard file size (24 blocks is a good size) and allowing extents to be created for files above this size. This
standardization of file size allows space to be reused easily and reduces the amount of time-consuming cartridge packing
required. The block size of the new file created by the program CLEXT is set in BUFFST's DATA statement. On line 30 the 2H-1
should be changed to 2H24 or whatever size you feel is optimal for your system.

Lastly, HP no longer makes enhancements to RTE-II/1Il. RTE-ll is a mature product; it is subject to regular maintenance, but is
not enhanced. RTE-IIl is obsolete software; it is no longer actively marketed by HP.

Thank-you for your interest and support. Keep those letters coming!
Sincerely,

Samantha

BIT BUCKET

DS/1000 TIME GETTER

Normally, after bootstrap the user must enter the date and time in the system. However, in a nodal system the date and time can
be extracted from one of the other active nodes in the network. The program that follows is a utility to help users initialize a node
in a DS/1000 network. This utility will run from the WELCOM file of a node, after LSTEN has enabled the node’s links to the rest of
the network. It will poll the other nodes until it finds one with a reasonable date and time; it will then enter that time into the local
system via the message processor. This can be very useful in networks where it is important to have the various time-of-day

Bob O’Leary/Airesearch Manufacturing Co.

clocks synchronizéd with each other.

The user should modify the “NODES"” array to reflect the nodes in his N.D.T.; there should be active (non-zero) transaction
timeouts entered for each node in the network, so that a *dead” node will not hang up the system. If the utility cannot find an
active node with a reasonable time-of-day, it will print out a message on the system console to that effect. And lastly, the routine

needs, of course, SSGA access. Good luck.

PAGE 0001

0001

0002
0003
0004
000S
0006
0007
0008
0009
0010
0011

6012
6013
0014
0015
0016
0017
0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033
0034
0035
0036

-
—
z
N

sNoloNoNoNoNoNo N

OO0

OO0

a8
99

—

FTN. 9:45 AM SAT., 18 AUG., 1979

PROGRAM TINIT

PROGRAM TO INITIALIZE TIME-OF -DAY AT BOOTSTRAP TIME
THIS MODULE POLLS THE REMOTE NODES C(IN ’“NOTES‘)
UNTIL HE FINDS A NODE WITH A REASONABLE TIME-OF-DAY.
HE THEN ENTERS THIS TIME IN HIS LOCAL NODE

THROUGH THE LOCAL MESSAGE PROCESSOR.

NOTE---THIS PROGRAM REQUIRES SSGA ACCESS.
R.L.O’LEARY---4/19/79

DIMENSION MESG(10),NODES(C2),IT(5)
DIMENSION MSON(G)

DATA MSON/ 2HON,2H,U,2HPL,2HIN,2H,N,2HOW /

DATA MESG/ 2HTI,2HME,2H N,2HOT,2H I,2HNI,2HTI,
2HAL ,2HIZ,2HED /

DATA MSLEN/ 10 /

DATA NODES/ 3, 2 /

DATA NNOD/ 2 /

DO 99 I=1,NNOD

CALL DEXEC(NODES(CI)>,11+100000B,IT,IYR)
GO TO 99

IFCIYR.GE.1979) GO TO 125

CONTINUE

NO LUCK---NO TIME AVAILABLE.

CALL EXEC(2,1,MESG,MSLEN)
GO TO 150

SUCCESS---WE FOUND A VALID TIME-OF -DAY.

10

BIT BUCKET

0037 125 CONTINUE

0038 CALL TIMECNODESCI))

0039 C RE-ACTIVATE "UPLIN' (DS/1000 WATCHDOG).
0040 CALL MESSS(MSON,12)

0041 150 CALL EXEC(®)

0042 C

0043 END

FTN4 COMPILER: HP92060-16092 REV. 1926 (790430)

+#+ NO WARNINGS #+ NO ERRORS #+ PROGRAM = 00091 COMMON = 00000

PAGE 0002 FTN. 9:45 AM SAT., 18 AUG., 1979

0044 C

0045 C

0046 C

0047 SUBROUTINE TIMECNODE1)

0048 C

0049 C SUBROUTINE TO PICK UP TIME-OF-DAY IN A REMOTE NODE,
0050 C AND ENTER IT INTO THE LOCAL NOTE.

0051 C NODE1 = REMOTE NODE WHERE CORRECT TIME IS KEPT.
0052 C SYSTEM LIBRARIES REQUIRED---->

0053 C %DSLB2, %DSLB1, ZMSYLB.
0054 C ++NOTE++ THIS ROUTINE NEEDS SSGA ACCESS.
0055 C R.L.O’LEARY----4/5779,

00Se C

0057 DIMENSION IBUFF(15)

0058 C

00S9 DATA IBUFF/2HTM,2H, ,2HTI,12#2H /

0060 DATA ICOMA/ 26000B /

0061 C

0062 C

0063 CALL DMESS(NODE1,IBUFF(3),2)

0064 IBUFF(5) = I0RCIANDCIBUFF(5),377B),1COMA)
00es IBUFF(7) = TORCIANDCIBUFF(7),377B),I1COMA)
0066 IBUFF(9) = I0RCIAND(CIBUFF(9),377B),1COMA)
0067 IBUFF(11) = TORCIANDCIBUFF(11),377B),1COMA)
0068 CALL MESSSCIBUFF,24)

0069 C

0070 RETURN

0071 END

FTN4 COMPILER: HP92060-16092 REV. 1926 (790430)

#» NO WARNINGS #+ NO ERRORS #=+ PROGRAM = 00081 COMMON = 00000

1"

BIT

BUCKET

IDCHK UTILITY PROGRAM

As system manager it is sometimes necessary to know who is grabbing the temporary |ID segments. This especially becomes
important when all the available ID’s have been taken and the system manager has to decide who must go. IDCHK will help you
bygwmgyouaﬁaofaHWmtempomwlDScunemwinmesyMem.Aﬁmhmmgbomthebngamjymnle,namopﬂmsﬂw

Don Pottenger/DSD

number still available.

As an additional option, by specifying the second parameter non-zero, you can get track availability of the cartridges in your
cartridge list. This feature is needed less often, but sometimes it is nice to know which CRN has the most available disc space.

To schedule IDCHK type:

RU,IDCHK,LU,OPTION

where LU = output device
OPTION = If non-zero, print track availability info also.
0001 FTN4,L,B
0002 C
0003 C THIS PROGRAM PRINTS OUT ALL THE TEMPORARY ID SEGMENTS IN THE
0004 C SYSTEM. IT ALSO CATEGORIZES THEM INTO LONG AND SHORT ID’S
0005 C
0006 PROGRAM IDCHK,3,70), ID SEGMENT CHECK 790625
0007 DIMENSION IP(S),NAME(S8,3)
0008 DIMENSION ISTAT(125),1BUF(16)
0009 EQUIVALENCE CIPC1),LU),CIPC2),ITKCK)
0010 C
0011 ¢C GET OUTPUT DEVICE
0012 ¢
0013 CALL RMPARCIP)
0014 IFCLU.EGR.0)LU=1
0015 ¢
0016 C SET COUNTERS AND FLAGS
0017 C
0018 ILCNT = 1
0019 ISCNT = 0
0020 ISHORT = 0
0021 IEQOF = 0
0022 C
0023 C GET ADDRESS OF KEYWORD BLOCK
0024 ¢
0025 KEYWD=IGET(1657B)
0026 C
0027 C PRINT HEADING
0028 C
0029 WRITE(LV,5)
0030 5 FORMAT (7X"TEMPORARY ID SEGMENTS LISTED BY PROGRAM
0031 19NAME & TYPE"™//16X"¢<<<<<¢ LONG ID SEGMENTS »>>>>>>*)
0032 C
0033 C SEARCH ID SEGMENTS AND CHECK FOR TEMPORARY ONES
0034 C
0035 10 DO S0 I1=1,8
0036 20 IDSEG = IGET(KEYWD)
0037 C
0038 C CHECK FOR END OF KEYWORD BLOCK
0039 C

12

BIT BUCKET

0040
0041

0042
0043
0044
0045
0046
0047
0048
0049
0050
0051

0052
0053
0054
0055
0056
0057
0058
0059
0060
0061

0062
0063
0064
0065
0066
0067
0068
0069
0070
0071

0072
0073
0074
0075
0076
0077
0078
0079
0080
0081

0082
0083
0084
0085
0086
0087
0088
0089
0090
0091

0092
0093
0094
0095
009
0097
0098

OO0

e NoNel

OO0 (o NoNel OO0 OO0 e NoNe]

OO0

21

22

23

24

25

30

40

S0

5S

IF CIDSEG.NE.O) GO TO 21

IEQF = 1
GO TO 22
CONTINUE

RECORD NAME

NAMECI,1) = IGET(IDSEG+12)
NAME(I,2) = IGETCIDSEG+13)
NAMECI,3) = IGETCIDSEG+14)

LOOK FOR SHORT ID
LONG = IAND(NAME(I,3),20B)
IF FIRST SHORT ID, PRINT LONGS & SET ISHORTC(FLAG) TO 1

IF (LONG.EQ.0.0R.ISHORT.EG.1) GO TO 25
IF ¢(I.EQ.1) GO TO 23
WRITECLU,55) C((NAMECJ,K),K=1,3),J=1,1-1)
IF CIEQOF.EQ.1) GO TO 60
WRITECLU,24)
FORMAT(/16X*"¢<<<<<¢ SHORT ID SEGMENTS 3333>>*)
ISHORT = 1

CONTINUE LOOP FOR SHORT ID’S
GO TO 10
CONTINUE

LOOK FOR BLANK ID’S

IDBLNK = TAND(NAME(I,1),177400B)
IF CIDBLNK.NE.O) GO TO 40

COUNT BLANKS AND CONTINUE

IF (ISHORT.EQ.0) ILCNT
IF CISHORT.EQ.1) ISCNT
KEYWD = KEYWD + 1

GO TO 20

ILCNT + 1
ISCNT + 1

IF NOT BLANK, CHECK IF TEMP. OR PERM.

ITEMP = IAND(NAME(CI,3),200B)
IF CITEMP.EQ.0) GO TO 30

MAKE THIRD WORD PRINTABLE
NAMECI ,3) = IORCIAND(NAME(CI,3),177400B),40B)
KEYWD = KEYWD + 1
CONTINUE
WRITE THE EIGHT ONES WE GOT
WRITE (LU,55) C(C(NAMECI,J),J=1,3),1=1,8)
FORMAT (' "8(3A2,2X))
GO TO 10

PRINT OUT AVAILABILITY OF LONG AND SHORT ID’S

13

BIT BUCKET

0099
0100
0101

0102
0103
0104
0105
0106
0107
0108
0109
0110
0111

0112
0113
0114
0115
0116
0117
0118
0119
0120
0121

0122
0123
0124
0125
0126
0127
0128
0129
0130
0131

0132
0133
0134

0135
0136
0137
0138
0139
0140
0141

0142
0143
0144
0145
0146
0147
0148
0149
0150
0151

0152
0153
0154
0155

FTN4

* %

60
70

80

OO0

90

OO0

OO0 OOO0DOOO0O

—_
N o
(= =]

130

140

999

OO0

OO0

WRITE C(LU,70)

FORMAT (/14X*"<<<<<< 1D SEGMENTS AVAILABLE >>>>>>'")
WRITE (LU,80) ILCNT,ISCNT

FORMAT (22X,12" LONG"6X,12* SHORT'")

DID YOU ASK FOR TRACK AVAILABILITY INFO?

IF CITKCK .EQ. 0> GO TO 999
WRITE (LU,90)
FORMATC(/7X"<<<<<<¢ USER CARTRIDGE TRACK AVAILABILITY >>>>>>"/
446X ,"LAST TRACK'™)

GET CARTRIDGE LIST

CALL FSTAT C(ISTAT)

DO 130 I=1,120,4

ISEC = 0

CALL ASCIICISTAT(CI+2),IASCII)

IF COMPILED WITH DEBUG DO RTE-IVA STUFF
IF CISTAT(I).EQ.2) ISEC = 14
READ THE DIRECTORY
REG = EXEC (1,ISTAT(I1),IBUF,16,15TAT(1+1),ISEC)
AND OUTPUT THE INFO
WRITE C(LU,100) ISTATCI),ISTAT(I+2),IASCII,IBUF(C10),ISTAT(I+1)
FORMAT (9X"™LU *"I3* CR*"I6"™ =*A2" NEXT TRACK"I4" ("I4')")
IF CISTAT(I+4).EQ.0> GO TO 140
CONTINUE
PAGE EJECT
CALL EXEC(3,LU+1100B,-1)
END

THIS SUBROUTINE DETERMINES IF THERE IS A PRINTABLE
ASCII EQUIVALENT FOR THE ID’S SECURITY CODE

SUBROUTINE ASCIIC(BINARY,IA)
INTEGER BINARY

1A = 1AND(BINARY,377B)
LBYTE = IAND(BINARY,77400B)

IF BINARY IS NOT A VALID ASCII CHARACTER,
SET IA TO BLANK

IF (IA.LT.40B.0R.IA.GT.176B) 1A = 40B
IF (LBYTE.LT.20000B) LBYTE 20000B
IF (LBYTE.EQ.77400B) LBYTE 20000B
IA = IORC(LBYTE,IA)

RETURN

END

COMP [LER: HP92060-16092 REV. 1926 (790430)
NO WARNINGS #+ NO ERRORS #» PROGRAM = 00051 COMMON = 00000

14

BIT BUCKET

Computer

. Museum

SAMPLE OUTPUT WITHOUT OPTIONAL PARAMETER

TEMPORARY ID SEGMENTS LISTED BY PROGRAM NAME & TYPE

€<<<<< LONG ID SEGMENTS 3>3>>»>>
FTN4 ASMB XREF %BX00 %BX01 %BX02 %4BX03 TEDIT
JEDIT EDITR DL CMM4 SAM LGTAT PRTSYV IDCHK
FLUSH SWAPT HALT FMGE3 FMGS?7 LOAS6 FMGS6 EDTS?
FMGB1 FMGS1 FMGO1 FMGS2 TESTGE QUESS8 FMGS8 QPRNT
RUNS1 JEDG1 EDTS3 FMGS3 IDCS6 . .CHK QAR

€<<<<< SHORT ID SEGMENTS >>>>>>
ACCT1 ACCT2 ACCT3 ACCT4 ACCTS F4.0 F4.1 F4.2
F4.3 F4.4 F4.5 ASMBO ASMB1 ASMB2 ASMB3 ASMB4
BASC1 BASC2 BASC3 BASC4 BASCS BASCGB BASC? BASCS8
SED1 SED2 SED3 Qy QYoo Qyo1 QYo2 QyYo3
QY04 QY 0S5 QY06 QYo7 QYos QY09 QY10 QY11
Qy12 QY13 Qy14 QY15 QY16 QY17 QY18 QY19

ayao aya1 aya2 aya3 ay24 Qs Qso00 Qs01
aso2 Qso03 QsS04 Qs05 Qas06 Qso07 Qso08 Qso09
Qs10 as11 Qs12 as13 as14 as15 as16 RTMLA

RTML2 RTML3 RTML4 RTMG1 RTMG2

<<<<<< ID SEGMENTS AVAILABLE 3»»>>>>
41 LONG 23 SHORT

15

BIT BUCKET

FTN4

JEDIT
FLUSH
FMGE1
RUNS1

ACCT1
F4.3
BASCH
SED1
ayo4
ayi2
avyao
@so2
as10
RTML2

OUTPUT WITH OPTIONAL PARAMETER NON-ZERD

TEMPORARY ID SEGMENTS LISTED BY PROGRAM NAME & TYPE

€<<<<< LONG ID SEGMENTS >>>>>>
ASMB XREF %*BX00 LBX01 ¥BX02 %BX03
EDITR DL CMM4 saM LGTAT PRTSV
SWAPT HALT FMGB3 FMGS7 LOASE FMGS6
FMGS1 FMG01 FMGS52 TESTE QUESS FMGS8
JEDG1 EDTS3 FMGS3 MTDO1 1DCS6 . .CHK
€<<¢<<¢ SHORT ID SEGMENTS »>>>>>
ACCT2 ACCT3 ACCT4 ACCTS F4.0 F4.1
F4.4 F4.5 ASMBO ASMB1 ASMB2 ASMB3
BASC2 BASC3 BASC4 BASCS BASC6 BASC?7
SED2 SED3 Qy Qayoo avo1 Qyo02
QyYos QY06 QYo7 Qy 08 Qyo9 Qy10
Qay13 Qyi4 QyY1sS QY16 QY17 Qy18
ay21 Qavy22 QY23 Qy24 Qs Qs00
Qs03 Qso04 Qso0S Qs06 Qso07 Qs08
Qs11 Qs12 QS13 QS14 QS1S Q516
RTML3 RTML4 RTMG1 RTMG2
€cccc¢ ID SEGMENTS AVAILABLE >>>>>>
40 LONG 23 SHORT
€<<<¢<¢ USER CARTRIDGE TRACK AVAILABILITY >>>>>>
LAST TRACK

LU 25 CR 2S = NEXT TRACK 85 (¢ 201)
LU 34 CR 21319 =5G NEXT TRACK 20 (201>
LU 11 CR 255 = NEXT TRACK 486 (¢ 499)
LU 28 CR 254 = NEXT TRACK 164 (¢ 201)
LU 33 CR 21323 =SK NEXT TRACK 192 (¢ 201>
LU 35 CR 17228 =CL NEXT TRACK 33 (¢ 201)
LU 2 CR 2 = NEXT TRACK 254 (255)
LU 3 CR 3 = NEXT TRACK 216 (25%)
LU 13 CR 13 = NEXT TRACK 253 (255%)
LU 18 CR 32767 = NEXT TRACK 125 (201)
LU 12 CR 23456 =I[NEXT TRACK 224 (255

16

TEDIT
IDCHK
EDTS7
GQPRNT
QAR

F4.2
ASMB4
BASCS
Qvo3
ay11
av19
Qso01
@so09
RTMLA

OPERATING SYSTEMS

LOADING PROGRAM SEGMENTS FROM FMP FILES

Larry W. Smith/HP Fullerton

Are you a user suffering from an overdose of segmentation? Well, if you are a victim of this potentially crippling convenience, |
might have just the remedy for you. This article will review some existing system restrictions and reveal how it is possible to
overcome the limitation of the total number and disc location of program type 5 segments. In specific, we will explore a means
of loading any number of segments from any disc lu into the segment overlay area of an executing program. | think that you will
find the method described in this article both simple and flexible to use.

HISTORICAL BACKGROUND

This capability was developed for a customer that markets an extremely sophisticated three-dimensional graphics manufactur-
ing design software package. In order for them to maintain standard ANS FORTRAN coding for implementation on a variety of
mini-computer systems and due to the complexity of their software, segmentation is inevitable. The total number of segments
that are required to run a plot is about 320. This presents somewhat of a problem to RTE since it has a maximum of 255 1D
segments for all program types, including segments. This was the beginning of SLOAD.

REVIEW OF EXISTING SYSTEM LIMITATIONS

All executable programs and segments in the RTE system must reside on either LU=2 or LU=3 of the system disc area prior to
being dispatched into a partition for execution. This is primarily due to the internal table structure of 1D segments. An ID
segment is used by RTE to keep track of a program’s activity (status, priority, etc.) as it requests resources during Real-Time.
You might think of 1D segments as a very efficient way of cataloging executable programs. In addition, assuming there is
enough disc space to hold all segments, the total number of all programs and/or segments is limited to 255. Furthermore, the
total number of tracks available to hold all these type programs is 512 minus the system size and any FMP tracks on LU=2
and/or LU=3. All in all, it appears that a desirable compromise would be to limit the number of segments and discover other
means, such as scheduling other programs that share system common, as an alternative solution.

To summarize system program and segment limitations, we have the following:
1. Must reside on'LU=2 or LU=3 in the work area or SP'd into an FMP file.
2. Maximum limit of 255 total programs and/or segments.

3. Maximum number of tracks to hold all programs and/or segments is 512 minus system size and FMP area.

17

OPERATING SYSTEMS

SOLUTION: LOADING SEGMENTS FROM FMP FILES

To overcome the three above restrictions, a subroutine could be written in FORTRAN (or Assembly language) that would
essentially open a file, read all records into the segment overlay area, close the file, and finally jump to the beginning of the
segment. The advantages and disadvantages of this approach could be summarized as follows:

Advantages
Segment can be located on any disc LU.

Build-in FMP file protection to such things as the 'OF
command or system re-boot.

Parameters in the ‘SLOAD’ call in the same positions as
the ‘EXEC’ call.

No significant limitation on the total number of
segments.

Disadvantages
Load time is slightly slower than using an ‘EXEC’ call.

Caution must be taken when attempting to share seg-
ments with more than 7 concurrent programs.

There is no provision in the ‘SLOAD’ and 'FREAD’
routines {0 pass parameters on the call but this could
easily be done.

Depending upon the application, the convenience of this method could become the only self-defeating obstacle due to the FMP
overhead compared to the system EXEC overhead.

Let's assume this method is feasible for your application. The subroutine responsible for loading the segment is called as
follows:

CALL SLOADCierr, name, isc, icr)

ierr FMP file error return.

name file name containing SP'd segment.
IsC file security code.

icr cartridge reference number.

The subroutine would accomplish the following tasks:

©Co~NO AW =

Open the file.
Check for open errors.

Read entire main program into the segment overlay area.

Check for read errors.

Read any base page (if any).

Check for read errors.

Close the file.

Check for close error.

Transfer control to start of the segment.

All the rules for segment program coding remain the same with the only difference being in coding a call to 'SLOAD' rather than

an ‘EXEC' call. In either case, the parameter positions are identical.

To illustrate the mechanics of how this can be done, the following FORTRAN program called ‘SLOAD’ with one Assembly
language subroutine called 'FREAD’ and a test case program and segment are listed at the end of this article. The overall
picture of this process is as follows:

OPERATING SYSTEMS

OVERALL PICTURE

End of
Physical Memory

Any Disc Area

Available Memory

Segment Read in to overlay area & Base Page
Overlay Area l
Disc-Resident
Partition
Main L —
Program
Base Page -t
:SP,SEG1:5C:43
L]
L]
L]
L]
L]
BASIC PROGRAM STRUCTURE
FTN4 L
RTE ?
Svstem PROGRAM MAIN
Low Y DIMENSION NAME(3)

Memory DATA NAME/2HSE,2HG1 ,2H /

CALL SLOADCIERR,NAME,2HSC,43)

IFCIERR.LT.0) GO TO 999
Note the compatability)
with existing
CALL EXEC(8,NAME)

END
ENDs

Figure 1

19

OPERATING SYSTEMS

As can be seen, the only coding difference to the programmer is the usage and interpretation of the parameters in the ‘SLOAD’
call.

When loading the main program, the SLOAD subroutine must be loaded with the main and not with a segment. As an example,
let's assume we had four modules to load as follows:

MAIN — FORTRAN main test program that calls SLOAD.

SEG1 — FORTRAN segment that SLOAD loads for MAIN.

SLOAD — FORTRAN FMP segment loader subroutine.

FREAD — Assembly subroutine called by SLOAD to do actual memory loading.

The loading sequence would be as follows:

:RU,LOADR

/LOADR: RE,XMAIN::13

coM 40002 40002

MAIN 40003 40205 FMP SEGMENT LOADER TEST PROGRAM

/LOADR: RE,%SLOAD::13

SLOAD 40206 40666 FMP SEGMENT LOADER (LWS, REV. 1902)
/LOADR: RE ,%FREAD::13

FREAD 40667 40742 READ FMP TYPE 6 RECORD INTO MEMORY (LWS)
/LDADR: RE,%SEG1::13

RMPAR 40743 41001 771116 24998-16001

OPEN 41002 41167 92002-16006 741205

CLOSE 41170 41306 92002~16006 771115

READF 41307 42045 92002-16006 770801

REIO 42046 42163 92067-16035 REV.1826 780509
R/UWs 42164 42317 92002-16006 740801

P.PAS 42320 42346 92002-16006 740801

FMTIQ 42347 43765 24998-16002 REV.1805 780303
FRMTR 43766 46567 24998-16002 REV.1805 780303
FMT.E 46570 46570 24998-16002 REV.1805 780303
PNAME 46571 46636 771121 24998-16001

$OPEN 46637 47045 92002-16006 740801

RWSUB 47046 47317 92002-16006 750422

RWND$ 47320 47442 92002-16006 771121

SEG1 47443 47467 FMP SEGMENT LOADER TEST SEGMENT
/LOADR: END

5 PAGES RELOCATED S PAGES REQ’D NO PAGES EMA NO PAGES MSEG
/LOADR:MAIN READY

/LOADR: $END

:SP,SEG1::3

:RU,MAIN,SE,G1,20040B

MAIN RUNNING.

ATTEMPTING LOAD OF FILE ‘*SEGT ‘.
SEG1 IN.

MAIN BACK RUNNING.

20

OPERATING SYSTEMS

CONCLUSION

This is a method of overcoming the segmentation blues on an RTE system. In RTE-M, a supported program called ‘APLDR’ will
accomplish about the same thing since there is no system disc or program swapping capability. The author has not had time to
do performance evaluations or comparisons on this method, but | believe in most applications it will not present a real problem.
It might be noted that other means of loading segments such as obtaining actual track and sector location of FMP files or using
system level $XSIO calls can be used to improve loading time. This program will eventually be available in LOCUS for a nominal

fee.

PROGRAM LISTINGS

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

0042
0043
0044
0045
0046
0047

FTN4 ,L

C

e YoReXeRoKkeRoXoRokeXeRoXoRo ks Koo RvisRoRoEe o No o N ol oo NoNoNoNoloNoNoNoNoNoNoNoNoNoNe N e

SUBROUTINE SLOADCIERR,FNAME,ISEC,ICR),FMP SEGMENT LOADER

SUBROUTINE DESCRIPTION

THIS SUBROUTINE LOADS THE CONTENTS OF AN FMP FILE CONTAIN-
ING AN SP‘D PROGRAM SEGMENT INTO THE SEGMENT OVERLAY AREA OF
AN EXECUTING PROGRAM. THE PROGRAM PERFORMS NECESSARY FMP FILE
ERRORS BUT DOES NOT VALIDATE THE CONTENTS OF THE FILE NOR RE-
STRICT ITS TYPE. CAUTION MUST BE USED IN ATTEMPTING TO USE
TYPE 0 FILES SINCE THERE IS NO CHECK FOR THIS POSSIBILITY. IT
MIGHT ALSO BE NOTED THAT THE APPROPRIATE CONTENTS OF THE FIRST
BLOCK OF THE FILE CONTAINING IMPORTANT INFORMATION ABOUT THE
SEGMENT’S BOUNDS ARE NOT VALIDATED. THEREFORE, THE USER MUST
ENSURE THAT THE INTEGRITY OF THE TYPE 6 FILE IS BEYOND ANY
POSSIBILITY OF CORRUPTION.

CALLING SEQUENCE

CALL SLOAD(IERR,FNAME,ISEC,ICR)
IERR ----> FMP ERROR RETURN FROM OPEN, READF, OR CLOSE CALL.
FNAME ---> FILE FNAME CONTAINING THE DESIRED TYPE 5 SEGMENT.
THE FILE TYPE CAN BE ANY FILE TYPE BUT IT IS
SUGGESTED THAT IT BE A TYPE 6.
ISEC ----> FILE SECURITY CODE.

ICR ----- > CARTRIDGE REFERENCE NUMBER OR LOGICAL UNIT NUMBER.

EXTERNAL REFERENCES

OPEN ---~> FMP FILE OPEN ROUTINE.
READF ---~> FMP FILE READ ROUTINE.
CLOSE ---~> FMP FILE CLOSE ROUTINE.

FREAD ---> ASSEMBLY LANGUAGE SUBROUTINE TO READ ONE RECORD
FROM AN FMP FILE INTO MEMORY.

21

OPERATING SYSTEMS

0048 C SJUMP ---> ASSEMBLY LANGUAGE ROUTINE THAT TRANSFERS CONTROL
0049 C TO THE SEGMENT OVERLAY AREA.

0050 C

0051 C BPMOV ---> ASSEMBLY LANGUAGE ROUTINE THAT MOVES A BLOCK OF
0052 C MEMORY FROM LOCAL BUFFER *INBUF‘ ONTO THE

0053 C PROGRAM’S BASE PAGE AREA.

0054 C

0055 C VARIABLE NAME USAGES

0056 C ------~-------------

0057 C

0058 C FNAME FMP FILE NAME CONTAINING TYPE & SP’D SEGMENT.
0059 C

0060 C DCB FMP DATA CONTROL BLOCK ADDRESS.

0061 C

0062 C INBUF INPUT BUFFER ADDR FOR EACH RECORD FROM TYPE 6 FIL.
0063 C

0064 C DCB1 POINTS TO FIRST WORD OF DATA CONTROL BLOCK.

0065 C

0066 C INBF1 POINTS TO FIRST WORD OF INPUT BUFFER.

0067 C

0068 C INBf8 POINTS TO PRIMARY ENTRY PT. IN SGMT OVERLAY AREA.
0069 C

0070 C INBF23 POINTS TO SEGMENT LOW MAIN ADDRESS.

0071 C

0072 C INBF24 POINTS TO SEGMENT HIGH MAIN ADDDRESS.

0073 €

0074 C INBF2S POINTS TO SEGMENT LOW BASE PAGE ADDRESS.

0075 C

0076 C INBF26 POINTS TO SEGMENT HIGH BASE PAGE ADDRESS.

0077 C

0078 C IDADR CONTAINS SEGMENT’S PRIMARY ENTRY PT. FOR EXECUTION
0079 C WHICH IS GIVEN TO SUBROUTINE ‘*SJUMP’,

0080 C

0081 C ADDRES CONTAINS THE CURRENT MEMORY ADDRESS WHEN LOADING
0082 C THE MAIN SEGMENT BODY AND BASE PAGE.

0083 C

0084 C PRGLEN CONTAINS THE MAIN SEGMENT BODY LENGTH.

0085 C

0086 C BPLEN CONTAINS THE BASE PAGE LENGTH.

0087 C

0088 C RECORD CONTAINS THE CURRENT RANDOM ACCESS RECORD NO. WHEN
0089 C LOADING BLOCKS FRBM THE FILE INTO THE SEGMENT
0090 C OVERLAY AREA.

0091 C

0092 C LENR CONTAINS THE ACTUAL REQUESTED RECORD LENGTH WHEN
0093 ¢C READING RECORDS FROM THE FILE INTO MEMORY.

0094 C

0095 C LEN CONTAINS THE FMP RETURNED RECORD LENGTH WHICH
0096 C SHOULD EQUAL THAT OF VARIABLE “LENR’.

0097 C

0098 € IER CONTAINS THE LAST FMP CALL ERROR.

0089 C

0100 C

0101 C WARNINGS

0102 C --------

0103 C

0104 C 1. THIS SUBROUTINE DOES NOT ATTEMPT TO PROCESS USER TYPE ERRORS
0105 C WHICH COULD BE CLASSIFIED AS ‘CORRUPTABLE’ TYPE ERRORS.
0106 C

0107 C 2. THIS SUBROUTINE MUST BE LOADED WITH THE MAIN PROGRAM ONLY.
0108 €

22

OPERATING SYSTEMS

0109
0110
0111

o112
0113
0114
0115
0116
0117
0118
0119
0120
0121

0122
0123
0124
0125
0126
0127
0128
0129
0130
0131

0132
0133
0134
0135
0136
0137
0138
0139
0140
0141

0142
0143
0144
0145
0146
0147
0148
0149
0150
0151

0152
0153
0154
0155
0156
0157
0158
0159
0160
0161

0162
0163
0164
0165
0166
0167
0168

O0O0O0

OO0 OO0 OO0

OO0

IMPLICIT INTEGER (A-2)

DIMENSION FNAME(1),DCB(16), INBUF(128)
EQUIVALENCE(DCB1,DCB(1))

EQUIVALENCECINBF1, INBUF(1)),CINBF8, INBUF(8))
EQUIVALENCECINBF23, INBUF(23)),(INBF24,INBUF(24))
EQUIVALENCECINBF25, INBUF(25)) ,(INBF26, INBUF(26))

.. ATTEMPT FILE OPEN & CHECK FOR FILE ACCESSIBILITY.

FORCE OPEN TD NON-EXCLUSIVE, UPDATE, & TYPE 1 ACCESS

CALL OPEN(DCB1,IERR,FNAME,?7,ISEC,ICR)
IFCIERR)999,30

FILE IS READY - READ FIRST RECORD TO GET PROG. BOUNDS ...

30 CALL READF(DCB1,IER,INBF1,128,LEN,1)
IFCIER)GG6,50

S0 IDADR=INBF8
ADDRES=INBF23
PRGLEN=INBF24-ADDRES+1
BPLEN=INBF26-INBF25+1

.. LOAD MAIN PROGRAM (RECORDS 2-(N-1)) INTO OVERLAY AREA ...

RECORD=2
LENR=128
82 IF(PRGLEN.LT.128) LENR=PRGLEN
CALL FREAD(DCB1,IER,ADDRES,LENR,LEN,RECORD)
IFCIER)B66,85

. UPDATE MEMORY ADDRESS & NEXT BLOCK ...

85 PRGLEN=PRGLEN-128
IF(PRGLEN.LE.OQ) GO TO 45
ADDRES=ADDRES+128
RECORD=RECORD+1
GO TO 82

LOAD BASE PAGE AREA

45 ADDRES=INBF25
RECORD=RECORD+1
LENR=128

90 IF(BPLEN.LT.128) LENR=BPLEN
CALL READF(DCB1,IER,INBF1,BPLEN,LEN,RECORD)
IFCIER)E66,93

93 CALL BPMOV(INBF1,ADDRES,LEN)
BPLEN=BPLEN-128
IF(BPLEN.LE.O0)> GO TO 924
ADDRES=ADDRES+128
RECORD=RECORD+1
GO TO 90

CLOSE FILE & TRANSFER CONTROL TO SEGMENT

94 CALL CLOSE(DCB1,IER)
IFCIER)G66,95

23

OPERATING SYSTEMS

0169 C... DIVE INTO SGMT WITH A *JSB 0,1’ & HOPE FOR GOOD WEATHER ...
0170 C

0171 95 CALL SJUMPCIDADR)
0172 C
0173 C. RETURN PDINT IN CASE A *JUMP ADRES,I’ IS DONE IN SEGMENT .
0174 C
0175 GO TO 999
0176 C
g:;; C. RETURN TO CALLER IF FILE OPEN, READF, OR CLOSE ERRORS
c

0179 666 IERR=IER
0180 888 CALL CLOSE(DCB1)
0181 C

0182 999 END

FTN4 COMPILER: HP92060-16092 REV. 1805 (780310)

#+ NO WARNINGS #+ NO ERRORS #+ PROGRAM = 00305 COMMON = 00000

0001 ASMB,R,L,Q «+ READ FMP TYPE © RECORD INTD MEMORY #+«

=+ NO ERRORS PASS1 #+RTE ASMB 92067-16011+««

0001 ASMB,R,L,Q #++ READ FMP TYPE & RECORD INTO MEMORY s+«
0002+

0003 00000 NAM FREAD,7 READ FMP TYPE © RECORD INTO MEMORY
0004+«

0005 ENT FREAD,SJUMP ,BPMOV

0006+

0007 EXT .ENTR,READF ,$LIBR,$LIBX,.MVIW

0008+«

0009+ SUBROUTINE DESCRIPTION

0010% -------;mcmrme e

0011+

0012+ THIS SUBROUTINE 1S RESPONSIBLE FOR ACCOMPLISHING THREE TASKS
0013+ AS REQUESTED BY THE FMP SEGMENT LOADER ‘*SLOAD’:

0014+

0015« FREAD ---> READS A RECORD FROM 1 TO 128 WORDS IN LENGTH FROM

0016+ AN FMP FILE INTQ THE SPECIFIED MEMORY ADDRESS AS
0017+ PASSED BY THE CALLER IN *IADRS’.

0018+

0019+ SJUMP ---> TRANSFERS CONTROL TO THE SEGMENT OVERLAY AREA BY
0020+ EXECUTING A *JSB 0,1’ INSTRUCTION USING THE MEMORY
0021+ ADDRESS AS PASSED BY THE CALLER IN *IDADR’.

0022+

0023+ BPMOV ---> MOVES A BLOCK OF DATA AS PASSED BY THE CALLER IN
0024+ ‘IBUFR’ ONTO BASE PAGE ADDRESS SPECIFIED IN “IDRES”’.
0025+

0026+

24

OPERATING SYSTEMS

0027+«
0028+
0029+«
0030+
0031+
0032+«
0033+
0034+
0035+
0036+
0037+
0038+
0039+
0040+
0041+
0042+
0043+
0044+«
0045+
0046+
0047+
0048+
0049+
0050+
0051+
0052+
0053+
0054+
0055+
0056+
0057+
0058+
0059+«
0060+«
0061+
0062+
0063+
0064+
0065+
0066+
0067+«
0068

0069

0070

0071

0072

0073

0074+
0075

0076

0077

0078+

CALLING SEQUENCES

CALL FREADCIDCB,IER,IADRS,IL,LEN,NREC)
IDCB ----> DATA CONTROL BLOCK ADDRESS.
IER ----- > FMP ERROR RETURN

IADRS ---> MEMORY ADDRESS (SAME AS BUFFER ADDRESS).

IL ------ > REQUEST LENGTH.
LEN ----- > RETURNED RECORD LENGTH.
NREC ----> RECORD NUMBER.

CALL BPMOVCIBUFR,IDRES,NWORD)

IBUFR ----> BUFFER ADDRESS CONTAINING THE DATA TO BE MOVED.
IDRES ----> STARTING MEMORY ADDR WHERE DATA IS TO BE MOVED.
NWORD ----> NUMBER OF WORDS TO BE MOVED.

CALL SJUMPCIDADR)

IDADR ----> MEMORY ADDRESS TO WHICH CONTROL IS TO BE GIVEN.

WARNINGS

1. THIS SUBROUTINE DOES NOT ATTEMPT TO PROCESS USER TYPE ERRORS
WHICH CQULD BE CLASSIFIED AS ‘CORRUPTABLE’ TYPE ERRORS.

2. THIS SUBROUTINE MUST BE LOADED WITH THE MAIN PROGRAM ONLY.

00000 000000 IDCB NOP
00001 000000 IER NOP
00002 000000 [IADRS NOP
00003 000000 IL NOP
00004 000000 LEN NOP
00005 000000 NREC NOP

00006 000000 FREAD NOP «<<< ENTRY >>>
00007 000001X JSB .ENTR RETRIEVE CALLERS PARAMETERS.
00010 000000R DEF 1DCB

25

OPERATING SYSTEMS

0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090+
0091
0092
0093
0094
0095
0096
0097+
0098
0099+
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117+
0118

00011

00012
00013
00014
00015
00016
00017
00020
00021

00022
00023

00024
00025
00026
00027
00030
00031

00032

00033
00034
00035
00036
00037
00040
00041
00042
00043
00044
00045
00046
00047
00050
00051
00052
00053

000002R
000017R
000002X
000023R
100000R
100001R
000017R
100003R
100004R
10000SR
000006R

000000
000000
000001X
000024R
000024R
000000

00002SR

000000
000000
000000
000000
000001X
000033R
000003X
000000
000033R
000034R
000005x
10003SR
000000
000004Xx
000052R
000053R
000036R

INBUF

IDADR
SJUmMP

IBUFR
IDRES
NWORD
BPMOV

LDA
STA
JSB
DEF
DEF
DEF
DEF

DEF"

DEF
DEF
JMP

NOP
NOP
JSB
DEF
L.DA
JSB

Jmp

NOP
NOP
NOP
NOP
JSB
DEF
JSB
NOP
LDA
LDB
JSB
DEF
NOP
JSB
DEF
DEF
JMP

END

IADRS, I
INBUF
READF
v+7
IDCB, T
IER,I

*

IL,I
LEN,I
NREC,I
FREAD,I

GET STARTING MEMORY ADDRESS
AND SET-IN AS ACTUAL BUFFER ADDR
INITIATE
FMP RECORD
READ
DIRECTLY
INTO
SPECIFIED
MEMORY
ADDRESS.
RETURN TO CALLER.

<<< ENTRY >>>

LENTR
I[DADR
IDADR, I
0,I

SJUMP . 1

<< ENTRY
.ENTR
IBUFR
$LIBR

1BUFR
IDRES, |
MVI
NWORD, I

$LIBX
*+1
*+1

BPMOV, I

GET SEGMENT JUMP ADDRESS.
DIVE INTO SEGMENT & AND PRAY.

IN CASE THE SEGMENT DOES THIS.

SOURCE BUFFER ADDRESS.
DESTINATION MEMORY ADDRESS.
NUMBER OF WORDS TO MOVE.

b 24

TURN OFF INTERRUPT SYSTEM.

GET SOURCE ADDRESS.
GET DESTINATION ADDRESS.
GO MOVE THE BLOCK.

FOR FIRMWARE COMPATABILITY.
RETURN
TO
RTE.
RETURN TO CALLER.

»+ NO ERRORS sTOTAL #+RTE ASMB 92067-16011++

26

OPERATING SYSTEMS

0001 FTN4,L

0002 PROGRAM MAIN(3),FMP SEGMENT LOADER TEST PROGRAM
0003 COMMON IRET

0004 DIMENSION NAME(S)

0005 CALL RMPAR(NAME)

0006 WRITEC1,100)

0007 100 FORMAT("MAIN RUNNING.")

0008 ASSIGN 10 TO IRET

0009 WRITECT ,105)NAMEC1) ,NAME(2) ,NAME(3)

0010 105 FORMAT(“ATTEMPTING LOAD OF FILE *"3A2"‘.')
0011 CALL SLOAD(IERR,NAME,2HSC,-3)

0012 IFCIERR)77,10

0013 77 WRITEC1,101)IERR

0014 101 FORMAT('FMP FILE SEGMENT OPEN ERROR="16)
0015 10 WRITEC1,103)

0016 103 FORMAT(”MAIN BACK RUNNING.')

0017 END

FTN4 COMPILER: HP92060-16092 REV. 1805 (780310)
#+ NO WARNINGS #+ NO ERRORS =+ PROGRAM = (0131 COMMON = 00001

0001 FTN4,L

0002 PROGRAM SEG1(5),FMP SEGMENT LOADER TEST SEGMENT
0003 COMMON IRET

0004 WRITEC1,100)

0005 100 FORMAT("™SEGT IN.'™)

0006 GO TO IRET

0007 99 END

FTN4 COMPILER: HP92060-16092 REV. 1805 (780310)
#+ NDO WARNINGS #+ NO ERRORS #+ PROGRAM = 00021 COMMON = 00001

27

OPERATING SYSTEMS

CONVERSION OF COMPUTER PROGRAMS TO HP1000 RTE-IV

Jack B. McAlister/Technology Development Corporation

INTRODUCTION

The conversion of computer programs will enable the HP 1000 RTE-IV user to adhere to the adage of “Not re-inventing the
wheel”. There are computer programs that have already been developed on other computer systems to perform the same
operations as many of those desired under the RTE-IV operating system.

The conversion of computer programs from other computer systems to a form that is acceptable on the HP 1000 RTE-IV
operating system requires several phases of analysis and conversion. In the following discussion of these various phases,
source program refers to the originating computer system program and converted program refers to the RTE-IV program.

SOURCE LANGUAGE

The first item of program conversion is to assess the language of the source program. Programs written in languages other than
FORTRAN or BASIC are difficult, at best, to convert. Generally, BASIC programs require very little conversion. Therefore,
attention is focused on conversion of FORTRAN programs.

A careful analysis of the source program is required to ascertain the type of FORTRAN used. The HP 1000 RTE-IV FORTRAN |V
is based on the 1966 ANSI standard. FORTRAN 77 permits several different types of FORTRAN statements, including “IF ELSE
THEN", and special DO forms, e.g., "REPEAT". Some FORTRAN compilers also have non-ANS! standard statements or
extensions that don’t exist in the HP 1000 RTE-IV FORTRAN V.

SEGMENTATION

The conversion process should, if possible, begin with a compiled listing of the source program. On most computer systems,
the FORTRAN 1V compiler listing will include the core size requirements for the source program. These requirements are an aid
in the determination of segmentation requirements on RTE-IV.

To segment a program, break the source program into logical or functional modules. Each of these modules can be converted
into a segment. Large subroutines are prime candidates to become segments. Also, look for blocks of code within large
subroutines that with little or no change can be converted into subroutines.

Since the return to a segment is always at the top of the segment, determine whether any segments will be re-entered after
completion of a call to another segment. In such cases, a variable(s) in COMMON can be used to control the jump to the
statement following the call.

28

OPERATING SYSTEMS

EXAMPLE

COMMON ~-~-~=~=~ NSWTCH, == -====-=-

IF (NSWTCH.EQ.0) 6OTO 50
GOTO €100,200,300) ,NSWTCH
§0 CONTINUE

NSWTCH=1
CALL EXEC (8,SEG1)
100 CONTINUE

NSWTCH=2
CALL EXEC (8,SEG2)
200 CONTINUE

NSWTCH=3
CALL EXEC (8,SEG3)>
300 CONTINUE

COMMON BLOCK

If the converted program is to be segmented and the source program has multiple labeled COMMON blocks, these blocks
must be merged into one COMMON block. All segments must have the same COMMON allocation for sharing of data between
segments. The parameters list of any subroutine that is being converted into a segment shoutd be included in the COMMON
block. It is also useful to include spare variables and arrays for future use. If this is not done, the programmer will have to be very
careful when one of the segments requires a change in the COMMON block. An easy method of ensuring the correct COMMON
allocation is to have the COMMON block as a separate FMP disc file which can be merged into the segment sources when a
change is required.

SUBROUTINES

A large number of statements in a subroutine or segment can make analysis, understanding, conversion, and debugging
difficult. This type of subroutine can be broken into two or more subroutines as follows:
Determine logical sections of the subroutine.

Use the EDITOR to break and form new subrcutines using the determinations from step a. Do not attempt to resolve or
declare variables or arrays at this time. Add the FTN4 control statement only.

Compile and cross reference the new sections.
Use the cross reference list to prepare a parameters list for communications between the new section and the calling
subroutine.

29

OPERATING SYSTEMS

WORD SIZE

Another item requiring careful scrutiny is the word size of the source program computer system. Computer system word sizes
vary from 16-bits to 32-bits, 36-bits, or even 60-bits. The following types of statements must be analyzed and adjusted for these
differences:

FORMAT

ARRAY DECLARATIONS

DATA STATEMENTS

EXECUTABLE STATEMENTS USING ARRAYS
DO LOOP RANGES

O~ =

READS & WRITES

All formatted READ statements must be checked for the use of ERR=nnn and/or END=nnn. Device status check statements
must be included after the READ to satisfy ERROR and END branches.

Also, careful attention must be given to the type of READ or WRITE. Forexampile, is a spool file or a disc file being used? If either
of these conditions are true, then the procedures described in the Batch Spool Monitor manual are to be used.

If spool and/or disc files are to be used, an analysis of the file contents is required to determine possible file length. The size of
the files should be specified as large as practical since these files cannot have more than 255 extents.

DEBUGGING

Aids for debugging large segmented programs on the HP 1000 RTE-IV are very important. The use of the HP 'DEBUG’ package
requires an assembly language equivalent listing which would be very large and time-consuming; and an understanding of the
HP assembly language is required. This requirement can be alleviated through the use of a form of tracing. The use of a
“TRACE"” variable, in COMMON, has been found to be one of the best debugging aids. This variable is set in the RUN
parameters and retrieved with the "RMPAR"” routine. The programmer inserts “IF" statements in the segments to write
information that will aid in the flow analysis. When the program has been debugged and is operational, the TRACE statements
can be left in the program as an aid for future maintenance. The TRACE variable will aid the programmer in the duplication and
verification of the users anomoly during the maintenance phase.

The use of multiple levels of tracing is also valuable. By assigning different values of the TRACE variable to separate segments,
modules, subroutines, etc., specific detailed information may be traced. The assignment of one value for the trace variable will
enable a scan of total program flow.

Example

NTRACE = 99 FOR TRACE ALL MODULES
88 FOR TRACE ROOT MAIN

1 FOR TRACE SEGMENT 1

2 FOR TRACE SEGMENT 2

3 FOR TRACE SEGMENT 3

0 FOR NO TRACE

30

OPERATING SYSTEMS

To enable checkout to begin with the completion of source code for the first segment, all other segments should be included as
“STUBS” (Dummy segments that return immediately, furnishing plausible values for their output parameters). In this way the
entire program appears to be operational from the beginning. As subsequent segments are coded, they can replace their
Dummy “Representatives” and testing can continue. This process is in accordance with TOP-DOWN STRUCTURED
Programming.

TIMING

Timing is another very important consideration during the conversion of a large program. During code conversion, the
programmer should be observant of sections of code that could be time “bottlenecks”. When the debugging is in process these
sections of code can be observed closely and a “true time user” can then be made more time efficient with a different coding
scheme. Code that reads “well” may not be time efficient. Disc accesses and sorts are usually areas that deserve close
scrutiny.

CONCLUSION

Program conversion is a way of benefiting from development work done by others. Not only do you profit from others design
knowledge, but you also save yourself the time you would have spent coding and debugging. Quantitatively, if the original
development required 1/2 man-year to place into operation and the program can be converted in 2 man-months, there is a
savings of 4 man-months.

The processes discussed in this article have been used by the author to convert a program which requires a 1008K-byte
partition on a large computer. The converted program requires an RTE-IV 48K-byte partition and consists of a root main and 18
segments. The original programming was accomplished in 18 man-months and the conversion in 6 man-months. For a program
that provides a valuable product the time spent on the conversion is usually recovered quickly.

3N

INSTRUMENTATION

THE FUNDAMENTALS OF HP-IB ADDRESSING

HP-1B is a powerful interfacing concept that allows multiple instruments to be connected to the same bus. This concept helps to
economize the system cost with respect to cabling, interface hardware, and user software effort. Programming devices with
HP-IB is straightforward; however, if full utility is desired a person implementing an HP-IB system should understand how HP-B
addresses are created and used. The purpose of this article is to describe the HP-IB addressing scheme, and discuss how it is

used in an HP 1000 Computer System.

Neal Kuhn/DSD,Applications Development

DEVICE
#2

DEVICE
#3

COMPUTER

HP-IB

HP-IB \
|
oriver | [0 CARD
DEVICE
#1
Figure 2

Figure 1 illustrates the typical connection pattern for a group of HP-1B instruments. The bus itself is a multidrop arrangement in
which each device has its own address. The address is set with switches which are usually located on the back of the
instrument, or with jumpers which are usually on the circuit board associated with the instrument’'s I/O. Each manufacturer
installs the switches or jumpers in a different place, and labeling is not always clear. Therefore, care should be taken to
ascertain which switch is the most significant bit, and which position is 1" or “0". Application Note Series 401 contains
information regarding the setting of the HP-IB address switches for many of the HP-IB instruments and peripherals. A typical

HP-IB address grouping is shown in Figure 2.

Figure 1

32

INSTRUMENTATION

Five address bits are used to obtain the binary pattern for up to 32 device addresses, but only 30 different settings can be used
for instruments. One address is withheld by the controller for use as its own address, since the I/O card itself is an HP-IB device.
For the HP 1000, this address is address 0. HP-IB address 31 (37B) is defined by the HP-IB for the special purpose of telling
everyone to stop talking (untalk) or stop listening (unlisten). All devices respond to the untalk and unlisten commands
regardless of their addresses. Addresses 1 to 30 (36B) may be arbitrarily assigned to your device.

When the HP-IB's ATN (attention) management line is asserted, information is sent out from the controller over the bus data
lines. This information tells the devices which HP-IB command to perform, or which device should talk and which devices
should fisten during a transfer of data. A coding scheme is established for HP-IB where a parity bit and two data bits are
appended to the five bit address to form an eight bit “command” byte. The parity bit is not usually used. A device looks for its
address in the command byte, and also looks at the two extra bits to determine what the command was. The choices for these
two bits are:

WORD MEANING

00 XXXXX This is a bus “universal” command and xxxxx is the command to perform. The universal commands
are used to clear devices, trigger them, and to set up polling sequences for service requests.

01 XXXXX This is a “listen” command, and device xxxxx is to listen to the bus for data.
10 XXXXX This is a “"talk” command, and device xxxxx is to send data onto the bus.
11 XXXXX This is “"secondary” command, and xxxxx is a device dependent function code for the currently

addressed device,

When the command bits are combined with the device address or function code, a seven bit ASCH character is formed. Note
for universal commands that the characters are non-printing. Table 1 illustrates the ASCII characters formed for talker and
listener combinations of device address and command bits.

For an example, if the ASCIl command string “_?5L" is sent onto the bus from the controller, everyone would untalk (_), everyone
would unlisten (?), the device set to address 5 is told to listen for data (5), and the device set to address 12 is told to talk (L).
After the ATN management line is de-asserted, device 12 will begin talking, device 5 will listen, and everyone else will ignore the
transaction. Note that device addresses 5 and 12 were arbitrarily selected.

According to the IEEE-488 standard, a device that is made a listener will continue to listen until it is made a talker, or the unlisten
command is sent.* Assigning a new listener will not unlisten the previous one. This is the technique used by HP-IB to assign
muttiple listeners. The active talker will change when it is made a listener, or another device is made a talker, or the untalk
command is sent. To assure that the proper devices are talking and listening, the convention usually adopted is to always send
the untalk and unlisten commands first, and then set up the appropriate talkers and listeners.

Communication with devices over HP-IB can be accomplished in two different ways. One method is referred to as “automatic
addressing”, and the other is referred to as “direct addressing”. Automatic addressing is a simple and straightforward
techniqgue which can be used for a majority (if not all) of HP-IB transactions.

Automatic addressing can utilize the standard READ WRITE/PRINT contexts and formatting procedures. For READ statements,
it is assumed that the HP 1000 is the listener, and the addressed device is the talker. For WRITE and PRINT statements, the HP
1000 is the talker and the addressed device is the listener.

*There are other techniques to unlisten or untalk an instrument (such as interface clear), but they are unaesthetic, and are used
as bail out measures. Also, the untalk for my listen address is optional, but normally used. The only time that this option is not
used is with terminals where the keyboard (Talker) and the display (Listener) are both active.

33

INSTRUMENTATION

Table 1. ASCII Character Equivalents for Talker and Listener Values

COMMAND SWITCH OCTAL VALUE LISTENER TALKER
BITS SETTINGS OF SWITCHES (XX=01) (XX=10)
0001 o) ! A
X X 00010 2 B
X X 00011 3 # C
X X 00100 4 $ D
X X 00101 5 % E
X X 00110 6 & F
X X 00111 7 G
X X 01000 10 (H
X X 01001 1) l
X X 01010 12 . J
X X 01011 13 + K
X X 01100 14 : L
X X 01101 15 - M
X X 01110 16 N
X X 01111 17 / O
X X 10000 20 0 P
X X 10001 21 1 Q
X X 10010 22 2 R
X X 1001 1 23 3 S
X X 10100 24 4 T
X X 10101 25 5 U
X X 10110 26 6 Y
X X 10111 27 7 w
X X 11000 30 8 X
X X 11001 31 9 Y
X X 11010 32 z
XX 11011 33 l
X X 11100 34 < AN
X X 11101 35 =]
X X 11110 36 > "

NOTE: The two shaded values have special uses. Address “0” is used by the computer. Address 37B is used by
HP-1B to UNTALK or UNLISTEN all devices.

34

INSTRUMENTATION

The Device Reference Table (DRT) structure in the HP 1000 lends itself well to HP-IB programming. When a READ, WRITE, or
PRINT statement is executed, the LU specified is converted into the respective EQT number of the HP-IB and a subchannel
number. The subchannel number is the HP-IB device's address (1 to 36B). The HP-IB driver “automatically” converts the
subchannel number into the proper HP-IB talker or listener code and performs the following:

For a READ statement:

ATN is asserted by the HP 1000

UNTALK () is sent

UNLISTEN (?) is sent

The TALKER character for the specified LU is sent (see table 1)
ATN is de-asserted

The device talks and the HP 1000 listens

o 0o~ o=

For a WRITE or PRINT statement:

ATN is asserted by the HP 1000

UNTALK () is sent

UNLISTEN (?) is sent

The LISTEN character for the specified LU is sent
ATN is de-asserted

The HP 1000 talks and device listens

o o~ L h o=

The following statement illustrates an example of how automatic addressing is used. If a device requires the characters “T3" to
initiate a measurement, the statement:

WRITE (28,101)
101 FORMAT ("T3'")

could be used if the device was assigned to LU 28. Unformatted (free field format) and binary readings can also be used.

There are times when it is desirable to continue a READ or WRITE function without altering talk or listen addresses. This can be
accomplished by using an LU number that points to the bus itself (subchannel 0). Since talking or listening to subchannel O
would mean talking to itself, the system assumes that you wish to perform the I/O transaction without disturbing prior
addressing. The /O task is performed without any command information (asserting ATN). This technique is useful for some
buffered devices when a portion of the buffer is sent each time without re-addressing. Also, this technique can speed
processing when the talkers and listeners do not need to be changed.

The direct addressing technique is a faster and more efficient method than auto-addressing, but places the burden of bus
control on the user program. Under direct addressing, the user program provides two buffers to the HP-IB driver. One buffer
contains the command information which will be sent-over the bus while ATN is asserted. This is used to assign the appropriate
talkers and listeners, or to send universal and secondary command characters. The other buffer either contains the data to be
sent out, or is the place where incoming data will be stored. Remember to specify the computer’s talk or listen address with
direct addressing if the computer will participate in the data transfer.

There are two ways to directly address devices over the bus. HP-IB library routines CMDR and CMDW (command read and
write) or EXEC calls can be used in FORTRAN. In BASIC, CMDR and CMDW must be used, since EXEC calls cannot be used.

35

INSTRUMENTATION

The HP-IB Users Guide (HP part number 59310-90064) explains how to use CMDR and CMDW, but two vital points are often
overlooked. First, CMDR and CMDW were intended for use with BASIC, and expect the command and data buffers to contain
character strings. In FORTRAN, the format of these buffers must resemble a string. This means that the first word of the buffer
must contain the number of characters in the string. After this first word, each additional word will contain two characters. The
second point to remember is that direct addressing requires that the LU of the bus be used. The HP-IB driver checks to see if
the subchannel specified is 0. If it isn’t, an error occurs, the task is rejected, and the program is terminated.

The library commands CMDW and CMDR reformat the buffers and make calls to EXEC. If the language used allows calls to
EXEC, they can be used directly. The format for the direct addressing EXEC call is:

CALL EXECCICODE,ICNWD,IDBFR,IDLEN,ICBFR,ICLEN)
where:

ICODE = Function Code

1 = READ
2 = WRITE
ICNWD = Control word containing the bus LU and an indicator for type of transfer
10000B+LU = ASCII data record with an end of record indicator.
10100B+LU = Fixed length binary record with an end of record indicator.
12000B+LU = ASCI| data record without an end of record indicator.
12100B+LU = Fixed length binary record without an end of record indicator.
IDBFR = Name of data buffer
IDLEN = Length of data buffer in either characters (bytes) or words.
n = words
—m = characters
0 = no data

ICBFR = Name of buffer containing the HP-IB commands

ICLEN = Length of command buffer

n = words
—m = characters
0 = no command buffer used

Note in the above EXEC call that the command and data buffers are optional parameters. If the EXEC call is to perform HP-IB
commands only, no data buffer is used. The EXEC call expects these parameters to be specified, so remember to supply
arguments for both the buffer name and length (set the values to 0's). If the talk and listen assignments are not altered, the
command buffer is not used. It is either set to O’s, or can be omitted. If it is omitted, be sure to turn off bit twelve in the above
control words (subtract 10000B from each of the commands).

36

INSTRUMENTATION

Special bus related commands can also be sent to the HP-IB bus to clear devices, to trigger them, and to regulate polling for
service requests. These commands, which are referred to as “universal” commands, are shown in table 2. They can be sentin
command buffers under direct addressing, or with library routines. The HP-IB Users Guide explains the library calls in detail,
and gives examples of their use.

The preceeding discussion covered addressing and talking to HP-IB devices. Extra processing power and efficiency can be

obtained by utilizing a full understanding of the addressing scheme. Remember, it is important to know your address when
getting on the bus.

Tabie 2. HP-IB Universal Commands

COMMAND ACRONYM OCTAL CODE FUNCTION

Local Lockout LLO 21 Causes all responding devices to disable
their front panel local-reset buttons. Devices
need not be addressed.

Device Clear DCL 24 Causes all responding devices to return to a
pre-determined state. Devices need not be
addressed.

Selected Device SDC 04 Causes the current addressed devices to re-

Clear set to a predetermined state.

Group Execute GET 10 Causes all current addressed devices to

Trigger initiate a preprogrammed action.

Go To Local GTL 01 Causes the currently addressed devices to

return to local control.

Serial Poll SPE 30 Estabiishes serial poll mode, such that all co-
Enable operating devices, when addressed, will pro-
vide status information. An ensuing read will
take a single 8-bit byte of status.

Parallel Poll PPC 05 Assigns an HP-IB DIO line to a cooperating

Configuration device for the purpose of responding to a
parallel poll.

Paralle! Poll PPU 25 Resets all parallel poll devices to a prede-

Unconfiguration termined condition.

Take Control TCT 11 This command is used to pass active control-

ler function to another device on the bus.
This function may NOT be used under the
constructs of the current driver.

The remaining unspecified codes are reserved for future use and should not be used indiscriminately in any control
buffer. This will avoid future difficulties.

37

OPERATIONS MANAGEMENT

REMOTE DATA BASE ACCESS: HOW DOES IT WORK?

Carol Jonas/DSD, Technical Marketing

If you have been reading the literature released recently regarding the new IMAGE/1000 product, you will notice that Remote
Data Base Access is being called the most significant enhancement to IMAGE/1000. A statement of this type is usually meant to
precipitate questions such as "What exactly is Remote Data Base Access?” and "How do | use it?”. Perhaps a more important
guestion, from a programmer’s point of view is “"How does it work?". It is the purpose of this article to answer this last question.

Remote Data Base Access (RDBA) is a mechanism within IMAGE/1000 which allows for accessing a data base on a remote
machine in a Distributed Systems/1000 network as easily as accessing a data base on your local machine. The DS/1000
software/firmware and special IMAGE/1000 software are combined to provide this feature. In order to explain the special

IMAGE software in this article, it is necessary to assume the reader has a basic understanding of DS/1000 and local
IMAGE/1000.

With local IMAGE/1000, manipulating an existing data base can be performed in several different ways; using programmatic
calls, QUERY, or DBBLD. Manipulation of a data base through RDBA can be performed in two different ways, either with
programmatic calls or with QUERY. The RDBA programmatic calls provide the same functions as the local calls with nearly
identical calling sequences. The only exception is opening a data base with the DBOPN call. With RDBA the number of the
node at which the data base resides must be specified along with the data base name, security code, and cartridge reference
number. In addition, the RDBA calls can be used to manipulate a local data base by specifying the local node number, or a
negative one, in the DBOPN call. This provides for greater program flexibility and transportability. A program can be written
which can be run at any node in a DS/1000 network and can access a data base on any node in the network.

Using QUERY to access a data base on a remote node is performed by scheduling QUERY through a REMAT RU or RW
command at the node at which the data base resides. QUERY does not perform RDBA calls but rather, when run interactively,
performs remote I/0. When scheduling QUERY on the remote node, you pass it the number of your node. QUERY then uses that
node number when performing /O to direct its prompts and responses to, and accept input from, the terminal which you are
using. You can also schedule QUERY on a remote node to run in batch mode. In batch mode, QUERY will expect the input file to
reside on the node at which it is executing. QUERY does not perform remote file access calls. However, these two modes can
be mixed. For instance, you can schedule remote QUERY with a batch input file and a logical unit number for an output device.
In this case, QUERY would expect the input file to be at its node, but would direct its output to the LU at the node specified in its
run string. The general rule is QUERY will perform remote I/0 to a device but not to a file. Remote QUERY can be considered as
a user program which uses DEXEC calls to do I/O.

As you can see, the implementation of RDBA through QUERY was done in a fairly straightforward fashion. There are several
reasons for this implementation, including its simplicity, over any others which require RDBA and Remote File Access (RFA)
calls. RDBA calls were not used in QUERY because they could generate an inordinate amount of line traffic. For instance, if a
FIND command which required a serial read of a data set with 30,000 entries was entered in QUERY, using RDBA calls, 30,000
DBGET requests would have to be sent down the line and 30,000 replies to those requests received. An additional considera-
tion in not using the RDBA calls, as well as the main reason for not using RFA calls, in QUERY was the size of the actual
subroutines. QUERY already takes approximately 32K bytes in code space alone and is broken into 26 segments. For remote
I/0 an additional 2K bytes of code space is used plus SSGA must be mapped into the partition. For either RDBA or RFA calls,
another 2K to 4K bytes of code space would be added. At that rate, QUERY would quickly become unusable in the average
RTE-IVB system.

While the implementation for remote QUERY is relatively straightforward, programmatic RDBA is more involved. Programmatic
RDBA was implemented along a scheme that is very similar to DS/1000's Program-to-Program (PTOP) communication. The
scheme includes subroutines which initiate the RDBA requests and can be considered the master routines, and two monitors,
or slave programs, which service the requests and send replies. The RDBA subroutines are the user interface to RDBA that was
mentioned earlier. A program which makes RDBA calls can be considered akin to a PTOP master program.

38

OPERATIONS MANAGEMENT

The RDBA monitors are RDBAM and RDBAP. RDBAM (Remote Data Base Access Monitor) is essentially a traffic controller like
PTOPM. When an RDBA request is received by the DS/1000 software, it is sent to RDBAM via class I/O in the way that any
DS/1000 request is channeled to the proper monitor. However, unlike most DS/1000 monitors, RDBAM does not service the
request directly but rather passes it to a copy of the second RDBA monitor for servicing.

The second RDBA monitor, RDBAP (Remote Data Base Access Program), is the program which does the actual data base
manipulation and initiates replies to the requests. RDBAP can be considered akin to a PTOP slave program. There is one copy
of RDBAP for each program which uses the RDBA master routines. It is part of RDBAM's function to create a copy of RDBAP for
each master program when it first opens a remote data base and to release that copy when the master program closes its last
remote data base. RDBAM coordinates the creation and deletion of RDBAP copies as well as the routing of RDBA requests with
a table kept in SSGA called RD.TB. There is room in this table for 20 entries where each entry corresponds to one master
program-RDBAP copy pair. The entry for each pair contains information to uniquely identify the pair and a class number for the
RDBAP copy aiong which RDBA requests are passed to the copy.

The following figure illustrates the flow of information and control for an RDBA request, excluding the initial data base open
which causes the creation of the RDBAP copy and the final data base close which causes the deletion on that copy.

Using figure 1 as a guide, the general processing of an RDBA call would be as follows. When an RDBA call is executed, control
passes to the RDBA subroutine (1). The subroutine picks up the parameters passed to it and does some initial validity checking
on those parameters. For instance, the value of the mode parameter is checked to make sure it is within the proper range for this
call. The subroutine then uses the information in the parameters to build a DS/1000 request buffer (2). This buffer contains
everything the software on the remote machine needs to rebuild the data base request as well as routing information for the
RDBA and DS/1000 software. This buffer is then passed to the DS/1000 software (3). The DS/1000 software/firmware sends the
request to the remote machine (4) and the RDBA program is put into general wait state on a class number awaiting a reply from
the remote machine.

On the remote side, the DS/1000 software picks up the request buffer (5), sees that it is an RDBA request, and sends it to
RDBAM via ctass 110 (6). RDBAM retrieves the request from its class and then, based on the information in the buffer and
RD.TB, determines which of a possible number of copies of RDBAP will service this request (7). RDBAM reroutes the request

MASTER SIDE SLAVE SIDE
©_ o RDBAM |t D RD.TB
RDBA MASTER RDBA RDBA > - > :
PROGRAM REQUEST REQUEST ;
BUFFER @) | BUFFER H
(4) (8) Y
) (2)
RDBA CALL Ds/1000 DS/1000
I t2) i MASTER
RDBA (11 RDBA 10 PROGRAM'S
ADBA REPLY) reply |2 | rpeap RDBAP
SUBROUTINES (13) | BUFFER BUFFER COPY ©
- IMAGE CALL

IMAGE
SUBROUTINES

DATA BASE

Figure 1
39

OPERATIONS MANAGEMENT

buffer via class /O to the proper RDBAP copy (8) and then puts itself into general wait state on its class with a class GET
awaiting another RDBA request. The RDBAP copy retrieves the request buffer from its class, uses the information contained in
the buffer to rebuild the original data base request, and then performs the IMAGE call locally (9). When control returns from the
local IMAGE subroutine, RDBAP builds a DS/1000 reply buffer (10) to send back to the requesting program. This reply buffer
contains all information returned from the IMAGE subroutine, such as the status array, and DS/1000 routing information. The
reply buffer is passed to the DS/1000 software (11) and RDBAP puts itself into general wait state on its class awaiting another
RDBA request to service. The DS/1000 software sends the reply buffer back to the requesting program (12) where the RDBA
software retrieves it (13). The buffer is then separated into the return parameters from the original RDBA call and control is
passed back to the calling program (1).

As with all general descriptions, there is more going on than is stated. To better understand the workings of programmatic
RDBA, it might be worthwhile to know about some of its data structures. During local IMAGE processing, for each data base
opened by a program, an area in its parition is used to hold a Run Table which contains complete information about the data
base, such as all the items’ names, types, and lengths, all the sets’ names, types, the items in each set, and path information for
each set. This is also true for RDBA. What is normally called the Run Table is built in the RDBAP copy’s partition since it is just
another program accessing the data base. There is a shortened version of this Run Table built in the master program's partition.
This shortened version consists only of a data base control block, item table, set table, and a sort table. The data base controi
block contains global information about the data base. The item table consists of an entry for each item accessibie by the
program where each entry contains the item’'s name, number, and length. The set table consists of an entry for each set
accessible by the program where each entry contains the set's name, number, entry length, and, if the set is a master, the
number of its key item. The sort table is a table of pointers into the item table and set table, sorted alphabetically on the item and
set names. It is used for fast access to the item and set table entries.

During local IMAGE operation, the Run Table is built by the DBOPN subroutine from the root file of the data base. For RDBA, the
master program’s shortened Run Table is built by DBOPN from the parameters in the calling sequence and data passed back
in the reply from the RDBAP copy. After a successful open of a data base, the RDBAP copy uses DBINF calls to build the item
and set tables for the master program’'s Run Table. These item and set tables are passed back as data with the reply to the
master program. DBOPN completes the master program’s Run Table by using the item and set tables to build the sort table.

There are various uses for the shortened Run Table on the master side. One which was mentioned earlier in the general RDBA
call process description is validity checking. Each time an RDBA call is made which references a data item or data set, that
reference is checked against the item or set table to verify that the program’s level of access to the data base allows access to
that item or set. The item table is also used whenever an RDBA call is made which references a data item name list, such as
DBUPD. Since that item list is a necessary part of the IMAGE call, it must be sent to the RDBAP copy for its use. However, an
item name list can be fairly long since each item in the list requires seven bytes for storing the name and a separation character.
The RDBA call uses the item table to transform the item name list into its equivalent item number list which only requires two
bytes per item. In this way, the amount of information sent across the line is minimized.

As mentioned earlier, the data base control block contains global information about the data base. One word of information
which it contains is the number of the node on which the data base resides. Since the only RDBA call which contains the
DS/1000 node number for the data base is the DBOPN call, this node number is saved in the Run Table for use in routing all
subsequent RDBA calls. Another piece on routing information kept in the data base control block is the Remote Data Base
Number. This number is a combination of the RDBAP copy identifier and the data base number. The RDBAP copy identifier is
the ordinal number of its eritry in RD.TB. The data base number is an index into a table which contains the addresses of the Run
Tables for all data bases open to a particular program. This table is kept by the IMAGE software and is updated whenever a
data base is opened or closed.

The Remote Data Base Number is returned to the master program in the reply buffer to a DBOPN request. It is passed in the
request buffer for each subsequent RDBA call for the data base. RDBAM uses the half of the number which is the RDBAP copy
identifier to quickly determine the copy’s entry in RD.TB. The other half is used by the IMAGE subroutines appended to the
RDBAP copy to determine to which data base this request applies, out of a possible 20 data bases it has open.

Any copy of RDBAP may have a number of data bases open since each copy corresponds to one master program and any
IMAGE program may open more than one data base. If, for example, the master program opened three data bases on the same
remote node, then its RDBAP copy on that node would open all three data bases for it. In fact, this was the main reason for the

40

OPERATIONS MANAGEMENT

design of a two monitor scheme. Since each open data base requires an amount of space in the user program'’s partition, a
single monitor servicing all master RDBA programs would either be severely limited by memory space or would have to use
some other form of memory management such as EMA or disc virtual memory. Both of these alternatives, however, are
unacceptable because they either require too many system resources or are too slow.

While this implementation was deemed to be the best of the possible, it still has its problems. What happens, for instance, when
a master program aborts without closing its last open data base, leaving its RDBAP copy hung on a class number waiting for it
to send a request? The data base(s) opened to the RDBAP copy must be closed and the system resources allocated to it
released. The utility RECOV provides this service.

RECOV is run at the node on which the data base resides and will display information about all open data bases. In the case of
a data base open to an RDBAP copy, it will use RD.TB to obtain and display the name and node number of the master program
associated with the RDBAP copy. You “clean-up” after an RDBA master program by specifying a clean-up of the RDBAP copy
corresponding to that master. RECOV has an additional feature of performing remote I/O through DEXEC calls for RDBA. It can
be run in the same manner as remote QUERY, displaying information at your terminal and allowing you to clean-up after a
program remotely.

As you can see, the implementation of RDBA through IMAGE/1000 is not really very complex. This makes the concept easy to

understand and to explain. Hopefully this article has given you a good basic understanding of how RDBA works and some
appreciation of the decisions that were made during the implementation process.

41

'BULLETINS

INTRODUCING THE NEW IMAGE/1000 DBMS

Mike Scott/DSD

A substantially enhanced verson of IMAGE/1000 Data Base Management System (DBMS) has been introduced. IMAGE/1000 is
a complete software package for consolidating individual data files into a single, interrelated data base that can be shared by
many different people for a wide variety of purposes. The new IMAGE/1000 product was designed for use in HP 1000 computer

systems managed by the new RTE-IVB Operating System. A few examples of the new capabilities are given in this excerpt from
the press release regarding the new IMAGE/1000:

REMOTE DATA BASE ACCESS — “Perhaps the single most important enhancement is that Remote Data
Base Access is now easy for networks of HP 1000 Computer Systems that use Distributed Systems/1000
(DS/1000) software and firmware. This further demonstrates our commitment to distributed processing and
HP's Distributed Systems Network philosophy,” according to Roger Ueltzen, Marketing Manager of Hewlett-
Packard’'s Data System Division . .. In a user-written application program, data base access to a remote
DS/1000 node is easily accomplished by simply specifying the node number in the DBOPN (data base open)
call. QUERY, a faclility included with IMAGE/1000 that enables the non-programmer to easily retrieve, alter,
and report information using English-like commands, can be executed at a remote DS/1000 node to access

data stored in an {MAGE/1000 data base.

LARGER DATA BASE CAPACITY — "Another key enhancement was to substantially increase data base
capacity,” said Ueltzen. The data base size is now limited only by the total available storage, presently a
maximum of 960 Mbytes. A data base can contain up to 50 data sets (files). A data set can be as large as the
disc volume upon which it resides — presently a maximum of 120 Mbytes. Data entries (records) within each
data set may be up to 4,096 bytes long. Also significant is the fact that there may be up to 16 search keys for
each data set, thus allowing for fast data access.

Along with the Remote Database Access and the database size increases, a variety of other enhancements
have also been made to IMAGE/1000:

e Maximum ASCII character string length increased from 126 to 255 characters.
e The same data item name can be used in different data sets.

& QUERY access is available in batch, as well as interactive mode.

e Real numbers are fully reported in QUERY reports.

e QUERY reports can contain up to 10 lines of output per data entry instead of 1.
e Multiple databases can now be opened to an application program.

e Al database modifications are immediately posted to the disc (rather than temporarily held in a memory
buffer) for greater database integrity.

ORDERING INFORMATION

The new 92069A IMAGE/1000 is a different product from the old 92063A IMAGE/1000, and it sells for 3000 (U.S. list price).
Moreover, the 92069A IMAGE/1000 is Type 1 software, and thus, there is a 92069R product which gives the customer the right
to make one copy of the 92069A software for an additional HP 1000 computer system. The 92069R product sells for $1200, and
it does require the previous purchase of the 92069A IMAGE/1000 at full list price (less discounts).

42

BULLETINS

UPGRADE INFORMATION

Customers wishing to upgrade from the old 92063A IMAGE/1000 to the new IMAGE/1000 can do so by purchasing the 92069A
product with Option 001 at a net price of $1500. The 92069A product with Option 001 does require a previous purchase of the
old 92063A IMAGE/1000, and it does not give a customer the right to purchase the 92069R product.

The old IMAGE/1000 (92063A) and the new IMAGE/1000 (92069A/R) are incompatible. The two main reasons for this
incompatibility are: 1) double-word integer addressing is used to allow for more than 32K data entries/data set, and 2) the ten
IMAGE/1000 subroutines used for host language access have been modified to have the same calling sequence as the
IMAGE/3000 subroutines.

Even with the upgrade discount, the decision as to whether an upgrade should be made must be carefully thought out. A
reprogramming effort is required to upgrade old IMAGE/1000 application programs — more than just changing the order of the
subroutine parameters is required for many of the subroutines. Therefore, customers should only upgrade to the new
IMAGE/1000 under the following conditions:

1. Capabilities that exist only in the new IMAGE/1000 are required either today or sometime in the future.

2. ltis understood that reprogramming of existing application programs must be done if these programs are to access the
new 92069/A data base.

The old IMAGE/1000 (92063A) becomes a mature software product on July 1, 1979. It will be on the Corporate Price List for 12
months (until July, 1980), after which obsolescence and the five year support life will take place. Software bugs will be fixed
during the mature period although there will be no enhancements. The old IMAGE/1000 (92063A) will be supported on RTE-IVB
so customers are not forced to simultaneously upgrade the operating system and IMAGE/1000. An old 92063A IMAGE/1000
data base and a new 92069A IMAGE/1000 database can both reside on a RTE-IVB based system (see Reference Manual
Appendix for details).

Additional points to remember:

1. Software Support Services 92063A IMAGE/1000 (92063S/T) will not be automatically changed to 92069 services
(92069S/T) if an upgrade is ordered. A change order must be placed to cancel 92063S/T services and order 92069S/T
services if this is what is wanted.

2. A customer who has previously purchased 92063A IMAGE/1000 and has made several copies for additional systems has
two ways of upgrading all his systems: a) Purchase the 92069A at full price (less discounts) plus a 92069R for every
additional system that is to be upgraded, or b) Purchase 92069A with Option 001 for each of the systems to be upgraded.
The second alternative is actually cheaper up until ten or more systems need to be upgraded. Don't forget that the new
IMAGE/1000 (92069A) cannot be copied free of charge like the old IMAGE/1000 (92063A)!

43

BULLETINS

ANNOUNCING DATACAP/1000 SOFTWARE PACKAGE FOR
REAL-TIME DATA CAPTURE

Mike Scott/DSD

A completely operational real-time data capture system tailored to the user's application can be installed without programming
by using Hewlett-Packard’s data capture software package, DATACAP/1000. DATACAP/1000 operates on HP 1000 Computer
Systems, managed by the new Real-Time Executive Operating System, RTE-IVB. DATACAP/1000 provides the facilities to
design and execute transaction specifications which capture and validate data at its source using HP's new 3075A, 3076A, and
3077A data capture terminals. The ability to retrieve, update and validate data in a data base is provided if the user chooses to
also use Hewlett-Packard’'s IMAGE/1000, Data Base Management software.

DATACAP/1000 provides the capability to easily create specifications for data entry transactions through a simple interactive
process on a display terminal. Transaction specifications include entry sequence, method (i.e., keyboard or card/badge
readers), validation and storage. Data storage can be selected to be on a disc file, an IMAGE/1000 data base, magnetic tape,
or a combination of these techniques. Transaction logging can also be selected to provide an audit traitl. DATACAP/1000 also
provides documentation for each transaction specification to further aid in providing ease of support and maintenance. A
flexible terminal management capability is also provided to control the data capture terminals distributed throughout your plant.
Ease of modification and flexibility to adjust to changing needs is an important feature of DATACAP/1000 and an HP 1000 Data
Capture System.

A real-time data capture system can eliminate the intermediate steps, frustrating delays and errors experienced using
traditional data entry methods. Access to a continuing flow of accurate, timely information can be easily provided using
DATACAP/1000 and an HP 1000 system. Information, available as events occur can be used effectively to help improve your
operations. Applications such as production quality monitoring, inventory control, and work-in-process control can easily
benefit from improved data quality and timeliness. Information from the system can be easily obtained through the use of
QUERY, IMAGE/1000's English-like inquiry language, or through users’' programs which can also take advantage of the
compatible Graphics software and hardware available on the HP 1000. Data captured and processed on one system can easily
be shared with other systems by using HP's state-of-the-art Distributed Systems Network capability.

The 3075A, 3076A, and 3077A data capture terminals are flexible and easy to use. The 3076A is wall mountable and the 3075A
is the benchtop version. User guidance is provided by the use of prompting lights on a panel easily customized to the user's
terminology. User definable function keys can be used to simplify special data entry requirements or transaction selection, or if
needed, to provide arithmetic operations on numeric values in a transaction. Data is entered through a numeric or optionally
alphanumeric key-pad, an optional Type V badge reader, or an optional multi-function reader which can be configured to read
alphanumeric information from punched and mark sense cards or industry Type |ll badges. Data can be displayed using either
a numeric display or an optional alphanumeric display. A printer can also be selected to provide alphanumeric output for user
receipts or simple reports with key information from the system. The 3077A is a wall mountable time reporting terminal with a
Type V badge reader or optional Multifunction card reader. All of these data capture terminal features are supported by
DATACAP/1000. Up to (56) data capture terminals with various configurations can be linked to the HP 1000 and managed by
DATACAP/1000 by using one or more simple and low cost communication links. Each link can be up to 5 miles long and uses a
single, shielded, twisted pair cable. Modem support can also be provided for remote terminals.

PRICING/DELIVERY — DATACAP/1000 is available for $3,000.00. Each additional copy is available at $1,200.00. First
deliveries are expected in September, 1979.

The 3075A, 3076A, and 3077A Data Capture Terminals are priced between $2,090 and $4,230 depending on the selected
options.

44

BULLETINS

Since all domestic training information is contained in a separate publication, we will no longer duplicate those schedules in the
Communicator. The Computer Systems North American Customer Training Schedules (5953-0841) is published quarterly —
June, September, December and March. This booklet is automatically sent to all Communicator subscribers on the Software
Subscription Service and all HP training centers worldwide. It is our intention to continue to increase the usefulness of the CSG
Schedule by including more information about prerequisites and the classes themselves in an attempt to make it a stand-alone
document. International schedules, in-so-far as we receive them, will continue to appear in this publication.

45

BULLETINS

HP SOFTWARE SUPPORT — FLEXIBLE & USER ORIENTED

John Koskinen/DSD

With the introduction of RTE-IVB/Session Monitor I'd like to review our software update and upgrade policies. We have tried to
provide policy which can satisfy two classes of users:

1. Users who prefer to stay current and up-to-date with HP software.

2. Users who have dedicated, turnkey, or fairly stable applications that don’t necessarily need all the latest software updates
or enhancements.

Users in the first class stay current by purchasing either the Customer Support Service (CSS) or Software Subscription Service
(888). Users in the second class acquire current software via an upgrade option on the base product.

LOW PRICE UPDATES

With RTE-IVB we have a product update policy that allows current and up-to-date users a very easy means to get major
enhancements to software. We realize that not every user needs to update his software on the fixed, quarterly, update cycles.
This is especially true for a major enhancement. It takes time to evaluate the enhanced software and plan for a change over. In
this light the enhanced software is treated as a new product offering with a very significant discount for users on CSS or SSS.
The option is available for a limited time only, six months, ending December 31, 1979. Figure 1 shows the update path from
RTE-IV(A) to RTE-IVB/Session Monitor.

STANDARD PRODUCT UPGRADES

There are many users who prefer to receive software update notices and purchase enhanced software only on an as needed
basis; our update/upgrade policy accommodates that preference as well.

Since our quarterly software updates are generally incremental and not curmnulative, the software on an out-of-date system
cannot be assumed to have a known compatible configuration. There may, in fact even be some firmware changes to be
accounted for. It is important in this case to bring the entire software system up to the most recent version level. This can be
done by purchasing the base product along with an upgrade option. The upgrade path for RTE-IVB is also given in Figure 1.

46

BULLETINS

RTE-IVB/SESSION MONITOR UPGRADE/UPDATE PATHS

USER HAS o e e e — e —————
RTE-IV RTE-I
2176A/B 2177A/B RTE-III
92067A RTE-M
SUPPORT SERVICE NO
92067S/T SERVICE

92068A $5000 92068A $5000
OPT. 002 —5000 OPT. 001 —2000
+ +
MEDIA NET MEDIA NET
(50 — $800) 0 ($0 — $800) 3000

RTE-IVB

Figure 1

47

BULLETINS

HP 1000 USERS ESTABLISH A USER GROUP

Joe Getkin

On August 23 and 24, the “HP 1000 International Users Group” was born. On these dates, a steering committee of 15 HP users
met at Hewlett-Packard headquarters in Cupertino, California. The steering committee personnel represented a cross section of
industries using HP 1000's within Canada, Europe, and the United States. The committee began developing a set of by-laws
and elected an interim executive board and subcommittee chairmen.

The purpose of the user group is to provide a forum for sharing information among users to enhance their HP 1000 systems, to
increase their professional development, and to help reduce their development effort for software, firmware, and systems. The
group will also provide a formal communication channel between the membership and Hewlett-Packard.

The users group membership entitles the member to an annual newsletter subscription, an optional user library subscription,
voting privileges, and reduced price admittance to the annual convention. This convention will provide both technical and
tutorial presentations as well as vendor exhibits.

Hewlett-Packard has indicated that the LOCUS library is being redesigned. When the redesign is complete, which is expected
to be late this year, Hewlett-Packard will transfer the library to the users group. The users group will be responsible for
maintenance and semi-annual distribution of the complete library to the membership.

The first annual HP 1000 international users group convention is planned to be held in mid 1980. The users group by-laws will

be discussed and voted upon. Also, an executive board will be elected to succeed the interim board. Until the meeting is held,
the following users will be acting as an interim board of directors and committee leaders.

Interim Board of Directors

President Stu Troop General Electric
Bridgeport, Conn.

Vice-President Bert Todtenkopf Factory Mutual Engineering
Norwood, Mass.

Secretary Paul Milier Corporate Computer Systems
Aberdeen, N.J.

Treasurer Marvin Mclnnis Mclnnis & Associates
Oklahoma City, OK

At Large Barry Perlman RCA Labs
Princeton, N.J.

At Large Ron Townsen Naval Ocean System Center
San Diego, Calif.

At Large Ed Holtzman Atmospheric Environment Service
Downsview, Ontario, Canada

48

BULLETINS

Interim Committee Leaders

Start-Up Joe Getkin Ford Motor Co.
Dearborn, Michigan

Business Plan Paul Miller Corp. Computer Systems
Aberdeen, N.J.

Library Chris Goodey Becton-Dickinson Computer
Salt Lake City, Utah Museum

Publications Dick Martin Naval Ocean System Center
San Diego, Calif.

Convention Glen Mortensen Intermountain Technologies Inc.
Idaho Falls, Id.
European Albert van Putten Institute for Public Health

The Netherlands

By-Laws Bert Todtenkopf Factory Mutual Engineering
Norwood, Mass.

Nominating Ron Townsend Naval Ocean System Center
San Diego, Calif.

Like to Help Out?

If you would like to participate in the user group, just contact one of the Board members or committee leaders listed. There's lots
of work to be done, and many volunteers are needed!

More Information is Coming

Watch your mail and the next issue of the Communicator/ 1000 for additional information concerning the users group. The group
expects to distribute a brochure/application form, and the first newsletter, within the next two months.

49

BULLETINS

JOIN AN HP 1000 USER GROUP!

Ever wonder how other HP users have used the HP 1000 in application areas similar to your own? Have a special program or
driver you'd like to share with other users? Interested in hearing about new developments in HP 1000 hardware and software?

If your answer to any one of these questions is YES, then an HP 1000 user group might be just the thing for you. These and other
similar activities are carried on regularly as part of the function of the many HP 1000 user groups that exist around the world.
There's a good chance that there's a user group right near your location! To get in on the action, just check the list below, and
contact the group nearest you to find out when and where the next meeting will be held.

Or, if there isn't a group near you, why not start one? The Communicator/1000 can help you out by announcing the-creation of
new groups. Just send a letter — c/o Editor, HP 1000 Communicator, — with the name of your new group and the means by
which other users can join. We'll add your group to our list and publish it in the next issue of the Communicator.

Here are the groups that we know of as of August, 1979. (If your group is missing, send the Communicator/1000 editor all of the
appropriate information, and we'll update our list.)

NORTH AMERICAN HP 1000 USER GROUPS

Next Meeting
Area User Group Contact Date Location

Boston LEXUS Not selected yet
P.O. Box 1000 (see article on next page about
Norwood, Mass. 02062 RTE users workshop at URI on
October 11, 12)

Chicago Dave Olson New group — No

New Mexico/El Paso

New York/New Jersey

Philadelphia

Institute of Gas Technology
1846 W. Eddy Street
Chicago, lllinois 60657

Gary Galloway
Dynalectron Corp.

P.O. Drawer O

Holleman Air Force Base
New Mexico 88330

Paul Miller

Corp. Computer Systems
675 Line Road
Aberdeen, N.J. 07746
(201) 583-4422

Dr. Barry Perlman
RCA Laboratories
P.O. Box 432
Princeton, N.J. 08540

50

meeting date selected
(312) 248-4017 (Home)
(312) 542-7036 (Work)

Sept. 17 —

Not selected yet

Sept 17. Bell Laboratories
Allentown, PA

BULLETINS

NORTH AMERICAN HP 1000 USER GROUPS (CONTINUED)

Area

Pittsburgh

San Diego

Washington/Baltimore

General Electric Co.
(GE employees only)

London

Amsterdam

User Group Contact

Eric Belmont

Alliance Research Cir.
1562 Beeson St.
Alliance, Ohio 44601
(216) 821-9110 X417

Jim Metts
Hewlett-Packard Co.
P.O. Box 23333

San Diego, CA 92123

Paul Toltavull
Hewlett-Packard Co.
2 Choke Cherry Rd.
Rockville, MD. 20850

Stu Troupe

Special Purpose Computer Cir.
General Electric Co.

1285 Boston Ave.

Bridgeport, Conn. 06602

Next Meeting
Date Location

Sept. 5 Holiday Inn
Pittsburgh
Nov. 7 —

Not selected yet

Sept. 27 Hewlett-Packard Co.
7121 Standard Dr.
Hanover, Maryland

Oct. 1-3 Hewlett-Packard Co.
5201 Tollview Ave,
Rolling Meadows, IL.

EUROPEAN HP 1000 USER GROUPS

Rob Porter
Hewlett-Packard Ltd.
King Street Lane
Winnersh, Wokingham
Berkshire, RG11 5AR
England

(734) 784 774

Mr. Van Puten
Institute of Public Health
Bilthoven

Anthony Van Leeuwenhoeklaan 9

The Netherlands

51

Not selected yet

Not selected yet

BULLETINS

HP 1000 SOFTWARE COURSES

Hewlett-Packard offers 15 customer courses to help you learn to use HP 1000 system software. There are six basic courses

forming a core from which you can branch out into courses on special products or applications. Figure 1 shows the proper
sequences in which to take the courses.

Note that the HP 2645 Terminal Course can be taken as an alternate introduction to the HP 1000 systems. Likewise, the HP 1000
Memory-Based RTE System Course replaces the RTE-IVB Session Monitor Course for those users who have an RTE-M
operating system. Descriptions of the available courses are as follows:

22951B Introduction to HP 1000 Computers. A four-day entry level course designed for a beginning programmer who has no
hands on experience with a minicomputer, this course will introduce the student to the internal representation of data and
machine language instruction as well as architecture and /O structure. Labs will provide time to write, edit, compile, load and
run a simple FORTRAN program using the HP 1000 RTE operating system.

229528 HP 1000 Assembler Programming. This five-day class provides extensive hands-on experience in coding, editing,
assembly and debugging of RTE assembler programs using the HP 1000 system. Upon completion, the student will interpret
code written using the Assembly Language instruction set and coding format. He will also write, assemble, load and execute
main programs and subroutines, interface with high level languages, call subroutines from relocatable library, and use the
formatter, exec calls or /O instructions to write I/O routines. This course requires successful completion of Session Monitor
(22994A) OR Memory-Based RTE (22992A).

229618 DS/1000 Theory of Operation. A four-day course for the network manager and programmer/analyst who needs to know
the internal functioning of the DS/1000 software for the HP 1000 to HP 1000 link. This class provides the opportunity for
hands-on programming of the system, exercising the system utilities, diagnostics, and troubleshooting tools. System genera-
tion and network reconfiguration are covered in detail. Prerequisite is DS/1000 User's Course (22987A).

22962B Theory of Operation for DS/1000 to HP 3000. This one-day course is intended for the Network Manager and
Programmer/Analyst who needs thorough exposure to the internal functioning of the DS/1000 software as it relates to a DS/1000
to HP 3000 link. This course covers the listings, tables and flowcharts for the software enhancements for this communications
option. Covered are such topics as: monitors, utilities, network configuration, 1000 driver, line protocol, troubleshooting, HP
1000 as Master/Slave to MPE. Prerequisite is DS/1000 Theory of Operation (22961A).

22980C HP-IB Interface with HP 1000. This four-day course familiarizes the student with HP-IB utilization, messages and
device subroutines writing techniques. The student will receive hands-on experience with programmable instruments in both
stand alone and system environments. Lab exercises may be programmed in FORTRAN or BASIC. Topics covered include:
handshake protocol, device addressing/listen/talk, analyzing bus lines and system configuration. Session Monitor User's
Course (22994A) OR Memory-Based RTE (22992A) is a prerequisite.

22983B HP 1000 E- & F-Series Computer Microprogramming. The purpose of this five-day course is to train the student in the
theory and use of HP microprogramming hardware and software to prepare, alter and install microprograms. The student will
learn CPU organization, microinstructions, block /O and microprogrammable processor port, floating point processor inter-
face, dynamic alternation of writable control store and the timing, analyzation and microcode of a CPU bound application
program. Approximately forty percent of class time will be lab. Session Monitor User's Course (22994A) OR Memory-Based
RTE (22992A) is a prerequisite.

22987A DS/1000 User. This five-day course is intended for students already familiar with RTE systems and who have
completed either the 22992A or 22994A course. Ample lab time will develop competence in using the capabilities of Distributed
Systems software in both the HP 1000 and HP 3000. Some of the areas covered are: network initialization, remote /O, remote
file access, remote EXEC calls, program to program calls, store and forward communications, utility calls and generation.

22990A RTE Driver Writing. This software concepts course is designed to help the student write a simple RTE driver without

detailed knowledge of the operating system functions. It is intended for those students who have never written a driver, but who
already possess a working knowledge of HP Assembly language or successfully completed the Assembler Course (229528B).

52

BULLETINS

The Driver Writing course will cover I/O structure, interrupt system, interrupt drivers, driver structure and operation, use of
DCPC by drivers and driver naming conventions.

22992A HP 1000 Memory-Based RTE System. This two-week user-oriented course does not cover internals. It is intended for
students who program and/or manage HP 1000 computer systems with a RTE-M operating system. Students will be able to
write programs that call all major system functions and perform system generations tailored to their own requirements. Some
topics covered are: system theory and operator commands, utility programs, program development, segmenting, scheduling,
resource management, generation, Batch-Spool Monitor, procedure files, floppy back-up and softkeys. Introduction to HP 1000
Computers (22951B) is a prerequisite.

22993A IMAGE/DBMS 1000. This five-day course has approximately thirty percent lab time (exercises may be programmed in
FORTRAN or BASIC). The course provides the user with sufficient information to use the 92069A IMAGE/DBMS components to
perform the following: create, build, back-up and modify a Data Base, use QUERY and write programs to access a Data Base,
as well as handle maintenance considerations and the RTE interface to IMAGE.

22994A HP 1000 RTE-IVB/Session Monitor User's Course. A 10-day course dealing with interactive and programmatic use of
the RTE-IVB operating system, the file management system and the spooling system, including program development using
the standard editor, compiler, assembler and loader. The course emphasis is on how to use RTE-IVB.

22995A HP 1000 RTE-IVB System Manager's Course. A five-day course on how to generate and update an RTE-IVB/Session
Monitor operating system in an HP 1000 System environment.

22996A Advanced RTE Workshop. This 5-day workshop is designed for systems analyst/programmers who need to tune their
systems for maximum performance. It will introduce the student to the internal design and operation of the RTE operating

system. The attendees must have at least 6 months experience in using RTE and must have experience in using HP assembly
language.

92780A HP-ATS Test Programming. A leamning center concept is used during this five-day course to allow each student
freedom to concentrate on topics of greatest interest and need. A strong electronic test equipment/procedures background is a
must. The course is intended for test engineers who write test programs for a HP Automatic Test System. Content includes:
architecture, session and test monitor, instrument programming in BASIC, UUT interfacing, switch control and test program-
ming techniques. Session Monitor User's Course (22994A) is a prerequisite.

T2645A 2645A/2648A Terminal User/Applications Course. This 2-day course is for systems analyst/programmers in using the

HP 2645A Display Station or the HP 2648A Graphics Terminal to solve a broad range of application problems. The student will
learn how to take advantage of the extensive capabilities of these products in both off-line and on-line modes.

53

BULLETINS

HP 1000 CUSTOMER TECHNICAL TRAINING COURSE PATHS

Program Development Basic Curriculum

229518 22994A 229528 229838
RTE-1V8 HP 1000
INTRODUCTION SESSION :SPS‘QS‘ELER E/F SERIES
- TO HP 1000 MONITOR —- PROGRAMMING | COMPUTERS —>®
COMPUTERS USER'S COURSE MICROPROGRAMMING
COURSE COURSE
—|
22992A
A
2645A/2648A HP 1000
o TERMINAL USER/ MEMORY-BASED
- APPLICATIONS RTE SYSTEM
COURSE COURSE
Data Base Addition
22993A
IMAGE/
DBMS 1000
Network Design Addition
22987A 229618 22962B
THEORY OF
THEORY OF
@__> 08 1000 USER'S » OPERATION - OPERATION FOR
COURSE OF DS 1000 DS/1000 TO
HP 3000
Instrumentation Addition
22980C
HP-i8 INTERFACE
WITH HP 1000
HP-ATS Automatic Test Systems Addition
92780A
HP-ATS TEST
@—» PROGRAMMING
COURSE
System Manager’s Addition
22995A 22990A 22996A
ADVA
SYSTEM HP 1000 DRIVER DVANCED
MANAGER *™1 WRITING COURSE v ATE
COURSE IN WORKSHOP

Figure 1
54

BULLETINS

INTERNATIONAL CUSTOMER TRAINING SCHEDULES 79/80

>
s /4§
& &
=) 9

22941A Oct 22 (G)
21MX:XE Maint
5 days'$500

22943A
79708:E Mant
5 days$500

22945A Ocl 29 (G)
7906:06 Mant
5 days'$500

229518 Sep 03 Sept 13 (W) Sept 24 [Sept 10 (R} Aug 27 QOct 08
Intro to HP 1000 Ocl 22 (M) Nov 19

4 days'$400 Feb 11
May 05

22951B-HO1 Oct 08 Oct 15
FORTRAN IV
5 days

22952B Sep 24 Oct 08 (P) Sept 10 | Oct 29 (W) Nov 11 Oct 08 (O) Sep 03 Oct 15 (R) | Jun 11 (T} Dec 17 Oct 22 Sep 10
1000 ASMB Nov 12 (B) Dec 17 (M) Apr 21 Nov 12
5 days:$500

229618 QOct 01 Jan 28
DS 1000
Theory of Operation
4 days $500

229628 Oct 05 Sep 28

DS 1000 to HP 3000

Theory of Operation
1 day'$100

22980C Aug 20
HP-IB Interface feb 04
With HP 1000

4 days: $400

229838 Oct 01 (O)
21MX.E
Microprogramming
5 days/$50C

22984A
7920 Mant
5 days/$5000

22987A Oct 22 (P) Oct 22 (W) Sep 17 Nov 05
DS: 1000 Jun 23
User's Course
5 days'$500
22990A Aug 06 (B) Oct 01
RTE Driver Writing Oct 01 (P} Dec 10

3 days/$300 Nov 19 (B) Apr 28

Mature Product Courses

BULLETINS

INTERNATIONAL CUSTOMER TRAINING SCHEDULES 79/80 Continued

w“*o
Ay

94%6
G,

Sy, "y

22992A Sept 10
HP 1000 Memory
RTE
10 days/$1000

22993A
IMAGE
5 days/$500

22994A Sept 23
Session Monitor User Nov 25
10 days/$1000

22995A
Systemn Manager
5 days/$500

22996A
RTE-IVA-IVB Upgrade
2 days/$325

22997A
Advanced RTE
5 days/$800

40270A Nov 05 ()
Intro to HP Computers
5 days

91302A
2645 Maint
3 days/$300

B Mature Product Courses

56

BULLETINS

INTERNATIONAL TRAINING CENTER ADDRESSES

AUSTRIA

(Vienna)

Handelskai 52

Postfach 7

A 1205 Wien

Tel: (0222) 35 16 21-32
Telex: 75923

Cable: Hewpack Wien

AUSTRALIA

(Blackburn) B

CUSTOMER TRAINING CENTER
31-41 Joseph Street

Blackburn, Victoria, Australia
(Pymble) P

CUSTOMER TRAINING CENTER

31 Bridge Street

Pymble, New South Wales, Australia

BELGIUM
(Brussels)

Avenue du Col Ve, 1
Groenkraaglaan
B-1170

Brussels, Belgium
Tel: (02) 672 22 40

ENGLAND
(Altrincham) A
Navigation Road
Altrincham

Cheshire WA14 1NU
(Winnersh) W

King Street Lane
Winnersh, Workingham
Berkshire RG11 5 AR
Tel: Workingham 784774
Cable: Hewpie London
Telex: 8471789

FINLAND
(Helsinki)
Nahkahousuntie 5
00211 Helsinki 21
Tel: 90-692 30 31

57

FRANCE

(Grenoble) G

5, avenue Raymond-Chanas
38320 Eybens

Tel: (76) 25-81-41
Telex: 980124

(Orsay) O

Quartier de Courtaboeuf
Boite Postale No. 6
F-91401-Orsay

Tel: (01) 907 7825

GERMANY

(Boeblingen)

Kundenschulung
Herrenbergerstrasse 110

D-7030 Boeblingen, Wurttemberg
Tel: (07031) 667-1

Telex: 07265739

Cable: HEPAG

ITALY

(Milan)

Via Amerigo Vespucci, 2
20124 Milan

Tel: (2) 62 51

Cable: HEWPACKIT Milano
Telex: 32046

JAPAN

(Osaka) O

Chuo Building

5-4-20 Nishinakajima
Yodogawa-Ku, Osaki-shi
Osaka, 532 Japan

Tel: 06-304-6021

Telex: 523-3624 YHP OSA
(Tokyo) T

2205 Takaido Higashi 3-chome
Suginami-Ku, Tokyo 168

Tel: 03-33-8111

Telex: 232-2024 YHP MARKET TOK

BULLETINS

NETHERLANDS
(Amsterdam)

Van Heuven Goedhartlaan 121
Amstelveen 1134

Netherlands

Tel: 020 472021

SPAIN

(Madrid)

Jerez No. 3
E-Madrid 16

Tel: (1) 458 26 00
Telex: 23515 hpe

SWEDEN
(Stockholm)
Enighetsvagen 1-3, Fack
S$-161 20 Bromma 20
Tel: (08) 730 05 50
Cable: MEASUREMENTS
Telex: 10721

SWITZERLAND

(Zurich)

19 Chemin Chateau — Bloc
1219 Le Lignon — Geneve
Tel: 022/96 03 22

For course prerequisites and registration information contact:one of the HP training centers listed above.

58

data presented in the Communicator, Hewlett-Packard can- your local sales and service office for prices in your country.

Although every effort is made to ensure the accuracy of the Prices quoted apply only in U.S.A. If outside the U.S., contact . :)
not assume liability for the information contained herein.

Printed in U.S.A. 9/79 Part No. 5951-6111

