[crckano

Hewlett-Packard
Computer Systems

@/@J\Vﬁﬂ NIGATOF

N

—

e Laa EEEET

_-—..-. L

1979 Volume lil Issue 5

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

IN THE NEXT ISSUE

Articles for the next issue, (and issues after that one) have not been selected yet. In fact, few of the articles that will be published
in coming issues have even been written yet! The list of possible topics for these articles is endless, as was proven during a
recent brainstorming session here at Data Systems Division. An extensive list of exciting and informative topics came out of that
session, some of which | have listed below:

PROGRAMMING DATACAP/1000 FOR PEAK USAGE PERIODS

PROGRAM MODIFICATION TO/FROM NON-RTE-IV OPERATING SYSTEMS
USING GRAPHICS/1000 AND IMAGE/1000 TO RECORD AND DISPLAY DATA
OPTIMUM CONFIGURATIONS FOR DS/1000 NETWORKS

THE FEATURES AND BENEFITS OF ACCOUNTS IN RTE-IVB

HOW TO ENHANCE THE SECURITY OF A SYSTEM

TAKING ADVANTAGE OF PROGRAM PRIORITIES AND TIME-SLICING

TEXT PROCESSING ON AN HP 1000

THE MANY USES OF GLOBAL PARAMETERS

The Communicator is intended to provide a place to publish that unique super-efficient, or tricky way that you have found to use
an HP 1000 product. As Editor of the Communicator, | am counting on YOU, one of our 2600 readers to take the initiative, and
then the time, to grab one of the topics above, or one of your own, and put together an article. (Don't forget that for each issue,

three HP 32E calculators are awarded to contributors, one each in the customer, HP field personnel, and HP division personnel
categories.)

If English is a second language for you, | would welcome the opportunity to help you in any way | can with your English text.
Let's not let language be a barrier.

For more information about submitting an article to the Communicator, see the Editor's Desk pages of this issue. If you need any
further information, | invite you to contact me at the address below. If you have questions conceming the topic you have
selected, or have a suggestion for a topic that is not shown in this list, please contact me.

| hope to be hearing from you in the near future. Thanks in advance for your continued support and participation in the
Communicator 1000.

Best Regards,

Editor’Communicator 1000
HP Data Systems Division
11000 Wolfe Rd.
Cupertino, Ca. 95014

HEWLETT-PACKARD
COMPUTER SYSTEMS

=es ~ COMMUNICATOR/1000

Feature Articles

DATA COMMUNICATIONS 13 RESOURCE SHARING WITH DS/1000 AND SES-
SION MONITOR, A CASE STUDY
Phil Shepard/HP Data Systems Division

23 REMOTE SYSTEM CONTROL VIA DS/1000
John A Pezanno, Bill Reynolds, Howard Beyer/
Holloman Air Force Base

OPERATING SYSTEMS 41 AN INTRODUCTION TO OPERATING SYSTEMS
FUNDAMENTALS
Gary McCarney/HP Rockville MD

OPERATIONS MANAGEMENT 49 EASY FORMS FOR THE 2645A
Todd Field/HP Woodbury N.Y.

58 PERFORMANCE STUDY FOR DATACAP/1000
Ben Heilbronn, Steven Richard/HP Data Systems
Division

Departments

EDITOR'S DESK 3 ABOUT THIS ISSUE

5 BECOME A PUBLISHED AUTHOR IN THE
COMMUNICATOR/1000

7 SOME NOTES FROM PREVIOUS ISSUES
USER'S QUEUE 8 LETTER TO THE EDITOR

BIT BUCKET 10 SOFTWARE SAMANTHA
12 RESPONSIBILITIES OF THE SYSTEM MANAGER

BULLETINS 66 NEW SOFTWARE PRODUCT CATALOG TO RE-
PLACE SOFTWARE NUMBERING CATALOG

70 JOIN AN HP 1000 USER GROUP
72 INTERNATIONAL TRAINING INFORMATION

EDITOR’S DESK

ABOUT THIS ISSUE

This fifth Communicator issue for 1979 includes articles in a variety of topical categories. The reader will also notice that articles
in this issue present information from several different perspectives.

In the DATA COMMUNICATIONS category, two articles have been contributed which describe specific applications of
DS/1000. Phil Shepard of HP's Data Systems Division describes an application of Program to Program communications to
dump files from private cartridges on one system, to devices on another system. Phil's programs have saved undeterminate
amounts of time here at Data Systems, by moving files that must be printed on our upper/lower case printer, which is located on
a remote system. Every article in this issue of the Communicator took advantage of Phil's program. The second article in the
DATA COMMUNICATIONS category is contributed by HP customers, John Pezanno, Bill Reynolds, and Howard Beyer of
Holloman Air Force Base, in New Mexico. Their article describes how DS/1000 is used to transmit data to a remote computer via
a modem. In itself, this is not a difficult task. However the unigue capability of the system in use at Holloman is that it can
completely control the computer at the remote site. The only operation that cannot be carried out over the modem line is
mounting of the tapes! Thanks to all four of these authors for their fine contributions.

In the OPERATING SYSTEMS category, Gary McCarney, an HP Systems Engineering Manager working in the Rockville,
Maryland office has contributed an articie entitied, “An Introduction to Operating Systems Fundamentals”. This atticle
originated as a “warm up” speech to students about to take an RTE operating systems course. Gary put a great deal of effort
into translating his speech to a written format, in hopes that it will help others gain an understanding the fundamentals of
operating systems. It appears that his article will become another Communicator/1000 classic, (like the “"Know Your RTE”
series), a useful reference for years to come. Thanks to Gary for his efforts.

In the OPERATIONS MANAGEMENT category, two Data Systems lab engineers have put together an article entitled, “Perfor-
mance Specifications for Datacap/1000”. Ben Heilbronn and Steve Richard have spent several weeks studying how Datacap/
1000 can be expected to perform on an HP 1000. it is Ben's and Steve's expectation that people with Datacap installations will
be able to find the optimum way their system can be structured, and people contemplating instaliation of a Datacap system will
have a realistic idea of what to expect from it. Thanks are in order for all Steve's and Ben's efforts.

The final feature article, also in the OPERATIONS MANAGEMENT category is by Todd Field, an HP Systems Engineer in the
Woodbury, New York office. Todd's article “Easy Forms For The 2645A" follows up on two previous Communicator articles that
dealt with capabilities of the 2645 terminal. Todd's article describes a simple and straightforward method of creating a form on
the 2645, storing that form in a disc file, and then programmatically retrieving this form and dumping it to the screen. Anyone
using the 2645 for the type of application Todd describes, will surely find his methods to be time savers.

The objective of the Communicator/1000 is to provide reading material for persons with various levels of technical expertise,
and varied interests. Hopefully, the articles described above will accomplish this objective to your satisfaction.

EDITOR’S DESK

The following articles/authors have been awarded HP-32E calculators, both as a token of appreciation to the author, and as a

salute to the article’s overall quality.
Best Feature Article

By A Customer

Best Feature Article From
an HP Division Employee

Best Feature Article From
an HP Field Employee

Thanks to everyone whose effort helped to make this Communicator possible. It is hoped that this issue of the Communicator
will be interesting and useful to our readers.

Remote System Control Via DS/1000
John Pezanno

Bill Reynolds

Howard Beyer

/Holloman AFB

Performance Specification for DS/1000
Ben Heilbronn

Steve Richard

/HP Data Systems Division

Easy Forms for the 2645A
Todd Field
/HP Eastern Sales Region

The Editor

EDITOR’S DESK

BECOME A PUBLISHED AUTHOR IN THE COMMUNICATOR/1000. . .

The COMMUNICATOR is a technical publication designed for HP 1000 computer users. Through technical articles, the direct
answering of customers’ technical questions, cataloging of contributed user programs, and publication of new product
announcements and product training schedules, the COMMUNICATOR strives to help each reader utililize their HP 1000's
more effectively.

The Feature Articles are clearly the most important part of the COMMUNICATOR. Feature Articles are intended to promote a
significant cross-fertilization of ideas, to provide in-depth technical descriptions of application programs that could be useful to
a wide range of users, and to increase user understanding of the most sophisticated capabilities designed into HP software.
You might think of the COMMUNICATOR as a publication which can extend your awareness of HP 1000's to include that of

thousands of users worldwide as well as that of many HP engineers in Data Systems factories at Cupertino, California and
Grenoble, France.

To accomplish these goals, editors of the COMMUNICATOR actively seek technical articles from HP 1000 customers, HP
Systems Engineers in the Field, and Marketing and R&D Engineers in the factories. Technical articles from customers are most
highly valued because it is customers who are closest to real-world applications.

WIN AN HP-32E CALCULATOR!

Authoring a published article provides a uniquely satisfying and visible feeling of accomplishment. To provide a more tangible
benefit, however, HP gives away three free HP-32E hand-held calculators to Feature Article authors in each
COMMUNICATOR/1000 issue! Authors are divided into three categories. A calculator is awarded to the author of the best
Feature Article in each of the author categories. The three author categories are:

1. HP 1000 Customers;

2. HP field employees;
3. HP division employees not in the Data Systems Division Technical Marketing Dept.

Each author category is judged separately. A calculator prize will be awarded even if there is only one entry in an author
category.

Feature Articles are judged on the following bases: (1) quality of technical content; (2) level of interest to a wide spectrum of
COMMUNICATOR/1000 readers; (3) thoroughness with which subject is covered; and, (4) clarity of presentation.

What is a Feature Articie? A Feature Article meets the following criteria:

1. lts topic is of general technical interest to COMMUNICATOR/1000 readers;
2. The topic falls into one of the following categories —

OPERATING SYSTEMS

DATA COMMUNICATIONS
INSTRUMENTATION
COMPUTATION
OPERATIONS MANAGEMENT

3. The article covers at least two pages of the COMMUNICATOR/1000, exclusive of listings and illustrations (i.e., at least 1650
words).

EDITOR’S DESK

There is a little fine print with regard to eligibility for receiving a calculator; it follows. No individual author will be awarded more
than one calculator in a calendar year. In the case of multiple authors, the calculator will be awarded to the first listed author of
the winning article. An article which is part of a series will compete on its own merits with other articles in the issue. The total of
all articles in the series will not compete against the total of all articles in another series. Employees of Technical Marketing at
HP's Data Systems Division factory in Cupertino are not eligible to win a calculator.

All winners of calculators will be announced in the issue of the COMMUNICATOR/1000 in which their articles appear. Again, all
Feature Articles are judged by an impartial panel of three DSD Technical Marketing Engineers.

A SPECIAL DEAL IN THE OEM CORNER

When an HP 1000 OEM writes a Feature Article that is not only technically detailed and insightful but also application-oriented
as opposed to theoretical, then that OEM may ask that the article be included in THE OEM CORNER. A Feature Article included
in THE OEM CORNER may contain up to 150 words of pure product description as well as a picture or illustration of the OEM'S
product or its unique contribution. HP's objective is twofold: (1) to promote awareness of the capabilities HP 1000 OEMs’
products among all HP 1000 users; and, (2) to publish an articie of technical interest and depth.

IF YOU'RE PRESSED FOR TIME . ..

If you are short of time, but still have that urge to express yourself technically, don't forget the COMMUNICATOR/1000 BIT
BUCKET. It's the perfect place for a short description of a routine you've written or an insight you've had.

THE MECHANICS OF SUBMITTING AN ARTICLE

if at all possible please submit an RTE File containing the text of your article recorded on a Minicartridge (preferrably) or on a
paper tape along with the line printer or typed copy of your article. This will help all of us to be more efficient. The Minicartridge
will be returned to you promptly. Please include your address and phone number along with your article.

All articles are subject to editorship and minor revisions. The author will be contacted if there is any question of changing the .
information content. Articles requiring a major revision will be returned to the author with an explanatory note and suggestions
for change. We hope not to return any articles at all; if we do, we would like to work closely with the author to improve the article.
HP does, however, reserve the right to reject articles that are not technical or that are not of general interest to
COMMUNICATOR/1000 readers.

Please submit your COMMUNICATOR/1000 article to the following address:
Editor, COMMUNICATOR/1000
Data Systems Division
Hewlett-Packard Company
11000 Wolfe Road
Cupertino, California 95014
USA
The Editor looks forward to an exciting year of articles in the COMMUNICATOR/1000.
With best regards,

The Editor

EDITOR’S DESK

SOME NOTES FROM PREVIOUS ISSUES

In Volume |ll Issue 3, an article appeared by Ed DeMers entitled, “User Codes As An Aid To Disc Housekeeping”. This article
described the programs Mr. DeMers submitted to the Contributed Library. These programs are entitled the UCU Group, and
issue 3 incorrectly reported the catalog number as 22683-13381. The correct catalog number is 22683-13341. The Editor of the
Communicator apologizes for any inconvenience this may have caused our readers.

Also appearing in Volume (Il Issue 3, was a list of entry points for convenience in generating systems. Some questions have
been raised regarding these RP’s. The VIS entry points were included for completeness and should not be included in a
generation unless VIS firmware has been installed. Likewise, the double integer entry points should be used only on F-Series
computers with a date code of 1920 or greater, or when the appriopriate firmware update has been installed. Hopefully this will
clear up some of the confusion surrounding these RP's.

A third error found in Volume 11l Issue 3 occured in Frank Fulton's article,"Scheduling Data Acquisition Programs Without
Providing General System Access To Terminal Users”. Mr. Fulton's article references an article by Gary McCarney about an
MTM-like terminal handler. It was incorrectly stated that Mr. McCarney's article appeared in Volume Il Issue 2 of the
Communicator. Actually that article appeared one year earlier in Volume |l Issue 2.

The following article should have been referenced throughout Larry W. Smith's article in Volume Il Issue 2, titled, “A Method for
Smooth Curve Fitting™:

— Akima,H. (1970), “A New Method of interpolation and Smooth Curve Fitting Based on Local Procedures”, Journal of the
ACM, Volume 17, Number 4, October, pp. 589-602.

USER’S QUEUE

LETTER TO THE EDITOR

Dear Editor,

We have noted with great interest your description of THE OEM CORNER in the past few issues of the Communicator/1000. |
write you now in hopes that you might answer a few of our questions.

The MAGUS System Group has been working with RTE systems for the past five years. With the introduction of the new RTE-IVB
Session Monitor system we have seen RTE at last come close to its full potential. We have a number of software add-ons for the
RTE-IVB system which we believe both compliment and add additional power to the constructs introduced in RTE-IVB.

The MAGNUS System Group perceives the COMMUNICATOR/1000 to be an excelient vehicle for notifying other HP/1000
owners of our products, and hopefully to promote their sale.

Could you please let us know the restrictions placed on vendors submitting articles to the OEM CORNER? Is it possible to
publish purchase prices and a mailing address? Would you forward any enquiries you recieved to us? What are the deadline
dates for submission of articles?

Any information you could provide us with would be greatly appreciated.
Thanks Much,
Drew Lanza

Secretary,
MAGNUS System Group

Dear Mr. Lanza,
Thanks for giving me the opportunity to clarify exactly how the OEM CORNER is intended to work.

As far as the restrictions placed on submissions, there are none other than those mentioned in the Editor's Desk. Attached to an
article can be up to 150 words of “pure product description’”, and it does not seem unreasonable to me that part of this
description would include the price of the OEM's product, and information on how to obtain the product.

As the Editor of the Communicator, | would prefer not to become a middle-man between someone desiring information about an
OEM'’s product, and that OEM. For this reason, inciusion of a mailing address and/or a phone number in the 150 words of
product description would not only be permissible, but also quite appreciated.

In addition, note that a picture or illustration of the OEM's product may accompany the article. We would ask however that the
picture or illustration be limited to half of a page or less.

Even though articles submitted to the OEM CORNER are not eligible to win calculators like feature articles, a good OEM
CORNER article will follow the same guidelines used to judge the feature articles. Recall that these characteristics are the
technical quality, clarity, thoroughness and general interest of the article.

Just as with feature articles, OEM CORNER articles are subject to editorship and minor revisions. If any significant changes
seem necessary, | would of course contact you.

USER’S QUEUE

in answer to your final question, only one more issue remains to be published in 1979. The deadline date for submissions to that
issue will be passed before this issue is distributed. The final issue for 1979 will contain a list of all the deadline dates for the
1980 issues.

I'll look forward to hearing from you, and hopefully also from some other interested OEMs, in the near future. Thanks again for
giving me the chance to clarify this aspect of the Communicator/1000.

With best regards,

The Editor

BIT BUCKET

oftware ¢~
amantha 4

-

N oo

Software Samantha

HP-1000 Communicator

Hewlett-Packard Data Systems Division

11000 Wolfe Road, Cupertino, California 95014

\J

/
A

4
Dear Samantha,

| added HP-IB to my RTE-IV system last week. The system generation had an undefined external named “SRQ.T”. The system
booted up and ran all night, but when | tried to load a program containing calls to the subroutine SRQ, the loader bombed with
the same undefined external. Using the FORCE command | loaded the program and it seems to work.

What is “SRQ.T” and why does “The HP-1B In HP 1000 Computer Systems Users Manual” make no mention of this difficulty?

Sincerely,

Richard B. Gilbert
Gas Dynamics Lab
Princeton University

Dear Mr. Gilbert,

The entry point SRQ.T exists in the Basic memory resident library, %BAMLB. This routine is used for real time scheduling of
BASIC subroutines in response to a service request sent over the HP-IB.

Obviously, %BAMLB has not been generated into your system. However this should cause no difficulties (other than the
undefined external) in the use of HP-IB from FORTRAN programs, as long as the %HPIB and %MESS libraries are generated
into your system.

Unfortunately, the undefined external SRQ.T can be expected anytime the loader relocates the %HPIB library to satisfy entry
points in a FORTRAN program which uses HP-IB subroutines. One of the externals in this module (which your program will not
need to reference) is SRQ.T.

This problem has been corrected in the latest version of the software. Therefore, one solution to the problem would be to update
your system to software revision 1940. (Note that in the 1940 version of the HP-IB software the %MESS and %HPIB libraries are
combined into a single library called %IB4A.) You have already found one alternate solution to the problem, and that is to force
load all of your HP-IB FORTRAN programs. Another solution would be to include the %BAMLB module in your system
generation, or write a small “dummy" routine, with an SRQ.T entry point, and generate it into your system.

The brand new revision of the HP-IB User's Manual, makes mention of this difficulty in Appendix C, which deals with system
generation.

| hope this information has been of help to you, and perhaps other HP-IB users. Thanks for your letter.

Sincerely,

Samantha

10

BIT BUCKET

Dear Samantha,

| believe | share with many others the frustration of having formatter errors unexpectedly routed to LU 6 (typically a line printer).

Routing the formatter errors from assembler programs to a “better” LU is done easily enough by the following coding:

EXT FMT.E

LDA LU
STA FMT.E

Where LU is the LU to which the errors should be routed, typically the terminal LU. All messages will be ignored by replacing the
statement LDA LU in the program above with CLA, and thus routing the messages to the bit bucket. In my FORTRAN programs |
have been calling an assembler routine which uses the scheme shown above to route format errors to the LU of my choice. My
queston is, why can't | acomplish the same thing by putting the following code in my FORTRAN programs?

EXTERNAL FMT.E

FMT.E = LU

Sincerely,

John McCabe
HP/Stanford Park Div.

Dear Mr. McCabe,

FORTRAN will not allow a variable to be declared as external to a program. The EXTERNAL statement in FORTRAN can be used
only to declare an external subroutine or function name will be used as an argument in a program.

Even if FORTRAN would allow external variables, the name FMT.E is an illegal label, due to the decmal point.
Using a feature of RTE-IVB with session monitor, the SL command will allow the sesion LU 6 (to which the format errors will be
routed) to point to any system LU desired. In this way, all line printer output could be directed to aterminal, and all format errors

(and everything else your program sends to LU 6) will appear on that terminal.

If this method of re-routing formatter errors is not satisfactory, it apprears that the only other way to be able to select an output
LU for formatter errors is to use the scheme that you describe above.

Thanks for your letter.

Sincerely,

Samantha

1

BIT BUCKET

RESPONSIBILITIES OF THE SYSTEM MANAGER

Alan Housley/HP Data Systems Division

The system manager must perform certain tasks to keep his system running efficiently for himself and the other system users. A
list of these tasks has been compiled below.

Above all, the system manager should keep close tabs on the software and hardware requirements of the system users. He
should be the focal point for recieving bug reports, hardware malfunction reports, new software requests, new hardware
requirements, and be notified of any system "crashes”. It is wise to teach others what to do in the event of a system “crash’, but
since the manager should be maintaining the software and hardware, he should know of all problems so he may take the
appriopriate action to find the cause of the “crash” and to make sure that it will not occur again.

Other suggestions for keeping the system operating smoothly are:

® Leave a system log near the system console, so users may mark down any errors that occured which they were unable to
resolve themselves.

® Post the boot-up procedure near the virtual control panel.

e Perform new system generations whenever new software arrives, or when the needs of the system are altered.

e Mark cables near the interface cards specifying which peripheral device is connected to each card.

e Mark all peripheral devices with their LU numbers, so users can easily distinguish which device to access.

e Suggest strongly that all users keep a backup of their disc files in the event of a head crash or inadvertent file purge. The
manager may also want to perform the disc file backup for all of the users, in order to keep the backups in a common
location.

® [ncorporate any manual updates or revisions into the manual library.

o Keep a listing of the generation map in a location that system programmers may easily find and use.

12

DATA COMMUNICATIONS

RESOURCE SHARING WITH DS/1000 AND SESSION MONITOR,
A CASE STUDY

Phil Shepard/HPData Systems Division

Here in the Technical Marketing Department of Data Systems Division, we maintain a network of six HP 1000 computers with an
additional link to an HP 3000. One of our functions is the generation and maintenance of manuals describing the software which
HP produces. The network exists to serve many groups in the department and there is a reasonably constant flow of file data
between the computers in the network.

Before the advent of Session Monitor, it was relatively easy to transfer data from one CPU in the network to another. With the
concept of private and group cartridges not yet in existence, one could access data anywhere on any disc in the network.

ENTER SESSION MONITOR

Session Monitor has indeed been a blessing. The protection and isolation it provides users of the system is a great
improvement over the past. | no longer delete other user's files with my clumsy fingers, and | now have a good idea where my
files are going to be deposited when | allocate file space. | also enjoy the amazing difference in the ease with which | can spool
my print files. Many fine enhancements have been made.

Unfortunately along with the goodies come new problems to be solved in accomplishing the old tasks.

Our main use of DS/1000 has been to allow free flow of file data from one system to another in the network. This was
accomplished with relative ease with pre-Session Monitor RTE-IV. However, with Session Monitor, and Private, Group and
System cartridges, moving data becomes a bit more awkward.

Once REMAT is activated you are no longer in the “Session Environment”. This means REMAT, and DS in general, can’'t access
your private cartridges. Only “System” cartridges are available outside the session environment, which means LU's 2 and 3,
and any other cartridges the System Manager designates as ‘“system” cartridges. In our case we have two additional
cartridges, one for general system files, the other for the Spool System.

To move your file from your private or group cartridge to another node in the network, you must first move the file from your
cartridge to a system cartridge. Once this is accomplished the file can be moved with REMAT to a system cartridge on another
node.

In our department, we generally move files to get at the upper/lower case printer on the one system in the network where this
resource exists. Even after moving the files, we had to go to a terminal on the other system to send the file into the Spool System
for printing. This became too much work and was too inefficient, so it was decided to write a program to get around these
problems.

ENTER PRT AND PRTSV

When REMAT is asked to move a file with the “ST" command the operation is performed via Remote File Access (RFA) calls and
the RFA Monitor (RFAM). This monitor (and all DS monitors) operate outside the Session environment, and don't have access to

the Private and Group cartridges, and therefore REMAT does not have access to your Group and Private cartridges as
previously stated.

To solve part of the problem, a program could be written to read files with local file calls, and write the files to any other
computer in the network with RFA calls. This would allow us to access the Private and Group cartridges locally, and move files
to system cartridges of the other computers in the net. This program would not allow us to access the Spool System however,
because this can be accomplished only with local program calls.

13

DATA COMMUNICATIONS

The decision was made to use the program-to-program communications features of DS/1000. PRT, a DS master program, and
PRTSV, a DS slave program were brought into existance.

Using program-to-program communications the master program PRT, in the local system, reads the information from the file in
either Private, Group, or System cartridges, and sends the information off to the slave program, PRTSYV, in the destination CPU.
The slave program can interface directly with the Spool System, receiving records from the master and writing them directly to a
spool LU with a minimum of overhead.

Without PRT and PRTSV the following commands would have to be entered:

:ST,FILE::PC,FILE::SY Move file from private to system cartridge

:RU,REMAT

$SW,100,600,DS Indicate destination is node 600.
#ST,FILE,FILE Move the file.

#EX

Go to node 600, log on, and enter the following commands.

:SL,11,,,11 Set up LU 11 as a spool LU.
(11 is our upper/lower case printer.)

:DU,FILE, 11 Ship the file off to the Spool System.

:CS,11 “Close” the spool LU. (Writes EQF, takes spoal file out of a wait state
for printing.)

1EX Log off.

The programs PRT and PRTSV simplify the process so that the following single command is necessary:
:RU,PRT,FILE

With this command, entered on any system in the network, PRT will open the user's file, either on a private or group cartidge,
schedule the slave program PRTSV, read records from the file and send them to the slave until an EOF is encountered.

The slave, when scheduled, acquires a spool LU from the spool system and goes into a “get” state waiting to receive the
records. As the records come in, they are written to the spool LU. When the master encounters the EOF, a PCONT call is issued
which is interpreted by the slave as time to terminate. The slave closes the spool LU, releasing the associated spool file for
printing.

PERFORMANCE CONSIDERATIONS

Initially, sending the data a single record at a time seemed adequate. We were sending small files, and the time PRT was taking
to send the files was reasonable. Of course this couldn't last, and along came a user with a 600 block file he was having trouble
getting transferred. it turned out this file was overflowing the cartridge used for the spool file. Since the slave was running
outside the session environment and only had system cartridges available for storing the spool data, the spool file was being
created on LU 2.

14

DATA COMMUNICATIONS

Once the program was corrected so the data would go to the spool cartridge "SP”, it turned out that it took nine and one haif
minutes (9.5 MINUTES!) to transfer the 600 block file. This was a little embarassing, and it was concluded that the programs
must block and deblock the records rather than send one record at a time.

A 1024 word buffer was chosen based on previous performance studies and the transfer time was reduced to one minute (1
MINUTE!), a notable improvement.

THE PROGRAMS

The program listings are provided for persons interested in how all this magic is accomplished. These listings provide an
introduction to those interested in the mechanics of using DS program calls — it's really quite easy.

There is one slight problem. When a non-Session program calls SPOPN to acquire a spool LU, LU's must have been allocated
in the generation in the range 0 to 63. Session Monitor expands the range of available LU’s to 0 to 255 but the expanded range
is not available unless the program is running under the Session environment.

FUTURE ENHANCEMENTS TO DS/1000

The probiems solved by this program pair are only temporary as work is in progress to enhance the capabilities of DS1000 to fit
more comfortably in the Session environment.

FTN4,L

PROGRAM PRT(3,99), DS/1000 Master P. Shepard 10 11 79
CllllllllIllilIIIIIllllliIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIII
This routine provides spooling to a printer on a remote cpu.
To accomplish this, the user file is opened on the local
node, records are read and blocked in a BFSZ word buffer
and transmitted to the slave, PRTSY, via the Program-to-
Program Communication features of DS/1000.

PRTSV allocates a Spool LU and writes the records to the Spool
System directly. When EOF is encountered the Spool LU is
closed and passed to SMP for processing.

ARRRERRERARRRRRRRRRRRBRRRRRR R R R R R R AR R RRRRRRERRRRRRRRARRRRERRRRRRRRRR
To run the program:

RU,PRT ,NAMR,NODE ,PRINTLU

(AR A SR R R AR R AR R R AR R RS R R RS R R 222 R R 2R R R RS RS RAZSR R R R X]

v EoNoNoNoNeoErsNoNoNsRo o RoRoNo N el

IMPLICIT INTEGER(A-2)

DIMENSION DCB(144),BUFFER(1024),IPBUF(10),NAME(3),PRTSV(3)
DIMENSION PCB(4),TAG(20)

DATA BFSZ/1024/

15

DATA COMMUNICATIONS

[222 EZE R AR SRR ESE SRR RS RARZ RS RS RSER SRR RS ST RS R SR SRS NE R Y BN N
The following variables are used:

DCB - Data Control Block for local file access calls.

BUFFER

BFS2 word buffer used to block and pass the records
to the slave program.

IPBUF - Parameter buffer used by "NAMR" when parsing the run
string.

NAME - Name array used in the OPENF call to open the input
file.

PRTSV ~’Name array used in the POPEN call to schedule PRTSV.
PCB - Program-to-Program Communication Control Block used
by DS to keep track of transactions going back and

fortith between master and slave.

TAG - Control array used to pass information back and forth
beiween master and slave.

LA A X E AR R R AR AR AR RS R RS R AR 2R A iz R i s R s a2 A R X ES R 2 X

OO0

DATA PRTSV/2HPR,2HTS,2RHV /

Get the terminal LU, run string, string length, and set the
parse pointer (PTR) to 1.

OO0

LU=LOGLUCT)

CALL EXEC(14,1,BUFFER,-80)

CALL ABREG(CI,LEN)

PTR=1
C
Cillllll‘lllll'IIIIIIIIIIII!IIIIIIIIIIIIIIIIIIIIlllllllllllillllllll
C Bypass "RU,PRT" in the run string and pick up the input file
C Namr. Namr is described in the RTE Relocatable Library Manual.
CII'II'I'II'II'II'II'II'IIIII'II'II'II'I'I'I'II'II'II'II'I'II!Illlil‘ll‘ll‘ll‘lliilllil‘lli
C

CALL NAMRCIPBUF ,BUFFER,LEN,PTR)

CALL NAMRCIPBUF ,BUFFER,LEN,PTR)

I=NAMRCIPBUF ,BUFFER,LEN,PTR)
C
Ciilillil‘ll‘i’lililillllililillllililllI'llll'lllllIIII{I{I{I{I{II{II'I
C MWe’re now supposed to have the namr in IPBUF
CII‘II{I!II‘II'II’I'Illl'I'l'I'lililll‘iI‘II‘II'IIIIIII‘II'IIilll‘llil‘llililllli
C

IFCI.EQ.0) GO TO 10

WRITECLU,100)
100 FORMAT(/"™ PRT:Failed to parse run string®/)

sTOP

16

DATA COMMUNICATIONS

c
C Grab the name, security code and crn out of the namr results.
c
10 DO 15 I=1,3
15 NAMECI)>=IPBUF (CI)
c
SC=IPBUF(5)
CR=IPBUF(6)
c
CllllllllIII.II.II.IIIQIIllllIlllIlllllllllllllllllllllllIllll
C Let’s cross our fingers and open the file
cllllllIlllllllIllllllllIIIlllllllllllllllllllllllllllllllllll
c
CALL OPENC(DCB,ERR,NAME,1,SC,CR)
IFCERR.GE.0)GD TO 20
WRITECLU,110)ERR
110 FORMAT(/*" PRT: Input file open error: FMGR"I3/)
sTOP
c
C Get additional parameters. If none, default. LU 11 = upper/lower
C case printer, NODE = 600 is the node where we have this printer.
c
20 I=NAMR(IPBUF ,BUFFER,LEN,PTR)
IFCi.EQ.0)GO TO 30

WRITECLU,120)
120 FORMAT(/*" /PRT: Using Node=600, LU=11'"/)
NODE = 600
PRTLU = 11
TAG = PRTLU
G0 TO 5§
c
C Set node parameter and go parse next parameter in string
c

30 NODE=IPBUF
I=NAMR(IPBUF ,BUFFER,LEN,PTR)
IFCI.EQ.0)GO TO 40

WRITECLU,140)

140 FORMAT(/*" PRT: I’m sorry but I need the print LU parameter*/)
STOP

c

C Set print LU, and pass it to the slave in TAG(1).

c

40 PRTLU=IPBUF
TAG=PRTLU

c

CllllllllllllIlllllllIIIIQIIIllllllllIlllllllllllllllIllllllllll

C We’ve finally got enough goodies, we can now call the slave
Clllllllllllllllll..lllllllllllllllllllIllllllllllllllllllllllll

c

17

DATA COMMUNICATIONS

58 CALL POPEN(PCB,ERR,PRTSV,NODE,TAG)
IFCERR .EQ. 0)GOTO 60
IFCERR .EQ. 1)GOTO 57
WRITECLU,150)ERR
150 FORMAT(/"PRT: Failed to schedule slave: DS Error = "“13/)
IFC.NOT.CERR .EQ. -41))GOTOD 56
WRITECLY,15%)
1585 FORMAT(/*" The slave ‘PRTSV’ is not installed in the destination
" CPUM/)
STOP

56 IFC.NOT.CERR .EQ. -47))STOP
WRITECLU,156)

156 FORMAT(/"You need the DS LU’s in your Session Switch Table."/
+"Please enter:*//" SL,dslu,dslu and try again. "“//
+"For a permanent solution have your system manager enter the'/
+"DS LU’s in your account.™/)

STOP

C

c Handle REJECT from slave

C

57 IFCTAG(2) .EQ. 10)GOTO S8
WRITECLU,157)TAGC1),TAG(2)

157 FORMAT(“Slave reject: error code = "A2,13)
STOP

C

C Handle slave busy

C

g8 WRITECLU,158)

158 FORMAT('Slave busy, try again later*)
STOP

C
Cllll'll.llllllllllllllllll'll"lllllllllllll!lllllllllllllllllllll
C Slave is ready and waiting:

C Buffer the data in a BFSZ word buffer.

C

C BUFFERC1) = Record count in buffer.

Cc BUFFER(2) = Word length of 1st record\\ Repeat for number
C BUFFER(3) = Start of 1st record // of rec’s in buff.

C}“‘.“i““"i'l‘il'il'il"il"lll'l'l'llll'll"ll"l""'llil'il
C
60 CONTINUE
63 IX=3
BUFFERC1) = 0
C
C Now loop through reading rec’s till EOF encountered or buff full
C
65 CONTINUE
CALL READF(DCB,ERR,BUFFER(CIX),80,LEN)
IFCERR .GE. 0XGOTO 70

WRITECLU,160)ERR
160 FORMAT(/" PRT:READF ERR FMGR*"13)
STOP

C
C Increment record count, enter current record length, and advance
C buffer index to next free buffer space.
c
70 BUFFER=BUFFER+1
BUFFERCIX-1)=LEN
IX=IX+LEN+1

18

DATA COMMUNICATIONS

c
c If we haven’t filled the buffer yet or encountered EOF, go read
c again. Otherwise, send the current buffer to the slave.
c (CALL PWRIT)
c

IFCIX .LT. BFSZ-80 .AND. LEN .NE. -1)G0OTO 65

CALL PWRIT(PCB,ERR,BUFFER,IX,TAG)

IFCERR .NE. 0)GOTO 75

IFCLEN .EQ. -1)>GOTO 90

GOTOD 63
c

75 WRITECLV,170)ERR
170 FORMAT(/" PRT: DS PWRIT error "I13/)
IFC.NOT.CERR .EQ. -58 .0R. ERR .EQ. -47))GOTO 90

WRITECLU,175)
175 FORMAT(/"The remote node is busy, there is probably not"/

+"enough SAM available to receive the incoming message.'/)
c
80 CONTINUE

CALL PCONT(PCB,ERR,TAG)

CALL CLOSE(DCB)

STOP
c
CDQII...QIIIIIIIIIIIIIIIIII
c Indicate to slave we’re done

I TIIImImImmImImImIIInnTInnIIIIIIIoOToTOTOTT
c
20 CONTINUE

CALL PCONT(PCB,ERR,TAG)

CALL CLOSE(DCB)

WRITECLU,180)

180 FORMAT(/* PRT: Transfer complete'/)
END

FTN4,L

PROGRAM PRTSV(3,80), Print to spool system. P. Shepard 10 9 79
CIIIIIIIIIIIIIIIIQIII.IIIIII
C Receives data from master *PRT", allocates a Spoel LU, deblocks
c the data in the incoming buffers, and writes the data to the
c Spool LU.
CIIIIIIIIIIIIIIIIQIIIIIIIllllll’llllllllllDDQDDIIIIIIIIIIIIIIIIQIIIIII
c

IMPLICIT INTEGERCA-2)

DIMENSION BUF(1024),TAGC20) ,PCB(4),P(5),SMP(3)

DIMENSION SPLBF(16),DCB(144) ,NAME(3)

EQUIVALENCE (NAMEC1),SPLBF(3))

DATA SPLBF/0,00,2HPR,2HTS,2HVA,0,0,12B,402B,99,6+0/

DATA SMP/2HSM,2HP ,2H /

CALL RMPAR TO GET CLASS NUMBER FOR CLASS GET ISSUED BY
(CALL GET)

QOO0

CALL RMPAR(P)
CLASS = P(1)

19

DATA COMMUNICATIONS

c

Cllllllllllllllllilllllllllllllllllllllllllllilll

c NOW SIT HERE AN WAIT FOR SOME ACTION

c TAG(1)=PRINT LU ON INPUT & ERROR INDICATOR ON
c RETURN.

c TAG(2)=ERROR CODE ON RETURN

Crrar R A R R R R R R AR R R AR AR AR R R R RN R R R R AR R R AR R RN R AR S
c
S CALL GET(CLASS,ERR,FCN,TAG,LEN)
IFCERR .NE. 0>GOTO 450

c

Ca it s R R R R R R RN R R R R R R AR R AR R R RN R RN AR RN AR RN RS

c FCN = 1 POPEN

¢ 2 PREAD

c 3 PWRIT

c 4 PCONT

c

Crr Rt R R R R R AR AR AR R R AR R R AR R RN AR R AR R R AR RN RS
G0T0(¢10,200,300,400)FCN

¢

c

10 SPLBF(16)=TAG

c

Cllilllll

C CREATE A TYPE 4 FILE, LENGTH 24 BLOCKS

Crr R R R AR R AR R R R R AR R RS SRR R SRR RRER AR RIRBRRES
c
12 CALL CREAT(DCB,ERR,NAME,24,4,0,2HSP)

IFCERR .GE. 0)>G0OTO 20

IF(ERR .NE. -2)GO TO 14

c
C IF -2 WE CHANGE THE FILE NAME AND TRY AGAIN. IF FILE ALREADY
C EXISTS IT MEANS WE HAVE FILES ON DISK THAT HAVEN’T BEEN PRINTED
C YET.
c
NAME(3) = NAME(3) + 1
GO 70 12
c
C RETURN FMGR ERROR FOR MASTER TO PRINT AT USER TERMINAL
c
14 TAG=2HFM
TAG(2)=ERR
15 CALL REJCT(TAG,ERR,BUF)
GOTO 450

c

Cllllllllllliiillllllllllllllliillllliilllllillllllllllllllll

C SUCCESSFUL CREATE, CLOSE UP THE FILE AND CALL SPOPN FOR
c A SPOOL LU,

ClllllllllllillllllQlllllllllllllllllillllliiiillllllllllllll

C

20 CALL CLOSE(DCB)
CALL SPOPN(SPLBF,ISLU)
IFCISLU .GT. 0)GOTO 30

c
C IF WE DIDN’T GET A POSITIVE SPOOL LU, WE HAVE AN ERROR.
C RETURN SPOOL ERROR TO MASTER TO PRINT
c
TAG(1)=2HSP
TAG(2)=1SLU
GO TO 15

20

DATA COMMUNICATIONS

c

CIIIIIIIIIIIIIIIIIIIIlllllllllllllllllllllllIllll

c WRITE OUT A FORM FEED

CllIIIIIIIIIIllIIIIIIIIIIIIIIIIIIIIIIIIIICIIIIIII

c
30 ICNWD=I0ORCISLU,1100B)

c
C WE NEED THE SUBFUNCTION BITS WHEN THEY ARE PASSED.
C OR INTO THE SPOOL LU AND SAVE AS *"LU". WE CAN‘T
C MESS UP *ISLU*"™ AS IT IS NEEDED IN COMMUNICATION WITH
C SMP.
c
LU=I0RCIAND(TAG,177700B),ISLU)
CALL EXEC(3,ICNWD,-1)
c
C TAG=0 MEANS NO ERROR TO MASTER, THE ACEPT RETURNS A SUCCESS
C TO MASTER AND TRANSFERS THE DATA INTO OUR BUFFER
c
TAG=0
CALL ACEPT(TAG,ERR,BUF)
c

I I T
c FROM NOW ON, WE ACCEPT ONLY PWRIT’S AND PCONT’S.
c CAN’T ACCEPT ANY MORE PDPEN’S DR WE’LL MESS UP.
I T I
c
S0 CALL GET(CLASS,ERR,FCN,TAG,LEN)

IFCERR .NE. 0)GOTO 450

G0T0(60,200,300,400)FCN

REJECT POPEN’S WHILE WE‘RE BUSY

OO0

0 TAG(1)=2HSYV
TAG(2)=10
CALL REJCT(TAG,ERR)
GOTO 50
c
I I ITTTTTIIOTTTT
c HANDLE PREAD (WE SIMPLY REJECT THEM)
Gt RS S RS AR R R R R AR R RN SRR R R R R RN R RN RN R R RE RS
c
200 CALL REJCT(TAG,ERR)
GO TO S
c
Crtra R R R R R R R R R R R R RN R R R R RN R R RN AR RN R RN RN RRS
c HANDLE PWRIT
Cr R R R R R R R R R R AR R RN R RN R R RN RN AR FRRNR R RRS
c
300 CALL ACEPT(TAG,ERR,BUF)
c
c NOW LET’S UNPACK THE BUFFER AND OUTPUT THE RECORDS
c
IX=3
DO 320 I=1,BUF
LEN = BUF(IX-1)
CALL EXEC(2,LU,BUFCIX),LEN)
320 IX = IX + LEN + 1

c NOW GO BACK AND WAIT FOR NEXT BUFFER OR PCONT.

GOTO SO
21

DATA COMMUNICATIONS

c
Cat st a s S R R RN R R R R R R RN R R R R R R R R RN R R R RN AR AR RREN S
c HANDLE ERROR EXIT’S
I T
c
450 CALL FINIS

STOP 1
c
T I I I I I I YT I I Y Y Y
c HANDLE PCONT - CLOSE SPOOL LU AND PASS TO SMP
L I I
c
400 CALL EXEC(3,ICNWD,-1)

CALL EXEC(23,SMP,4,ISLU)

CALL ACEPT(TAG,ERR,BUF)

CALL FINIS

END

22

DATA COMMUNICATIONS

REMOTE SYSTEM CONTROL VIA DS/1000

John A. Pezanno
Bill Reynolds
Howard Beyer/Holloman Air Force Base

INTRODUCTION

This article describes Holloman's experience providing data transfer capability to and from a remote site using the capabilities
of the DS/1000 network software.

PROBLEM

The objective within our organization was to have the capability to transfer data tapes and disc files to and from another location
200 miles away for processing on CDC 6600/7600 computers. The tapes have multiple files of varying record lengths. The data
has to be reliably transmitted or received. Partial tapes and files may also have to be sent. The two sites are connected by AT&T
209A modems through a noisy line. Each end of the line has a Hewlett-Packard HP 1000 system for the data transmission. At
the remote end, the operators were totally unfamiliar with the HP system, and had neither the time nor the interest to learn how to
use it. At the local end, the operators could be trained to operate the programs as necessary but it was desired to have as
simple an operation as possible. The lack of remote handling meant that as much of the operation would have to be handled
from the local end as possible, limiting the responsibilities of the remote operators to mounting and dismounting tapes. The
local system is a disc-based RTE-IV system, but it is possible that if the disc crashed, the data transfer would still be necessary.
The remote system is a memory based RTE-M3, with only a console and tape drives. Other disc-based remote systems will be
added into the network in the future using the present local system as their connencting link to the remote.

APPROACH

The approach selected for this data transfer was to use DS/1000 modem capabilities using program-to-program communica-
tion. P-P was chosen over remote file access because of the versatility in error recovery, record length, and speed. At any time
there is a possibility of problems at the remote end that might require local operator intervention. These problems include
system failures, /O device failure, and program errors. In order to provide complete local control of the remote system, and be
able to obtain status information locally about the remote site, a number of utilities were required.

UTILITIES
A number of utilities were added to enable remote control. These are described below:

The program RBOQT will shut off the interrupt system and execute a 1060xx instruction, which causes the remote computer to
execute its Remote Program Load (RPL) capability. RPL causes an automatic download of a new operating system. RBOOT is
used when a change must be made to the system (e.g., replacement of the system software, or after an irrecoverable error.)
Since RBOOT runs using the DS/1000 REMAT program, a complete system failure, or failure of DS/1000, would prevent the

local operator from rebooting. In this case the remote operator must powerfail the computer by shutting it off, and then restart it
manually.

The program SETHL is the startup program for the remote system. This program enables DS/1000 by scheduling the program
LSTEN and passing it a class buffer to enable the communication link. SETHL then sends a message to the local console,
stating that the remote system is up, and that the time is being set. This is followed by a DEXEC call to get the system time off of
the local system, which is then formatted to ASCIIl. The message processor is called to set the remote clock. Since the program
UPLIN is time scheduled when DS is enabled, the message processor is called to “ON,UPLIN,NOW". After this operation is
completed, SETHL attempts to load the run-time programs. Up to five attempts to load each program will be made via calls to
FLOAD. If there is a loader failure, or when the load is completed, an appropriate message is transmitted to the local node.
SETHL uses the subroutine XMSG for printing all of its messages.

23

DATA COMMUNICATIONS

The program MSSEN runs at the local node. This program accepts four types of commands:

1. MSSEN will transmit any RTE command from the local system to the remote system using the DMESS routine provided by
DS/1000. All messages returned as a result of these commands are printed on the local console. Examples of how this
capability is useful include remote “UP"ing of devices, setting BREAK flags, etc.

2. MSSEN will also transmit any message to the remote node by typing “M,message” on the local terminal. The DMSG routine
provided by the DS/1000 package is used to print the message on the remote console. The message will be preceded by
the node number of the system from which the message was sent.

3. Any FMGR control command (“CN,p1,p2") can be tramsmitted via MSSEN. This enables remote tape drives to be
positioned and EOF’s written. In addition to all the standard CN commands available in File Manager, two have been
added by MSSEN. They are "CN,Iu,ST” and "CN,lu,DS” which get the status and dynamic status respectively of any device
on the remote system. The format of the printout by these commands interprets the status information as if it were the status
of a tape drive, showing whether the device is ON-LINE, READY, and if there is a WRITE RING regardless of what sort of
device the LU actually is. In addition, the driver of the device is identified.

4. MSSEN will allow the last command issued to be reissued by typing “REDQ” or “RE”, saving the user the need for retyping
the command.

MSSEN permits complete remote control of the tape units and permits remote RTE commands. Therefore, the only remaining
requirement of the remote operator is that he must mount the tapes. A check can be made to see if the tape is mounted on the
correct subchannel, and mounted correctly using the capabilities of MSSEN described above. Also, the tape can be
repositioned, EOF’s written, or the tape unit can be put off-line, all from the local node.

The subroutine XMSG is a utility subroutine designed to be used with the DS/1000 transmit and receive programs, but versatile
enough to be usable with any DS/1000 program. XMSG has two entry points. The first, SETNL, is the entry point used to set the
message node, message LU, and program name from which the message originated. The second, XMSG, is the message
entry point. When XMSG is called, it prints the time in HH:MM:SS format with leading zeros printed, followed by the program
name, the message, and optionally three labeled values and one unlabeled value. The labeled values are “FILE”, “RECORD",
and “ERROR". Negative values for the file or record will suppress these labels and values. Likewise, positive values for error will
supress output of that label and value. This suppression feature permits inhibiting printing of items that occur prior to the ones
intended to be printed. The unlabeled value will print positive decimal if positive, and positive octal if negative. The parameter
following the message is the length of the message in words.

For example,
CALL XMSG (*“‘ENCOUNTERED ON WRITE‘‘’,12,5,-3,-4)
would print:

10:12:03 SETHL FILE S ERR -4 ENCOUNTERED ON WRITE

The “RECORD" is suppressed since it is negative, as is the unlabeled value since it is not given. The message, although the first
parameter in the call, is printed after the FILE, RECORD, and ERROR labels and values. The purpose of XMSG is to have the
capability to print messages from a remote node to a local node without having the formatter in the system. Considerable space
can be saved, which is especially important in the memory based system. In addition, all messages are printed in a consistent
format, making them easier to read.

Our revised copy of the program WHZAT is a modified copy of the RTE-IIl WHZAT with the EXEC writes replaced by DEXEC
calls. With this change, the WHZAT output can be directed to any node, while WHZAT runs in the remote node. Parameter P4 is
the node (or —lu) number to which the output is directed, with the default value being the local node. This program permits the
local operator to see the status of all programs and downed devices in the remote system. Using this version of WHZAT
provides a much more complete system status than the REMAT STatus command.

24

DATA COMMUNICATIONS

Programs SLOAD and RLOAD respectively OFF (with an “OF,PROG,8") the send and receive programs, and reload them into
the remote node using the FLOAD subroutine. They will continue to run until the load is successful, or until a BREAK is issued.
Optionally, SLOAD and RLOAD can print the error message which is returned after each unsuccesful attempt.

The subroutine IUPIT is called when it is necessary to “UP" a device that is down. During a tape read, if a parity error occurs, the
device will be downed. Any subsequent reads to the device will cause program suspension. Since the EQT, not the LU, of the
“down" device must be “UPped”, the subroutine finds the correct EQT, builds an UP, EQT command, and sends it to the
remote site. In this way, the program calling IUPIT does not need to know the EQT , and IUPIT can be called with the LU of the
down device.

PROGRAM DESIGN

With the design of these DS/1000 utilities complete, the programs to actually transfer data could be written. An important
consideration in the writing of the programs was that each program be able to run at either a memory based or a disc based
node without change in the code. To make the system easier for the operator to use, there had to be default logical units for all
send and receive devices and destination nodes, however, these had to be easily changeable. The method chosen to
implement the system was to have a number of different programs, as opposed to one large program for all functions. The main
program establishes the options and configuration. There are separate programs for sending data and receiving data between
tapes and disc files. It was realized that by using type O files, the difference between the tape and the disc could have been
eliminated, but since the remote system has no file system whatsoever, this method was not possible. The method chosen
allowed a stepped implementation of the software and permitted an operational tape to tape system in minimum time.

The program HLINK is the operator interface loaded into only the nodes at which we want to be able to initiate a transmission.
The operator may run HLINK with the desired parameters in the run string, or interactively in which case he will be prompted for
them. After defaults have been set or have been overridden, if a specific operation is requested by the operator (other than to
reset the defaults) HLINK schedules the transmit program located at the transmit node, and passes 1o it the logical units,
destination node, and message node. If parameters are not set, or if the operator desires to reset them, the current parameters
are printed and the operator can then change them. The original or altered parameters are stored on a disc file. If the file does
not exist, it is created, but if it cannot be created (because there is no file system) HLINK assumes the system is memory based
and automatically stores the information internally. When the requested operation is completed, HLINK terminates.

The programs LUSEN and DISEN are scheduled without wait by HLINK at the node where the transmission is to occur from.
After verifying that the transmitting device is ready, they establsh a communication link with the program LUREC for LU or file to
LU transfers, or DIREC for LU to LU or file transfers. The operator may request special processing for the transfer, including
repositioning of input and output devices, selective file and record copying, suppression of EOF's, and/or stacking of input
tapes to a single output tape. The default condition for these programs is copying until a double EOF is found. Informatory and
error messages are printed using the XMSG subroutine discussed earlier. All errors are handled by the programs and retried. In
the case of unattended operation, printing of every DS error message that results from an unsuccessful transmission is
suppressed. The first, second, fourth, eigth, etc. messages are the only ones printed. All messages go to the node which
initiated the transmission (where HLINK was run).

The programs LUREC and DIREC write out the received records and send error messages to the scheduling node. They also
reposition the output device if this option was requested.

PROBLEMS ENCOUNTERED

The main problems encountered in our system are due to noisy modem lines. The result is a considerable number of DSO1
(data is not being recieved correctly), DS02 (communication line timeout), and DS05 (request timeout) errors. Another item we
found to be a limitation were the DS/1000 error messages, which can only be sent to the system console. The capability to
specify a system error device, particularly when there are a considerable number of errors would be helpful. A third, potentially
critical problem, concerns the priority of the DS programs writing the error messages. If the system console is accidently shut
off (as it was a few times at our remote site), the error messages cannot be printed. Ordinarily, on buffered devices, a program
would be putin an I/O wait state when the buffer limits are reached. However, since the DS programs have a priority higher than

25

DATA COMMUNICATIONS

40, they will not suspend. Error messages continue to be stacked up in SAM until there is no SAM left. At that point it is
impossible for the programs to operate any longer, or for the operator at the remote system to clear the system or even discover
the problem. Since the system console must be an interactive terminal driver, its LU cannot be switched to the bit bucket. To
eliminate error logging we wrote a dummy DVROO which acts like the bit bucket, but which stores the most recent error
message, internally overwriting old messages. Thus, the console can be switched to the dummy DVR0OO when no error logging
is desired. Eventually, we intend to write a program which will get the messages sent to the dummy DVROO and transmit them to
the local computer. This program will also be able to return messages to programs that do a read on the dummy driver.

THE FUTURE

We are presently working on integrating our HP 3000 through the local node so files can be sent between the HP 3000 and the
remote node. Eventually, most of the local HP 1000 systems we have will be connected to the HP 3000 either directly, or through
an intervening node. Our objective is to be able to transfer data from one node to any other node in our system via DS/1000,
eliminating the need to physically carry tapes of data from data acquisition systems to data processing ones.

CONCLUSIONS

We have found DS/1000 to contain many versatile and useful features. We were able to get this complex system working in only
a few days. The capability to completely control the remote system has considerably reduced the man-hours required to
transmit data, and simplified our operation.

[Editor's Note: Listings of the programs referenced above are included for use by any of our readers that would like to
implement this system on their computer network. Please keep in mind that neither the Editor of the Comn-
municator nor Hewlett-Packard can assume the responsibility of supporting these programs.]

FTN4 ,L
PROGRAM HLINK(3,60), MASTER SET DS1000 19 APRIL 1979 REV 1930 BMR
(Il Ty TR RS
C WRITTEN BY SGT BILLY M, REYNOLDS APR 79 VERSION 1.0
I I N T R R T I R R N R R R R RN R TR YY)
c
C THIS PROGRAM SETS OR CHANGES THE MASTER SETUP FOR THE DS/1000 LINK
C AT THIS END AND OPERATES THE DESIRED JOB BY RUNNING THE APPROPRIATE
C MASTER PROGRAM IN THE LINK

c
DIMENSION IDCB(144)
INTEGER QHL(B), CRTLU,IJOB,LNODE,NODE,IP(S5),IKEEP,IARRY(S)
INTEGER IRECLU,ITRNLU,DRECLU,DTRNLU, ITRANS,JRBUF(33),JBUFAC20)
INTEGER SENDLU,RECVLU,KNODE
EQUIVALENCE (IP(C1),1J0B),CIP(2),1TRANS),(IP(3),SENDLU)
EQUIVALENCE CIARRY(1),IRECLU),CIARRY(2),ITRNLU),CIARRY(3),DRECLU)
EQUIVALENCE (I1ARRY(4),DTRNLU),CIARRY(S5),NODE),CIP(C4),RECVLU)
EQUIVALENCE (IP(5),KNODE)
DATA QHL/2H H,2HLI,2HNK,2H: ,2H ?,20137B/
CALL RMPARCIP)

10 CRTLU=LOGLUCIDUM)

c

C SET UP OR OPEN THE MASTER SETUP FILE

c

11 CALL OPENCIDCH,1ERR,BH!HLINK,0,2HHL)
IF (IERR.GE.0) GO TO 13
IF CIERR.EQ.-6)G0 TO 15
WRITE (CRTLU,12) IERR
12 FORMAT (“HLINK: THE OPEN CALL FAILED DUE TO ERROR# *,13)
CALL CLOSE (1DCB)
STOP 10

26

DATA COMMUNICATIONS

[%

C IF SETUP FILE OPEN READ FILE, IF NOT ASK APPROPRIATE QUESTIONS TO
C SET UP THIS FILE

c
13 CALL READFCIDCB,IERR,IARRY,S)
IFCIERR.GE.Q) GO TO 15
WRITECCRTLU,14) IERR
14 FORMAT(/™HLINK: THE READF FAILED AND IS IN ERROR# *,13)
CALL CLDSE (IDCB)
STOP 11
15 IF (IJOB.NE.110) GO TO 100
c
C GIVE CURRENT RECEIVE LOGICAL UNIT OF LOCAL NODE AND ASK FOR CHANGE
C

17 WRITECCRTLU,20)IRECLU
20 FORMATC/*"™ HLINK: THIS IS THE MASTER SETUP FOR THIS PROGRAM",/,

* " IF YOU WISH TO CHANGE A LOGICAL UNIT,TYPE"™,/,
. " IN THE NEW LOGICAL UNIT AFTER THE ? PROMPT"™,/,
» . OR ELSE HIT THE SPACE BAR AND RETURN KEY *,/,
. " TO KEEP THE CURRENT LOGICAL UNIT.®,//,

* " YOUR DEFAULT LOGICAL UNIT FOR RECEIVING®",/,

* " INFORMATION IS CURRENTLY LOGICAL UNIT ™,13)

0002 HLINK 10:45 AM TUE., 9 0CT., 1979
CALL EXEC (2,CRTLU,GQHL,6)
READ (CRTLU,#)IRECLYU
WRITECCRTLU,25) IRECLU
25 FORMATC(/"HLINK: YOUR RECEIVE LOGICAL UNIT IS LU ",I3)

c
C GIVE CURRENT TRANSMIT LOGICAL UNIT FOR LOCAL NODE AND ASK FOR CHANGE
c
30 WRITECCRTLU,35) ITRNLU
35 FORMATC/*" HLINK: YOUR DEFAULT LOGICAL UNIT FOR TRANSMITTING",/,
. " INFORMATION IS CURRENTLY LOGICAL UNIT™,I13)
CALL EXEC (2,CRTLU,GQHL,B)
READC(CRTLU, #) ITRNLU
WRITECCRTLU,40) ITRNLU
40 FORMATC/™HLINK: YQUR RECEIVE LOGICAL UNIT IS LU ",I3)
c
C GIVE CURRENT RECEIVE LU FOR DESTINATION NODE AND ASK FOR CHANGE
c

45 WRITECCRTLU,50)DRECLU
50 FORMAT(/' HLINK: YOUR DEFAULT LOGICAL UNIT FOR RECEIVING",/,

. " INFORMATION AT THE DESTINATION NODE IS™,/,
M " CURRENTLY LOGICAL UNIT *,13)

CALL EXEC (2,CRTLU,QHL,6)

READCCRTLU, #)DRECLU

WRITE(CRTLU,S5)DRECLU
55 FORMAT(/* HLINK: YOUR DESTINATION NODE RECEIVE LUs *,I13)

C
C GIVE CURRENT TRANSMIT LU FOR DESTINATION NODE AND ASK FOR CHANGE
c
60 WRITECCRTLU,B68)DTRNLU
65 FORMAT(/"HLINK: YOUR DEFAULT LOGICAL UNIT FOR TRANSMITTING",/,
. " AT THE DESTINATION NODE IS LODGICAL UNIT ™,13)
CALL EXEC (2,CRTLU,GHL,6)
READ(CRTLU, #)DTRNLU
WRITECCRTLU,70)DTRNLU
70 FORMAT(/' HLINK: YOUR DESTINATION NODE TRANSMIT LU#s *,13)
c
C GIVE CURRENT DESTINATION NODE NUMBER AND ASK FOR CHANGE
Cc

WRITE (CRTLU,80)NODE
80 FORMAT(/"HLINK: YOUR DESTINATION NODE NUMBER IS 13)
CALL EXEC (2,CRTLU,QHL,6)
READ(CRTLU, #)NODE
WRITECCRTLUY,81)NODE
81 FORMAT(/"HLINK: YOUR DESTINATION NODE NUMBER IS *,13)

27

DATA COMMUNICATIONS

[
c
C

CREATE DISK FILE FOR MASTER SETUP IF ONE NOT ALREADY CREATED

82 FORMAT("HLINK:

83

0003

[

84

85

IF CIERR.GE.O0) GO TOD 83

CALL CREAT(IDCB,IERR,BHIHLINK,1,1,2HHL)

1F (IERR.GE.0) GO TO 84

WRITE(CRTLU,B82)IERR

CANNDOT CREATE DISK FILE DUE TO ERROR# *,13,/,
“HLINK: SO INPUT WILL BE KEPT IN MEMORY INSTEAD')

GO TO 100

CALL RWNDF(IDCB)

HLINK 10:45 AM TUE., 9 0OCT., 1979

CALL WRITFCIDCB,IERR, [ARRY,5)

IFCIERR.GE.0) GO TO 90

WRITECCRTLU,B5)IERR

FORMAT(*HLINK: CANNOT PERFORM WRITF DUE TO ERROR# ",13)

CALL CLOSE ¢IDCB)

STOP 12

90 CALL CLOSECIDCB)

C CHECK FOR OPENED DISK FILE, IF NOT GO BACK AND CREATE ONE

[

o0

100

11

112

113

IFCIRECLU.EQ.0XGO TO 17
[F(SENDLU.EQ.0)GO TO 111
ITRNLU=SENDLU
DTRNLU=SENDLU
IF(RECVLU.EQ.0)GD TO 112
IRECLU=RECVLY
DRECLU=RECVLU
IF(KNDDE.EQ.0>G0 TO 113
NODE=KNODE

IF (1JDB.GT.110> GO TO 120

CHECK FOR DESIRED JOB TO BE PERFORMED

114 WRITE(CRTLU,115)

115 FORMAT (/' HLINK: TYPE THE NUMBER CODE IN FOR THE JOB TYPE.",/,

"JOB TYPES: 0 TO TERMINATE PROGRAM *,/,
° 110 TO SET OR CHANGE DEFAULTS *,/,
" 111 LU RECEIVE,LU TRANSMIT »,/,

" 112 LU RECEIVE, DISK TRANSMIT*,/,
" 113 DISK RECEIVE, LU TRANSMIT",/,
" 114 DISK RECEIVE, DISK TRANSMIT*,/,

" 141 LU TRANSMIT,LU RECEIVE *,/,

" 142 LU TRANSMIT,DISK RECEIVE ",/,
o 143 DISK TRANSMIT,LU RECEIVE *,/,
" 144 DISK TRANSMIT, DISK RECEIVE™)

116 CALL EXEC (2,CRTLU,GHL,6)

117
18

119

120

122

123

124
125

DO 117 1=1,20

JBUFA(1)=2H

JRBUF(1)=2H

CONTINUE

CALL EXEC(100001B,CRTLU+400B,JBUFA,-20)
GO TO 185

CALL ABREG(IA,LEN)
[FCLEN.LT.1>G0O TO 116

CALL PARSECJBUFA,LEN,JRBUF)
1PC1)=JRBUF(2)
IF(JRBUF(33).LT.2)G0 TO 120
IP(2)=JRBUF(B)

IF (JRBUF(33).LT.3)G0 TO 120
IP(3)=JRBUF(10)

1IF (JRBUF(33).LT.4)G0 TO 120
IP(4)>=JRBUF(14)
[FCJRBUF(33),LT.5)G0 TO 120
IP(S)=JRBUF(18)

IF (1JOB.EG.0) GO TO 999
[F(SENDLU.E@.0)GO TO t22
ITRNLU=SENDLU

DTRNLU=SENDLU
1IF(RECVLU.EQ.0)G0 TO 123
IRECLU=RECVLU

DRECLU=RECVLU
1F(KNODE.EQ.0XGD TD 124

NODE =KNODE

CALL CLOSE (IDCB)

CALL GNODECLNODE)
28

DATA COMMUNICATIONS

OO0

150

180

185

190

OO0

IKEEP=1J0B-139
GO TO ¢180,250,350,450,550,114) IKEEP
IKEEP=1J40B-108

GO TO ¢114,11,200,300,400,500,114)IKEEP
CALL ABREG(IA,IB)

WRITE (CRTLU,190)IA,IB

FORMAT C/"HLINK:

GO TO THE APPROPRIATE SECTION FOR EACH PARTICULAR JOB

CANNOT READ INFORMATION DUE TO ERROR ",2A2)

JOB 111 TO BE PERFORMED, EXECUTE LUSEN PROGRAM AT DESTINATION NODE

200 CALL DEXECCNODE,10+100000B,6HLUSEN ,DTRNLU,IP(2),IRECLU,LNODE,

210
220

230

c JoB

250

260
270

280

OO0

300

310
320

330

c

CALL ABREG(IA,IB)
WRITECCRTLU,230)NODE, 1A,IB
FORMAT(/*"HLINK: LUSEND AT NODE

ERROR " ,2A2,'" ABORT ')

CALL EXECC10+100000B,6HLUSEN

CALL ABREG(1A,IB)
WRITECCRTLU,280)IA,IB
FORMATC/*HLINK: LUSEND IS UNSCHEDULED DUE TO ERROR *,2A2,/,

"“HLINK: HLINK IS ABORTING")

CALL DEXECC(NODE,10+100000B,6HDISEN

CALL ABREGCIA,IB)

WRITECCRTLU,330)NADE,1A,IB

FORMAT (/"HLINK: DISEND AT NODE "I12*" IS UNSCHEDULED DUE TO*",/,
"HLINK: ERRORS ",2A2," HLINK IS ABORTING™)

IS UNSCHEDULED DUE TO ",/,

141 TO BE PERFORMED, EXECUTE LUSEN PROGRAM AT LOCAL NODE

, ITRNLU, 1P(2) ,DRECLU,NODE, LNODE)

JOB 112 TO BE PERFORMED, EXECUTE DISEN PROGRAM AT DESTINATION NODE

»2,IP(2),IRECLU,LNODE,LNODE)

C JOB 142 TO BE PERFORMED, EXECUTE LUSEN PROGRAM AT LOCAL NODE

C
350

360
370

380

c

CALL EXEC(10+100000B,6HLUSEN

CALL ABREGCIA,IB)
WRITECCRTLU,380)IA,I1B
LUSEND IS UNSCHEDULED DUE TO ERROR ",2A2,/,

"“HLINK: HLINK IS ABORTING")

, ITRNLU, IPC2),2 ,NODE, LNODE)

C JOB 113 TDO BE PERFORMED, EXECUTE LUSEN PROGRAM AT DESTINATION NODE

C
400

410
420

430

CALL ABREG(IA,IB)
WRITECCRTLU,430)NODE,1A,IB
FORMATC/"HLINK: LUSEND AT NODE "I2"
ERROR ',2A2,'" HLINK IS ABORTING'")

CALL DEXECCNODE,10+100000B,6HLUSEN ,DTRNLU,IP(2),2,LNODE,LNODE)

IS UNSCHEDULED DuUE TO",/,

29

DATA COMMUNICATIONS

c
C JOB 143 TO BE PERFORMED, EXECUTE DISEND PROGRAM AT LOCAL NODE
c
450 CALL EXECC10+100000B,6HDISEN ,2,I1P(2),DRECLU,NODE ,LNODE)
60 TO 470
460 STOP 21
470 CALL ABREGCIA,IB)
WRITECCRTLU,480) 1A, B
480 FORMAT (/“HLINK: DISEND IS UNSCHEDULED DUE TO ERROR ",2A2,/,
. WHLINK: HLINK 1S ABORTING™)
G0 TO 999
c
C JOB 114 TO BE PERFORMED, EXECUTE DISEND PROGRAM AT DESTINATION NODE
c
500 CALL DEXECCNODE,10+100000B,6HDISEN ,2,1P(2),2,LNODE,LNODE)
60 TO 520
510 STOP 22
520 CALL ABREGCIA,IB)
WRITECCRTLU,530)NODE, 1A, 1B
530 FORMATC/*HLINK: DISEND AT NODE "I2" [S UNSCHEDULED DUE TO *,/,
. “HLINK: ERROR ",2A2," HLINK IS ABORTING™)
60 TO 999
¢
C JOB 144 TO BE PERFORMED, EXECUTE DISEND PROGRAM AT LOCAL NODE
¢
550 CALL EXECC10+100000B,6HDISEN ,2,1P(2),2,NODE,LNODE)
60 TO 570
560 STOP 23
§70 CALL ABREGCIA,IB)
WRITECCRTLU,S80) 1A, 1B
S80 FORMATC/"HLINK: DISEND IS UNSCHEDULED DUE TO ERROR *,2A2,/,
. “HLINK: HLINK IS NOW ABORTING'™)
299 END
ENDs
ASMB, L

NAM XMSG,7 REV 1933 FORMATS & SENDS MESSAGES FOR HLINK
ENT XMSG,SETNL
EXT EXEC,DEXEC,.MVW, .ENTR,KCVT, .DFER,CNUMD, CNUMO

THIS SUBROUTINE PRINTS MESSAGES FOR THE DATA LINK UTILITY
WITHOUT USING FORMATTER. MESSAGES ARE IN THE FORMAT:

HH:MM:SS YYYYYY FILE XXX REC WWWW ERR-VV MESSAGE UUUU

WHERE :
HH IS HOUR (LOCAL CPU TIME)
MM IS MINUTE
SS 1S SECOND
YYYYYY IS SIX CHARACTER PROGRAM NAME
XXX IS FILE #
(e 1S RECORD »
w IS NEGATIVE ERROR #
vuuuy 1S DPTIONAL #
POSITIVE FOR DECIMAL
NEGATIVE FOR OCTAL (CHANGED TO +)
TO CALL:

CALL SETNL (NODE,LU,EHPROGNM)

TO INITIALIZE NUMBERS. IF SETNL IS NOT CALLED FIRST, THE
DEFAULTS ARE USED. SETNL MAY BE RECALLED AT ANY TIME TO
CHANGE ANY VALUES

PARAMETERS ARE

$ 5 8 5 % 4 8 8 8 8 S 8 S H E k&S E S E SR

NODE 1S NODE WHERE MESSAGE IS WRITTEN. DEFAULT LOCAL (-1
LU IS LOGICAL UNIT FOR MESSAGE. DEFAULT IS 1
PROGNM 15 6 CHARACTER ARRAY. DEFAULT IS BINARY 0 (NULLS)

30

DATA COMMUNICATIONS

* % & W & s E R Rk kS ok ¥ S S S kSRS

TO CALL THE MESSAGE TRANSMITTER

CALL XMSG (ARRAY,LENGTH,FILE,RECORD,ERROR,OPTION)

WHERE

ARRAY CONTAINS MESSAGE TO BE PRINTED

LENGTH IS ARRAY LENGTH (MUST BE IN WORDS)

FILE IS FILE # TO BE PRINTED (SUPPRESSED IF NEGATIVE)

RECORD 1S RECORD # (SUPPRESSED IF NEGATIVE)

ERROR 1S 2 DIGIT ERROR CODE (SUPPRESSED IF POSITIVE)

OPTION DR OCTAL IF MINUS (CONVERTED TO POSITIVE BEFORE PRINTING)

THE ONLY REQUIRED PARAMETERS ARE ARRAY AND LENGTH. ALL OTHERS ARE
OPTIONAL. IF THEY ARE SET TO NEGATIVE (FOR RECORD & FILE) OR
POSITIVE (FOR ERROR), THAT PORTION OF MESSAGE IS INHIBITED.
TRAILING PARAMETERS MAY BE LEFT OFF.

NOTE: IF THE LAST CHARACTER IN THE MESSAGE ARRAY IS A ™_*
(SUPPRESS RETURN/LINE FEED CHARACTER) AND THERE 1S ND
OPTIONAL PARAMETER, THE RETURN/LINE FEED WILL BE SUPPRESSED.

SETNL INITIALIZES FILE, REC, ERROR, NUMBR ADDRESSES TO ZERO.
USED *"0CT 0' INSTEAD OF *"BSS 1* FOR ABOVE.

NODE
Ly
PROG
SETNL

ARRAY
LNGTH
FILE
REC
ERROR
NUMBR
XMSG

SET "NO ABORT' BIT ON DEXEC WRITE. CONTENTS OF A"
AND "“B" REGISTERS CAN BE OBTAINED BY CALL TO *"ABREG"
TO FIND IF CALL WAS SUCESSFUL.

DEC -1

DEC 1

DEF PROGN

NOP

JSB .ENTR GET PARAMETERS

DEF NODE AND STORE

LDA NODE, I GET PARAMETER

LDB LU,I "

DST NODE AND STORE LOCALLY

JSB .DFER MOVE PROGRAM NAME TO

DEF PROGN LOCAL BUFFER

DEF PROG,!

CLA

STA FILE

STA REC

STA ERROR

STA NUMBR

JMP SETNL,I THEN EXIT

BSS 1 ADDRESS OF MESSAGE ARRAY
BSS 1 LENGTH OF ABOVE ARRAY
ocT o FILE COUNT TO BE OUTPUT
ocT 0 RECORD COUNT TO BE OUTPUT
ocT 0 ERROR TO BE PRINTED

ocT 0 ADDITIONAL NUMBER DESIRED
NOP

JSB .ENTR GET ADDRESS OF PARAMETERS
DEF ARRAY

JSB EXEC

DEF #+3

DEF D11

DEF OUT

#ADD 100 TO MINUTES AND SECONDS SO LEADING ZERO
¢WILL BE PRINTED, SINCE WE ONLY USE LAST 2
+NUMBERS ANYWAY.

LDA 0UT+1
ADA D100
STA OUT+1
LDA OUT+2
ADA D100
STA 0UT+2

3N

DATA COMMUNICATIONS

«FORMAT TIME

JSB KCVT GET HOURS
DEF =+2
DEF 0OUT+3
STA OUT AND STORE
JSB KCVT GET SECONDS
DEF =+2
DEF OUT+1
STA DUT+3 AND STORE
JSB KCVT GET MINUTES
DEF =+2
DEF 0QUT+2
LDB A:: GET COLONS TO SURROUND
RRR 8 THE MINUTES
DST QUT+t AND STORE
#INITIALIZE COUNT
LDA D8 SET # OF WORDS TO 8
STA KOUNT
ADA OQUTP SET BUFFER POINTER
STA OUTPR TO NEXT WORD
LDA BLANK BLANK OUT WORDS
STA OUT+4 FIVE TO END
LDA OUTPS TO CLEAR BUFFER
STA B
INB
JSB .MVI
DEF D35
NOP
JSB .DFER MOVE PROGRAM NAME INTO
DEF 0OUT+5 WORDS 6-8
DEF PROGN
sGET FILE
LDA FILE GET FILE ADDRESS
S2A,RSS WAS IT GIVEN?
JMP MSG NO! LAST PARAMETER
LDA A,l GET VALUE
SSA NEGATIVE?
JMP GETR YES! GO TO RECORD HANDLER
STA 0OUT+39 NO! STORE TEMPORARILY
JSB CNUMD MAKE ASCI1I
DEF #+3
DEF DUT+39 FROM
DEF 0UT+30 AND STORE TEMPORARILY
DLD FIL GET ASCII “FILE"™
DST OUT+9
DLD 0UT+31 GET LOW 4 BYTES OF FILE #
DST 0UT+11
LDA KOUNT GET WORD COUNT
ADA DS ADD 5 MORE
STA KOUNT AND STORE
ADA DUTP SET POINTER
STA OUTPR
GETR CLA 2ERD OUT FILE LOCATION IN
STA FILE CASE 1TS NOT GIVEN NEXT TIME
*RECORD HANDLER
LDA REC SAME AS FILE ABOVE
SZA,RSS
JMP MSG
LDA A,l
SSA
JMP GETE
STA OUT+39
JSB CNUMD
DEF #+3
DEF 0UT+39
DEF 0OUT+30
JSB .DFER MOVE © NUMBERS
DEF 0OUT+15
DEF 0OUT+30
DLD RECD MOVE “REC" AND
DST 0OUT+14 OVERLAY TOP 2 NUMBERS
LDA =-1 MOVE TEMPORARY BUFFER TO
LDB OUTPR PROPER LOCATION
INB
JSB .MVW

32

DATA COMMUNICATIONS

DEF D6

NOP

LDA KOUNT BUMP COUNTER

ADA DS

STA KOUNT

ADA 0OUTP AND POINTER

STA OUTPR
GETE CLA

STA REC
*ERROR HANDLER

LDA ERROR SAME AS FILE HANDLER

SZA,RSS

JMP MSG

LDA A,I

SSA,RSS EXCEPT DON’T WRITE IF POSITIVE

JMP MSG

CMA , INA MAKE POSITIVE

STA 0OUT+39

JSB .DFER

DEF DUT+18

DEF ERR

JSB KCVT

DEF #+2

DEF 0UT+39

STA 0OUT+21

LDB OUTPR

LDA 018P

JSB .MVi

DEF D4

NOP

LDA KOUNT

ADA D4

STA KOUNT

CLA

STA ERROR
*MESSAGE HANDLER
MSG LDA ARRAY

LDB LNGTH,I

S5TB LNGTH

LDB KOUNT

ADB 0UTP

INB

JSB .MV

DEF LNGTH

NOP

LDA KOUNT

ADA LNGTH

INA

STA KOUNT
*EXTRA NUMBER

LDA NUMBR

SZA,RSS

JMP WRIT

LDA A,I

SSA NEGATIVE?

JMP OCTAL YES! TREAT AS POSITIVE OCTAL

STA OUT+39

JSB CNUMD

DEF #+3

DEF DUT+39

DEF 0OUT+36

JMP FIXN
OCTAL CMA,INA

STA 0OUT+39

JSB CNUMO

DEF #+3

DEF 0UT+39

DEF 0UT+36
FIXN LDA KOUNT

ADA DUTP

STA ADD

LDA KOUNT

ADA D3

STA KOUNT

JSB .DFER

33

DATA COMMUNICATIONS

WRITE COMMAND
OUTPUT LU
OUTPUT ARRAY
LENGTH IN WORDS

WRITE W/ NO ABORT

USED FOR TIME

USED TO BLANK FILL BUFFER

PRINT "“REC "

PRINT “FILE"

PRINT "ERR"™ AND MINUS SIGN

ADDRESS WHERE PROGRAM NAME IS STORED
RUNNING COUNT OF OUTPUT BUFFER LENGTH
PERMANENT POINTER TO START OF BUFFER
PERMANENT POINTER TO WORD S

PERMANENT POINTER TO WORD 18
TEMPORARY POINTER TO CURRENT BUFFER LO
BUFFER

PROGRAM MSSEN(3,60), SENDS COMMANDS DS 1000 REV 1935 0SSEP79

TO RUN, MESSN, TYPE "RU,MESSN®" AND ANSWER QUESTIONS.
OPTIONALLY, TYPE *RU,MSSEN,NODE".

REMOTE RTE COMMANDS ARE THE SAME AS LOCAL COMMANDS. NO *«' QOR
" LU>* PROMPT IS NECESSARY. ANY RETURN MESSAGES, WILL BE RETURNED
TO YOU. ANY VALID RTE COMMAND CAN BE GIVEN.

MESSAGES TO REMOTE SYSTEM CONSOLE

TO SEND A MESSAGE TO THE REMOTE SYSTEM CONSOLE, TYPE:

ADD DEF A,I
DEF DUT+36
cLA
STA NUMBR

*WRITE OUTPUT ARRAY

WRIT JSB DEXEC
DEF #+6
DEF NODE
DEF WRITI
DEF LU
DEF OUT
DEF KOUNT
NOP
JMP XMSG,]

«CONSTANTS AND STORAGE
SUP PRESS

A EQU 0

B EQU 1

WRITI OCT 100002

D3 DEC 3

D4 DEC 4

DS DEC &

D6 DEC 6

D8 DEC 8

D11 DEC 11

D35 DEC 3§

D100 DEC 100

A:: ASC 1,::

BLANK ASC 1,

RECD ASC 2,REC

FIL ASC 2,FILE

ERR ASC 3, ERR-

PROGN BSS 3

KOUNT BSS 1

OUTP DEF OUT

OUTPS DEF OUT+4

018P DEF OUT+18

DUTPR BSS 1

OUT BSS 40
END XMSG

FTN4 L

c

c RUNNING MESSN
c

c

c

c

c REMOTE RTE COMANDS

c

c

¢

c

c

c

c

c
c
C "“M,MESSAGE

34

DATA COMMUNICATIONS

OO0 0000000000000 ONDONDNDONOO0DOOOONDOO0OO0O0O OO0

THE SYSTEM CONSOLE AT THE OTHER END WILL SHOW:
=N NN:MESSAGE

WHERE NN IS YOUR NODE
FMGR CONTROL COMMANDS

FILE MANAGER CONTROL COMMANDS TO REWIND, FORWAD SPACE, ETC A
DEVICE CAN BE GIVEN. THE FMGR COMMANDS ARE GIVEN AS FOLLOWS:

CN,LU,CM
WHERE LU IS LOGICAL UNIT AND CM IS COMMAND

THE FOLLOWING ARE LEGAL COMMANDS:

RW OR 4 REWIND DEVICE

S REWIND AND SET TO STANDBY

EQ OR 1 WRITE EOF ON DEVICE

DS OR 6 READ DYNAMIC STATUS OF DEVICE
ST GIVES LAST STATUS OF DEVICE
FF OR 13 MOVES DEVICE FORWARD 1 FILE
BF OR 14 MOVES DEVICE BACK 1 FILE

FR OR 3 MOVES DEVICE FORWARD 1 RECORD
BR OR 2 MOVES DEVICE BACK 1 RECORD

70 SETS DEVICE AT TOP OF FORM

NOTE: DYNAMIC STATUS REQUEST WILL READ THE CURRENT STATUS DIRECTLY
FROM THE DEVICE. HOWEVER, IF THE DEVICE [S DOWN OR LOCKED, THE
REQUEST CANNOT BE HONORED. THE STATUS REQUEST WILL GET THE STATUS
OF THE DEVICE OBTAINED FROM THE LAST REQUEST TO IT.

REDO COMMAND
THE PREVIOUS COMMAND CAN BE RETRIED BY TYPING 'RE'"™ OR "REDO'". THE
PREVIOUS COMMAND WILL BE ECHOED TO THE INPUT DEVICE.

ERROR MESSAGES

DS ERRORS
DS01, DS02, DSOS MEAN PROBLEMS WITH THE LINE. RETRY. IF THE
ERROR CONTINUES, GET HELP.
DsS04 ILLEGAL NODE IN RESPONSE TO FIRST QUESTION.
EXIT PROGRAM AND RESTART GIVING GOOD NODE.
DS08 DS LINE PROBLEMS OR DEVICE IS LOCKED BY
REMOTE PROGRAM. CAN OCCUR ON CN,LU,DS COMMAND
10XX SEE DS1000 MANUAL FDR ERRDR
"“ILLEGAL CODE® YOU ENTERED A NON-EXISTANT CONTROL COMMAND. RETRY.

THIS PROGRAM HAS THE CAPACITY TO CONTROL DS/1000 OPERATIONS BY
SENDING COMMANDS TO THE DESTINATION NODE IN PERFORMANCE OF CERTAIN
DPERATIONS.

DIMENSION IBUF(C20),IBUF2¢20)

INTEGER IX(2)

INTEGER PARM(S)

EQUIVALENCE ¢IX,X)

INTEGER ILEN,INODE,IPBUF(33),LUINC3),IPRAM,CRTLU
EQUIVALENCE (IPBUF(6),LUIN,LU),CIPBUF(14),1PRAM)
DATA INODE/-1/

CALL RMPAR (PARM)

CRTLU=LOGLUCIDUM)

35

DATA COMMUNICATIONS

c
C DETERMINE THE DESTINATION NODE AND COMMAND TO BE TRANSMITTED
c
WRITECCRTLY,20)
20 FORMAT ("™ MSSEN REV 1935")
[NODE=PARM
IF ((PARM.NE.CRTLU).AND.(PARM.NE.0)) GO TO 39
INODE=-1

WRITE (CRTLU,38)

38 FORMAT(*" WHAT IS YOUR DESTINATION NODE ? ')
READ(CRTLU, #> INODE

39 WRITECCRTLU,40)

40 FORMAT(™ TYPE COMMAND TO BE TRANSMITTED ?*)

70 IPBUF = IBUF

IPBUF(2)=1BUF(2)

CALL EXEC (1,CRTLU+400B, [BUF,20)

10LD=1

CALL ABREG (l1A,DD

1F (CIBUF.EQ.2H).0R.(CI1.EQ.0))> GO TO 860

IF (1BUF.NE.2HRE) GO TO 45

1BUF=1PBUF

1BUF(2)=IPBUF(2)

I=10LD

CALL EXEC (2,CRTLU,IBUF,I)

ILEN=]«2

n

COPY MESSAGE TO XMIT BUFFER

OO0 SN

DO 47 J=1,20
IBUF2(J)=1BUF(J)

~

CHECK FOR TYPE OF COMMAND. IF CONTROL COMMAND USE EXEC CALLS.
1F MESSAGE, PASS TO REMOTE

OOO0OO A

IFCIBUF.EQ.2HCN)GO TO 340

IF (IBUF.EQ.2HM,)> GO TO 800
CALL DMESSCINODE,IBUF2,ILEN)
CALL ABREG(IA,IB)
I[FCIA.GE.0) GO TO 220
IFCIB.EQ.~1)G0 TO 180

Ia=-1A

IA=ClA+1.0) /7 2.0

oo

PRINT TO TERMINAL ANY RETURNED MESSAGES FROM DESTINATION NODE

WRITECCRTLU,160)CIBUF2(K) ,K=1,1A)
160 FORMAT (" RETURNED MESSAGE: ",20A2)
GO TO 220
180 WRITECCRTLU,200)CIBUF2C(K),K=1,2)
200 FORMAT('™ TRANSMIT COMMAND FAILED DUE TO ERROR ™,2A2)

c
C REQUEST NEXT COMMAND IF ANY OR TERMINATE PROGRAM
C
220 WRITECCRTLU,260)
260 FORMAT('™ TYPE NEXT COMMAND OR HIT SPACE BAR AND RETURN KEY *,/,
. ® FINISH ?'")
G0 TO 70

DETERMINE THE TYPE OF CONTROL COMMAND

OO0

340 CALL PARSECIBUF2,ILEN,IPBUF)

CALL TO REWIND TAPE AT DESTINATION NODE

OO0

IFCIPBUF(10).NE.2HRW) GO TO 380
CALL DEXEC(CINODE,100003B,LUIN+400B)
G0 TO 820

360 GO TO 220

36

DATA COMMUNICATIONS

c
C CALL TO MAKE END OF FILE ON TAPE AT DESTINATION NODE
c
380 IFCIPBUF(10).NE.2HEO)GO TO 420
CALL DEXECCINODE,100003B,LUIN+100B)
GO TO 820
400 GO TO 220
c
c DYNAMIC STATUS CALL
Cc
420 IF C(CIPBUF(10).NE.2HDS).AND.CIPBUF(10).NE.6)) GO TO 520
CALL DEXEC (INDDE,100003B,LUIN+600B)

GO TO 820
440 CALL ABREG (1A,1B)
441 X=0.0

IF (IANDCIA,100B).EQ.0) X=4HNOT
WRITE (CRTLU,460) LU,IX

460 FORMAT (13, IS *,2A2,"AT LOAD POINT")
X=0.0
IF CIANDCIA,4).NE.0) X=4HNOT
WRITE (CRTLU,480) LU,IX

480 FORMAT (I13,'" DOES ',2A2,"HAVE WRITE RING*)
X=0.0
IF CIANDCIA,1).NE.0) X=4HNOT
WRITE (CRTLU,S500) LU, IX

500 FORMAT (I3,™ IS ",2A2,"0ON LINE")
1A= IAND (1A,37400B) /256
WRITE (CRTLU,123) LU,IA

123 FORMAT (* LOGICAL UNIT ™,12,™ USES DV.",02)

GO TO 220

c
c NON-DYNAMIC STATUS CALL
c
520 IF CIPBUFC10).NE.2HST) GO TO S61
CALL DEXEC C(INODE,100015B,LUIN,IA)
GO TO 820
567 GO TO 441
c
C CALL TO SHIFT TO TOP OF PAGE ON LINE PRINTER AT DESTINATION NODE
c

561 IFCIPBUF(10).NE.2HT0XGO TO 560
CALL DEXECCINODE,100003B,LUIN+1100B, 1PRAM)
GO TO 820

540 GO 7O 220

C CALL TD FDORWARD FILE ON TAPE AT DESTINATION NODE

S60 IFCIPBUF(10).NE.2HFF)GO TO 600
CALL DEXECCINODE,100003B,LUIN+1300B, IPRAM)
GO TO 820

580 GO TO 220

o0

CALL TO BACKSPACE FILE ON TAPE AT DESTINATION NODE

600 IFCIPBUF(10).NE.2HBF)GO TO 640
CALL DEXECCINODE,100003B,LUIN+1400B, IPRAM)
GO TO 820

620 GO TO 220

CALL TO FORWARD RECORD ON TAPE AT DESTINATION NODE

OO0

640 IFCIPBUF(10).NE.2HFR)GO TO 680
CALL DEXECCINDDE,100003B,LUIN+300B, 1PRAM)
GO TO 820

660 GO TO 220

C CALL TO BACKSPACE RECORD ON TAPE AT DESTINATION NODE
680 IFCIPBUF(10).NE.2HBR)GO TO 720
CALL DEXECCINODE,100003B,LUIN+200B, IPRAM)

GO TO 820
700 GO TO 220

37

DATA COMMUNICATIONS

c
C CALL TO CONTROL TAPE AT DESTINATION NODE WITH NUMERIC CODE
c
720 IF CIPBUF(C10).GT.27) GO TO 760
CALL DEXEC (INODE,100003B,LUIN+]IPBUF(10)+100B, IPRAM)
GO TO 820
740 GO TO 220
c
c IMPROPER CALL
C
760 WRITECCRTLY,780)IPBUF(10)>
780 FORMAT(™ FUNTION CODE *,A2," IS AN ILLEGAL CODE. ")
G0 TO 220
[
C MESSAGE TRANSMITTER
C
800 CALL DMESG (INODE,IBUF2(¢2),1-1)
GO TO 220
820 CALL ABREGCIA,IB)
WRITE(CRTLU,840)1A,IB
840 FORMAT(*" COULD NOT PERFORM EXEC CALL DUE TO ERROR *",2A2)
GO TO 220
860 END
END$
FTN4 ,L
PROGRAM RLOAD (3,65), LOAD LUREC TO NODE 30 REV 1932 2 AUG 79
C
INTEGER 10FF(10), PARM(S)
DATA [OFF/2HOF ,2H,L,2HUR,2HEC,2H,8/
C
CALL RMPAR(PARM)
C
ICRT =« LOGLY C(ID)
WRITE CICRT,10)
10 FORMAT(* RLOAD REV 1932'")
C
40 CALL DMESS (¢30,I10FF,10)
C
60 ITRY = 0O
80 ITRY = ITRY + 1
cALL FLOAD (6HLURECD,48,10,30,IERR,2HHL,1,7)
1F CIERR.EQG.0) GD TO 90
IF (PARM(2).NE.0) WRITE C(ICRT,85) IERR, ITRY
85 FORMAT(*" RLOAD: FAIL. IERR =*,I5,"® TRY =",13)
IF (IFBRK(ID)) 120,80
C
90 WRITE CICRT,100) ITRY
100 FORMAT(" RLOAD: LUREC LOADED. TRYS = *",I5)
120 END
END$
ASMB, L
NAM TUPIT,7 REV 1924 - UPS LU’S
ENT IUPIT
EXT .ENTR,KCVT,MESSS
. THIS ROUTINE WILL CALCULATE THE EQT FOR ANY LU IN THE SYSTEM
. AND THEN ISSUE A CALL TO THE MESSAGE PROCESSOR TO '"UP™ THE
. EQT. IF THE ROUTINE IS CALLED AS A FUNCTION, THE RETURNED
. VALUE WILL CONTAIN A 0 IF THE COMMAND WAS SUCCESSSFUL. ANY
. NON-ZERO VALUE INDICATES THAT THE SYSTEM TRIED TO RETURN A
. MESSAGE WHICH MEANS THAT THERE WAS AN ERROR.
*
. T0 CALL
*
. CALL IUPITCLU)
*
. WHERE LU IS THE LOGICAL UNIT WHOSE EQT IS TGO BE UPPED.
*
*
. TO CALL AS FUNCTION:
*
. I=TUPITCLY)
*

38

DATA COMMUNICATIONS

L3 WHERE THE VALUE RETURNED IN I IS 0 FOR SUCCESSFUL UP, OR
. NON-ZERO FOR FAILURE,
*
*
. NOTE: NO CHECK IS MADE TO SEE IF THE EQT WAS IN FACT DOWN.
. THE DEVICE REFERENCE TABLE IS5 SEARCHED FOR THE EQT LINKED TO
. THE REQUESTED LU. THE COMMAND IS CONFIGURED AND ISSUED. THE
. VALUE RETURNED FROM MESSS IS PASSED TD THE CALLER IN THE A"
. REGISTER.
LU BSS 1
IUPIT NOP
JSB .ENTR
DEF LU
cca GET A MINUS 1
ADA DRT AND ADD TQ FW OF DRT
ADA LU, AND ADD TO LOGICAL UNIT
LDA A,I GET WORD 1 OF LU
AND B77 MASK EQT#
STA M+2 AND STORE TEMPORARILY
JSB KCVT GET ASCII EQUIVALENT
DEF e+2 OF EQT#
DEF M+2
STA M+2 STORE IN MESSAGE ARRAY
DLD UP GET FIRST PART OF MESSAGE
DST M NOW HAVE “UP,EQT#™
JSB MESSS CALL MESSAGE PROCESSOR
DEF +3
DEF M ADDRESS
DEF D6 # OF CHARACTERS
JMP TUPIT, I EXIT W/RETURN FROM MESSS IN "A*
DRT EQU 16528 ADDRESS OF FW OF DRT
A EQU 0
upP ASC 2,UP, UP MESSAGE
M BSS 6 ALLOW 6 WORDS IN CASE OF RETURN MESSAGE
D6 DEC 6
B77 ocy 77
END
ASMB, L
NAM DVD0O0 RTE DUMMY CDNSOLE DRIVER 30CT79 REV 1935
ENT IDOO, 1DO1, CDO1
ID00 NOP ENTRY POINT TO WRITE FOR CRT
LDA EQTE,I GET FUNCTION
SLA READ OR CONTROL?
JMP BADO YES! SEND IMMEDIATE COMPLETION
LDA EQTS,1 NEGATIVE LENGTH C(CHARACTERS)
SSA,RSS
JMP C.1 NQ
CMA, INA MAKE LENGTH POSITIVE
SLA 0DD #?
INA YES. INCREMENT BY ONE
ARS DIVIDE BY 2
c.1 STA #WORD
ADA =D-41 CHECK ON LENGTH OF WRITE
SSA
JMP C.2 LENGTH < 40, 0K
LDA =D40
STA #WORD
c.2 LDA EQT7,1 MOVE MESSAGE FROM USER BUFFER
LDB ABUF TO DRIVER BUFFER
MVW #WORD
1SZ #WORD ADD 1 WORD FOR MISS COUNTER
LDA EQT GET TIMEOUT OF DvDO1
SZA,RSS 1S IT THERE?
JMP NOTIM NQ!
CCA SET TQ -1
STA EQT,I
CLA CLEAR ADDRESS TO SHOW DONE
STA EQT
NOTIM ISZ COUNT KEEP TRACK DF HDW MANY TIME DRIVER CALL
BADO CLB RETURN ZERO LENGTH RECORD ON READ
LDA =B4
JMP ID0O,1 DONE

39

DATA COMMUNICATIONS

1D01

WAIT

BAD1

CDO01

EXIT

NOP
LDA
ARS
SLA
JMP
LDA
SSA
JMp
LDA
LDB
MV
cca
STA
LDA
LDB
JMP
LDA
10R
STA
LDA
STA
cLA
STA
JMP
CLB
LDA
JMP
NOP
LDA

SZA,

JMP
LDA
LDB
MV
LDB
CCA
STA
CLA
JMP

EQTE,I

BAD1
COUNT

WAIT
ACOUN
EQT7,!
#WORD

COUNT
=B4
#WORD
ID01,1
=B10000
EQT4,1
EQT4,1
EQT1S
EQT

EQT1S,1
1D01,1

-B4
D01, 1

€aT1,1
RSS
EXIT
ACOUN
EQT7,1
#WORD
#WORD

COUNT

cDho1,1

ENTRY POINT TO READ FROM CRT

GET FUNCTION

GET BIT1 (0 = READ. 1 = WRITE/CNTL)
READ?

NO! EXIT

SEE IF DRIVER HAS BUFFER TO WRITE

NO
MOVE BUFFER FROM DRIVER
TD USER

SET MISS BUFFER TO NONE

SET DRIVER TO HANDLE TIME 0QUTS

GET ADDRESS OF TIMEOUT COUNTER
AND STORE LOCALLY

CHECK IF REQUEST WAS PENDING

NO?
MOVE BUFFER FROM DRIVER TO USER

SET MISS BUFFER TO NONE

. CONSTANT AND STORAGE AREA

BUF
COUNT
0

40

1

0

ADDRESS OF DRIVER BUFFER

COUNTER OF MISS BUFFERS

DRIVER BUFFER

NUMBER OF WORDS STORED IN BUFFER
RESERVED FOR EQT15 OF READ

PAGE AND COMMUNICATION AREA DEFINITION

1650B
.+8
11
.+13
.+14
.+18
.+16
.+84
.+85

RBOOT,3 CAUSES REBOOT IN 21MX-E W/ RPL

RBOCT
SLIBR

THIS PROGRAM EXECUTES A 106022 HALT TO CAUSE A
REBOQOT IN ANT 21MXE WITH RPL ENABLED.

ABUF DEF
ACOUN DEF
COUNT DEC
BUF BSS
#WORD BSS
EQT DEC
»
. BASE
L 4
. EQU
EQT1 EQU
EQT4 EQU
EQTE EQU
EQT7 EQU
EQT8 EQU
EQT9 EOQU
EQT14 EQU
EQT1S EQU
END
ASMB, L
NAM
ENT
EXT
L 4
L 4
RBOOT NOP
JSB
NOP
ocT
END

$LIBR

106022
RBOOT

40

OPERATING SYSTEMS

AN INTRODUCTION TO OPERATING SYSTEMS FUNDAMENTALS

Gary McCarney/HP Rockville MD
INTRODUCTION

Users of mini-computer systems are often assumed to have a complete understanding of the concepts of multiprogramming,
swapping, priorities, file management, what the operating system does for the user, etc. Quite often these users don't
understand these concepts and their subsequent utilization of the system suffers. This article will explain these concepts,
beginning on a very elementary level, and gradually building to describe fully the operations of a disc-based operating system.
The reader must tolerate a certain amount of poetic license at the beginning, such as programs getting into memory by some
“magic”. :

SINGLE PROGRAM SYSTEM

Let's begin by considering what the computer's memory “looks like" and how it is used. Figure 1 is a representation of the
computer's memory (note that memory is always drawn as a rectangle). Memory locations are referenced by sequential octal
numbers called addresses. Let us assume that we have a computer connected to a terminal device. In the lower addresses of
memory there is an operating system. The purpose of our operating system is to aliow the user at the terminal to interact with the
computer using English-like commands. Using this computer and operating system, we choose to develop a computer
program which will read the temperature of an oven — such as an integrated circuit oven — and if the result is not within the
preprogrammed limits, send a control signal to the oven to make the necessary adjustments. By using “magic”, we install this
program into our computer's memory, as shown in Figure 2. To execute our program, we simply indicate to the system to RUN
our program. The system knows where in memory programs begin, location 34000, for example, and control is transferred to
begin executing the program. Each time we type RUN, the program measures the temperature and, if necessary, makes a
correction.

PROGRAM
34000

SYSTEM SYSTEM

MEMORY MEMORY

Figure 1 Figure 2

MULTIPLE PROGRAM SYSTEM

With the temperature monitoring program working, perhaps the need develops for another program that collects data from an
experiment or production line. We wish to install this program into computer memory and since there is room in memory above
the temperature program, we can have both programs in memory at the same time. However, there is a problem whenever we
wish to execute the second program since the system will always automatically transfer control to memory location 34000, each
time we type RUN. Some way is required to indicate to the system which of the two programs to execute. Since one of our first

41

OPERATING SYSTEMS

premises was to allow the user to interact with the computer using English-like commands, we need to assign a name to each
program. Let's call the temperature monitoring program TEMP and the data collection program COLEK. Typing RUN, COLEK
should execute our data collection program. In order for the system to know what we are trying to do, we need to create space
within the system area where the names of the programs currently in memory are stored, along with their starting addresses.
Since this table contains unique identifying information about a paricular program, let's call this the 1D Table. Both TEMP and
COLEK would need a segment in the ID Table and as more and more programs are added, the number of segments would
increase accordingly. (See Figure 3.} Let's call this table then the ID Segment Table.

COLEK
40176
TEMP
34000 "5 SEGMENT TABLE
YSTE
SYSTEM - o | TEMP
. 34000
\\
MEMORY ~
\\\
\\
~J coLex
40176

Figure 3

PRIORITIES

If we assume that the program COLEK normally executes for 10 minutes and has been running for about 2 minutes when you
type RUN, TEMP, what happens? Since COLEK has control of the machine, TEMP simply waits for COLEK to complete before
TEMP executes. Fine. What could go wrong in a critical temperature environment in 8 minutes? if the temperature we are
reading is that of a boiler, the worst that can happen is that the boiler gets angry and blows up! Some way is needed to indicate
that some programs should get preferential treatment, a form of priority. We obviously want the boiler program to run quickly,
but what happens to the two minutes of data that has been collected by COLEK? Since COLEK and TEMP reside in different
parts of memory, the data should not be affected within one area by the execution of a program in another area of memory. Our
only concern is with the working registers within the computer itself; e.g., the A register. If the contents of these registers is
saved for COLEK, then execution can be resumed later where it left off by simply restoring the registers. If the number of
memory locations for each |D Segment were increased by the number of working registers, the system could copy the contents
of these registers into these locations before control is passed to a higher priority program. A program’s priority could also be
kept within the program’s ID Segment. Let's increase the inteliigence of our system by having it check for a program’s priority
each time someone types RUN into the terminal. After a higher priority program completes, the system could restore the
registers from the ID Segment and transfer control to the proper location of memory to continue execution.

Suppose a high priority program is waiting for some action to occur; e.g., a user to type some answer, While this high priority
program is waiting for the response, the entire computer is idle. Why not let the next highest priority program which is waiting its
turn execute while this waiting is happening. In this way we do not waste any of the capabilities of the computer system. With
our scheme of saving the registers within the program’s ID Segment, we only encounter the minimal overhead of copying the
registers. Both of these examples illustrate the concept known as Multiprogramming; i.e., sharing usage of the computer
resources between programs.

42

OPERATING SYSTEMS

With the importance of the temperature program, we obviously will be running it often whenever the oven or boiler is operating.
It becomes somewhat ridiculous to imagine sitting at the terminal typing RUN, TEMP every minute to keep our operation
functioning normally. What is needed is some way to have TEMP run automatically at some interval — in this case, once a
minute. If we add a clock to our system, we could store the next time TEMP is supposed to run into part of the ID Segment. The
system could check the next time for execution by examining the ID Segment, comparing it to the clock, and if the times match,
automatically execute the TEMP program.

SWAPPING

Any computer installation seems to generate more and more opportunities for programmatic solutions to problems. Now that
our system is handling the two tasks outlined above, we have a need for a program that collects some data, reduces the data,
and produces a final report. We write the program and when we try to put it into memory, there simply is not enough room. Now
what? To install this new program, call it program PRODT, we must overwrite one or more existing programs in memory. If
PRODT, can get enough memory space by overwriting COLEK, then only one program needs to be reinstalied later. But if we
assume that the "magic” we have been going through to install a program in memory is time-consuming, then we might want to
find some short-cut way to reinstall our program to get the maximum usefullness from our computer system. The disc can be
used to store programs that are ready to execute (known as absolute or executable programs), and we can increase the smarts
in our system to allow storing these programs onto the disc. The trade-off we must make will be between letting a program
reside permanently in memory and letting it reside on the disc until it is to be executed. When a disc resident program must
execute, it first must be copied from the disc into memory before control is transferred to begin execution.

Since there is a typical delay of between 25 and 50 milliseconds to access a particular area of the disc, we would only put
programs on the disc that would not suffer from this delay. Perhaps our temperature monitoring program might be more helpful
if it was always in memory — especially if if we decided to run it at a very high rate, say every 10 milliseconds, but we don't mind
taking some extra time to move PRODT and COLEK back and forth between memory and disc.

With the addition of the disc, both programs COLEK and PRODT would have their executable form of the program stored on the
disc and more information would be added to the ID Segment to contain the disc address for the program. See Figure 4. Now

40176

TEMP

ID SEGMENT
TABLE

34000

SYSTEM

TEMP
34000

MEMORY "Rop™

COLEK

40122//

PRODT

mny

Figure 4
43

OPERATING SYSTEMS

when we type RUN, PRODT the system first checks the ID Segment Table for a match of the name. After PRODT is found, the
systemn must check to see if it is in memory or disc resident. If disc resident, its location on the disc must be found. The
executable code must be copied from the disc into the proper portion of memory and then control transferred to the starting
address found in the 1D Segment. See Figure 5. If program PRODT is executing and normally runs for 20 minutes with a low
priority, what happens if you type RUN, COLEK, and COLEK has a higher priority than PRODT? This case is significantly
different than the previous example, since for COLEK to execute it would have to be read from the disc into memory, overwriting
PRODT, and destroying the data that PRODT has coilected or calculated so far. This is not acceptable.

PRODT ~

40176~

~
~
~

TEMP .

ID SEGMENT ~
34000 TABLE ~

SYSTEM ~

TEMP ~
34000

MEMORY “rRop™

COLEK
40176

PRODT
40176

Figure 5

The system must first save the working registers into PRODT's ID Segment and then temporarily copy all of PRODT onto the
disc before we can bring COLEK into memory. This means that at some moment in time there will be two copies of PRODT on
the disc. One is the original and the other is in some partially executed state. The last thing the system must do is put some
reminder into the 1D Segment for PRODT that a partially executed copy is saved on the disc, and also record where it is saved.
See Figure 6. Only after PRODT is copied to the disc and the registers have been saved can COLEK be read in from the disc
and begin to execute. See Figure 7. When COLEK completes its execution there is no need anymore to save a partially
executed copy of PRODT and COLEK can be overwritten in memory. The system now brings the partially executed copy of
PRODT back into memory from the disc, releases the space used on the disc for the temporary storage and removes the
information about the partial copy (registers, etc.) from the ID Segment. See Figure 8. This is the concept of SWAPPING. There
is one more element of bookkeeping that must be done by the operating system. Space on the disc must be controlled to
prevent overwriting original or partially executed programs. Within the system we add another table known as the Track
Assignment Table (TAT) which is used by the system to maintain control over the space on the disc. Since disc space is divided
into concentric circles, and you could think of one of these circles as a track, depending on the information stored within the
TAT, it is easy to see if a track is either free or in use.

44

OPERATING SYSTEMS

PRODT

40176

TEMP

pRODT
ID SEGMENT

PARTIALLY
13
XECUTED

34000

TABLE

SYSTEM
TEMP
34000

MEMORY

COLEK
40176

PRODT
401'7}/

Figure 6

COLEK

40176

TEMP

pRODT
34000 1D SEGMENT

PARTIALLY
E
XECUTED

TABLE

SYSTEM
TEMP
34000

MEMORY

COLEK
40176

PRODT
4017

Figure 7

45

OPERATING SYSTEMS

SHARING DATA

There will be times when you may wish to pass some of the data collected or reduced by one program, to another program. If
both of these programs are permitted access to an area of memory that is common to both, then data can be exchanged. In
many systems, there is an area set aside within the memory that is denoted as a System Common Area and is used for this
purpose.

- -7 \\\\
P ~
‘A/’/
PRODT
40176
TEMP
<
pROD
34000 ID SEGMENT PARTIALLY
TABLE Execy,
SYSTEM 7D
TEMP
34000
MEMORY
COLEK

401.7y

PRODT
40176

Figure 8

COPY OF SYSTEM ON DISC

Now that we have a computer disc connected to our system, let’'s look for other uses that we might make of all that space. As
you are probably aware, the memory that is used for today’s computers is designed such that if the electrical power is removed
— such as turning the computer off for the weekend — all of the contents of memory are lost. That means on Monday morning
you must first install the complete operating system and all memory resident programs into memory before you can resume
your normal operations. This could consume a lot of time and resources. With this computer disc we have attached, why not
store the complete operating system and all memory resident programs onto the disc and design an easy method of bringing
the operating system into memory? On the 1000 series computer you can have a very small program stored onto an integrated
circuit chip that can be read into memory by pressing one of the front panel switches — the IBL. This small program is known
formally as the binary loader and informally as the “boot”. The main purpose of the boot is to read another small program,
known as the bootstrap from the disc. The bootstrap is slightly larger than the boot and has more smarts. It, in turn, loads the
operating system and memory resident programs from their tracks on the disc into memory, and transfers control to the
operating system for normal operation. This all takes place in a matter of seconds.

46

OPERATING SYSTEMS

Our computer’s disc storage is now used for the operating system and memory resident programs, as weil as copies of both the
original and partially executed disc resident programs. What remains to be added is a simple method for adding programs to
our system. Let's first add an Interactive Editor that permits us to type in our original program, called the source program. In
order for the editor to be capable of both short and long source programs, some area other than memory should be used. If the
editor program requests some work space on the disc from the system, alf that the system needs to do is search the TAT for an
available track, or tracks, assign it to the editor to use, and return the track address to the editor.

FILE MANAGED AREA

When we finish entering our source program, we would like to save this source where it can be easily retrieved for updating. The
easiest way to do this is to add to our system a file management utility, which permits the user to save program code by simply
specifying some name to be associated with the code. This file management utility is simply another disc resident program in
our operating system. Let's call the utility FMGR and assign some portion of the disc for its use. Since the system resides on the
outer most tracks, let's use the innermost section, say 100 tracks, for FMGR to store our source programs according to the
names we have given them. Recall that the TAT must be made aware of this space that has just been reserved. Figure 9
illustrates this disc configuration.

40176
TEMP
1D SEGMENT
U 34000 TABLE
h\\
SYSTEM 1 Sl
-~
\ ~~ﬂ TEMP
AN 34000
\
MEMORY \
\\
AY
\ COLEK
AN 40176

\

PRODT
4OYE/J

Figure 9

CREATING EXECUTABLE CODE

Now that the source code is saved in the FMGR area, the next step is to compile the source (assuming the source code is in
FORTRAN) and create relocatable code. Relocatable code is a translation from a high level language (such as FORTRAN) tc a
simple pattern of 1's and O’s that the computer can understand. This relocatable code, which is generated by the compiler,
FTN4, could also be stored into the FMGR area under some new name. The final step is converting the relocatable into
executable code using a utility program designed for this purpose, let's call it LOADR.

47

OPERATING SYSTEMS

THE LOADR program does several things. First, the program relocatable code is converted into executable code, complete
with all of the proper memory addresses. Next, the loader adds various system and user supplied library programs to create the
fully executable version of our program. Finally, an ID Segment is created with as much of the information described above as
possible, including a pointer to the location in the work space area of the disc where this new executable program was created.

CONCLUSION

This article has followed the evolution of an operating system from a single program, single purpose computer system to a
simplified RTE multiprogramming disc operating system. The need for ID Segments, program priorities, swapping, memory and
disc resident programs, as well as utilities, was developed and explained. The reader should now be able to better understand
more complex operating systems, such as RTE-IVB, which extend the concepts covered here to include mapping, memory
partitioning, session monitor, and time-slicing, to name just a few. *

48

OPERATIONS MANAGEMENT

EASY FORMS FOR THE 2645A

Todd Field/HP, Woodbury, N.Y.

Introduction
This article describes a program to read a form, complete with escape sequences, from a 264x terminal into a file.

Frank Slootweg's article, 'Block Mode Input with 264x Series Terminals”, from Volume Ill issue 2 of the COMMUNICATOR/1000
shows a sample program to write a form onto a 264x terminal and read the data from the terminal in block mode. Following his
directions, a programmer can easily make use of the protected/unprotected fields, block mode, and many of the other features
of the 264x series terminals. The one step remaining to be performed is to create the form and access the form from a program.

There are several different methods of creating the form itself. Each method has its own advantages and drawbacks. One
method is to hard code the escape sequences and ASCII characters which make up the form, directly into the FORTRAN
program, as Frank Slootweg does in his examples. This method is the easiest for simple forms, but grows rapidly in complexity
with the size of the form. Alternately, one could use an intermediate language and some translation subroutines. Alex Swartz, in
his article “Software for the 2645 Terminal” in Volume il issue 5 of the COMMUNICATOR/1000, uses this approach. Alex Swartz
points out the many advantages of this method. The disadvantages are that one needs to keep in mind the relation between the
intermediate language and the escape codes for the terminal, and that if a new escape sequence is ever introduced, changes
must be made in the intermediate language. Perhaps the most straightforward method of making a form is to simply create it on
the 264x. By using the softkeys to define the unprotected fields, the definition process can be shortened to a matter of minutes.
The only remaining step is to store the form somehow from the terminal to the HP/1000 in such a manner that it can be read by a
program and written back out to the terminal. If the screen could be “dumped"” to a file, this problem would be overcome.

Right now there is no easy method of storing a form from the terminal into a file. A form on the terminal could be recorded off-line
to a cassette and read in using FMGR commands, but there are problems with this approach. The FMGR :ST and :DU
commands could be used to read the cassette, but blank lines would be deleted, upsetting the spacing. A program to read the
form directly off the screen would have to fiddle with the block mode strappings and this would be a little tricky to write. A bonus
in a programmatic approach is that additional escape sequences can be put in the file, releasing the programmer from some
busy work. In addition, as the form would not be in the program itself, a correspondingly larger program could be written. Figure
1 is a short program, F2645, to do just this.

0001 FTN4,L

0002 PROGRAM F2645(3,99),2645A FORM READ PROGRAM TF 790822
0003 C

0004 C PROGRAM TO READ A FORM FROM A 2645A TERMINAL

000s C

0006 C WRITTEN BY TODD FIELD, HP/WOODBURY 8/22/79

0007 C

0008 C C(LINES WITH ESCAPE SEQUENCES ARE BRACKETED BY ESCY ESC2)
0009 C

0010 INTEGER INBUF(80),1DCB(144),IPBUF(10),BLINES,LINENO,TLOG,
0011 + PREBUF (10),POSTBF(4) ,PRELEN,POSTLN

0012 C&Y &

%0013 . DATA PREBUF /2H%c, 2H%X,2H%m, 2H%h ,2H%J ,2H%&, 2Hs0,2HD%,2H&k ,2H1B/%
L0014 + ,POSTBF /2H%W,2H%b ,2H &,2Hh_/%

40015 + ,PRELEN,POSTLN/10,4/%

40016 C%x2

0017 LU=LOGLUC IDUM)

49

OPERATIONS MANAGEMENT

0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
40053
+0054
40055
40056
0057
L0058
40059
40060
40061
0062
0063
0064
0065
0066
0067
40068
0069
0070
0071
0072
0073
0074
0075

o NoNe]

10
100

200

OO0

OO0

300

OO0

400

CaY&
410

C&x2

CY &
420
Ce2

OO0

READ IN FILE NAME

WRITECLU,100)

FORMAT(/," FILE NAME? _'")
READ(LU,200)> INBUF

FORMAT(80A2)

IF CINBUF(1).EQ.2H/E)> GOTO 9900

I=1

CALL NAMRCIPBUF ,INBUF,20,1)

IF (IANDCIPBUF(4),3).NE.3) GOTO 10

ATTEMPT TO OPEN FILE

CALL OPENCIDCB, IERR, IPBUF ,0,IPBUF(S), IPBUF(6))
IF (IERR.EQ.-6) GOTO 300
IF (IERR.GE.O0)> GOTO 400
WRITE(CLU,99989) I[ERR
GOTO 10

CREATE FILE

CALL CREATCIDCB, IERR, IPBUF ,24,30, IPBUF(S), IPBUF(6))
IF (IERR.GE.O0) GOTO 400

WRITE (LU,9999) IERR

GOTD 10

FILE OPEN. DUMP MESSAGE AND SOFTKEYS TO TERMINAL.
ALSO, DUMP DISABLE, FORMAT OFF, MEM LDCK OFF, HOME, CLEAR,
LINE MODE, BLOCK MODE TO FILE.

CALL WRITFCIDCB, IERR,PREBUF ,PRELEN)
IF (IERR.NE.O0> GOTO 9000
WRITECLU,410)

FORMAT("&h%J%4f1alk 7L%&dBI%[", %

“eafla2k 7L%]11%4d8", &

veafla3dk 6LSACBRI", &

vegfladk 6LG1%4dO", &
//,"*F1 - START UNPROTECTED FIELD WITH “C’", &
//,"F2 - STOP UNPROTECTED FIELD WITH “1‘", &
//,"F3 - START UNPROTECTED FIELD WITHOUT “L‘’"™, &
//,*F4 - STOP UNPROTECTED FI1ELD WITHOUT “1/'")%

+ + + + + + +

CALL EXEC(12,0,2,0,-4)

BLOCK/LINE, BLOCK MODE, NO TIMEOUT, UPDATE TERMINAL CONFIGURATION
WRITE (LU,420)

FORMAT("&h&J%430D%2k1B_") %

CALL REID(3,LVU,22B,0)
CALL REID(3,LU,25B,0)

WAIT FOR USER TOD PRESS ENTER KRY

CALL REIOC1,LU, INBUF,1)

50

OPERATIONS MANAGEMENT

0076 C

0077 C USER HAS PRESSED ENTER. DISABLE KEYBOARD AND PREPARE TO LOOP
0078 C

0079 WRITE (LU,510)

0080 C&Y %

40081 510 FORMAT("&c&kh_") %

L0082 C&2

0083 BLINES=0

0084 L INENO=-1

0085 C

0086 C LOOP WHILE BLANKLINES < §

0087 C

0088 600 CONTINUE

0089 LINENO=LINENO+1

0090 C

0091 C READ A LINE

0092 C

0093 DO 605,1=6,80

0094 605 INBUF(I)=2H

0095 WRITECLU,610) LINENO

0096 C&Y %

%0097 610 FORMAT("“&sa,12,"r0C%d_**)%

w0098 C%2

0099 CALL REIOC1,LU+1000B, INBUF(6),75)

0100 CALL ABREG(IA,TLOG)

0101 IF (¢TLOG.GT.0).AND.(.NOT.((TLOG.EQ.1).AND.CINBUF(6).EQ.2H
0102 +)))) GQOTO0 700

0103 ¢C

0104 C BLANK LINE

0105 C

0106 BLINES=BLINES+1

0107 GOTO 1000

0108 700 CONTINUE

0109 C

0110 C NON-BLANK LINE

0111 C

0112 BLINES=0

0113 C

0114 C INSERT POSITIONING AND WRITE TO FILE
0115 C

0116 CALL CODE

0117 WRITECINBUF ,710)> LINENO

0118 C&Y %

%0119 710 FORMAT("%¢a *,12,"r00C")%

%0120 C&Z

0121 CALL WRITF(IDCB,IERR, INBUF,TLOG+5)
0122 IF (IERR.NE.O) GOTO 9000

0123 1000 IF (BLINES.LT.S5) GOTO 600

0124 C

0125 GOTO 9100

0126 C

0127 ¢C ERROR

0128 C

0129 9000 WRITE (LU,9999) IERR

0130 GOTO 9105

0131 C

0132 ¢C ALL DONE. WRITE HOME, FORMAT ON, ENABLE KEYBOARD TO FILE.
0133 C CLOSE FILE. PUT TERMINAL IN PAGE MODE AND CHARACTER MODE.
0134 C ENABLE XEYBDARD FROM TERMINAL AND UPDATE CONFIGURATION.
0135 C

51

OPERATIONS MANAGEMENT

0057+

0058 00047 076006R MOVE STB BSTRT WE FOUND A UNIT SEPERATOR SO
0059 00050 060001 LDA B SAVE THE ADDRESS AND

0060 00051 003000 CMA INA FIGURE DUT HOW MANY

0061 00052 042002R ADA TEMPA WORDS WE WANT TO MOVE
0062 00053 072010R STA BCNT AND SAVE THIS

0063 00054 060001 LDA B B IS DESTINATION AND

0064 00055 002004 INA A IS SOURCE AND

0065 00056 10576S MBT BCNT MOVE BYTES!

00057 000010R

00060 000000
0066 00061 026032R JMP CHECK GO BACK AND TRY IT AGAIN
0067 END

Figure 5.

The Subroutine

FFORM is a simplified version of Frank Slootweg's program A2645. Now, all that is necessary for the programmer to do to
display a form, read in the data, reset the terminal or any combination thereof, is to call FFORM as follows:

CALL FFORMCINAME,ICR,INBUF,INLEN,IMODE,LU)
where:

INAME s the file name the form is in

ICR is the file's cartridge reterence number

INBUF will contain the data input by the user

INLEN is the length of INBUF and is returned as the length of the data read.

IMODE is the functions FFORM is to perform, depending on which bits are set, the following actions will occur:
bit 2. display form on screen
bit 11 read data from screen
bit 0: reset terminat

LU is the logical unit where the form will be displayed and the data read.

To understand what IMODE is used for, consider the following scenarios:
1. A form is to be displayed, the data is read and the terminal reset.IMODE would be 7 for this application.

2. Aformis to be displayed and the form is to be filled out many times. IMODE would be set to 4 to display the form, 2 to read
the data in, and finally set to 1 to reset the terminal.

Remember that a unit seperator will be inserted by the 2645 terminal between each unprotected field. FFORM calls a
subroutine USTRP (figure 5) to strip the unit seperators out of the input, but the programmer must pass FFORM a buffer large
enough to take this into consideration.

Figure 6 contains a program to illustrate how FFORM works.

56

OPERATIONS MANAGEMENT

0001 FTN4,L

0002 PROGRAM TOAD

0003 C

0004 C TEST FOR FFORM

0005 C

0006 INTEGER INBUF(200)

0007 C

0008 LU=LOGLUCIDUM>

0009 C

0010 C WRITE FORM TO TERMINAL

0011 C

0012 IERR=0

0013 CALL FFORM(BHTOADF ,0,INBUF,IERR,4,LU)
0014 IF CIERR.LT.0) GOTO 9000

0015 C

0016 C READ DATA

0017 ¢

o018 ILEN=200

0019 CALL FFORM(O0,0,INBUF,ILEN,2,LU)
0020 WRITE(6,10) CINBUFCI),I=1,ILEN)
0021 10 FORMAT(*" INPUT BUFFER WAS: &,4(/,60A2))
0022 C

0023 C READ DATA AGAIN

0024 C

0025 ILEN=200

0026 CALL FFORMCO0,0, INBUF,ILEN,2,LU)
0027 WRITE €6,10) CINBUF(C1),I=1,ILEN)
0028 C

0029 C RESET TERMINAL

0030 C

0031 CALL FFDRM(0,0,0,0,1,LUV)

0032 C

0033 C DO A COMBINED WRITE/READ/RESET
0034 C

0035 ILEN=200

0036 CALL FFORM(GHTOADF ,0,INBUF,ILEN,7,LU)
0037 IF CILEN.LT.0) GOTO 9000

0038 WRITE (6,10) CINBUFCI),I=1,ILEN)
0039 STOP 0

0049 C

0041 9000 WRITE €¢6,9001) IERR
0042 9001 FORMAT(* [ERR RETURNED WAS: *,16)

0043 CALL FFORM(0,0,0,0,1,LU)
0044 STOP 1
0045 END
Figure 6
Conclusion

A programmer can now create a data entry form directly on the 264x terminal and use F2645 to store it to a file. The subroutine
FFORM can then be used to display the form on a 264x and read the data from the 264x. It is left to the reader as an exercise to
modify F2645 and FFORM to run on a 2640B and/or to work over a multipoint line.

57

OPERATIONS MANAGEMENT

PERFORMANCE STUDY FOR DATACAP 1000

Ben Heilbronn
Steven Richard/HP Data Systems Division

INTRODUCTION TO DATACAP/1000

Briefly, DATACAP/1000 is Hewlett-Packard's application software tool designed to use with HP1000 computers, RTE-IVB
operating system, HP3075 series data capture terminals and IMAGE/ 1000 data base management software. DATACAP/1000
allows dramatic increases in programmer productivity in the development of factory data collection applications. Most aspects
of applieation development can be handled without source code programming, but if necessary, user subroutines written in
FORTRAN can be used to extend the product’s built-in capabilities.

For a more detailed explanation of DATACAP/1000, refer to the DATACAP/1000 brochure, 5953-4224 or reference manual
{92080-30001).

The major objective of this brief is to define three parameters of DATACAP/1000 performance: response time, throughput, and
CPU utilization. Hewlett-Packard does not intend to represent a customer's application in these pages. Instead, we are making
a modest attempt to define what DATACAP/1000 can do in a “typical” environment.

MEASURING PERFORMANCE

The measurements presented here are produced with the hardware configuration recommended in the DATACAP/1000
Configuration Guide (92080-90003) in conjunction with a terminal simulator. While no guarantee is made, these figures are
conservative in their statement of the relationship of the parameters involved.

it should be noted that these measurements were made using the “Production” Transaction Monitor Program (TMP) rather than
the “Development” TMP (TMPD). TMPD uses an inter-module communications method that places a heavy burden on the CPU.
For this reason, the use of TMPD is recommended for low volume and testing purposes only.

SYSTEM CONFIGURATION

The operating system was an RTE-1VB, generated with the Multi-Terminal Monitor. DATACAP/1000 was installed on an HP 1000
system utilizing an E-series processor and one megabyte of high- performance fault control memory. Peripherals included an
HP 2645A console, HP 7920A disc drive, HP 7970B mag tape drive, and two HP 12790A Multipoint Terminal Interfaces. The
operating system was generated to accept up to 56 HP 3075 series data capture terminals. Memory was divided into the
partitions recommended in the DATACAP Configuration Guide to allow concurrent residence of all DATACAP modules in the
physical memory available. Although one megabyte of memory was avalable, only the required amount for the terminal count
under test was utilized.

THE TERMINAL SIMULATOR

Performance testing was accomplished using SIMUL, a set of software and hardware which can be programmed to simulate
inputs on an HP 3075/6 terminal running under control of the Mulitpoint Terminal Interface. Representation of the physical
connections is shown in Figure 1.

SIMUL emulates not only the terminals involved but also the terminal operator's behavior in terms of “think time”, the interval
between transactions, and a script of answers that are to be provided to the questions asked by DATACAP/1000. Each
transaction is defined with the aid of the SIMUL Transaction Generator Program (TRANS) in terms of sequence number, think
time, answer text, and input method (keyboard at 10cps typing speed or card/badge reader at 600ms per entry).

58

OPERATIONS MANAGEMENT

SIMUL SYSTEM DATACAP/1000 SYSTEM

HP 12966A INTF —r>— HP 12790A INTF

HP 12966A INTF ——><— HP 12790A INTF

Figure 1.

Each time a SIMUL “terminal” is polled by the system under test, SIMUL responds with one answer from the set of entries
pre-defined in the transaction, starting with entry number one and proceeding through the script until the last entry has been
transmitted. After transmission of the last entry, SIMUL begins the same transaction over again. Therefore, the SIMUL system
can be used to simulate a network of data capture terminals using the following procedures:

1. Interactively design appropriate transactions and responses using DATACAP/1000’s TGP and SIMUL's TRANS programs
taking the necessary transaction intervals and user think times into account.

2. Interactively define the configuration of data capture terminals, interface lines, and transactions to be run on each line
using DATACAP/1000's TMPGN and SIMUL’'s CONF programs.

3. Run the simulation with that particutar configuration.

Data from the simulation run is collected from two sources:
® SIMUL reports the average response time at the answer level and the number of times the answer has been given.

® A program in the DATACAP/1000 host system is used to determine the CPU utilization during the simulation run.

THE SCENARIOS
It was appropriate to measure DATACAP/1000 under a wide variety of application conditions in order to allow this brief to help

customers see how their actual application might behave under DATACAP/1000 control. To that end, testing was done under
the following sets of conditions:

e One basic transaction was used which included entry of five different data items as listed below:

EMPLOYEE IDENTIFICATION BADGE (TEN ASCIl CHARACTERS)

WORK ORDER NUMBER (TEN ASCII CHARACTERS)
PART NUMBER (TEN ASClHl CHARACTERS)
QUANTITY COMPLETED (INTEGER VALUE)

HOURS WORKED (REAL NUMBER)

e This basic transaction was implemented with three different levels of system interaction as shown in Figure 2.

59

OPERATIONS MANAGEMENT

TRANSACTION TRANSACTION TRANSACTION
DATACAP/1000 FEATURE #1 #2 #3
SYSTEM PROVIDED DATA YES YES YES
ASCIl STRING MASK YES YES YES
INTEGER VALUE RANGE YES YES YES
REAL NUMBER RANGE YES YES YES
DISC FILE STORAGE YES NO YES
DATA BASE VALIDATION? NO YES YES
DATA BASE UPDATE' NO NO YES
DATA BASE ADD' NO NO YES
USER VALIDATION NO NO YES
MAG TAPE LOGGING NO YES YES

'See Appendix | for details of the data base structure.

Figure 2.

Transaction #1 passed all the data collected plus the system provided information (transaction number, terminal number,
time of day, and date) to a disc file using masks and range checking only.

Transaction #2 performed the same mask and range checking validations but also validated the work order against a
master data set and used mag tape logging as its only means of storage.

Transaction #3 combined the functions of transactions 1 and 2 but also added an update against the work order master
and added one record to both of the detail data sets. Transaction 3 also included a user written validation subroutine.

e FEach of the three transaction implementations was tested on the terminal configurations shown below:

Terminal Multipoint
Count Interfaces
8 1
16 1
32 1 and 2
48 2
56 i and 2
Figure 3

® The user think time for each answer was held at a constant two seconds with the exception of the first question which
“selected” the desired transaction. The think time for this answer was varied to act as the independent variable. This

simulated a level distribution of transactions occuring as individuals used the terminals with the regularity specified by this
“interval time”.

60

OPERATIONS MANAGEMENT

RESPONSE TIME

It should be noted that only the AVERAGE response time has been considered in this study. This average is made up of the
responses to seven different events in the transaction:

transaction selection
question 1

guestion 2

question 3

guestion 4

guestion 5

transaction completion

Noo s~ -

The response time after the “Transaction Complete” special function key has been pressed may be about twice as long as the
average, with the remaining responses being somewhat quicker, thus bringing the average down. Also, if no other terminal has
already selected that transaction, it may take about twice the average response time to bring a transaction into activity.

CPU UTILIZATION

The second dependent variable considered by this study was CPU utilization. The percent of CPU time used by DATACAP/
1000 is important in two ways. First, the system should be run at some fraction of fully loaded (we have regarded fully loaded as
80%) to allow for variations from the planned ‘level’ load. In practice, these variations will occur because transactions will tend
to bunch around some event in the day whether it be coffee break or check-out time. Second, the use of any other subsystem,
for instance DS or RJE, concurrently with DATACAP will have an approximately additive effect on CPU utilization, and,
depending on the reiative priorities, can have a detrimental effect on response time and throughput. Reserve CPU capacity or
careful scheduling should allow for concurrent subsystem operation with a minimal impact on the data capture terminal user.

THROUGHPUT

Throughput is a useful independent variable to use in a study of CPU utilization and response time. Throughput is calculated by
using the number of complete transactions that occur. The transaction used in this study was comprised of the seven events
referenced in the previous discussion of Response Time. A complete transaction is the sum of several time intervals associated
with each event. These time intervals and their sequence in the simulation are described below as Figures 4a and 4b.

TIME FACTORS

1. TRANSACTION SELECTION T, + Towur, + Taesponse,
2. QUESTION #1 Tacrion, + Twvewr, + Thresronse,
3. QUESTION #2 TACTIONJ + INPUT, + TRESPONSE3
4. QUESTION #3 Tacrion, + Tieur, + Treseonse,
5. QUESTION #4 Tacriong + Tiweurg + Tresronse
6. QUESTION #5 Tacriong + Tivewrg + Treseonseg
7. TRANSACTION COMPLETION Tacrion, + Tiwewr, + Treseonse,

Tinma, = Tacrion, = TIME INTERVAL BETWEEN TRANSACTIONS
Tacrion, = USER THINK TIME
Tiweur, = KEYBOARD OR CARD/BADGE READER DATA ENTRY TIME

Treseonse, = TERMINAL RESPONSE TIME

Figure 4A.

61

OPERATIONS MANAGEMENT

As the bands for both CPU utilization and response time show, there are some factors which offer slight deviations within the
basic shapes. For instance, spreading the terminals between two interfaces causes a small increase in overhead, but has the
advantage of a slight reduction in response time. In the case of the curves which describe response time, the vertical width of
the band is due to the terminal count.

To cite two specific examples, the response time for eight terminals running transaction 1 every two minutes was 0.35 seconds,
whereas the response time for 16 terminals running the same transaction every four minutes (the same system throughput) was
0.49 seconds.

Comparing the results with one and two multipoint interfaces and a system throughput of 490 transactions per hour for
transaction 2, showed a response time of 0.90 seconds at 58.8% CPU utilizations for one interface (point A on Figure 5-2) and a
response time of 0.68 seconds at 63.2% CPU utilization (point B) for two interfaces. Both tests utilized 32 terminals.

An actual customer case was tested which required 360 transactions/hour, and compared with the graphical data to see where
it fit in. The transaction had a combination of attributes from transactions one and two, but with 2.5 instead of 5 entries per
transaction. The expected response time indicated graphically on Figure 5-2 lies around .75 seconds with 48.55% CPU usage.
The actual tests showed respective figures of .81 seconds and 44.3% CPU usage. Attributing the lower CPU figures to a shorter
transaction, these figures are very much as expected, and consistent with the data obtained.

Looking now at Figure 6, which represents the same experimental points plot with the interval between transactions as the
independent variable, we see distinct CPU utilization and response time functions for each of the terminal counts tested. Once
again, a knee in each response time curve can be seen where the CPU utilization curve reaches 80%.

% %
cPu AESPONSE
UTILIZATION TIME

crPU 40 RESPONSE
UTILIZATION TIME

s

|2

T T T L T T
? 6 5 4 3 2 1 [}
Time Interval Between Transactions In Minutes) Time Interval Between Transactions In Minutes
TRANSACTION No. 1 TRANSACTION No. 2

64

OPERATIONS MANAGEMENT

%

A\

cPU RESPONSE
UTILIZATION 401 TIME

30—

RN

8
1

Time Interval Between Transactions In Minutes

TRANSACTION No.3

Figure 6

CONCLUSION

This testing has definitely shown that DATACAP provides a viable performance capability other than for the most stringent time
and attendance applications which can be supported with very simple custom programming.

BN2DB DATA BASE

EMPLOYEE MASTER (MEMPLB)
CAPACITY: 5003

MEMPLI

TYPE: X10

OPEN WORK ORDER MASTER (MWOPNB)
CAPACITY: 5003

[MPARTI lMWOPN(I MQTYIJ
TYPE: X10 TYPE: X10 TYPE: i

4 v
IMEMPLLI MWOI I DOURSI r DTIMElDDATJ I DQTYI] MWOI l MEMPLI]

TYPE: X10 TYPE: X10 TYPE: R2 TYPE: X4 TYPE: X6 TYPE: X10 TYPE: X10
LABOR DETAIL DATA SET (LABDSB) MATERIAL MOVE DETAIL (MMDSB)
CAPACITY: 5003 CAPACITY: 5003
Appendix

65

BULLETINS

NEW SOFTWARE PRODUCT CATALOG TO REPLACE
SOFTWARE NUMBERING CATALOG

Bill Bohler/HP Data Systems Division

A new and expanded version of the Software Numbering Catalog (SNC) will be making its appearance when the first of the year
rolls around. Appropriately named the Software Product Catalog (I told you it had been expanded), it will replace the old SNC
as the standard reference to part numbers, media, and manuals for DSD software products. The biggest advantage to the new
catalog is that it incorporates information previously scattered throughout various product documentation into one file which is
shipped with the software on the same distribution medium. Distributing the product catalog as a file on the product distribution
medium is just one new feature, however.

The new product catalog contains all the information the old numbering catalog contained and may be employed in any
applications where the old catalog saw usage. In addition, the new catalog contains a product manual listing, a media
availability listing, and a section containing listings of relocatable and library files, expanded to list each entry point. Refer to
figure 2 for a look at a sample Software Product Catalog.

The available media listing contains a description and part nember for each medium on which the product is available. These
part numbers take the form nnnnn-13xxx where the left hand field constitutes the product part number such as 92068A for
RTE-IVB and the right hand field the particular medium number. For example, if product #12345 requires two 7902 flexible
discs, they might be numbered 12345-13401 and 12345-13402. More on part numbering schemes later.

The first section of the catalog is titled “MANUALS” and contains a list of the product manuals. Each entry in this section
consists of the manual part number, manual title, print date, change number, and revision date code. The manuals are listed in
order of ascending part numbers. The print date reflects the date the current edition of the manual was printed. The change
number indicates the latest change issued against the current edition of the manual and the revision date code indicates the
revision level of the manual as of its latest revision or change notice. Note that the revision date code of the manual reflects the
revision level of the manual only and does not in itself imply anything about the revision of the software.

To determine what revision level software is described in a manual, simply refer to the catalog and cross-reference the revision
levels of the manual and the revision levels of the software discussed in that catalog. Once the new catalog is in use, the user
will be able to determine manual/software compatibility even for outdated software and manuals simply by refering to
backdated catalogs. For this reason, it is suggested that users retain backdated copies of the Software Product Catalog.

Manual/software compatibility is also noted by means of the “Manual/Software Compatibility Notice” printed in each manual.
Previously, manuals “tracked” software by revision date code, i.e. a REV 1940 manual described REV 1940 software. This
required issuing a manual change notice against a manual every time its associated software changed, even if no change
occurred in the manual itself. The reason for the change notice was simply to update the revision date code of the manual to
agree with that of the software. Now, however, a change in software will cause the issuance of a revised Software Product
Catalog but no manual change notice will be issued unless actual changes to the manuals occur.

Regardless of any software considerations, an up-to-date manual consists of the current edition of the manual and the last
change notice issued against it. Change notices are cumulative, i.e., the latest change notice incorporates all previous change
notices. When a manual is revised, all change notices will be integrated into the manual, the change number cleared, and new
print and revision dates established.

Section 2 of the catalog is titled "SOFTWARE MODULES” and contains the same basic information as the old Software
Numbering Catalog. Additionally, the files are cross referenced by media and revision date codes are included. Each entry
consists of the file name, part number, revision date code, a short description, and media part number if applicable. Thus, if
product #12345 resides on discs with media part numbers 12345-13401 and 12345-13402 and contains file %WATME on the
first disc and file %WORRY on the second, the entry for %WATME will include media part number 12345-13401 and the entry for
%WORRY will contain 12345-13402, Files are listed by type (relocatable,library, etc.) and alphabetically within each type. The
following list indicates some generally adhered to file naming conventions:

66

BULLETINS

&xxxxx — source program files

“xxxxx — command files, answer files, file manager transfer files
XXX XX — ASCIH information files, help files

%xxxxx — non-library relocatables

$xxxxx — searchable, relocatable libraries

IXXXXX — absolute binary, bootable, executable files

Section 3 is the "SOFTWARE SUBMODULES" section. In this section, each relocatable and library file that contains sub-
modules is expanded and each entry point listed. The file names are listed in alphabetical order. Each sub-module entry
consists of the entry point name, part number, revision date code, and an optional description. The entry point names are listed
in the order they appear in the file.

The naming convention for the file containing the Software Product Catalog is the product number with its suffix letter
transposed to be a prefix. For example, for product 92070A, the file is named A92070, for 12345W, W12345. The location of the
file on the distribution medium is medium dependent. When the distribution medium is flexible or hard disc, the location of the
catalog file is unimportant since the discs have directories and the file may be accessed by name. On mini-cassettes, the file is
the last file on the first cassette.

Part numbering is arranged such that several levels of part numbers are formed. Figure 1 describes the relation of these levels
and some of the numbering conventions used are listed below. The first two digits of the right hand field of the service part
number supply the following information:

XXXXX-1Xnnn — indicates sub-file contained in a file
XXXXX-12nnn — indicates file with sub-files
XXXXx-16nnn — indicates single binary relocatable file
XXXXX~18nnn — indicates source file
PRODUCT #
1
[1 —1
MP # MP # MP #
1 | 1
| | 1
SP # SP # SP # SP # SP # SP # SP # SP # SP #
1
MANY
1Xnnnn #S ¢ ¢ * * * ¢

PRODUCT # — (nnnnn-xxx where xxx = media option #)
MP # — media part number { nnnnn-13xxx #s)
SP # — service part number (nnnnn-12,16,18nnn #s)

Figure 1.

67

BULLETINS

As described in the media availability section, each disc or tape on which a product is distributed is assigned a media part
number of the form nnnnn-13xxx. Each file is assigned a service part number. Since a software product may require several
discs/tapes, and since each disc/tape is assigned a media part number, each product may contain several media part
numbers. In turn, each disc/tape will contain several files, and therefore, each media part number may have several service
part numbers associated with it. Finally, if a service part number indicates a file containing sub-files, that file will contain many
individual modules and thus the service part number may have many 1Xnnnn or sub-assembly part numbers associated with it.

Below is a sample Software Product Catalog.

. SOFTWARE PRODUCT CATALOG 11:10 AM MON.,

SEPT., 1979

* 92070A-041 RTE SYSTEM SOFTWARE ON 7902 FLEXIBLE DISC

THIS FILE PROVIDES A LIST OF THE SOFTWARE MODULES AND MANUALS
THAT COMPRISE THE PRODUCT. THE LIST IS ORGANIZED INTO THREE
PARTS AS FOLLOWS:

A. MANUALS - THE ENTRY FOR EACH MANUAL INCLUDES THE TITLE
OF THE MANUAL, MANUAL PART NUMBER, PRINT DATE, AND IF
APPLICABLE, THE LATEST MANUAL CHANGE NUMBER AND DATE.

B. SOFTWARE MODULES - EACH SERVICEABLE SOFTWARE MODULE IS
LISTED IN ALPHABETICAL ORDER WITHIN FILE TYPES.

C. SUBFILES - SUBFILES TO SOFTWARE MODULES, WHERE APPLICABLE.
INCLUDES CONTENTS OF LIBRARIES, SUBROUTINE NAMES, AND ANY
FURTHER BREAKDOWN OF THE SOFTWARE MODULE THAT MAY BE
USEFUL TO IDENTIFY A PARTICULAR PIECE OF SOFTWARE.

THIS PRODUCT IS DELIVERABLE ON THE FOLLOWING MEDIA; THE SPECIFIC
MEDIUM 1S SPECIFIED AT TIME OF ORDER OF THE PRODUCT.

92070-13400 7902 FLEXIBLE DISC
92070-1350X 800 BRI MAG TAPE
92070-1350Y 1600 BPI MAG TAPE

SECTION 1: MANUALS

PART DESCRIPTION PRINT CHANGE DATE
NUMBER DATE ’ CODE
92070-90000 RTE GENERAL INFORMATION MAN. 1/80 2001
92070-90002 RTE OPERATOR’S GUIDE 1/80 2001
59310-90064 HP-IB USER’S MANUAL 1/80 2001
92067-90003 RTE IV ASSEMBLER REFER. MAN, 4/79 2001

SECTION 2: SOFTWARE MODULES

FILE SERVICE REV
NAME PART CODE DESCRIPTION MEDIA

CASC) GENERAL ASCII FILES

R EEEENEE I I T T N T T T I I T TR I T R T T T I B Y R I R]
M EEREEE e T T I T T I TR R T T RN T T T I R L T

-
-

(REL) RELOCATABLE BINARY FILES

XAUTOR 92070-16252 1941 AUTO RESTART PROGRAM
XCLASS 92070-16093 1941 CLASS I/0

XXREF 92070-16012 1941 ASSEMBLER CROSS REF.
(LIB) SUBROUTINE LIBRARY FILES

$CMDLB 92070-12004 1941 0P. CMD ACTION LIB.
$FMP 92070-12003 1941 FILE MGR. LIBRARY

68

BULLETINS

- -
- *
* SECTIDN 3: SOFTWARE SUBMODULES .
- -
- -
« FILE SERVICE REV .
* NAME PART CODE DESCRIPTION MEDIA .

(REL) RELDCATABLE BINARY FILES

ZAUTOR
AUTOR
ZCLASS
CLASS

ITIME
TIME
LXREF
XREF

CLIB) SUBROUTINE L IBRARY

$CMDLB
BL..
CN..

SY..
CNOPT
$FMP
Fmp
$BMON
APOSN
CRETS
CREAT

NAMR
INAMR

92070-16252

92070-16093

92070-16139

92067-16012

92070-1X098
92070-1X099

92070-1X034
92070-1Xx277

92070-12003
92070-1X244
92070-1X038
92070-1X041
92070-1X040

92070-1X263
92070-1x264

1941

1941

1941

1913

FILES

1941
1941

1941
1941

1941
1941
1941
1941
1941

1941
1941

Figure 2. Sample Software Product Guide

NOTE: This catalog has been edited to comply with space restrictions. It is intended as a
sample only and information contained herein is not guaranteed correct.

69

BULLETINS

JOIN AN HP 1000 USER GROUP!

Ever wonder how other HP users have used the HP 1000 in application areas similar to your own? Have a special program or
driver you'd like to share with other users? Interested in hearing about new developments in HP 1000 hardware and software?

If your answer to any one of these questions is YES, then an HP 1000 user group might be just the thing for you. These and other
similar activities are carried on regularly as part of the function of the many HP 1000 user groups that exist around the world.
There's a good chance that there's a user group right near your location! To get in on the action, just check the list below, and
contact the group nearest you to find out when and where the next meeting will be held.

Or, if there isn't a group near you, why not start ane? The Communicator/1000 can help you out by announcing the creation of
new groups. Just send a letter — c/o Editor, HP 1000 Communicator, — with the name of your new group and the means by
which other users can join. We'll add your group to our list and publish it in the next issue of the Communicator.

Here are the groups that we know of as of October, 1979. (If your group is missing, send the Communicator/1000 editor all of
the appropriate information, and we'll update our list.)

NORTH AMERICAN HP 1000 USER GROUPS

Area User Group Contact

Boston LEXUS
P.O. Box 1000
Norwood, Mass. 02062

Chicago Dave Olson)
Institute of Gas Technology
1846 W. Eddy Street
Chicago, lllinois 60657

New Mexico/El Paso Guy Gallaway
Dynalectron Corporation
Radar Backscatter Division
P.O. Drawer O
Holloman AFB, NM 88330

New York/New Jersey Paul Miller
Corp. Computer Systems
675 Line Road
Aberdeen, N.J. 07746
(201) 583-4422

Philadelphia Dr. Barry Perlman
RCA Laboratories
P.QO. Box 432
Princeton, N.J. 08540

70

BULLETINS

NORTH AMERICAN HP 1000 USER GROUPS (CONTINUED)

Area User Group Contact

Pittsburgh Eric Belmont
Alliance Research Ctr.
1562 Beeson St.
Alliance, Ohio 44601
(216) 821-9110 X417

San Diego Jim Metts
Hewlett-Packard Co.
P.O. Box 23333
San Diego, CA 92123

Washington/Baltimore Paul Toltavull
Hewlett-Packard Co.
2 Choke Cherry Rd.
Rockville, MD. 20850

General Electric Co. Stu Troupe

(GE employees only) Special Purpose Computer Ctr.
General Electric Co.
1285 Boston Ave.
Bridgeport, Conn. 06602

OVERSEAS HP 1000 USER GROUPS

London Rob Porter
Hewlett-Packard Ltd.
King Street Lane
Winnersh, Wokingham
Berkshire, RG11 5AR
England
(734) 784 774

Amsterdam Mr. Van Puten
institute of Public Health
Bilthoven
Anthony Van Leeuwenhoeklaan 9
The Netherlands

South Africa Andrew Penny
Hewlett-Packard South Africa Pty.
private bag Wendywood
Sandton, 2144 South Africa

M

BULLETINS

INTERNATIONAL CUSTOMER TRAINING SCHEDULES 79/80

A
")
4~°€

&
&
2
)

22941A
21MX/XE Maint
5 days/$500

Oct 22 (G)

22843A
7970B/E Maint
5 days/$500

22945A
7905/06 Maint
5 days/$500

Oct 29 (G)

229518
intro to HP 1000
4 days/$400

Sep 03

Sept 19 (W)

Sept 24

Sept 10 (R)
Oct 22 (M)

Aug 27
Nov 19
Feb 11
May 05

Oct 08

22951B-HOY
FORTRAN IV
5 days

Oct 08

Oct 15

22952B
1000 ASMB
5 days/$500

Sep 24

Oct 08 (P)
Nov 12 (B}

Sept 10

Oct 29 (W)

Nov 11

Ocl 08 (O)

Sep 03

Oct 15 (R)
Dec 17 (M)

Jun 11 (T)

Dec 17
Apr 21

Oct 22

Sep 10
Nov 12

22961B
D3/1000
Theory of Operation
4 days/$500

Oct 01

Jan 28

22962B
DS/1000 to HP 3000
Theory ot Operation
1 day/$100

Oct 05

Sep 28

22980C
HP-1B Interface
With HP 1000
4 days/$400

229838
21MXE
Microprogramming
5 days/$500

0Oct 01 (0)

22984A
7920 Maint
5 days/$5000

22987A Qct 22 (P) Oct 22 (W) Sep 17 Nov 05
DS/1000 Jun 23
User's Course
5 days/$500
22990A Aug 06 (B) Oct 01
RTE Driver Writing Oct 01 {P) Dec 10
3 days/$300 Nov 19 (B) Apr 28

B Mature Product Courses

72

BULLETINS

INTERNATIONAL CUSTOMER TRAINING SCHEDULES 79/80 Continued

22992A Sept 10
HP 1000 Memory
RTE
10 days/$1000

22993A
IMAGE
5 days/$500

22894A Sept 23
Session Monitor User Nov 25
10 days/$1000

22995A
System Manager
5 days/$500

22996A
RTE-IVA-IVB Upgrade
2 days/$325

22997A
Advanced RTE
5 days/$800

40270A Nov 05 (O)
Intro to HP Computers
5 days

91302A
2645 Maint
3 days/$300

B Mature Product Courses

73

BULLETINS

INTERNATIONAL TRAINING CENTER ADDRESSES

AUSTRIA

(Vienna)

Handelskai 52

Postfach 7

A 1205 Wien

Tel: (0222) 35 16 21-32
Telex: 75923

Cable: Hewpack Wien

AUSTRALIA

(Blackburn) B

CUSTOMER TRAINING CENTER
31-41 Joseph Street

Blackburn, Victoria, Australia
(Pymble) P

CUSTOMER TRAINING CENTER
31 Bridge Street

Pymble, New South Wales, Australia

BELGIUM
(Brussels)

Avenue du Col Vert, 1
Groenkraaglaan
B-1170

Brussels, Belgium
Tel: (02) 672 22 40

ENGLAND
(Altrincham) A
Navigation Road
Altrincham

Cheshire WA14 1NU
(Winnersh) W

King Street Lane
Winnersh, Workingham
Berkshire RG11 5 AR
Tel: Workingham 784774
Cable: Hewpie London
Telex: 8471789

FINLAND
(Helsinki)
Nahkahousuntie 5
00211 Helsinki 21
Tel: 90-692 30 31

74

FRANCE

(Grenoble) G

5, avenue Raymond-Chanas
38320 Eybens

Tel: (76) 25-81-41
Telex: 980124

(Orsay) O

Quartier de Courtaboeuf
Boite Postale No. 6
F-91401-Orsay

Tel: (01) 907 7825

GERMANY

(Boeblingen)

Kundenschulung
Herrenbergerstrasse 110

D-7030 Boeblingen, Wurttemberg
Tel: (07031) 667-1

Telex: 07265739

Cable: HEPAG

ITALY

(Milan)

Via G. Di Vittorio, 9

Tel: 02-903691

20063 Cernusco S/N (Mi)

JAPAN

(Osaka) O

Chuo Building

5-4-20 Nishinakajima
Yodogawa-Ku, Osaki-shi
Osaka, 532 Japan

Tel: 06-304-6021

Telex: 523-3624 YHP OSA
(Tokyo) T

2205 Takaido Higashi 3-chome
Suginami-Ku, Tokyo 168

Tel: 03-33-8111

Telex: 232-2024 YHP MARKET TOK

BULLETINS

NETHERLANDS
(Amsterdam)

Van Heuven Goedhartlaan 121
Amstelveen 1134

Netherlands

Tel: 020 472021

SPAIN

(Madrid)

Jerez No. 3
E-Madrid 16

Tel: (1) 458 26 00
Telex: 23515 hpe

SWEDEN
(Stockholm)
Enighetsvagen 1-3, Fack
$-161 20 Bromma 20
Tel: (08) 730 05 50
Cable: MEASUREMENTS
Telex: 10721

SWITZERLAND

(Zurich)

19 Chemin Chateau — Bloc
1219 Le Lignon — Geneve
Tel: 022/96 03 22

For course prerequisites and registration information contact one of the HP training centers listed above.

75

Although every effort is made to ensure the accuracy of the
data presented in the Communicator, Hewlett-Packard can-
not assume liability for the information contained herein.

Printed in U.S.A. 11/79

Prices quoted apply only in U.S.A. If outside the U.S., contact
your local sales and service office for prices in your country.

Part No. 5951-6111

)

-

