GI]MMIINI[:AHIH

kE(J LIAMENTS
PLANNING

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

HEWLETT-PACKARD
COMPUTER SYSTEMS

jsoue 6 COMMUNICATOR/1000

Feature Articles m

OPERATING SYSTEMS 20 HP SUBROUTINE LINKAGE CONVENTIONS
Robert Niland/HP Lexington

OPERATIONS MANAGEMENT 25 IVAGE. DATACAP AND SECURE DATA RETRIEVAL
- Martir P-illips/DSD Technical Marketing

32 TIME AND ATTENDANCE DATACAPTURE WiIH
THE tP 1700
Darrel! Kru.ce/DSD Sales Development

COMPUTATION 38 PENNY: COMPUTER AIDED DRAWING ON
THE HP 1000
Phil Walden/DSD Applications Development

Departments
EDITOR'S DESK 2 IN THE NEXT ISSUE
3 ABOUT THIS ISSUE
4 BECOME A PUBLISHED AUTHOR IN THE
COMMUNICATOR/1000

USER'S QUEUE 6 LETTERS TO THE EDITOR
8 LOCUS ANNCUNCEMENT
BIT BUCKET 9 SOFTWARE SAMANTHA

10 DRIVER 05 EQT DEFINITIONS
14 JULIAN CALENDER
16 COMMUNICATOR/1000 INDEX FOR VOLUME 3

BULLETINS 48 PLUS ANNOUNCEMENT
50 LOCUIS DISAPPEARS
51 PLUS/1000 ORGANIZATION
52 TRAINING CENTER ADDRESSES

EDITOR’S DESK

IN THE NEXT ISSUE

Look for ...

e A restructuring of our format

e Announcements of 1980 products

¢ 1980 Training schedules

e Chapter 3 of Bob Niland's subroutine linkage manual
e An article on using the 264X as a data recdrder

® An introduction to PASCAL

and much more . . .

Remember, deadiines for articles for the 1980 Communicator/1000 are:

Issue 1: January 4
Issue 2. March 21
Issue 3: May 30

Issue 4: July 18

Issue 5. September 12
Issue 6: October 31

We are especially looking for articles on RTE-IVB products, new IMAGE, new DATACAP, and all 1980 products. However, we
are always interested in ways to make our older products work better.

The Editor

EDITOR’S DESK

ABOUT THIS ISSUE

Issue 6 of the Communicator/1000, being the last of 1979, once again features an index of all articles published in the past year.
Also published again is the Julian calender for the new year. There was such good feedback from last year’s calender that this
will be a continued feature.

In the OPERATIONS MANAGEMENT section, we have two Data Systems contributors. Darrell Krulce of Sales Development
wrote an article describing Steve Witten's TMATT program. Steve worked on the development of DATACAP and saw the need
for this program. Darrell added a few enhancements, and then wrote his explanation of the program. Martin Phitlips of Technical
Marketing also wrote an article about DATACAP, but this one is a description of how DATACAP can be put to use retrieving
data. He stresses the security of DATACAP over that of IMAGE or the operating system.

In the OPERATING SYSTEMS section, | have published the first two chapters of Bob Niland's Links/1000 manual. This is the first
article in a series which will comprise the entire manual. Bob is at HP’s Lexington, Massachusetts sales and service office. His
manual is a long-needed, clear explanation of HP's subroutine linkage conventions.

In the COMPUTATION section, Phil Walden of Data Systems Applications Development wrote a terrific article describing Jim
Long's PENNY program. PENNY is a drawing program for computer aided design, and Phil's article shows ways it can be put to
use.

All the articles were good in this issue and | hope each will be useful in its own way. There was some competition for the HP32E
calculator even though Martin Phillips from Technical Marketing is ineligible. Three judges from Data Systems Technical
Marketing chose the following articles to be the winners:

Best Feature Article by PENNY: Computer Aided Drawing
an HP Division Employee on the HP 1000

not in Data Systems Phil Walden

Technical Marketing

Best Feature Article by HP Subroutine Linkage Conventions
an HP field person Robert Niland

There were no entrants in the customer category for this issue. We hope to have one for the first issue of next year.

The Editor

EDITOR’S DESK

BECOME A PUBLISHED AUTHOR IN THE COMMUNICATOR/1000. ..

The COMMUNICATOR is a technical publication designed for HP 1000 computer users. Through technical articles, the direct
answering of customers’ technical questions, cataloging of contributed user programs, and publication of new product
announcements and product training schedules, the COMMUNICATOR strives to help each reader utililize their HP 1000's
more effectively.

The Feature Articles are clearly the most important part of the COMMUNICATOR. Feature Articles are intended to promote a
significant cross-fertilization of ideas, to provide in-depth technical descriptions of application programs that could be useful to
a wide range of users, and to increase user understanding of the most sophisticated capabilities designed into HP software.
You might think of the COMMUNICATOR as a publication which can extend your awareness of HP 1000’s to include that of
thousands of users worldwide as well as that of many HP engineers in Data Systems factories at Cupertino, California and
Grenoble, France.

To accomplish these goals, editors of the COMMUNICATOR actively seek technical articles from HP 1000 customers, HP
Systems Engineers in the Field, and Marketing and R&D Engineers in the factories. Technical articles from customers are most
highly valued because it is customers who are closest to real-world applications.

WIN AN HP-32E CALCULATOR!

Authoring a published article provides a uniquely satisfying and visible feeling of accomplishment. To provide a more tangible
benefit, however, HP gives away three free HP-32E hand-held calculators to Feature Article authors in each
COMMUNICATOR/1000 issue! Authors are divided into three categories. A calculator is awarded to the author of the best
Feature Article in each of the author categories. The three author categories are:

1. HP 1000 Customers;
2. HP field employees;
3. HP division employees not in the Data Systems Division Technical Marketing Dept.

Each author category is judged separately. A calculator prize will be awarded even if there is only one entry in an author
category.

Feature Articles are judged on the following bases: (1) quality of technical content; (2) level of interest to a wide spectrum of
COMMUNICATOR/1000 readers: (3) thoroughness with which subject is covered; and, (4) clarity of presentation.

What is a Feature Article? A Feature Article meets the following criteria:
1. lts topic is of general technical interest to COMMUNICATOR/1000 readers;
2. The topic falls into one of the following categories —

OPERATING SYSTEMS

DATA COMMUNICATIONS
INSTRUMENTATION
COMPUTATION
OPERATIONS MANAGEMENT

3. The article covers at least two pages of the COMMUNICATOR/1000, exclusive of listings and illustrations (i.e., at least 1650
words).

EDITOR’S DESK

There is a little fine print with regard to eligibility for receiving a calculator; it follows. No individual author will be awarded more
than one calculator in a calendar year. In the case of multiple authors, the calculator will be awarded to the first listed author of
the winning article. An article which is part of a series will compete on its own merits with other articles in the issue. The total of
all articles in the series will not compete against the total of all articles in another series. Employees of Technical Marketing at
HP's Data Systems Division factory in Cupertino are not eligible to win a calculator.

All winners of calculators will be announced in the issue of the COMMUNICATOR/1000 in which their articles appear. Again, all
Feature Articles are judged by an impartial panel of three DSD Technical Marketing Engineers.

A SPECIAL DEAL IN THE OEM CORNER

When an HP 1000 OEM writes a Feature Article that is not only technically detailed and insightful but also application-oriented
as opposed to theoretical, then that OEM may ask that the article be included in THE OEM CORNER. A Feature Article included
in THE OEM CORNER may contain up to 150 words of pure product description as well as a picture or illustration of the OEM’S
product or its unique contribution. HP's objective is twofold: (1) to promote awareness of the capabilities HP 1000 OEMs'
products among all HP 1000 users; and, (2) to publish an article of technical interest and depth.

IF YOU'RE PRESSED FOR TIME. ..

If you are short of time, but still have that urge to express yourself technically, don't forget the COMMUNICATOR/1000 BIT
BUCKET. It's the perfect place for a short description of a routine you've written or an insight you've had.

THE MECHANICS OF SUBMITTING AN ARTICLE

If at all possible please submit an RTE File containing the text of your article recorded on a Minicartridge (preferrably) or on a
paper tape along with the line printer or typed copy of your article. This will help all of us to be more efficient. The Minicartridge
will be returned to you promptly. Please include your address and phone number along with your article.

All articles are subject to editorship and minor revisions. The author will be contacted if there is any question of changing the
information content. Articles requiring a major revision will be returned to the author with an explanatory note and suggestions
for change. We hope not to return any articles at all; if we do, we would like to work closely with the author to improve the article.
HP does, however, reserve the right to reject articles that are not technical or that are not of general interest to
COMMUNICATOR/1000 readers.

Please submit your COMMUNICATOR/1000 article to the following address:
Editor, COMMUNICATOR/1000
Data Systems Division
Hewlett-Packard Company
11000 Wolfe Road
Cupertino, California 95014
USA
The Editor looks forward to an exciting year of articles in the COMMUNICATOR/1000.
With best regards,

The Editor

USER’S QUEUE

LETTERS TO THE EDITOR
Dear Editor,

Would you please explain the reason for having two subprogram linkage conventions (i.e., .ENTC and .ENTR) and under what
circumstances each should be used.

Why should one convert calls using .ENTR to .ENTC with the .RCNG subroutine?
Sincerely,

Richard B. Gilbert
Gas Dynamics Laboratory

Dear Richard,

.ENTR is used only with subroutines which, immediately following the JSB instruction, have a DEF to the return point. Routines
which use .ENTC do not have this DEF instruction and can only pass a fixed number of parameters, the number of which the
caller and callee must agree upon.

.ENTR is preferable to .ENTC because of its parameter flexibility. .ENTC is retained in the relocatable library for backward
compatability; there are many routines which were written using .ENTC before .ENTR was developed.

.ENTC can be used for re-entrant and privileged subroutines, whereas .ENTR cannot. The equivalent to .ENTC for re-entrant
and privileged routines is .ENTP. However, before .ENTP was developed, any routines using the .ENTR convention which the
user occasionally desired to be re-entrant or privileged (put in the memory resident library, for example) needed to have the
ability to be easily converted from .ENTR to .ENTC conventions. .RNCG handled this conversion.

You will be interested to know that with this issue the Communicator is beginning a series of articles on HP subroutine linkage
which | hope will clear up any confusion in this area.

With Best Regards,

The Editor

USER’S QUEUE

Dear Editor,
Thanks for the list of microcode entry points. It's great to finally see these all in one place.

However, | do have a complaint with the bulletin section in Vol. I}, Issue 3. | found a description of a workshop that sounded
very interesting except that | received my issue of the Communicator on October 17 and the workshop was held on October
11,12. At least | know what | have missed.

Otherwise, keep up the good work.

B. Allen Harbin
R&D Computer Science Services
R.J. Reynolds Tobacco Company

Dear Allen,

I'm sorry about the obsolete date. It takes four weeks from the time each issue goes into typesetting to the time it gets
distributed. Sometimes this delay is longer, and we publish late bulletins. I'm glad the entry points were useful. Hopefully, this
issue will contain lots of information you can use.

With best regards,

The Editor

USER’S QUEUE

LOCUS ANNOUNCEMENT

As you may have noticed new user contributed programs have ceased appearing in the Users Queue section of the
Communicator/1000. This is because Locus has been undergoing a change. First of all, it is no longer going to be called Locus.
The User Contributed Library is now called PLUS/1000. Secondly, it is no longer associated with the Communicator; it is going
to be maintained by the HP 1000 International Users Group. For more information about the PLUS/1000 library see the Bulletins
section of this Communicator.

BIT BUCKET

oftware (.~
amantha

a % ari

Software Samantha

HP 1000 Communicator

Hewlett-Packard Data Systems Division

11000 Wolfe Road, Cupertino, California 95014

Software Samantha

HP 1000 Communicator

Hewlett Packard Data Systems Division

11000 Wolfe Road, Cupertino, California 95014

Dear Samantha,

In Volume I, Issue 6 of the Communicator, Richard Gilbert inquired as to the meaning of “blocked input/output in the
description of MAGTP”, you replied that it was an error in the DOS/RTE Relocatable Library Reference Manual. On page 4-25,

of that same manual, there is an entire page devoted to the I/O techniques being described are used by making “direct calls to
J10C. (through the MAGTP subroutine)”.

This reference to MAGTP is obviously related to, and more confusing than, the one pointed out by Mr. Gilbert. It states that you
can get at .|IOC. via MAGTP, but there is no entry point for blocked I/O described for MAGTP; and indeed you have told us there
is none. Can you shed some light on what the Manual is 'talking about' on page (4-25)? If you can’t use MAGTP what do you
use? If you do use MAGTP how do you get at it? Does the technique referenced offer an alternative to Class I/O EXEC calls?

Sincerely,
Jeff Wynne
Code 3021 Bidg 759

US Naval Ordnance Station
Indian Head, Maryland 20640

Dear Jeff,

Unfortunately, the DOS/RTE Relocatable Library Reference Manual has lots of carryovers from the old BCS. Many items were
overlooked when the manual was updated for use with RTE. This is another case of such forgetfulness. When the reference to
1OC. that Richard Gilbert pointed out was corrected, page 4-25 should have been changed as well.

10C. is essentially the EXEC call of BCS. All references to .IOC. should be replaced by references to EXEC calls. The manual
will be corrected; please notify me if you find more outdated references.

Sincerely,

Samantha

9

BIT BUCKET

DRIVER 05 EQT DEFINITIONS

Glenn Talbott/Data Systems Division

In recent months | have noticed an increasing trend in the questions | receive concerning the 264X terminal driver, DVROS5.
Many of these questions relate to the use of modems and the modem version of this driver, DVA05. Often problems are
encountered while attempting out of the ordinary communications such as special terminal control functions, or using new,
unsupported modems. Having the contents of each word in the Equipment Table defined would enable users to better
understand and diagnose these problems. To aid both our customers and our Systems Engineer force to better understand this
driver | have compiled a complete definition of the Equipment Table for DVAO5. DVROS5 versions for terminals with or without
Cartridge Tape Units are subsets of DVAO5 so the included table is valid for these versions of the driver.

DRIVER 05 EQT

WORD

USE

1

REQUEST LIST POINTER

2

IA05 INITIATOR ENTRY POINT ADDRESS

CAD5 CONTINUATOR ENTRY POINT ADDRESS

BIT 15 IS 0 (NO DMA)
BIT 14 IS BUFFERED/UNBUFFERED (0/1)
BIT 13 1S 0 (NO POWER FAIL PROCESSING)
BIT 12 1S 1 (ENTER DRIVER ON TIME OUT)
BIT 11 1S SET IF TIME OUT OCCURED

BITS

10-6 INDICATE LAST SUBCHANNEL ADDRESSED

BITS 5-0 DEVICE SELECT CODE

BITS
00
01
10
11

BITS

BITS

15-14 AVAILABILITY
AVAILABLE
DOWN
BUSY
DMA WAIT (NOT USED)
13-8 DRIVER TYPE CODE (05)
7-0 STATUS AFTER LAST REQUEST

FOR CTU STATUS:

7

6

END OF FILE SENSED. A FILE MARK HAS BEEN DETECTED DURING A PRIOR READ OPERATION OR A FILE MARK HAS
JUST BEEN RECORDED.

LOAD POINT SENSED. CARTRIDGE TAPE IS AT OR BEFORE LOAD POINT MARKER. MEANINGFUL ONLY IF CARTRIDGE
IS INSERTED.

END OF TAPE SENSED. THE CARTRIDGE TAPE HAS PASSED OVER EARLY WARNING MARKER IN THE TAPE AND AN
END-OF-VALID DATA MARK HAS BEEN RECORDED AUTOMATICALLY. COMMANDS DIRECTING FORWARD MOTION
OF TAPE WiLL BE REJECTED. THIS STATUS ONLY HAS MEANING IF A CARTRIDGE 1S INSERTED.

READN\WRITE ERROR. WRITE 2645 ONLY

A READ ERROR EXISTS IF THREE SUCCESSIVE ATTEMPTS FAILED TO READ THE DATA IN THE RECORD. THE TAPE IS
POSITIONED AFTER THE BAD RECORD.

LAST COMMAND ABORTED. THE LAST COMMAND INITIATED FROM THE CPU OR KEYBOARD WAS UNSUCCESS-
FULLY PERFORMED. OTHER STATUS CONDITIONS MAY BE CHECKED FOR CAUSE.

WRITE PROTECTED. THE FILE PROTECT TAB ON THE CARTRIDGE IS IN THE POSITION TO PROHIBIT RECORDING OF
DATA. THIS STATUS ONLY HAS MEANING IF A CARTRIDGE IS INSERTED.

END OF VALID DATA. THE CARTRIDGE TAPE DETECTED AN END-OF-VALID DATA MARK DURING A PRIOR READ OR
SEARCH OPERATION, OR HAS JUST COMPLETED RECORDING AN END-OF-VALID DATA MARK. IN EITHER CASE, THE

10

BIT BUCKET

TAPE IS POSITIONED BEFORE THE END-OF-VALID DATA MARK. RECORDING OPERATIONS MAY BE EXECUTED TO
OVERWRITE THIS MARK WITH DATA OR A FILE MARK, UNLESS THE TAPE IS AT END OF TAPE.

0 CARTRIDGE NOT INSERTED OR UNIT BUSY. NOTE THAT CTU STATUS IN BITS 7- 1 IS ONLY VALID IF THIS BIT IS A
ZERQO.

FOR CRT STATUS:

BUFFER FLUSH IN PROGRESS.

CONTROL D ENTERED. THE USER HAS HIT THIS KEY.
DATA SET LINE DOWN

PARITY ERROR

TERMINAL ENABLED. IF THE STATUS WORD IS FOR A TERMINAL (NOT A SYSTEM CONSOLE) TYPING ANY KEY WiLL
SCHEDULE THE TERMINAL'S PROGRAM (IF IT HAS ONE).

- W s O~

CURRENT REQUEST WORD
BITS 15-14 CONTAIN REQUEST TYPE LOCATION CODE:
00 USER UNBUFFERED
01 USER BUFFERED
10 SYSTEM REQUEST
11 CLASS /O REQUEST
BITS 10-6 CONTAIN FUNCTION CODE FROM REQUEST
FOR CTU CONTROL REQUEST:
01 WRITE END OF FILE
02 BACKSPACE 1 RECORD
03 FORWARD SPACE 1 RECORD
4,5 REWIND
06 DYNAMIC STATUS
10 WRITE EOF IF NOT JUST WRITTEN OR NOT AT BOT
14 BACKSPACE 1 FILE
13 FORWARD SPACE 1 FiLE
26 WRITE END OF VALID DATA (EQV)
27 LOCATE FILE. THE ABSOLUTE FILE NUMBER IS A REQUEST PARAMETER.
FOR CRT CONTROL REQUEST:

11 SPACE LINES. THE NUMBER OF LINES IS THE REQUEST PARAMETER.
IF NEGATIVE, PAGE EJECT FOR 9871 ONLY.

20 ENABLE TERMINAL. ALLOWS TERMINAL TO SCHEDULE PROGRAM WHEN KEY IS STRUCK.
21 DISABLE TERMINAL. INHIBIT SCHEDULING OF TERMINAL'S PROGRAM.
22 SET NEW TIME OUT (IN OPTIONAL PARAMETER)
23 CLEAR THE OUTPUT QUEUE (BUFFER FLUSH).
24 RESTORE QUTPUT PROCESSING. REQUIRED ONLY IF SOME OF THE BUFFER IS TO BE SAVED.
25 UPDATE TERMINAL STATUS
30 TERMINAL MODEM CONTROL, SET UP BAUD RATE AND PARITY.
31 LINE CONTROL FOR MODEMS
32 AUTO-ANSWER FOR MODEMS
FOR READ AND WRITE REQUESTS:
BIT 10 0/1 TRANSPARENT MODE OFF/ON
BIT 8 0/1 ECHO OFF/ON
BIT 6 0O/1 ASCI/BINARY
BITS 10,9 = 11 INDICATES A PROGRAM ENABLED BLOCK READ
BITS 1-0 REQUEST TYPE
01 READ
10 WRITE
11 CONTROL

11

BIT BUCKET

7 REQUEST BUFFER ADDRESS OR OPTIONAL PARAMETER ON CONTROL REQUEST. MAY ALSO CONTAIN A 100048 WHILE
WAITING FOR RING AFTER AUTO-ANSWER MODEM ENABLE
8 REQUEST BUFFER LENGTH (+ WORDS, — CHARACTERS). MAY BE SET TO ZERO WHEN ZERO TRANSMISSION LOG IS
REQUIRED ON COMPLETION EXIT. ALSO USED FOR RETURN ADDRESS STORAGE FOR INTERNAL DRIVER SUBROUTINES
<BSR1>, <BSR2> (BACKSPACE ONE OR TWO RECORDS), <FRS1> (FOWARD SPACE 1 RECORD), AND <BSF1>
(BACKSPACE ONE FILE)
9 RUNNING CHAR. ADDRESS OR NUMBER OF RECORDS TO BACKSPACE (ASCI! 1 OR 2) FOR <BSR(ASCIl 1> OR <BSR2>
(BACKSPACE ONE OR TWO RECORDS)
10 LAST CHARACTER ADDRESS; OR FOR CTU AND PRINTER CONTROL REQUESTS BITS 4 - 0 CONTAIN THE FUNCTION CODE
(EQT6 BITS 10 - 6)
11 ADDRESS TO GO ON INTERRUPT TO THE CONTINUATION SECTION. SEVERAL INTERNAL SUBROUTINES KEEP THEIR
RETURN ADDRESSES HERE AND EXIT TO WAIT FOR THE DEVICE TO RESPOND. THE NEXT INTERRUPT FROM THE DEVICE
(IF IT IS NOT A TIME-OUT) WILL CAUSE A SUBROUTINE RETURN (JMP ,l) TO THE ADDRESS KEPT HERE.
12 NO. OF EQT EXTENSION WORDS OR LAST REQUEST WORD (EQT6) FOR ABORT PROCESSING.
13 EQT EXTENSION STARTING ADDRESS.
14 TIME OUT RESET VALUE FOR CRT READ TIME OUT. OTHER RESET VALUES ARE FIXED INTERNALLY FOR:
CRT WRITE 4 SEC.
NON CRT FUNCTIONS 60 SEC.
MODEM LINE OPEN/CLOSE 2 SEC.
15 CURRENT TIME OUT CLOCK
16 TERMINAL STRAPPING AND CTU INFO (BITS 13 5 ARE ONLY USED BY THE MODEM DRIVER, DVAOS):
BIT 15 O\ =LINE\PAGE
BIT 14 O\1 =CHAR.\BLOCK
BIT 13 LINE 0N\ =HARD\MODEM
BIT 12 “CA”" (RTS) SET
BIT 11 “CD" (DTR) SET
BIT 10 PARITY ONNOFF = 1\0
BIT 9 PARITY EVEN\ODD = 1\0
BIT 85 BAUD RATE
BIT 4 KEYBOARD LOCKED
BIT 3 <CNS0C> FLAG (INDICATES INTERNAL SUBROUTINE <CN50C> IS PROCESSING A CTU POSITIONING RE-
QUEST, AND SPECIAL PROCESSING IS REQUIRED)
BIT 2 RCTU EOF FLAG
BIT 1 LCTU EOF FLAG
BIT 0 TERMINAL STRAPPING ALREADY READ
17 ID ADDRESS OF TERMINAL PROGRAM. 0 BEFORE SETUP, —1 IF NO PROGRAM TO SCHEDULE, OR ID SEGMENT ADDRESS
OF PROGRAM (USUALLY PRMPT) TO SCHEDULE ON UNEXPECTED INTERRUPT IF EQT28 BIT 1 IS SET (TERMINAL
ENABLED).
18 NOT USED
19 RETURN ADDRESS FOR INTERNAL SUBROUTINES <TRAN1> OR <OUT4>.
A BUFFER ADDRESS POINTER FOR THE SUBROUTINE <BINAS>.
VALUE FOR A REGISTER ON COMPLETION EXIT.

12

BIT BUCKET

20 BINARY RECORD LENTGH COUNTER. $UPIO ENTRY FLAG, SET TO 10032B BY MODEM LINE UP DETECTION CODE. WHEN
DEVICE UP 1S REQUIRED ON NEXT CONTINUATOR ENTRY. USED AS A COUNTER BY INTERNAL SUBROUTINE <BINAS>.
21 NOT USED
22 RETURN ADDRESS FOR INTERNAL SUBROUTINE <BINAS>.
A REGISTER SAVE LOCATION FOR INTERNAL SUBROUTINE <CTPRP>.
23 RETURN ADDRESS FOR INTERNAL SUBROUTINE <ENAK>
24 RETURN ADDRESS FOR INTERNAL SUBROUTINE <CTUST>.
LINE CONTROL REF. (MODEM); COMPARED TO INTERFACE STATUS WORD TO TEST FOR MODEM LINE OPEN/CLOSE
COMPLETION.
25 RETURN ADDRESS FOR INTERNAL SUBROUTINE <CTPRP>.
LINE CONTROL FLAG; IF 32B ON TIME OUT ENTRY CONTROL 31 OR 32 iS IN PROGRESS.
26 NOT USED
27 RETURN ADDRESS FOR INTERNAL SUBROUTINES <USINT> AND <TERST>
28 TERMINAL STATUS
BIT 1 TERMINAL ENABLED
BIT 3 PARITY ERROR
BIT 4 DATA SET ERROR (LINE DOWN)
BIT 5 CNTRL D ENTERED (EOT)
BIT 7 BUFFER FLUSH IN PROGRESS

DEFINITIONS OF SUBROUTINE NAMES USED:

<BINAS>
<BSF1>
<BSR1>
<BSR2>
<CN50C>

<CTPRP>

<CTUST>
<ENAK>
<FRS1>
<OUT4>
<TERST>
<TRAN1>
<USINT>

Converts binary values to ASCIl saving the ASCIl in an internal buffer for transmission.
Backspace one file on CTU

Backspace one record on CTU

Backspace two records on CTU

Tape positioning subroutine that does the special processing required when a tape is positioned after an
EOF mark.

Prepares terminal to accept data by sending the control sequences for CTU's if required, and locking the
keyboard.

Reads the CTU status

Handles the ENQ/ACK handshake

Forward space one record for CTU

Output routine used in CTU control processing

Reads the terminal status and updates EQT16

Handles user writes to the display, CTU, printer
Tests for user keyboard interrupt

13

BIT BUCKET

SUNDAY

6 ¢(©)
13 € 13)
20 € 20)
27 ¢ 27

SUNDAY

3 ¢ 34
10 € 41)
17 C 48)
24 ¢ 55)

SUNDAY

2 (62)
9 (69
16 € 76)
23 ¢ 83)
30 ¢ 90)

SUNDAY

6 ¢ 97)
13 (104D
20 €111)
27 (118)

SUNDAY

4 (125
11 (132)
18 (139)
25 (146)

SUNDAY

1 (153)
8 (160)
1S €(167)
22 (174)
29 (181)

MONDAY

7 7
14 ¢ 14)
21 € 21)
28 (28)

MONDAY

4 ¢ 3%
11 € 42)
18 ¢ 49)
25 ¢ 56)

MONDAY

3 ¢ 63)
10 € 70)
17 € 77)
24 (84)
31 ¢ 91)

MONDAY

7 ¢ 98)
14 (105)
21 (112)
28 (119

MONDAY

S (126)
12 (133)
19 (140)
26 (147

MONDAY

2 (154)
9 (161)
16 (168)
23 (175)
30 ¢182)

JANUARY 1980

TUESDAY WEDNESDAY

1 ¢ D 2 2
8 (8 9¢ 9
S (19 16 ¢ 16)
22 ¢ 22) 23 ¢ 23
29 (29 30 ¢ 30O

FEBRUARY 1980

TUESDAY WEDNESDAY

S (¢ 36 6 ¢ 37
12 € 43) 13 ¢ 49)
19 ¢ 50) 20 ¢ S
26 ¢ 57) 27 ¢ 58)

MARCH 1980
TUESDAY WEDNE SDAY

4 (69 S ¢ 65)
11 ¢ 71) 12 € 72)
18 ¢ 78) 19 € 79)
25 (¢ 85) 26 ¢ 86)
30 ¢ 90) 31 ¢ 91

APRIL 1980
TUESDAY WEDNESDAY
1 ¢ 92) 2 C 93)
8 ¢ 99 9 (100>
15 (106) 16 €107)
22 (113 23 (114)
29 (120) 30 (121
MAY 1980
TUESDAY WEDNESDAY
6 (127) 7 €128)
13 (134) 14 (135)

20 (141D 21 (142
27 (148) 28 (149

JUNE 1980
TUESDAY WEDNESDAY
3 (15%) 4 (156)
10 (162) 11 (163)

17 (169) 18 (170)
24 (176) 25 (177)

14

THURSDAY

« 3
C10)
17 C 17
« 29
« 31

THURSDAY

7 ¢ 38)
14 (45)
21 C 52)
28 (5!

THURSDAY

6 (66)
13 € 73)
20 ¢ 80>
27 ¢ 87)

THURSDAY

3 ¢ 99
10 €101)
17 €108)
24 (115

THURSDAY

1 (122>
8 (129)
15 (136)
22 (143)
29 (150)

THURSDAY

S (157)
12 (164)
19 (171)
26 (178

FRIDAY

4 ¢ O
11 C11)
18 ¢ 18)
25 ¢ 25

32)
39
46)
£3)
60>

NN =
oo
AAnAA~AA

FRIDAY

7 € 67)
14 ¢ 74)
21 ¢ 81)
28 (88)

FRIDAY

4 ¢ 95
11 €102)
18 (109)
25 (118

FRIDAY

2 (123)
9 (130)
16 (137)
23 (1449)
30 (151)

FRIDAY

6 (158)
13 (165)
20 172>
27 (179

SATURDAY

S %
12 € 12)
19 € 19
26 ¢ 26)

SATURDAY

2 C 33
9 C 40O
16 ¢ 47)
23 (59

SATURDAY

8 (68)
1§ ¢ 79
22 ¢ 82
29 (89

SATURDAY

S ¢ 96)
12 (103)
19 (110)
26 (117)

SATURDAY

3 (124)
10 €131)
17 €138)
24 (145)
31 (152)

SATURDAY

7 €159)
14 (166)
21 (173)
28 (180)

BIT BUCKET

JULY 1980
SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

1 (183) 2 (184) 3 (185) 4 (186) S (187
6 (188) 7 €189 8 (190) 9 (191) 10 €192) 11 €(193) 12 (194
13 (19%) 14 (196) 15 (197) 16 (198) 17 (199 18 €200) 19 (201)
20 202) 21 (203) 22 (204 23 (205) 24 (206) 25 (207) 26 (208)
27 (209 28 (210) 29 (211) 30 (212 31 (213)

AUGUST 1980
SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

1 (2149 2 (215)
3 216 4 (217) 5 218 6 (219) 7 €220) 8 (221) 9 (222>
10 (223 11 (224) 12 (225) 13 (226) 14 (227) 15 (228) 16 (229)
17 (230) 18 (231) 19 (232) 20 (233 21 (234) 22 (235) 23 (236)
24 (237) 25 (238) 26 (239 27 (240) 28 (241) 29 (242) 30 (243
31 (244)

SEPTEMBER 1980
SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

1 (245) 2 (246) 3 (247) 4 (248) S (249) 6 (250)

7 €251) 8 (252) 9 (253) 10 (254) 11 (25%) 12 (256) 13 (257)

14 (258) 15 (259) 16 (260) 17 (261) 18 (262) 19 (263) 20 (264

21 (265) 22 (266) 23 (267) 24 (268) 25 (269 26 (270) 27 271)
28 (272) 29 (273 30 (274)

OCTOBER 1980
SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

1 (275 2 (276) 3 €277) 4 (278

5 (279 6 (280> 7 (281) 8 (282) 9 (283) 10 (284) 11 (285%)

12 (286) 13 (287) 14 (288) 15 (289 16 (290) 17 €291) 18 (292)

19 (293) 20 (294) 21 (29%) 22 (29%6) 23 (297) 24 (298) 25 (299
26 (300) 27 301) 28 (302> 29 (303 30 (304 31 (305

NOVEMBER 1980
SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

1 (306)
2 (307 3 (308) 4 (309 S (310) 6 (311) 7 (312) 8 (313)
9 (314) 10 (315) 11 (316) 12 (317) 13 (318) 14 (31D 15 (320)
16 (321) 17 (322) 18 (323) 19 (324) 20 (32%) 21 (326) 22 (327

23 (328) 24 (329 25 (330 26 (331) 27 (332> 28 (333 29 (334)
30 (335)

DECEMBER 1980
SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

1 (336) 2 (337 3 (338 4 (339 S (340) 6 (341)

7 (342> 8 (343) 9 (344) 10 (345) 11 (346) 12 (347) 13 (348)

14 (349) 15 (350) 16 (351) 17 (352) 18 (353) 19 (354) 20 (355

21 (356) 22 (357 23 (358) 24 (359) 25 (360) 26 (361) 27 (362>
28 (363) 29 (364) 30 (365) 31 (366)

15

BIT BUCKET

ISSUE CAT

COMMUNICATOR INDEX BY ISSUE

Locus Changes and Additions
FTN/ASMB Line Count

Stop Using Tricks...
Relocatable Drivers for RTE-II
What is Disc Track Sparing?
Creating and Clearing Extents

A Minicomputer-Based Datagram NW
Understanding RJE/1000
Maintaing a Valid Data Base
Customer Hardware Training
Customer Training Courses

New 91731A Multiplexer Software
7225A Plotter on Graphics/1000
Extended Performance for 2240A

Locus Changes and Additions
Inverse Relocatable Assblr...
Blockmode Input with 264X
‘Tweaking’ Internals

Method for Smooth Curve Fitting
Microprogramming Base Set Secret
Training Schedules

Locus Announcements
Entry Point Changes

User Codes for Disc Housekeeping

Improved DVAOS/Modem/2645 Perf.
Recov. Resources W/ Auto Reboot
Data Acqu Prog WO Gen Sys Access
HP-IB And The SRQ

HP-1B in Manuf. Applic.

Training Information

HP-1B Application Notes
RTE-1VB/Session Monitor Op Sys
User Group News

16

Software Samantha
Glenn Talbott
John Blommers

Bob Sauers

Alan K. Housley
Robert Shatzer
Robert Gudz

Erik M. Best

Tony Russo
Mike Scott
Jim Gruneison

Larry W. Smith
Frank Slootweg
Harvey Bernard
Larry W. Smith
Joel Dubois

Software Samantha
Ed DeMers

Richard Raskin
Glenn Talbott
Frank Fulton

Pete Almeroth
Larry Marafka

Neal Kuhn
John Koskinen

PAGE

15
18
24

49
53

BIT BUCKET

ISSUE CAT

BI
BI
BI
BI

(0]
oM
co
BU
BU
BU
BU

COMMUNICATOR INDEX BY

Locus Additions

LOGLU and CLEXT

DS/1000 Time Getter

IDCHK Utility Program

Loading Prg Sgmts from FMP Files
Conversion of Programs to RTE-IV
Fundamentals of HP-IB Addressing
Remote Data Base Access
Introducing New IMAGE/1000 DBMS
Announcing DATACAP/1000 Software
HP Software Support

HP 1000 Users Establish Group
Join an HP 1000 User Group

HP 1000 Software Courses
Training Schedules 79/80

HPIB & SRQ.T

Routing Format Errors
Responsibilities of Sys. Mgr.
Resource Sharing, Case Study
Remote Sys Control via DS/1000
Intro to Op Sys Fundamentals
Easy Forms for the 2645A
Perf. Study for Datacap/1000
New Software Produci Catalog
User Group News

Training Information

Locus Announcement

.10C. Incorrect

Driver 05 EQT Definitions
Julian Calender

Index to Volume 3

HP Subroutine Linkge Conventions
Image, Datacap & Data Retrieval
Time & Attendance Datacapture
PENNY: Computer Aided Drawing
Plus Announcement

Locus Disappears

PLUS/1000 Organization
Training Center Addresses

17

ISSUE

Software Samantha
Bob 0O’Leary

Don Pottenger
Larry W. Smith
Jack B. McAlister
Neal Kuhn

Carol Jonas

Mike Scott

Mike Scott

John Koskinen

Joe Getkin

Software Samantha

Alan Housley

Phil Shepard
Pezano,Reynolds
Gary McCarney
Todd Field
Heilbronn,Richard
Bill Bohler

Software Samantha
Glenn Talbott

Robert Niland
Martin Phillips
Darrell Krulce
Phil Walden

PAGE

BIT BUCKET

CAT ISSUE

Bl 6
4
6
3
1
5
4
3
6
2
6
4
5
5
1
3

BU

co

NWANNTWOWOON-OLAWHEEL A=

[2B NN

COMMUNICATOR INDEX BY CATEGORY

.10C. Incorrect

DS/1000 Time Getter

Driver 05 EQT Definitions
Entry Point Changes

FTN/ASMB Line Count

HPIB & SRG.T

IDCHK Utility Program

Improved DVADS5/Modem/2645 Perf.
Index to Volume 3

Inverse Relocatable Assblr...
Julian Calender

LOGLU and CLEXT
Responsibilities of Sys. Mgr.
Routing Format Errors

Stop Using Tricks...

User Codes for Disc Housekeeping

7225A Plotter on Graphics/1000
Announcing DATACAP/1000 Software
Customer Hardware Training
Customer Training Courses
Extended Performance for 2240A
HP 1000 Software Courses

HP 1000 Users Establish Group
HP Software Support

HP-1B Application Notes
Introducing New IMAGE/1000 DBMS
Join an HP 1000 User Group
Locus Disappears

New 91731A Multiplexer Software
New Software Product Catalog
PLUS/1000 Organization

Plus Announcement
RTE-IVB/Session Monitor Op Sys
Training Center Addresases
Training Information

Training Information

Training Schedules

Training Schedules 79/80

User Group News

User Group News

Method for Smooth Curve Fitting
Microprogramming Base Set Secret
PENNY: Computer Aided Drawing

18

Software Samantha
Bob O’Leary

Glenn Talbott
Software Samantha
Software Samantha
Software Samantha
Don Pottenger
Richard Raskin

Larry W. Smith

Software Samantha
Alan Housley

Glenn Talbott
Ed DeMers

Mike Scott
Mike Scott

Jim Gruneison

Joe Getkin
John Koskinen
Neal Kuhn
Mike Scott

Tony Russo
Bill Bohler

John Koskinen

Larry W. Smith
Joe]l Dubois
Phil Walden

PAGE

32
49
38

BIT BUCKET

CAT ISSUE
DC 5
5
DS 1
1
IN 4
3
3
oM 3
5
6
1
5
4
6
0s 2
2
4
1
6
5
4
3
1
1
ua 4
6
3
1
2

COMMUNICATOR INDEX BY CATEGORY

Remote Sys Control via DS/1000
Resource Sharing, Case Study

A Minicomputer-Based Datagram NW
Understanding RJE/1000

Fundamentals of HP-1B Addressing
HP-IB And The SRQ
HP-1B in Manuf. Applic.

Data Acqu Prog WO Gen Sys Access
Easy Forms for the 2645A

Image, Datacap & Data Reirieval
Maintaing a Valid Data Base
Perf. Study for Datacap/1000
Remote Data Base Access

Time & Attendance Datacapture

‘Tweaking’ Internals

Blockmode Input with 264X
Conversion of Programs to RTE-IV
Creating and Clearing Extents

HP Subroutine Linkge Conventions
Intro to Op Sys Fundamentals
Loading Prg Sgmts from FMP Files
Recov. Resources W/ Auto Reboot
Relocatable Drivers for RTE-II
What is Disc Track Sparing?

Locus Additions

Locus Announcement

Locus Announcements

Locus Changes and Additions
Locus Changes and Additions

19

Pezano,Reynolds
Phil Shepard

Robert Shatzer
Robert Gudz

Neal Kuhn
Pete Almeroth
Larry Marafka

Frank Fulton

Todd Field

Martin Phillips
Erik M. Best
Heilbronn,Richard
Carol Jonas
Darrell Krulce

Harvey Bernard
Frank Slootweg
Jack B. McAlister
Alan K. Housley
Robert Niland
Gary McCarney
Larry W. Smith
Glenn Talbott
John Blommers

Bob Sauers

PAGE

23

32
47

oo un

OPERATING SYSTEMS

HP SUBROUTINE LINKAGE CONVENTIONS

Robert Niland/HP Lexington

Editor’s note: This article is the first in a series of articles taken from the Links/1000 manual written by Robert Niland. This is a
user contributed manual on HP subroutine linkage conventions which has not yet been published.

INTRODUCTION
1-1. HP 1000 Linkage System

The HP 1000 subroutine linkage system consists of three components:

& Program coding conventions.
e A set of utility subroutines.

e Supporting capabilities in the operating system programs.

The primary intent of this manual is to document the coding conventions. Discussion of the utility subroutines and examples of
their use are included, but the final authority on calling sequences and returns for those utilities are the system and library
manuals.

Beyond explaining the conventions, a further purpose of this manual is to help the user select the most appropriate
programming approach for each application.

1-2. Source Code Conventions
For clarity and consistency, some conventions are used in this manual. They are:

P Program location counter. A 15 bit register which holds the address of the next machine instruction to be executed. It
is important for the beginning Assembly language programmer to recognize that the hardware and firmware of the HP
1000 have no way to distinguish between memory locations which contain instructions and those which contain data. If
program control is transferred (i.e. the P register gets sets to . .) memory location 034163B, and that location contains
a data value of 10282, the computer will execute a JMP to location 034052B. For 10282 = 024052B, which is a JMP to
location 0052B of the current page. The result of such an execution error is unpredictable, and this manual will
document coding techniques which minimize or eliminate the chances of such bugs.

<> Enclosures indicate a required syntax element which is to be replaced in its entirety (including < >) by a symbol or
expression appropriate to the language being used.

[1 Braces indicate an optional syntax element which may be deleted entirely. However, if included, the syntax denoted
within (but not including) the braces must be observed.

XX Three dots in an op-code or statement field implies that there are one or more additional lines of unspecified code
which are not shown, but which do not modify any variables or destroy the contents of any registers being used by the
sample code.

MPX This is an ‘MIC’ micro-code replacement op-code which will appear frequently in the sample listings, often where more
experienced programmers would expect to see a NOP. It is generated by the following Assembler pseudo-instruction:

MIC MPX,102000B,0 MP abend if location eXecutes.
20

OPERATING SYSTEMS

SYMB

bytes

1-3.

It is used in place of the NOP, BSS, DEC 0, and OCT 0 in in every program location which must be written into before it
is executed (or read from).

An octal 102000 is a HLT (HaLT) instruction. It has a decimal value of —31744. The HLT is an illegal opcode in an RTE
program. That is, if the HLT is executed, RTE will abort the program, and log a Memory Protect (MP) error on the
console.

This is particularly useful for beginning ASMB programmers who inadvertently type in JMP SUBR where a JSB SUBR
was intended. The error is trapped instantly at subroutine entry instead of resulting in a subroutine’s attempting to
execute any address in the entry point as if it were an instruction and exiting to the previous caller’s return point.
Coding errors of this type can otherwise be very difficult to isolate.

All locations in assembly listings in which the data is an ADDRESS or LINK (i.e. are not ASC, DEC, OCT, or BYT
constants or variables), will be given symbolic names which have a leading “@" character, denoting “Address”.
Examples:

STA INDEX Typical STore A direct.

LDB @NDEX,| Typical LoaD B Indirect.

JMP ENTRY,I Subroutine returns are an exception.
INDEX MPX A variable.
@NDEX DEF INDEX DEFining address of INDEX.

Lower case symbolic names denote a reference to BYTE or CHARACTER oriented locations, e.g.

LDB ascQ LoaD B with byte address of source.
LBT Load a ByTe.
ascQA ASC 01,QA ASCii constant "QA".
ascQ DBL ascQA Define Byte address, Left.
Terminology

Program & For the sake of clarity, this manual will always refer to the calling code as the program and the called code as the
Subroutine: subroutine. Of course, subroutines may call other subroutines. And in fact, if the main program has multiple entry

points, one of that program's subroutines might call another subroutine which is actually part of the main
program. The terms program and subroutine are used only to denote who is subordinate to whom with respect to
the code currently executing.

21

OPERATING SYSTEMS

THE JSB INSTRUCTIONS
2-1. The Foundation of HP 1000 Subroutines

The implementation of a subroutine scheme on any computer relies on two concepts:

Transfer of control, i.e. program execution is to resume at other than the next sequential location (P+1).

Alink, trace, thread, or some other means by which the new (subordinate) task can return to that next sequential location in
the caller when the task is complete.

In HP 1000 computers this is accomplished via the JSB (Jump SuBroutine) instruction. This instruction is used in conjunction
with the JMP xxxxx,| (JuMP Indirect) in subroutines. It meets both requirements by performing two functions when executed:

1.

it stores the contents of the P register +1 (address of the next sequential instruction) into the 16 bit memory word at the
operand (destination). This allows the subroutine, by examination of its own entry point, to determine where it is to return
upon completion.

It loads the P register with the address of the next memory location after the destination, thus transfering execution to the
subroutine, i.e. it jumps to operand (destination) + 1. The requirements for subroutine implementation can also be met by
the HP 1000 instructions:

JLY (Jump and Load Y)

DJS (Disable mapping and Jump to Subroutine)
SJS (enable System map and Jump to Subroutine)
UJs (enable User map and Jump to Subroutine)

The JLY is only available on HP 1000 M,E and F-series computers, and the DJS, SJS, and UJS are only available on these same
computers when the Dynamic Mapping System (DMS) is installed. These instructions, even when present, have only limited
application in user programs, and will not be discussed in this manual.

2-2. The Machine Instruction

This section will discuss the bit structure of the JSB machine instruction. Understanding the JSB at this level of detail is not
essential even for the Assembly programmer, but is suggested both to enhance general understanding of subroutines and to
guide the user in decoding DEBUG/DBUGR output.

JSB JUMP TO SUBROUTINE
| C
— 0 0 1 1 — @ @ @ @ @ @ @ @ @ @
D Z
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Where:

= Indirect if set (1).

Direct if clear (0).

= Bit always clear.

Bit always set.

Current page if set.

Zero (base) page if clear.

= Address within page (0000B -to- 1777B).

I 1

e@NO—-0CO0O™
Il

22

OPERATING SYSTEMS

Bits 11 through 14 are always set to 0011 binary, and tell the computer that this is a JSB instruction.

Bits 00 through 09 are the operand or destination address (or link) and are used by the computer to determine where to store
the return address, and where to transfer control. The address denoted by these bits is not necessarily the final operand
address. Their significance is a function of the state of bits 10 and 15. Note that the use of only 10 bits restricts us to a
destination address range of 1777 octal words (1 page) even though we are probably in a logical address space of 32 pages
(777778 locations).

Bit 10 (or Z/IC bit) denotes whether the address in bits 00 thru 09 is in the base page (page 0) or the current page. The current
page is the page on which the instruction resides. For example, if the sample instructions are in memory location 043635B,
then:

Instruction = 014061B = JSB,Z 0061B. Which means JSB to base page location 0061B, which is memory location
000061B.
Instruction = 016061B = JSB,C 0061B. Which means JSB to current page location 0061B, which is memory location

0420618B.
Note that this additional page bit has added only one page to the number of locations we can access with the JSB.

To avoid confusion in the following paragraph, remember that the 1st through 16th bits in a word are named bit 00 through
bit 15.

Bit 15 (or D/I bit) denotes whether the address (denoted by bits 00 -to- 09, plus 10) is the final address, or the address of the
address. When bit 15 is clear (0), our destination address must be in either the base or current pages, as shown in the previous
example. However, if bit 15 is set (1), then the destination is not assumed to be at the location denoted by bits 00-10. Instead,
the destination is assumed to be denoted by bits 00-14 in the memory word at that location. The indirect use of these 15 bits now
gives us the capability to JSB to any of 77777 octal words in memory (all 32 pages). Moreover, if bit 15 is set in this 15 bit
address, we will not use bits 00-14 as the destination address, but as an indirect pointer to yet another memory location. This
chain of indirection will continue until the firmware of the JSB instruction points to a memory location containing an address in
which bit 15 is clear, which location will thus point to the true subroutine address.

In practice, there are seldom more than one or two levels of indirect.

Examples of indirection are:

Instruction = 114061B, and location 000061B contains 0521778: This is an I/JSB/Z 0061B (or simply JSB 61B,1), and since
000061B contains a direct address, the effective instruction is a JSB 52177B.
Instruction = 116061B, and location 042061B contains 142061B: This is an I/JSB/C 0061B (or JSB 420618B,1), and since

0420618 contains an INDIRECT address, we have to obtain yet another address. However, in this case the
address is again 420618! This condition is referred to as an “infinite indirect”’, and is a coding error. This
instruction would never terminate, and the program would have to be aborted.
2-3. The Symbolic Instruction
The format of the symbolic (Assembly level) instruction is:
[lab] JSB <sub> [,I] [ASCIl comment preceded by at least 1 space.]
Where: [lab] is an optional label which will allow symbolic reference to the memory location containing the JSB.
<sub> must be a symbolic name which is defined elsewhere in the calling routine. This means that the same
symbol must appear either in the label field of a statement within the caller, or must appear in a pseudo-instruction,

such as EXT, MIC, RPL, ABS, EQU), etc.

23

OPERATING SYSTEMS

{11 indicates that indirection may be explicitly invoked by the user. Note: the absence of ,| does not insure that the
assembled and loaded JSB instruction will not have bit 15 set. For example, if the operand < sub> does not reside
on the current page, the RTE LOADR will always generate a link, resulting in bit 15 being set in the JSB. Note also that
in such a case, user invocation of indirect would result in bit 15 of the link being set as well.

Note
At the assembly level the user does not have explicit control over the Z/C

bit. Control of this bit is reserved for use by the loading program, i.e.
RTxGN or LOADR.

2-4. The Effect of the JSB Instruction

This section will display the contents of memory during the execution of a typical. JSB instruction. Symbolically the code is:

ses

JSB SUBRU Invoke the routine

N Return point
SUBRU MPX Subroutine entry point/return address.
s First instruction in subroutine.

Let us assume that the JSB SUBRU is loaded in memory at location 340678, and that routine SUBRU is at 44521B. Thus, prior to
execution of the JSB, the P register is set to 340678, and memory appears as follows (all in octal):

Loc. Contents Comment

00135 044521 Base-page link created by LOADR, and pointing at the destination address.

00136 oo

34066 ves

34067 114135 <P The JSB. Note that a link was required, so the instruction is indirect through page 0.
34070 sve

44521 102000 Subroutine entry point (and trapping halt).

44526 see First instruction of subroutine.

When the JSB has been executed, the P register will be set to the destination address +1, and the entry point will contain the
return address. Memory will appear as follows-

00135 044521 Base-page link.

00136 oee

34066 see

34067 114135 The JSB.

34070 oo

44521 034070 Note! Entry point now set to return address.
44526 s <P Execution resumes here.

The 102000B halt which had been assembled into the entry point has been over-written by the JSB. This memory location now
contains the address to which we must return on subroutine completion.

Note that the contents of this location will remain unchanged until the subroutine is called again from somewhere else in the
program. Of course, the programmer may choose to explicitly reset the entry point contents.

24

OPERATIONS MANAGEMENT

IMAGE, DATACAP AND SECURE DATA RETRIEVAL

Martin Phillips/DSD Technical Markeling

Both BATACAP/1000 and IMAGE/1000 are useful data tools. DATACAP offers real-time datacapture in an easily configured and
managed subsystem; IMAGE provides information storage and retrieval in an equally convenient package. Together they
comprise the foundation of a powerful Information System.

To play a useful role in decision-making, data must be captured, stored, and retrieved while still relevant. Additionally, the
integrity of the data must be maintained. DATACAP and IMAGE may help achieve these goals, but the interface between them
must be carefully made. If it is not, capabilities of each subsystem may be lost. Not only can this loss be avoided, but, properly
used, DATACAP can provide improved on-line data retrieval and enhanced database security.

In a typical application, datacapture terminals are located throughout a plant at locations where data is generated. During the
day, this data is stored directly into an IMAGE database via DATACAP. At the end of the day, operations management reports
are generated with QUERY, the IMAGE interactive query language. In this context DATACAP functions effectively as a
datacollection tool, while IMAGE performs the data storage and retrieval functions.

A need for local on-line data retrieval may exist. That is, specific information may be needed at particular plant locations to aid in
decision-making. As an example, consider a Rework Engineer who must know whether a Write-Only Memory chip (WOM) has
passed a previous test. In a non-DATACAP installation, QUERY might let the engineer examine the database interactively via an
HP 2621 Display Terminal. However, this would imply that each location at which on-line data retrieval was necessary would
require access to a 2621 terminal. Additionally, to etfectively query the database, the rework engineer would have to know a
good deal about its logical structure and naming conventions. At the very least, he would have to know which item and set
names to specify. The expense of additional display terminals, together with the time and expense of providing each user with a
personal view of the database, are significant limitations.

Given that DATACAP is already being used for data entry, and that datacapture terminals are located throughout the piant,
DATACAP offers an effective data retrieval alternative. Why not design a transaction that displays the required information from
an existing datacapture terminal? Not only would the need for an additional 2621 terminal be removed, but the engineer need
have no knowledge of database structure — or even that a database exists. The interaction might look like this (user input
underlined):

sanan T, 1 nnsnn
11
791031 15:42

WOM NUMBER?
45488391

TEST =
FAIL

Alright so far, but suppose that, after learning that the WOM has failed, the engineer re-tests and, surprisingly, it passes. In other
words, the data in the database for this WOM is in error (of course, the second test may actually be in error, but let us assume
that the WOM is indeed good). The engineer would now like to modify the database by changing the “FAIL” entry to “PASS" for
that WOM. This is easily done by adding update capability to the transaction. After the current test result is displayed, the

engineer could key in a new result; or he could not key in anything at all, in which case the current value would remain
unchanged.

25

OPERATIONS MANAGEMENT

Alternatively, could this be done outside of DATACAP? That is, using QUERY and a 2621 terminal, could the database be
updated? The answer is NO, not while datacollection is being done. DATACAP opens the database exclusively: it may be read
from but not modified while DATACAP is running. Thus DATACAP is not only a valid data retrieval choice, it is the only one in
which database information can be entered, displayed, and modified concurrently.

If, on the other hand, data is to be retrieved when datacollection is not being done, QUERY may be preferable to DATACAP
transactions. Since a specific transaction must be designed for each database query or group of queries, if the same query is
not made frequently, transaction development effort will be wasted. In this case QUERY would be a better choice for its greater
flexibility. DATACAP transactions shouid be used when database accessing is of a repetitive nature or when operator training is
a limitation. In the manufacturing environment typically requiring DATACAP, this is often the case.

There are other benefits to using DATACAP transactions rather than QUERY for interactive information recall. As mentioned, a
plant will likely have many more datacapture terminals than display terminals —- hence, data will be available at more locations.
This alone may be sufficient to recommend DATACAP.

A less obvious advantage is increased database security. IMAGE security falls into two major categories: security within
legitimate accessing techniques and security outside those techniques. The former we shall call logical security; it is the
protection found either in QUERY or in embedded programming language calls to IMAGE which prevent an unqualified user
from accessing the database. To perform a query, a user must supply the FMP security code for the database file and a valid
level code word (a measure of his read and write capabilities). Assuming that these do offer sufficient logical security, what of
physical security, that is, the security of the database in its stored form? Since IMAGE databases are stored only in FMP files,
our question reduces to: how secure is a FMP file under RTE 1VB?

Consider the following scenario. The Rework Engineer at the WOM plant (who also happens to know a great deal about RTE)
goes on vacation to Poughkeepsie. There he is kidnapped, brainwashed, and becomes an agent for THE OTHER SIDE.
Returning to work, he is ordered to discover the date and carrier name for the next shipment of WOM's. THE OTHER SIDE plans
to hijack and steal the WOM's, since they do not have the technology to manufacture WOM's themselves.

During lunch the engineer uses his 2621 Display Terminal — normally used for data retrieval via QUERY — to find the names of
the database root and set files. Using his knowledge of RTE, he determines the security codes of the individual files (a feasible
operation, though we shall not detail it here), lists them on his terminal, reads the system-supplied Ascii translations and
discovers the shipping date and carrier.

Although this is a dramatization, the fact remains that IMAGE security is no greater than RTE security — and an RTE-
knowledgeable user can obtain access to FMP files despite the security codes assigned to them. Session Monitor might
improve this situation, but DATACAP may be run under Multi-Terminal Monitor, which does not have the logon and command
capability level limitations of Session. So the problem is this: how do we guarantee database security using MTM to support
IMAGE and DATACAP?

The answer, as you may have guessed, lies in proper use of DATACAP. Throughout the plant all data entry and retrieval should
be performed via datacapture terminals. The system console and any 2621 Display Terminals should be made physically
secure: for example, by keeping them in a locked room. Since the Working Set of transactions may be carefully controfied, illicit
database access is avoided and, since communication with the system is limited to transaction replies, the operating system
and database are further isolated from database users. Thus we add a new layer of protection to our system while still offering
controlled database access.

To further improve logical security, we can include security-oriented User Subroutines in the DATACAP transactions. The
possibilities here are limited only by the imagination and ingenuity of transaction designers — a wide variety of security
techniques may be implemented. For example, an answer validation subroutine could check the system time to be sure that
access is occurring during legal hours. Or a combination of a display subroutine and a validation subroutine could be used to

26

OPERATIONS MANAGEMENT

output a random Ascii string and make the operator permute it according to some prearranged algorithm. The advantage here
is that even if another user saw both the displayed string and the permuted result, he still would not know the operating
algorithm. For example, the rule could be “select only odd digits, and reverse their order.” A valid transaction would be:

runnn T, 1 sanns
1
791031 15:43
SECURITY: 374591
943

WOM NUMBER?

Is the rule readily identifiable? If so, one mare complex could be implemented.

A listing of a transaction and its associated User Subroutine pair accompany this article. They generate a quasi-random string
(actually the most rapidly changing components of the system time), display it on the datacapture terminal, verify that the
operator's answer is indeed the correct permutation, and check that access is occurring between 8 am and 5 pm. The relative
strengths of these methods, as well as others, are documented in a weaith of database security literature.

In our search for data that is both current and accurate, we see that DATACAP/1000 and IMAGE/1000 are basic components of

a successful Information System. By expanding the role of DATACAP beyond datacapture into data retrival, reduced peripheral
cost and increased database security may be realized.

27

OPERATIONS MANAGEMENT

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
oozs
0029
0030
0031

0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

0042
0043
0044
0045
0046
0047
0048
0049
0050
0051

0052
0053
0054
0055
0056
0057

FTN4,L
SUBROUT INE VALD

CCCe
DATACAP SUBROUTINE THAT, WITH DISPL, GIVES ADDED SECURITY. c
COMPARES OPERATOR ANSWER IN IBUF TO A PERMUTATION OF THE c
DISPLAYED STRING FOUND IN ITEMP. ALSD CHECKS THAT TIME IS c
BETWEEN 8 AM AND 5 PM. IGETB & CMPW ARE UTILITY ROUTINES c
FOUND IN %UTLB4, A LIBRARY OF PLUS/1000, THE USER c
CONTRIBUTED LIBRARY.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccCCCCCCCCCccCCCtCCCCCCCeeecece

STANDARD USER SUBROUTINE DECLARATIONS AND CALL TO TMDFN

OO0OO0O0O0OO0OOOOO0

LOGICAL BKSFL

COMMON KEEP1(5),LUQ,LMQ, IBUF(512)

COMMON ITSNU,INDEX, IQGNUM, ITMTP,ITMLN, IBUPT ,BKSFL, INBKS, IGBKS
COMMON IER,NSTAT,ITEMP(C10),ICOMEN

DIMENSION ITRUE(3),I0PER(C3),ITIME(CS)
DATA ISTART/8/,IFIN/17/

(9]

CALL TMDFNC(KEEP1 ,KEEP1,KEEP1,ITSNU, ITSNU, ICOMEN)

PERMUTE THE STRING PASSED FROM DISPL AND REFORMAT
(ANY OTHER PERMUTATION COULD BE USED)

OO0

ITRUEC1) = IGETBCITEMP,5)
ITRUE(C2) = IGETBCITEMP,3)
ITRUE(3) = IGETBCITEMP,1)

GET OPERATOR ANSWER IN COMPARABLE FORMAT

OO0

IOPERC1) = IGETBC(IBUFCIBUPT),1)
IOPERC2) = IGETBCIBUF(IBUPT),2)
IOPER(3) = IGETBCIBUF(IBUPT+1),1)
COMPARE USER ANSWER TO STRING PASSED FROM DISPL
IF ¢ CMPWCITRUE,IOPER,3)) 25,50

CHECK TIME OF DAY HERE

OO0 OO0

25 CALL EXECC11,ITIME)D
IF C(ITIMEC4) .LE. ISTART) GO TO S0
IF (ITIMEC4) .GE. IFIN) GO TO S0

VAL IDATION PASSED. RETURN TO TRANSACTION WITH NO ERROR

e NeNe!

IER=0
RETURN

VALIDATION HAS NOT OCCURRED. RETURN WITH ERROR

OO0

S0 IER=1
NSTAT=-1
RETURN
END

FTN4 COMPILER: HP92060-16092 REV. 1926 (790430)

* %

NO WARNINGS #+ NO ERRORS #+ PROGRAM = 00136 COMMON = 00541

28

OPERATIONS MANAGEMENT

0001 FTN4,L

0002 SUBROUTINE DISPL

0003 CCCcCcccccccccccccccccceee
0004 C DATACAP SUBROUTINE THAT,WITH VALD,INCREASES DATACAP SECURITY. C
0005 C A QUASI-RANDOM STRING C(WHICH IS ACTUALLY THE ASCII-FORMATTED C
0006 C SYSTEM TIME) IS DISPLAYED ON THE DATACAPTURE TERMINAL c
0007 C AND PASSED TO THE VALIDATION SUBROUTINE VALD VIA BUFFER TEMP. C
0008 CCccececeeceececececceceeceeeeee
0009 C

0010 C STANDARD USER SUBROUTINE DECLARATIONS AND CALL TO TMDFN

0011 C

0012 LOGICAL BKSFL
0013 COMMON KEEP(S),LUQ,LMQ, IBUF(512)
0014 COMMON ITSNU, INDEX, IGNUM, ITMTP,ITMLN, IBUPT,BKSFL , INBKS, IQBKS
001S COMMON IER,NSTAT,ITEMP(10),ICOMEN
0016 C
0017 DIMENSION ITIME(S)
0018 C
0019 CALL TMDFN(KEEP,KEEP,KEEP,ITSNU,ITSNU, ICOMEN)
0020 C
0021 C GET SYSTEM TIME IN ITIME ARRAY
0022 C
0023 CALL EXECC11,ITIME)
0024 C
0025 C ARE MINUTES ONLY ONE DIGIT? IF SO, MULTIPLY BY 10
0026 C
0027 IF (ITIME(3) .LE, 10) ITIME(3) = ITIME(3) + 10
0028 C
0029 C PUT ASCII-FORMATTED TICKS,SECONDS AND MINUTES IN ITEMP
0030 C
0031 CALL CODE
0032 WRITECITEMP,5) CITIMECI), I=1,3)
0033 S FORMAT(312)
0034 ¢C
0035 C PUT THIS QUASI-RANDOM STRING IN THE DISPLAY BUFFER
0036 C
0037 CALL MOVEW CITEMP,IBUF(IBUPT),3)
0038 RETURN
0039 END
FTN4 COMPILER: HP92060-16092 REV. 1926 (790430)
#+ NO WARNINGS #+ NO ERRORS #+ PROGRAM = 00080 COMMON = 00541

29

OPERATIONS MANAGEMENT

TRANSACTION SPECIFICATION GENERATOR LIST

[EXZE XA R R X E RS R R RXEREE SRR SEEERSE SRS RSER R R X X

FROM L IBRARY

NAME COMUNG
NUMBER : 6
SECURITY CODE : 0

IMAGE DATA BASE: WOM

SPECIAL FUNCTION KEYS ASSIGNMENT :

MARLBY (CR =1918)

[XXX RS E RS ES RS RS R R ES R RS AR RN X

KEY# NORMAL VALUE/FUNCTION
01 “"PASS "
02 “FAIL »
03
04
0s
06 ABORT/SELECT
07 CONTINUE
08 SAME VALUE
09 RECALL
10 CMPLETE/ABRT

PREF IXED VALUE/FUNCTION

TRANSACTION SPECIFICATION GENERATOR LIST

I ZXFIEEZEERSERRRRERS LRSS R RS R RS REEE SR X XS 2 X J

2 U QUESTIONS :

[EEEEEXEEXXXE R XX]

QUESTION LABEL SECURITY

- DISPLAYED INFORMATION :

LIGHT # :

TYPE

DISPLAY MODULE :
PRINT VALUE :
DATA OFFSET IN BUFFER :

- ANSWER DEFINITION :

INPUT :

LIGHT #

TYPE ;
POSITIONING :
: VALD

EDIT MODULE
DEFAULT VALUE

PRINT ANSWER :
DATA OFFSET IN BUFFER :

QUESTION LABEL ROM NUMBER

- ANSWER DEFINITION :

INPUT :
LIGHT # :

TYPE

IMAGE ITEM NAME :
DATA SET :
IMAGE EDIT GENERATED :

NONE
STRING
DISPL
NO

9

CLENGTH = 6)

KEYBOARD
NONE
STRING

L

CLENGTH =)

NQ
12

KEYBOARD
1

STRING
WaM#
DETAIL
CHECK CHAIN NON EMPTY

C(LENGTH = 6)
C(FUNCTION : F)

POSITIONING : L
MASK : 99999A
DEFAULT VALUE :
PRINT ANSWER : NO
DATA OFFSET IN BUFFER : 14
« LENGTH OF STORAGE FOR U QUESTIONS SEQUENCE : 16

30

TERMINATOR ?
YES

OPERATIONS MANAGEMENT

TRANSACTION SPECIFICATION GENERATOR LIST

FRABEBRRRBRRRRRRRFRER AR RRRRRERRRERRRRRRRRS

1 M QUESTIONS :

#RERBRERRRRRRERRRS
QUESTION LABEL TEST RESULT
- DISPLAYED INFORMATION :
LIGHT #
TYPE
IMAGE ITEM NAME

DATA SET :

PRINT VALUE
DATA OFFSET IN BUFFER
- ANSWER DEFINITION

INPUT :
: 2

LIGHT #
TYPE

IMAGE ITEM NAME :
DATA SET :
POSITIONING :

MASK
DEFAULT VALUE
PRINT ANSWER

DATA OFFSET IN BUFFER :

: NONE

STRING
TEST
DETAIL
NO

17

C(LENGTH =

KEYBOARD

STRING
TEST
DETAIL
L

AAAA

C(LENGTH =

; DISPLAYED VALUE

NO
19

+ LENGTH OF STORAGE FOR M GUES%IUNS SEQUENCE

(2 AR ERESLEIEEES SRR AR ES SRR R RS RS R X J

31

(FUNCTION :

4)

4)
1))

OPERATIONS MANAGEMENT

TIME AND ATTENDANCE DATACAPTURE WITH THE HP 1000

Darrell Kruice/DSD Sales Development

INTRODUCTION

DATACAP/1000 is an extensive software package for the HP 1000 computer that allows the user easy control over data

collection from the HP 3077A data collection terminal as well as the other Hewlett-Packard data collection terminals, the 3075A,
and 3076A.

DATACAP/1000 is an excellent tool for data collection when the data collection rate is in the range of up to 600 to 1000
transactions per hour (rate depends on the number of data base accesses, whether or not magnetic tape logging is utilized,
etc.). However, a typical time and attendance application might consist of 600 people clocking in and out at shift change in a
matter of 15 minutes. This translates to a transaction rate of 2400 transactions per hour! Clearly, something other than
'DATACAP/1000 would need to be utilized in such a situation.

The rest of this article describes a computer program, TMATT, that has been written for the HP 1000 to facilitate high speed
data input from HP 3077A time reporting data collection terminals. Steve Witten of Data Systems Lab wrote the original version
of TMATT as a guide for the user to show how a time and attendance application program might be written. It is expected that
the user would want to make modifications to the program for his specific time and attendance applications. The version in the
User Contributed Library already contains several changes that | made to the original.

PROGRAM PHILOSOPHY

In order for the time and attendance data collection system to be very fast and responsive, the program that runs the system
needs to be able to read data from several terminals simultaneously and very quickly. This is done in TMATT by the use of class
I/0. Class reads, utilizing a single class number, are placed on all terminals. The program then executes a class get with wait
and waits for a terminal to respond. In this way, as soon as badge is inserted into any 3077A terminal controlled by TMATT, the
system completes the read of that terminal, and TMATT is awakened from its class wait to process the information. The program
priority of TMATT is set to 25 to ensure that when input is received from a terminal, it can be immediately processed and a class
read reissued to that terminal.

The processing of the information by TMATT is kept very simple to insure high speed data throughput. The data is simply
logged out to disc for processing later, after everybody has clocked in orout. Itis intended that the storage routine be modified
for the specific need of the user. Suggestions for data storage are contained in the section “Enhancements to TMATT.”

TMATT runs as a program separate from the DATACAP/1000 system. For this reason, the 3077A terminals under the control of
TMATT cannot simultaneously be under the control of DATACAP/1000. However, terminals under the controtf of both systems
can be placed on the same data link.

PROGRAM INTERNALS
Refer to the flowchart of TMATT (figure 1) for the following discussion.

Three configuration strings are created to set up the HP 3077A’s. The “full” configuration string consists of a complete
configuration of the 3077A including writing out a user-defined welcome message, the proper system time, and setting the
terminal to read an input. This configuration string is used when first setting up the terminal, when the terminal is powered up
during TMATT operation, and whenever a data validation error occurs. The “simple read” configuration string resets the
terminal to accept another badge input. It is used after previous data has been entered and stored (normal conditions) and

32

OPERATIONS MANAGEMENT

START

INITIATION:
CHECK TERMINALS
OPEN OUTPUT FILE
BUILD “ERROR" CONFIGURATION STRING
BUILD "FULL" CONFIGURATION STRING

v

ALLOCATE A CLASS NUMBER

SET UP DRIVER FOR EACH TERMINAL
WRITE “FULL" CONFIGURATION
STRING TO EACH TERMINAL

v

PLACE A CLASS READ ON EACH TERMINAL

BREAK FLAG
SET?

SHUT DOWN

PLACE CLASS GET AND
WAIT FOR RESPONSE

COMPLETE
OF A PREVIOUS

YES

WRITE?

TERMINAL
TIME-OUT?

POWER-UP YES

STATUS?

WRITE “ERROR" CONFIGURATION
STRING TO THE TERMINAL

DATA VALID?

STORE DATA WAIT 750 MSEC
. Y
WRITE “SIMPLE READ” CONFIGURATION WRITE “FULL” CONFIGURATION
STRING TO TERMINAL STRING TO THE TERMINAL

1

PLACE A CLASS READ ON THE TERMINAL

—

Figure 1
33

OPERATIONS MANAGEMENT

saves any overhead involved in transmitting unneeded data to a terminal. The "error” configuration string is used to inform the

employee of data validation errors. It consists of an error message that is displayed along with lighting the red light and
sounding the buzzer.

When TMATT is first started, it checks all terminals that it is to collect data from, and makes sure that they are indeed 3077A’s
and that they are up and running. TMATT then interactively requests information from the operator regarding where the data is
to be stored (file name, security code, cartridge number) and opens that file. After this, the "full” configuration string is written to
each terminaf and a class read is placed on the terminals. All of this is done using a single class number through which all /O is
channeled. This completes TMATT's initiation phase after which TMATT goes into its data collection loop.

The first step of the loop is to check to see if the break flag is set. A set break flag indicates that the operator wants to shut down
the system so TMATT will execute clean up operations such as flushing class /O and closing the output file.

After checking the break flag, TMATT then goes into a class get wait state to wait for some I/0 activity to occur with the
terminals. Whenever a class get is completed on the class number, TMATT is awakened to process it. If the class get is the
complete of a class write, TMATT simply returns back to the top of the loop. If the class get is the complete of a class read,
TMATT examines how much data was returned to determine whether the terminal timed out or not. A zero length data record
returned indicates a time-out so TMATT reissues the class read on that terminal and goes back to the top of the loop. If data was
indeed returned from the terminal, TMATT checks to see if the returned data indicates that the terminal was just powered-up
{(assumed if reverse interrupt is received). A power-up status is responded to by writing out the “full” configuration string to the
terminal, reissuing a class read to it and returning to the top of the loop.

If none of these checks are met, the data returned is processed. An optional user written validation routine is executed to
determine the validity of the received data. If the data is not valid, the “error” configuration string is written to the terminal
followed 750 milliseconds later with the write at the “full” configuration string. The 750 millisecond wait gives the employee time
to read the error message. If the data is valid, the storage routine is executed to store the data and then the “simple read”
configuration string is issued to the terminal followed by a return to the top of the loop.

PERFORMANCE

The performance of TMATT under different load conditions was measured using a program that simulates 307X terminal
transactions. The measurements were made under the following assumed worst case conditions:

1. All terminals attached to a single multipoint line.

2. As soon as one transaction was completed at a terminal, the next one was started immediately with no pause. This is to
simulate a worst case queue at a time clock since realistically there would be some time pause between transactions as an
employee inserts his badge.

3. Allterminals active simultaneously. This was to simulate everybody in a facility clocking out at the same time through all of
the 3077A's.

Under these conditions, TMATT performed quite well. Referring to figure 2, we see that the maximum transaction rate that can
be expected from the system approaches 600 transactions per minute with 20 terminals on a single multipoint Iin_e. Figure 3
derives the transaction rate per terminal from figure 2 and as expected, it decreases as the number of terminals increases.

Figure 4 is the worst case response time that could be expected from a terminal under the conditions of all terminals
simultaneously and continuously processing transactions (4:30 PM on Friday!). With 10 terminals each processing 42
transactions per minute we would expect a worst case response time of only 1 second — adequate performance considering it
takes about that long just to insert/remove a badge and get out of the way for the next person.

Figure 5 shows that worst-case TMATT CPU utilization. At most, TMATT will only consume 10% of the CPU, excluding the time
the system uses for the multipoint card — a maximum of 10%.

34

OPERATIONS MANAGEMENT

MAXIMUM AGGREGATE TRANSACTION RATE MAXIMUM TRANSACTION RATE PER TERMINAL
CONDITIONS: ONE MULTIPOINT LINE CONDITIONS: ONE MULTIPOINT LINE
ALL TERMINALS CONTINUOUSLY ACTIVE ALL TERMINALS CONTINUQUSLY ACTIVE
TOTAL TRANSACTIONS PER MINUTE TRANSACTIONS PER MINUTE PER TERMINAL
N 4\
600 4+ 4+
500 4~ +
400 4+ 80 4+
300 T s04
2004 404
1004 204
: : : —> l : : ; >
1
5 10 15 20 / 5 10 15 20 4
NUMBER OF TERMINALS NUMBER OF TERMINALS
Figure 2 Figure 3

36

OPERATIONS MANAGEMENT

WORST CASE RESPONSE TIME
CONDITIONS: ONE MULTIPOINT LINE

ALL TERMINALS CONTINUOUSLY ACTIVE

SECONDS (FROM TIME BADGE IS INSERTED UNTIL READY FOR NEXT BADGE)

1:?

1.0::

5:i

“ : } : : >
5 10 15 20

NUMBER OF TERMINALS

Figure 4

36

PERCENT
N

WORST CASE TMATT CPU UTILIZATION

CONDITIONS: ONE MULTIPOINT LINE
ALL TERMINALS CONTINUOUSLY ACTIVE

NOTE: MULTIPOINT CPU UTILIZATION NOT INCLUDED

i]
L] T

5 10 15 20
NUMBER OF TERMINALS

Figure 5

"\

OPERATIONS MANAGEMENT

ENHANCEMENTS TO TMATT

The following are suggestions on how the user could customize TMATT to his specific application:

1.

If no data validation needs to be done, the internal buffering capability of the 3077A can be utilized. The 3077A has the
capability of storing up to 20 data records before it needs to transmit them to the HP 1000. By using this feature,
instantaneous terminal response could be achieved even if there were many terminals in the system. The drawbacks are
that no validation could be done on the incoming data, as well as the danger of possible loss of data.

The program, as written, does nothing with the data except store it in a serial file. Another method of storing the information
would be to keep it in an IMAGE/1000 data base. However, the overhead of data base manipulations would probably
decrease the responsiveness of the program. This problem could be easily circumvented by writing another program to do
the IMAGE/1000 manipulation. TMATT could pass the time and attendance information to the other program through the
use of class /O and by setting the priority of the other program lower than TMATT, the data base manipulation could be
done when TMATT is not running thereby making the most efficient use of the system’s resources. This other program
could also do some simple data reduction such as calculating the number of hours each employee has worked. To
eliminate fears of data “lost” in SAM as the result of a system failure, the second program could be written to read the disc
file created by TMATT instead of using class I/O. Another possibility would be to have the program pass the data on to an
HP 3000 via DS/1000 — 3000 or to a mainframe computer via RJE/1000.

In cases where the data integrity is highly important, the data could be logged to a mag tape as the data is entered. Again,
this would slow down the response of TMATT but the performance degradation might be insignificant for the specific
application.

TMATT could also be modified to accurately synchronize the 3077A terminals with the system clock. Since the 3077A can
only be set to hours and minutes, this could be done by modifying TMATT to walit until system clock reaches 0 seconds
before setting the time on the terminals. In addition, TMATT could periodically check and, if required, change the time
displayed by the 3077A's.

TMATT has the capability to accept a data validation routine. A possible data validation would be to verify that the time
received from the 3077A terminal matches the system time. To do extensive IMAGE/1000 data base validation checking
would probably warrant the use of DATACAP/1000.

CONCLUSION

TMATT is an example program to help you implement a time and attendance datacapture system. The terminal handling, data
validation interface and data storage interface has been done. It is now up to the user to customize the program for his specific
application with regard to data validation, data reduction and data storage. TMATT is available in the PLUS/1000 contributed
library.

37

COMPUTATION

PENNY: COMPUTER AIDED DRAWING ON THE HP 1000

Phil Walden/DSD Applications Development

20014
221 pn3
23103
%gé RAPIDIOGRAPH PEN CONSTRUCTION
21,5 vz |38
N I M ié 374538
e ve
2042 = GLUE_JOINT
'L&‘,E gf 11 UT-QFF P Y
AZlpa
—.;’—- 18 QULDER REMOVABLE NIB CUT-OFF PEN CAP
2317 /
2’51 ie / (SREWS ON>
=L i1 1 1 %"
P ovr 24 ° =~
2613 F-g i1 ° [— !
14112 F3 2 4
13 11 E S ° -
12 i r [32 T1T 11 e__.
2liae 03 t& ;
So1 RAMB RAM3
29 CN CN+4 |33 R
= UT-OFF 7221,/887
5 |l FELT-TIP PEN BODY
Figure 1. A PENNY Drawing

In recent years, there has been a general recognition of the need to increase the productivity of the engineering design
process. Millions of dollars could be saved on large projects by shortening the R&D phase by a few months. Doubling the
productivity of engineers and designers has an immediate impact on reducing R&D investments.

PENNY is a computer aided drawing (CAD) program that can increase the productivity of engineers and designers. This article
will outline the features of PENNY and how it works.

Several features of PENNY improve the productivity of designers. PENNY drawings (see Figure 1) are inherently cleaner than
pencil sketches, reducing confusion and enhancing communications between designers. Its powerful hierarchical data base
structure allows the designer to use predefined standardized symbols, eliminating drafting and design errors. Mistakes may be
corrected without re-drafting. Furthermore, PENNY allows the user to interactively create drawings. With the addition of a
drawing tablet to the graphics terminal, the designer can actually draw faster with PENNY than by hand. Most of the figures in
this article were drawn with PENNY.

PENNY was originally developed at HP Data Systems Division (DSD) to assist engineers in developing electrical schematic
diagrams. It is basically a line drawing program and thus, has been used for other applications such as floor layouts, piping
diagrams and flow charting. PENNY uses GRAPHICS/1000, IMAGE/1000 and RTE-IVB's EMA capability to accomplish its
tasks. PENNY requires a 101 page mother partition and an HP2648A graphics terminal for interactive design. An F-series
processor and a fast disc (7908, 7920 or 7925) should be used for good response. At least one hardcopy plotting device
should also be made available to users. Currently, PENNY will operate the 9872A and 7221A four color X-Y plotters. Optionally,
a drawing tablet may be connected to the 2648A to increase the drawing speed and ease of using PENNY.

38

COMPUTATION

PENNY DRAWINGS: THEORY

PENNY internally models a drawing as a bounded plane with various objects located on it. The bounded plane is called the
“world coordinate space”. The objects in the world coordinate space may consist of MACRO's, LINES and TEXT. A MACRO is
itself a drawing, and may also consist of macro’s, lines and text. A DRAWING and a MACRO are therefore semantically
equivalent. Using this concept, PENNY internally describes a drawing/macro as a tree data structure, as shown in Figure 2.

DRAWING A
[[
MACRO B LINE 1 MACRO C LINE 2 TEXT 1
[| []
TEXT 1 LINE 1 LINE 2 MACRO D LINE 1 TEXT 1
MACRO E TEXT 1
LINE 1) LINE 2

Figure 2. The Hierarchical Structure of a Macro

Thus a macro is a hierarchy of other macros, lines and text entries. This data structure provides PENNY with its most powerful
interactive design feature. To create a drawing, the user simply indicates where in the world coordinate space the macro's are
to be located and PENNY will automatically link the appropriate tree structure in its IMAGE/1000 data base. [f the data base is
properly prepared with standard symbols (macros) such as NAND gates or flow chart symbols used by the designer,
interactive drawing creation will be very quick because only the upper level of the tree structure is generated. All the lower
levels were defined when the data base was prepared, and can be used over and over again by designers.

PENNY uses a linked tree structure in its data base. In other words, each macro node of a tree is unique within the data base
and may be an element of one or more trees. When PENNY generates a drawing only pointers to macros are generated, not
copies of macros. Therefore, standard symbols (macros) may easily be added, purged or modified because only one copy of
any symbol exists in the data base.

A picture is worth a thousand words! Let's examine the structure of a simple macro that a logic designer would use, a NAND
gate shown in Figure 3. The macro is given a unique name such as "74S00.AND.1". As seen in Figure 4, five levels are used to
describe this macro. Each level may branch off to another macro which also has its own unique name. For example, the macro,
“PINS.1,2:3", provides the macro that labels the pinouts on the NAND gate. The macro, “74S00.AND", draws the gate outline
with the gate label “74S00". The gate outline is itself a macro called “TWO.NAND.AND”, and so on.

39

COMPUTATION

1 74500
= 3
2

Figure 3. A PENNY Drawn NAND Gate

74S500.AND. 1
) 1
PINS.1,2:3 74500.AND
. 1 .
1 | 1 | 1
TEXT "1 TEXT 2" TEXT “3" TWO.NAND.AND TEXT “74S00”
TWO.0.4.5TUBS NAND .AND
I \ [[j
LINE 1 LINE 2 MANDR MCIRCL LINE 3
6 LINES 4 LINES
GATE OUTLINE CIRCLE

Figure 4. 74500.AND.1 Macro Example

There is a reason for resorting to many macro levels to describe a simple NAND gate. A much more flexible data base can be
developed. For example, if different pinouts are needed, then a new macro called “74S00.AND.2" could be created that points
to macros “PINS.4,5:6” and “74S00.AND”. Because the macro "74S00.AND” already exists, it need not be re-created, only
“PINS.4,5:6" needs to be created in order to develop the new macro “74500.AND.2".

The macro nodes of a drawing are only intermediate data nodes that do not contain any graphics information. Only the leaves of
the tree or terminal nodes containing lines and text hold graphics information. This means that all drawings are ultimately
described as so many lines and text. A line is simply two X-Y coordinate pairs and a pen color number. Text is a character
string, an X-Y coordinate location and a pen color number. To draw a drawing, PENNY executes a post-order traversal of the
drawing tree, visiting all the leaves of a drawing tree and displaying the graphics information. To understand this process a
more detailed look at the actual IMAGE data base is needed.

40

COMPUTATION

THE PENNY IMAGE/1000 DATA BASE

The IMAGE/1000 data base used by PENNY implements the hierarchical tree structure with one automatic master data set
called "DRWGS” and one detailed data set called “LINES". Figure 5, shows the data base structure graphically and the
corresponding schema is listed in Table 1.

Table 1. PENNY IMAGE/1000 Data Base Schema

$CONTROL: ERRORS=5,R00T,SET,TABLE,FIELD;
BEGIN DATA BASE: {root namr}

LEVELS:
S NOONE; <<READ LEVEL: NOT USED>>
18 HELLO; <<WRITE LEVEL>>
ITEMS:
DNAME , X32(5,15); <<MACRO NAME: 32 CHARACTERS)>>
<< WITH NDO LEADING BLANKS>>
TYPE, 11¢5,15); <<TYPE OF INFO IN RECORD: »>>
<< -1=MACRO RECORD>>
<< 0=LINE RECORD>>
<< +1=TEXT RECORD>>
INFO, X32(5,15); <<INFO: »
<< 32 CHARACTERS FOR TEXT OR>>
<< MACRO NAME; TWO X-Y COORD>>
<< PAIRS STORED AS REAL NUMBERS>>
<< (8 WORDS TOTAL) FOR LINES>>
COLOR, 11¢5,15); <<PEN COLOR: INTEGER 0 TO 4>>
POSX, R2(5,15); <<LOCAL ORIGIN X»>
POsSY, R2(5,15); <<LOCAL ORIGIN Y>>
SETS:
NAME :DRWGS::{crn},A; <<AUTOMATIC MASTER SET>>
ENTRY: DNAME(1); <<KEY: MACRO NAME>>
CAPACITY:{prime number};
NAME:LINES::{crn},D; <<DETAIL DATA SET>>
ENTRY: DNAME (DRWGS) , <<LINK: MACRO NAME>>
TYPE,
INFO,
COLOR,
POSX,
POSY;
CAPACITY:{large prime number};
END.

MACRO
MASTER
DATA
SET

DETAIL
DATA
SET

Figure 5. PENNY Data Base Diagram
41

COMPUTATION

A drawing/macro is accessed by its name, item "DNAME"”, which can be up to 32 characters as shown in Table 1. DNAME is
the key to the master data set, DRWGS. The hashing algorithm of IMAGE can quickly access the appropriate master record by
drawing/macro name. The drawing/macro master record provides PENNY with access to a chain of LINES detail records linked
to a specific drawing/macro name.

Each detail data set record in the chain is a son of the corresponding macro node of a drawing tree structure. If the record item
TYPEisOor +1, then the items INFO, COLOR, POSX and POSY contain graphics information for lines and text as commented in
Table 1. However, if TYPE equals —1, then the detail record represents the occurrence of another macro node. INFO will then
contain the name of the macro which is used as the key to next level of sons or detail records whose father is this new macro.
Figure 6 illustrates the correspondence between the data base and tree structure.

MASTER MASTER MASTER DRWGS
REC OREC REC MASTER
DATA

DRAWING Q MACRO X MACROD Y SE&

POINTER T
NE
=Ll \\POINTER
DETAIL LINES
DETAIL REC F— DETAIL DETAIL
. -/ DATA
MACRO Y jr’ TEXT SET

OATA BASE IMPLEMENTATION OF DRAWING Q

ORAWING Q

Y LINE MAiRD X LINE
| | 1
TEXT MATRD Y TEXT LINE
TEXT

TREE STRUCTURE OF DRAWING Q

Figure 6. IMAGE/1000 Implementation of a Macro

Let's consider the NAND gate macro “74S00.AND.1" again as an example. Referring to Figures 3, 4 and 7, the macro
74S00.AND.1 has a DRWGS master record that points to a chain of two LINES detail records. These are macro detail records
where TYPE =—1. The INFO fields for these records contain the names of the macros which are the sons of 74S00.AND.1.
These are the macros "74S00.AND” and “PINS.1,2:3" and they also have their own DRWGS master records. The PINS.1,2:3
master has three detail records chained to it. These-are all TYPE +1 records containing the text for the NAND gate pin outs. The
74S00.AND macro master record has only two detail records chained to it. One is another TYPE —1 record for the macro
TWO.NAND.AND, and the other is a TYPE +1 text record for the “74S00" label. And so this description could continue on down
the remaining three levels of this drawing. Figure 7 illustrates the details of this drawing.

42

COMPUTATION

74s00. DRWGS

AND. 1 MASTER
° DATA
SET

LINES
DETATIL
DATA
SET
DRWGS PINS. 1.2 74S@@. AND DRWGS
MASTER | 0 3 | o MASTER
DATA DATA
SET SET
T
I NAND. AND
LINES . LINES
DETAIL TEXT Tl DETAIL
DATA wyw DATA
SET SET
DRWGS TWO. 8. 4" Agf,///,//”"/’ NAND. AND DRWGS
MASTER | o Lo MASTER
DATA sTuBS DATA
SET SET
I MCIRCL LINES
LINES DETAIL
DETAIL DATA
DATA LINE 1 MANDR 287
SET
aﬁ;?gR MANDR / MCIRCL DRWGS
- e
SET
SET
ines,
6 LINES 4 LINES DETAIL
DATA GATE DATA
SET CIRCLE el
DUTLINE OUTLINE

DATA BASE IMPLEMENTATION OF 74S20. AND. 1

Figure 7. IMAGE/1000 Implementation of the Macro 74S00.AND.1

DRAWING A MACRO

To draw a macro, PENNY executes a subroutine MDRAW. The only parameter MDRAW needs is the macro name (the data
base key) for the macro to be drawn. Basically, MDRAW executes a post-order traversal of the drawing tree whose root is the
specified macro. The algorithm used by MDRAW is shown in Table 2.

43

COMPUTATION

Table 2. Algorithm Used to Draw a Macro

Definitions:

MACRO = name of a macro (data base key)
TYPE = type field in LINES record

INFO = info field in LINES record

STACK = LIFO stack for temporary storage

1.

2.

Find the first detail LINES record chained to MACRO

Check the TYPE of the LINES record

if TYPE = +1 Then WRITE TEXT
GO TO 3.

0 Then DRAW LINE
GO TO 3.

—~1 Then PUSH MACRO IN STACK
MACRO = INFO
GO TO 1.

it TYPE

If TYPE

Get next LINES record on MACRO chain

Check for the end of the chain
if NOT END OF CHAIN Then GO TO 2.

If END OF CHAIN Then POP MACRO OFF STACK
GO TO 3.

The algorithm in Table 2 ensures that every node in the drawing/macro tree is visited and its graphics information is drawn on
the graphics device. To implement this algorithm in MDRAW, several GRAPHICS/1000 and IMAGE/1000 calls are required.

For the first step in the algorithm, the first LINES detail record chained to a macro must be found. MDRAW implements this
procedure as follows:

10

CALL DBFNDCIBASE,LINES,1,ISTAT,DNAME ,MACNAM)
CHNLEN = ISTAT(G)

CALL DBGETC(IBASE,L INES,5,ISTAT,LIST,LIBUF ,DUMMY)
CHNLEN = CHNLEN - 1

where variables used are defined as follows:

MACNAM
DNAME
ISTAT

L INES
IBASE
LIST
L IBUF
DUMMY
CHNLEN

macro name array (16 words)
ascii array containing “DNAME " the key item

status array returned by IMAGE, ISTAT(5) and ISTAT(6) contain the double word integer chain length (only least
significant half used)

ascii array containing “LINES " data set name

array containing the data base name when opened

ascii array containing all the item names in the detail record, “"DNAME,TYPE,INFO,COLOR, POSX,POSY;”
integer array to receive LINES record

dummy argument for chained read DBGET calls

integer chain length

To get the next record in the chain, as is done in step 3 of the algorithm, the above procedure is executed from statement 10 on.

44

COMPUTATION

Step 2 of the algorithm requires lines and text to be drawn, or macro information to be saved in a stack, depending on the LINES
record TYPE value. First, to access the items in LIBUF, the following declarations may be used.

INTEGER NAMEC16),TYPE,INFOC16),COLOR

INTEGER I1P0OSX(2),IP0OSY(2),I1X0RG(2),IYORG(2)

REAL POSX ,POSY

EQUIVALENCE (LIBUF ,NAME),(LIBUF(17),TYPE),(LIBUF(C18),INF0),
- (LIBUF(24),COLOR)Y,(LIBUF(25),P0OSX),(L1BUF(27),P0OSY)
EQUIVALENCE (1POSX,P0OSX),(1POSY,POSY),
- CIXORG, XORG),CIYORG,YORG)

If the TYPE is +1 then INFO contains text which is drawn with GRAPHICS/1000 calls.

POSX = POSX + XORG ;calculate the position
POSY = POSY + YORG ; of the text.
CALL PENCIGCB,COLOR) ;select the pen color
CALL MOVEC(CIGCB,POSX,POSY) ;sposition the pen
CALL LABELCIGCB) ;set up for graphics text
CALL EXECC2,PLOTLU,INFO,I) ;write text on display

where:

X0ORG = current value of the X origin

YORG = current value of the Y origin

1GCB = graphics control block for GRAPHICS/1000

PLOTLU = logical unit of graphics device

I = number of characters in text string

If the TYPE was 0O, then a line is drawn using the real X,Y coordinate pairs in INFO.

REAL P1X,P1Y,P2X,P2Y
EQUIVALENCE (INFO,P1X)>,C(INFOC3),P1Y),C(INFO(S),P2X),
- CINFO(7)>,P2Y)

P1X = P1X + XORG ;jcalculate the positions
P1Y = P1Y + YORG ; of the to points.
P2X = P2X + XORG
P2Y = P2Y + YORG
CALL PENCIGCB,COLOR) ;jselect the pen color
CALL MOVECIGCB,P1X,P1Y) ;move pen to first point
CALL DRAWCIGCB,P2X,P2Y) ;jdraw line to second point
where:
P1X,P1Y = first point on line
P2X,P2Y = second point on line

If TYPE was —1, then the current IMAGE chain information, origin and chain length must be saved in the STACK before the next
‘macro chain can be followed. The IMAGE DBINF call is used for this purpose.

45

COMPUTATION

c INTEGER STACK(C12,n) ;stack of n levels

C STACK FORMAT: WORD 1-2 CURRENT X ORIGIN

c WORD 3-4 CURRENT Y ORIGIN

c WORD 5-11 CURRENT CHAIN INFORMATIDN

g WORD 12 REMAINING CHAIN LENGTH
DO 20 I=1,2
STACKCI ,IPTR) = IXDRG(CI) ;store the origin

20 STACK(I+2,IPTR) = IYORG(CI)
CALL DBINFCIBASE,LINES,401,ISTAT,STACK(S5,IPTR))
STACK(12,IPTR) = CHNLEN ;store the chain info and length
IPTR = IPTR + 1 ;bump the stack pointer
DO 30 I=1,16

30 MACNAMCI) = INFOCI) ;set up the new macro name
XORG = XORG + POSX ; and origin.

YORG = YORG + POSY

When the next LINES record is fetched with the DBGET calll, the chain length counter CHNLEN is checked for zero. If it is zero,

then the STACK must be popped to restore the previous chain information, origin and chain length. This procedure also uses
the DBINF call.

IPTR = IPTR - 1 ;lower the stack pointer
DO 40 I=1,2
IXORG(CI) = STACK(I,IPTR) ;jrestore origin

40 IYORG(I) = STACK(I+2,IPTR)
CALL DBINF(IBASE,LINES,402,ISTAT,MSTACK(S,IPTR))
CHNLEN = STACK(12,IPTR) ;get chain info and length

When the next record on the restored chain is read the macro name is restored from NAME in LIBUF.

That concludes the discussion of the algorithm. However, there are many techniques not discussed which can enhance the
speed and power of this algorithm. For example, skipping a pen MOVE call if the pen is already in the correct position, and
skipping PEN color calls when the correct color has been previously selected.

TARGETING

Targeting In order to provide an interactive graphics environment for the user, a CAD application program not only must display
a drawing, but also must provide the ability to edit drawings. This function implicitly requires the power to delete and move
macros, lines and text. To do these functions, the CAD program must remember what and where objects have been drawn on
an interactive graphics terminal. Otherwise the program has no clue as to what objects users may be pointing to on their
graphics display. Targeting is the process which a CAD program uses to determine what object a user is selecting to edit.

PENNY uses a Target Array to provide the targeting function. The array is a 346 by 220 matrix of integers requiring over 76
pages of memory. Because this array is all data, the EMA capability of RTE-IV makes addressing this large array possible. The
use of the Target Array is simple.

First the user positions the graphics cursor at some location on the graphics terminal, hopefully over an object. PENNY then
digitizes the cursor's position and reads the cursor's X-Y coordinates. The X and the Y values are used for the index values of
the Target Array. The value stored in the array at (X,Y) contains the relative LINES record number of the object in the IMAGE
data base. The record number is placed in the array when PENNY draws the object. If no object exists at the cursor’s location, a
zero record is returned from the Target Array. To delete an object, the data base record number is used to access the data
base and undraw the object. The target array is then filled with zeroes at the locations corresponding to the position of the
deleted object. A move consists of undrawing the object and then redrawing it at the new location. The relative record number
is another part of the target array corresponding to the new position of the macro.

46

COMPUTATION

CONCLUSION

Hopefully, this article has given the reader a flavor for the Computer Aided Drawing concepts that PENNY uses. It demonstrates
that GRAPHIC/1000, IMAGE/1000 and EMA capabilities can be combined in one application package to enhance the
productivity of engineers and designers.

ORDERING

PENNY will be available to all users through the User Contributed Library of the new HP 1000 international Users Group.
Contact the:

HP 1000 International Users Group

P.O. Box 1000
Norwood, Massachusetts 02062

47

BULLETINS

ANNOUNCING PLUS/1000: THE NEW CONTRIBUTED LIBRARY FOR
HP 1000 SYSTEMS

PLUS/1000 is the new Program Library of User Software for HP 1000 computer systems. PLUS/1000 has been under
development within HP's Data Systems Division over the past six months. The new library has resulted from a complete
reorganization of the old LOCUS library. The reorganization includes:

— new program classification and extended indexing scheme
— new catalog

— automated submission and update procedures

— machine readable documentation

Many new programs have been added since the last LOCUS catalog was printed.

Starting January 1, 1980, PLUS/1000 will be the responsibility of th new HP 1000 International User Group, which was created
by the HP 10 user community:

“. .. .to provide a forum for sharing information among users to enhance their HP 1000 systems, and to
help their development effort for software" (Jog Getkin, Startup Committee Chairman, writing in the first
issue of INTERFACE/1000, the newsletter of the users group.)

This responsibility involves all phases of library operation, from initial program collection to distribution of the library. Thus, all
questions regarding library availability, contributed program existence and/or operation should be directed to the users group.

WHY IS EVERYONE EXCITED ABOUT PLUS/1000?
It Is Easy To Use:

Fast and easy identification of any program in the library is now available. The PLUS/1000 software is classified in packages,
oriented towards the main application areas of the HP 1000 systems: manufacturing and business management, research and
development, measurement and control, data communication. A systems programming package and a demonstrations and
games package are also available. A non-HP 1000 compatible software package supplements the library. For quick identifica-
tion of any program in the library a catalog is provided. PLUS/1000 catalog gives, by package, the abstract of each program,
the considerations related to hardware and software dependency, the grade and date code of the program, and the author's
name. The catalog also contains various indexes created around keywords over the entire library and around categories inside
each package. The software for package and the corresponding documentation are stored on magnetic tape .

it Is Easy To Order:
The HP 1000 International Users Group will distribute PLUS/1000 by subscription. The library subscription consists of:

1. Complete contributed library on magnetic tape (800 or 1600 b.p.i.)
2. Periodic library updates

It Is Inexpensive:

1. For general membership in the Users Group the library subscription is included as a benefit. Annuat dues for general
membership is $250.

For non-users group members, the annual fee for the library subscription is $250.
Price of an additional contributed library catalog is $25 each.

48

BULLETINS

It Is Easy to Submit Programs to PLUS/1000:

The contributor now has available for use the program SUBMT. This program interacts conversationally with the contributor to
provide, in a standardized format, all information needed to document a software contribution. The validated answers to
SUBMT qguestions are recorded on a file and this file is stored by the user on the tape containing his contributed software.

It Is Easy to Maintain PLUS/1000:

The new library is structured around the PLUS/1000 data base. By using the data base and the programs written to access it,

the acceptance of contributed software and the catalog are automated. (Seethe bulletin in this issue, “PLUS/1000 Organizatign
Automates the Operation of the Library™.)

New Significant Programs

JGL

PENNY

TMATT

Jim's Graphics Library is a set of Fortran routines that interface graphics applications programs to the HP 2648
graphics terminal.lt was designed for the purpose of creating demos of the HP 1000, and has been used very
successfully in that endeavor. Nothing seems to make a better impression than watching a computer smoothly
and quickly step through a complex series of graphics gymnastics.

A brand-new library addition is the program PENNY. This is an exciting program that should gain a lot of
popularity very quickly. Basically, PENNY allows the user to create graphics drawings from conversing interac-
tively at the terminal. When he has the drawing as he wants it, the user can store it away in a data base
maintained by PENNY. Drawings in the data base can be retrieved, modified, combined with other drawings,
and then stored away again. Final results can be output to a plotter to create a high quality hardcopy. PENNY
can be used for digital schematics design, floor layouts, piping diagrams, and a host of other graphics
applications. (See the feature article, “PENNY: Computer Aided Drawing on the HP 1000" in this issue.)

Time and Attendance Datacapture program. This program has been written for the HP 1000 to facilitate high
speed data input from 3077A time reporting data collection terminals. For the complete description of the
program see the feature article in this issue, titled “Time and Attendance Datacapture with the HP 1000".

OBTAIN YOUR COPY NOW!

PLUS/1000 has already been turned over to the newly established HP 1000 International Users Group for distribution and
maintenance. If you have not joined the users group as of yet, you can join it now. Send in your application form today and
obtain the new library without delay.

The HP 1000 International Users Group address is:

HP 1000 International Users Group
P.O. Box 1000
Norwood, Massachusetts 02062

49

BULLETINS

LOCUS DISAPPEARS MARCH 31,1980

With the advent of the new PLUS/1000 contributed library the need to continue to supply LOCUS no longer exists. The most
popular LOCUS programs have been placed in PLUS/1000 and LOCUS will be discontinued.

Therefore, until March 31, Hewlett-Packard Data Systems continues to accept orders for:

— the programs contained in LOCUS as they were announced in the Communicator/1000
— the LOCUS History Master Tapes — contributed programs collected until November 1977

After March 31, 1980 Data Systems will discontinue the distribution of any contributed library related product. LOCUS will

disappear and PLUS/1000 will be handled by the new HP 1000 International Users Group. See the accompanying article
entitled “Announcing PLUS/1000: The New Contributed Library for HP 1000 Systems” for more information about PLUS/1000.

50

BULLETINS

PLUS/1000 ORGANIZATION AUTOMATES THE OPERATION OF THE
LIBRARY

PLUS/1000 is the new Contributed Library for HP 1000 systems. The library is structured around an IMAGE/1000 data base to
allow easy and fast identification of any program in the library and to produce the PLUS/1000 catalog and updates.

The PLUS/1000 contributed software is classified in packages oriented towards the main application areas of the HP 1000
systems:

manufacturing and business management
research and development

measurement and control

data communication

systems programming

demonstrations and games

non-HP 1000 compatible software.

OMMOOoC o>

LIBRARY MAINTENANCE

Various application programs and QUERY can access the PLUS/1000 data base and permit the creation of the PLUS/1000
catalog.

The main application program updates the data base when new software has been contributed. It reads the submission file,
supplied by the contributor for documenting his software, and checks the validity of the information. For correct information, it
creates a new entry in the data base; for improper information, it rejects the contributed software.

The catalog-writing programs work in conjunction with QUERY for accessing the data base and create the catalog, which
includes abstracts and indexes.

Two programs are used to simplify the distribution of the library. Program PLUSW stores the contributed library from disc to
magnetic tape in a packed format. Program PLUSR, supplied within the library, reads the programs from the magnetic tape and
stores them on disc.

SUBMISSION BY USERS

The initial submission of contributed software by the user is based upon the utilization of program SUBMT. This program is run
by the contributor to provide, in a standardized format, all information needed for documenting the contributed software.
SUBMT asks guestions and records answers; it checks the validity and format of most answers; it creates a disc, cassette or
magnetic tape file containing all the answers; and, on request, it gives a listing of the file. This file must be stored by the user as
the first file on the tape containing the contributed software. This file is the submission file used to create a new entry in the
PLUS/1000 data base. Each software contribution to PLUS/1000 must contain:

— the submission file created by answering the questions SUBMT asks,
— the source(s) of the contributed program,
— optionally, an extended documentation file, if needed.

Following is a summary of PLUS/1000 operation. This summary shows the path followed by the contributed software from

submission to acceptance and utilization, the maintenance and distribution of PLUS/1000 being the responsibility of the new HP
1000 International Users Group (see previous bulletin).

51

BULLETINS

INTERNATIONAL TRAINING CENTER ADDRESSES

AUSTRIA

(Vienna)

Handelskai 52

Postfach 7

A 1205 Wien

Tel: (0222) 35 16 21-32
Telex: 75923

Cable: Hewpack Wien

AUSTRALIA

(Blackburn) B

CUSTOMER TRAINING CENTER
31-41 Joseph Street

Blackburn, Victoria, Australia
(Pymble) P

CUSTOMER TRAINING CENTER
31 Bridge Street

Pymble, New South Wales, Australia

BELGIUM
(Brussels)

Avenue du Col Vert, 1
Groenkraaglaan
B-1170

Brussels, Belgium
Tel: (02) 672 22 40

ENGLAND
(Altrincham) A
Navigation Road
Altrincham

Cheshire WA14 1NU
(Winnersh) W

King Street Lane
Winnersh, Workingham
Berkshire RG11 5 AR
Tel: Workingham 784774
Cable: Hewpie London
Telex; 8471789

FINLAND
(Helsinki)
Nahkahousuntie 5
00211 Helsinki 21
Tel: 90-692 30 31

52

FRANCE

(Grenoble) G

5, avenue Raymond-Chanas
38320 Eybens

Tel: (76) 25-81-41
Telex: 980124

(Orsay) O

Quartier de Courtaboeuf
Boite Postale No. 6
F-91401-Orsay

Tel: (01) 907 7825

GERMANY

(Boeblingen)

Kundenschulung
Herrenbergerstrasse 110

D-7030 Boeblingen, Wurttemberg
Tel: (07031) 667-1

Telex: 07265739

Cable: HEPAG

ITALY

(Milan)

Via Amerigo Vespucci, 2
20124 Milan

Tel: (2) 62 51

Cable: HEWPACKIT Milano
Telex: 32046

JAPAN

(Osaka) O

Chuo Building

5-4-20 Nishinakajima
Yodogawa-Ku, Osaki-shi
Osaka, 532 Japan

Tel: 06-304-6021

Telex: 523-3624 YHP OSA
(Tokyo) T

2205 Takaido Higashi 3-chome
Suginami-Ku, Tokyo 168
Tel: 03-33-8111

Telex: 232-2024 YHP MARKET TOK

BULLETINS

NETHERLANDS SWEDEN

(Amsterdam) (Stockholm)

Van Heuven Goedhartlaan 121 Enighetsvagen 1-3, Fack

Amstelveen 1134 S-161 20 Bromma 20

Netherlands Tel: (08) 730 05 50

Tel: 020 472021 Cable: MEASUREMENTS
Telex: 10721

SPAIN

(Madrid) SWITZERLAND

Jerez No. 3 (Zurich)

E-Madrid 16 Zurcherstrasse 20

Tel: (1) 458 26 00 8952 Schlieren

Telex: 23515 hpe Tel: 01/730 52 40
(Geneva)

47 Avenue Blanc
1202 Geneva
Tel: 022/32 48 00

For course prerequisites and registration information contact one of the HP training centers listed above.

53

Although every effort is made to ensure the accuracy of the
data presented in the Communicator, Hewlett-Packard can-
not assume liability for the information contained herein.

Printed in U.S.A. 12/79

Prices quoted apply only in U.S.A. If outside the U.S., contact
your local sales and service office for prices in your country.

Part No. 5951-6111

D

