INVENTORY
CONTROL

| MATERIAL
AEQUIRMENTS
PLANNING

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

HEWLETT-PACKARD
COMPUTER SYSTEMS

losue 2 COMMUNICATOR/1000

3

Feature Articles

OPERATING SYSTEMS 15 HP SUBROUTINE LINKAGE CONVENTIONS
Bob Niland/HP Lexington

OPERATIONS MANAGEMENT 21 MULTIPLE TERMINAL SCHEDULER AND
ID SEGMENT MANAGER
Michael Wingham/Ducros Meilleur & Assoc. Ltd.

35 AN INTERFACE TO IMAGE
Mike Wells/Technical Analysis Corporation

DATA COMMUNICATIONS 40 USING DS/1000 AND RTE-IVA TO ACHIEVE
VIRTUAL PERIPHERALS
Jean-Luc de Schutter/Distrigaz

Departments

EDITOR'S DESK ABOUT THIS ISSUE
BECOME A PUBLISHED AUTHOR
IN THE COMMUNICATOR/1000...

5 LETTERS TO THE EDITOR

wWnN

BIT BUCKET 8 LIST OF DRIVERS AND THEIR SIZES
9 UTILITY FOR DUPLICATING MAGNETIC TAPES

BULLETINS 56 RTE-IVB QUICK REFERENCE GUIDE
57 RTE-IVB ON-LINE DIAGNOSTICS AND
VERIFICATION PACKAGE
58 A NEW INDEPENDENT STUDY COURSE
IN RTE FORTRAN 1V
60 JOIN AN HP 1000 USER GROUP

EDITOR’S DESK

About This Issue

Nearly all the feature articles in this issue of the Communicator/1000 were written by HP customers. This is because all of the
articles we have received recently were sent in by customers. The articles cover a wide variety of subjects.

In the OPERATIONS MANAGEMENT section there are two articles. The first, “Multi-terminal ID Segment Handler”, by Michael
Wingham of Ducros Meilleur & Associates Ltd. explains a method of managing 1D segments of EXEC scheduled programs in an
RTE-IVA MTM environment. This article will prove useful for system managers with many heavily used segmented programs on
their systems. In the second article, “An Interface to IMAGE”, Mike Wells of Technical Analysis Corporation describes how he

manages the data base operations of many users. His article gives ideas for providing increased security and data base
integrity.

The third and final customer article is in the area of DATA COMMUNICATIONS. Jean-Luc de Schutter of Distrigaz writes an
article describing a set of programs he wrote which use DS/1000 to talk to a secondary system terminal as though it were on his
primary system. | found “Using DS/1000 and RTE-IVA to Achieve Virtual Peripherals” to be guite interesting; the concept of
virtual peripherals is a natural extension of DS/1000.

The OPERATING SYSTEMS section contains the third article in the LINKS/1000 series. Bob Niland’s easy-to-understand
explanations of HP’s subroutine linkage conventions will be helpful to even the most experienced readers.

Each of these articles contains interesting ideas for thought. However, we could only award one calculator. Since Bob Niland
has already been awarded a calculator for his series he is ineligible. Our panel of judges concurred that the calculator winner is:

Best Feature Article AN INTERFACE TO IMAGE
by a Customer Mike Wells

Mr. Welis’ article can be understood by someone knowing little about IMAGE and yet it can stimulate ideas in the minds of
experienced users. | hope that the increase in competition will not deter entrants in the customer category. We try to have at
least one entry in each calculator category while maintaining no more than two entries in a particular topic section.

One last note | wish to make is a correction to the Editor's Desk of Volume ll1, Issue 6. The PENNY program was written by Jim
McClure rather than Jim Long. My apologies to Jim McClure for this slip of the pen.

The Editor

EDITOR’S DESK

BECOME A PUBLISHED AUTHOR IN THE COMMUNICATOR/1000. ..

The COMMUNICATOR is a technical publication designed for HP 1000 computer users. Through technical articles, the direct
answering of customers’ technical questions, cataloging of contributed user programs, and publication of new product
announcements and product training schedules, the COMMUNICATOR strives to help each reader utililize their HP 1000's
more effectively.

The Feature Articles are clearly the most important part of the COMMUNICATOR. Feature Articles are intended to promote a
significant cross-fertilization of ideas, to provide in-depth technical descriptions of application programs that could be useful to
a wide range of users, and to increase user understanding of the most sophisticated capabilities designed into HP software.
You might think of the COMMUNICATOR as a publication which can extend your awareness of HP 1000's to include that of

thousands of users worldwide as well as that of many HP engineers in Data Systems factories at Cupertino, California and
Grenoble, France.

To accomplish these goals, editors of the COMMUNICATOR actively seek technical articles from HP 1000 customers, HP
Systems Engineers in the Field, and Marketing and R&D Engineers in the factories. Technical articles from customers are most
highly valued because it is customers who are closest to real-world applications.

WIN AN HP-32E CALCULATOR!

Authoring a published article provides a uniquely satisfying and visible feeling of accomplishment. To provide a more tangible
benefit, however, HP gives away three free HP-32E hand-held calculators to Feature Article authors in each
COMMUNICATOR/1000 issue! Authors are divided into three categories. A calculator is awarded to the author of the best
Feature Article in each of the author categories. The three author categories are:

1. HP 1000 Customers;
2. HP field employees;
3. HP division employees not in the Data Systems Division Technical Marketing Dept.

Each author category is judged separately. A calculator prize will be awarded even if there is only one entry in an author
category.

Feature Articles are judged on the following bases: (1) quality of technical content; (2) leve! of interest to a wide spectrum of
COMMUNICATOR/1000 readers; (3) thoroughness with which subject is covered; and, (4) clarity of presentation.

What is a Feature Article? A Feature Article meets the following criteria:
1. lts topic is of general technical interest to COMMUNICATOR/1000 readers;
2. The topic falls into one of the following categories —

OPERATING SYSTEMS

DATA COMMUNICATIONS

INSTRUMENTATION

COMPUTATION
OPERATIONS MANAGEMENT

3. The article covers at least two pages of the COMMUNICATOR/1000, exclusive of listings and illustrations (i.e., at least 1650
words).

EDITOR’S DESK

There is a little fine print with regard to eligibility for receiving a calculator; it follows. No individuat author will be awarded more
than one calculator in a calendar year. In the case of multiple authors, the calculator will be awarded to the first listed author of
the winning article. An article which is part of a series will compete on its own merits with other articles in the issue. The total of
all articles in the series will not compete against the total of all articles in another series. Employees of Technical Marketing at
HP's Data Systems Division factory in Cupertino are not eligible to win a calculator.

All winners of calculators will be announced in the issue of the COMMUNICATOR/1000 in which their articles appear. Again, all
Feature Articles are judged by an impartial panel of three DSD Technical Marketing Engineers.

A SPECIAL DEAL IN THE OEM CORNER

When an HP 1000 OEM writes a Feature Article that is not only technically detailed and insightful but also application-oriented
as opposed to theoretical, then that OEM may ask that the article be included in THE OEM CORNER. A Feature Article included
- in THE OEM CORNER may contain up to 150 words of pure product description as well as a picture or illustration of the OEM'S
product or its unique contribution. HP's objective is twofold: (1) to promote awareness of the capabilities HP 1000 OEMs’
products among ail HP 1000 users; and, (2) to publish an article of technical interest and depth.

IF YOU'RE PRESSED FOR TIME ...

If you are short of time, but still have that urge to express yourself technically, don't forget the COMMUNICATOR/1000 BIT
BUCKET. It's the perfect place for a short description of a routine you've written or an insight you've had.

THE MECHANICS OF SUBMITTING AN ARTICLE

If at all possible please submit an RTE File containing the text of your article recorded on a Minicartridge (preferrably) or on a
paper tape along with the line printer or typed copy of your article. This will help alt of us to be more efficient. The Minicartridge
will be returned to you promptly. Please include your address and phone number along with your article.

All articles are subject to editorship and minor revisions. The author will be contacted if there is any question of changing the
information content. Articles requiring a major revision will be returned to the author with an explanatory note and suggestions
for change. We hope not to return any articles at all; if we do, we would like to work closely with the author to improve the article.
HP does, however, reserve the right to reject articles that are not technical or that are not of general interest to
COMMUNICATOR/1000 readers.

Please submit your COMMUNICATOR/1000 article to the following address:
Editor, COMMUNICATOR/1000
Data Systems Division
Hewlett-Packard Company
11000 Wolfe Road

Cupertino, California 95014
USA

The Editor looks forward to an exciting year of articles in the COMMUNICATOR/1000.

With best regards,

The Editor

EDITOR’S DESK

LETTERS TO THE EDITOR

Dear Editor,

I am developing software for an RTE- (A, soon to be B) system and must be able to unambiguously identify peripheral hardware
to my /O calls.

Printer output can be routed to:

2621P through DVAQS
2631A through DVA12
2608A through DVB12

Interactive /O can take place with:

2645A through DVAQO5S
2621A through DVAO5
(others) through DVR0OO

Afew id's are easy, e.g. printer output to an EQT of DV.05 can be assumed a 2621P, or a terminal on DV.00 is assumed to be a
teletype device. But | need to know how to determine the type of a terminal on DV.05. On page 6-3 of the 2645 Reference
Manual (02645-90005) bit 4 of byte 3 of the primary status word is identified as “terminal type”. It is shown as being set.
However, the corresponding datum for the 2621 is also shown as set (page C-3, manual 02620-90001).

I need not only a method to differentiate among devices, but it must also be a method devoid of “tricks”, i.e. it must be
supported in the HP documentation of the devices and drivers.

"Many thanks in anticipation of your solution.
Yours truly,

Craig B. Spengler
Aim Management Services, Inc.

Dear Sir,

According to Data Terminals Division terminal types can be distinguished from the secondary status word {page 6-5 of the 2645
Reference Manual). Byte 8 of the secondary status word contains information about terminal firmware. Terminal firmware is
what makes a 2648 different from a 2645, etc. In a 2645, bit 1 of byte 8 will be the only bit set. In a 2648 bits 1 and 3 will be set,
and in a 2647 bits 1,3, and 4 will be set. A 2621 can be differentiated in that it doesn’t have a secondary status word. Nothing is
returned from a secondary status request to the 2621.

I hope this answers your questions regarding peripherals of DVRO5. If you have trouble identifying different peripherals of
another driver piease write again.

With best regards,

Editor, Communicator/1000

EDITOR’S DESK

Dear Editor,
Here is an update to the article “Remote System Control Via DS/1000” in Volume 111, Issue 5 of the Communicator.
The example
CALL XMSG (**ENCOUNTERED ON WRITE’’,12,5,-3,-4)
shouid read
CALL XMSG (20HENCOUNTERED ON WRITE,10,5,-3,-4)
The continuous “modem” problems described turned out to be caused by a too-low EQT timeout value which was set
according to the instructions on page 3-52 of the Network Manager's Manual, which was misleading. In fact, errors are few,

occurring only every 500-1000 records on the average.

The dummy driver (DVD0O0) described was not fully debugged at time of writing (and has been put aside for moré important
work).

None of the authors are at Holloman anymore aithough the work has been continued by others. Sgts. Beyer and Reynolds are
studying for their batchelors degrees at University of Arizona, and | am with HP in El Paso.

Keep up the good work, and thanks for the calculator!
Best regards,

John Pezzano
HP, El Paso

Dear Sir,

Thanks for keeping us up-to-date on the whereabouts of the authors of “Remote System Control Via DS/1000”. The information
will be helpful to anyone wishing to contact you with questions regarding your application. Thanks also for updating your article
with the correct XMSG calls. | appreciate your correspondance, and hope you will continue to submit articles for publication in
the Communicator/1000.

Sincerely,

Editor, Communicator/1000

EDITOR’S DESK

Dear Editor,

The "RTE-IIl, RTE-Il, and BATCH-SPOOL MONITOR Pocket Guide" (part number, 92060-90010) is a very useful publication. Is
a similar publication available for RTE-IVB? If a similar publication exists, how do | get one? If a similar publication does not exist
at this time, what is its anticipated publication date?

Sincerely,

W.B. Fegley
Hughes Aircraft Company

Dear Sir,

| agree that the Pocket Guide is very useful. The RTE-IVB Pocket Guide has been in the workings since last summer, and is
finally available. For ordering information see the bulletins section of this Communicator.

With Best Regards,

Editor, Communicator/1000

BIT BUCKET

LIST OF DRIVERS AND THEIR SIZES

Ed Gillis/HP Pittsburgh

Drivers are loaded into partitions during a generation by a first fit — first used algorithm. Therefore, to help optimize your
memory usage, you should relocate the drivers being used in descending word-length size. The following list of drivers and
decimal word sizes should help in determining the optimal order of drivers in a particular generation.

DVROO 600
DVRO0O 600
0ODVO05 925
4DV05 1450
DVAO05 1600
1DV10 1000
2DV10 200
DVR11 600
DVR12 350
DVA12 450
bvB12 900
Dvzi2 200
DVA13 160
DVR15 630
DVR23 475
DVR31 700
DVR32 950
DVR33 625
DVR36 1100
1DV37 1100
2Dv3a7 1375
4DP43 425
2Dv47 1750 — Should be placed in System Driver Area
3Dv47 1850 — Should be placed in System Driver Area
DVR50 4800 — Should be placed in System Driver Area
2Dve2 550
3DVve2 680
4DV6B2 600
DVAG5 650
DVG67 775
DVAT72 900
DvM72 500

BIT BUCKET

UTILITY FOR DUPLICATING MAGNETIC TAPES

Don Pottenger/HP Data Systems Division

As one uses any computer system a need always arises to copy a magnetic tape. Since no such utility currently exists, MTDUP

was born. MTDUP only works with 9 and 7 track, 800 and 1600 BPI tape drives. It has the capability to deblock and/or convert
EBCDIC to ASCII while copying.

The deblocking feature will output records of the same length in a given output file, and requires that the blocking factor divide
evenly into the record length of the input file. Otherwise, data may be lost while deblocking. The largest input record size

allowed by MTDUP is 10000 words.
Scheduling is done as follows:

:RU,MTDUP,mt#1,mt#2,#files,blocking factor ,EBCDIC flag

where data is being copied from mt#1 to mt#2. The number of files to copy is specified by #files, the number of records per

block on mt#2 is specified by blocking factor, and EBCDIC characters on mt#1 are converted to ASCII on mt#2 if the EBCDIC
flag is a “1”.

FTN4,L

c

c MTDUP HAS BEEN ENHANCED TO UNBLOCK TAPES AND CONVERT

C EBCDIC TO ASCII. 1IN ADDITION IT WILL CHECK FOR AND

c STOP AT A DOUBLE END OF FILE.

c

c SCHEDULING PARAMETERS:

c

c RU,MTDUP ,FROM MT,TO MT,# FILES,BLOCKING,EBCDIC FLAG

c

c #FILES = -1 GO TO DOUBLE EOF

c

c BLOCKING = NUMBER OF RECORDS/BLOCK (DEFAULT: 1)

c

c EBCDIC FLAG = IF #0 CONVERT FROM EBCDIC TO ASCII

c (DEFAULT: ASCII TO ASCII)

c

c TYPICAL SCHEDULING WOULD BE:

c

c RU,MTDUP,10,8, -1

c

c THIS WOULD COPY A TAPE FROM LU 10 TO LU 8 UNTIL DEOF IS

c ENCOUNTERED.

c
PROGRAM MTDUP(3,70) ,MTCOPY W EBCDIC CONVERSION OPTION 800215

c
DIMENSION 1BAC10000),IPRAM(S),IMES1C15),IMES2(21), IMES3(13)
EQUIVALENCE CIPRAM(4),I1BLK),CIPRAMC1),MT1),CIPRAM(2) ,MT2)
EQUIVALENCE CIPRAM(3),ICNT),CIPRAM(S),EBCDIC)

c
DATA IMES1/2HRU,2H,M,2HTD,2HUP,2H,F ,2HRO,2HM ,2HMT ,2H,T,2H0 ,2HMT,
#2H,# ,2HF 1 ,2HLE ,2HS /
DATA IMES2/2H E,2HND,2H 0,2HF ,2HFI,2HLE,7#+2H ,2H R,2HEC,2HOR,
#2HDS,2H W,2HRI,2HTT,2HEN/
DATA IMES3/2H D,2HOU,2HBL,2HE ,2HEN,2HD ,2HOF,2H F,2HIL,2HE ,
#2HF 0, 2HUN, 2HD /

c

BIT BUCKET

CALL RMPARCIPRAM)
LOG = LOGLUCISES)
IFCIBLK .LE. 0)IBLK

IFCICNT .LT. 0)ICNT = 32767
IFCICNT .EQ. 0)ICNT = 1
IFILE = 1
IEOF = 0
C
C CHECK FOR MT DEVICE
C
DO 5 I=1,2
CALL EXEC(C13,IPRAM(CI),ISTAT)
C
[FCIANDCISTAT,37400B)+2 .EQ. 23000B)GO TO 5
IFCIANDCISTAT,37400B)+2 .EQ. 24000B)GO TO 5
CALL EXEC(2,L0G,IMES1,15)
GO TO 999
c
5 CONTINUE
c
DO 10 I=1,ICNT
IRCNT = 0
IB1 = 0
1 IFCIFBRK(IDUM))999,2
C
C READ UP TO 10000 WORDS FROM MAG TAPE 1 INTO IBA ARRAY
C
2 CALL EXEC(1,100B+MT1,IBA,10000)
CALL ABREG(IA,IB)
C
C CHECK FOR END OF FILE ON MAG TAPE 1
C
IFCIAND(CIA,200B).EQ.200B)Y GO TO 990
C RESET EOF FLAG IF ONLY SINGLE EOF IS FOUND
IEOF = 0
IFCIB1T .EQG. 0)IB1 = IB
C
C CHANGE ASCII TO EBCDIC IF SPECIFIED IN RUN STRING
C
IFCEBCDIC .NE. 0)CALL CONVT(IBA,IB)
C
C CHECK FOR LAST BLOCK HAVING BEEN REACHED
C
IFCIB .NE. IB1 .AND. IBLK .GT. 13GO 70 900
J =1
C
C CALCULATE LENGTH OF RECORDS TO BE WRITTEN TO MAG TAPE 2
C
ILEN = IB/IBLK
C
C WRITE A BLOCK OF RECORDS TO MAG TAPE 2
C

DO 20 K=1,IBLK
CALL EXEC(2,100B+MT2,IBACJ),ILEN)
J = J + ILEN
C COUNT NUMBER OF RECORDS WRITTEN TO MAG TAPE 2
IRCNT = IRCNT + 1
20 CONTINUE

10

BIT BUCKET

o
o

o NeNel OO0 W

w
o

OOOOWOOO
0]
o

10

c
c
c

GOTO 1
J =1

CALCULATE NUMBER OF QUTPUT RECORDS IN AN
UNEVEN BLOCK OF INPUT

IFBLK = IB/ILEN
WRITE BLOCK AND RETURN TO READ NEXT RECORD

DO 30 K=1,IFBLK

CALL EXEC(2,100B+MT2,1BACJ),ILEN)
J = J + ILEN

IRCNT = IRCNT + 1

CONTINUE

GO TO 1

CHECK FOR DOUBLE END OF FILE ON MAG TAPE 1
IFCIEOF .EQ. 1)GO TO 99S

IF EOF, WRITE A MESSAGE TO LOG DEVICE STATING THE NUMBER
OF THE FILE JUST WRITTEN AND HOW MANY RECORDS IT CONTAINED

CALL CNUMDCIFILE,IMES2(7))
CALL CNUMDCIRCNT,IMES2(11))
CALL EXEC(2,L06G,IMES2,21)
IFILE = IFILE + 1

IEOF = 1

ENDFILE MT2

CONTINUE

GO TO 999

WRITE DOUBLE END OF FILE TO MAG TAPE 2

995 CALL EXEC(2,L0G,IMES3,13)

999

0001
=+ NO

0001
0003
0004
0005
0006
0007«
0008+
0009+
0010+

ENDFILE MT2
END

ASMB,L,Q
ERRORS PASS#1 ##RTE ASMB 92067-16011#++

ASMB,L,G
00000 NAM CONVT,7 EBCDIC»ASCII CONVERSION 790419
EXT .ENTR
ENT CONVT
SUP
A FORTRAN-CALLABLE CONVERSION ROUTINE WHICH REPLACES
THE CONTENTS OF AN EBCDIC ARRAY WITH ITS ASCII EQUIVALENT.
CONVERTS DN THE BASIS DOF TWO CHARACTERS PER WORD.

11

BIT BUCKET

0011 NOTE: OCTAL VALUE 255 WILL BE TRANSLATED TO A ‘[’
0012+ OCTAL VALUE 275 WILL BE TRANSLATED TO A ‘1’
0013+ THIS IS NOT A DEFINED EBCDIC CODE.

0014+«

0015+ CALLING SEQUENCE:

0016+

0017+ CALL CONVT CIARRAY,LENGTH)

0018+

0019+ WHERE "IARRAY"™ IS THE SYMBOLIC ARRAY NAME AND "“LENGTH"
0020+ IS THE NUMBER OF 16-BIT WORDS TO BE CONVERTED.

0022 00000 000000 POINT NOP

0023 00009 000000 BLKSZ NOP

0024 00002 000000 CONVT NOP

0025 00003 000001X JSB .ENTR RETRIEVE PARAMETER ADDRESSES.
0026 00004 000000R DEF POINT

0027 00005 000001R LDA BLKSZ,I GET NUMBER OF RECORDS.

0028 00006 003004 CMA, INA CREATE A WORD COUNTER.

0029 00007 000001R STA BLKSZ

0030 00010 000000R GO LDA POINT,I GET A PAIR OF EBCDIC CHARACTERS
0031 00011 006400 CLB A-REG: (E1,E2) B-REG: (00,00)
0032 00012 101110 RRR 8 ¢00,E1) (E2,00)
0033 00013 000024R JSB .CNVT (A1,00) (E2,00)
0034 00014 100110 RRL 8 (00,E2) (00,A1)
0035 0001S 000024R JSB .CNVT (A2,00) ¢00,A1)
0036 00016 101110 RRR 8 (A1,A2) (00,000
0037 00017 000000R STA PODINT,I AND STORE IN PLACE OF EBCDIC.
0038 00020 000000R 1SZ POINT NEXT PAIR.

0039 00021 000001R 1sZ BLKSZ FINISH CHECK.

0040 00022 000010R JMP GO NOPE .

0041 00023 000002R JMP CONVT, I

0043 00024 000000 .CNVT NOP

0044+ THE EBCDIC CHARACTER IN THE LOW BYTE OF THE A-REG IS
004S+ USED AS A TABLE ADDRESS OF ITS ASCII EQUIVALENT,
0046+ WHICH IS THEN RETURNED IN THE HIGH BYTE OF A-REG.
0047 00025 00006S CLE,ERA (A-REG)/2, REMAINDER IN E.
0048 00026 000035SR ADA TABL. FORM TABLE WORD ADDRESS.

0049 00027 000000 LDA A,l GET TWO CHARACTERS.

0050 00030 002040 SEZ REMAINDER INDICATES WHICH IS
0051 00031 001727 ALF ,ALF TO BE RETURNED IN A-REG. THE
0052 00032 000034R AND CMASK UNWANTED ONE 1S5 MASKED OUT.
0053 00033 000024R JMP _CNVT,I

0054+

00SS 00000 A EQU ©

0056 00001 B EQU 1

0057+

0058 00034 177400 CMASK QOCT 177400

0060 00035 000036R TABL. DEF E000 LOCATION OF TRANSLATION TABLE
0061+

0062« THIS IS THE TABLE FOR CONVERSION FROM EBCDIC TO ASCII
0063+ XXX INDICATES NO TRANSLATION, THE RESULTING CHARACTER
00c4s HAS BIT 7 SET (HIGH DRDER BIT) AND BITS 0 THRU 6 REMAIN
0065+ THE SAME AS THE SOURCE CODE

OOGGI'I'I'I'I'illlllllll’lfI'I'I'I'I'I'I'I'I'IHI'I'I»I'I'I'i'l’llll’ll"{lllllll{lllllilll’ll"llll'l'l

0067+

0068+ EBCDIC _ 0 1 2 3 4 S 6 7

0069+ Ann

0070 00036 000001 €000 OCT 000001,001003,102011,103177
0071+ ASCII--> NULSOH STXETX XXX HT XXXDEL
0072+

12

BIT BUCKET

0073
0074+
007S+»
0076
0077+
0078+
0079
0080+
0081+«
0082
0083+
0084+
008S
008G+
0087+
0088
0089+
0090+
0091
0092+«
0093+
0094
009S»
009+
0097
0098+
0099+
0100
0101+«
0102+
0103
0104+«
0105«
0106
0107«
0108+
0109
0110+
0111«
0112
0113+
0114+«
0115
0116+
0117+

00042

00046

00052

00056

00062

00066

00072

00076

00102

00106

00112

00116

00122

00126

00132

104211

010021

014031

120241

124251

130261

134271

020301

144311

023321

154331

026457

164351

170361

174140

E010

E020

E030

E040

E0S0

E060

E070

E100

E110

E120

€130

E140

E150

E160

E170

ocT

ocT

ocT

ocT

ocT

ocT

ocT

ocT

ocT

ocT

ocT

ocT

ocT

ocT

ocT

104211,

XXXXXX

o10021,

105013,006015,007017
XXX VT FF CR SO SI

011023,112012,004000

DLEDC1 DC2DC3 XXX LG BS NUL

014031,

115233,016035,017037

CAN EM XXXXXX FS GS RS US

120241,

XXXXXX

124251,

XXXXXX

130261,

XXXXXX

134271,

121243,122012,013433
XXXXXX XXX LF ETBESC

125253,126005,003007
XXXXXX XXXENQ ACKBEL

013263,132265,133004
SYNXXX XXXXXX XXXEOT

135273,012025,137032

XXXXXX XXXXXX DC4NAK XXXSUB

020301,

SP XXX

144311,

141303,142305,143307
XXXXXX XXXXXX XXXXXX

055456,036050,025441

XXXXXX [. < (+

023321,

& XXX

154331,

XXXXXX

026457,

-/

164351,

XXXXXX

170361,

XXXXXX

174140,

XXX\

151323,152325,153327
XXXXXX XXXXXX XXXXXX

056444,025051,035536
1 ¢ :) : 7

161343,162345,163347
XXXXXX XXXXXX XXXXXX

076054,022537,037077
'y, - > ?

171363,172365,173367
XXXXXX XXXXXX XXXXXX

035043,040047,036442
’ e ’ = n

011sllllllllllllIlllllllllllllllllllIlllillillllIlllllllIIII.IIIIIII!III.III

0120+«
0121+

0123+
0124

0125+«
0126+
0127

0128+
0129+«
0130

0131+«
0132+

THE FOLLOWING TRANSLATION IS FROM LOWER CASE EBCDIC

TO LOWER CASE ASCII

0122.!!'.'.!..!!IllllIIIIllIllllllllllllllilllllllllIlllllllllllllllllllllli

00136

006142

100141

064151

€200

€210

00146 110152 E220

OCT 100141,061143,062145,063147

XXX A

B C D E F G

OCT 064151,105213,106215,107217

H 1

XXXXXX XXXXXX XXXXXX

0CT 110152,065554,066556, 067560

xXXx J

K L M N o P

13

BIT BUCKET

0133 00152 070562 E230 OCT 070562,115233,116235,117237

0134+« A R XXXXXX XXXXXX XXXXXX
0135+

0136 00156 120176 E240 OCT 120176,071564,072566,073570
0137+ XXXESC S T u v W X

0138+

0139 00162 074572 E250 OCT 074572,125253,126133,127257
0140+ Y Z XXXXXX XXX [XXXXXX
0141+

0142 00166 130261 E260 O0OCT 130261,131263,132265,133267
0143+ XXXXXX XXXXXX XXXXXX XXXXXX
0144+

0145 00172 134271 E270 O0OCT 134271,135273,136135,137277
0146+ XXXXXX XXXXXX XXX 1 XXXXXX
0147+

D140 % aat t a R R R A AR R AR R R R R AR E R R R R R R R R R R R R R SRR R AR E R AR AR R B RRRARRRRERERRRRNS

0150+« THE FOLLOWING TRANSLATION IS FROM UPPER CASE EBCDIC
0151+ TO UPPER CASE ASCII

01SailllllllillllllIlllIlllIlllllllllllIIIIII{IIIIIIIIIIllllllllllllllllllll

0153+
0154 00176 075501 E300 OCT 075501,041103,042105,043107

0155+ A B C D E F G

0156+

0157 00202 044111 E310 OCT 044111,145313,146315,147134
0158+ H T XXXXXX XXXXXX XXX \

0159+«

0160 00206 076512 E320 OCT 076512,045514,046516,047520
0161+ NJ K L M N 0 P

0162+

0163 00212 050522 €330 OCT 050522,155333,156335,157337
0164+ Q@ R OXXXXXX XXXXXX XXXXXX
0165+

0166 00216 160134 E340 O0OCT 160134,051524,052526,053530
0167+ XXX A\ S T Uu v W X

0168+

0169 00222 054532 E350 OCT 054532,165353,166355,167357
0170+ Y 2 XXXXXX XXXXXX XXXXXX
0171«

0172 00226 030061 E360 OCT 030061,031063,032065,033067
0173« 0 1 2 3 4 S e 7

0174+

0175 00232 034071 E370 OCT 034071,175373,176375,177377
0176+« 8 9 XXXXXX XXXXXX XXXXXX
0177+

0178 END

»*+ ND ERRORS +TOTAL #+RTE ASMB 92067-16011++

14

OPERATING SYSTEMS

HP SUBROUTINE LINKAGE CONVENTIONS

Robert Niland/HP Lexington

[Editor's Note: This is the third part in a series of articles taken from Bob Niland's manual on HP Subroutine Linkage
Conventions.]

4-1, PARAMETERS IN BLANK COMMON

A fundamental concept in parameter or argument passing is that the calling program leave or store the parameters in a location
which is known to the subroutine being called. The register-passing technique discussed in sections 3-2 is an example of this,
but it is apparent that it is a very limited technique, there being only four 16-bit registers in which to pass data. The

address-definition technigues of section 3-4 are an improvement, but still limit the amount of data passed, and both methods
are only useful in assembly language.

Where a larger quantity of parameter data must be passed, the calling routine can store it (or expect to find) it in a block of
memory which is declared in both the caller and the subroutine, and is thus COMMON to both. In RTE systems this location is
either a memory resident area (SYSTEM/REVERSE COMMON) or is within the program’'s own bounds (LOCAL COMMON).
Selection of common location is determined at relocation time via a LOADR option. Access is via declarations in RTE Assembler
or Fortran IV. These are fully documented in the RTE-IV ASSEMBLER and RTE FORTRAN IV manuals. Typical invocations are

shown below. These are examples of BLANK COMMON and should not be confused with NAMED COMMON which is
discussed in section 4-2.

Sample of Fortran code to access common:

FTN4,L,T,C

COMMON ARRAY(2,4,6), WORDS(32), IWORD [,<member>{(<size>)]]

IWORD = 123
WORDS(7) = 456.7
ARRAYCINDEX,LENGTH,NUMBER) = 890.1

Where: <member> is any supported FTN4 variable type which may appear in a DIMENSION statement.

<size> is the number of elements in the variable or array. The number of 16 bit words in [member] is a
function of both [(size)] and [member’s] data type. Default size = 1 element.

Data items in common are accessed as if they were located within the declaring routines.

Sample of functionally equivalent assembly code:

ASMB,R,L,C

[1bl] COM ARRAY(96), WORDS(64), IWORD [,<membr>[(<size>)]]

LDA =D123 A=123
STA IWORD IWORD=A
DLD =F456.7 ALB = 456.7

DST WORDS+12 WORDS(7) = A&B (see note)
15

OPERATING SYSTEMS

JSB ..MAP Resolve an array address.
DEF ARRAY Define array start address.
DEF INDEX Pass 1st subscript.
DEF LENTH Pass 2nd subscript.
DEF NUMBR Pass 3rd subscript.
DEF D0002 Length of 1st dimension.
DEF D0004 Length of 2nd dimension.
* End of ..MAP call
STA ELEM Save element address returned by ..MAP
DLD =F890.1 Get constant.
DST ELEM,]I Store into element.
Where: (Ibil: is an optional label which will be ignored by the assembler, but which may be used for
documentation where multiple COM pseudo instructions are present.
membr: is any legal ASMB external label.
size: is the size of common block [membr] in 16 bit words. Note that arrays may have but a single

dimension, and that when mapping to other than INTEGER data types (as in this example), the
user must compute the number of integer words in the non-integer array.

Data items in common are accessed as if they were located within the declaring routines.
Note

Very early versions of the RTE relocating LOADR cannot resolve
references-with-offset to COM or EXT externals, such as DST
WORDS+12 above.

The principal advantage to using common over using registers is the dramatic increase in the quantity of parameters which can
be passed. The method is not without disadvantages however. Among these are:

1. Each program and/or subroutine requiring access to data items in blank common must declare each member of that
common in the same order and for the same size as the originally declaring routine.

Non-accessed members, at least, may be “skipped” by declaring single blocks of matching size. For example if a routine
required access only to IWORD in our sample it could declare:

COMMON IGNORE(160), IWORD

2. Any change in the layout of common requires editing and recompiling all&d the programs and subroutines which access
that common. From the standpoint of structured programming, this is by far the most serious objection to blank common.

3. Of the three memory areas where common may reside (LOCAL, SYSTEM, REVERSE), a single program with its overlays
and subroutines may be linked to only one. A program using only blank common cannot have part in the system area and
part in its own program code area.

4. If a program links to (or defaults to) LOCAL COMMON, only that program and its routines can access that common,

5. If a program is linked to SYSTEM or REVERSE system COMMON, the programmer must be aware that there is no
protection for the data in that area. Any other program using common, and linked to system common may access (or
corrupt) the data there. Further, if two or more different applications both require system common, all but the first user of
that common must declare and ignore the preceding blocks (which are owned by the other programs), in a manner simitar
to that shown in objection 1 above.

16

OPERATING SYSTEMS

4-2. PARAMETERS IN NAMED COMMON AND SSGA

The limitation that each program may access only one type of blank common, and the limitation that all routines sharing a
common area declare all of that area is a result of the fact that each routine generates but a single external (COM) reference to
be resolved by LOADR. All accesses to elements within the common area are via offsets with respect to word 1 of that area.

An improvement over simple (or blank) common is a technique known variously as NAMED COMMON, SUBSYSTEM GLOBAL,
or EXT-ENT GLOBAL. It will be referred to as NAMED COMMON in this section. Although access to data elements in NAMED

COMMON is still via offset with respect to word 1 of each area, this type of common offers several improvements over blank
common, viz:

1. Multiple blocks are allowed, each having a local variable name used within the routine, and a unique EXTERNAL NAME
which must match that appearing in a BLOCK DATA SUBPROGRAM (BDS) or in the SUBSYSTEM GLOBAL AREA (SSGA).
There is no block size limit. Each separate word or array in blank common can be a distinct NAMED COMMON block.

2. In a program having multiple blocks of NAMED COMMON, each block may reside in either a BDS or in SSGA without
regard to where any other block resides.

The essence of this method is that instead of generating a single COM (COMMON) reference per routine as in blank common,
NAMED COMMON declarations result in one (or multiple) EXT (external) references per routine which must be satisfied during
RTxGN or LOADR execution by a corresponding ENT (entry) reference in a BDS, SSGA, or ASMB subroutine. An exception to
this linkage is EMA references which are treated differently and may be discussed in future editions of this manual.

As an example, two blocks will be created using the sample arrays from the previous section. tn FTN-IV the EXT references will
be generated for names “LARGE" and “"SMALL" below. Although a name may represent a block containing only a single
element or array, the name must not be the same as the element or array variable name. This is because:

1. EXT symbols must be 5 characters or less and local variable names can be 6.

2. A single common name may refer to a block containing more than one uniquely identifiable data item or array.

FTN4,L,T,C

COMMON /LARGE/ ARRAY(2,4,6)
COMMON /SMALL/ WORDSC32). IWORD

In ASMB the EXT references are generated explicitly.

ASMB,R,L,C
EXT LARGE ,SMALL
ARRAY EQU LARGE

WORDS EQU SMALL
IWORD EQU SMALL+64

In both cases references to the common elements are by the use of the iocal variable names, and access methods are identical
to those for blank common.

The ENT (entry) reference required to satisfy an FTN4 or ASMB generated EXT can reside in the program or in the system area
and can be created in either Fortran or Assembly language, or both.

17

OPERATING SYSTEMS

In FTN4 an ENT is generated for each NAME in a NAMED COMMON statement in a BLOCK DATA SUBPROGRAM. For
example . . .

FTN4,L,T,C
BLOCK DATA MNAME ,Extended NAM record for LOADR map.

COMMON /LARGE/ ARRAY(2,4,6)
COMMON /FILES/ NAMRS(3,2)

DATA NAMRS /2HFI,2HLE,2HO1,
& 2HF 1, 2HLE ,2H02/

In ASMB the ENT is generated explicitly. For example . . .

ASMB,R,L,C
NAM MNAME,7 Extended NAM record for LOADR map.

ENT LARGE,FILES
LARGE BSS 00096 BSS = Block Starting Symbol

FILES ASC 03,FILEO1
ASC 03,FILEO2

The preceding examples are functionally identical, and the following comments apply to both.

MNAME is the user defined 5 character name assigned to the binary module which will result from compilation or
assembly. It is usually used in the file namr's as well, e.g. &MNAME and %MNAME.

7 A Fortran IV BLOCK DATA SUBPROGRAM is always a type 7 or UTILITY SUBROUTINE module. The ASMB

programmer can, of course, set the module type to any value desired. The significance of the module type is
discussed in subsequent paragraphs.

DATA & ASC One of the features of BLOCK DATA SUBPROGRAMS is that the data items within may be set to initial vaiues by

the use of the DATA statement. An equivalent result can be achieved in Assembly language through the use of
the pseudo instructions ABS,ASC,BYT,DEC,DEX, and OCT. In the case of character variables, this is frequently
easier than long strings of 2H’s.

In programs using blank common, the memory location of the common block is specified by the program type during RTxGn

and by a default or user option during LOADR. In programs using named common, the location of the blocks is a result of how
they are relocated.

If the program is to be linked to NAMED COMMON in SSGA, two steps are required:

1. The module containing the ENT’s must have been supplied during RTxGN. If it was an FTN4 module, it must have had its

type changed to 30 during the PARAMETER INPUT PHASE of RT4GN. If an ASMB module, it must have been type 30, or
have been changed to type 30.

2. Ifthe program was loaded during RTxGN: It must have had a type in its NAM or PROGRAM statement allowing it to have
SSGA access (types 17, 18, 19, 20, 25, 26, 27 and 28 in RTE-IV), or must have had its type changed during the
PARAMETER INPUT PHASE. If the program is to be loaded on-line, the LOADR must be supplied with the proper
scheduling parameter or command (OP,xxSSxx for RTE-IV) to permit SSGA access.

18

OPERATING SYSTEMS

If any NAMED COMMON declarations are to be satisfied LOCALLY the module(s) containing the ENT's must be relocated with
the requesting program. During RTxGN this is done by including the module with a “RELocate” command. Note: If the module
is type 7, it will also be included in the relocatable library of the system being generated. If the module is only to be used to
satisfy the program being loaded, the type should be changed from 7 to 8.

On-line, using LOADR these rules apply.

1. Any ENT module relocated before the system library is searched will be used to satisty NAMED COMMON EXT references
which match its ENT's. The module will be appended to the program as any subroutine would.

2. Ifthe system library is searched (e.g. SEA,, in RTE-IV) before a local module is relocated, LOADR will attempt to satisfy the
EXT’s from the relocatable library or SSGA.

A final word about assembly routines: The ASMB example shown in this section is what might be termed an ASMB BLOCK
DATA SUBPROGRAM. It shows how to emulate the Fortran BLOCK DATA SUBPROGRAM. However, since all that is required to
satisfy a NAMED COMMON declaration in a using routine is an entry point (ENT), an assembly routine need not be just a
dummy module. It may contain executable code, and in fact could be the main program.

4-3. SYSTEM CONSIDERATIONS

The preceding sections discuss the limitations of common and SSGA as they apply to the programs involved. However, the use
of SYSTEM COMMON and SSGA can also have an adverse effect on users who do not participate the use of these resources.

Specifically, the inclusion of blank and/or labeled (SSGA) common during system generation consumes logical address space
permanently for the life of that generation. Depending on which RTE you are implementing, and particularly on whether or not it
is dynamically mapped, the size of system data areas such as SSGA, Real-time and Background Common will always reduce

the maximum size of System Available Memory (SAM), and may also affect the maximum size of some types of programs, and
the number of entries in the system DRT, Interrupt, MAT and ID segment tables.

The combined programming and system considerations seem to make a good case for not using these system-resident data
areas, and it is wise to avoid their use except when necessary. However, there are applications in which the disadvantages of
SSGA and SYSTEM COMMON become advantages because of the unique properties of these areas. Among these are:

® /O: Throughput is much higher when I/O is unbuffered. However, a program performing unbuffered 1/O is not swappabile,
and is tying up a partition. By placing the program's data buffer in system common or SSGA, the program can be swapped
irrespective of eqt buffering.

[]

Multiprogramming: If more than one program needs access to a data area, that area must reside in a location common to
all the programs. There are only three choices:

1. System

2. Program

3. Undeclared memory

1. System: i.e. common or SSGA is the simplest method.
2. A data-management program using CLASS /O (slow), or shared EMA (unsupported), could manage data for
cooperating programs. DATACAP/1000, in one implementation, uses CLASS I/O and an EMA manager program to

handle multiple terminals which may be in different stages of different transactions. But the "high-performance”
implementation uses COMMON!

19

OPERATING SYSTEMS

3. Undeclared memory is similar to shared-EMA, and shared access to a memory-locked program containing the data
areas. It requires a mapped machine, privileged user memory management routines, and can be rendered unusable
by minor HP changes in the RTE dispatcher, and is therefore unsupported.

e Privileged drivers: May not call any RTE or user routines external to themselves. They may communicate with their host
programs only through SSGA or system common.

20

OPERATIONS MANAGEMENT

MULTIPLE TERMINAL SCHEDULER AND ID SEGMENT MANAGER

Michael P. Wingham/Ducros Meilleur & Associates Ltd.

INTRODUCTION

The RTE-IV Multiple Terminal Monitor (MTM) manages ID segments so that each user can have his own copy of a program. If
the user wishes to run a program with FMGxx as the father, then in certain circumstances, a copy of the program will be created
belonging to the user’s terminal.

MTM will perform this action whenever the program to be run is a son of FMGxx, and the programis a Type-6 FMGR file. A copy
of the program will be created with the last two characters being xx, and be scheduled for execution to terminal xx.

For example, if the EDITR is loaded on-line as a temporary load and saved as a Type-6 file, the commana:

:RU,EDITR

will create a program named EDIxx and schedule it to terminal xx. When EDIxx is finished, the ID segment will automatically be
returned to the system.

The advantage of processing the ID segments in this way is that all terminals can run the same program but each user gets a
personal copy of the program. Therefore, a user does not have to wait for other users to finish with a program before gaining
access to it. Also, ID segments which are no longer needed do not accumulate in the system.

The above features do not apply to programs scheduled by EXEC calls. This article describes a method of extending these
MTM features to programs scheduled by EXEC calls. Furthermore, this method allows HP 1000 systems not operating under
RTE-IV to emulate the program scheduling capabilities of MTM.

MULTIPLE TERMINAL SCHEDULER AND ID SEGMENT MANAGER

Scheduling Copies of Programs

Suppose a program called AMAIN prompts the user to enter a file name. AMAIN then schedules a program called PROC which
processes the file and returns control to AMAIN. AMAIN then displays the results at the user's terminal and terminates
(Figure 2-1a).

21

OPERATIONS MANAGEMENT

FTN4
PROGRAM AMAIN
INTEGER PROC(3)
DATA PROC/2HPR,2HOC,2H /

Ce#+2+ PROMPT USER FOR FILE NAME

Cesss QUEUE SCHED PROC WITH WAIT

CALL EXEC(23,PROC)
Ce#s+#s DISPLAY RESULTS

STOP
END

Figure 2-1a

FMG24 ---> AMA24 --+
H

+---> PROC

FMG42 ---> AMA42 --+

Figure 2-1b

Now suppose 2 users run AMAIN at terminals 24 and 42. We have a program scheduling hierarchy as in Figure 2-1b. Note that
since PROC is scheduled by an EXEC call, copies are not created, and both AMA24 and AMA42 are competing for the same
program. Only the first program which attempts to schedule PROC will be successful; the second will be placed in a queue until
PROC terminates. Thus the advantages of MTM creating copies of AMAIN have been nullified. What is required is a copy of
PROC for each copy of AMAIN. A subroutine called MTMRN has been written to perform this function (Appendix A).

Thus if AMAIN calls MTMRN before scheduling PROC (Figure 2-1c), we have the program scheduling hierarchy shown in
Figure 2-1d.

22

OPERATIONS MANAGEMENT

FTN4
PROGRAM AMAIN
INTEGER PROC(3)
DATA PROC/2HPR,2HOC,2H /

Ce+++ CREATE NAME OF COPY OF PROC

CALL MTMRN(PROC)
Ce+»+ PROMPT USER FOR FILE NAME

C#+»# QUEUE SCHED PROC WITH WAIT

CALL EXEC(23,PROC)
C#swss DISPLAY RESULTS

sSTOP
END

Figure 2-1c

FMG24 ---> AMA24 ---> PRO24

FMG42 ---> AMA42 ---> PRO42

Figure 2-1d

Now suppose that PROC is a segmented program with 2 segments called P1SEG and P2SEG. The scheduling hierarchy will be
as in Figure 2-2. Note that PRO24 and PRO42 are both sharing the same program segments. Since program segments are

read-only, both PRO24 and PRO42 can simultaneously use the same program segments, i.e. copies of program segments are
not required.

FMG24 ---> AMA24 ---> PRO24 --+
+---> P1SEG

+---> P2SEG
FMG42 ---> AMA42 ---> PRO42 --+

Figure 2-2

23

OPERATIONS MANAGEMENT

Finally, suppose that PROC spends most of its time outputting to the list device. In this case, there is no advantage in having

copies of AMAIN schedule copies of PROC, since only one copy of PROC can use the list device at one time. Thus AMAIN
should schedule PROC without a prior call to MTMRN.

In summary, when a father program schedules a son, the father has the option of:

i) scheduling a son which may be shared with other fathers (via an EXEC Schedule call without a prior call to MTMRN)

ii) scheduling a personal copy of the son (via a call to MTMRN followed by an EXEC Schedule call)

Managing ID Segments of Scheduled Programs

In practice, it is not practical to have permanent ID segments for all possible copies of all programs in the system. One would
like to keep all programs as type-6 files, and restore their ID segments only when required, and only for as long as required.
Note that MTM does this automatically for the main program scheduled by FMGxx. The problem that remains is to create and
release ID segments of EXEC Call scheduled programs. One solution is to have a procedure file which:

i) creates all the ID segments for programs scheduled by the main program

i) runs the main program

iii) releases the |D segments created in i)

This procedure file can have the same name as the main program, provided it is stored on a cartridge other than the one
containing the program’s type-6 file. Furthermore, if the procedure file is higher in the cartridge list than the type-6 file, and an ID

segment does not already exist for the program, then entering :RU,AMAIN will transfer control to the procedure file rather than
the program.*

For the hierarchy in Figure 2-1b, the procedure file would have to:

i) create an ID segment for PROC (unless it already exists)
i) run AMAIN

iii) release the ID segment for PROC, but ONLY IF EVERY OTHER MAIN PROGRAM WHICH SCHEDULES PROC IS
DORMANT ’

For the hierarchy in Figure 2-1d, the procedure file would have to:

i) create an ID segment for a copy of PROC (corresponding to the user's terminal logical unit number)
i) run AMAIN

i) release the ID segment of the copy of PROC created in i)
For the hierarchy in Figure 2-2, the procedure file would have to:

i) create ID segments for PISEG and P2SEG (unless they already exist)

i) create an ID segment for a copy of PROC (corresponding to the user’s terminal logical unit number)
i) run AMAIN

iv) release the ID segment for the copy of PROC created in ii)

v) release the ID segments for P1SEG and P2SEG, but ONLY IF EVERY OTHER MAIN PROGRAM WHICH SCHEDULES
PROC OR A COPY OF IT IS DORMANT

*This will have to be amended to: TR,AMAIN for RTE-IVB.

24

OPERATIONS MANAGEMENT

To simplify the process of creating such procedure files, 3 utility procedure files have been written:

iy /MTMRN Renames a program name using the conventions of MTM
i)y /MTMRP Creates a copy of a type-6 program using the conventions of MTM

i) /MTMST Determines the status of a program and its copies

In addition, a procedure file called XMAIN shows how the above procedures can be used to handle all the possible
combinations of scheduling hierarchies, and procedure file AMAIN shows how this is applied to the hierarchy of Figure 2-2.
Listings of these files can be found in Appendix B.

NOTE

i) Inthe listings in Appendix B, it is assumed that all type-6 files reside
on cartridge 2. Note that in file XMAIN, the program XMAIN is
scheduled by the command :RU,XMAIN::2. The cartridge must be
explicitly specified to prevent a recursive transfer to procedure file
XMAIN.*

i) For fastest response, the files /IMTMRN, /MTMRP, and /MTMST,
should be stored at the beginning of the first cartridge.

iy Problems may be encountered if programs scheduled by XMAIN
are still running when XMAIN terminates (e.g. if XMAIN schedules
without wait), since the procedure file may try to release the D
segments of these programs.

iv) For HP1000 systems not operating under RTE-IV, the program
scheduling features of MTM can be emulated by replacing the
command :RU,XMAIN::2 in procedure file XMAIN with the following:

:TR,/MTMRP ,XMAIN
:RU,1G
:RP, ,16G

This will create an ID segment for a copy of the main program,run
the copy, and then release the 1D segment.

APPENDIX A:
MTMRN — Renames a Program Name Using the Conventions of MTM
FTN4
Cs
SUBROUTINE MTMRNCNSON)
Cs
C+ Renames a program name using the same conventions as MTM.
Cs

C+# The RTE-IV Multiple Terminal Monitor (MTM) manages IDU segments so
C# that each user can have his own copy of a program. MTM will

C+ perform this action whenever the program to be run is a son of

C# FMGxx, and the program is a Type 6 FMGR file. A copy of the prog-
C# ram will be created with the last 2 characters being xx, and be

C+ scheduled for execution to terminal xx. (RTE-IV Programmer’s

C+ Reference Manual, Sec. 9-9).

® & % % % % & ® *

25

OPERATIONS MANAGEMENT

C»
Cs
C»
C»
C»
Cs
Ce
Cs
Cs
Cs
Ce
Ce
Cs
Cs
Cs
Ce
Cs
Ce
Ce
Ce
Cs
C»
Cs
C+
C»
C»
Cs
Cs
Cs
Cs
Cs
Cs
Cs
C»
Ce
C»
Cs
Ce
Ce
Ce
Cs
Cs
Cs
Cs
Cs
Cs
C+
Ce
Cs
Cs
Cs
Cs

CllllllllI'll'l'll.l'l'l'll'illlll!ll.llllllillllllllllllliiiiilll’il’l’iil’l’iil’ii

c
c

When a FATHER program passes the name of a SON to MTMRN, MTMRN exam-+

ines the last 3 characters of the name of the father. If they are
2 numerics followed by a space, MTMRN assumes that the father is a
copy of a program scheduled by MTM, and modifies the name of the
son by replacing its last 3 characters with those of the father,
and replacing any embedded spaces with .’s. Otherwise the name of
the son is not changed. Examples are:

NAME PASSED NAME RETURNED
FATHER TO MTMRN FROM MTMRN

APROG BPROG BPROG
APR20 BPROG BPR20
APR20 B B..20

The father can then use this revised name for scheduling and
unscheduling a personal copy of the program, provided the required
ID segment already exists.

FRBERERBRRERRERERERRRRER

INPUT PARAMETERS:

NAME TYPE DESCRIPTION

NSON 1(3) Name of son to be renamed
[EEEEEEEEAEREEEEERR R E X X

OUTPUT PARAMETERS:

NAME TYPE DESCRIPTION

NSON 1(3) Name of MTM personal copy of son
[ZEEEEREREEREREEEEER RN R R J

EXTERNAL REFERENCES:

NAME TYPE DESCRIPTION
PNAME SUB FORTRAN-IV library routine for getting the name of
the currently executing program.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
»*
*
*
*
*
L)
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
#*
*
#*
*
*

CHasnsnstaassssntansnnnsseses LOCAL VARIABLES RRBERARRRRRERERARRRR AR AR RN

c
c

c

INTEGER NFATHR(3), NSONC(3)

26

OPERATIONS MANAGEMENT

c
Ces+s ASCII 0, 9, SPACE, PERIOD
c
DATA 1A0/060B/, 1AS/071B/, 1SP/040B/, IPR/0S6B/
c
c
Censnnnnsnpnnnnannnan EXECUTABLE STATEMENTS #4444 24442ttt tatnstns
c
C
Cee#+s GET NAME OF FATHER
c
CALL PNAME(NFATHR)
c
c
Cesxs GET LAST 3 CHARACTERS
c
ICHAR4 = IAND(C NFATHR(2)> , 000377B)
ICHARS = TAND(C NFATHR(3) , 177400B > /7 000400B
ICHARG = IANDC NFATHR(3) , 000377B)
c
c
Ce#xxs DON‘T MODIFY NAME OF SON UNLESS LAST 3 CHARACTERS OF
c FATHER ARE NUMERIC-NUMERIC-SPACE
c
IF ¢ CICHAR4 .LT. IAO0) .0OR. CICHAR4 .GT. IAS) > RETURN
I[F ¢ CICHARS .LT. IA0) .0OR. C(ICHARS .GT. 1AS) > RETURN
IF (ICHARG .NE. ISP) RETURN
c
c

C##+s REPLACE LAST 3 CHARACTERS OF NAME OF SON WITH THOSE OF FATHER

NSON(2) = 10RC TANDCNSON(C2)>,177400B) , ICHAR4)

NSON(3) = I0RC ICHARG+000400B , ICHARG)
C
c
Ceess REPLACE EMBEDDED SPACES WITH .‘S
C
ICHARZ = I1ANDC NSONC1)> , 000377B)
ICHAR3 = IAND(C NSON(C2) , 177400B> / 000400B
C
IF (ICHAR2 .EQ. ISP)
NSONC1) = I0RC IANDCNSONC1)>,177400B) , IPR)
IF CICHAR3 .EQ. ISP)
NSONC2) = TORC IANDCNSON(2),000377B) , IPR#000400B)
C
c
RETURN
END

27

OPERATIONS MANAGEMENT

APPENDIX B:
Procedure Files for Managing ID Segments

/MTMRN — Renames a Program Name Using the Conventions of MTM

:1F, ,EQ, ,48

Tan

:#+ /MTMRN replaces the 4th and S5th characters of 16 with the contents
:#+ of 26 (containing a 2-digit logical unit number), and the 6th

XX
Tan
:++ INPUT PARAMETERS:
')

++ NAME TYPE DESCRIPTION

* %

* %

* %

:++ QUTPUT PARAMETERS:

XX

:#+ NAME TYPE DESCRIPTION
X

:#+ 16 A Renamed program name
XX

X}

:#« [OCAL VARIABLES:

ee o2 a2 se 2e e ws

XX}

t#+ NAME TYPE : DESCRIPTION
XX

r#% 5P I Intermediate values

* %

Y

:#+ EXTERNAL REFERENCES: None

]

TRHBAR AR AR AR R RRRRRRRRR R AR AR RRRRRAERRRARRERRRRRLRRARRRRARRRRRRARRRRRRRRRRES

* %

xT

CA,5:P,-35P,AND,000377B
:IF,5P,NE,040B
:CA,-35:P,-35P,AND,177400B,0R,056B
X

:CA,5:P,-34P,AND,177400B
:1F,5P,NE,020000B
:CA,-34:P,-34P,AND,000377B,0R,027000B

Tew

:#sssss REPLACE 4TH CHARACTER OF 1G WITH 1ST DIGIT OF 26

xx
:CA,5:P,26,/,10,+,060B
:CA,-34:P,-34P ,AND,177400B,0R,5P

can

:#sssss REPLACE S5TH CHARACTER OF 1G WITH 2ND DIGIT OF 26,
HE A AND 6TH CHARACTER OF 1G WITH A SPACE

xx:

:CA,5:P,5P,-,060B,+,10
:CA,5:P,26,-,5P,+,060B,+,000400B
:CA,-33:P,5P,0R,040B

28

s 16 A Name of program to be renamed
s+ 26 I 2-digit LU to be inserted in 16

#+ss2e REPLACE BLANKS IN 2ND AND 3RD CHARACTERS DF 1G WITH

*

*

*

:#+ character with a space. Embedded spaces are replaced with .’s. *
*

*

*

.S

.

OPERATIONS MANAGEMENT

/MTMRP — Creates an MTM Copy of a Type-6 Program

:IF, ,EQ, ,51

HE & *
HLAJ *
:## Creates a copy of a type 6 program using the conventions of MTM. *
:## It is assumed that all type-6 files reside on cartridge 2. *
R X 3 *
HAA *
:#+ INPUT PARAMETERS: *
A *
:## NAME TYPE DESCRIPTION *
Y] *
L A B [¢) A Name of type-6 program to be copied *
XY *
N *
:#+ QUTPUT PARAMETERS: *
HE & *
:++ NAME TYPE DESCRIPTION *
HL A *
t#% 16 A Renamed program name *
e 26 I LY of user’s terminal *
t#x 3G A Original program name *
HLA »
HA A -
:#++ LOCAL VARIABLES: *
HE X 4 *
:#+ NAME TYPE DESCRIPTION *
X S *
tes 5P I Current severity code *
HAA »
HL A -
XX »
:#+ EXTERNAL REFERENCES: *
HA . *
:++ NAME DESCRIPTION *
Tan *
t#% /MTMRN Renames a program name using the conventions of MTM. *
A A -
HEA S AR E X RS XSRS ESES SR RR RS RR RS RZSSZSSSSS RS RRRR AR R R AR R AR R R A2 2

XX}

:#+#ses SAVE DRIGINAL PROGRAM NAME IN 3G
XX

:CA,3,16

Y]

:##ssses CREATE NAME OF PROGRAM COPY

XX}

:TR,/MTMRN,1G, 06

Y '

tossses CREATE ID SEGMENT FOR PROGRAM COPY
Y]

:RN,36::2,16

:CA,5:P,7P

:SV,4

:RP,1G::2

:SV,5P

:RN,16::2,36

29

OPERATIONS MANAGEMENT

/MTMST

— Determines the Status of a Program and its Copies

:IF, ,EQ, ,59

* %

)

XX}

» %

xx:

T

T
XX

Y]
XY

* %

HE &

Tew
Y

X
XX

HE X

HE X
HE X 4

* %

XY

* %

R R

* #

HE X

MR X J

* ¥
* ¥
* #
* %
* %
* ¥
* ¥
* #

XX
xx:

* ¥

xx:

HE &

* %

XX
Y]

I ZXZ AR EREER AR R AR ERZER R RS RS RR R R AR R AR AR RS R R ER R AR AR R R XS R AR AR R R R DR

* #

/MTMST tests the status of a program and each possible MTM
generated copy to see if at least one is not dormant. It is
assumed that there are 4 interactive terminals whose logical unit
numbers are 20, 24, 41, and 42.

INPUT PARAMETERS:
NAME TYPE DESCRIPTIGN

16 A Name of program whose status is desired

OUTPUT PARAMETERS:
NAME TYPE DESCRIPTION
6P I Status of program and its copies:
18 Program or a copy is not dormant

nn Program and every copy is dormant

16 A Name of program or 1st copy found which is not dormant;
Name of last copy tested otherwise

LOCAL VARIABLES:

NAME TYPE DESCRIPTION
26 I LU’s of interactive terminals
SP I Current severity code

EXTERNAL REFERENCES:
NAME DESCRIPTION

/MTMRN Renames a program name using the conventions of MTM.

;##ssss CHECK STATUS OF PROGRAM

)

:CA,
1SV,
:RP, ,16

: IF,

S5:P,7P
4

Sv,5P

:
XX

:#«seses CHECK STATUS OF COPY 20

6P,NE,18

30

OPERATIONS MANAGEMENT

R R
:TR,/MTMRN, ,20
:CA,5:P,7P
:1SV,4

:RP, ,1G

:SV,5P
:IF,6P,NE,18

Taw

:#s+#2+ CHECK STATUS OF COPY 24
XY

:TR,/MTMRN, , 24

:CA,5:P,7P

:SV,4

tRP,,16

:SV, 5P

:IF,6P,NE,18

taw

:#xssae CHECK STATUS OF COPY 41
XY

: TR, /MTMRN, , 44

:CA,S5:P,7P

15V, 4

:RP, ,16

:+SV,5P

:IF,6P,NE,18

K R]

t#eseee CHECK STATUS OF COPY 42
HE X]

:TR,/MTMRN, ,42

:CA,5:P,7P

:SV,4

:RP, ,16

:SV,5P

:IF,6P,NE,18

XMAIN — Sample Procedure File for Managing ID Segments

: 1F, ,EQ, ,43
T

1##% Manages ID segments of programs scheduled by XMAIN.

HE X

i#4 In this example, i1 is assumed that XMAIN schedules:

HE X]

Tee 1) program ASHAR

tae ii) segmented program BSHAR with segments B1SEG and B2SEG

T iii1) a copy of segmented program ACOPY with segments A1SEG and
tee A2SEG

sue iv) a copy of program BCOPY

iew iv) a copy of segmented program CCOPY with segments C1SEG and
Tee C2SEG

* % % & ® * & * ¥ * x ¥

31

OPERATIONS MANAGEMENT

XX
X
xXx
X
xx
X
X
XX
XX
XX
XX
X
tew
XX
Xy
)
N
Iy
X
XY}
X
X
xr
X
Tnw

TRRRBRRRBRRRERRRR B R EFRRRRRRRRRRRRRRRRRRRRFRRRRRRERRRRRRRRRRRRRRRRRRRERS

X

:#«sess SAVE CURRENT SEVERITY CODE AND CHANGE TOD 4

XX
:CA
1SV

XY}

t#ssses CREATE ID SEGMENTS FOR 1) ALL SCHEDULED SHARED PROGRAMS

It is further assumed that:

i) only XMAIN and its copies

ACOPY

it) XMAIN and YMAIN and their

of CCOPY

For HP1000 systems not operating

tRU,XMAIN::2 should be replaced with:
:TR,/MTMRP,XMAIN
:RU,16
iRP,,16
EXTERNAL REFERENCES:
NAME DESCRIPTIGON
/MTMRP Creates an MTM copy of a type-& file
/MTMRN Renames a program name using the conventions of MTM
/MTMST Determines the status of a program and its copies

»5:P,7P
»4

T X T

tHRER R

xx:
Y
XY
XY
XX
XY
XX}
1ew
xx}
X2}
Tee
XY

LT

Y
Iy

XXX XY)

X}
1SV

XY

t#+vess CREATE ID SEGMENTS FOR ALL SCHEDULED PROGRAM COPIES

XX
xS
T
)

:RP,ASHAR: : 2
:RP,BSHAR::2

:RP,B1SEG::
+RP,B2SEG: :

[AS IS

1RP,A1SEG: :
:RP,A2SEG: :

N

:RP,C1SEG::
RP,C2SEG::

NN

,5P

: TR, /MTMRP ,ACOPY
: TR, /MTMRP ,BCOPY
: TR, /MTMRP ,CCOPY

(Program
(Program

(Program
(Program

(Program
(Program

2) PROGRAM SEGMENTS OF ALL SCHEDULED
PROGRAMS

segment
segment

segment
segment

segment
segment

RESTORE SEVERITY CODE

schedule BSHAR and copies of

copies schedule ASHAR and copies

under RTE-IV,

-_

32

for
for

for
for

for
for

program
program

program
program

program
program

the command

BSHAR)
BSHAR)

ACOPY)
ACOPY)

CCOPY)
CCOPY)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

OPERATIONS MANAGEMENT

AMAIN

HE X}

:#snsss RUN THE MAIN PROGRAM

R X

tRU,XMAIN::2

R X

:essssse REMOVE ID SEGMENTS OF PROGRAM COPIES

TR

:##:TR,/MTMRN,ACOPY , 06

:##:RP,,16

HE X

:+4: TR, /MTMRN,BCOPY, 0G

:##:RP, ,16

HE X

:#2:TR,/MTMRN,CCOPY, 06

t#2:RP, 16

HE X

:#sasxs REMOVE ID SEGMENTS OF SHARED PROGRAMS, AND ID SEGMENTS 0OF ALL
sesssve PROGRAM SEGMENTS, ONLY IF EVERY DTHER PROGRAM THAT SCHEDULES
s#sasss THEM [S DORMANT

R X

:#sssse CASE 1) PROGRAM XMAIN IS THE ONLY PROGRAM THAT SCHEDULES
e BSHAR AND A COPY OF SEGMENTED PROGRAM ACODPY
R R

:#%:TR,/MTMST,XMAIN

:+#:IF 6P,EQ,18,8

XX

:+#;RP, ,BSHAR

:##:RP, ,B1SEG

:#%:RP, ,B2SEG

X

:##%:RP, ,A1SEG

:##:RP, ,A2SEG

R X]

:#xsnsse CASE 2) PROGRAMS XMAIN AND BMAIN BOTH SCHEDULE ASHAR AND
X A COPY OF SEGMENTED PROGRAM CCOPY

HE X

t##:TR,/MTMST,XMAIN

:#n:]F,6P,EQ,18

:##:TR,/MTMST ,BMAIN

%4 [F 6P,EQ,18,6

[X

:##:RP,,ASHAR

T e

:#+:RP, ,C1SEG

:##:RP,,C2S5EG

— Procedure File for Managing 1D Segments in Fig. 2-2

: IF, ,EQ, ,24

MR X 4

:#+ Manages ID segmenis of programs scheduled by AMAIN.

K X 4

:#¢ In this example, it is assumed that AMAIN schedules a copy of

:#+ segmented program PROC with 2 segments, P1SEG and P2SEG. It is
:## further assumed that only AMAIN and its copies schedule copies of
:#++ PROC.

33

® & & % % x &

OPERATIONS MANAGEMENT

XX

*
[R *
:++ EXTERNAL REFERENCES: *
HE X] *
:#s NAME DESCRIPTIDN *
HE 4 *
:#% /MTMRP Creates an MTM copy of a type-6 file *
1#% /MTMRN Renames a program name using the conventions of MTM *
t#e /MTMST Determines the status of a program and its copies *
HE A *
HE 2 *
:I!I!II!'IIII!!I'I'I»I"I"!"I’II!'{III'!II’I’QI'I"I'ii!l'll!I!Iilll'!l'l’l'l’"'

)

s#xssee SAVE CURRENT SEVERITY CODE AND CHANGE TO 4

XX

:CA,S5:P,7P

19V, 4

HE R J

:##%see CREATE ID SEGMENTS FOR 1) ALL SCHEDULED SHARED PROGRAMS
IEEZRE Y 2) PRDGRAM SEGMENTS OF ALL SCHEDULED
TILIIY PROGRAMS

Y

:RP,P1SEG::2

:RP,P2SEG::2

)

t##sses RESTORE SEVERITY CODE

taw

SV,

xXr:

SpP

i##ssss CREATE ID SEGMENTS FOR ALL SCHEDULED PROGRAM COPIES

XY

: TR,

e

/MTMRP , PROC

;#svsss RUN THE MAIN PROGRAM

XX

:RU,AMAIN::2

XX

t#sewes REMOVE ID SEGMENTS OF PROGRAM COPIES

)

: TR

»/MTMRN,PRQOC, 06

:RP,,16

X

:##sess REMOVE ID SEGMENTS OF SHARED PROGRAMS, AND ID SEGMENTS OF ALL

:essssn PROGRAM SEGMENTS, ONLY IF EVERY OTHER PROGRAM THAT SCHEDULES
r#snens THEM IS DORMANT

XX

: TR,
IF,

X

/MTMST , AMAIN
6P,EQ,18,3

:RP, ,P1SEG
+RP, ,P2SEG

34

OPERATIONS MANAGEMENT

AN INTERFACE TO IMAGE

Mike Wells/Technical Analysis Corporation

THE PROBLEM

Twenty to thirty terminal devices, all screaming ‘Response Time', while executing a menu of fifty to seventy-five ‘custom’
transactions which compete for a fifteen to twenty-five megabyte IMAGE 1000 Data Base.

The transactions are to be segments to a mainline which will handie terminai /O, screen maintenance and transaction
management for the programmer. The programmers will be a small army of junior people with no data base experience. The
system is dual and is to be redundant with automatic switchover.

How can | provide the programmers with instant data base experience? Not in terms of how to write a DBGET, but in terms of
contention, locking and unlocking the data base, broken chains, logging of appropriate information, etc.?

How can | provide the programmer with the guarantees he or she needs in order to feel secure that his updates made it to the
disc without someone else modifying them?

How can | provide decent response time to the terminals when | know that there are transactions which may have to hold large
volumes of data in a static state while they process for four or five minutes?

How can | collect just the information | need to keep both my redundancy and recovery subsystems competent without having
to log every find, get and information call?

A SOLUTION

Interface Image.

1. Let the programmer communicate with a program wholly responsible for answering the questions raised above.
Leave the data base open all the time to any user who can get a partition.

Lock only that data which a given user needs at a given time.

Prioritize data base services to the users in the system.

Reduce the number of root files to one.

o 0~ Db

Log information, transparent to the user, in a form consistent with redundancy and recovery capabilities.

IMPLEMENTATION OF OUR SOLUTION

What follows is a narrative description of a program we call the Data Base Administrator. In its original form it was entitled

‘Image Interface Objectives’. A paragraph was written around each objective, and the final version has become a tool to
familiarize programmers with the features of the Administrator.

As | come in contact with more and more HP OEMSs and end users, | find that there are quite a few system managers with these
same problems. With this in mind, | have contributed this information to the Communicator with the hopes that the product of my
experience with these problems may prove useful to others.

35

OPERATIONS MANAGEMENT

A DATA BASE ADMINISTRATOR FOR HP’S IMAGE/1000

Scope

The Data Base Administrator acts as an interface between application programs and Hewlett Packard Image 1000. The
purpose of the interface is to improve system performance where multiple, transaction-oriented, application programs are
competing for data base resources and also to provide a central point for the collection of information needed to provide

Recovery and/or Redundancy subsystems. A by-product of this interface is ease of data base oriented application
programming.

Description

The Data Base Administrator is a mainline program, associated segments and a family of application program subroutines. The
Administrator can provide for support of up to four data bases, serviced by one to four copies of the mainline program. The
number of users which can concurrently access the data base is limited only by the number of available class numbers.

The subroutines provided with the Data Base Administrator are a direct replacement for the Image 1000 subroutines. For
example, Image 1000 subroutine DBGET is replaced by Administrator subroutine DLGET. The administrator subroutines
usually require a few more parameters than their Image counterpart. These parameters are used to store variable information,
such as chain pointers, in the user’s partition and also to control features of the Administrator not available in Image. The
application program calls an Administrator subroutine which formats the parameters into a form suitable for the Administrator
mainline and segments. The subroutine then communicates with the Administrator mainline via class 1/O in order to perform the
requested operation.

Some of the Image subroutines are replaced by ‘dummy’ subroutines or subroutines which perform alternate, but related,
operations. For example, Image subroutine DBLCK is replaced by ‘dummy’ subroutine DLLCK since when using the Adminis-
trator it is not necessary to lock the data base in order to provide integrity of updates. Leaving the data base available to all
users at all times improves total system performance while easing the responsibilities imposed on the application programmer
who wants to update the data base. A second example is the DLOPN subroutine. This subroutine, which replaces the Image
DBOPN subroutine, prepares the application program to interface with the Administrator. It is no longer necessary to open the
data base because it is always open to the Administrator.

The Administrator contains a subroutine which has no Image counterpart. DLAOL is a subroutine which gives the programmer
the ability to prearrange the Image ‘open file list'. This can improve performance in an application where a certain group of data
sets have the highest utilization.

The application pragram must contain a copy of the Administrator subroutine DHAND which is the user’s interface to the
Administrator. However, the applicaton program contains no Image subroutines, Root File or data base related Data Control

Blocks. Having a single copy of the Root File which describes a data base is a distinct advantage in reducing the ‘cratering’
effect related to a system ‘crash’.

The Data Base Administrator provides record level locking to the Application Program. This allows a programmer to ‘hold’
information in a static state when necessary and also ensures the programmer that information obtained from the data base is
current and that it cannot be changed untit it is unlocked. This is done with the data base unlocked, which means that a
program is only denied data base access when it attempts to update a record currently being updated by another program.
This is an improvement over being denied data base access during each update by every program executing. Record locking
is provided in two modes: Wait and No Wait. In the Wait Mode a program which is attempting to lock a locked record is
automatically suspended until the record is unlocked. This has the effect of making the wait time transparent to the pro-
grammer. In No Wait mode, a unique status is returned to the program if a desired record is locked.

The Administrator requires the first three words of each data base record in order to provide record level locking. A locked

record can be read by any program; however, a record cannot be updated or deleted unless it is previously locked to the
program requesting the update.

36

OPERATIONS MANAGEMENT

Allowing programs read-only access to locked records provides the user with the ability to write data base query programs that
have little effect on total system performance.

Record leve! locking provides an additional feature usually required by transaction oriented applications, the ability for a given
program to ‘hold’ a large volume of records in a static state while processing, without impacting other programs that are
attempting to read and/or update other records. Normally this type of operation could only be performed in a batch environment
since the data base wouid have to be locked.

The Data Base Administrator logically deletes a record when a record deletion request is received. This leaves chains intact for
other users. Logically deleted records are transparent to the application program since any attempt to access them will have
the same result as if the record did not exist. For example, if the Administrator detects a logically deleted record during a chain
read, it will bypass it and go to the next record in the chain without user intervention.

Logical deletions reduce the problems faced by an application programmer. An application programmer, using Image directly,
has two concerns when using a chain read. The first is that a record in the chain could be deleted by another program resulting
in a ‘broken’ chain. This possibility generates a difficult error handling situation. The second, and more serious problem, is that
after the chain is broken, and before the program has time to detect it, Image could put a record into the same position in the
data base. In this case no error would result to indicate a ‘broken’ chain. Instead, the program would begin to read into a chain
of records different from those that were started with. Logical deletions remove these concerns since the programmer will never
need to concern himself with ‘broken’ chains.

However, logical deletions generate the requirement for a deletion program which physically deletes the logically deleted
records. This program should accept a file of data set names as an argument. The deletion program then takes exclusive use of
the data base and physically deletes records from the indicated data sets that are ‘marked’ for delete. Since the data base is
unavailable during this time it is suggested that on a daily basis, after an orderly shutdown of real time operations, a file of
names which include high utilization data sets be issued to the deletion program. Then a file with all the data set names can be
issued to the deletion program weekly or monthly as dictated by the needs of a given system.

The mainline program and segments associated with the Data Base Administrator require configuration to a particular
installation. Data set names, key lengths, record lengths, etc. as well as available partition size and the establishing of an FMP
file for the Administrator's use are examples of the configuration. The Administrator includes a JCL procedure executed during
system initialization which prepares the Administrator to service program requests. The mainline program operates at priority
forty, or below, and at a higher priority (lower number) than any program requesting its services.

The mainline program of the Administrator services requests based on the priority of the requesting programs in such a way
that high priority programs are serviced first. The mainline program and associated segments service the request and pass the
result back to the appropriate Administrator subroutines in the user's partition. The subroutines then format the information and
return it to the user. Successful and error returns are processed by the user as if the program was interfacing directly with
Image. However, the Administrator can return a few error codes that Image does not contain.

Each request received by the Administrator mainline and the result of each request are written to a logging class number
assigned to the Administrator. The request and its result are appended to form one logging buffer per operation. The
information logged is in the form of a journal in that it contains the parameters issued by the request, the result of the request,
the requesting program and the before and after image of each update. Logging information should be received by a program
executing at a higher priority (lower number) than the Administrator mainline.

The logging features of the Administrator are controlled by a utility program and the program break feature of RTE. The utility,
which is provided with the Administrator, interactively or programmatically, enables or disables logging. The utility also has the
ability to assign a ‘hard copy' device for the Administrator mainline. Using the program break features of RTE, an operator can
reverse the status of hard copy logging. That is, if the Administrator is not currently displaying a hard copy log, breaking the
Administrator mainline will begin the hard copy logging to the last device configured via the utility. Breaking the mainline again
will stop the hard copy log. The information displayed is a valuable debugging tool.

37

OPERATIONS MANAGEMENT

Another logging feature is provided as part of the enable logging command. The option to log ‘all’ or ‘partial’ is available. Partial
logging involves all information that affects the image of the data base. If the option to log all is elected, every request
processed by the Administrator will be logged.

Once initialized, the Data Base Administrator need not be terminated. In order to pause the Administrator temporarily, a
command can be issued to it which wil cause it to close any open data bases and suspend. An RTE ‘GO’ command can then
be used to resume Administrator services. While in a paused condition, requests for service can still be issued to the
Administrator. Each user making a request for Administrator services, while it is suspended, will likewise be suspended until the
Administrator is resumed.

The Administrator has two execution modes: Batch and Real Time. Real Time mode is the normal mode of execution for the
Administrator. Batch mode is used to alter the record locking operation of the Administrator. That is, records requested with
lock are not actually locked. This mode is provided so that a batch program which is ensured of exclusive use of the
Administrator can bypass the overhead related to record locking. The batch program should still use the record locking

features of the Administrator in order to provide accurate logging of data base updates, but the resulting overhead will be
bypassed.

It should be noted that the Administrator is primarily intended for multiple user operation (Real Time). A batch program will
execute more efficiently if it interfaces directly with Image. However, due to the nature of certain system applications, batch
programs cannot always bypass the Administrator. It is strongly recommended that any batch programs which update the data
base and execute concurrently with Real Time operations use the Administrator to perform updates. A batch program in this
category can be coded to use the Administrator, and the execution mode of the Administrator can be used to control the
resulting overhead. That is, if the batch program is executing concurrently with Real Time, record locking will be performed.
However, if the batch program is executing exclusively, the operator can change the execution mode of the Administrator in
order to improve performance. The batch program is coded and executes the same in both modes.

The execution mode of the Administrator can be set during initializaion and altered any time the Administrator is resumed after a
pause.

MIRROR DATA BASES AND THE DBA

The Administrator lends itself to an application which calls for the maintenance of a mirror data base on a backup computer
system. To implement this concept, the user should execute the required number of Administrators in both the primary and
backup CPUs. Each copy of the DBA in the primary should have logging enabled in either all or partial mode. Partial logging
should be adequate for most applications and is recommended since this will reduce the volume of CPU to CPU communica-
tion to be performed.

As described earlier, each DBA will log a buffer to a logging program which will receive the buffers and write them to the
appropriate backup subsystem. The backup system will execute a receiving program which will accept the log buffers from the
primary system and pass the parameter portion of them to the appropriate copy of the DBA which is executing on the backup
system. The only difference between the Administrators running on the primary and those running on the backup system is the
logging mode. Those Administrators which are running on the backup system must be executed with logging disabled.

To ensure that the data bases on the backup system match those on the primary, the receiving program on the backup system
must wait for a response from the DBA for each parameter portion of a logging buffer sent to a DBA and then compare the result
of that operation with the result portion of the logging buffer. If the two do not match, it is an indication that there is a discrepancy
between the data base on the primary and the mirror data base on the backup system. Depending on the method of
communication used between the primary and the backup systems, a handshake between the primary system logging
program and the backup system receiving program may be needed.

38

OPERATIONS MANAGEMENT

A system manager may decide that, due to the volume of information being logged to the backup receiving program, logging
buffers should be buffered on the backup system disc prior to issuing them to the appropriate DBA. In this case it is highly
recommended that the disc unit used for buffering not be the same unit on which the data base(s) reside.

RECOVERY SUBSYSTEMS AND THE DBA

tn a system configuration where there is only one CPU, or as an additional backup to a Primary/Backup system configuration,
the program responsible for receiving and writing the logging buffers supplied by the DBA in the primary or stand-alone system
could write the logged information to a dedicated magnetic tape unit.

A Recovery program could then be written which would read and process this information through the DBA in order to recover
the system from a total failure.

SUMMARY

The Administrator has proven very useful to us as a tool to tame Image/1000. | hope that the reader finds this information useful.
If you have a similar solution or similar problems, | would enjoy corresponding with you to share your experience.

Mike Wells

Manager, Systems Development
TECHNICAL ANALYSIS CORPORATION
120 W. Wieuca Road, N.E.

Atlanta, Georgia 30342

39

DATA COMMUNICATIONS

USING DS/1000 AND RTE-IVA TO ACHIEVE VIRTUAL PERIPHERALS

Jean-Luc de Schutter/Distrigaz

[Editor's Note: Due to the lack of resources and time, | was not able to completely test this scheme. However, all the programs
compile and run, and Mr. De Schutter is using the set-up on an RTE-IVA system in Belgium.]

When | bought a second disc-based RTE system to link to my old DOS and RTE-Il system, | wanted to have “friendly” access to
all the application programs and data files in both nodes without having separate copies for each system. The best solution
seemed to be to construct a scheme of virtual peripherals. In designing my scheme there were two facts | considered:

a) the modem link between the systems is slow enough that speed is not a relevant consideration.

b) there is no restriction limiting the number of nodes.

The problem is presented in figure 1. A user sitting at node 2 wants to be virtually connected to system 1 (where program and
data reside). To perform this access he starts the monitor VIRT. This in turn wilt schedule a second program in node 1, VIRTT
(notice double T). VIRTT initializes a dummy driver, DVV05. DVV05 simulates an interrupt (like hitting any key on a terminal). This
interrupt starts a session in node 1 on a LU attached to DVV05. The programs (PRMPT,FMGR, etc.) scheduled after this virtual
interrupt will make requests to logical units associated with DVV05. DVVO5 wil briefly analyze the requests and, very
importantly, localize the I/O buffers in physical memory (i.e. calculate the physical page where they reside).

Finally, DVV05 passes the requests directly to the application program VIRTT. Now, VIRTT moves the request into its own
program area, translates to a DEXEC, and performs I/O on peripherals located at node 2 (user terminal). As soon as the DEXEC

is finished, VIRTT restarts the driver. DVV05 compiletes its dummy /O and the program that made the request can execute
further.

MONITOR
VIRT
RTE IV __DSLX___‘ RTE Iv
DvV05 ‘
%
DRIVER I l
DS 1000
SOFTWARE
LINE MINI-
PRINTER CARTRIDGE
VIRTT
APPLICATION
PROGRAM
SYSTEM #1 SYSTEM # 2
Figure 1

40

DATA COMMUNICATIONS

All these operations are very simple; yet sitting at a terminal and running “virtually” anything at another node gives you a
tremendous feeling. The rest of this article details the technical aspects of VIRT and VIRTT, and explains the set-up of DVV05.

DVV05

DVVO05S is set-up at generation time as follows:

PROGRAM INPUT PHASE

REL ,%DVVO0S,B

EQUIPMENT TABLE ENTRY

EQT,12?
§7,DVV05,B

DEVICE REFERENCE TABLE

34 = EGT
12,1
35 = EQT
12,2
36 = EQT
12,3

-~

)

-~

39 = EQGT
12

)

INTERRUPT TABLE

57,PRG,PRMPT (This is mandatory — DVV05 must have a program — to schedule on interrupt.)

The driver has two special calls. A call with subfunction 3700B passes the ID segment of VIRTT to the driver. This is used later
by the driver to schedule VIRTT. The same call with a negative |ID address clears the driver and stops the operations. The
second special call is a control call with subfunction 3600B. This is used to ask the driver to simulate an interrupt and schedule

PRMPT.

When receiving a normal request the driver locates the memory page where the buffer starts. Then VIRTT is scheduled
immediately. Although the driver has the S bit set (driver handles time out), EQT 14 and 15 are set to zero. Therefore, the driver

remains busy forever.

41

DATA COMMUNICATIONS

VIRTT

VIRTT is divided into two parts, the initialization section and the remote 1/O section. The initialization section performs the
following tasks:

a) stores the DS LU and the LU’s linked with DVV05 in an array (LU(5));

b) inttializes DVV05 and gets its EQT address; and
¢) schedules PRMPT,

There is one EQT handled by VIRTT and DVV05, and each LU corresponds to a different subchannel of this EQT. Because
VIRTT is initialized with five schedule parameters this version can handle 4 peripherals (one parameter indicates the node
number). If the generation is done as specified in the DVV05 section, the four LU's passed to VIRTT (and stored in LU(2-5)
would be 39,34,35, and 36.

The second task for VIRTT is execution of remote 1/O. When rescheduled by DVVO05, VIRTT analyzes the request. A control call
is performed immediately (with special care for class request).

To perform a normal I/0 request (i.e. read or write) VIRTT calls the routine BMAP to modify the user map in order to put the /O
buffer in the program area (note: the principles of BMAP are explained in Volume lll, Issue 2, pp. 24-30, of the Communicator/
1000.) Now we can perform the remote /O paying a little attention to DS specific errors (e.g. time-out). When |/O is finished,
VIRTT updates DVV05's EQT by passing back the status and the transmission log, or possibly an /O error.

VIRTT then puts small negative values in EQT's 14 and 15 to force time-out completion and the driver is restarted by RTE. Next
VIRTT goes dormant saving resources, ready for a new call. Note that VIRTT uses subroutines REMEX, BMAP and MWF. They
are self explanatory and perform functions that are not available in FORTRAN.

VIRT: THE MONITOR PROGRAM

Actually, one may avoid using this program by using REMAT to start VIRTT. However, it is more convenient to use VIRT since it
does some additional housekeeping. For example, VIRT sets the time-out, disables the terminal (this must be done again in the
WELCOM file because FMGR re-enables the terminal), and regularly checks to see if the remote FMGR is running. If the remote
FMGR is not running, VIRTT asks the user if he wishes to continue. If the remote FMGR is lost, the present version of VIRT allows
the user to execute one last system command on the remote system (e.g. RU,WHZAT or RU,FMGR).

CONCLUSION

This is a set of programs for your sleepless nights because it can be improved in several different ways:

a) Replacing remote EXEC calls by program-to-program communication would improve speed and remove the burden of DS
time-outs.

b) Allowing more than one set of virtual terminals per node without duplicating the driver and VIRTT would improve the
capabilities of the scheme.

¢) Adapting this set-up to RTE-IVB with its flexible logical unit and session monitor scheme would be just fantastic!

42

DATA COMMUNICATIONS

-
—
z
H

O0O0OO0OOO0OO0O0O0OO0

s NoNoNoNoNoNoNeNel o

(]

o

-0 wo

PROGRAM VIRTT (3,49), JLD AUG 1979 REV.A

THIS PROGRAM IS AN EXAMPLE AND SHOULD BE ADAPTED TO FIT
THE LU’S AND NODES OF YOUR SYSTEM

VIRTUAL TERMINAL HANDLER

WORKS IN CONJUNCTION WITH DVV0S

MAX ONE VIRTUAL TERMINAL PER NODE ALLOWED

THIS PROGRAM REQUIRES TWO FULL PAGES OF ADDITIONAL MEMORY
IMPLICIT INTEGER (A-2)
DIMENSION IPAR(5),LU(S),MYNAM(3) ,EQT(15),MAP(32)
DIMENSION BUFR(20)
DATA IDUM/31/

IDUM IS LU FOR DVVO0S
CALL RMPARCIPAR)

MAKE ALL SCHEDULE PARAMETERS NEGATIVE

1> DESTINATION NODE

2> DEST. LU IF REQUEST LOCALLY MADE FOR SUBCHANNEL 0
¢ = REMOTE LU)

3> IDEM SUBCH. 1

4> IDEM SUBCH. 2

S> IDEM SUBCH. 3

NODE=-IPAR
FORMAT(S5K10)
bo2 I=2,5
LUCT)=-1PARCI)
IFCIPAR(CI).GE.O0) GOTO 999
CONTINUE
GET ID ADDRESS
MYID=IGET(1717B)
CALL PNAME(MYNAM)
INITIALIZE DRIVER
CALL EXEC (3,1DUM+3700B,MYID)
GET EQT ADDRES
IAB=1GET(1652B)+(IDUM-1)
EQTN=1ANDCIGET(IAB),77B)
EQTAD=IGET(1650B)+(EQTN-1)#15
SCHEDULE PRMPT
CALL EXEC(3+100000B, IDUM+3600B)
GOT0 3
STOP SAVING RESOURCES
CALL EXEC ¢6,0,1,99,99,99,99,99)

43

DATA COMMUNICATIONS

s XoNoNoNoNoNo N NN ol

on

sS

S1

CALL RMPARCIPAR)

(HERE WE ARE STARTED BY DVV05)
RESTART PARAMETERS
1> EQT ADDRESS FOR CHECKING PURPOSE

NEGATIVE CLEAR THE WHOLE PROCESS (ABNORMAL CONDITION)

2> ADD OF EQT6
3> ADD OF EQT?
4> ADD OF EQTS8

S> PHYSICAL PAGE OR CONTROL REQUEST PARAMETER

IFCIFBRK(I))999,5
IFCIPAR.EQ.EQTAD) GOTO S5

FORGET LOCAL ACCIDENTAL CALL

IFCIPAR.GT.0)> GOTO 1
GOTO 999

DO S1 I=2,4
IPARCI)=IGETCIPARCID)

C MOVE EQT IN PROG AREA

c
c

o

o NeoNe] o

[N o)

88

o

NO O

o

CALL MWFCEQTAD,EQT,15)

RESET ERROR FLAG AND COMPUTE ACTUAL LU
(DEPENDS ON SUBCHANNEL)

ERROR=0
ACTLU=LUCCIANDCEQT(4),3700B)/64)>+2)

CHECK FOR CONTROL CALL

IFCIANDCEQT(6),3).EQ.3)G0T0100

CORE LOCK AND MOVE BUFFER PAGE(S) IN PROGRAM AREA

CALL EXEC(22,1)

HERE WE MODIFY THE USER MAP AND WE MAY RUN INTO TROUBLE
IF WE ARE SUSPENDED OR IF RTE RECOMPUTES OUR MAP

CALL BMAPCIPAR(S),IPAR(4) ,IPAR(3) ,ADDR,ERROR)
ERCNT=0
IFCERRORY>6,6,900

PERFORM REMOTE EXEC CALL

CALL REMEX(NODE,EQT(6),ADDR,EQT(8),ACTLU,ERROR)
CALL ABREG(A,B)

IF (ERROR)S,8,7

CALL EXEC(22,0)

IP=0

IFCIANDCEQT(6),3).6GT.1) GOTO 88
CALL DEXEC(NODE,13,ACTLU,IP)
IP=IANDCIP,177B)
I=IGETCEQTAD+4)

IP=I0RCI,IP)

CALL IPUTCEQTAD+4,IP)

SAVE TRANSMISSION LOG FOR DRIVER IN EQT12

CALL IPUTCEQTAD+11,B)

SET TIME-OUT TO -1 IN DRIVER EQT TO FORCE CONTINUATOR ENTRY

CALL IPUTC(EQTAD+13,-2)
CALL IPUTCEQTAD+14,-2)
GOTO1

ELIMINATE DS SPECIFIC ERRORS (TO STAP FROM GETTING STUCK

BECAUSE OF A DS TIME-OUT)
IFCA.NE.2HDS) GOTO 8
ERCNT=ERCNT+1

TRY AGAIN FOR +/- 10 MINUTES

IFCERCNT.LT.20) GOTO 6

44

DATA COMMUNICATIONS

C STOP AND CLEAR THE DRIVER
900 CALL DEXECC(NODE,2,LUC2),23H/VIRTT:MEMORY TOO SMALL,-23)
999 CALL IPUTCEQTAD+13,-2)
CALL IPUTCEQTAD+14,-2)
CALL EXEC(3,IDUM+3700B,-1)
CALL EXEC(6)
c CHECK FOR CLEAR CALL
100 IFCIANDCEQT(6),3700B>>101,101,110
C CLEAR CALL COMPLETES THE DRIVER IMMEDIATELY
C SYSTEM ALOWS ONE SECOND FOR THAT JOB
101 CALL IPUT(EQTAD+13,-5)
CALL IPUTCEQTAD+14,-5)
110 CN=10RCIANDCEQT(6),3700B) ,ACTLU)
CALL DEXEC(NODE,3,CN,IPAR(S))
CALL ABREG(A,B)
GoTos
END
ENDS

OO0

45

DATA COMMUNICATIONS

PROGRAM VIRT (3,90), JLD SEP 1979 BRUSSELS

c
c THIS PROGRAM IS AN EXAMPLE WHICH SHOULD BE ADAPTED TO FIT
c YOUR SPECIFIC NEEDS. NODE AND LUREM SHOULD REFLECT THE
c VALUES IN YOUR SYSTEM.
C IT IS USED TO SCHEDULE VIRTT (TERMINAL HANDLER)
DIMENSIONLU1(3),NFMG(5),IMES(20),1T0C20)
DATA NODE/S00/,LUREM/31/
C CONFIGURE DATA STATEMENT BEFORE RUN
C LUREM IS LU USED BY DVV0S5 AT REMOTE NODE
LU=LOGLUCLU)
c CHECK TO SEE THAT VIRTT IS DORMANT
CALL DEXEC(NODE,99+100000B,BHVIRTT ,ISTAT)
GOTO 1000
1001 IFCISTAT.NE.0)XGOTO1000
IT=1000

—_

c
c DISABLE INTERRUPT AND SET TIME OUT
CALL EXEC(3,LU+2100B)
CALL EXEC(3,LU+2200B,15000)>
C CONSTRUCT REMOTE FMGR NAME (CORRESPONDING TO LUREM)
C AND OTHER PARAMETERS FOR CALLING VIRTT LATER
CALL coDE
WRITE(NFMG,2999) LUREM
2999 FORMAT("“FMG'"I12,5X)
DO10 I=1,3
WRITECLU,3000)1
3000 FORMAT("LOCAL LU FOR SUBCHANNEL'"I3"?_*')
LU2=0
READ(LU, #)LU2
LUICId=-LU2
10 IFCLU2.EQ.0JLU1ICI)=-LU
CALL GNODECLNODE)
LNODE=-LNODE
LU01=-LU
185 CALL DEXEC(NODE,24,6HVIRTT ,LNODE,LUO1,LU1C1),LU1C2),LU1(3))
C SCHEDULE VIRTT NO WAIT AND SUSPEND (COME BACK REGULARLY TO SEE
C IF EVERYTHING IS 0K)
IT11=-1T
200 CALL EXEC(12,0,1,0,IT11)
IFCIFBRK(I1)>>1500,201,201
C CHECK TODO SEE IF REMOTE FMGR IS STILL RUNNING
201 CALL DEXEC(NODE,99,NFMG,IST)
IF(IST)202,202,3333
202 CALL REIOC2,LU,24H DO YOU WANT TO STOP ? _,-24)
IREP=2HYE
CALL REIOC1,LU+400B, IREP,-2)
C CLEAR CALL
1500 CALL DEXECCNODE,23,6HVIRTT ,-1,-1)
C IF YOU ANSWER YES RESTART ALL THE STUFF
C BUT IF REM. FMGR IS DEAD YOU WILL HAVE THE CHANCE
C TO EXECUTE ONE REMOTE SYSTEM COMMAND (I.E. RU,FMGR)
IFCIREP.EQ.2HYEXGOTO2000
IT=600
GOTO185
3333 I1T=100
C REMOTE FMGR IS 0.K SO SHORT SUSPEND TIME
GOTO200

46

DATA COMMUNICATIONS

1000 WRITECLU,3002)
3002 FORMAT(*™VIRTT NOT AVAILABLE"™)
CALL EXEC(6,0)
2000 WRITECLU,3003)
CALL EXEC(3,LU+2000B)
C SET TIME-OUT TO ZERO (THIS SHOULD BE MODIFIED IF THE
C TERMINAL PREVIOUSLY HAD A TIME-QUT SET
CALL EXEC(3,LU+2200B,0)
3003 FORMAT("COMMUNICATION TERMINATED®)
END
ENDs

0001 ASMB, L
#+ NO ERRORS PASS#1 #+RTE ASMB 92067-16011#»

0001 ASMB, L

0002 00000 NAM REMEX,7 DEXEC PROCESSOR AUG 1979 REV.A
0003+ THIS PROGRAM WAS WRITTEN ONLY BECAUSE THE FORMAT OF THE

0004+ PARAMETERS WAS NOT DIRECTLY COMPATIBLE WITH A SIMPLE FORTRAN CALL.
000S ENT REMEX

0006 EXT DEXEC, .ENTR

0007 00000 000000 NODE NOP DESTINATION NODE

0008 00001 000000 CONTW NOP ORIGINAL CONTROL WORD C(EQT6)

0009 00002 000000 BUFAD NOP BUFFER ADDRESSE

0010 00003 000000 LEN NOP BUFFER LENGHT

0011 00004 000000 ACTLU NOP DESTINATION LU

0012 00005 000000 ERR NOP ERROR FLAG

0013 00006 000000 REMEX NOP

0014 00007 016002X JSB .ENTR

001S 00010 000000R DEF NODE

0016 00011 002400 CLA

0017 00012 17200SR STA ERR,I

0018 00013 162001R LDA CONTW,I RE-CONSTRUCT

0019 00014 012040R AND =B177700 CONTROL WORD WITH’
0020 00015 132004R IOR ACTLU,I ACTUAL LU

0021 00016 072036R STA CNW

0022 00017 162001R LDA CONTW,I ISOLATE REQUEST CODE
0023 00020 012041R AND =B17

0024 00021 032042R IOR =B100000 SET ND ABORT BIT
0025 00022 072037R STA REQ

0026 00023 162002R LDA BUFAD,I

0027 00024 072032R STA ADD

0028 00025 016001X JSB DEXEC READY FOR DEXEC
0029 00026 000034R DEF #+6

0030 00027 100000R DEF NODE,I

0031 00030 000037R DEF REQ

0032 00031 000036R DEF CNW

0033 00032 000000 ADD NOP

0034 00033 100003R DEF LEN,I

0035 00034 136005R ISZ ERR, I ERROR RETURN SET FLAG
0036 00035 126006R JMP REMEX, I

0037 00036 000000 CNW NOP
0038 00037 000000 REQ NOP
00040 177700
00041 000017
00042 100000
0039 END
#+ NO ERRORS +TOTAL #+RTE ASMB 92067-16011#+

47

DATA COMMUNICATIONS

0001

ASMB, L

#+ NO ERRORS PASS#1

0001
0002
0003
0004+
0005
0006
0007
0008
0009
0010
0011
0012

0013
0014
0015
0016
0017

#+ NO ERRORS

00000

MOVES WORDS

00000
00001
00002
00003
00004
0000S
00006
00007
00010
00011
00012
00013

000000
000000
000000
000000
016001X
000000R
105745
100002R
162000R
066001R
105706
126003R

ASMB, L

Xrrc—

##RTE ASMB 92067-16011+#+

NAM MWF ,7

ENT MWF
FROM SYSTEM MAP (FORTRAN CALLABLE)

EXT .ENTR

NOP

NOP

NOP

NOP

JSB .ENTR

DEF I

LDX L,!I

LDA 1,1

LDB J

MWF

JMP MWF, I

END

*TOTAL +#+«RTE ASMB 92067-16011++

48

DATA COMMUNICATIONS

0001 ASMB, L
#++ NO ERRORS PASS#1 #s+RTE ASMB 92067-16011++

0001 ASMB, L

0002 00000 NAM BMAP,7 MAP ANY PAGE JLD AUG 79 REV A
0003 ENT BMAP

0004 EXT .ENTR,EXEC,$LIBR,s$LIBX

I e I T
0006+ CALL BMAP (PAGE,LEN,ADD,RADD,ERROR)

D00 7880 sattstasstsstatstsssststsstsstittstssssnasss
0008+« THIS PROGRAM MOVES ANY PHYSICAL PAGE IN

0009+« PROGRAM AREA

0010 00000 000000 PAGE NOP PHYSICAL PAGE

0011 00001 000000 LEN NOP BUF LENGTH (MAX 512 WORDS)>
0012 00002 000000 ADD NOP ORIGINAL BUFFER ADDRESS
0013 00003 000000 RADD NOP NEW ADDRESS

0014 00004 000000 ERROR NOP ERROR FLAG

0015 00005 000000 BMAP NOP

0016 00006 016001X JSB .ENTR

0017 00007 000000R DEF PAGE

0018 00010 002400 CLA

0019 00011 172004R STA ERROR,I

0020 00012 162001R LDA LEN,I

0021 00013 002021 SSA,RSS POSITIVE = WORD
0022 00014 026020R JMP A1 YES

0023 00015 003004 CMA, INA NO

0024 00016 002004 INA MAKE POSITIVE

0025 00017 001100 ARS

0026 00020 072137R A1 STA LENW

0027 00021 042211R ADA =D-513

0028 00022 002020 SSA POSITIVE

0029 00023 026026R JMP A2 NO

0030 00024 036004R 1SZ ERROR YES BUFFER TOO LONG
0031 00025 126005R JMP BMAP, I PROCESSING REJECTED
0032 00026 016002X A2 JSB EXEC

0033 00027 00003SR DEF ++6

0034 00030 000140R DEF D26 GET PARTITION INFO
0035 00031 000141R DEF IFPG AND MAPS

0036 00032 000142R DEF ILMEM

0037 00033 000143R DEF NPGS

0038 00034 000144R DEF MAP

0039 00035 062142R LDA ILMEM

0040 00036 012212R AND =B76000

0041 00037 101052 LSR 10

0042 00040 042143R ADA NPGS

0043 00041 072143R STA NPGS CAL TOTAL ¢ OF PAGES
0044 00042 062141R LDA IFPG

0045 00043 012212R AND =B76000

0046 00044 052141R CPA IFPG IS IT A PAGE BOUNDARY
0047 00045 002001 RSS

0048 00046 042213R ADA =B2000 NO

0049 00047 072204R STA FREE FIRST FREE PAGE

0050 00050 101052 LSR 10

0051 00051 012214R AND =B37

49

DATA COMMUNICATIONS

0052+«
0053
0054
0055
0056
0057
00S8
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068+
0069+
0070+«
0071+«
0072
0073
0074
0075
0076
0077
0078
0079+
0080
0081
0082
0083
0084
008S
0086
0087
0088
0089+«
0090
0091
0092+
0093
0094
0095

0096
0097
0098
0099

0100
0101

ADA =D1
00052 072206R STA PAGNO
00053 162002R LDA ADD,1I
00054 012215R AND =B1777
00055 072205R STA OFSET
00056 070001 STA 1
00057 042204R ADA FREE
00060 172003R STA RADD,I
00061 002404 CLA,INA
00062 046137R ADB LENW
00063 101100 SWP
00064 012216R AND =B6000
00065 002002 SZA
00066 006004 INB
00067 007004 CMB, INB
00070 076207R STB NPAGE

GET PAGE #

NPAGE =1
OFSET+LENW
GOES

OVER ONE PAGE ?

YES:NPAGE =2
MAKE NEGATIVE
AND SAVE

MIN TWO FULL PAGES MUST BE FREE BEHIND THE PROGRAM

IN ORDER TO HANDLE 512 W REQUESTS

IFPG+ILMEM-2K>=FREE
-(FREE+2K)+IFPG+ILMEM>=0

00071 062204R LDA
00072 042217R ADA
00073 003004 CcMa,
00074 042141R ADA
00075 042142R ADA
00076 002020 SSA
00077 136004R 1s2
CALCULATE NEW MAP

00100 066210R LDB
00101 046206R ADB
00102 162000R LDA
00103 012220R AND
00104 170001 STA
00105 002004 INA
00106 006004 INB
00107 036207R 1s2
00110 170001 STA
GO PRIVILEGED

00111 016003X JSB
00112 000000 NOP
GET HIDDEN BASE PAGE
00113 062221R LDA
00114 166210R LDB
00115 105745 LDX
00116 000222R

00117 105721 XMS
00120 062210R LDA
00121 066223R LDB
00122 105777 MVIW

00123 000224R

00124 000000

00125 062210R LDA
00126 101711 USA

FREE

=B4000

INA
IFPG
I1LMEM

ERROR, I

LMAP
PAGNO
PAGE, I

=B37777

=D33
LMAP, I
=B1

LMAP

=B3740

=D32

LMAP

50

SUPP PROTECT BITS

MOVE NEW MAP REG
IN HIDDEN
B.PAGE

AND IN
USER MAP

DATA COMMUNICATIONS

0102+« RETURN NORMAL MODE

0103 00127 103105 CLF SB
0104 00130 061770 LDA 1770B
0105 00131 002003 SZA,RSS
0106 00132 102705 STC SB
0107 00133 016004X JSB $LIBX
0108 00134 000135SR DEF #+1
0109 00135 000136R DEF #+1
0110 00136 126005R JMP BMAP, I

0111 00137 000000 LENW NOP
0112 00140 000032 D26 DEC 26
0113 00141 000000 IFPG NOP
0114 00142 000000 ILMEM NOP
0115 00143 000000 NPGS NOP
0116 00144 000000 MAP BSS 32
0117 00204 000000 FREE NOP
0118 00205 000000 OFSET NOP
0119 00206 000000 PAGNO NOP
0120 00207 000000 NPAGE NOP
0121 00210 000144R LMAP DEF MAP

00211 176777

00212 076000

00213 002000

00214 000037

00215 001777

00216 006000

00217 004000

00220 037777

00221 000041

00222 000001

00223 003740

00224 000040
0122 END
##+ NO ERRORS #TOTAL #+RTE ASMB 92067-16011++

0001 ASMB, L

##+ NO ERRORS PASS#1 ##RTE ASMB 92067-16011#%+

0001 ASMB, L

0002 00000 NAM DVV0S,0 VIRTUAL TERMINAL DRIVER JLD
0003 ENT IV0S5,CV0S

0004 EXT sLIST

I I I I I I T Iy T T T Y Y
0006+ DUMMY DRIVER TO INTERCEPT I1/0 CALLS

0007+ AND PASS THEM TO A SPECIAL TYPE 3

0008+ 1/0 ON ANOTHER LU (REMOTE LU)

0009+

0010+ SPECIAL CONTROLS:

0011+ 37B INITIALIZE, 1.E. PASS ID ADDRESS OF PROGRAM

0012+ TO BE SCHEDULED.

0013+ 36B SIMULATE UNEXPECTED INTERRUPT, I.E. PRMPT SCHEDULE

0014+ THE DRIVER MUST BE GENERATED WITH PRMPT (OR EQUIVALENT)
0015+ IT USES A DUMMY SELECT CODE
0016+

51

DATA COMMUNICATIONS

0017III

0018+
0019+
0020+
0021+
0022+«
0023+
0024+
0025+
0026+
0027+
0028+
0029
0030
0031
0032
0033+
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
00S7
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075

THE SCHEDULED PROGRAM GETS S PARAMETERS:

EQT1

CNTRL WORD (EQT 6)
BUF ADD CEQT 7)
BUF LEN (EQT 8)

PHYSICAL PAGE OF BUF OR IPRAM (CALL EXEC 3)

13 = -1 >> FORCE 1/0 REJVECT (REMOTE LU IN ERROR)

SHOULD BE POSITIVE
SAVE ID ADDRESS

WE HANDLE TIME-QUT

TEST FOR INITIALIZE

NO, CONTINUE
SAVE ID ADDRESS
POSITIVE?
NO, RESET TO 0
AND SAVE

GO TO IMMEDIATE COMPLETION
IS THE DRIVER INITIALIZED?

YES, CONTINUE

TEST FOR PRMPT SCHEDULE

NO PRMPT SCHEDULE
YES, SCHEDULE PRMPT

EQT 11 CONTAINS ID OF PROGRAM TO BE SCHEDULED
EQT 12 ACTUAL TRANSMISSION LOG
EQT
00000 000000 1IVOS NOP
00001 062211R LDA FLAG
00002 002002 SzA
00003 026023R JMP NORM
GET ID ADDRESS OF PRMPT
00004 161663 LDA EQT4,I
0000S 012216R AND =B77
00006 042217R ADA =D-6
00007 041654 ADA INTBA
00010 164000 LDB A,I
00011 007004 CMB, INB
00012 006020 SSB
00013 026062R JMP REJCT
00014 076212R STB PRMPT
00015 065660 LDB EQT1
00016 174000 STB A,
00017 161663 LDA EQT4,I
00020 032220R IOR =B10000
00021 171663 STA EQT4,I
00022 036211R 1SZ2 FLAG
00023 161665 NORM LDA EQTG6,I
00024 012221R AND =B3703
00025 052221R CPA =B3703
00026 002001 RSS
00027 026036R JMP 11
00030 161666 LDA EQT7,I
00031 002020 SSA
00032 002400 CLA
00033 171672 STA EQT11,1
00034 065660 LDB EQT1
00035 026060R JMP IMCOM
00036 161672 11 LDA EQT11,1
00037 002003 SZ2A,RSS
00040 026062R JMP REJCT
00041 161665 LDA EQTE,I
00042 012222R AND =B3603
00043 0S2222R CPA =B3603
00044 002001 RSS
00045 026064R JMP 2
00046 062212R LDA PRMPT
00047 072054R STA SCHAD
00050 065663 LDB EQT4
00051 0760S5R STB SCHAD+1
00052 016001X JSB S$LIST
00053 000601 0CT 601
00054 000000 SCHAD NOP
00055 000000 NOP

52

DATA COMMUNICATIONS

0076+« TEST FOR SUCCESSFUL SCHEDULE

0077 00056 002002 SZA

0078 00057 026062R JMP REJCT

0079 00060 062223R IMCOM LDA =D4

0080 00061 126000R JMP IVO0S, I

0081 00062 062224R REJCT LDA =D3

0082 00063 126000R JMP IVO0S, I

0083+

0084+« NORMAL CALL

0085+

0086 00064 161665 12 LDA EQTSG,I

0087 00065 012224R AND =B3

0088 00066 052224R CPA =B3 CONTROLL ACLL?
0089 00067 002001 RSS

0090 00070 026074R JMP I3 NO
0091 00071 161666 LDA EQT7,I YES
0092 00072 072214R STA PAGE

0093 00073 026112R JMP 16

0094+«

0095+« NORMAL CALL CI.E. 1 OR 2) SO CALC PHYS. PAGE OF I/0 BUFFER
0096 00074 161666 13 LDA EQT7,I

0097 00075 101052 LSR 10

0098 00076 012225R AND =B37 ISOLATE PAGE

0099 00077 101100 SWP

0100 00100 101730 RSA READ DMS

0101 00101 012226R AND =B30000 ARE SYSTEM MAP & MEMORY ON?

0102 00102 052227R CPA =B20000

0103 00103 026105R JMP IS YES

0104 00104 042230R ADA =D32 OFFSET TO USER MAP

0105 00105 101100 IS SWP

0106 00106 066177R LDB DPAGE SAVE

0107 00107 105745 LDX =D-1 PHYSICAL STARTING PAGE
00110 000231R

0108 00111 105720 XXMM OF 1/0 BUFFER IN STH SCHEDULE PARAM.

0109 00112 161664 16 LDA EQTS,I

0110 00113 012232R AND =B177400

0111 00114 171664 STA EQTS,I

0112 00115 062233R LDA =D-2

0113 00116 171773 STA EQT14,1

0114 00117 171774 STA EQT1S5,1

0115 00120 062234R LDA =D-100

0116 00121 072213R STA COUNT

0117 00122 072215R STA SCHED

0118 00123 002400 CLA

0119 00124 126000R JMP IVO0S, I

53

DATA COMMUNICATIONS

0120+
0121+
0122+
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168

CONTINUATION

00125
00126
00127
00130
00131
00132
00133
00134
0013S
00136
00137
00140
00141
00142
00143
00144
00145
00146
00147
00150
00151
00152
00153
00154
0015S
00156
00157
00160
00161
00162
00163
00164
00165
00166
00167
00170
00171
00172
00173
00174
00175
00176
00177
00200
00201
00202

000000
161660
002002
026133R
03612SR
126125R
161663
012235R
171663
06221SR
002002
026153R
165771
161772
002021
026151R
002400
171772
062236R
126125R
002400
126125R
161672
072172R
042237R
160000
012237R
002002
026201R
002400
072215SR
072213R
171773
171774
016001X
000001
000200R
000000
001660
001665
001666
001667
000214R DPAGE
026213R RET
062240R NOT
171773

CvosS

SUIT

ERROR
END

SCH

SCH1

NOP
LDA
SZA
JMP
182
JMP
LDA
AND
STA
LDA
SZA
JMP
LDB
LDA
SSA,
JMP
CLA
STA
LDA
JMP
CLA
JMP
LDA
STA
ADA
LDA
AND
SZA
JMP
CLA
STA
STA
STA
STA
JSB
ocT
DEF
NOP
ABS
ABS
ABS
ABS
DEF
JMP
LDA
STA

EQT1,I

SUIT
CvoS
Cvos, I
EQT4,I
=B173777
EQT4,1
SCHED

SCH
EQT12,1
EQT13,1
RSS
END

EQT13,1
=D1
Ccvos, I

CvosS, I
EQT11,1
SCH1
=D1S
Al
=B17

NOT

SCHED
COUNT
EQT14,1
EQT1S, I
$LIST

1

RET

EQT
EQT6
EQT?
EQT8
PAGE
COUNT
=D-10
EQT14,1

54

YES

SET

TEST IF DRIVER BUSY

NO, IGNORE
» CLEAR TIME-OUT

PROGRAM TO BE SCHEDULED?
YES

CHECK
IF FORCE ERROR REQUIRED?
NO

CLEAR ERROR FLAG
ERROR

DORMANT?

DATA COMMUNICATIONS

0169 00203 171774 STA EQT1S,1
0170 00204 036213R [SZ2 COUNT
0171 00205 002001 RSS

0172 00206 026147R JMP ERROR
0173 00207 036125R CONT 1SZ CVO0S
0174 00210 126125R JMP CVO05, 1
0175 00000 A EQU 0
0176 00001 B EQU 1
0177 01660 EQT1 EQU 1660B
0178 01663 EQT4 EQU 1663B
0179 01664 EQTS EQU 1664B
0180 01665 EQT6 EQU 1665B
0181 01666 EQT7 EQU 1666B
0182 01667 EQT8 EQU 1667B
0183 01672 EQT11 EQU 1672B
0184 01771 EQT12 EQU 1771B
0185 01772 EQT13 EQU 1772B
0186 01773 EQT14 EQU 1773B
0187 01774 EQT15 EQU 1774B
0188 00211 000000 FLAG NOP

0189 01654 INTBA EQU 1654B

0190 00212 000000 PRMPT NOP
0191 00213 000000 COUNT NOP
0192 00214 000000 PAGE NOP
0193 00215 000000 SCHED NOP

00216 000077

00217 177772

00220 010000

00221 003703

00222 003603

00223 000004

00224 000003

00225 000037

00226 030000

00227 020000

00230 000040

00231 177777

00232 177400

00233 177776

00234 177634

00235 173777

00236 000001

00237 000017

00240 177766
0194 END
#+ NO ERRORS +#TOTAL ##RTE ASMB 92067-16011#+

55

BULLETINS

RTE-IVB QUICK REFERENCE GUIDE

Helen Fuller/HP Data Systems Division

The RTE-IVB Quick Reference Guide is available and it has a new style — a small flexible looseleaf binder. The new RTE-IVB
Guide contains succinct explanations of terminal commands, programmatic calls, error codes, tables, and more! It is easily
handled, transported, and is indexed with tabs for super quick reference. Make this an important addition to your RTE-IVB
manual set by ordering both the RTE-IVB text insert and the Quick Reference Guide and the Quick Reference Guide Binder
(part number, 02177-90007) Binder today. Both items will be distributed to customers who have SSS or CSS as part of the
RTE-IVB product during the 2026 update cycle.

Ordering Information

ITEM PRICE
92068-90003 text insert $ 9.50
02177-90007 binder $ 5.00

TOTAL $14.50

56

BULLETINS

RTE-IVB ON-LINE DIAGNOSTICS AND VERIFICATION PACKAGE

John Koskinen/HP Data Systems Division

All those good diagnostics and verification routines placed on the RTE-4B primary systems are now available as a product —

91711A.

The on-line diagnostics and verification routines are now supplied as a relocatable product. The routines can be used on a
customer’s generated system simply by using the LOADR. No special off-line program loading is required. This product is not
the same as the 24396 series. The 24396 series diagnostics are off-line - they need to be loaded into the system and are run

completely standalone.

The new on-line product begins the way all diagnostics and verification routines will be done in the future. If a new diagnostic
must be run standalone, it will be loadable into a standard RTE-4B system. The 24396A-F product will now be placed in the

mature software category.
The diagnostic package handies:

Processor, Memory, and Firmware.
7900/06/20/25 MAC/ICD Drives.
7970 Mag Tape.

Line Printer.

2645/48 Point-to-Point/Multi-point.
3070/75/77 Terminals.

RS-232 Terminals.

The product is classified as Active Type Il software, which means free right-to-copy.

ITEM

AN711A
-001 Cassette
-051 800 BPI MT
-052 1600 BP! MTO

91711Q Manual Update Service

917118 Software Updates
-020 Cassette
-051 800 BPI MT
-052 1600 BPI MT

Ordering Information

57

PRICE

$500
30

2/mo.

20/mo.
10/mo.

BULLETINS

A NEW INDEPENDENT STUDY COURSE IN RTE FORTRAN IV

Jim Williams/HP Data Systems Division

A self-paced course in RTE FORTRAN 1V is now available for order. This independent study course consists of six color
videocassettes presenting the fundamentals of FORTRAN programming on an HP1000 computer under the RTE operating
system. The course is fully modular in design, segmented by subject area into ten modules for ease of use by first-time
FORTRAN programmers, and for selective review by previously experienced programmers.

A student workbook is required by each student to lead him or her through each module. Self-evaluation questions at the
beginning of each module allow the student to evaluate the module for content prior to viewing the tape, and skip to the next

session if he or she desires. Supplemental problems and lab exercises (as well as possible solutions) are provided for
hands-on practice.

A person knowledgeable in RTE FORTRAN should be available to assist the inexperienced student when required. An
instructor’s guide is supplied to facilitate this “advisor” in providing aid to the student. The instructor's guide also provides a
recommended ‘fast” classroom course for group on-site training by the user.

A brief description of the subject areas covered by each module follows. Note that this course is a pre-requisite to attendance of
the RTE-IVB/Session Monitor User's Course for students without prior FORTRAN experience.

Session Topic

Introduction, Course Organization History of Programming Languages
RTE-IVB Procedures

FORTRAN Character Set, Operators, Expressions

Input/Output Procedures

Branching, Testing and Looping

DO Loops

Array Processing

Functions and Subprograms

Debugging a FORTRAN Program

Additional FORTRAN Statements, FORTRAN Surprises VIS/EMA Features

© O N O O bd W N

s
o

58

BULLETINS

Ordering information is as follows:

Place a Heart order to Data Systems Division 2200 for: (Orders placed prior to JUNE 1 must override the Heart system to order
this course.)

PRODUCT NUMBER 22958B\ttt e e e LIST PRICE $1000.00
OPTION 001 U-Matic 3/4 inch color videocassettes

OPTION 002 VHS 1/2 inch color videocassettes

OPTION 003 one student workbooK oo LIST PRICE $50.00 each
OPTION 004 Betamax 1/2 inch color videocassettes

This course must be ordered with either option 001, 002, or 004 and includes the six videocassettes and one instructor's guide.
As many student workbooks as required may be ordered as option 003. A set of overhead slides are separately orderable as
part number 22999-90240 (LIST PRICE $190.00).

Note that for customers who desire off-site training in FORTRAN, this course is being offerred at HP Regional Training Centers
as required, with systems and experienced instructors available to the student through the intensive three-day schedule.

59

BULLETINS

JOIN AN HP 1000 USER GROUP!

Here are the groups that we know of as of April 1980. (If your group is missing, send the Communicator/1000 editor all of the

appropriate information, and we'll update our list.) We apologize for the incorrect spelling of some names in the past. They have
been corrected in this issue.

NORTH AMERICAN HP 1000 USER GROUPS

Area User Group Contact

Boston LEXUS
P.O. Box 1000
Norwood, Mass. 02062

Chicago Jim McCarthy
Traveno! Labs
1 Baxter Parkway
Mailstop 1S-NK-A
Deerfield, lllinois 60015

New Mexico/El Paso Guy Gallaway
Dynalectron Corporation
Radar Backscatter Division
P.O. Drawer O
Holloman AFB, NM 88330

New York/New Jersey Paul Miller
Corp. Computer Systems
675 Line Road
Aberdeen, N.J. 07746
(201) 583-4422

Philadelphia Dr. Barry Periman
RCA Laboratories
P.O. Box 432
Princeton, N.J. 08540

Pittsburgh Eric Belmont
Alliance Research Ctr.
1562 Beeson St.
Alliance, Ohio 44601
(216) 821-9110 X417

San Diego Jim Metts
Hewlett-Packard Co.
P.O. Box 23333
San Diego, CA 92123

60

BULLETINS

NORTH AMERICAN HP 1000 USER GROUPS (CONTINUED)

Area

Toronto

Washington/Baltimore

General Electric Co.
(GE employees only)

User Group Contact

Nancy Swartz

Grant Hallman Associates
43 Eglinton Av. East
Suite 902

Toronto M4P1A2

Paul Tatavull
Hewlett-Packard Co.
2 Choke Cherry Rd.
Rockville, MD. 20850

Stu Troop

Special Purpose Computer Ctr.
General Electric Co.

1285 Boston Ave.

Bridgeport, Conn. 06602

OVERSEAS HP 1000 USER GROUPS

London

Amsterdam

South Africa

Belgium

61

Rob Porter
Hewlett-Packard Ltd.
King Street Lane
Winnersh, Workingham
Berkshire, RG11 5AR
England

(734) 784 774

Mr. Van Putten

Institute of Public Health
Anthony Van Leeuwenhoekiaan 9
Postbus 1

3720 BA Bilthoven

The Netherlands

Andrew Penny

Hewlett-Packard South Africa Pty.
private bag Wendywood
Sandton, 2144 South Africa

Mr. DeFraine

K.U.L.
Celestijneulann, 300C
B-3030 Heverlee
Belgium

Although every effort is made to ensure the accuracy of the
data presented in the Communicator, Hewlett-Packard can-
not assume liability for the information contained herein.

Printed in U.S.A. 5/80

Prices quoted apply only in U.S.A. If outside the U.S., contact
your local sales and service office for prices in your country.

Part No. 5951-6111

o
\

)

it

