A cicicnmo

Hewlett-Packard
Computer Systems

|

1980 Volume IV Issue 4

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

HEWLETT-PACKARD
COMPUTER SYSTEMS

losue 4 COMMUNICATOR/1000

OPERATING SYSTEMS 13 MORE WITH CLEXT: Clearing Extents on an
RTE-IVB System

Alan K. Housley and Clark Johnson:
HP Data Systems Division

Feature Articles

28 HP SUBROUTINE LINKAGE CONVENTIONS
Bob Niland/HP Lexington

OPERATIONS MANAGEMENT 35 FUNCTIONS OF A BAIMG
Carol Jonas/HP Data Systems Division

LANGUAGES 39 FAST FORTRAN
John Pezzano/HP El Paso

Departments

EDITOR'S DESK 2 ABOUT THIS ISSUE
3 BECOME A PUBLISHED AUTHOR IN THE
COMMUNICATOR/1000...

5 LETTERS TO THE EDITOR

BIT BUCKET 6 EASY WAY TO MOUNT/DISMOUNT ALL
GROUP/PRIVATE CARTRIDGES
7 LOADING GRAPHIC ID’S DYNAMICALLY
10 THE SST IN THE SESSION CONTROL BLOCK
12 HOW TO DIRECT FORMATTER ERROR
MESSAGES TO ANY LU

BULLETINS 43 BEWARE OF OLD FORTRAN CODE
44 PASCAL/1000 PROGRAMMING COURSE
45 JOIN AN HP 1000 USER GROUP

EDITOR’S DESK

ABOUT THIS ISSUE

This issue of the Communicator/1000 features two articles in section OPERATING SYSTEMS and one each in OPERATIONS
MANAGEMENT and LANGUAGES. All the articles were written by HP employees; two come from the field and two come from
Data Systems Division.

In the OPERATING SYSTEMS section Alan Housley and Clark Johnson of DSD’s technical marketing department explain the
RTE-IVB version of their CLEXT program for clearing extents. The original version, “Creating and Clearing Extents”, appeared in
the Communicator/1000, Volume Ill, Issue 1. The second article in this section is the fifth article in the LINKS/1000 series. The
articles in this series are part of an unpublished manual contributed by Bob Niland of HP's Lexington sales and service office.

In the LANGUAGES section John Pezzano of HP’s El Paso sales and service office wrote a fine article on how to make your
FORTRAN code execute more quickly.

Finally, in the OPERATIONS MANAGEMENT section, Carol Jonas of Data Systems Division wrote an article explaining the need
for a BASIC/IMAGE interface (BAIMG) and how the interface is done.

The winners of the calculators for this issue are:

Best Feature Article by

an HP Division Employee FUNCTIONS OF A BAIMG
not in Data Systems Carol Jonas

Technical Marketing

Best Feature Article by FAST FORTRAN
an HP Field Employee John Pezzano

| hope you enjoy this issue of the Communicator/1000!

EDITOR’S DESK

LETTER TO THE EDITOR

Dear Sir,

[am having trouble using the FMGR :MC command with my user- written floppy disc driver (for AED 2500). What does the MC
command look for before it allows a cartridge to be mounted? Does it check for driver numbers (30,31,32,33, etc.), track map
table, whatever? For RTE Il,IHl, and IVA | finaily got my floppy mounted by naming the driver DVR30 and putting the number of
tracks in the :MC command. After generating RTE-IVB the command :MC,-40,63 returns FMGR-001. Control commands to the
driver (formatting, for example) work fine.

Sincerely,

Michael M. Thomas

Dear Mr. Thomas,

The :MC command does check driver numbers (i.e. type) to make sure that the device is a disc so you were correct to change
the name of your driver. The FMGR-001 is being returned because your driver rejected a special EXEC call issued by the :MC
command. This EXEC call is documented on page 2-3 of the DVR32 manual (92068-30012). An EXEC read in which the track
number (ITRAK) is greater than the size of the subchannel, or in which the track number = —1, should cause the driver to return
in the B register the number of tracks onh the subchannel, and set bit 5 in EQT word 5 to 1. The driver should also return the
number of 64-word sectors per track in IBUFR(1).

Sincerely,

The Editor

EDITOR’S DESK

BECOME A PUBLISHED AUTHOR IN THE COMMUNICATOR/1000. ..

The COMMUNICATOR is a technical publication designed for HP 1000 computer users. Through technical articles, the direct
answering of customers’ technical questions, cataloging of contributed user programs, and publication of new product
announcements and product training schedules, the COMMUNICATOR sirives to help each reader utililize their HP 1000's
more effectively.

The Feature Articles are clearly the most important part of the COMMUNICATOR. Feature Articles are intended to promote a
significant cross-fertilization of ideas, to provide in-depth technical descriptions of application programs that could be useful to
a wide range of users, and to increase user understanding of the most sophisticated capabilities designed into HP software.
You might think of the COMMUNICATOR as a publication which can extend your awareness of HP 1000’s to include that of

thousands of users worldwide as well as that of many HP engineers in Data Systems factories at Cupertino, California and
Grenoble, France.

To accomplish these goals, editors of the COMMUNICATOR actively seek technical articles from HP 1000 customers, HP
Systems Engineers in the Field, and Marketing and R&D Engineers in the factories. Technical articles from customers are most
highly valued because it is customers who are closest to real-world applications.

WIN AN HP-32E CALCULATOR!

Authoring a published article provides a uniquely satisfying and visible feeling of accomplishment. To provide a more tangible
benefit, however, HP gives away three free HP-32E hand-held calculators to Feature Article authors in each
COMMUNICATOR/1000 issue! Authors are divided into three categories. A calculator is awarded to the author of the best
Feature Article in each of the author categories. The three author categories are;

1. HP 1000 Customers;
2. HP field employees;
3. HP division employees not in the Data Systems Division Technical Marketing Dept.

Each author category is judged separately. A calculator prize will be awarded even if there is only one entry in an author
category.

Feature Articles are judged on the following bases: (1) quality of technical content; (2) level of interest to a wide spectrum of
COMMUNICATOR/1000 readers; (3) thoroughness with which subject is covered; and, (4) clarity of presentation.

What is a Feature Article? A Feature Article meets the following criteria:
1. lts topic is of general technical interest to COMMUNICATOR/1000 readers;
2. The topic falls into one of the following categories —

OPERATING SYSTEMS

DATA COMMUNICATIONS
INSTRUMENTATION
COMPUTATION
OPERATIONS MANAGEMENT

3. The article covers at least two pages of the COMMUNICATOR/1000, exclusive of listings and illustrations (i.e., at least 1650
words).

EDITOR’S DESK

There is a little fine print with regard to eligibility for receiving a calculator; it follows. No individual author will be awarded more
than one calculator in a calendar year. In the case of multiple authors, the calculator will be awarded to the first listed author of
the winning article. An article which is part of a series will compete on its own merits with other articles in the issue. The total of
all articles in the series will not compete against the total of all articles in another series. Employees of Technical Marketing at
HP’s Data Systems Division factory in Cupertino are not eligible to win a calculator.

All winners of calculators will be announced in the issue of the COMMUNICATOR/1000 in which their articles appear. Again, all
Feature Articles are judged by an impartial panel of three DSD Technical Marketing Engineers.

A SPECIAL DEAL IN THE OEM CORNER

When an HP 1000 OEM writes a Feature Article that is not only technically detailed and insightful but also application-oriented
as opposed to theoretical, then that OEM may ask that the article be included in THE OEM CORNER. A Feature Article included
in THE OEM CORNER may contain up to 150 words of pure product description as well as a picture or illustration of the OEM'S
product or its unique contribution. HP's abjective is twofold: (1) to promote awareness of the capabilities HP 1000 OEMS’
products among all HP 1000 users; and, (2) to publish an article of technical interest and depth.

IF YOU'RE PRESSED FOR TIME...

If you are short of time, but still have that urge to express yourself technically, don't forget the COMMUNICATOR/1000 BIT
BUCKET. It's the perfect place for a short description of a routine you've written or an insight you've had.

THE MECHANICS OF SUBMITTING AN ARTICLE

If at all possible please submit an RTE File containing the text of your article recorded on a Minicartridge (preferrably) or on a
paper tape along with the line printer or typed copy of your article. This will help all of us to be more efficient. The Minicartridge
will be returned to you promptly. Please include your address and phone number along with your article.

All articles are subject to editorship and minor revisions. The author will be contacted if there is any question of changing the
information content. Articles requiring a major revision will be returned to the author with an explanatory note and suggestions
for change. We hope not to return any articles at all; if we do, we would like to work closely with the author to improve the article.
HP does, however, reserve the right to reject articles that are not technical or that are not of general interest to
COMMUNICATOR/1000 readers.

Please submit your COMMUNICATOR/1000 article to the following address:
Editor, COMMUNICATOR/1000
Data Systems Division
Hewlett-Packard Company
11000 Wolfe Road

Cupertino, California 95014
USA

The Editor looks forward to an exciting year of articles in the COMMUNICATOR/1000.
With best regards,

The Editor

BIT BUCKET

EASY WAY TO MOUNT/DISMOUNT ALL GROUP/PRIVATE CARTRIDGES

lan Higgins/HP Winnersh, U.K

Have you ever regenerated a system and had subsequently to log-on as every user in order to re-mount their private and group
cartridges? It's very tedious! A much easier way is to use a procedure file and submit it to JOB as follows:

:RU, JOB,MCUSER
where MCUSER is:

:JO,USERS ,USER.GROUP/PASSWORD
:MC,LU1,P

:MC,LU2,6

:EOQ

You can have mount cartridge procedure files for every user on the system and thereby mount all group/private cartridges
without ever logging on or off.

BIT BUCKET

LOADING GRAPHICS ID’s DYNAMICALLY

Vladimer Preysman/HP Santa Clara

Are you having problems loading graphics programs? Are you getting memory overflow because of device subroutines which
are appended to your program even if you don’t need them? Would you like to assign graphics |Ds dynamically without editing
and reassembling &DLTBL?

if YES here is an idea...

In a program:

FTN4,Q
c
c SET UP FIRST ID (LET IT BE 2648)
c
CALL A2648
c
c THIS CALL WILL PUT ENTRIES TO 2648‘S DEVICE SUBROUTINES (DVGO1 & DCTO01)
c INTO DEVICE LINK TABLE
c
c SET UP SECOND ID (FOR EXAMPLE 7221)
c
CALL A7221
c
c AND SO ON...
c
c ENTRY POINTS AVAILABLE: A2648
c A2608
c A7221, B7221, S7221
c A7225
c A7245
c A9872, B9872, 59872
c AS874
c
c
c NOW DO ALL GRAPHICS CALLS USING ID=1 FOR 2648, ID=2 FOR 7221
c

BIT BUCKET

When loading your program after relocating the program itself search file %DNTBL which contains the dynamic ID table. This
file consists of

A2648

A2608

A7221, B7221, S7221

A7225

A7245

AQ872, B9872, 59872

A9874

DLTBL SPACE TO BUILD A TABLE

LOADR will pick only the ones that are called (all of them have DLTBL declared as EXT). If you need to add entry points for other
devices just follow the examples below and append relocatables in front of DLTBL (use MERGE in RTE-IVB).

0001 ASMB,Q s+s DYNAMIC DEVICE LINK TABLE #=s
0003 00000 NAM DLTBL

0004 ENT DPTR,ADGRD

000S EXT EXEC

0006+

0007 00000 A EQU 0

0008 00000 000000R PNTR DEF TABLE-2 LAST LINK POINTER

0009 00001 000000 DPTR DEC O NUMBER OF DEF INED ENTRIES

0010 SUP

0011 TABLE REP 10 LET IT BE 10 DEVICES

0012 00002 000000 0CT 0,0 SPACE FOR 2 LINKS (DVTXX, DCTXX)
0012 00004 000000 OCT 0,0 SPACE FOR 2 LINKS (DVTXX, DCTXX)
0012 00006 000000 0oCcT 0,0 SPACE FOR 2 LINKS (DVTXX, DCTXX)
0012 00010 000000 ocT 0,0 SPACE FOR 2 LINKS (DVTXX, DCTXX)
0012 00012 000000 OCT 0,0 SPACE FOR 2 LINKS (DVTXX, DCTXX)
0012 00014 000000 ocT 0,0 SPACE FOR 2 LINKS (DVTXX, DCTXX)
0012 00016 000000 0CT 0,0 SPACE FOR 2 LINKS (DVTXX, DCTXX)
0012 00020 000000 ocT 0,0 SPACE FOR 2 LINKS (DVTXX, DCTXX)
0012 00022 000000 0cT 0,0 SPACE FOR 2 LINKS (DVTXX, DCTXX)
0012 00024 000000 ocT 0,0 SPACE FOR 2 LINKS (DVTXX, DCTXX)
0013 UNS

0014 00026 000026R ENDTB DEF + END-OF-TABLE POINTER

0015+

0016 00027 000000 ADGRD NOP

0017 00030 0QOQQOR LDA PNTR GET LAST LINK POINTER

0018 00031 002004 INA ADVANCE IT

0019 00032 002004 INA TWICE.

0020 00033 000026R CPA ENDTB 1S TABLE FILLED?

0021 00034 000051R JMP OVFL -YES PROCESS OVERFLOW

0022 00035 000000R STA PNTR ~-NO STORE NEW POINTER

0023 00036 000001R 1SZ DPTR INCREMENT LINK

0024 00037 000001R 1SZ DPTR COUNTER TWICE.

0025 00040 104200 DLD ADGRD,I GET THE LINKS

0026 00042 104400 DST PNTR,I AND PUT THEM INTO TABLE.

0027 00044 000027R RETN LDA ADGRD GET 1-ST LEVEL

0028 00045 000073R ADA =B-2 RETURN ADDRESS

0029 00046 000000 LDbA A,l FIND OQUT

0030 00047 000000 LDA A,l INITIAL RETURN

0031 00050 000000 JMP A, AND GET 0OUT.

0032+

BIT BUCKET

0033 00051 000001X OVFL JSB EXEC

0034 00052 000057R DEF END
0035 00053 000060R DEF WRITE
0036 00054 000061R DEF LU.1
0037 000S5 000063R DEF OVER
0038 00056 000062R DEF OVER-1
0039 00057 000044R END JMP RETN
0040+

0041 00060 000002 WRITE OCT 2
0042 00061 000001 LU.1 DEC 1

0043 00062 000010 DEC 8
0044 00063 042114 OVER ASC 8,DLTBL OVERFLOW!
0045 END

»+ NO ERRORS #TOTAL ##RTE ASMB 92067-16011++

0001 ASMB,Q

0002 00000 NAM A2648 DEVICE LINK FOR 2648 12-14-79VP
0003 ENT A2648

0004 EXT DCTO01,DVGO1,ADGRD

0005 00000 000000 A2648 NOP

0006 00001 000003X JSB ADGRD

0007 00002 000002X DEF DVGO01

0008 00003 000001X DEF DCTO1

0009+ ...AND WE’LL NEVER COME BACK

0010 END

»» NO ERRORS »TOTAL #+RTE ASMB 92067-16011+#+

0001 ASMB,Q

0002 00000 NAM A7221 DEVICE LINK FOR 7221 12-14-79VP
0003 ENT A7221,B7221,57221
0004 EXT DCTO0S,DVGOS,ADGRD
0005 00000 000000 A7221 NOP

0006 00001 000003X JSB ADGRD

0007 00002 000002X DEF DVGO0S

0008 00003 000001X DEF DCTOS

0009+ ...AND WE’LL NEVER COME BACK

0010 00000 B7221 EQU A7221

0011 00000 $7221 EQU A7221

0012 END

#+ NO ERRORS +TOTAL #»#RTE ASMB 92067-16011#+»

BIT BUCKET

THE SST IN THE SESSION CONTROL BLOCK

Martha Slettedahl/HP Data Systems Division

| get a great number of questions regarding LGON errors, and after doing some digging in the System Manager's manual as
well as talking with various DSD lab engineers | have compiled a simple explanation of how the Session Control Block fits into
the logon process. In addition, | will explain how the SL, MC, AC and DC commands are recorded.

The maximum size of the SST in the session control block is determined as follows. The disc limit (word 31 of the user account
entry) is added to the number of SST spares (lower 8 bits of word 32 of the user account entry). (These values are set when the
user's account is defined with the ACCTS program and can be seen with the LI command in ACCTS). To this total is added the
number of system LU/session LU mappings defined for the user's account and station, plus the number of system disc LU's.

MAX SIZE = disc limit + #SST spares + station & user LU's + system discs

When a user logs on to the system the SST in the Session Control Block is built by the program LGON. First, the LU's for the
logon station are obtained from the configuration table (pg. J-5 in the System Manager's manual). Next, the LU’s for that user
are obtained from the user and group account entries (see pgs. J-10 and J-9 in the System Manager’'s manual). (The mappings
obtained from the user and group accounts override those obtained from the configuration table so that duplicate entries are
not added.) Finally, the cartridge directory is checked for system disc LU’s. When a user tries to log on, if the MAX SIZE of his
SSTis greater than 63 entries a LGON 09 error will occur. Note that the ACCTS program cannot check for this error because the
MAX SIZE is partially determined by the number of station LU's (different for each terminal).

In addition to the SST, the session control block contains a table which keeps track of the number of mounted disc cartridges. |
will call this table the disc cartridge table. The size of the disc cartridge table is equal to the disc limit, and entries are filled at
logon for each private and group cartridge in the user's account (these discs are mounted by LGON). If the number of private
and group cartridges exceeds the size of the table (disc limity a LGON 11 will occur.

Before logon the number of free entries in the 8ST equals the disc limit plus the #SST spares (these are defined in ACCTS). At
logon some of these entries are used for private and group disc LU’s. After logon, then, the number of free entries is reduced by
the number of private and group cartridges. The term given to these free entries is SST spares. Remember that this is not the
same as the " #3ST spares” term used in ACCTS. Therefore, immediately after logon we have:

#actual SST spares = disc limit + #SST spares - #private & group discs

Actual SST spares are used whenever the SL command is used to add an LU mapping to the SST. A spare entry is also used by
the AC command. The MC command does not add an entry to the SST. Instead, the LU for the cartridge to be mounted must be
added to the SST with the SL command before the MC command is invoked. The SL command can be used to remove entries
from the SST which were added with an SL (:SL,lu, —). In addition, these entries are removed at logoff.

Each MC and AC command is recorded in the disc cartridge table. Remember that the size of this table is equal to the disc limit

$0 no more cartridges can be mounted when that limit has been reached. The DC command is used to remove entries from the
disc cartridge table.

10

BIT BUCKET

SESSION CONTROL BLOCK

WORD

o

$SHED D>

10

11

12

13

14

15

ID SEG.

SESSION
WORD

DISC CARTRIDGE
TABLE

SCD

LIST LINKAGE

SCB LENGTH

(RESERVED)

IDENTIFIER

DIRECTORY #

CAPABILITY

ERROR
MNEMONIC

CPU USAGE

USER 1D

GROUP ID

DISC LIMIT

-SST LENGTH

-DISC LIMIT COUNTER

G| 1! LU

1

SST

-0

" Computer
Musetin

ADDED SST ENTRY FOR THIS DISC
THIS IS A GROUP CARTRIDGE
THIS DISC CARTRIDGE IS INACTIVE

BIT BUCKET

HOW TO DIRECT FORMATTER ERROR MESSAGES TO ANY LU

Gary Ericson/HP Data Systems Division

Occasionally the question arises, *How do | keep the Fortran Formatter errors from going to the line printer?” The answer is in
the DOS/RTE Relocatable Library Reference Manual, but it sometimes gets overlooked.

The entry point FMT.E is “hard-coded” to the value 6, and the Formatter uses this value as the LU for its error messages.
Creating a dummy entry point with a different value, and loading this entry point with your program, will change where the
messages are sent. Typically this would be set to “1" like this:

ASMB, L
NAM FMT.E
ENT FMT.E
FMT.E DEC 1
END

Going one step further, you could create a Fortran-callable subroutine that could be used to set the entry point FMT.E at run
time. This might be done like this:

ASMB, L
NAM FMTE
ENT FMTE,FMT.E
EXT .ENTR
LU DEF FMT.E PARAMETER DEFAULTED TO CURRENT FMT.E VALUE
*
FMTE NOP
JSB .ENTR GET PARAMETER PASSED IN, IF ANY
DEF LU
LDA LU,I PICK UR LU#,
STA FMT.E PUT INTO ENTRY POINT FMT.E,
EXIT JMP FMTE,I AND RETURN
*
FMT.E DEC 1 DEFAULT LU TO 1
*
END

This calling sequence for this is:

CALL FMTE
or CALL FMTECLU)

where LU is the device where the error messages will be sent
Loading this subroutine with your program will default FMT.E to 1, and calling it from a program can change the LU to anything

you want. This same procedure can be used for other “hard-coded” entry points such as ERO.E (the error LU for the relocatable
library).

12

OPERATING SYSTEMS

MORE WITH CLEXT: Clearing Extents On An RTE-IVB System

Alan K. Housley and Clark Johnson/HP Data Systems Division

Appearing in a previous Communicator, Volume Ill, Issue 1 is an article, Creating and Clearing Extents, describing the process
of file extent creation and clearing for RTE-IVA operating systems. Since the release of RTE-IVB, | have had numerous requests
to update the extent clearing routine (CLEXT) that was included in the article so that it will operate under RTE-IVB.

Many of our new readers may not have access to the article to which | am referring. Therefore, for their benefit, | will repeat
much of the information about extent creation in the following pararaphs. Readers familiar with the article may want to skip

ahead to subheading REUSE OF DISC SPACE. However, there have been a few changes since the last article so you may want
to read on for review and to obtain new information.

EXTENT CREATION (Review)

Anyone who has used the file manager DL command any number of times has surely noticed that some of the file names are
followed by a three digit number to the right of the file’s block size. This number signifies that the file entry is an extent of a main
file by the same name. For example:

NAME TYPE BLKS/LU OPEN TO

EXAMPL 00004 00048

EXAMPL 00004 00048 +001 ¢---- File extension #1
OUTPT 00004 00020 for file EXAMPL
&NEEDS 00004 00010

OUTPT 00004 00020 +001 ¢---- File extension #1
OUTPT 00004 00020 +002 ¢---- File extension #2
SYSMGR 00004 00001 for file OUTPT

CODES 00004 00005
FILES 00003 00017
SYSMGR 00004 00001 +001
ATIGER 00005 00019

An extent (short for file extension) is automatically created by FMP with the same name and size as the original file (files type 3
and above) when a write request points to a location beyond the range of the currently defined file. Each extent is identified by
an extent number that is stored in the upper byte of word five of the corresponding entry in the file directory. Whenever another
extent is created by FMP, the extent number is incremented and stored in the file directory entry as described above.

13

OPERATING SYSTEMS

EXAMPLE: Shown in the following figure is the file directory entry for the file EXAMPL:11156:20:3:1, and its first file extension.

Word #
0 File Name Word 1 = EX File Name Word 1 = EX
1 File Name Word 2 = AM File Name Word 2 = AM
2 File Name Word 3 = PL File Name Word 3 = PL
3 File Type =4 File Type = 4
4 Starting Track = 173 Starting Track = 173
5 Extent Starting Extent Starting
=0 Sector = 20 # =1 Sector = 22
6 of Sectors = 2 # of Sectors =2
7 Record Length = 0 Record Length = 0
8 Security Code = 11156 Security Code = 11156
9 ° °
[) []
¢ [] []
15
Figure 1

FMP will repeat the process of creating extents as many times as necessary as a file increases in size. Only a full disc LU
(FMGR -033), a full file directory (FMGR -014), or an extent number exceeding 255 (FMGR -046) will abort the process.

Everytime a file or part of a file that contains extents is accessed, the file directory entry for each extent must be read in order to
find the location of the file extension on the disc. This of course slows down the file access process. Obviously, to speed up the
process, all file extensions might be combined into one file and, therefore, only one entry from the file directory would have to be
read to locate the entire file.

EXTENT CLEANUP

To combine file extensions into one continuous file is a simple process of storing the file into a temporary file, purging the
original file, and renaming the temporary file to the original file name. As yet, there is not a supported routine that clears up file
extensions in this manner, so many people have written transfer files that clear extents on their disc LU’s. One version of such a
routine is:

:ST,0riginal File Name:SC:CR#,Temp. File Name:SC:CR#::-1,SA
:PU,Original File Name:SC:CR#
tRN,Temp. File Name:SC:CR#,0riginal File Name

14

OPERATING SYSTEMS

Put in the form of a transfer file using globals, this routine will process one file at a time. However, when several files need to be
cleared of extents, the user must obtain all the file names by using the DL command and enter each file name into the transfer
file one at a time. | personally find this process tedious, and consequently wrote a program to find all files with extents for a
particular disc LU and clear them. | can simply run the program from time to time to keep my disc LU “cleaned up”, and | don’t
need to know which files have gained extents since the last “clean up”.

As mentioned earlier, the main advantage of CLEXT is to cause fewer disc accesses than would normally occur when reading
each directory entry for a particuiar file and its extents. Also, CLEXT gives many people that “Warm Fuzzy Feeling” when they
don't see any file extensions scattered on their discs when viewing their cartridge directories.

This whole discussion is fine for those people who need fast disc access, and have plenty of disc space {or don’'t mind packing
their discs from time to time). The discussion that follows will show another side to the disc usage story, and will also show
reasons for a new feature added to CLEXT.

REUSE OF DISC SPACE

When a disc file is purged by FMP, a “logical hole” is left on the disc where the file once resided. That hole can be filled in with a
new file if the new file is the same size as the original file that was purged. FMP determines if a file has been purged, and
therefore empty disc space exists, by reading the first word of the 16 word file directory entry. If there is a negative one (—1) in
the first word of the entry, the file has been purged. FMP can then determine if the “hole” left by the purged file is the right size to
accomodate a new file or file extent by reading word 6 of the file directory entry.

EXAMPLE: Suppose a file called SUMMIT and its extent, 48 blocks long total, starting at track 168 and sector 18. The resulting
file directory entries are:

Word #
0 File Name Word 1 = SU File Name Word 1 = SU
1 File Name Word 2 = MM Fite Name Word 2 = MM
2 File Name Word 3 = IT File Name Word 3 = IT
3 File Type = 3 File Type = 3
4 Starting Track = 168 Starting Track = 168
5 Extent Starting Extent Starting
#=0 Sector = 18 # =1 Sector = 66
6 # of Sectors = 48 # of Sectors = 48
7 Record Length =0 Record Length = 0
8 Security Code =0 Security Code =0
9 ° °
. ® ®
¢ ® ®
15
Figure 2

15

OPERATING SYSTEMS

When SUMMIT is purged, word O of each file directory above will be set to negative one (—1).

Now, a new file, %6PROG:11111:LU, 24 blocks long, can reside in the same location as SUMMIT's main file. The file directory
entry for the first extent of SUMMIT is left unchanged since?PROG only required 24 blocks. The resulting file directory entries
are:

Word #
0 File Name Word 1 = %P File Name Word 1 = —1
1 File Name Word 2 = RO File Name Word 2 = MM
2 File Name Word 3 =G File Name Word 3 = IT
3 File Type =5 File Type = 3
4 Starting Track = 168 Starting Track = 168
5 Extent Starting Extent Starting
#=0 Sector = 18 # =1 Sector = 66
6 # of Sectors = 48 # of Sectors = 48
7 Record Length = 0 Record Length = 0
8 Security Code = 11111 Security Code =0
9 . .
L4 [] []
¢ [] []
15
Figure 3

What | intend to show by this example is that disc space left by purged files can be reused by files or extents of equal size. If the
file is purged and all newly created files or extents are larger than the purged file, the original files disc space will never be
reused. The only way to recover this unused area is to pack the disc.

Therefore, a good practice, in order to obtain very efficient disc usage, is to make all files and their extents the same size. For
every purged file and its extents, a new file will be able to reuse the unoccupied space left because of the purge. Those who
use their disc space heavily will find by following this practice, their discs will become filled less often. This is especially helpful
for someone in a session environment who doesn't have the capability to pack his disc.

16

OPERATING SYSTEMS

NEW CLEXT FEATURE

In light of the above information, | have added a feature to CLEXT that allows the user to specify the size of the main file and all
extents. The capability to clear extents will still exist if desired.

Therefore, CLEXT now has two features to satisfy two groups of people:

1. CLEXT will allow you to clear all extents to gain faster disc access, and

2. CLEXT will allow you to set all files with extents to a specified size.

A note to those who will be using the new feature of CLEXT:

it will take a little time to get your disc to the state of most efficient use. That is, after CLEXT has been run a few times, your disc
may become filled up and require packing. This is because there were possibly a lot of small files with small extent sizes which
were changed to the new size you specified. These small disc areas will therefore be left unused as we discussed earlier in the
article. Once you pack the disc, all the small areas will be recovered and your disc space will start being utilized more

efficiently. Also, | recommend that you choose a size of 24 blocks for files and their extents when running CLEXT, or when
creating files. A block size of 24 has been found to work very effectively.

PROGRAM NOTES
To invoke CLEXT:
tRU, CLEXT (,list lu [,disc lul,file and extend sizell]

where: list iu

list device (default is user console)

disc lu = disc logical unit to process extents
file and
extent size = integer value specifying the block size of extents
—1 =clear extents
0 = abort

If no parameters are provided in the runstring, CLEXT will prompt for the disc lu and extent size, but will default the list lu to
the user terminal.

If LU 2 or LU 3 is entered as the disc lu number, CLEXT will prompt for another LU number since these disc LU's are
considered system disc areas for RTE-IV systems. If for some reason CLEXT is unable to process a file, the program will

issue an FMP error describing why the file could not be processed and the program will terminate. Your file will be left intact if
such a situation occurs.

17

OPERATING SYSTEMS

PAGE

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

0042
0043
0044
0045
0046
0047
0048
0049
0050
0051

0052
0053
0054
0055

0001 FTN. 8:42 AM TUE., 20 MAY , 1980

FTN4,L
PROGRAM CLEXT(),AKH’S AND CJ’S CLEAR EXTENTS

Cllllllll'I'Illlllllllllllllllllllllllllllllllillllllllllllll'I'I'I'I'I'Ii'l'I'I'I'l|

(o} *
C NAME: CLEXT C(CLEAR EXTENTS) »
c »
C DATE: 1/11/79 *
(o} *
C REVISED: 12/14/79 »
c 3/27/80 »
c »
C VERSION: AKH.03 »
(o} *
C AUTHOR: ALAN K. HOUSLEY »
c DSD TECHNICAL MARKETING »
c »
C PURPOSE: ROUTINE TO EITHER CLEAR ALL EXTENTS ON A SPECIFIED DISC »
c LU OR TO PROCESS ALL FILES WITH EXTENTS TO A SPECIFIED »
c SIZE (SUCH AS 24 BLOCKS). »
c »
C INVOKE: RU, CLEXT, LIST LU, DISC LU, FILE AND EXTENT SIZE »
c »
Cr ittt R R AR AR AR R R AR RN AR R R R R R R AR R AR R AR R R R R AR AR R R R R R RN R R R R R R R R R RRRR RN

IMPLICIT INTEGER (A-2)
INTEGER BUFFIN (103, BUFOUT (33),
* CRNTFL (3>, . DIRBUF (16),
* FILDIR(C128), STATUS(125)
C OBTAIN THE USER’S TERMINAL LU
LLU = LOGLUCI)

C OBTAIN THE LIST LU, DISC LU, AND EXTENT SIZE
C PARSE THE INPUT STRING

CALL GETST (BUFFIN,-20,TRNLGG)

CALL PARSE (BUFFIN,TRNLOG,BUFOUT)
C GET THE LIST LU

JR = 1

LISTLU = BUFOUT (JR+1)

IF (BUFOUTC(JR).EQG.1) GO TO 100

LISTLU = LOGLU CI)

C GET THE DISC LU OR THE CARTRIDGE REF # TO BE PROCESSED

100 JR = JR+4
IF (BUFOUT(JR).GT.0)> GO TO 140

18

OPERATING SYSTEMS

PAGE 0002 CLEXT 8:42 AM TUE., 20 MAY , 1980

0056 110 WRITECLLU,120)

0057 120 FORMAT(™ DISC LU (0 = EXIT): ™)

0058

0059 READCLLU,#)DLU

0060 130 IF(DLU.EQ.0) GO TO 9999

0061 IF(DLU.EQ.2.0R.DLU.EQ.3.0R.DLU.GT.255) GO TO 110

o062 IFCDLU.LT.0> DLU = -(DLW)

0063 CRNUM = 0

0064 GO TO 160

0065

0066 140 IF (BUFOUTC(JR).EQ.2) GO TO 150

0067 DLU = BUFOUT(JR+1)

0068 CRNUM = 0

0069 GO TO 160

0070

0071 150 CRNUM = BUFOUT (JR+1)

0072 DLU = 0

0073

0074 C GET THE EXTENT SIZE DESIRED FOR EACH FILE

0075

0076 160 JR = JR+4

0077 SIZE = BUFOUT(JR+1)

0078 IFC(BUFOUT(JR).EQ,.1) GO TO 180

0079

0080 C DETERMINE IF THE USER WOULD LIKE TO CLEAR ALL THE EXTENTS OR TO
0081 C SET TO A SPECIFIED SIZE.

0082

0083 WRITE (LLU,170)

0084 170 FORMAT (' ENTER DESIRED SIZE OF FILE AND IT’S EXTENTS"™/
0085 * ** NEGATIVE ONE (-1) WILL CLEAR ALL EXTENTS: ")
0086 READ (LLU,#)> SIZE

0087 IFC(SIZE.GT.0) GO TO 180

0088 IFCSIZE.NE.-1) GO TO 9999

0089

0090 C GET THE CARTRIDGE DIRECTORY AND DETERMINE IF THE DISC LU IS
0091 C MOUNTED. 1IF SO, GET THE CARTRIDGE NUMBER AND THE FILE DIRECTORY
0092 C TRACK FROM THE CARTRIDGE DIRECTORY ENTRY CORRESPONDING TO THE
0093 C DISC LU.

0094

0095 180 CALL FSTATC(STATUS)

0096 J =1

0097 Do 2101 = 1,31

0098 IFCSTATUS(J).NE.O) GO TO 200

0099 WRITECLLU,190)

0100 190 FORMAT(' DISC NOT MOUNTED'/,)

0101 GO TO 110

0102 .
0103 200 IFC(STATUSCJ).NE.DLU.AND.STATUS(J+2).NE.CRNUM) GO TO 210
0104 DLU = STATUS (J)

0105 J o= J+1

0106 DRTRK1 = STATUSCJ)

0107 J o= J+1

0108 CRNUM = STATUS(J)

0109

0110 GO TO 220

19

OPERATING SYSTEMS

PAGE 0003 CLEXT 8:42 AM TUE., 20 MAY , 1980

0111 210 J = I#4+1

0112

0113 C READ THE FILE DIRECTORY FROM THE USERS DISC CARTRIDGE.
0114

0115 220 CALL EXECC1,DLU,DIRBUF,16,DRTRK1,0)

0116

0117 C OBTAIN THE # OF DIRECTORY TRACKS, AND THE # OF SECTORS/TRACK,
0118

0119 NMDTRK = DIRBUF(9) #(-1)
0120 SECTRK = DIRBUF(7)

0121

0122

0123 C READ 2 SECTORS AT A TIME.

0124 C FIND THE NEXT 2 SECTDRS TO READ BY USING THE FORMULA:
0125 C SECTOR ADDRESS = (BLOCK+#14) MODULO (#SECTORS/TRACK)
0126

0127 C TKCNTR = THE DIRECTORY TRACK COUNTER.

0128 C COUNTER = THE SECTOR COUNTER.

0129

0130

0131 TKCNTR
0132

0133

0134 230 COUNTR 0

0135 240 TEST = COUNTR=+14

0136 250 IF(TEST.LT.SECTRK) GO TO 260

n
o

0137 TEST = TEST-SECTRK

0138 GO TO 250

0139 260 CONTINUE

0140

0141

0142 C READ THE 16 WORD FILE DIRECTORY ENTRY

0143

0144 C FIRST DETERMINE IF TRYING TO PROCESS THE DIRECTORY TRACK
0145 C IF SO, SKIP TO NEXT FILE DIRECTORY ENTRY. IF A FILE CONTAINS
0146 C AN EXTENT, IT FIRST MUST HAVE A VALUE .GE. ZERD IN THE
0147 C FIRST WORD OF THE FILE DIRECTORY ENTRY, AND THEN MUST HAVE
0148 C AT LEAST t BIT SET IN THE UPPER BYTE OF WORD 5. IF BOTH
0149 C ARE TRUE THEN CLEAR THE FILES EXTENTS. IF, HOWEVER, EXTENTS
0150 C ARE NOT TO BE CLEARED, BUT ARE TO BE SET TD A SPECIFIED SIZE,
0151 C THEN CHECK THE SIZE OF THE FILE AND ITS EXTENTS IN WORD 6
0152 C BEFORE PROCESSING.

0153

0154 J =1

0155 po 3501 = 1,8

0156 CALL EXECC1,DLU,FILDIR,128,DRTRK1,TEST)

0157 IFCFILDIRCJI.GE.O) GO TG 270

0158 GO TO 340

0159 270 CONTINUE

0160 IFCFILDIRCJ).EQ.0) GO TO 9990

0161

0162 C DETERMINE IF THERE IS A BIT SET IN THE UPPER BYTE OF WORD FIVE.
0163 C IF SO, THEN DETERMINE If THE FILE SHOULD BE PROCESSED

0164

0165 L=2J

20

OPERATING SYSTEMS

PAGE 0004

0160
0167
0168
0169
0170
0171

0172
0173
0174
0175
0176
0177
0178
0179
0180
0181

0182
0183
0184
0185
0186
0187
0188
0189
0190
0191

0192
0193
0194
0195
0196
0197
0198
0199
0200
0201

0202
0203
0204
0205
0206
0207
0208
0209
0210
0211

0212
0213
0214
0215
0216
0217
0218
0219
0220

CLEXT 8:42 AaM TUE., 20 MAY , 1980

L = L+S
IEXT = IANDC177400B,FILDIRCL))
IFCIEXT.EQ.0) GO TO 340

C DETERMINE IF THE EXTENT SIZE IS THE DESIRED FILE SIZE SPECIFIED
C WHEN PROGRAM WAS RUN. IF SO, THEN SKIP THE FILE.

L = L+1
IF (FILDIR(L)/2.EQ.SIZE)> GO TO 340

C READ NAME OF THE FILE THAT CONTAINS EXTENTS AND NOTIFY THE USER

M
K

J+2
3

C PLACE THE FILE NAME INTO C(CRNTFL)

280

DO 280 N = 1,3
CRNTFL(N) = FILDIR(JU+N-1)

C OBTAIN THE SECURITY CODE OF THE FILE

SECODE = FILDIR (J+8)

C DETERMINE IF CLEAR EXTENTS, OR SET TO A SPECIFIED SIZE.

290

300
310

IF(SIZE.EQ.-1) GO TO 300

WRITE (LISTLU, 290)>(CRNTFL(N>,N = 1,3)
FORMAT (" PROCESSING FILE ",3A2)

G0 7O 320

WRITECLISTLU,310)CCRNTFLC(N),N = 1,3)
FORMAT (' CLEARING EXTENTS FOR * 3A2)

C PROCESS THE FILE HERE

320

ERROR = XTNTS (CRNTFL,SECODE,CRNUM,SIZE,ERR)

C CHECK FOR AN ERROR WHILE PROCESSING THE FILE

330

340
350

IFCERROR.GE.0) GO TO 340
WRITE (LLU,330>CERROR,CRNTFL)

FORMAT (* FMP ERROR "I3" WHILE PROCESSING FILE "3A2)
GD TO 9990

J = J+16
CONTINUE

C DETERMINE IF THE PRESENT DIRECTORY TRACK HAS BEEN COMPLETELY
C SEARCHED. |IF SO, DETERMINE IF THERE IS ANDTHER DIRECTORY TRACK
C AND IF SD CONTINUE WITH THE SAME PROCESS. IF NOT, BYE - BYE!

COUNTR = COUNTR+1
IF(COUNTR.EQ.SECTRK/2> GO TO 360
GO TO 240

21

OPERATING SYSTEMS

PAGE 0005 CLEXT 8:42 AM TUE., 20 MAY , 1980

0221

0222 360 CONTINUE

0223 TKCNTR = TKCNTR+1
0224 IFCTKCNTR.GT.NMDTRK) GO TO 9990
0225 DRTRK1 = DRTRK1-1
0226 GO TO 230

0227

0228 9990 CONTINUE

0229

0230 9999 CONTINUE

0231

0232 END

FTN4 COMPILER: HP92060-16092 REV. 2001 (791101)

«+ NO WARNINGS #+ NO ERRORS #+« PROGRAM = 00975 COMMON = 00000

22

OPERATING SYSTEMS

PAGE 0006 FTN. 8:42 AM TUE., 20 MAY , 1980

0233 FUNCTION XTNTS (NAME,SC,CRN,SIZE,ERR)

0234 IMPLICIT INTEGER (A-2)

0235 C

0236 C This function will store the file called ‘NAME’ into a

0237 C scratch file of ‘SIZE’ blocks per extent. When the

0238 C transfer is complete, the file ’NAME’ will be purged, and
0239 ¢C the scratch file will be renamed to ‘NAME’.

0240 C If there is an error at any point along the way, NAME’ will
0241 C be left unchanged, and the FMP error will be returned both as
0242 C the value of the function, and as ‘ERR’. If an error occurs
0243 C after NAME is purged, a message will be written to LU 1 indicating
0244 C the current state of affairs, and an error message will be printed
0245 C

0246 C If the file is a type 1 or 2 file, XTNTS will be 0, and the files
0247 C will be unchanged.

0248 ¢

0249 € Programmer: Clark Johnson

0250 ¢C Date: 2-21-80

0251

0252 DIMENSION DCBA (144), DCBB (144)

0253 DIMENSION NAME (3), SCRTCH (3)

0254 DIMENSION BLOCKS (2), RECLEN 1)

0258 DIMENSION BUFFR €200}, BLEN (1)

0256 DIMENSION NEWERR (25), NAMFER (21)

0257 DIMENSION NAMFEB (14)

0258

0259 EQUIVALENCE (NEWERR (23),SCRTCH)

0260

0261 DATA BLEN /200/

0262

0263 DATA NEWERR /2HAl,2H]1 ,2Hsc,2Hra,2Htc,2Hh ,2Hfi,2H]le

0264 &,2H n,2Ham,2Hes,2H u,2Hse,2Hd.,2H L,2Has,2Ht ,2Hsc,2Hra,2Hic,2Hh
0265 &,2H= ,2H ,2H ,2H /

0266 DATA NELEN /25/

0267

0268 DATA NAMFER /2HRe,2Hna,2Hme,2H e,2Hrr,2Hor,2H, ,2HNA,2HME,2Hxx
0269 &,2H 1,2Hs ,2Hno,2Hw ,2Hca,2H1l,2Hed,2H: ,2HSC,2HRT,2HCH/

0270 DATA NALEN /21/

0271

0272 DATA NAMFEB /2HEx,2Hte,2Hnt,2Hs ,2Hha,2Hve,2H b,2Hee,2Hn ,2Hcl
0273 &,2Hea,2Hre,2Hd ,2Hup/

0274 DATA NALENB 714/

0275

0276 DATA SCRTCH /2H.X,2HTN,2H00/, LASTN /2HEN/

0277

0278 LY = 1

0279 WRIT = 2

0280 BLOCKS (1) = SIZE

0281 OPTN = 0

0282

0283 C Open the file ‘NAME’

0284 CALL OPEN (DCBA,ERR,NAME,OPTN,SC,CRN)

0285 XTNTS = ERR

0286 IF CERR .LE. 0) RETURN

0287

23

OPERATING SYSTEMS

PAGE

0288
0289
0290
0291

0292
0293
0294
0295
0296
0297
0298
0299
0300
0301

0302
0303
0304
0305
0306
0307
0308
0309
0310
0311

0312
0313
0314
0315
0316
0317
0318
0319
0320
0321

0322
0323
0324
0325
0326
0327
0328
0329
0330
0331

0332
0333
0334
0335
0336
0337
0338
0339
0340
0341

0342

0007 XTNTS 8:42 AM TUE., 20 MAY , 1980
TYPE = ERR
(o If the file is type 1 or 2, get out

IF (TYPE .NE. 1) GO TO 100
IF (TYPE .NE. 2) GO TO 100

c ELSE
CALL CLOSE (DCBA)>
XTNTS = 0
RETURN

100 CONTINUE
BLOCKS (2) = RECLEN

CALL CREAT (DCBB,ERR,SCRTCH,BLOCKS,TYPE,SC,CRN)
IF (ERR .GT. 0> GO TO 200

C ELSE (handle some errors, return on the rest)
XTNTS = ERR
IF (ERR .NE. -2) RETURN
c ELSE (duplicate scratch file name, so get new name)
IF (NEWNM (SCRTCH) .NE. LASTN) GO TO 100
o ELSE (NEWNM has run out of names to try so..)
CALL EXEC C(WRIT,LU,NEWERR,NELEN)
XTNTS = ERR
RETURN
200 CONTINUE
c Transfer records from A to B

CALL READF (DCBA,ERR,BUFFR,BLEN,LEN)
IF CERR .LT. 0> GO TO 1111

IF (LEN .EQ. -1)> GO TO 900

CALL WRITF (DCBB,ERR,BUFFR,LEN)
IF CERR .LT. 0> GO TO 1111

c Loop for next record
GO TO 200
c EOF found, so transfer is complete.
900 CONTINUE
c Purge ‘NAME’

CALL PURGE (DCBA,ERR,NAME,SC,CRN)
IF (ERR .LT. 0> GO TO 1111

C Close ’SCRTCH’

CALL LOCF ¢(DCBB,ERR,I,NXTBLK,I,SZE)

IF (ERR .LT. 0> GO TO 1111

24

OPERATING SYSTEMS

PAGE 0008 XTNTS 8:42 AM TUE., 20 MAY , 1980

0343 C calculate number of blocks to delete from file
0344 TRUNC = S2E/2 - NXTBLK - 1

0345 IF (TRUNC .LT. 0) TRUNC = 0

0346

0347 CALL CLOSE (DCBB,ERR,TRUNC)

0348

0349 ¢C Rename ‘SCRTCH’

0350 CALL NAMF (DCBB,ERR,SCRTCH,NAME,SC,CRN)
0351 IF CERR .GE. 0) GO TO 950

0352

0353 C ELSE C(error on rename of scratch file)
0354 DO 930 J = 1,3

0355 NAMFER (7+J) = NAME (J)

0356 NAMFER (18+J) = SCRTCH (J)
0357 930 CONTINUE

0358

0359 CALL EXEC C(WRIT,LU,NAMFER,NALEN)
0360 CALL EXEC C(WRIT,LU,NAMFEB,NALENB)
0361 XTNTS = ERR

0362 RETURN

0363

0364 950 CONTINUE

0365

0366 C Everything should be closed now.

0367 XTNTS = ERR

0368 RETURN

0369

0370 C Error handling section for READF, WRITF, and PURGE calls
0371 1111 CONTINUE

0372

0373 CALL CLOSE (DCBAR)

0374 CALL CLOSE (DCBB)

0375 CALL PURGE (DCBB,ERROR,SCRTCH,SC,CRN)
0376 XTNTS = ERR

0377 RETURN

0378 END

FTN4 COMPILER: HP92060-16092 REV. 2001 (791101)

##+ NO WARNINGS =+ NO ERRORS = PROGRAM = 00846 COMMQON = 00000

25

OPERATING SYSTEMS

PAGE 00092 FTN. 8:42 AM TUE., 20 MAY , 1980

0379 FUNCTION NEWNM (NAME),Function to generate 6 char names
0380 IMPLICIT INTEGER (A-2)

0381 C

0382 C NEWNM will take a 6 character file name, and return a
0383 C NEW 6 character file name. It is useful for generating
0384 C scratch files. ’

0385 C

0386 C It will take a name in the form, xxxx00

0387 C

0388 C where XXAX are any 4 filename characters
0389 C and 00 are two digits between 0 and 9.
0390 C

0391 C The file name will be modified by adding 1 to the number
0392 C at the end of the name.

0383 C i.e. TEST00 will become TEST01 and so on until TEST99
0394 C is reached.

0395 C

039 C When xxxx99 is reached, the next time the function is called,
0397 C NEWNM will be set to EN (for END), and the name will be unchanged.
0398 ¢C

0399 C

0400 C Programmer : Clark Johnson

0401 C Date: 2-21-80

0402

0403 DIMENSION NAME (3)

0404

0405 DATA LASTN /2HEN/, BLANKS 720040B/

0406

0407 C ##%#% FUNCTIONS #ssssssssnnsnn

0408

0409 RBYTE (J> = IAND (J,377B)

0410

0411 C #»2x BEGIN THE CODE ###sssnnaxs

0412

0413 NEWNM = BLANKS

0414

0415 C Is NAME in range? (xxxx00 or greater)

0416 IF (NAME (3> .GE. 30060B) GO TO 200

0417

0418 C ELSE (out of range)

0419 NEWNM = LASTN

0420 RETURN

0421

0422 200 CONTINUE

0423

0424 C Has the last name been generated? (xxxx99 or less)
0425 IF (NAME (3) .GE. 34471B) GO TO 300

0426

0427 C ELSE (not at end of names,so generate a new one)
0428 IF (RBYTE (NAME(3)) .GE. 71B)> GO TO 250

0429

0430 C ELSE (last digit is less than 9)

0431 NAME (3) = NAME (3) + 1B

0432 RETURN

0433 250 CONTINUE

26

OPERATING SYSTEMS

PAGE 0010 NEWNM 8:42 AM TUE., 20 MAY , 1980

0434

0435 C ELSE (Muat roll over and increment 10s column)
0436 NAME (3) = NAME (3) + 367B

0437 RETURN

0438

0439 300 CONTINUE

0440 NEWNM = LASTN

0441 RETURN

0442 END

FTN4 COMPILER: HP92060-16092 REV. 2001 (791101)

#+ NO WARNINGS #+ NQ ERRQORS «+ PROGRAM = 00092 COMMON = 00000

27

OPERATING SYSTEMS

HP SUBROUTINE LINKAGE CONVENTIONS

Robert Niland/HP Lexington

[Editor's note: This is the fifth part in a series of articles taken from Bob Niland's Links/1000 contributed manual. The articles
explain subroutine linkage conventions for RTE-IV, and much of the information can be applied to RTE-Il and RTE-ill as well. For
a definition of the MPX macro instruction see the first article in the series (Volume I, Issue 6).]

6-1. WHAT IS A PRIVILEGED ROUTINE?

Ordinarily, your application code executes with the computer’s interrupt system enabled (on). Interrupts may occur during your
program, and come from a variety of sources, such as:

a. /O devices, which may or may not be performing an operation on behalf of your program.
b. Internal computer trap cells, such as parity error, or power fail.
c. Program events, such as an EXEC call, MP/DM violation etc. This may be intentional or unintentional.

Let us consider Memory Protect (MP) violations. The Memory Protect capability of the computer is the operating system's
primary means of protecting itself from maodification (corruption) by a user's program. Any attempt to modify a location below
the address currently loaded in the fence register on the 12892B card will result in an interrupt on select code05.

Since the JSB instruction writes the return address into the destination entry point, it will generate an interrupt if that entry point
(EXEC for example) is below the fence. This is true even if you were attempting a legal operation (such as an EXEC call). The
interrupt causes the execution of the instruction stored by RTxGN in trap cell 05, usually a JSB through a base-page link to $CIC
or $CICQ. CIC (Central Interrupt Control) looks in its own entry point to see who was interrupted (you), and in the CPU interrupt
register (LIA 04) to see what caused the interrupt (in this case your JSB). CIC examines your destination and calling
parameters, and if legal, passes control {o the appropriate modules in the RTE resident code (which, by the way, may or may
not be the address of your JSB). If your activity is not legal, RTE will abend your program with an MP error.

There are occasions when it is necessary for an HP subroutine appended to your program, or even your program itself, to
perform tasks for which there is no standard system call, and which would normally result in an MP error. These tasks must
therefore be performed with the interrupt system off.

Code which executes with the interrupt system off is called privileged. It should be pointed out, however, that privileged user
code is not the same as a privileged driver, although the concepts are similar. And, since privileged drivers operate entirely
outside RTE, they form no part of the subroutine linkage conventions, and will not be treated in this manual.

Extreme caution must be used within privileged code. The following should be kept in mind:

1. All interrupts except Power-Fail, Parity Error, and any Privileged I/O are heid off. If your code takes longer than 1
millisecond to execute, characters may be lost on some types of terminal interfaces, and if held off longer than 10 ms., one
or more time-base interrupts (clock ticks) will certainly be lost.

2. Coding errors which would MP abend a normal program may crash or subtiely corrupt the RTE operating system if
executed while privileged.

A privileged subroutine is one which turns off the interrupt system upon entry. The generator recognizes these modules by their
type 06 NAM records, i.e. NAM SUBPR,06 optional comment They can only be written in assembly language, and reguire no
special knowledge or action on the part of the calling program.

28

OPERATING SYSTEMS

There is another class of subroutines, usually found in the RTE system library (%4SYLB,%MSYLB, etc), which have as part of
their calling sequence in the RTE Programmer's Reference Manual the requirement that the caller must be privileged while
calling. This is not the same as a privileged subroutine. What it means is that the caller must have already turned the interrupt
system off before calling the routine. This type of routine is usually resident in the operating system itself. Simply put, it is not a
privileged routine. It is called by privileged routines.

6-2. WHAT IS A RE-ENTRANT ROUTINE?

When an interrupt occurs, the state of your program is saved by the operating system. This consists of recording in your
program’s ID Segment the point of suspension (P), and the working registers (A,B,E,O,X,Y). It does not include saving the
current state of any variables, buffers, or modified code within your program, except that the entire program may be “saved” by
the process of swapping it out to disc if anuther program has priority access to your partition.

The fact that the state of your code is not saved is not normally of any concern. Although you may have issued the same

:RU,EDITR

command as one or more other users on the system, you are each executing your own copy of the code. For example, most of
this manual was written while the author was running EDI81. And although many programmers may call RMPAR in their
applications programs, each program has its own copy of RMPAR appended to it.

There are circumstances in which two users might be contending for the use of the same code (typically a subroutine). For
example, suppose we have two memory resident programs which must compute standard deviations, and for considerations of
space in the memory resident area, we want to have only one resident copy of our subroutine (called SIGMA). Both programs
will be linked to SIGMA by RTxGN. At some point program A (PROGA) is executing and calls SIGMA. Suppose that within
SIGMA we are at the point where we are computing N-1:

FAD = D-1 #Compute N-1.

DST N.TMP *Save in temporary location.
and an interrupt occurs. PROGB has been scheduled (by event, clock, operator, or whatever), and it has a higher priority.
PROGA gets suspended, its registers get saved, but the variables in SIGMA, such as N.TMP do not get saved. PROGB's call to
SIGMA would run to completion, return, and PROGB would either terminate or suspend on some system resource (such as 1/O).
PROGA would be restarted at the point of suspension. This means that PROGA's registers would be restored, but the value of
variables within the shared code of SIGMA would be now be set to whatever they were when SIGMA returned to PROGB!
To prevent the kind of conflict described on the previous page we need to write SIGMA in such a way that:
1. PROGB cannot interrupt SIGMA (and PROGA) until SIGMA has run to completion.

—or —

2. SIGMA saves (or asks RTE to save) the state of its variables on entry, and restores them on exit, so that it map be
interrupted with no ill effects.

Solution 1 is known as a privileged subroutine, just as in section 6-1. This is simply another reason for it.

Solution 2 is known as a re-entrant subroutine, because the code can be re-entered while another program is still in it.

29

OPERATING SYSTEMS

To summarize sections 6-1 and 6-2:

Privileged subroutines:

1. Execute with the interrupt system off.

2a. Are used when the caller needs to do something which is normally illegal.
—and/or —

2b. The subroutine needs to run to completion without being interrupted.

Re-entrant subroutines:

1. Execute with the interrupt system on.

2. Are used when the subroutine:

a. Has more than one potential simultaneous caller.
b. Takes longer to execute than is wise using privileged mode.

6-3: PRIVILEGED MODE WITH $LIBR AND $LIBX

Privileged routines are distinguished from ordinary routines by the fact that they execute with the interrupt system off in normal
systems, and above the 12620A Privileged Interrupt Card in systems with privileged I/O subsystems. This section deals with the
question:

How do | turn the interrupt system off?

The way it is not done is to write an ASMB subroutine which contains a CLF 00 instruction. Attempting to execute an /O
instruction while the interrupt system is on will result in your program being abended by RTE with an MP error. (Operations on
select code 01, the O & S registers, are excepted.)

Instead you must request that RTE turn it off for you. This is done by calling a special system entry point. This entry point is
below the fence, so an MP interrupt (and its overhead) will be generated, but if you call it correctly, RTE will return to you with the
interrupt system off. It is also used for re-entrant subroutines, in which case the interrupt system will be on, and that is discussed
in section 6-4.

This entry point is $LIBR. Naturalty, when your routine has completed, you will want to turn the interrupt system back on, so
$LIBR has a complement, $LIBX, which does this.

$LIBR and $LIBX can be used for two kinds of privileged routines:
1. For subroutine entry/return, a task for which they are optimzed.

2. For“in-line” code where you just want to go privileged for a few instructions (or calls), and where you do not want to write
that code as a separate subroutine.

We will discuss use 1 first, since it is the most straight-forward. We will also discuss use 2, showing how to “bend” $LIBX's
desire to return through your code rather than just to it.

We will explain $LIBR/$LIBX protocol first for an elementary type subroutine, i.e. one to which parameters are being passed
only in the registers. Be advised that $LIBR and $LIBX do save and restore all the working registers for you.

30

OPERATING SYSTEMS

The sequence is:

NAM SUBPR,06 Comment for RTxGN/LOADR load map.
ENT SUBPR Need not be NAM, must = entry point name.
EXT $LIBR,$LIBX Are in TB-1 or EXEC.

SUBPR MPX Entry point/return address.
JSB $LIBR Turn off interrupt system,
NOP and remain privileged.

Execute while privileged.

JSB s$LIBX Turn interrupts back on,
DEF SUBPR and return to caller through entry point.

The alert reader may ask: If this is a resident library routine, and is privileged to avoid re-entrant conflicts, what happens if
PROGA's JSB has written the return address into SUBPR, but the JSB $LIBR hasn't executed yet, and the higher priority
PROGB gets scheduled and calls SUBPR? Won't PROGA'’s return address get lost?

The answer is no. Depending on which RTE we are discussing, one of three things will inhibit PROGB's request until beyond the
JSB S$LIBR, that is, until PROGA’s invocation safely completes.

1.

Everyone’s JSB SUBPR may be indirect through a current or base- page link. The interrupt system is inhibited on any JMP
or JSB-indirect until the next instruction (at entry point +1) is executed.

The Memory Resident Library may be below the MP fence, in which case the JSB $LIBR is superfluous, as RTE will enter
the privileged routine, with interrupts off.

The Memory Resident Library may reside on a write-protected page, in which case entry is also from RTE and not through
the actual SUBPR entry point.

To summarize the rules for a simple privileged routine:

1.

Tell RTxGN that this is a privileged routine with a 6 in the NAM record. Since shareable code can only be generated into the
system, LOADR will treat type 6 modules as type 7.

Place a JSB $LIBR in the next memory location after the subroutine’s entry point. Any intervening code will not cause $LIBR

or $LIBX to fail, but if the subroutine is shared, it may be interrupted between the entry point and the JSB $LIBR resulting in
loss of the first caller's return address.

Place an all-zeros word in the memory location after the JSB $LIBR. This is what distinguishes a privileged $LIBR call from
a re-entrant one.

Execute your privileged code, and:
a. Do not call any but another privileged routine. In particular do not call any re-entrant routines.

b. Do not make any EXEC request, including /O, or you will either be abended with an EX error, or in earlier RTE's, you
will halt RTE.

¢. Do not attempt recursion. You may not call yourself, for among other reasons:
I. You will destroy your return address.

11 Privileged routines can only be nested to a level of 32767, and you would consume too much time far before
reaching that level.

31

OPERATING SYSTEMS

d. Do not fool around with I/O trap cells, interface cards, or the interrupt system. Yes, if you issue a HLT 00, you will
actually halt the computer.

5. Youcan, at your own risk, read from and write to locations below the MP fence. You can perform cross-map reads from and
writes to locations in the alternate (system) map. You may not read or write locations in physical memory which are not in
your map or the system map. To do this, you will need to alter the contents of your mapping registers. However, unless you
are very familiar with mapping under RTE, you'd best put the registers back the way they were prior to exit.

6. Place a JSB $LIBX after the last executable instruction in your subroutine. When executed, RTE will return control to your
caller with the interrupt system back on, unless the caller was also privileged, in which case it will be left off.

7. Place aDEF <entry point name > in the next memory location following the JSB $LIBX. This DEF may be indirect as long as
it eventually points to the entry point.

A privileged routine need not be a privileged subroutine. It is possible for an ASMB program or subroutine to contain a few lines
of code which need to execute while privileged. The principal obstacle to writing “in-line” privileged code is that $LIBX expects
to perform a subroutine return, and returns to your code in a “double-indirect” fashion. There is an address following the JSB
$LIBX which points to a location containing the return address.

Your in-line code can handle this in the following fashion:

e Normal non-privileged code.
JSB S$LIBR Turn off interrupts,
NOP and remain privileged.

. Execute while privileged.

JSB $LIBX Restore the interrupt system,
DEF @RESU and return through RET,!

-:: Non-executable memory locations (optional).
@RESU bé& RESUM Address of resumtion of normal execution.
::: More non-executing locations (optional).
RESUM ... Non-privileged execution resumes.
The locations DEF RESU, RESU DEF RESU, are usually adjacent, and could also be expressed as:

JSB S$LIBX Restore the interrupt system,

DEF #+1 and return through next word,!
DEF #+1 return to next location.
ces Resume non-privileged execution.

This mode of operation is possible because, unlike .ENTR, $LIBR does not require an entry point nearby.-And, $LIBX only
requires a resumption point link address.

For an example of simple privileged code, refer to the listing of routine PRIOR in Appendix F. This is not a privileged subroutine,
but does contain some privileged code.

32

OPERATING SYSTEMS

6-4. RE-ENTRANT MODE WITH $LIBX AND $LIBR

Re-entrant routines are distinguished by the fact that one resident copy of their code, while servicing a caller, can be
interrupted and called by another program. This requires that temporary data relating to the first caller be saved and restored.

The data saving and restoring is done for you by RTE, using a variation on the privileged $LIBR/$LIBX call. The difference is that
you must tell RTE that you want to be re-entrant rather than privileged, and you must tell it where the data is, and how much you

have.

The sequence is:
NAM
ENT
EXT
SUBRE MPX
JSB
DEF
JSB
DEF
DEC
TDB NOP
DEC

NOP
DATA BSS

The rules are:

SUBRE,06 Comment for RTxGN/LOADR load map.

SUBRE

$LIBR,sLIBX

$LIBR
TDB

$L IBX
TDB
<ret>

<tdb>+3

<tdb>

Need not=NAM, must=entry point name.

Entry point/return address.
Turn off interrupt system briefly,
and save previous T.D.B. (if any).

Execute while re-entrant.

Turn off interrupts briefly,
restore the previous TDB,
and return to SUBRE,I or SUBRE,I+1

TDB link list header.

Size of TDB data area + header.

Return point used by $LIBX.

Actual data storage area of <tdb> words.

1. The NAM record must be type 6. As for privileged routines, it tells RTxGN that if one or more Memory Resident programs
require this routine, only one copy of it needs to be relocated into the memory resident library.

2. Place the JSB $LIBR in the memory location following the entry point.

3. Place the address of the Temporary Data Block (header plus data areas) in the location following the JSB $LIBR.

4. While within the re-entrant routine:

a. Do not modify any memory locations outside those in the TDB.

b. That includes not modifying any instruction within your routine. This means that you may not use HP1000 instructions
which are interruptable and which save the current loop index in a location adjacent to the instruction (initially a NOP)
when interrupted (for example, CBT, CMW, and MVW).

c. Do not call any “library” (type 7) subroutines. These are neither privileged nor re-entrant, and if you are interrupted
while within such routines, your copy of their temporary variables will be lost.

33

OPERATING SYSTEMS

5. While within the re-entrant routine, you may:

take as long as necessary.
perform 1/O (but not with “library” device subroutines).

call other privileged or re-entrant routines.

a o oo

modify data in the TDB. You access it like any local storage/variables in any ASMB routine. In fact the BSS form of
declaration is really not the best. A more elegant form is the symbolic:

TDB NOP The same.
ABS EOD-TDB Always correct, even if data altered.
NOP The same.
DATA1 MPX The first variable name/location.
ARRAY BSS 24 An array perhaps?
DEX BSS 3 An extended precision result.
EOD EQU =« The next location (outside TDB).

6. Place a JSB $LIBX after the last executable instruction in the routine.
7. Place the address of the local Temporary Data Block (DEF TDB) in the location following the JSB $LIBX.
8. Follow step 7’s address with a location containing a 0 or 1:

0: If the subroutine (SUBRE) makes a simple return always.

1: If the subroutine will make a simple return on an error, but wil skip one location in the caller if returning without error. An
error might occur if, for example, RTE would never have enough System Available Memory in which to store the TDB.

9. Build the TDB header somewhere in the routine, consisting of:

a: An all-zeros location in which RTE puts the linked-list pointer to previously saved TDB’s. Do not modify this location in
your routine. RTE will set it back to zero when appropriate. It must be followed by...

b. A location containing the size of the TDB, which is 3 plus the number of words in the data area. This must be followed
by...

c. Another all-zero location in which RTE will save the return address from your entry point. (Otherwise the next cailer
would destroy it.)

10. The TDB header must be immediately followed by the TDB data area, consisting of any number of NOP's or pseudo-
instructions necessary to allocate the quantity of storage space needed by the routine. Each element may have its own
label. Constants should not be placed in this area. They will be needlessly “swapped-out” to SAM with the variables when
re-entry occurs.

When to Make a Subroutine Privileged or Re-Entrant:

If you are attempting something which is normally illegal, the need for a privileged routine is apparent. It is not so obvious in
other cases. The $LIBR $LIBX entry exit protocol should only be used when the subroutine is likely to be called by one or more

memory-resident programs, and the space/performance cost of making it privileged/re-entrant is lower than the space cost of
having one copy of the routine for each program.

34

OPERATIONS MANAGEMENT

FUNCTIONS OF A BAIMG

Carol Jonas/HP Data Systems Division

The BASIC/IMAGE Interface is more than just extra overhead for doing data base manipulations from BASIC programs. It
performs many functions necessitated by differences between BASIC/1000D and other HP/1000 languages as well as
resolving the fact that the BASIC Interpreter can only interpret BASIC code. It is the purpose of this paper to explore those
differences and to exemplify the services provided by the BASIC/IMAGE Interface.

The BASIC/IMAGE Interface works on the overlay principle in BASIC/1000D. BASIC overlays are used to allow a BASIC
program to call subroutines written in another language. Each Basic overlay is just a separate program which is scheduled by
BASIC. Parameters are passed back and forth between BASIC and the overlay through class /O (SAM). A more detailed

explanation of the passing of parameters between BASIC and an overlay can be found in the HP/1000 HPIB Application Note
201-8 HP part number 5953-4216.

In order for a BASIC program to use other language subroutines, the overlay for the subroutines must be prepared by another
program, the BASIC table generator. This program performs many functions related to building the overlays and preparing
information for their use by BASIC. The main program for each overlay is actually created by the BASIC table generator, RTETG.

The main merely consists of a program name and the external references necessary to bring in, at load time, the subroutines
being interfaced to BASIC.

The only other principle part of each overlay supplied by BASIC is CALSB (short for call subroutine). It is CALSB’s function to
retrieve and store each parameter passed by BASIC into the overlay's address space, to perform the subroutine call and to
pass back each return parameter from the overlay to BASIC. CALSB finds space to store the parameters passed by BASIC by
using the words remaining in the partition from the last word of the overlay code to the last word of the partition. For this reason,
each BASIC overlay must be allocated extra page(s) using the SZ command in RTETG, the loader or the system.

When RTETG is run, it must be given explicit details on the type of each parameter used by the subroutine(s) in the overlay.
BASIC has only two types of data formats: real and character string. BASIC's real data format is the same as the machine
representation of a two-word real and is therefore the same as areal in any other language. However, BASIC's character string
format does not conform to any other language’s. Its character strings are one dimensional arrays with ASCII characters
starting in the third byte of the array preceeded by two bytes of length information. The first byte contains the length in bytes of
the physical storage area occupied by the character string. The second byte contains the number of characters (bytes) that
have been entered into the string. For example, assume a character string variable declared as:

DIM A$(10)
and initialized by:
LET AS$ = "STRING*

then the first byte would contain the value 10 and the second byte would contain the value 6.

In order for a subroutine of another language to use data passed to it by BASIC, that data must be in a format that it recognizes.
For this reason, parameters passed by a BASIC program to an overlay subroutine may need some form of conversion. The only
data format that does not need to be converted is the real format. It can be passed back and forth and used by either BASIC or
the overlay subroutine as is. BASIC itself provides a limited conversion capability. It can convert between real and integer
format tor the overlay, if told to do so. By specifying the type of data for each parameter in the subroutine to RTETG, it can build
what are called the Branch and Mnemonics Tables to inform BASIC of the data formats required by the subroutine(s) in the
overlay. Before scheduling the overlay, if necessary and possible, BASIC transforms the parameters from its format into the
format required by the subroutine(s) and on return, back into its own format. For example, if a subroutine requires a machine
format single word integer parameter, BASIC will convert a real parameter into an integer before writing it to the class, and if the
subroutine returns an integer parameter, BASIC will convert that integer into a real.

35

OPERATIONS MANAGEMENT

Any subroutine in which each parameter has only one possible simple numeric type (integer or real) may be called directly from
CALSB in the overlay since BASIC performs these conversions. However, many subroutines, particularily the IMAGE sub-
routines, may have parameters of other data types and may also allow the type of some of the parameters to vary which
requires an interface between CALSB and the true subroutine. For instance, the argument parameter in a DBGET call can be
used to hold a double integer record number or a real, integer or FORTRAN format character string data item value.

Another concern is record type data formats. BASIC does not allow mixed mode arrays. Each entry in an IMAGE data set may
contain many data fields of varying type. A FORTRAN program may receive an entire entry as a mixed mode array and proceed
to process each field in the array based on its type. However, a BASIC program can only work with different variables and
arrays each of a specific type and they may not be subfields of a larger mixed mode array.

For the IMAGE subroutines, and any other subroutine with similar features, extra data conversion must be performed before
they can use the parameters passed by BASIC. The BASIC/IMAGE interface, BAIMG, performs this extra data conversion for
the IMAGE subroutines.

BAIMG is a set of subroutines itself. This set of subroutines is appended to the overlay main created by RTETG at load time. It is
BAIMG which contains the entry points DMOPN, DMCLS, etc. which are specified in the required answer file for RTETG when
describing the BASIC/IMAGE overlay. It is these entry points which are entered by CALSB when it performs the subroutine calls
to the IMAGE routines. Each of these DMXXX routines then performs the extra data conversion, calls the corresponding DBXXX
routine, and upon return, performs any reverse data conversion necessary.

The kind of extra data conversion performed by BAIMG can best be exemplified by the DBGET (DMGET) routine. The RTETG
command describing the DBGET calling sequence is a follows:

DBGET(RA,RA,I,RVA,RA,RA,RVA,RVA,RVA,RVA,RVA,RVA,RVA,RVA,RVA),
VL,O0V=nn,SZ=mm,ENT=DMGET ,F IL=%XBAIMX

For a detailed explanation of the components of RTETG commands please see the BASIC/1000D Programmer’s Reference
Manual HP part number 92060-90016. For the purposes of this paper it is sufficient to define the parameter descriptors. Each
descriptor is composed of the letters R, |, V and A in some arrangement. R means that the parameter is a real. Real parameters
need no conversion by BASIC. | means that the parameter is an integer. Parameters of type integer in an overlay subroutine
must be of numeric type in the BASIC program. BASIC will convert the real to an integer for the overlay. V means that the
parameter is to receive a value upon return to BASIC. If a parameter descriptor contains an | as well as a V, BASIC will convert
the returned value into a real. A means that the parameter is an array. BASIC can perform real array to integer array conversion
and vice versa. Note that there is no way of signifying character string parameters. All character string parameters can be
passed to the overlay as real arrays (RA) or retumed as real value arrays (RVA) but they are passed in BASIC format, length
fields and all.

DBGET has seven parameters, in the following order, all of them required:

ibase is a data base descriptor

id is a data set descriptor

imode describes the method of reading desired by the caller
istat is a status array

list is a data item descriptor list

ibuf is a buffer for returned data item values

iarg is the argument parameter discussed above

36

OPERATIONS MANAGEMENT

DMGET has fifteen parameters, in the following order, only seven of which are required:

ibase

through are as above

istat

iarg is as above

name-list is as list above

value-list is a set of one to nine variables in which the data item values are returned

When a BASIC program calls DBGET it uses the name DBGET but the calling sequence is that of DMGET. In order for BAIMG to
perform the actual DBGET call, the parameters in the DMGET calling sequence must be transformed into the DBGET calling
sequence. Aside from order, many of the parameters have limited or differing meanings. Taking the parameters one at a time,
DMGET does the following.

ibase —

imode —

istat —

iarg —

name-list —

Corresponds to the first parameter descriptor, RA, in the RTETG command and as such is not touched by BASIC
before being passed to the overlay. This parameter must be a character string in the BASIC program. DMGET
increments the address of the parameter by one to skip over the length bytes in the first word then passes this new
address as the address of the ibase parameter to DBGET.

Corresponds to the second parameter descriptor, RA, in the RTETG command and as such is not touched by
BASIC before being passed to the overlay. For BASIC this may only be a character string containing a data set
name (from FORTRAN a data set number is allowed to DBGET). However, it must be a six character name.
DMGET takes the actual characters specified in the string, as defined by the length count in the second byte of
the array, and moves them into a new three word array padding them out to six characters with blanks as
necessary. It is the address of this new array that is put in the DBGET calling sequence.

Corresponds to the third parameter descriptor, [, in the RTETG command and, therefore, BASIC does the
necessary real to integer conversion before passing the parameter to the overlay. DMGET passes the parameter
on through to DBGET exactly as received from CALSB. No data movement or address correction is necessary.

Corresponds to the fourth parameter descriptor, RVA, in the RTETG command and is not touched by BASIC
before being passed to the overlay nor after it is returned. This parameter must be a real array of at least 6
elements within the BASIC program. To DBGET this parameter must be an array of at least 10 words in which
mixed mode integer and double integer numbers will be returned. On entry to DBGET, no conversion is required
because this is a return value only parameter. In fact, the status array passed to DBGET by DMGET is a ten word
array internal to BAIMG rather than the parameter passed by CALSB. On return from DBGET, however, DMGET is
responsible for converting any integers and double integers into reals and placing the real values into the
parameter passed by CALSB in their proper order.

Corresponds to the fifth parameter descriptor, RA, in the RTETG command and as such is not touched by BASIC
before being passed to the overlay. As sited earlier in this paper, this parameter may take on any data format.
DMGET must determine, based on the imode and id parameters, and the iarg parameter itself, just what data
format it is supposed to be. For instance, on a directed read, imode =4, DBGET will expect a double integer and
the BASIC program will have to have passed a real. DMGET must therefore convert the real into a double integer.
On a keyed read, imode =7, DBGET will expect a format that conforms to the format of the key item for the data set
specified by id. DMGET determines the type of the key item by calling DBINF and then performs any necessary
conversion. When iarg is to contain an integer data item value or a double integer record number, DMGET reuses
the space occupied by iarg for the converted number. When a real or a character string is expected, iarg is
passed as is, with an address correction, of course, if a character string.

Corresponds to the sixth parameter descriptor, RA, and as such is untouched by BASIC before being passed to
the overlay. This parameter is always a data item name list as described by the list parameter for any IMAGE call.
Therefore, it must be a character string in the BASIC program and is passed as is, with address correction for the
length word, to DBGET in the list parameter location.

37

OPERATIONS MANAGEMENT

value-list — Corresponds to the seventh through fifteenth parameter descriptors, all RVA, and are untouched by BASIC before
being passed to the overlay as well as after they are returned. This set of parameters are the tricky ones. Not only
must data conversion be performed, but a record may need to be unpacked. DBGET is expecting to receive an
array into which it may place possibly mixed mode fields at random. The array passed to DBGET as the ibuf
parameter is internal to BAIMG. Upon return, this array must be broken into its separate fields, converted into reals
or BASIC character strings, if necessary, and placed into the variables in the value list. Since all these variables
are passed back as RVA to BASIC, BASIC will not do any conversion and will expect the variables to be in their
proper format for the BASIC program’s use. Note that for character string data items, this means that DMGET is
responsible for setting up the length bytes in the return parameter also. Each variable in the value-list is supposed
to be in one-to-one correspondence with the names in the name-list and are also assumed to be in the same
order. DMGET determines the length of each field and its type from DBINF calls based on the item names in the
name-list.

In short, DMGET, and all of BAIMG, is an intermediary between BASIC and IMAGE that must know both sets of calling
sequences, both sets of data formats, and be able to convert freely both ways. The DMGET-DBGET interchange was chosen as
an example of this capability since it is one of the most extensive, but each IMAGE subroutine requires extra data conversion to
some degree.

As you can see, the data format incompatibilities is the major reason for the existence of the BASIC/IMAGE Interface. These
incompatibilities not only result in extra data conversion but also in an alteration of the information returned by IMAGE calls in a
BASIC program from the standard. For instance, all but one of the DBINF modes, when called from BASIC, return information in
character strings that would normally be integer mixed mode integer, double integer and character. The two modes which
return standard information leave the buffer containing it in a state that is uninterpretable by the BASIC program.

There are two more minor problems handled by BAIMG. One of these is the fifteen parameter limit imposed by BASIC on
subroutines. The BAIMG routines DMGET, DMUPD and DMPUT must take this into account when packing or unpacking a data
entry. No more than nine or ten fields of the entry, depending on the call, can be manipulated at a time. Also, the maximum

length of a BASIC character string is 255 characters. Whenever passing character string data back to BASIC, the DMXXX
routines must enforce this limit.

While the BASIC/IMAGE Interface was developed to resolve the differences between BASIC and other languages when using
IMAGE, it does provide some benefits to the programmer. For one, having the IMAGE subroutine code in a different program,
rather than appended to the BASIC program, allows for more code space for the BASIC program. Another major benefit is the
lack of record types itself. Being able to access several data items at once as different variables relieves the burden on the
programmer of breaking apart a possibly mixed mode array in order to manipulate the individual fields. These features,
combined with the ease of programming in BASIC, make the BASIC/IMAGE Interface a valuable tool for data base applications.

38

LANGUAGES

FAST FORTRAN

John Pezzano/HP El Paso

Because it is a high-level language, FORTRAN has many advantages over Assembly. It is easier to write and debug, and is
much more widely known. There are two major disadvantages of FORTRAN — speed and size. FORTRAN programs are
invariably slower than their Assembly counterparts. The compiler generates less efficient code than the Assembly level
programmer can write, and calls more library routines. The programmer has always had two choices — inefficient, easy
FORTRAN, or efficient (and less well-known) Assembly. Now there is a third choice — efficient FORTRAN coding — what | call
FAST FORTRAN.

FAST FORTRAN is a coding rather than a formalized programming technique, which includes:

1. Writing equations for efficient compilation
2. Understanding compiler inefficiencies and working around them

3. Understanding the limitations and advantages of system EXEC calls and library routines.

FAST FORTRAN is not a replacement for good programming techniques, but is an alternative to Assembly, where speed of
execution and size of a program are important considerations. Here are some principles of FAST FORTRAN.

1. KNOW WHAT IT TAKES TO COMPILE AN EQUATION FOR MINIMUM COMPILATION

To understand this, one must understand the compiler. Each arithmetic or other operation creates a call to a library routine to
accomplish the operation. The equation
X = Z#»22 + Z

creates a call to .RTOR, the library routine to do real exponential and .FAD to add the two real numbers. On the other hand, this
can be written as

X = Za(Z + 1.0)

which creates only a call to .FAD and .FMP (real multiply). This is not only faster, but is implemented in microcode (in E- and
M-Series computers) or in hardware (in F-Series).

2. REMOVE INVARIANT FROM A DO LOOP

Equations within a loop are executed multiple times. If there is any code within a loop that does not change, remove it when
possible. In

DO 10 = 1,000
XCI) = SIN (X#22 + Y#a2) + 2(CI) » 2
10 CONTINUE

SIN (X**2) does not change, yet recalculated N times. Replacing the above with

R = SIN (X#22 + Y=a2)

DO 10 I = 1,000

Z2CI) = R + 2(CI) » 2
10 CONTINUE

saves 5 words, but the loop is only 18 words instead of 38, saving the execution of 2000 words for a 100X loop including 99
more “SINE" calls and 200 "RTOR” calls.

39

LANGUAGES

3. MAKE SURE CONSTANTS AGREE IN TYPE WITH VARIABLES
The equation

X =Y +1

causes the compiler to make a call to “float” to convert 1 to a real.
The use of

X =Y + 1.0

saves that call. If Y is double precision, the cost is 4 words for 1" and 6 words for 1.00. While this may not seem like much, 50
mistyped constants in a program add 200 — 300 instruction words to a program.

4. COMBINE CONSTANTS

The equation — CIRCUMFERENCE = 2 PI RADIUS — which can be written

DATA P1/314159
CIRCUM = 2 » PI » RADIUS

should be written

DATA POVERZ/1.570796
CIRCUM = POVERZ = RADIUS

to save unnecessary multiplication of two constants.
5. DON'T CALL LIBRARY ROUTINES UNNECESSARILY

Using some standard FORTRAN capabilities sometimes causes the loading and execution of library routines which take time
and space. For example, the innocuous

ENDFILE LU

causes the routine .TAPE to be loaded and add 10 words to the size of the program. A faster and smaller version is
CALL EXEC (3, LU + 400B)

which does the same thing. Similarly, at the end of your program, the statement
STOP

adds 252 words for the privilege of printing the words
PROGX :STOP 0000

when PROGX terminates.

40

LANGUAGES

6. KNOW HOW TO USE ARRAYS

The use of arrays involves a lot of extra calculation and code. To calculate an element of X(I) of a single dimensioned array
takes 4 more words. Similarly, double and triple dimension arrays X(l,J) and X(l.J,K) take 8 and 10 words respectively.
Therefore, the following subrules apply:

A. Equivalence array elements where possible. Using the following code

Y = X(1)%22 + X(2)#22 + X(3)#42

takes 15 more words than

EQUIVALENCE (X(19,X1), (X(€2),X2), (X(3),X3
Y = X1#22 = X2##2 + X3##2

B. Use single dimension arrays instead of multi-dimension.

For example, zeroing an array of 20 by 20 with

DIMENSION A€20,20)
DO 10 I = 1,20
DO 10 J = 1,20
10 ACI,J) = 0.0
takes 4400 more executing instructions than

DIMENSION A(400)
DO 10 I = 1,400
10 ACI> = 0.0

even though it is only 15 words longer.

C. Calculate an array element as few times as possible. The equations

X(CI) = ACI)/BCI)

Y(I) = ACId/C + W

2C1) = R/2. + ACI)
can best be written

Al = ACD)

X(I) = AI/BCD)
Y(CI) = AL/C + W
2¢I) = R/2. + Al

for a savings of 19 instructions for each time through a loop.

D. Know what the use of an array name without subscript means. In an l/O statement such as
WRITE (LU,10) ARRAY

the whole array will be written. But in any other statement such as
ARRAY = X

this is equivalent to writing
ARRAY(1) = X

which means that 4 words can be saved in any non-I/O reference to ARRAY(1) without the need for an EQUIVALENCE
statement described above.

41

LANGUAGES

7. AVOID FORMATTER LIKE THE PLAGUE!

If anything takes up code in a program, it is the formatter. A single read/write statement loads the formatter with the program.
This can add a minimum of 5130 words to the program size. If at all possible, use EXEC/REIO calls and system library routines
KCVT, CNUMO, and CNUMO to do I/0.

For 1/O with no variables, you can use

CALL REIO ¢2,LU, 11H ENTER DATA ,-11)

for WRITE (LU 10D
10 FORMAT (' ENTER DATA'")

or CALL REIOD ¢1,LU + 400B, IBUF,3)

for READ (LU,100)> IBUF
10 FORMAT (3A2)

if you are using simple integers, replace

WRITE (LU,10)> LUOUT

10 FORMAT ("CURRENT LU IS*,I&)
READ (LU,11)> LUOUT

11 FORMAT (16)

with CALL OUT C(CURRENT LU IS *», LLOUT,10,LU)
CALL EXEC ¢1,LU + 400B,IBUF,-6)
CALL ABREG (IA,IB)
CALL PARSE (IBUF,IVAL,N,LU)
LUOUT = IRBUF(2)

T

’

END

If you are doing binary 1/0
READ (LU)> IBUF

or

WRITE (LU> IBUF
a

CALL EXEC (1,LU+100B,IBUF,N)
or

CALL EXEC (2,LU+100B, IBUF,N)
is far superior.

For complicated /O (tabbing, real, double precision, multiple integer) formatter may be the only logical choice, but if speed of a
program is critical, consider using class I/O to pass the unformatted buffer to another program which formats and outputs it.

While it is not possible for even the most efficient FORTRAN programmer to code as efficiently as in Assembly, the use of
efficient coding techniques can be the difference between a program that is shon, efficient and fast, or one that has to resort to
slower, less efficient techniques such as EMA or segmenting. If you are not too sure what code your program is generating, or
what extra and possibly unnecessary routines your program is causing a load of, use the FORTRAN M (Mixed) listing and the
LOADR list map to assist you.

42

BULLETINS

BEWARE OF OLD FORTRAN CODE

Kent Ferson/HP Data Systems Division

FORTRAN programs compiled with the 24177 FORTRAN compiler (now obsolete) generated unnormalized floating point
numbers in the object code. The F-series floating point hardware always expects a normalized floating point number, and will
therefore produce garbage results. The M-series and E-series computer will work correctly.

There are two work-arounds for this problem. The first is to recompile the source program using the RTE FORTRAN compiler.
The current compilers always generate normalized floating point numbers. If the source is not available, the user can explicitly
search the relocatable libraries ($MLIB1 AND $MLIB2) during load time. This second solution forces the software routines to be
used instead of the floating point hardware.

43

BULLETINS

PASCAL/1000 PROGRAMMING COURSE

Shauna Uher/HP Data Systems Division

The Pascal/1000 programming course is now being offered at HP Regional Training Centers. This course teaches the concepts
of structured programming in Pascal/1000 in the RTE-IVB operating system environment. Completion of the RTE-IVB Session
Monitor User's Course is a pre-requisite. No previous Pascal programming experience is required.

The course is divided into ten modules which are covered in five days.

MODULE TOPIC
1 Introduction, Structured programming, Statements
2 Type declarations, User-defined types
3 Structured types, Data representation
4 Procedures, Functions
5 Introduction to files, file maniputation procedures
6 Sequential and direct access files, File /O procedures
7 Pointers, Dynamic variables
8 Segments, Subprograms
9 Pascal/1000 and System library routines, FMP, EXEC, FORTRAN routines
10 Discussion Topics

Each of these modules is supplemented by labs which consist of worksheet questions and programming assignments.

The student workbook contains a copy of the overhead slides and a section of student text which describes the slide material.
The students also receive the book Programming in Pascal/1000 by Peter Grogono.

Contact your local HP sales office for enrollment and course availability information.

44

BULLETINS

JOIN AN HP 1000 USER GROUP!

Here are the groups that we know of as of September 1980. (If your group is missing, send the Communicator/1000 editor all of
the appropriate information, and we’'ll update our list.)

NORTH AMERICAN HP 1000 USER GROUPS

Area

Boston

Chicago

New Mexico/El Paso

New York/New Jersey

Philadelphia

Pittsburgh

San Diego

Toronto

45

Computer
Museunt

User Group Contact

LEXUS
P.O. Box 1000
Norwood, Mass. 02062

Jim McCarthy

Travenol Labs

1 Baxter Parkway
Mailstop 1S-NK-A
Deerfield, Illinois 60015

Guy Gallaway

Dynalectron Corporation
Radar Backscatter Division
P.O. Drawer O

Holloman AFB, NM 88330

Paul Miller

Corp. Computer Systems
675 Line Road
Aberdeen, N.J. 07746
(201) 583-4422

Dr. Barry Periman
RCA Laboratories
P.O. Box 432
Princeton, N.J. 08540

Eric Belmont

Alliance Research Ctr.
1562 Beeson St.
Alliance, Ohio 44601
(216) 821-9110 X417

Jim Metts
Hewlett-Packard Co.
P.O. Box 23333

San Diego, CA 92123

Nancy Swartz

Grant Hallman Associates
43 Eglinton Av. East
Suite 902

Toronto M4P1A2

BULLETINS

NORTH AMERICAN HP 1000 USER GROUPS (CONTINUED)

Area User Group Contact

Washington/Baltimore Paul Taltavull
Hewlett-Packard Co.
2 Choke Cherry Rd.
Rockville, MD. 20850

General Electric Co. Stu Troop

(GE employees only) Special Purpose Computer Ctr.
General Electric Co.
1285 Boston Ave.
Bridgeport, Conn. 06602

OVERSEAS HP 1000 USER GROUPS

London Dave Thombs (Vice-Chairman)
MQAD, Royal Arsenal East
WOOLICH, London SE18
England

Amsterdam Mr. Van Putten
Institute of Public Health
Anthony Van Leeuwenhoeklaan 9
Postbus 1
3720 BA Bilthoven
The Netherlands

South Africa Andrew Penny
Hewlett-Packard South Africa Pty.
private bag Wendywood
Sandton, 2144 South Africa

Belgium E. van Ocken
University of Antwerp (RUCA)
Groenenborgerlaan 171
2020 Antwerp
Belgium

France Jean-Louis Rigot
Technocatome TA/DE/SET
Cadarache
BPA
13115 Saint Paul les Durance
France

Germany Hermann Keil
Vorwerk +Co Elektrowerke
Abt. TQPS
Rauental 38-40
D-5600 Wuppertal
Germany

46

Although every effort is made to ensure the accuracy of the
data presented in the Communicator, Hewlett-Packard can-
not assume liability for the information contained herein.

Printed in U.S.A. 9/80

Prices quoted apply only in U.S.A. If outside the U.S., contact
your local sales and service office for prices in your country.

Part No. 5951-6111

g

>

