(ﬁﬂ HEWLETT

PACKARD

Hewlett-Packard
Computer Systems

bl

1980 Volume IV Issue 5




HP Computer Museum
www.hpmuseum.net

For research and education purposes only.



HEWLETT-PACKARD m
COMPUTER SYSTEMS

oo 5 COMMUNICATOR/1000

Feature Articles

OPERATING SYSTEMS 21 HP SUBROUTINE LINKAGE CONVENTIONS
Robert Niland/HP Lexington

COMPUTATION 28 BENCHMARKING HP 1000 COMPUTERS
Charles G. Fugee/Dynalectron Corp.

OPERATIONS MANAGEMENT 36 MODELING MULTIPLE LEVEL LINKED
LISTS WITH IMAGE/1000
Jim Burkett/HP Data Systems Division

45 INCREASING SYSTEM AVAILABILITY
THROUGH REDUNDANT COMPONENTS
Jim Bridges/HP Data Systems Division

Departments

EDITOR'S DESK 3 ABOUT THIS ISSUE
4 BECOME A PUBLISHED AUTHOR IN THE
COMMUNICATOR/1000...
6 LETTER TO THE EDITOR

BIT BUCKET 7 RESTORING GRANDFATHER RELOCATABLES
FROM MAG-TAPE
14 IN AND OUT OF SESSION
16 CLEARING SOFTKEY LABELS FROM THE SCREEN
17  USING DYNAMIC MEMORY SPACE
WITH FORTRAN IV






EDITOR’S DESK

ABOUT THIS ISSUE

Looking at the articles in this issue | must say | am continually amazed at the variety of subjects HP/1000 users find to write
about. The feature articles in this issue span the breadth from performance to data base internals. In addition, all four Bit Bucket
articles are extremely useful.

In the OPERATING SYSTEMS category | have published the sixth article in the series on HP Subroutine Linkage Conventions
written by Bob Niland of HP's Lexington, Massachusetts office. When the entire series has been published subscribers will have
a valuable reference manual at their disposal.

In the COMPUTATION section Charles Fugee of Holloman Air Force Base in New Mexico submitted his results on benchmark-
ing the computers in the HP/1000 product line. This article was published in the COMPUTATION section because Mr. Fugee's
benchmarks are oriented towards number crunching performance. Note that if you wish to get a copy of his benchmarking
program he has moved to HP's Atlanta, Georgia sales and service office.

In the OPERATIONS MANAGEMENT section there are two fine articles written by DSD employees. Jim Bridges has written an
article on an up and coming topic, “Increasing System Availability through Redundant Components”, and Jim Burkett
describes his use of IMAGE/1000 to create a multi-level network database.

This time there was no competition for a calculator in the customer category. However, there were two competing entries from
HP's Data Systems Division, the winner of which was decided by our panel of judges. There was no winner from HP field offices
because Bob Niland is ineligible. The winners are:

Best Feature Article BENCHMARKING HP/1000 COMPUTERS
by a Customer Charles G. Fugee

Best Feature Article by INCREASING SYSTEM AVAILABILITY

an HP Division Employee THROUGH REDUNDANT COMPONENTS
not in Data Systems Jim Bridges

Technical Marketing

I hope you enjoy reading the articles in this issue, and continue to provide the Communicator with interesting and useful
material.

The Editor



EDITOR’S DESK

BECOME A PUBLISHED AUTHOR IN THE COMMUNICATOR/1000. ..

The COMMUNICATOR is a technical publication designed for HP 1000 computer users. Through technical articles, the direct
answering of customers’ technical questions, cataloging of contributed user programs, and publication of new product

announcements and product training schedules, the COMMUNICATOR strives to help each reader utililize their HP 1000's
more effectively.

The Feature Articles are clearly the most important part of the COMMUNICATOR. Feature Articles are intended to promote a
significant cross-fertilization of ideas, to provide in-depth technical descriptions of application programs that could be useful to
a wide range of users, and to increase user understanding of the most sophisticated capabilities designed into HP software.
You might think of the COMMUNICATOR as a publication which can extend your awareness of HP 1000’s to include that of

thousands of users worldwide as well as that of many HP engineers in Data Systems factories at Cupertino, California and
Grenoble, France.

To accomplish these goals, editors of the COMMUNICATOR actively seek technical articles from HP 1000 customers, HP
Systems Engineers in the Field, and Marketing and R&D Engineers in the factories. Technical articles from customers are most
highly valued because it is customers who are closest to real-world applications.

WIN AN HP-32E CALCULATOR!

Authoring a published article provides a uniquely satisfying and visible feeling of accomplishment. To provide a more tangible
benefit, however, HP gives away three free HP-32E hand-held calculators to Feature Article authors in each
COMMUNICATOR/1000 issue! Authors are divided into three categories. A calculator is awarded to the author of the best
Feature Article in each of the author categories. The three author categories are:

1. HP 1000 Customers;

2. HP field employees;

3. HP division employees not in the Data Systems Division Technical Marketing Dept.

Each author category is judged separately. A calculator prize will be awarded even if there is only one entry in an author
category.

Feature Articles are judged on the following bases: (1) quality of technical content; (2) level of interest to a wide spectrum of
COMMUNICATOR/1000 readers; (3) thoroughness with which subject is covered; and, (4) clarity of presentation.

What is a Feature Article? A Feature Article meets the following criteria:
1. lts topic is of general technical interest to COMMUNICATOR/1000 readers;
2. The topic falls into one of the following categories —

OPERATING SYSTEMS

DATA COMMUNICATIONS

INSTRUMENTATION

COMPUTATION
OPERATIONS MANAGEMENT



EDITOR’S DESK

3. The article covers at least two pages of the COMMUNICATOR/1000, exclusive of listings and illustrations (i.e., at least 1650
words).

There is a little fine print with regard to eligibility for receiving a calculator; it follows. No individuat author will be awarded more
than one calculator in a calendar year. In the case of multiple authors, the calculator will be awarded to the first listed author of
the winning article. An article which is part of a series will compete on its own merits with other articles in the issue. The total of
all articles in the series will not compete against the total of all articles in another series. Employees of Technical Marketing at
HP's Data Systems Division factory in Cupertino are not eligible to win a calculator.

All winners of calculators will be announced in the issue of the COMMUNICATOR/1000 in which their articles appear. Again, all
Feature Articles are judged by an impartial panel of three DSD Technical Marketing Engineers.

A SPECIAL DEAL IN THE OEM CORNER

When an HP 1000 OEM writes a Feature Article that is not only technically detailed and insightful but also application-oriented
as opposed to theoretical, then that OEM may ask that the article be included in THE OEM CORNER. A Feature Article included
in THE OEM CORNER may contain up to 150 words of pure product description as well as a picture or illustration of the OEM’'S
product or its unigue contribution. HP's objective is twofold: (1) to promote awareness of the capabilities HP 1000 OEMs’
products among all HP 1000 users; and, (2) to publish an article of technical interest and depth.

IF YOU'RE PRESSED FOR TIME...

If you are short of time, but still have that urge to express yourself technically, don't forget the COMMUNICATOR/1000 BIT
BUCKET. It's the perfect place for a short description of a routine you've written or an insight you've had.

THE MECHANICS OF SUBMITTING AN ARTICLE

If at all possible please submit an RTE File containing the text of your article recorded on a Minicartridge (preferrably) or on a
paper tape along with the line printer or typed copy of your article. This will help all of us to be more efficient. The Minicartridge
will be returned to you promptly. Please include your address and phone number along with your article.

All articles are subject to editorship and minor revisions. The author will be contacted if there is any question of changing the
information content. Articles requiring a major revision will be returned to the author with an explanatory note and suggestions
for change. We hope not to return any articles at all; if we do, we would like to work closely with the author to improve the article.

HP does, however, reserve the right to reject articles that are not technical or that are not of general interest to
COMMUNICATOR/1000 readers.

Please submit your COMMUNICATOR/1000 article to the following address:

Editor, COMMUNICATOR/1000
Data Systems Division
Hewlett-Packard Company
11000 Wolfe Road

Cupertino, California 95014
USA

The Editor locks forward to an exciting year of articles in the COMMUNICATOR/1000.
With best regards,

The Editor
5



EDITOR’S DESK

LETTER TO THE EDITOR
Dear Editor,

Here is an update to an article | wrote which appeared in Volume 11, issue 6 of the Communicator/1000 (pages 36-41).

Shared EMA capability was first developed and implemented on an RTE-IVA system (Rev. 1840) in October of 1980. It will also
work on an RTE-IVB system. | coined the name “SHEMA/1000” for a program | contributed to the PLUS/1000 library.
SHEMA/1000 gives the FORTRAN, PASCAL, or Assembly language programmer the ability to share a large area of physical
memory by using the standard EMA programming conventions. The maximum amount of memory that can actually be shared is
limited only by the number and size of user partitions and available memory. For more details on SHEMA/1000, refer to the
Communicator article.

Jeff Mason, Systems Engineer in our San Antonio office, has discovered something that is missing from the subroutine IDMAP
which will cause a program to abort with dynamic mapping violations when it attempts to access the shared EMA area. The
problem lies in that the wrong version of IDMAP was submitted by the author to the contributed library (LOCUS), now
PLUS/1000. The version of IDMAP that was submitted to the library was a specialized version for the particular application in
which SHEMA/1000 was originally implemented. A general purpose version of IDMAP that was developed will be submitted to
PLUS/1000 in the very near future. In the meantime, for those of you that are using SHEMA/1000, add the following code
beginning after line 62 of IDMAP:

EXT $IDEX

STB 0 PUT ID SEG ADDR IN A REG
LDA 0,1

LSR 10 ISOLATE ID EXT NUMBER.
ADA =D-1 ADJUST RELATIVE TO 0.
MPY =D3 INDEX INTO ID EXT TABLE.
ADA SIDEX+0

STA 1745B PUT ON BASE PAGE.

This will always ensure that the proper address of the executing programs ID extension entry is placed on base page prior to
firmware access. This can also be done by forcing the program to be rescheduled and thus letting the system set-up base
page.

I must apologize for any inconvenience that this may have caused users of SHEMA/1000. This is the only problem with it that
has been brought to my attention.

Sincerely,
Larry W. Smith

Systems Engineer
HP Fullerton, Ca.

Dear Larry,
Thanks for the update, and for your continued support of the Communicator/1000.

With best regards,

The Editor



BIT BUCKET

RESTORING GRANDFATHER RELOCATABLES FROM MAG-TAPE

By Eddie Yep/HP Data Systems Division

Have you ever wanted to generate a new system without shutting down your current system? Here is a program called GFREL
that will enable a user to restore cartridge 32767 from mag-tape to a disc LU. (The disc LU cannot be LU 2.)

GFREL will copy the entire Grandfather from mag-tape to the specified disc LU. For RTE-IVIII/IVA systems, the cartridge
directory will be removed from the last track of the cartridge, and the disc directory moved to the sector O of the last track.
GFREL then updates the disc directory to set the starting FMP area to track 0 and sector 0.

The user should then pack this cartridge to over-lay the operating system portion of the Grandfather and update the cartridge
directory.

Below is a listing of GFREL within which its run string and limitations are described. GFREL will also be available in the
PLUS/1000 contributed library produced by the HP/1000 Users Group.

FTN4,L,C
PROGRAM GFREL(3,50), EXTRACT REL FROM GF 08-25-80

THIS PROGRAM COPIES AN IMAGE OF A GRANDFATHER DISC FROM MAG TAPE TO
DISC. IT ASSUMES THAT:

1. RTE-IVB GRANDFATHERS (EXCLUDING 7900) ARE IN LSAVE FORMAT.

2. RTE-IVB GRANDFATHERS IN 7925(H) FORMAT CAN ONLY BE RESTORED
TO A 7925(H) DISC.

3. RTE-IVB GRANDFATHER ON 7900 DISC IS IN 7900 DISC BACKUP
FORMAT.

4, RTE-II/III/IVA GRANDFATHERS ARE IN DISC BACKUP FORMAT.
(SAME FORMAT AS RTE-IVB 7900)

5. RTE-II/III GRANDFATHERS HAVE 203 TRACKS (7905/06/20 DISC).
(NOTE: OFF-LINE SAVE MAY HAVE 256 TRACKS, BUT ONLY 203
ARE VALID. DIRECTORY IS ON THE 203RD TRACK)

6. THE NUMBER OF TRACKS SPECIFIED FOR THE DISC LU IS LARGE

ENOUGH FOR THE GRANDFATHER (203 TRACKS FOR 7900 DISCS AND
256 TRACKS FOR ALL OTHERS),

##+ OTHERWISE THE CARTRIDGE DIRECTORY WILL GET CORRUPTED!!! #s+

THE CALLING SEQUENCE IS AS FOLLOWS:

RU,GFREL ,MTLU,DSKLU,NTRKS ,0PSYS,DTYPE

MTLU = MAG TAPE LU (SOURCE)
DSKLU = DISC LU (DESTINATION)
NTRKS = NUMBER DOF TRACKS ON THE DESTINATION DISC LU
0OPSYS = OPERATING SYSTEM
1 - RTE-IVB
2 - RTE-IVA

0000000000000 0O0O0OOO0

3 - RTE-II/III



BIT BUCKET

DTYPE = TYPE OF DISC
1 - 7900
2 - 7905/06/20 (MAC/ICD)
3 - 7925 (MAC/ICD)

DISC BACKUP FORMAT

IF MAG TAPE RECORDS ARE 2048 + 2, THEN TWO RECORDS (MINUS THE
TWO TAG WORDS AT THE FRONT) ARE WRITTEN INTO EACH TRACK. THE
SECOND RECORD BEGINS AT SECTOR 32.

NOTE: SEE RTE-IVB UTILITY PROGRAMS REFERENCE MANUAL FOR TAPE
FORMATS. RTE-II/III/IVA AND RTE-IVB 7900 DISC USE THE
7900 DISC BACKUP FORMAT. RTE-IVB (EXCLUDING THE 7900
DISC) USE THE LSAVE FORMAT.

0000000000000 OO0OO0

DIMENSION IBUF(8193),IREG(2),IP(5),IHEDR(247),1DCB(144)
DIMENSION INBUF(40),IPBUF(10)

INTEGER DSKLU,RECSZ,HDSIZ,HDPTR,HDLEN,BFPTR,RECFG
INTEGER OPSYS,DTYPE

EQUIVALENCE (IREG,REG),(IREG,IA),(IREG(2),IB)
EQUIVALENCE (IHEDR(239),NSEC),(IHEDR(42) ,RECFG)

DATA INLEN/-80/,IPTR/1/,BFPTR/3/,LREC/0/,LTRK/0/,ISEC/0/
DATA IPTR/1/,ICNT/0/,1FLG/0/,RECSZ/6144/,HDSIZ2/140/

DATA HDPTR/1/ ,HDLEN/36/,NOPAR/0/ ,NFLG/0/,JSEC/96/

DATA 12ERO/0/,11/1/,12/2/,13/3/,15/5/,18/8/,114/14/,116/16/
DATA 110/10/,132/32/,160/60/,164/64/,1128/128/,1247/247/
DATA 1203/203/,1256/256/,12048/2048/,LSAVE/0/

GET TERMINAL LU THEN GET RUN STRING AND PARSE IT

OO0

ILU=LOGLUCDUMMY)

CALL GETSTCINBUF ,INLEN,ILOG)

DO 600 I=1,5
IF(NAMRCIPBUF , INBUF,I1L0OG,IPTR2230,10

PARAMETERS SPECIFIED, DETERMINE IF CORRECT TYPE (INTEGER).
IF NOT, PROMPT FOR PARAMETERS.

0000

0 CONTINUE
ITYPE=IANDCIPBUF(4),13)
IFCITYPE .EQG. I1) GO TO 20
60 TO ¢100,200,300,400,500> 1

TYPE IS CORRECT, GO CHECK IF VALUES ARE WITHIN LIMITS SPECIFIED

NOOO

0 CONTINUE
G0 7O ¢120,220,320,420,520) 1



BIT BUCKET

120

125

220

NO PARAMETERS SPECIFIED, GO PROMPT FDR PARAMETERS

CONTINUE

IFCNFLG .EQ. I1) GO TO 40
WRITECILU,35)

FORMAT(/5X,"TO TERMINATE, ENTER 0')
NFLG=1

CONTINUE

GO 7O ¢110,210,310,410,510) 1

PROCESS MAG TAPE LU PARAMETER
ENSURE MAG-TAPE DRIVER IS DVR23/DVR24

CONTINUE

WRITECILU,105)

FORMAT(/5X,"INVALID MAG TAPE LU!!"™)

CONTINUE

WRITECILU,115)

FORMAT(/5X,"PLEASE ENTER MAG TAPE LU..._"™)
READCILU,») IPBUF

IFCIPBUF .EQ. IZERD) GO TO 9999

CALL EXEC(13,IPBUF,ISTAT)
IFCIANDCISTAT,37400B)+2 .EQ. 23000B) GO TO 125
IFCIANDCISTAT,37400B)+*2 .EQ. 24000B) GO TD 125
GO TD 100

CONTINUE

MTLU=I1PBUF

IF(NOPAR .EQ. I1) GO TO 210

GO TO 600

PROCESS DISC LU PARAMETER (DISC LU CAN BE 1-255)

CONTINUE

WRITECILU,205)

FORMAT(/5X,"INVALID DISC LUIY1I™)
CONTINUE

WRITECILU,215)

FORMAT(/5X,"PLEASE ENTER DISC LU..._")
READCILU,»)> IPBUF

IFCIPBUF .EQ. IZERO) GO TO 9999
IFCIPBUF .EQ. 2) GO TO 200

IFCCIPBUF .LT. IZERD) .0OR. (IPBUF .GT. 255)>G0 TO 200
DSKLU=IPBUF

IF(NOPAR .EQ. I1) GO TO 310
GO TO ©00

PROCESS NUMBER OF DISC TRACKS (VALUE CAN BE 1-8192)

CONTINUE

WRITECILU,305)

FORMAT(/5X,"INVALID NUMBER OF TRACKS SPECIFIED!!!)
CONTINUE

WRITECILU,315)

FORMAT(/5X,"PLEASE ENTER NUMBER OF TRACKS ON DISC LU..._")
READCILU,*) IPBUF



BIT BUCKET

IFCIPBUF .EG. IZERO) GO TO 9999
320 IFCCIPBUF .LT. IZERO) .OR. (IPBUF .GT. 8192)) GO TO 300
NTRKS=1PBUF
IF(NDPAR .EQ. 11) GD TD 410
GO TO 600

c
c PROCESS TYPE OF OP-SYS
c
4

00  CONTINUE
WRITECILU,405)
405 FORMATC/SX,"INVALID OP-SYS SPECIFIED!! ")
410  CONTINUE
WRITECILU,415)
415  FORMAT(/SX,"PLEASE ENTER TYPE OF OP-SYS:*,
2 /15X,"1 - RTE-I1VB",
3 /15X,"2 - RTE-IVA",
4  /15X,"3 - RTE-II/I1I", 16X,"..._")
READCILU, ) IPBUF
IFCIPBUF .EQ. IZERQ) GO TO 9999
420  CONTINUE
IFCCIPBUF .LT. I1 ) .OR. CIPBUF .GT. 13)) GO TO 400
OPSYS=1PBUF
IFCNDPAR .EQ. I1) GO TO 510
GD TD 600

PROCESS DISC TYPE

00  CONTINUE
WRITECILU,505)
505 FORMATC/SX,"INVALID DISC TYPE SPECIFIED!11")
510  CONTINUE
WRITECILU,515)
515  FORMATC/SX,"PLEASE ENTER DISC TYPE:",
2 /15X,"1 - 7900",
3 /15X,"2 - 7905/06/20  (MAC/ICD)",
4 /15x,"3 - 7925 (MAC/ICD)*,4X,". .. ")
READCILU,») IPBUF
IFCIPBUF .EQ. IZERO) GO TO 9999
520 CONTINUE
IFCCIPBUF .LT. I1) .OR. CIPBUF .GT. 13)) GO TO 500
DTYPE=IPBUF
IFC(NOPAR .EQ. I1) GO TO 650

600 CONTINUE

c

c DETERMINE IF THE # OF DISC TRACKS SPECIFIED IS ACCEPTABLE.
c IF NDT ENDUGH TRACKS ARE SPECIFIED THE CARTRIDGE DIRECTORY
c WILL GET CLOBBERED.

c

c 7900 DISC: AT LEAST 203 TRACKS

c ALL OTHERS: AT LEAST 256 TRACKS

c

650 CONTINUE

IFCC(DTYPE .EQ. I1) .AND. (NTRKS .GE. 1203)) .OR.
2 ((DTYPE .NE. I1) .AND. (NTRKS .GE. 1256))) GO TO 675
WRITECILU,660)
660 FORMATC(/SX,"»++ NUMBER OF TRACKS SPECIFIED IS NOT LARGE ',
2 “ENOUGH TO RESTORE GF 11! xxsw)
GO TO 9999

10



BIT BUCKET

MHOOOO

OO0

O OO0

SET UP PARAMETERS TO READ THE ENTIRE HEADER IN
LSAVE FORMAT.

CONTINUE

IFCCOPSYS .EQ. I1) .AND. (DTYPE .NE. I1)) LSAVE=I1
IFCLSAVE .NE. I1) GO TO 700

HDS1Z=1247

HDPTR=116

HDLEN=160

READ HEADER AND OUTPUT HEADER ID ONLY.

CONTINUE

WRITECILU,710)

FORMAT(/5X,"BEGIN TRANSFER! MAG-TAPE HEADER IS:"/)
CALL EXECCI1,MTLU, IHEDR,HDSIZ)

CALL EXEC(IZ2,ILU, IHEDRCHDPTR) ,HDLEN)

SET UP PARAMETERS TO READ RECORDS IN LSAVE FORMAT.
ENSURE THAT THE NUMBER OF SECTORS/TRACK IS CORRECT.

IF(LSAVE .NE. I1) GO TO 800
BFPTR=12

RECSZ=NSEC » 164

IF(NSEC .NE. JSEC) JSEC=NSEC
MTREC=RECSZ + I1

GO TO 900

SET UP PARAMETERS TO READ RECORDS 0OF 2048 WORDS

CONTINUE

IF(RECFG .EQ. I1) GO TO 810
IFLG=1I1

RECSZ=12048

CONTINUE

MTREC=RECSZ+12

READ MT RECORDS AND WRITE CONTENTS TO THE DISC.
TAG WORDS ON MAG TAPE ARE NOT WRITTEN TO THE DISC.

CONTINUE

IFCIFBRKCIDUM)) 910,920

CONTINUE

STOP 55

CONTINUE

REG=EXEC(CI1,MTLU, IBUF ,MTREC)

IFCIAND(CIA,200B) .NE. IZERO)> GO TO 5000
LREC=LREC+1

CALL EXEC(I2,DSKLU,IBUF(BFPTR),RECSZ,LTRK,ISEC)
IFCIFLG .NE. I1) GO TO 1000

11



BIT BUCKET

c
c IF THERE ARE 2048 WORDS/RECORD, TWO RECORDS ARE WRITTEN
c PER TRACK. THE SECOND RECORD STARTS ON SECTOR 32.
c
IFLG=1ZERD
ISEC=132
GO TO 900
c
c SET UPDATE TRACK AND SECTOR. IF DESTINATION LU IS NOT
c LARGE ENOUGH, ISSUE MESSAGE AND TERMINATE.
c
1000 CONTINUE

ISEC=1ZERD
LTRK=LTRK+I1
IF(LTRK .LE. NTRKS) GO 70 900

c
c IF YOU GET TO HERE, YOU HAVE CLOBBERED YOUR DIRECTORY!!}
c
WRITECILU,1005)
1005 FORMAT(/5X,"DESTINATION DISC LU IS TOOD SMALL!!t",
2 //5X,"sss DIRECTORY HAS BEEN CLOBBERED!!! #%+%)
STOP 44

OUTPUT THE NUMBER OF RECORDS WRITTEN.

unooo
o
o
o

CONTINUE
WRITECILU,5010) LREC
010 FORMAT(/5X,"NUMBER OF RECORDS WRITTEN: ",I4)

ENSURE THAT RTE-II/III G.F. ON 7905/06/20 HAVE 203 TRKS.
INSURE THAT THE DIRECTORY IS ON THE LAST TRACK OF CRN.

«+« THE DIRECTORY IS LAST TRACK s«
RTE-IVB - SECTOR 0.
ALL OTHERS - SECTOR 14.

UPDATE THE DIRECTORY LIST TO HAVE THE FMP AREA POINT
TO TRACK 0 AND SECTOR 0.

eNolsNoNoNoRoNoNeoNeoReN )

IFCCOPSYS .EQ. 3> .AND. (DTYPE .EQ. 2)) LTRK=203
LTRK=LTRK-1I1
IFCOPSYS .NE. I1) ISEC=I114
CALL EXEC(I1,DSKLU,IBUF,I128,LTRK,ISEC)
5020 CONTINUE
IBUFCIS)=12ERD
IFCCLTRK+1)> .LT. NTRKS) IBUF(I8)=NTRKS+IBUF(9)

SET THE SECTOR TO 0. OVERLAY THE CARTRIDGE LIST

ON RTE-II/III/IVA GF’S (CARTRIDGE LIST EXIST ON THE
FIRST 2 SECTORS ON THE LAST TRACK) WITH THE

UPDATED DIRECTORY LIST.

OO0OOO0O0O0

ISEC=1ZEROD
CALL EXEC(I2,DSKLU,IBUF,I1128,LTRK,ISEC)
IFCOPSYS .EQ. I1) GO TO 5500

12



BIT BUCKET

FOR RTE-II/III/IVA GF’S, PURGE THE DIRECTORY
ENTRIES ON SECTOR 14 BY SETTING WORD 1 OF EACH
16 WORD ENTRY TO -1.

OO0O00

ISEC=14

DO 5100 I=I1,I128,I116

IBUF(I)=-1
5100 CONTINUE

CALL EXECCI2,DSKLU,IBUF,I1128,LTRK,ISEC)
5500 CONTINUE

ENSURE THAT THE DIRECTORY IS ON THE LAST TRACK OF THE
DESTINATION DISC. PURGE OLD DIRECTORY.

OO0

IFCCLTRK+I11) .GE. NTRKS) GO TO 6000
NTRKS=NTRKS-11
DO 56006 J=1,JSEC-1,2
CALL EXECCI1,DSKLU,IBUF,I128,LTRK,J-11)
CALL EXEC(I2,DSKLU,IBUF,I128,NTRKS,J-11)
DO 5550 KK=I1,I1128,I16
[BUF (KK)=-1
5550 CONTINUE
CALL EXEC(I2,DSKLU,IBUF,I128,LTRK,J-11)
5600 CONTINUE

c ISSUE SUCESSFUL TERMINATION MESSAGE
6000 CONTINUE

PACK DISC CRN TO REMOVE OP-SYSTEM AND UPDATE
CARTRIDGE LIST.

OO0

WRITECILU,6005)
6005 FORMAT(/5X,"1. PACK DSKLU TO GET RID OF OP-SYSTEM",

2 /5X,*" PK,-LU C(CRN)",

3 //5X,%2. UPDATE CARTRIDGE LIST",

4 /5X," DC,-LU,RR",

S /55X, SL,LU,LU (RTE-IVB ONLY)",

6 /5X," MC,LU",

7 //5X," +++ TASK COMPLETED «#+»+ ")
STOP 77

9999 CONTINUE
WRITECILU,10000)
10000 FORMAT(/5X,"2Z2ERO/CR/INVALID PARAM ENTERED: *
2 “PROGRAM TERMINATED!!11t")
STOP 66
END

2

13



BIT BUCKET

IN AND OUT OF SESSION

By Jack Sadubin/Environment Canada

The RTE4B system programmer invariably runs into session related problems when implementing a general purpose program
which will run for users of different capability levels. This is especially true if the program being written is a powerful one which is
intended to accomplish tasks which are not permitted to a user on his own (through FMP or break mode) due to session
capability restrictions.

System commands issued via the ‘"MESSS' utility by such a program will only work for high capability users. Access to logical
units such as the DS-1000 nodes may not work if these LU's are not in a user's SST. Other programs (sons) scheduled without

wait will abort when the father completes first and the user logs off. These are only some of the problems we may run into under
session.

Detaching one’'s program from the session environment is desirable under some of the above circumstances. The un-
documented HP routine, DTACH, may be used to detach the program from session control but, once called, the program is
permanently detached from session. If the program needs access to private or group disc LU's, or if the programmer wishes to
return the program to session control for protection or time accounting, the program must be re-attached to the session.

Word 33 of the program id-segment is the key by which RTE4B controls session and non-session programs. This word contains
either the session word for programs running under session control, or the negative of the LU from which the program was
scheduled for programs running outside session. Modification of this word programmatically is the way by which a programmer
can get around the problems, and detach or attach his program at will from session.

The small subroutine, DEATS, listed below permits the programmer to accomplish this useful feat anywhere in the code. The
calling program can detach and attach itself to session at any time, and accomplish great flexibility. We can now reduce the
need to write multiple versions of the same software for different capability users, and simplify error checking in the software.

If some of the software in your system runs into these problems, the usage of such a routine makes life a lot easier.

FTN4
SUBROUTINE DEATSCOPTION) ,DETACH & ATTACH TO SESSION
c
c R I I N I T I T I R R R T R P Y P Y YY"
c » TO DETACH FROM SESSION CALL WITH OPTION= NON ZERO »
c « TO ATTACH TO SESSION CALL WITH OPTION= ZERO *
c T Y Y N N R N R Iy
c
INTEGER MYNAME(3) ,ATTACH,DETACH,0PTION
LOGICAL IRAN
DATA IRAN /.FALSE./
c
COMMENT: FIRST TIME CALLED ?
c
IFCIRAN) GO TO 100
IRAN = ,TRUE.
c
COMMENT: SET-UP
c
COMMENT: WHAT IS MY NAME 2
c

CALL PNAMECMYNAME)

14



BIT BUCKET

c
COMMENT: GET MY ID-SEGMENT ADDRESS WORD 33 (SESSION WORD) & SAVE IT.
c
ID = IDGET(MYNAME)+32
c

COMMENT: GET SESSION WORD & SAVE IT

¢ ATTACH= IGETCID)

gDMMENT: WHAT LU WERE WE SCHED FROM 2
¢ DETACH =LOGLUCISYS)

DETACH = -1ABS(CISYS)
c
COMMENT: LETS DO IT
c

100 IFCOPTION .EQ.0) CALL IXPUTCID,ATTACH)
IFCOPTION .NE.O) CALL IXPUTCID,DETACH)
RETURN
END

15



BIT BUCKET

CLEARING SOFTKEY LABELS FROM THE SCREEN

by John Pezzano/HP E! Paso

The HP 2645, 2647 and 2648 Terminals have programmable softkeys that can be set up using utilities “KEYS" and “KYDMP"
(RTE-IVB Terminal Users Manual). Using these utilities, not only are the softkeys programmed, but labels are placed at the top
of the screen and they are memory locked to prevent accidental erasure.

One problem with this technique is that the labels remain even after the user has logged off. The user may not want other users
to know what softkeys are programmed in the terminal or what information is left on the screen at logoff. In addition, the
constant, high brightness labels can eventually burn the screen (leaving a permanent imprint) after a long period of time if the
terminal is left on for hours or days and the screen is never cleared after logging off.

Ideally, each user should unlock screen memory and clear the screen at logoff time, but this is not always done. There is an
alternative. If one of the keys has been programmed to log the user off, (":EX", “:1EX,SP", or “: EX,RP") a little addition can
clear the screen at the same time.

The secret to clearing the labels is to understand that escape sequences can be used to clear the screen and uniock memory,
and that these sequences can be embedded in the “EX” command. When the "EX" command is interpreted by FMGR, the first
parameter is checked. It must be either "SP" (save private cartridges) or "RP" (release them). Any other value results in a
FMGR-056 error (bad parameter). However, parameters 2 and 3, which are used to optionally release group (RG) cartridges

and kill active programs (K!), can have any value which will be ignored if it is not “"RG” or “KI"". Therefore, any escape sequence
can be programmed in these parameters or after them. For example:

:EX,SP,XX

:EX,RP,RG, XX
¢:EX,RP,RG,KI, XX

where XX is anything, all are acceptable. In our case we want to clear lock, home up and clear screen. If we programmed (with
KEYS) a softkey labeled "EXIT” which had in it one of the above where

XX=ESCM ESCH ESCJ,

as we logged off by hitting the "EXIT" key, our screen including labels would be cleared. The only remaining printout would be
the system logoff messages which would follow the “EX” command.

As it turns out, almost any system command or FMGR command can have following the last parameter (provided it is separated
by commas from the valid command). The extra information will be ignored, but will be seen by the terminal, permitting a single
command to execute some action in the CPU while locally controlling the terminal.

16



BIT BUCKET

USING DYNAMIC MEMORY SPACE WITH FORTRAN IV

By Robert P. Byard/HP Data Systems Division

Dynamic memory space is the name of the area between the last word of a program and the last word of the partition in which it
executes. This space is usually wasted but available for programs to use. This article describes how dynamic memory space
may be used by FORTRAN programs, and gives some example applications.

WHERE AND HOW MUCH?

The EXEC 26 call returns the address of the first available word after a program, the number of words between that address and
the end of the partition, and the number of pages (including base page) in the partition.

CALL EXECC 26, FAVWD, NWRDS, NPAGS )

Exec call for dynamic memory space parameters.

Unfortunately this information is not useful at the level of FORTRAN because of the isolation from machine addresses forced by
the nature of high level languages like FORTRAN. There is no clean way by FORTRAN alone to use a buffer space, given its

logical address (FAVWD). Therefore, an assembly language interface is needed to make the dynamic memory space look like
an ordinary FORTRAN array.

Imagine we have a FORTRAN program, HOHUM, with an integer array BUFF of length BUFFL. The first few lines of code would
look as follows:

PROGRAM HOHUM

IMPLICIT INTEGER (A-2)
INTEGER BUFF(1234), BUFFL
DATA BUFFL/1234/

END

17



BIT BUCKET

In order to make BUFF into a dynamic memory array we must create an assembly program (HOHUM), and rewrite the
FORTRAN routine as a subroutine (HOHUS). The routines are shown below.

NAM HOHUM, 3
ENT HOHUM
EXT EXEC, HOHUS

HOHUM NOP

JSB EXEC GET MEMORY SIZE
DEF #+5

DEF D26

DEF BUFF

DEF BUFFL

DEF NPAGS

JSB HOHUS PASS BUFF, BUFFL TQO HQOHUS
DEF »+3

BUFF BSS 1 PASSING THE DYNAMIC SPACE AS AN ARRAY
DEF BUFFL

JSB EXEC IF HOHUS RETURNS, DO EXIT
DEF ++1
DEF D6

BUFFL BSS 1
NPAGS BSS 1
D26 DEC 26
D6 DEC 6

END HOHUM
SUBROUTINE HOHUS(C BUFF, BUFFL )
IMPLICIT INTEGER (A-2)
INTEGER BUFF(BUFFL)>

END

Note the unusual means used for passing BUFF to HOHUS. FORTRAN parameters are passed by means of a “call by
reference” convention. The parameters are made available to a subroutine through indirect addressing. In this particular case

we passed the address of the dynamic memory space directly in the call and achieved the effect of passing the dynamic
memory space as an array.

18



BIT BUCKET

DIVIDING DYNAMIC MEMORY SPACE INTO MULTIPLE ARRAYS

It may be that you want more than one array associated with the dynamic memory space. An extension of the preceding
technique can accomplish this. Replace the end of the assembly module code (HOHUM) with the following.

LDA NWRDS

CLB

DIV D3 A = NWRDS/3

STA NWRDS

ADA BUFF DETERMINE BUFF2’S STARTING ADDRESS
ADA NWRDS

STA BUFF2

ADA NWRDS DETERMINE BUFF3“S STARTING ADDRESS
STA BUFF3

JSB HOHUS PASS THE 3 ARRAYS BY THEIR ADDRESSES
DEF #+5

BUFF BSS 1

BUFF2 BSS 1

BUFF3 BSS 1
DEF BUFFL

SUBROUTINE HOHUS( BUFF, BUFF2, BUFF3, BUFFL )

The end result is three singly dimensioned buffers of equal length.

MULTI-DIMENSIONAL BUFFERS

The trick with multi-dimensional buffers is to calculate the number of words required per array entry and divide the length of the

dynamic space by this number. For example, an integer array of (3,5,7) would require 15 words per entry or 105 words in total.
Here is the code which calculates BUFFL before the call to HOHUS.

LDA NWRDS

CLB

DIV ENTLN DIVIDE BY ENTRY LENGTH (15)
STA BUFFL NUMBER OF ENTRIES AVAILABLE

ENTLN EQL'J D15
D15 DEC 15

SUBROUTINE HOHUS( BUFF, BUFFL )
IMPLICIT INTEGER (A-2)
INTEGER BUFF(3,5,BUFFL), BUFFL

19



BIT BUCKET

DYNAMIC BUFFERS, NOT STATIC BUFFERS!

Using these techniques will decrease the overall size of your programs. This results from moving otherwise static buffers into
dynamic memory space. When your program is scheduled to run it will be assigned to the smallest possible partition. It may be
that the resulting dynamic memory space will be too small for your program. In that case use the SZ command 1o increase the
minimum number of pages in which your program may be executed. This will increase the dynamic memory space and
consequently enlarge any buffers associated with that area.

:SYSZ,program tell me how big it is now...
35147 15
:SYSZ,program,27 increase from 15 to 27 pages...

The user should be on guard against an error common to these algorithms, namely zero or near zero dynamic memory space.
In these cases BUFFL, or the number of entries in the "dynamic bufters”, will be zero. Check BUFFL upon entry to the main
routine to be safe. If it is too low, then terminate after informing the user to size up the program.

20



OPERATING SYSTEMS

HP SUBROUTINE LINKAGE CONVENTIONS

by Robert Niland/HP Lexington, Mass.

[Editor's Note: This is the sixth part in a series of articles taken from Bob Niland's manual on HP Subroutine Linkage
Conventions. The series started in Volume [lI, issue 6.]

6-5. PRIVILEGED & RE-ENTRANT MODE WITH .ENTC

The preceding sections (6-3, 6-4) made little reference to parameter passing. In order for a privileged or re-entrant subroutine
to be a useful external module, we clearly need to address this issue. We will begin the discussion with register-passing.

Both $LIBR and $LIBX calls preserve registers. This is not documented in any RTE manuals, but is apparent from inspection of
the Library manual. Routines such as .LBT are privileged (type 6), and emulate machine instructions which use the contents of
A and B as operands. If we desired to write emulator routines for all the HP1000 bit, byte and word instructions, and these
routines might be called by memory-residents in an RTE-1/2100S environment, we could take advantage of this.

For example, the Set BitS (SBS) instruction would (in part) have the following calling sequence:

JSB .SBS Call the emulator
DEF MASK Address of mask.
DEF A,I Address of target word.

return point.

The entry/exit sequence in .SBS might look like this.

NAM .SBS,6 SBS for 2100S and earlier cpu.

ENT .SBS
EXT SLIBR,sLIBX
.SBS MPX Entry point/return address.
JSB $LIBR Turn off interrupts,
NOP and go privileged.
STA [Al] Save A and B since the SBS does not use
STB (Bl them unless they are operands.
LDA .SBS,I Get "DEF <mask>"
CPA @A Is address the A register?
JMP IS.A Handle it.
CPA ®A.1 Is it A,I 2
JMP IS.AI Handle it.
LDA A,l Otherwise just get mask.
. More code not shown.
LDA [Al Restore A
LDB [B] Restore B
JSB $LIBX Restore interrupts,
DEF .SBS and return external.

21



OPERATING SYSTEMS

Emulating the SBS is actually a very tricky process, because, as we can see in the sample calling sequence, the operand
addresses following the JSB .SBS may point to or through the A and B registers. However, in most routines the calling sequence
does not allow the operand addresses to be A or B. In this event we can use a Library utility routine, .ENTC, to track down the

direct addresses of the parameters.

For an imaginary routine (.NFER) which transfers 10 words under the following calling sequence...

JSB .NFER
DEF NAMR1
DEF @NMR2,1

the entry sequence in .NFER might look like this:

NAM .NFER,6 fmp
ENT .NFER
EXT $LIBR,$LIBX
@FROM MPX
@To MP X
.NFER MPX
JSB $LIBR
NOP
JSB .ENTC
DEF @FROM
JSB s$LIBX
DEF .NFER

call for Namr transFER,

From array NAMR1.

To NAMR2 (through indirect link).
Return point.

Namr transFER.

Link to source.

Link to destination.

Entry point/return address.

Turn off interrupts,

and go privileged.

Resolve link, adjust return point.
Starting with @FROM.

Copy ten words from @ ROM,I to @TO,I

Restore interrupts,
and return external.

The entry sequencing is identical to that for ENTR, except for three items:

1. A JSB $LIBR and its DEF <links> must appear in between the entry point and the JSB .ENTC.

2. Subroutine exit is not via JSB <entry >,| but is through $LIBX instead.

3. Since the caller places no DEF *4+n+1 or DEF <return point>in his calling sequence, both caller and subroutine must
agree on the number of parameters. And since .ENTC computes that number by comparing the DEF <links > to its own
return address, no locations may be consumed between the last link and the subroutine’s entry point.

22



OPERATING SYSTEMS

.ENTC can also be used for

NAM
ENT
EXT
TDB NOP
ABS
®EXIT NOP
DATA BSS
®FROM MPX
@70 MP X
.NFER MPX
JSB
DEF
JSB
DEF
STA

JSB
DEF
DEC

The differences are:

re-entrant subroutines. The calling sequence in this case is similar:

.NFER,6 fmp Namr transFER.

.NFER
$LIBR,sLIBX

.TFER-TDB

<whatever)>

$LIBR
TDB

.ENTC
@FROM
®EXIT

$LIBX
TDB
0 or 1

Re-entrant list header.

TDB length (header+data+links)
Current return address.

TDB data.

Link to source.

Link to destination.

Entry point/return address.

Turn off interrupts,

and go re-entrant, saving old TDB if any.
Resolve link, adjust return point.
Starting with @FROM.

Save adjusted return address in TDB.

Copy ten words from @FROM,I to @70,I
Restore interrupts,

and have $LIBX return through @EXIT.
as always. .

1.  We are using the re-entrant format of $LIBR and $LIBX.

2. We must include the links in the data placed in SAM during re-entry. To do this we must make the link-list part of the TDB.
The easiest way is to place the TDB above the links and the entry point, so that the links become the final data items in the

data portion of the TDB.

3. $LIBR puts the raw, uncorrected return address from our entry point into TDB word 3. Because we have to skip over
parameter DEF's in the caller, we must replace it with the true return address, which is generously supplied to us by .ENTC

in the A register.

23



OPERATING SYSTEMS

6-6. PRIVILEGED & RE-ENTRANT MODE WITH .ENTP

Although .ENTC is a useful routine, it requires a calling sequence which can only be generated in assembly language, and
which suffers from a lack of flexibility due to the requirement that caller and callee agree on the number of parameters. What we
really need is a privileged/re-entrant version of our old friend .ENTR.

Such a routine exists, and is known as .ENTP. It is available in the same firmware as .ENTR. For the calling program, whether
calling a privileged or re-entrant subroutine, the calling sequence is identical to .ENTR, i.e.

EXT SIGMA For example.
JSB SIGMA Call the subroutine.
DEF 1SIG Define the return point.
DEF SUMX Define each parameter.
DEF SUMXX Define each parameter.
DEF @N,I Indirect as required.
ISIG EQU = Resume execution in caller.

In the subroutine, the privileged entry sequence is identical to that for .ENTC, except that we call .ENTP instead:

NAM SIGMA,6 Compute standard deviation.
ENT SIGMA
EXT $LIBR,S$SLIBX

®SUMX MPX Link to SUM of X wvalues.
®SUM2 MPX Link to SUM of (X##2) values.
&N MP X Link to Number of values in sums.
SIGMA MPX Entry point/return address.
JSB $LIBR Turn off interrupts,
NOP and go privileged.
JSB .ENTP Resolve links, adjust return point.
DEF ®SUMX Starting with @SUMX,
Compute standard deviation.
JSB s$LIBX Restore interrupts,
DEF SIGMA and have $LIBX return through SIGMA.

24



OPERATING SYSTEMS

In the re-entrant case, the subroutine’s sequence is also identical to that used for .ENTC:

NAM SIGMA,6 Compute standard deviation.
ENT SIGMA
EXT $LIBR,$LIBX

TDB NOP Re-entrant list header.
ABS SIGMA-TDB TDB length (header+data+links)
®EXIT NOP Current return address.
TEMP1 MPX TDB data.
TEMP2 MPX "o
AVERG BSS 2 "o
®SUMX MPX Link to SUM of X values.
®SUM2 MPX Link to SUM of (X*22) values.
®N MP X Link to Number of values in sums.
SIGMA MPX Entry point/return address.
JSB $LIBR Turn off interrupts,
DEF TDB and go re-entrant, saving old TDB if any.
JSB .ENTP Resolve links, adjust return point.
DEF ®SUMX Starting with @SUMX.
STA ®EXIT Save adjusted return address in TDB.
Compute siandard deviation.
JSB $LIBX Restore interrupts,
DEF TDB and have $LIBX return through ®EXIT.
DEC 0 or 1 as always.

When using .ENTC and .ENTP, keep in mind that the state of the caller’s registers is not necessarily preserved, and the values
to be found in the registers are only those documented in the manuals.

6-7. .ZPRV AND .ZRNT EXPLAINED

You have doubtless noticed that all the privileged and re-entrant forms generate an interrupt at $LIBR (unless already
privileged) and the re-entrant forms generate another at $LIBX. If the routine is in the memory-resident library, we can tolerate
all this interrupt overhead because we gain the space afforded by having only one copy of the subroutine for many programs.

However, if the subroutine is called by a disc-resident program, that program gets its own copy of the routine. In this case there

is no need to generate the interrupt, for no one else will attempt to enter our copy of the code. it seems like a lot of CPU time is
going to be wasted servicing needless interrupts.

What we need is a way to go privileged/re-entrant only when really needed, that is, only when the routine is re-located by
RTxGN into the memory resident library.

Such a mechanism exists, and curiously enough, it uses the RPL capability discussed in chapter 3. It comes in two flavors:

1. .ZPRV which "replaces” $LIBR/$LIBX in PRiVileged routines.
2. .ZRNT which "replaces” $LIBR/$SLIBX in Re-eNTrant routines.

25



OPERATING SYSTEMS

The calling sequence for .ZPRV and .ZRNT is structurally the same as for $LIBR/$LIBX, and the easiest way to implement them
is to write your routines for $LIBR/$LIBX and then transpose them to .ZPRV/.ZRNT format. For example, in our original simple

privileged routine of section 6-3:

NAM
ENT
EXT
SUBPR ﬁﬁk

JSB
NOP

JSB
DEF

SUBPR, 06
SUBPR

$LIBR,$L

$LIBX

$LIBX
SUBPR

The rules for a privileged subroutine are:

IBX

EXIT

1. Replace the JSB $LIBR with a JSB .ZPRV.

NAM
ENT
EXT
MPX
JSB
DEF

JMP
DEF

SUBPR, 06
SUBPR
. ZPRV

.ZPRV
EXIT

SUBPR, I
SUBPR

2. Replace the NOP with the address of what was the JSB $LIBX.

3. Replace the JSB $LIBX with an ordinary JMP <entry > |.

..5ame. .
..s5ame. .
different
..same..
different
different

Code is the same.

different
..same. .

.ZPRV is not software or firmware. It is never executed. It is used to alert RTxGN that some special processing is required. That

processing depends on where the subroutine is used. If:

M: relocated into the memory resident area, the JSB .ZPRV is converted to a JSB $LIBR, the DEF <exit> is converted to a
NOP, and the JMP <entry > | is converted to a JSB $LIBX.

P: relocated with a partition-resident program, the JSB .ZPRV is converted to a 002001B (RSS) instruction. This resuits in a
skip over the DEF <exit> and no call to $LIBR or $LIBX. The routine acts like a normal type 7 library routine.

in any case RTxGN creates an RPL record in the system relocatable library of the form:

.ZPRV,RP,002001

This tells the on-line LOADR to treat all relocations calling .ZPRV in the same manner as process “P" in RTxGN.

The .ZPRV convention is also compatible with subroutines which call .ENTC or ENTP.

26



OPERATING SYSTEMS

The procedure for re-entrant subroutines is similar. Using the example of section 6-4, the conversion is:

NAM SUBRE ,6 NAM SUBRE ,6 ..same. .
éN% SUBRE ENT SUBRE . .5ame..
EXT $LIBR,s$LIBX EXT .2ZRNT different
SUBRE MPX SUBRE MPX . .5ame. .
JSB s$LIBX JSB .ZRNT different
DEF TDB DEF EXIT different
. code is the same
JSB $LIBX JﬁP SUBRE, I different
DEF TDB DEF TDB different
DEC <ret> DEC <ret>» . .5ame..
TDB ﬁdP TDB NaP ..same. .
ABS EOD-TDB ABS EOD-TDB ..5ame..
@®EXIT NOP ®@EXIT NOP ..5ame. .
DATA BSS <size> DATA BSS <size> . .same. .
EQD EQU = EOD EQU = ..5ame..

The rules are the same as for privileged routines, and the way the generator handles the routine is the same as well. For memory
resident routines, RTxGN changes the code back to what is actually required (SLIBR/$LIBX), for disc residents it changes the
JSB .ZRNT to an RSS, and it RP's .ZRNT to an RSS in the library of the system it is building. .ZBNT is also compatible with
routines which call . ENTC and .ENTP.

Since it is not possible to load on-line a program which accesses the memory resident library, the RPL insures that the copy of
the subroutine appended to the program will not cause an interrupt by needlessly attempting to go privileged.

Caution: When the .ZPRV substitution is used, the subroutine will execute privileged only if it is memory resident. When called
by a disc resident (or partition resident in RTE-M) program, it will not be privileged, i.e. the interrupt system will be on. Because
of this, routines which are calling $LIBR/SLIBX in order to perform otherwise illegal tasks cannot use .ZPRV.

Summary: At this point we know how to write:

1. Normal subroutines, which run with the interrupt system on at all times.
2. Privileged subroutines, which run with the interrupt system off.

3. Re-entrant subroutines, which can be shared by multiple programs.
We also know how to pass parameters:

1. In the working registers.
2. Through fixed call-adjacent memory (.ENTC)

3. Through variable call-adjacent memory ((ENTR,.ENTP)

However, all of this is at the assembly level. In the next chapter we will discuss the interface with the higher level languages.

27



COMPUTATION

BENCHMARKING HP 1000 COMPUTERS
By Charles G. Fugee/Dynalectron Corp.

INTRODUCTION

At the Dynalectron Radar Backscatter Division at the RAT SCAT site on Holloman AFB in New Mexico, we currently are using six
separate Hewlett-Packard computer systems. These systems are used for software development, data collection, and data
processing. An accurate reference guide for the comparision of computing speeds among the systems was needed. Such a
guide could aid in estimating processing time, and also in creating more efficient data processing programs.

The Radar Target Scatter Site (RAT SCAT) is an Air Force facility with major objectives being defined as concise, complete
radar target backscatter measurement, determination of antenna gain and radiation patterns, electronic system tests, and
infrared target signature measurement for the Department of Defense and all government sponsered programs.

TESTING PROGRAM

A benchmarking program was designed and implemented to provide us with the desired performance guide. A program called
BCHMK (hardly original, but effective), computes various mathematical functions a fixed number of times, input by the user.
The functions (standard FORTRAN IV library functions, except for two, developed for use at the RAT SCAT site) are listed below.
The functions themselves are not complex or difficult, mainly because our data processing does not involve complicated
manipulations of the data, but only simple ones (like additions, subtractions, averaging and such) repeated many times. This
would seem ampile justification for a test designed as such. [Editor's note: A copy of BCHMK can be obtained by writing the
author (see address at end of article).]

INT-RL Converts integers to reals

RL-INT Converts reals to integers

FPTADD Performs floating point addition

FPTSUB Performs floating point subtraction

FPTMPY Performs floating point multiplication
FPTDIV Performs floating point division

INT-DP Converts integers to double precision
DP-INT Converts double precision to integers
FPT-DP Converts floating point to double precision
DP-FPT Converts double precision to floating point
DP-ADD Performs double precision addition
DP-SUB Performs double precision subtraction
DP-MPT Performs double precision multiplication
DP-DIV Performs double precision division

FPTSIN Evaluates floating point sine function
FPTCOS Evaluates floating point cosine function
FPSQRT Evaluates floating point square root
FPATAN Evaluates floating point arc-tangent function
FPTLOG Evaluates floating point logarithms (base 10)
FPTEXP Evaluates floating point exponentiation
FPT-LN Evaluates floating point logarithms (base e)
FPV-DB Converts volts to dbsm

FPDB-V Converts dbsm to volts

28



COMPUTATION

RESULTS

The results of the program (see tables and graphs) revealed that, from an overall standpoint, using the Hewlett-Packard 2117 F
series machine as a reference, the 2117 is approximately six times faster than the HP-2113, nine times faster than the HP-2112,
and fourteen times faster than the HP-2100 system.

Some interesting results may be noted in the comparison of these systems. It can be noted in figures 2 and 3, that the RP-2100
system surpassed the HP-2112 in processing speed when performing a floating point sine function, and when performing a
floating point conversion from dbsm (decibel/sg.meter) to volts. In the dbsm to volts conversion the margin of difference is not
that great but in the floating point sine function there is quite a significant difference, with the 2100 approaching the speed of the

2113. Overall, of course, the 2100 was by far the slowest, but it is interesting to note the differences when they occur in an
unexpected direction.

MACHINE SPECIFICS AND TESTING PROCEDURES

Some specifics about the machines involved, and the programming and statistical analysis techniques used to draw these
conclusions follow. Each machine involved was running a system generated to use all the available hardware and firmware
features of the machine. Thus, in the case of the 2117, its floating point processing box gave it the natural advantage in this
number crunching race.

The 2100 machines are used primarily for data processing due to certain restrictions on the visibility of processed data. Thus,
since we want to process data without it being visible to other users on the systems at RAT SCAT, we cannot use any type of

shared resources systems such as DS/1000. Each of the 2100’s we use is tied in with its own HP plotter and two tape decks,
and shares a line printer.

The other three HP-1000 machines are operating under RTE-IVA. It might be of interest to know that our 2117 system, used for
real-time data collection and processing, controls four separate radar inputs, eight Houston flat-bed plotters, two user
terminals, and a TV monitor. Also worthy of note, with RAT SCAT being a remote operation, on a twenty four hour day

(sometimes seven day week) schedule, all maintenance is performed by our highly qualified, Hewlett-Packard trained, digital
maintenance staff.

The comparative runs were made at several values of the input variable NLOOP which represents the number of iterations for
each operation, specifically in this survey, at 100, 500, 750, 1000, 2500, 5000 and 10000 iterations for each operation. All runs
were made when there were no other users on the system. Runs were made with two to three other users on the system but
showed a difference of several milliseconds from those runs when there were no other users on line. 1 felt this difference might
be significant, and therefore restricted my tests to be performed only when the system was free (consistency of experimentation
being of great importance in statistical testing). The total time for completing the total number of iterations (in years, days, hours,
minutes, seconds, and milliseconds) is computed and recorded for each operation. The computing time was found by using an
EXEC 11 call before and after each function was executed NLOOP times. The difference was calculated and output to the
listing device. In addition to this, the name of the system being surveyed (supplied at run time by the user) and the number of
iterations were both included. Extremely complex mathematical functions were not used in this survey simply because they are
rarely used at RAT SCAT. On the other hand, more mundane arithmetic operations (subtractions, divisions, averaging and the
like) are used ad infinitum, thus increasing the need for a handie on how long we take to do this as well as how to do it faster and
cheaper in the computing sense of the word.

29



COMPUTATION

STATISTICAL ANALYSIS

After obtaining a large bulk of the survey results, a statistical analysis was initiated with the statistical packages currently under
development at the RAT SCAT site. Standard univariate regression procedures were performed on the data in hopes of
establishing some kind of linear relationship between iterations and computing time. The components of the regression line
may be explained as follows. The dependent variable (y) represents the computing time for any function given NLOOP. The
independent variable, therefore, represents the value of NLOOP (the number of iterations), and the slope represents the
susceptibility of the computing time to a change in the number of iterations. The intercept parameter bears little significance
other than offering a reference for the computing time of any function for one iteration, if you add the value of the slope to the
intercept value. This, however, does not hold true for some of the faster executing functions, as you will end up with a negative

time. This is pardonable if we remember that the formulae are only estimates derived from experimentation which is prone to
random error.

At this point it seems worthwhile to briefly explain the meaning of the value designated “R-sgquared” in the output. R-squared is
the decimal representation of the percentage of variation in the data that is accounted for by the fact that there is a linear trend
in the data. Thus an R-squared value of 0.825 indicates 82.5% of the variation of the data is explained by the fact that the data
lies along a straight line with a non-zero slope. The results listed below, for several of the functions used in the survey show a
fairly close linear relationship, which is again illustrated in the accompanying figures. | find it interesting to note how close the
slopes for the 2117 are to zero, indicating that it takes a rather overwhelming change in the number of iterations to change the
computing time for that total number of iterations, while, for a machine like the 2100, any change in the number of iterations
produces a marked change in computing time for the total group of operations.

CONCLUSION

It can be noted that, in the case of the 2117, for a floating point addition, increasing the number of iterations by a value of 1000
only adds two milliseconds to the computing time, whereas the same increase for the 2100 increases the computing time by 49
milliseconds, a substantial difference. In comparing the 2112 and the 2113, it should be noted that for the four functions
examined in the regression results listed, the 2113 surpasses the 2112 in every case but for a floating point addition.
Considering the similarity of these two machines, the most probable cause of this difference is that the 2113 uses high
performance memory, whereas the 2112 is using standard performance memory.

The aim of this paper is not to point out why some of the machines are slower but merely the fact that they are and to illustrate a
little more explicitly, the differences between the machines. It might be of some interest to know more about why the 2113, with
high performance memory, is not faster than the 2112 with standard performance memory on a fioating point addition, while it
beats out the 2112 everywhere eise. Also, the reader may wish to utilize this information to optimize his or her programming in
reference to processing speed. In addition, this information could be used as a purchasing guide user is interested in the
machine for high speed processing.

The author's address is: Charles G. Fugee
Hewlett-Packard Company
P.O. Box 105005
450 Interstate N. Parkway
Atlanta, Georgia 30339

30



COMPUTATION

(03asw) awiL

700

600

500

400

300

200

100

2117

1000 2000 3000 4000 5000 6000 7000 8000 9000

NLOOP
Figure 1. Double Precision Addition

31



COMPUTATION

(03sW) awiL

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

NLOOP

2417

1000

2000

3000 4000 5000

Figure 2. DB3M to Volts
32

6000 7000 8000

9000



COMPUTATION

(OaswW) aniL

700

600

500

400 NS
@

300

200

100

2117

1000 2000 3000 4000 5000 6000 7000 8000 9000
NLOOP
Figure 3. Floating Point Sine Function

33



COMPUTATION

7200
6300
5400
-
z
m
2
w
m
Qo
4500
N
3600 qu
q,/p
2700
q5<b
1800
BN
900
2117
500 1000 1500 2000 2500 3000 3500 4000 4500
NLOOP

Figure 4. Total Computing Time For All Functions

34



COMPUTATION

Regression Results

HP 2100 Data Processing Machine #i WP 2113 Datn Cellection Hachine
function Rearession line formvla  R-squared value Functien Regression line forsula R-squared valuve
FPV-DB  y = 0.243 x + §.747 1.500 FPY-DB vy =0.138 x + 3.138 1.080
FPDE-V ¢ = 0.138 x + 0,454 0,930 FPDB-V  y = 0,074 x + 5,902 0.917
FPTSIN ¢y = 0,051 x + §.275 0.774 FPTSIN  y = 0.040 x + 10,534 1.812
FP-ADD  y = 0,047 x - 0.593 0.695 FP-ADD  y = 0.024 x + 0,489 0.715
HP 2100 Data Processing Hachine #2 HP 2417 Data Collection Machine
Function Regression line formula  R-squared valve lF'unction Regression line formuln  R-squared valve
FPU-DR  y = 0.244 x - 0.1it 0,930 FFV-DE  y = 0,026 x + 0,333 0.614
FPDB-V ¢ = 0.138 x + 10.477 0.926 FPDB-V 9y = 0,086 x + D0.149 §.543
FPTSIN  y = 0.054 x + 0,233 0.675 FPTSIN  y = 0.006 x - D0.285 0.476
FP-ADD  y = 0,049 x - 0.586 0,643 FP-ADD  y = 0,002 x + 0,415 1.420

HP 2112 Software Development Machine

Function Regression line formula  R-squared value

FPV-DB  y = 0.278 x + 26.305 0.997
FPDE-V  y = 0,153 x + 2,232 .99
FPTSIN ¢ = 0,103 x +108.451 0.793
FP-ADD vy = 0,087 x + 0,417 0,618

35



OPERATIONS MANAGEMENT

MODELING MULTIPLE LEVEL LINKED LISTS WITH IMAGE/1000

By Jim Burkett/HP Data Systems Division

INTRODUCTION

This article details some efforts expended to deal with multiple level linked lists using HP's IMAGE database management
package. The application of the proposed method is focused on a problem faced by the ATS group at HP’s Data Systems
Division. Their database design and limited disc space restricted them to recording only ten options per product on an order
when, in reality, more options were available. Benefits of the method include (1) reduced data redundancy, (2) reduced disc
space required, and (3) applicability to other database design difficulties.

THE PROBLEM

The problem of limited number of options per item (10) on ATS systems was built into the Finished Goods Inventory (FGI)
management system, and is built into other information processing systems at Data Systems Division. It was desired that the
FGI management system be maintained, but that vital disc space be recovered. The subject of this article is how the FGI
database was redesigned to allow for more than 10 options per product, and yet use less disc space rather than more.

THE SOLUTION CONCEPT

The constraint of allowing for a maximum of 10 options resided in a limitation of IMAGE/1000 to handle multi-level linked lists
(Editor's note: a multi-level linked list would essentially be a detail dataset which serves as a master for another dataset.) This
difficulty was overcome by implementing a user-invisible link from the product record in one detail dataset to an option
combination chain in another detail dataset. This method condensed the data necessary to express option combinations and
eliminated the redundancy of saving an option combination string for each product record.

The original method (see figure 1) imbedded into each product a 30-character string capable of holding 10 option numbers.
That is; for every record in the database with a product number entry, there was a 30-character field to hold its associated
options. The new method (see figure 2) separates the option strings from the product records and creates a chain of the
individual options, each chain representing one original option string. This chain is then linked to the product record by an
option combination key (through the option combination master dataset).

This method stores each unique option combination chain in the database only once. Product records with the same options

are linked to the same option combination chain. There is a unique chain for each option combination but, there is not a unique
chain for each product record. This approach can save a significant amount of disc space by eliminating data redundancy.

36



OPERATIONS MANAGEMENT

THE CONCEPT

ORIGINAL METHOD
[

| |
e PRODUCT #— 1< OPTION STRING >
I I |
N | |
PRODUCT 1 001 | 002 | 003
! |
| [
PRODUCT 2 STD
[ |
Each Hecordﬁ PRODUCT 3 001 | 002 | 003
|
! [ |
PRODUCT 4 STD
I
| [ [
L PRODUCT 5 001
' I
| I
Figure 1

PROPOSED METHOD

|<——- PRODUCT #——3| OPTION #
| | CHAINS
p
PRODUCT 1 > 001
|
] |
PRODUCT 2 002
1
|
For each unique
Fach Record < PRODUCT 3 003 option combi:ation
i
| 1
PRODUCT 4 »| STD
| |
| |
PRODUCT 5 > 001
\

| l USER-INVISIBLE LINKS

Figure 2

37



OPERATIONS MANAGEMENT

THE DATABASE

The link from a product record to an option combination chain in IMAGE/1000 was implemented with three automatic master
datasets and two detail datasets.

The product number (PRODNQO) is the key item from the product master dataset (PRDNUM) to the product detail dataset
(PRDDET). The link to the option detail dataset (OPTDET) is maintained by an option combination key (OPTNKY). The option
combination master dataset (OPTCOM) uses its key to link both the product number and option number detail datasets. An
additional feature of the database schema is an option number master dataset (OPTNUM). Through this dataset a list of option
combination chains containing a particutar option number can be determined, and provide a linkage from the option number
record to all associated product number records with that option (see figures 3 & 4).

THE DATABASE VIA IMAGE/1000

PRDNUM OPTCOM OPTNUM
(A) (A) (A)
1 }
] }
1 )
] 1
PRDDET OPTDET
Y ! ! L
PRODNO OPTNKY OPTNKY OPTNNO
[} )
1 ]
' 1
|} ]
) 1
' ;
}
PRODUCT | USER-INVISIBLE LINK | OPTION
NUMBER I NUMBER

Figure 3

38



OPERATIONS MANAGEMENT

DATABASE IMPLEMENTED FOR PROGRAM TEST

HEWLETT-PACKARD IMAGE/1000 DATA BASE DEFINITION PROCESSOR

$CONTROL: ;
BEGIN DATA BASE:
FGIMGT:12:JB; << FGI MANAGEMENT SYSTEM DATA BASE >>

LEVELS: ;
ITEMS:
OPTNKY, I13; << OPTION COMBINATION KEY (PRDDET ,OPTMAS ,OPTDET)Y >>
OPTNNO, X4; << OPTION NUMBER (OPTDET) »>>
<< >>
SETS:
<< OPTCOM: OPTION COMBINATION MASTER --- (OPTNKY) »>>

NAME: OPTCOM::JB,A;
ENTRY: OPTNKY(1);
CAPACITY: 150;

<< OPTNUM: OPTION NUMBER MASTER --- (OPTNNOY >
NAME: OPTNUM::JB,A;
ENTRY: OPTNNOC1);
CAPACITY: 100;

<< OPTDET: OPTION COMBINATION DETAIL --- (OPTNKY) >>
NAME: OPTDET::JB,D;
ENTRY: OPTNKYCOPTCOM),

OPTNNOCOPTNUM) ;

CAPACITY: 300;
END.

NUMBER OF ERROR MESSAGES: 0000

NUMBER OF ITEMS: 002

NUMBER OF SETS: 03

ROOT FILE: 00148 WORDS, 00005 BLOCKS

CARTRIDGE NUMBER NUMBER BLOCKS REQUIRES
19010 0000000059

END DATA BASE DEFINITION

OPTCOM
(A)
OPTDET
OPTNKY OPTNNO
Figure 4

39



OPERATIONS MANAGEMENT

THE PROGRAM

A PASCAL/1000 program was written to test the concept. Input data was obtained from a strip tape currently used for the FGI
management system, FGI/1000. As a first pass, only the option combination chain datasets were defined in the schema to
sufficiently test the theory. A flow chart of the program is shown below.

TEST PROGRAM

OPEN DB
OPEN INPUT FILE

N

READ RECORD

PARSE INPUT TO
GET OPTIONS

INCREMENT OPTNKY

DO DBFND ON
OPTNKY IN DB

CREATE NEW
MATCH (DBPUT) NO
& SET

FOUND A MATCH

SAME
# OF OPTIONS,
?

ALL

?
(CHAINED
READS)

OPTIONS THE SAME

SET
FOUND A MATCH

il

NO A vES

A MATCH
?

WRITE
# OF OPTIONS
TO PRINTER

Figure 5
40



OPERATIONS MANAGEMENT

THE RESULTS

It worked! The FGI/1000 tape records were serially processed and feedback information was reported to the user in 50 record
chunks. (Each line of output contained 50 digits, one digit for each record processed. Each digit represented the number of
individual options associated with that record. The standard configuration was counted as one option.)

SUCCESSFUL DBOPN
IRRRRERE R R R R R R R R R R R R AR AR RRRRERRRREREE
M1 11111111 111111111111 1111111111111 111
TM11111111111111111121121111111111111111111111111119
1111111111111 11 11111111111111111111111111111111 11
M111111111111111111111111111111111111132231111211
11111111111111111111121111111121321121112434444341
12322222321211111211111121113121311131111115311111
11212112111112111111111112143242124111111111111111
TM11111111111111112121111111311121111111111163211 11
12111111111111111121111111111111111132341111111111
1111111111111111111111111111111112212211121

543 TOTAL RECORDS PROCESSED
SUCCESSFUL DBCLS, BYE!

Figure 6

Two summary reports were generated via QUERY/1000 to validate the process. “FGIR1" produces a report of each option
combination key (OPTNKY) and its associated chain of option numbers (OPTNNQ). “FGIR2" produces a report of each option
number's (OPTNNQ) appearance in a separate option combination chain (OPTNKY).

41



OPERATIONS MANAGEMENT

OUTPUT
PROGRAM
FGIRY V
REPORT;
H1,» OPTNKY OPTNNO",21,SPACE A1;
S2,0PTNKY;
S1,0PTNNO:

D2,0PTNNO, 203
G2,0PTNKY,10;
END;

THIS REPRESENTS: OPTIONS 008,050,888

OPTNKY  OPTNNO €

00001
STD

00002
001

00003
005

00004
co1

00005
908

00006
004

00007
888

00008
002

00009
003

00010
777

00011
002
888

00012
004
888

00013
HO1

00014
015

00015
E01

00016
201

00017
203

00018
F20

00019
F22

00020
F12

00021
F25

OPTION /’_33222 00g~ OTTION
COMBINATION 050¥ CHAIN

KEY 888

00023
008
053

00024

Figure 7

42



OPERATIONS MANAGEMENT

OPTNNO OPTNKY - OUTPUT
001

00002
00026
00030
00034
00055
00057
00092
00096
00097 PROGRAM
00098
00102
00106
00107
002
00008
00011
00034
oooes FGIR2 +
00094 REPORT;
00102 H1,m OPTNNO  OPTNKY™,21,SPACE A1;
00103 S2,0PTNNO;
00104 S1,0PTNKY;
D1,0PTNKY, 205

00009 G2,0PTNNO,10;
00094 END:

00103

003

004
00006
00012
00057
00099
00104
005
00003
00030
00075
00076
00096
00099
00102
00103
006
00095

007
OPﬂON__,//’ 00036

NUMBER THIS SIGNIFIES THAT OPTION 007
00037
OPTION 00038 WAS ASSOCIATED WITH THE FIVE
COMBINATION 00039 OPTION COMBINATION KEYS LISTED

KEYS 00040
008

00022

Figure 7 (continued)

43



OPERATIONS MANAGEMENT

543 data records were processed from the FGI/1000 tape, however, only 111 unique option combinations were encountered.
The table below contains additional data:

Table 1
# OF OPTIONS # OF RECORDS % OF TOTAL # OF UNIQUE % OF TOTAL
IN CHAIN ENCOUNTERED RECORDS COMBINATIONS COMBINATIONS

1 475 875 49 442

2 40 7.4 38 34.2

3 16 29 15 13.5

4 10 1.8 7 6.3

5 1 2 1 .9

6 1 2 1 .9

7 0 .0 0 .0

8 0 .0 0 .0

9 0 .0 0 .0

10 0 .0 0 .0
Total 543 100.0 111 100.0

475 of the 543 records processed (87.5%) required only one option of which there were only 49 unique combinations.
Therefore, space originally allocated for 475 30-character option strings was contained in a space of only 49 options. A
reduction of 99.0% of the space previously required! Overall, 209 option number records were needed for the entire FGI/1000
tape data. A savings of 96.2%.

In terms of improvement to the FGI management system, 530 KBytes of disc storage were released for other usage. Potentially,
5.730 MBytes of disc space for option storage in the database could be reduced to approximately 12 KBytes. This is a potential

reduction of 99.8%, or the equivalent of 10% of a 7920 disc. In terms of monthly disc space cost savings, 5.730 MBytes per
month at $.0061 per sector is about $270, or annually, over $3200.

CONCLUSIONS

1. The problem of a 10 option limit per product can be overcome. The only limitation to option combination chains is the
capacity of the dataset to hold the chains.

2. Substantial amounts of disc space can be saved. Not only in this application, but in others as well.

3 A significant difficulty with IMAGE/1000 can be bypassed. Multi-level linked list applications can be modeled within the
limits of IMAGE/1000 by implementation of internalized user-invisible links.

44



OPERATIONS MANAGEMENT

INCREASING SYSTEM AVAILABILITY THROUGH
REDUNDANT COMPONENTS

Jim Bridges/HP Data Systems Division

INTRODUCTION

Computer systems often perform vital roles in the operations of many businesses. It is hard to imagine a commercial airline
without a system to manage reservations. In manufacturing, computer systems are being used to control the production of most
of the goods we purchase; everything from automobiles to zippers.

In many cases the role of the computer system is so important that its failure causes major disruption leading to loss of
profitabilty, customer dissatisfaction and possible human injury. Therefore, system designers put a great deal of effort in
devising techniques to ensure that the system will not fail at a critical moment or, if failure occurs, that it will be of short duration.
In other words, they design for high availability.

This article will present some of the tools which HP Data Systems can provide to the system designer interested in high
availability systems. It will also cover the general concepts involved in building such systems. A basic list of these tocls is given
below. .

Hardware;

93550A I/O Switch Unit

93768A Watchdog Timer

93762A Processor Interconnect Kit

93770A Time-of-day Clock/Time Base Generator
13037B Multi-ported Disc Controller

Software:

Drivers for the above, plus
93581C Twin-Disc Driver Manager

The 130378 Disc Controller is a standard product. The other items are available through your HP sales representative. Contact
your local HP office for more information.

AVAILABILITY DEFINED

System availability basically means the percentage of time that the system is 'up’ or operational. Availability can be predicted
on a statistical basis if the failure rate can be reduced to a constant. The failure rate is usually expressed as a percentage of the
units which fail per 1000 hours of operation.

During its normal lifetime a product is either available (able to be used) or unavailable (being repaired). The availability thus
becomes:

MTBF
A=z ——
MTBF + MTTR
where

MTBF = mean time between failures
MTTR = mean time to repair

Notice that the the availability may be increased either by increasing the MTBF or decreasing the MTTR.

45



OPERATIONS MANAGEMENT

Since any component is either available or unavailable, the sum of the availability and unavailability is 1 (or 100%). In equation
form, this is:

A+U=1
which gives
Uu=1-A
or
MTTR
u=—————
MTBF + MTTR

Basically, these equations mean that a system spends all its useful life in either of two states: 'up’ or 'down’.

The MTBF is a widely used measure of comparison between various components. It may also be used to evaluate the cost
effectiveness of any measures designed to improve the failure rate, i.e. how much do you get for what it costs.

The MTBF is not a specification for a product. Nor will HP guarantee an MTBF for any product. Since it is a number derived by
statistical methods, it is not possible to verify the accuracy of MTBF figures by measurement unless a large number of units are
included in the sample. Individual units will always be found that perform much worse or much better than the MTBF.

The sample calculations in this article will use MTBF figures which are only approximately correct and have been chosen
primarily to make the calculations easier. Actual MTBF figures for almost any HP product are available from the division which
manufactures the product. The MTBF will be quoted only in situations where a need to know exists and there is reasonable
assurance that the number will not be misused.

MTTR is a term which varies in definition. Some people include travel time to the site, while others measure only actual repair
time. Repair time figures are available from HP and are based upon the reports turned in by Customer Engineers. For any
calculation of availability or unavailability, the MTTR must include the entire time the component is not working. Typically, a
failed component will result in a service call the next day. Therefore, in the sample calculations in this article, we will use an
MTTR of 24 hours.

RELIABILITY
Reliability is defined as the probability that a component remains available after a given time period since the last repair cycle.
As the time since the last repair increases, there is a decreasing probability that the system will continue to operate without

another failure.

The probability of success at any point in this time period is given by:

P=et"
where
P = probability that the component is available.

t = time since the last repair.
f = 1/MTBF.
e = base for natural logarithms.

46



OPERATIONS MANAGEMENT

The MTBF and time must be in compatible units (usually hours). The probability P ranges from 1 at start of the component's life
and decreases exponentially toward 0. Usually it is quoted as a percentage value. For example, at time t =MTBF the probability
that the component is still available is

P=e'=367%

We say that the system is 36.7% reliable at this point. More correctly, in a large sample, only 36.7% of the systems would still be
up at this time.

The failure rate is usually expressed as a percentage of the total units which fail per 1,000 hours of operation. For example, for
an MTBF of 10,000 hours:

1
f = = 0001 failures/hour
10,000

= .1 failures/thousand hours

=10%

EFFECT OF ADDING COMPONENTS ON AVAILABILITY

The addition of components can either increase or decrease net availability, depending upon how they are added. Adding
components in series is similiar to adding links in chain. lf one link in the chain breaks, then entire chain is lost. The combination
of a disc, a terminal and a CPU are in series because if any one fails, then the entire system fails.

The other approach is to combine components in parallel such that there are multiple paths for success. Thus if a system has

two discs and can operate with only one of the pair, the discs are said to be in parallel. The components are sometimes referred
to as “redundant”.

A system with components in series has a net availability which is less than the availability of any of its components, i.e. it has a
lower MTBF. The MTBF for a system is derived from the calculation of the probability that the system is still up after a given time.

In this case, the individual probabilities are multiplied. For example, assume two components with MTBF of M hours and N
hours. Then

_ _—tM

=e x ¢ N

P
system

The net MTBF is given by:

1 1 1

—_ = — 4 —

MTBF M N

If the individual MTBFs are equal, then the net MTBF is half that of either component.

Note that, since the reciprocal of the MTBF is merely the failure rate, this équation says that the net failure rate is the sum of the
individual failure rates.

47



OPERATIONS MANAGEMENT

For example, let's calculate the net MTBF for a system with a CPU, disc and a terminal (using approximate numbers).

Component MTBF  Failure Rate (% per 1000 hours)

Disc 6000 16.67
CPU 7000 14.29
Terminal 8000 12.50

Net failure rate = 43.46

The equivalent MTBF is 2300 hours.

The computed MTTR will be a weighted mean of the individual MTTR's. However, we will assume that a service person actually
arrives the day after the failure and fixes the problem within 24 hours after the system goes down.

Using MTTR = 24 hours, the availability of the above system becomes:

2300
= ———— =0897%
2300 + 24
24
= 1.03%

U=s ————
2300 + 24

Now let's compute the availability of two of these systems connected in parallel. For the moment, assume that equivalent inputs
are tied together on the two systems.

To find the MTBF for parallel components, the mathematics is a little more complicated. To find the probability of successful
operation, we first find the probability that a failure of one component is followed by a failure of the second component. This

becomes the probability that the combination fails. As the probability of success goes down the probability of failure goes up.
Thus

P+ P, =1
s
where
P, = Probability of failure

PS = Probability of success

Thus

Po=1-¢e
f
For parallel systems we would find the net probability of failure as follows:

/M

Psys!em =Py X Pg

where Py and Py, are the individual probabilities of failure.

48



OPERATIONS MANAGEMENT

The net MTBF is not easily expressed in terms of the individual MTBFs. However, the availability calculation is much simpler.

Asystem =1-U system

Usystem =U, x U,

We will ask you to accept the latter formula without derivation. It is analogous to the formula for computing net probability of
failure.

If the two systems are identical, then the availability is
Asystem =1 -U?2
Plugging in the numbers for the previous system (MTBF of 2300 hours and MTTR of 24 hours), we have:

24 2

=1~ (.0103)2 = 98.98%

Asystem =1-

2300 + 24

This is equivalent to a down time of less than 1 hour per year (24 hours/365 days) on a statistical basis. This refers to the period
of time during which both systems are unavailable.

Figure 1. Series versus Parallel, Components. The leashes are in parallel but the collar is in series

49



OPERATIONS MANAGEMENT

METHODS OF COMBINING SYSTEMS FOR HIGH AVAILABILITY

Parallel (redundant) systems are joined together at the /O points. The method of joining the systems must be highly reliable
since the system is not useful (effectively down) if it cannot access the /O devices.

With HP systems, there are three common methods of putting two systems in parallel.

1. Parallel Sensors. For example, if temperature measurements are made through thermocouples, then each system will have
its own thermocouples. This method is preferred since everything is parallel except the device being measured.

2. The 12979B Switchable I/O Extender. See figure 2. The extender contains the I/O bus and interface cards and may be
switched to either CPU.

3. The 93550A VO Switch Unit. See figure 3. The /O cards and /O backplane are duplicated on each CPU. The I/O switch
unit provides a dual port into the /O device.

The 93550A Switch Unit is a special whereas the 12979B is a standard product. As such, the 12979B is more well known and
lower priced. But the 93550A has a much greater MTBF and is therefore a better choice. Either the /O extender or the switch
unit are placed in series with the parallel systems; therefore, the MTBF of the extender or the switch (whichever is used) limits
the net MTBF of the entire system.

The primary reason for the better MTBF of the 93550A is that it is basically a mechanical device with very simple electronic
control and/or manual control (via front panel). The primary elements of the 93550A are:

e Multiple-pole relays for switching between redundant interfaces in the two computers.
e Simple switching logic (about 25 integrated circuits).

e A small power supply used only to control the relays and the associated switching logic.

By contrast, the I/O extender must have a very large power supply to support the requirements of the various interface cards
which mount in the extender. The I/O cards are not redundant and therefore, also tend to iimit the MTBF of the configuration.

COMPUTER A COMPUTER B

/O BACKPLANE INTERFACE

_.____-\ | —TO VO DEVICE

129798 /
/O EXTENDER

WITH INTERFACE CARDS

Figure 2. The 12979B Switchable I/O Extender. The extender supplies power for the interface cards.
Interface cards are not redundant.

50



OPERATIONS MANAGEMENT

125668
/O CARD

PROVIDES SWITCH
/ CONTROL

COMPUTER A COMPUTER B

DEVICE INTERFACE
AND CABLE
DEVICE INTERFACE

AND CABLE
93550A .\
PLUG-IN
RELAY SWITCH
CHASSIS HAS SPACE
FOR 7 PLUG-INS
TO 110 DEVICE

Figure 3. The 93550A 1/O Switch Unit. The unit supplies power only for its
switching logic. Interface cards are redundant.

DISC USAGE

If the two systems in parallel use the multi-ported controller (13037B) to interface to the disc drives, then we can couple both
CPUs to both discs as shown in figure 4. This increases the availability because it increases the number of successful paths; i.e.
either CPU can use either disc.

In addition, this configuration provides the potential to avoid switchover to the other CPU upon disc failure. While we must plan
to make CPU switchover possible, it is a good idea to reduce the chances of its occurrance because there is usually some
penalty. For example, even with no data loss on switchover, there will be some delay for switchover to take place.

Consider what happens if the multi-ported connection is not used: a failure of any component on one system followed by a
failure of any component on the second system causes the configuration to fail. (Consider the components as disc, CPU and
terminal.) However, with the multi-ported connection, a disc failure on one system must be followed by a failure of any other
component on that system before switchover to the other CPU is necessary. A third failure must then occur before the new
configuration fails.

51



OPERATIONS MANAGEMENT

The potential to avoid switchover upon disc failure is realized only if we can treat both discs as a single disc with high
availability. But we can do this only if the contents of both discs are always identical. Then it won't matter which disc fails. The
twin disc driver (HP 93581C) is the software tool that makes this possible.

The twin disc driver is actually a driver manager, although it appears as a driver to the system and to all programs running in the
system. All requests which would normally go directly to the disc driver go instead to the manager. Neither the system nor any
program realizes that this is happening. The manager calls the actual disc driver as a subroutine to do the actual I/O operation.

If the I/O operation is a write, then the buffer given to the manager is written to both discs (in sequence). If the operation is a

read, then only one disc is read since the contents of both are identical. The driver manager will chose alternate discs for reads
so that each disc is used equally.

The key to continuous operation is the state table which is maintained for the discs. There are four possible states for each disc,
although some combinations are not allowed (e.g. both discs down):

upP Available for read and/or write
DOWN Failure found while in use
STANDBY Available for write

OFF-LINE Not connected (ignore)

Normal operation is with both discs in the up state. If a catastrophic error occurs on either disc when it is called by the driver
manager, the manager declares the disc down and continues using the other disc. Then it schedules a monitor program. It
passes to the monitor the disc state table and the error code returned by the disc driver. The system and other programs,
however, see no change except that it now takes less time to write to the disc.

The writes are done in sequence to each disc using the same DMA channel. This naturally leads to a concern about the speed

of I/O to the disc — each write takes twice as long as to a single disc. However, in most systems, 75% to 85% of all disc
accesses are reads and reads are not done twice.

A slightly modified DVR32 is required for use by the driver manager. The modified driver is supplied as part of the supported
driver manager package. The changes were kept to a minimum so that it would be easy to modify new versions of DVR32 as
they were released. The changes permit reconfiguration to the select code each time DVR32 is enterred and also ensures that
DVR32 will always act as a closed subroutine (i.e. so that it doesn’'t jump into the system unknown to the driver manager).

The standby state permits initial installation of the second disc or re-installation of a repaired disc with no system down time. To
do this, a utility program makes a series of special read requests {an EXEC read which uses a subfunction code) to the driver
manager. Each request causes the driver manager to do an internal copy from the up disc to the standby disc, using whatever
buffer is provided by the program. For example, if a track buffer is used, then the disc is copied by making the special read

request to each track on the disc. When the copy is complete, the program issues a request to the driver manager to declare
the disc up.

52



OPERATIONS MANAGEMENT

COMPUTER A

Figure 4. Twin Discs Operate as Single High Availability Disc

COMPUTER B

r————"—"—""""7"™ 1
i

130378 |
CONTROLLER |
|

|

|

|

I

|

|

|

|

130378 |
CONTROLLER |
|

|

|

|

|

|

|

|

|
____________ —_

53

93581C

TWIN DISC

DRIVER MANAGER
HANDLES TWO
INTERFACE CARDS



OPERATIONS MANAGEMENT

CPU SWITCHOVER

The switchover from a failed active CPU to the standby CPU can be easy or difficult, according to the demands of the
application. The simplest switchover procedure is completely manual: the operator observes a failure, manually switches the
devices to the new CPU and restarts the application programs by enterring commands on the system console. It is possible,
however, to achieve more automatic operation with a “watchdog timer”. This is described later in this article.

Atthe other end of the spectrum in complexity is the application which continues to run in the new CPU from the point of failure.
Except for a delay needed to accomplish the switchover, the failure has not hindered the application. This type of system

operation is usually possible only through specialized design which takes advantage of the application to simplify the
requirements.

An example of a specialized design is a system in which the inputs consist of temperature measurements at a slow sampling
rate. The input devices (e.g. thermocouples) are duplicated for each CPU and each CPU takes the data in parallel (synchroni-
zation of sampling times is not required). Only cne CPU creates outputs, however, and this is called the active CPU.

The other CPU is a standby. The standby doesn't do anything useful for the application — it just waits for the active CPU to fail. If
the active CPU does fail, then the standby takes over and becomes active. If this happens, then failed CPU must be fixed as
quickly as possible for another CPU failure would down the system.

There is usually an upper limit to the switching time which can be tolerated and this may influence system design. Generally, the
fastest switching time that can be achieved with HP 1000 hardware is on the order of several hundred milliseconds. The
practical switching time is more often limited by software, however, and may range from several seconds to a minute or more.
This software overhead results from the need to determine what the active CPU was doing at the time of failure so that the
standby can “pick up the trail”.

The switchover time may be broken down into several parts, as shown in figure 5. Switchover begins with a failure but is not
complete until the standby CPU regains complete control of the application.

It is often not easy to decide what kind of failure should cause a switchover. There are some easy decisions, of course, such an
entire CPU failure (loss of power?). But there may be many other situations which can cause the application programs to
malfunction while other programs in the same CPU operate perfectly; e.g., a failure of an interface card. Since the use of the
93550A provides for duplicate interfaces (one per CPU), a switchover is beneficial in this case.

A more subtle problem may be a "gradually deteriorating” CPU. For example, there may be several memory parity errors
occuring. The RTE-IV system will attempt to recover by downing partitions in which the parity errors occur. Thus the programs
continue to run. But, eventually, there may be a serious degradation of performance and (possibly) an irrecoverable CPU error.
Should you wait for final failure or switchover while the application is still “healthy”? Also, performance slowdown may occur for
other reasons which are temporary (everyone on the system at once). Since there may be a penalty for CPU switchover (delay,
perhaps a loss of data, etc), we might want to make certain that operation will benefit from a switchover.

TIME
“FAILURE"
ALARM STANDBY DECISION TAKEOVER COMPLETE
RESPONDS TO SWITCH

Figure 5. CPU Switchover Time has Several Components

54



OPERATIONS MANAGEMENT

WATCHDOG TIMER COMMUNICATES FAILURE

The 93768A Watchdog Timer is an I/O card that may be programmed either to create an alarm and/or detect an alarm. A
watchdog in one CPU may be cross-coupled to a watchdog in the other CPU to permit either CPU to detect a failure of the other.

The card has many possible modes of operation but one major application is an RTE driver (DVS36) that has been written for
redundant CPU combinations. This driver assumes a cable which is available from HP. Reference figure 6 with the following
discussion of how the watchdog is used.

A data register (not shown) loads the counter upon receipt of a reset pulse from the remote CPU. The counter is decremented
by one each time it gets a tick from the local clock. If the counter reaches zero the relay opens (also opens if power is lost)
sending an alarm to the remote watchdog. When watchdog detects the alarm, an "emergency handier” program is scheduled
and the switchover sequence begins.

Each CPU has a program in the time list which calls the watchdog driver to output a pulse. The pulse resets the counter in the
remote watchdog to the value contained in the remote’s data register, preventing it from reaching zero.

If the pulse program fails to run, the alarm will occur. However, the pulse program will do some sort of status checking and, if it
decides that the CPU is in “bad health”, it may deliberately avoid sending the pulse.

Notice that both watchdogs are in series and a failure of either can resuit in either no signal or no signal detection. The link is
effectively in series with the active CPU since the standby CPU cannot distinguish between a CPU failure and a link failure.

However, the MTBF of the link created by two watchdogs in series is at least an order of magnitude greater than of the CPU
itself.

It would be helpful, of course, if we could distinguish between a link failure and a CPU failure. If only the link has failed, there is
no purpose in switching CPUs. (We would like to know about the failure, however.) Not only are we no better off after the
switchover but we have incurred all the problems of switching - including a delay and (possibly) a loss of data. Therefore, we
might wish to make the link even more reliable by duplicating it, i.e. providing a pair of watchdogs in each CPU, Another method
would be to use some sort of file communication on the multi-ported discs in conjunction with the single watchdog link. If link
failed, then an attempt would be made to verify if the CPU were still up via file communication.

RECEIVE ALARM

/_.""J lj SEND ALARM .

WATCHDOG _ﬂ

PULSE

RESET

-

§3768A 93768A

H_ WATCHDOG

@——* COUNTER

B —
CPU INTERRUPT

Figure 6. A Pair of Watchdog Timers Alert either CPU to a Failure of the other CPU

55

COUNTER 4——@

e
CPU INTERRUPT




OPERATIONS MANAGEMENT

MORE COMPLEX CPU COMMUNICATION LINK

The watchdog timer provides a go no-go type of communication link. Often this is all that is required. Neither computer knows
anything of what the other is doing unless one computer fails.

If the systems are to share the load in some manner, then more extensive CPU communication may be needed. For example,
suppose half of the input devices are on one CPU and half on the other. If one CPU fails, its devices are switched to the
surviving CPU, which then carries the total load.

There may be an output device (perhaps a printer) which is not duplicated. Therefore, if the CPU which is not attached to the
printer wants to print something, it must route the message through the other CPU or else gain control of the printer. The CPU
would not normally gain control without some protocol so the latter approach also implies a communications link.

A DS/1000 link be desirable for this type of communication because it is reliable and easy to use. But more importantly, the
buffers transferred between CPUs are relatively small in this instance. If we were transferring very large buffers, we would be
more interested in the potential speed of the hardware line.

For example, suppose we have a fixed overhead of 4 milliseconds to transfer data across the link. Consider two links with
speeds of 30 KHz and 300 KHz (assume words, not bytes). If the buffer size is 300, then the total transfer times are:

4 +(300/30) =4 + 10
4 +(300/300) =4 + 1

1l

14 ms for the 30 KHz link
5 ms for the 300 KHz link

Il

It the buffers are output lines to a device, the size will more likely be 30 rather than 300. In this case, the times are:

4 + (30/30) =4 + 1 =5.0ms for the 30 KHz link
4 + (30/300) =4 + .1 = 4.1 ms for the 300 KHz link

If you determine that a high speed link is more suited to your application, then you may be interested in the 93762A Processor
Interconnect Kit. With its RTE driver, this link is specified at 300 KHz words.

“PICKING UP THE TRAIL”

Once the standby CPU has decided to take control, the simplest part of switchover is gaining access of the peripherals. If the
peripherals are on a 93550A Switch Unit, this is accomplished by a call to the switch driver.

After this point, the standby CPU might simply reset all the peripherals and start out as if nothing had happened before
switchover — a “cold restart”. If this is all that is desired, then the application software does not need to know of the twin system
environment. Any existing software package can be transferred to the twin system without modification.

If, however, we would like the standby to continue handling the situation from the point of failure, then we must either have a
special system designed for this purpose or we must write the programs to leave a “trail” of checkpoints which the standby
CPU can pick up.

The programs in the standby CPU are assumed to be identical copies of the programs previously running in the active CPU.

Thus, each time the application starts, whether in the active CPU or in the standby CPU, it must examine the checkpoints to
determine where in sequence it must start.

56



OPERATIONS MANAGEMENT

The trail of checkpoints is most easily left on the disc, since the multi-ported drives are accessible to both CPUs. The
checkpoints could conceivably could be left in the memory of the standby. For example, as each step is taken in the active
CPU, it might be logged in a memory table in the standby CPU. Memory logging would probably not be any faster than disc
logging due to the overhead in the communication link. It might, in fact, be slower but it could save wear and tear on the disc
drive. Disc logging could reduce the MTBF of the drives by accelerating the rate of mechanical failures.

As an example, let's consider the requirements of a security/access system. The example has various badge readers spread
around the entry/exits of the building and solenoids and sensors to control the doors. The sensors can report whether the
solenoid locks are open or closed and whether the door itself is open or closed.

The badge readers are assumed to have a "ready” lamp. (No specific model badge reader is intended to be implied.) The famp
goes off while the transaction is in progress. When the transaction is in progress, the lamp is off. A buzzer sounds to indicate
that the lock is open and stops when the door is locked again.

The unlock/lock mechanism and buzzer are under control of a device at the station The signal is given only to unlock. The local
mechanism begins a timeout and sounds a buzzer. At the end of the timeout, the buzzer stops and the lock closes
automatically.

Given this situation, we can list the separate steps that the program may perform. The steps are shown below. The arrow (>)
indicates a checkpoint where information is posted. The “post” operation refers to the logging of the information in a table (on
disc or in the standby’s memory). There is a separate section of the table for each station.

1.  Read the badge.

> 2. Post the badge ID.
3.  Turn off the “ready” lamp.

>4, Examine data base to see if ID valid. Assuming it is valid, post a “valid ID" flag.
5. Unlock the door.

6. Allow a program timeout greater than the lock cycle. At the end of the cycle, verify that the lock is closed and possibly
that the door itself is closed.

>7. Transaction complete. Post a dummy ID to indicate no transaction in progress.

8. Turn on the “ready” lamp at the station.

We can test whether this procedure works by examining the job of standby after CPU switchover. The first step would be to see
if the individual stations are active via the ID posted. If the ID is a dummy, then.the station may be simply reset to the “ready”
state. If a failure occurred between steps 1 and 2 above then the person will have to input his badge a second time.

if a "valid ID” flag has been posted, then the standby still does not know whether the door was actually given an unlock
command. it could read the door open sensor or lock sensor but if the sensors indicated both were closed, it could mean that
the operation completed before the standby looked at the station. One option might be to issue the unlock command anyway,
possibly repeating the operation just completed.

This example is presented only to show the possibilities. Any application with a repetitive transaction at each station may be
analyzed in this manner to show the particular audit trail that is required. The analysis may also suggest a station design which
makes the software job easier. If the station can always tell you what state it is in, then an audit trail is not needed. However, this
requirement will generally increase the station cost and decrease its MTBF. This can lead to proposals to duplicate stations and
even greater expense.

57



OPERATIONS MANAGEMENT

SUMMARY

The design of high availability systems can follow two approaches. One approach is to incorporate only those components with
high reliability. This approach would simply eliminate as a possibility any component with an MTBF below a certain cutoff level.

When the choice of components is limited to only a few that can perform the desired function, then the second approach is to
increase the availability by incorporating components in parallel combinations. This provides multiple paths for success and
increases the overall availability. This approach attempts to eliminate overall failure due to a failure of a single component.

Inevitably, the system will have "weak points” where it is impossible or impractical to duplicate components. These weak points

are almost always where the system receives its inputs and creates its outputs. This makes it difficult to design any high
availability system for general purpose application.

CPU switchover is the most difficult aspect of systems with redundant components. Operating systems and programs will
almost always have tables or information that will be lost (at least in part) when switchover occurs. The simplest approach is to

break the application into a series of steps which can be posted to the disc. Thus, the failed CPU leaves a "trail” telling the
standby CPU where to continue operation.

CPU-CPU communication can be complex if load-sharing is required. However, if the application can permit one CPU to be

strictly in a standby mode, then the watchdog timer provides a simple method of communicating CPU failure and initiating
switchover.

The twin disc driver provides the designer with an opportunity to avoid CPU switchover due to a disc failure and, at the same

time, provide automatic back-up of data. It also provides the advantage of permitting re-installation of into the system without
interrupting operation.

58



BULLETINS

JOIN AN HP 1000 USER GROUP!

Here are the groups that we know of as of October 1980. (If your group is missing, send the Communicator/ 1000 editor all of the
appropriate information, and we'll update our list.)

NORTH AMERICAN HP 1000 USER GROUPS

Area

Boston

Chicago

Greenville/N. C.

New Mexico/El Paso

New York/New Jersey

Philadelphia

Pittsburgh

San Diego

59

User Group Contact

LEXUS
P.O. Box 1000
Norwood, Mass. 02062

Jim McCarthy

Travenol Labs

1 Baxter Parkway
Mailstop 1S-NK-A
Deerfield, llinois 60015

Henry Lucius
American Hoerschst
Greer, South Carolina
(803) 877-8741

Guy Gallaway

Dynalectron Corporation
Radar Backscatter Division
P.O. Drawer O

Holloman AFB, NM 88330

Paul Miller

Corp. Computer Systems
675 Line Road
Aberdeen, N.J. 07746
(201) 583-4422

Dr. Barry Periman
RCA Laboratories
P.O. Box 432
Princeton, N.J. 08540

Eric Belmont

Alliance Research Ctr.
1562 Beeson St.
Alliance, Ohio 44601
(216) 821-9110 X417

Jim Metts
Hewlett-Packard Co.
P.O. Box 23333

San Diego, CA 92123



BULLETINS

NORTH AMERICAN HP 1000 USER GROUPS (CONTINUED)

Area

Toronto

Washington/Baltimore

General Electric Co.
(GE employees only)

User Group Contact

Nancy Swartz

Grant Hallman Associates
43 Eglinton Av. East
Suite 902

Toronto M4P1A2

Paul Taltavull
Hewlett-Packard Co.
2 Choke Cherry Rd.
Rockville, MD. 20850

Stu Troop

Special Purpose Computer Ctr.
General Electric Co.

1285 Boston Ave.

Bridgeport, Conn. 06602

OVERSEAS HP 1000 USER GROUPS

Belgium

France

Germany

The Netherlands

South Africa

United Kingdom

60

E. van Ocken

University of Antwerp (RUCA)
Groenenborgerlaan 171

2020 Antwerp

Belgium

Jean-Louis Rigot
Technocatome TA/DE/SET
Cadarache

BP.1

13115 Saint Paul les Durance
France

Hermann Keil

Vorwerk +Co Elektrowerke
Abt. TQPS

Rauental 38-40

D-5600 Wuppertal
Germany

Mr. Van Putten

Institute of Public Health
Anthony Van Leeuwenhoeklaan 9
Postbus 1

3720 BA Bilthoven

The Netherlands

Andrew Penny

Hewlett-Packard South Africa Pty.
private bag Wendywood
Sandton, 2144 South Africa

Dave Thombs (Vice-Chairman)
MQAD, Royal Arsenal East
WOOLICH, London SE18
England



BULLETINS

ANOTHER NEW USERS GROUP!

By John Gwyther/HP Melbourne

The number of European users groups continues to increase. The latest one was formed in Australia, has at least 40 members,
and has been going strong since July, 1980. For those of you who are interested the address is:

Norm Kay

C.S.1.R.0.

Division of Protein Chemistry
Bayview Avenue

Clayton, Victoria 3168
Australia

61



BULLETINS

FORTRAN 4X NOW AVAILABLE!

By Jim Williams/HP Data Systems Division

Our new, enhanced FORTRAN compiler, called FORTRAN 4X, product number 92834A, is now available through the normal

ordering process. All ordering information, including option specifications, appears in the sales training brochure, on the CPL,
and in the data sheet.

All customers who purchase the RTE-IVB operating system will continue to receive the RTE FORTRAN {V compiler. An
accompanying order must be placed to receive the greatly enhanced FORTRAN 4X compiler at a cost of $1000.00.

Until the 2101 PCO revision to the software, the runtime libraries required by FORTRAN 4X will be shipped with the compiler.
Configurqtion and installation instructions may be found on the production software in the first file on the media option, called
“FTN4X.

FORTRAN 4X and RTE FORTRAN IV are compatible software, with a few exceptions delineated in the FORTRAN 4X reference
manual, part number 92834-90001.

62



data presented in the Communicator, Hewlett-Packard can- your local sales and service office for prices in your country.

Although every effort is made to ensure the accuracy of the Prices quoted apply only in U.S.A. if outside the U.S., contact - >
not assume liability for the information contained herein.

Printed in U.S.A. 11/80 Part No. 5951-6111





