

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

HEWLETT-PACKARD
COMPUTER SYSTEMS

josue 1 COMMUNICATOR/1000

Feature Articles ﬁ b

OPERATING SYSTEMS 26 SHARING THE FORTRAN FORMATTER IN RTE-L
Kent Ferson/HP Data Systems Division
33 ACCESSING PHYSICAL MEMORY IN FORTRAN AND
PASCAL
Larry Smith/Manufacturing and Consulting Services

OPERATIONS MANAGEMENT 39 DESIGNING A HIGH PERFORMANCE DATA
CAPTURE SYSTEM
Carl Reynolds/HP Rochester N.Y.

LANGUAGES 46 A COMPARISON OF HEWLETT-PACKARD PASCAL
1000 WITH UCSD PASCAL
John Stafford/HP Data Systems Division

Departments
EDITOR'S DESK 3 ABOUT THIS ISSUE
4 BECOME A PUBLISHED AUTHOR IN THE

COMMUNICATOR/1000...
6 LETTERS TO THE EDITOR

BIT BUCKET 12 MEASURING TIME BASE GENERATOR OVERHEAD
16 RS-232 LINK BETWEEN THE HP 1000 AND THE HP 85
24 AVOIDING MAG TAPE LOCKUP

BULLETINS 59 A NEW FORTRAN INDEPENDENT STUDY COURSE

61 ATTENTION EUROPEAN USERS
62 JOIN AN HP 1000 USERS GROUP

1/2

EDITOR’S DESK

ABOUT THIS ISSUE

The first issue of the Communicator/1000 for 1981 could be titled the "HP Employee” issue. Most articles published were
submitted by either HP Field personnel or Division employees. This is because we haven't been receiving many articles from
HP customers.

Readers please note that articles for future issues of the Communicator/1000 have not yet been selected. If you have found a
super-efficient or tricky way to use an HP 1000 why not write an article, and let the 2600 Communicator readers share your
excitement. Remember each issue awards HP32E Calculators to feature article contributors from each catagory (HP 1000
customers, HP Field employees, and HP Division employees).

In this issue we have two articles in the area of operating systems. Kent Ferson has written a very useful article for RTE-L users.
Kent outlines the advantages and describes the mechanics of sharing the Fortran Formatter between programs. Unfortunately
Kent wasn't eligible for the calculator award because he is an employee of Data Systems Division's Technical Marketing
Department. The other operating system article was contributed by Larry Smith of Manufacturing and Consulting Services
Santa Anna, California. Larry has written other articles which have been published in the Communicator/1000, and “Sharing
Physical Memory in Fortran and Pascal" is another good one.

In the Languages Category we have a super article written by John Stafford of HP's Data Systems Division. John has compared
HP's Pascal/1000 to the UCSD Pascal, which has become popular in the small computer area. John's well written article is
intended to point out the differences between these two implementations of Pascal.
HP's Carl Reynolds of Rochester New York has contributed an article on Datacap/1000 for the Operations Management
Section. Carl's experience designing a Datacap/1000 system has enabled him to recount his expertise in “Designing a High
Performance Datacap/1000 System.”
Since this time there was only one article in each category, each one of the feature article authors wins the HP32E calculator!!!
Best feature article by an HP Customer:

Larry B. Smith "Accessing Physical Memory in Fortran

Manufacturing and and Pascal”

Consulting Services Inc.

Best feature artice by an HP Division employee not in Technical Marketing:

John Stafford “A Comparison of Pascal/1000 to
HP Data Systems Division UCSD Pascal”

Best feature article by an HP Field Employee:

Carl Reynolds “Designing a High Performance
HP Rochester, New York Data Capture Sysytem"

I hope you enjoy reading the articles in this issue and continue to provide the Communicator/ 1000 with interesting and useful
material.

SinCerer,

The Editor

EDITOR’S DESK

BECOME A PUBLISHED AUTHOR IN THE COMMUNICATOR/1000. ..

The COMMUNICATOR is a technical publication designed for HP 1000 computer users. Through technical articles, the direct
answering of customers’ technical questions, cataloging of contributed user programs, and publication of new product
announcements and product training schedules, the COMMUNICATOR strives to help each reader utililize their HP 1000’s
more effectively.

The Feature Articles are clearly the most important part of the COMMUNICATOR. Feature Articles are intended to promote a
significant cross-fertilization of ideas, to provide in-depth technical descriptions of application programs that could be useful to
a wide range of users, and to increase user understanding of the most sophisticated capabilities designed into HP software.
You might think of the COMMUNICATOR as a publication which can extend your awareness of HP 1000’s to include that of
thousands of users worldwide as well as that of many HP engineers in Data Systems factories at Cupertino, California and
Grenoble, France.

To accomplish these goals, editors of the COMMUNICATOR actively seek technical articles from HP 1000 customers, HP
Systems Engineers in the Field, and Marketing and R&D Engineers in the factories. Technical articles from customers are most
highly valued because it is customers who are closest to real-world applications.

WIN AN HP-32E CALCULATOR!

Authoring a published article provides a unigquely satistying and visible feeling of accomplishment. To provide a more tangible
benefit, however, HP gives away three free HP-32E hand-held calculators to Feature Article authors in each
COMMUNICATOR/1000 issue! Authors are divided into three categories. A calculator is awarded to the author of the best
Feature Article in each of the author categories. The three author categories are:

1. HP 1000 Customers;
2. HP field employees;
3. HP division employees not in the Data Systems Division Technical Marketing Dept.

Each author category is judged separately. A calculator prize will be awarded even if there is only one entry in an author
category.

Feature Articles are judged on the following bases: (1) quality of technical content; (2} level of interest to a wide spectrum of
COMMUNICATOR/1000 readers; (3) thoroughness with which subject is covered; and, (4) clarity of presentation.

What is a Feature Article? A Feature Article meets the following criteria:
1. lts topic is of general technical interest to COMMUNICATOR/1000 readers;
2. The topic falls into one of the following categories —

OPERATING SYSTEMS

DATA COMMUNICATIONS

INSTRUMENTATION

COMPUTATION
OPERATIONS MANAGEMENT

EDITOR’S DESK

3. The article covers at least two pages of the COMMUNICATOR/1000, exclusive of listings and illustrations (i.e., at least 1650
words).

There is a little fine print with regard to eligibility for receiving a calculator; it follows. No individual author will be awarded more
than one calculator in a calendar year. In the case of multiple authors, the calculator will be awarded to the first listed author of
the winning article. An article which is part of a series will compete on its own merits with other articles in the issue. The total of
ali articles in the series will not compete against the total of all articles in another series. Employees of Technical Marketing at
HP's Data Systems Division factory in Cupertino are not eligible to win a calculator.

All winners of calculators will be announced in the issue of the COMMUNICATOR/1000 in which their articles appear. Again, all
Feature Articles are judged by an impartial panel of three DSD Technical Marketing Engineers.

A SPECIAL DEAL IN THE OEM CORNER

When an HP 1000 OEM writes a Feature Article that is not only technically detailed and insightful but also application-oriented
as opposed to theoretical, then that OEM may ask that the article be included in THE OEM CORNER. A Feature Article included
in THE OEM CORNER may contain up to 150 words of pure product description as well as a picture or illustration of the OEM'S
product or its unique contribution. HP's objective is twofold: (1) to promote awareness of the capabilities HP 1000 OEMs’
products among all HP 1000 users; and, (2) to publish an article of technical interest and depth.

IF YOU'RE PRESSED FOR TIME...

If you are short of time, but still have that urge to express yourself technically, don't forget the COMMUNICATOR/1000 BIT
BUCKET. it's the perfect place for a short description of a routine you've written or an insight you've had.

THE MECHANICS OF SUBMITTING AN ARTICLE

if at all possible please submit an RTE File containing the text of your article recorded on a Minicartridge (preferrably) or on a
paper tape along with the line printer or typed copy of your article. This will help all of us to be more efficient. The Minicartridge
will be returned to you promptly. Please include your address and phone number along with your article.

All articles are subject to editorship and minor revisions. The author will be contacted if there is any question of changing the
information content. Articles requiring a major revision will be returned to the author with an explanatory note and suggestions
for change. We hope not to return any articles at all; if we do, we would like to work closely with the author to improve the article.

HP does, however, reserve the right to reject articles that are not technical or that are not of general interest to
COMMUNICATOR/1000 readers.

Please submit your COMMUNICATOR/1000 article to the following address:

Editor, COMMUNICATOR/1000
Data Systems Division
Hewlett-Packard Company
11000 Wolfe Road

Cupertino, California 95014
USA

The Editor looks forward to an exciting year of articles in the COMMUNICATOR/1000.
With best regards,
The Editor

5

EDITOR’S DESK

LETTERS TO THE EDITOR

Dear Editor,

I would like to publish a correction to my Bit Bucket article, “The SST in the Session Control Block,” (Vol IV, Issue 4). A LOGON
09 error occurs if the maximum size of the SST is greater than 70, not 63.

Sincerely,

Martha Slettedahl
HP Data Systems Division
Cupertino, CA.

Dear Martha,
Thank you for notifying us of this correction.

Sincerely,

The Editor

EDITOR’S DESK

Dear Editor,
Referring to page 15, entitled “Put Your 264X Terminal Display on Paper”, in Communicator Volume IV Issue 3, a more novel
approach exists in the HP 1000 Users Group Library. The program is called SCAN. Listed here is my modified version of the
library program SCAN. It has an important feature allowing a copy of memory from cursor position to the command string
:RU,SCAN. Therefore, it is not necessary to dump the whole memory or pre-edit it prior to making a hard copy.

Sincerely,

Charles L. Elliot
Eltiot Geophysical Company

Dear Charles,

Thanks for pointing out that the HP 1000 User's Group contributed library contains many useful programs. More information on
programs in the contributed library can be obtained from the HP 1000 User's group contacts. The Bulletin section of this
Communicator contains a list of HP 1000 User's Groups.

Sincerely,

The Editor

EDITOR’S DESK

FTN4,L
Cesnnnsannes
C#0176 SCAN
Censnspsnnnns
PROGRAM SCAN(3),791121 C.L. ELLIOT
ADAPTED FROM LOCUS PROGRAM 22683-90017
THIS PROGRAM EMULATES A HARD COPY DEVICE BY
READING THE CONTENTS OF THE 26XX MEMORY
AND WRITING THAT DAT TO LUPR
DEFAULT IF LUPR=6
RU,SCAN,LUPR WILL COY FROM CURSOR POSITION
AND ENDS AT ~A~~ DR :RU,SCAN
DIMENSION IBUF(S0),IPAR(S),IREG(2)
EQUIVALENCE (REG,IREGC1),IA),CIREG)(2),IB)
GET TERMINAL LOGICAL UNIT NUMBER AND PARAMETERS
CALL RMPARCIPAR)
LU=LOGLUCLW)
LUN=LU
I0UT=1PARC1)
IFCIPARC1).EQ.LUYIOUT=6
C DEFINE CONTROL FUNCTIONS
IDC1=10537B
NLESC=33B
IDUN=62137B
1UP=40537B
IEND=57136B
S FORMAT(2A2)
C PUT TERMINAL IN BLOCK MODE
WRITECLU,S)IDCH
WRITECLU,S)NLESC,IUP
C REQUST 1 LINE FROM TERMINAL
20 WRITECLU,S)NLESC, IDUN
C READ THE LINE
IBUF(C1)=2H
REG= EXECC1,LUN,IBUF,50)
LEN=IB
C CHECK FOR END -~ ~~a~ OR :RU,SCAN
IFCLEN.GT.6) GO TO SO
IFCCIBUFC1).EQ.IEND).AND.CIBUF(2).EQ.IEND))>GOT0Q99
IFCCIBUFC1).EQ.2H:R) .AND.CIBUF(2).EQ.2HU,)
$.AND.(IBUF(3).EQ.2HSC) .AND.(IBUF(4).EQ.2HAN)>GO TO 99
12 FORMAT(IH ,50A2)
C WRITE THE LINE TO THE LINE PRINTER
S0 WRITECIDUT,12)CIBUFCJ),JJ=1,LEN)
GO TO 20
C EJECT PAGE AND END
99 ICNWD=]DRC1100B,10UT)
CALL EXEC(3,ICNWD,-1)
999 END
ENDs$

[sNoNoNoNoNoNoNeoNe Nl

EDITOR’S DESK

Dear Editor,

To be able to copy information from the 264X display to a line printer is indeed handy. The program PSCRN by David Liu of
Hughes Aircraft Company (Communicator/1000, Volume 1V, Issue 3, pages 15, 16 and 17) was installed on our RTE-IVB/
Session Monitor system and ran fine — until the new EDIT/1000 RTE Editor was run.

As you will recall, Mr. Liu’s article says (bottom of page 15) that the D switch on the 02640-60123 board must be set to open.
Making that switch change inside the terminal posed no particular problem. PSCRN ran great. However, when EDIT/1000 was
run, the following unexpected message appeared on the CRT along with a resounding bell: "Setting terminal strapstod g | T".
The Editor had programatically closed the D switch (d)!

Thereafter, the PSCRN program would work only if the D switch was reset to open by a HARD terminal reset. Therein lies the
“gotcha”. A hard reset also clears the CRT of the information destined for the line printer.

A few minutes spent with the 264X Terminal Reference Manual (02645-90005), pages 3-1 and 7-19 revealed the technigue for
setting the D switch programatically with an escape sequence. A few statements added to Mr. Liu's FORTRAN program now
allows the D switch to remain in its normal closed position; the CRT-to-line printer copying now peacefully co-exists with
EDIT/1000.
The partial listing shows the statements added. See lines 26, 27, 59, 60, 97 and 142.
If one felt the need to accomodate CRT configurations where the D switch was to be left in its orginal state, whichever it might
be, additional calls could be made to determine the terminals primary status (see pages 6-2 and 6-3 of the Reference Manual),
and then program/reprogram the terminal only as appropriate.
Thanks, Mr. Liu for your article. It certainly shows another of the flexible features of Hewlett-Packard terminals.

Sincerely,

Ray Tatman
HP Instrument Service Training Center

Changed lines

26 INTEGER PGMODE (3)

27 INTEGER LNMODE (¢3)

59 DATA PGMODE /2H%&,2Hs1,2HD /

60 DATA LNMODE /2H% &,2Hs0,2HD /

37 REG = EXEC(2,1400B+CRT,PGMODE, -5, PARM1 ,PARM2)

142 REG =EXEC(2,1400B+CRT,LNMODE,-S,PARM1 ,PARM2)
Dear Ray,

Thank you for letting us know this enhancement to the PSCRN program. I'm sure that the users of EDIT/1000 would be
interested. Rather than reprint the whole program I'm just going to list the changed lines.

Sincerely,

The Editor

EDITOR’S DESK

Dear Editor,

In my article “Fast Fortran” there was a mistake in one of the examples. The original was as follows:

CALL OUT ('"CURRENT LU IS e, LUOUT,10,LWL)
It should read:

CALL OUT (14HCURRENT LU IS , LUOUT, 10,LW)

END

SUBROUTINE OUT CIBUF, IVAL, N, LW
INTEGER IBUF(1), OBUF(C10)

DO 10 I=1, N-2

10 OBUF(CI)=IBUF(CI)

CALL CNUMD (IVAL, OBUF(N-2))

CALL EXEC (2,LU,0BUF,N)

RETURN
WHERE
N = —# of words (not characters) in passed array plus 3 more words for IVAL.
IVAL = Value to be printed after message.
0BUF = Local array big enough to hold largest N words.
LU = Print logical unit.

Note: In main program, arrays IRBUF and IBUF must be dimensioned (as 33 and 3 for this example).
Thanks for the calculator.

Best regards,

John A. Pezzano
HP, El Paso

Dear John,
Thank you for notifying us of this error in vol. 4 issue 4, and for writing a good article!

Sincerely,

The Editor

10

EDITOR’S DESK

Dear Editor,

With regard to the recent article entitled “Generating RTE for Pleasure and Performance,” take care when deleting %CLIB from
the library section of the program input phase. BASIC needs %BASLB at gen-time which has external references to %CLIB! The
other library modules mentioned may be deleted as shown, however, the big time savings on generation time is probably lost
with the inclusion of %CLIB. Sorry 'bout that...

Sincerely,

Ron Hammer
HP, Saint Louis

1

BIT BUCKET

MEASURING TIME BASE GENERATOR OVERHEAD

Bob Hallenbeck/HP San Diego

The following is a program to measure the amount of time an HP operating system spends in servicing interrupts from the time
base generator. The time spent is expressed as a percentage of overhead.

First, a brief description of TBG interrupt servicing. When an interrupt is received from the TBG, it is vectored through $CIC in
the usual manner. The interrupt servicing routine first increments the system time word, then scans the time list to see if a
program should be scheduled, then checks each of the EQT entries to see if atime out has occurred. If a time out has occurred,
then either the driver continuation section is entered, or the LU will be set down and a time out message will be output.

Thus, the time it takes to service a TBG interrupt depends upon the number of programs in the time list at the time of the
interrupt, and upon the number of EQT entries in the system. For the sake of accuracy it is assumed that there will be no entries
in the time list, and no time outs occurring at the time the overhead program is run.

The program is independent of CPU and operating system. It consists of a FORTRAN main program (TBGOH) to collect
statistics, a FORTRAN subroutine (FRMAT) to format the results, and an assembly language subroutine (TBG) to program the
TBG. For the measurement technique | am indebted to Jim Nissen (HP).

The idea of the main program is to program the TBG card to interrupt every 10 milleseconds (default interrupt frequency), enter
a do nothing loop one million times, then calculate and save the indicated elapsed time. This procedure is then repeated with
the TBG programmed to every millisecond (ten times faster), to observe the indicated elapsed time. Some simple algebra is
then done on the indicated elapsed time, and a percentage overhead figure is obtained.

The assembly language subroutine (TBG) is used to program the time base generator. The reason for the rather indirect
method of building the appropriate instructions is that the arguments for the LIA, OTA and STC instructions must be constant,
but the TBG may be in almost any select code.

12

BIT BUCKET

FTN4,L,Q
PROGRAM TBGOH
INTEGER STIME,FTIME ,ETIME,PASS
DIMENSION STIME(S) ,FTIME(S) ,ETIME(S), IPARM(S)
EQUIVALENCE CIPARM(C1),LU)
DATA PASS/0/
CALL RMPAR(CIPARM)

ClllIlllllllIl{lIIllIlllIlllllllllllilll.llllllQIIQQIQIIIIIIQQIIlllllll..l

c
c REL ,XTBGOH
c REL ,XTBG
c EN
c
c RU,TBGOH,[LIST LU)
c
At a R AR R R R AR R R R R R R RN RN R RN R RN R R AR R R AR RN R AR R RN RN RN
c
c PROGRAM THE TBG TO INTERRUPT EVERY 10 ms
c
CALL TBG(2)
c
c START TIMER
c
S PASS=PASS+1
CALL EXECC11,STIME)
c
c ENTER DO NOTHING LOOP - EXECUTE 1 MILLIOM TIMES
c
DO 100 I=1,1000
DO 100 J=1,1000
100 CONTINUE
c
c STOP TIMER
c

CALL EXECC11,FTIME)
[F (PASS.EG.2)GOTO 200

CALCULATE AND SAVE ELAPSED TIME

OO0

CALL FRMAT(STIME,FTIME,ET1)
WRITECLU,S00)ET"
500 FORMAT(*" ET1 = *»,F12.3,'" SEC™

c
c PROGRAM THE TBG TO INTERRUPT EVERY 1 MS
c
CALL TBG(1)
GO TO S
c
c RESTORE THE TBG TICK TO 10 MS
c
200 CALL TBG(2)

13

BIT BUCKET

FORMAT THE ELAPSED TIME

OO0

CALL FRMAT(STIME ,FTIME,ET2)
WRITE(LU,S10)ET2
510 FORMAT(*"ET2 = *",F12.3," SEC")

c

c CALCULATE PERCENTAGE OVERHEAD

c USING ET1 AND ET2

c
OVHD = 10+(ET2 - 10+ET1)/CET2-ET1)
WRITECLU,520)0VHD

520 FORMAT(" TBG OVERHEAD = " ,F12.3,"Xx'")
END

c

c

c

SUBROUTINE FRMAT(STIME,FTIME,ET)
INTEGER STIME,FTIME,ETIME
DIMENSION STIME(S),FTIMECS) ,ETIME(CS)
DO 100 [=1,4
ETIMECI)= FTIMECI)-STIMECI)
100 CONTINUE
IFCETIMEC4).LT.0)ETIMEC4) = ETIME(4) +24.
ET=ETIMEC4>+3600. + ETIME(3)#+60. + ETIMEC2) + ETIMEC1)/100.
RETURN
END
END$

14

BIT BUCKET

ASMB, L
NAM TBG 3,10 PROGRAM TBG INTERUPT FREQUENCY
ENT TBG
EXT .ENTR,EXEC,$LIBR,$LIBX

CODE BSS 1

TBG NOP .ENTR SEQUENCE
JSB .ENTR
DEF CODE

CLA PICK UP TBG SETTING (0 = .1 ms, 1 = 1 ms,
LDA CODE,I 2 =10 msa, 3 = 100 ms, 4 = 1 sec, S = 10 =ec,
STA TIME 6 = 100 sec., 7 = 1000 =msec.

LDA .TBG,I GET TBG SELECT CODE FROM BASE PAGE
IOR LIA

STA .LIA BUILD LIA SC INSTRUCTION

ADA =B100

STA .0TA BUILD OTA SC INSTRUCTION

ADA =B1100

STA .STC BUILD STC SC,C INSTRUCTION

JSB $LIBR
NOP

LDA TIME
.0TA 0OTA 10 OUTPUT SETTING TO TBG CARD
.8TC STC 10,C START CLOCK AND CLEAR FLAG
.LIA LIA 10 BIT 4 SET IF ANY TBG TICKS MISSED

JSB $LIBX
DEF #+1
DEF #+1

JMP TBG, I
.TBG OCT 1674
LIA LIA O
TIME BSS 1

END TBG

15

BIT BUCKET

RS-232 LINK BETWEEN THE HP 1000 AND THE HP 85

By Bob Niekamp/HP Kansas City

Communication to the HP1000 from the HP85 using RS232 can be accomplished by using the programs listed in this article.
This application describes how to send data between the HP85 and the HP1000. These programs are not terminal emulators for
the HP85. Also, these programs are for use over a modem (Bell 212A) at 1200 baud, auto-answer or originate. To connect the
HP85 directly to the HP1000, you could use a modem eliminator cable (13232U) between the 12966-60006 cable and the HP85
RS-232 interface cable. You must configure the 12966 interface card on the 1000 to 1200 baud, manual line open
(CN,LU,31B,1B) for direct connection without modems. The programs on the HP85 are written to handshake with DVAOS on the
HP1000 using enquire/acknowledge protocol. System generation configuration for DVAQOS is the same as for HP264X terminals.

HARDWARE AND SOFTWARE REQUIREMENTS
HP85A with /O ROM.
HP1000 E or F with 12966 interface card, 12966-60006 modem cable, RTE-IVB, DVAQO5, FTN4 compilier.

BELL 212A modem.

SET-UP

Execute the transfer file '/HP85' on the 1000 to map in the HP85 logical unit to your session, to set the 12966 card to 1200 baud
auto-answer, and disable LOGON prompt on interrupt from the HP85.

USE

Program ’RECV is run on the 1000 to accept data from the HP85. In conjunction with this, you would execute program "XMT85’
on the HP85 to send data to the HP1000. The procedure to send data from the HP85 to the HP1000 is as follows: run "’XMT85' on
the HP85 to initialize the modem lines properly. The program will wait until the line is established (i.e. when the HP85 modem is
called and it automatically answers or when you dial the HP1000 modem from the HP85.) At this point, you then run 'RECV' on
the HP1000 to initialize the transfer. If handshaking does not occur properly, you should get an error message.

To send data from the HP1000 to the HP85, program 'XMIT is run on the HP1000 to send data to the HP85 and program
"RCV8S is run on the HPBS5 to receive the data from the 1000. The procedure is the same as the one described above except
run 'XMIT’ on the 1000 in place of 'RECV’ and run 'RCV85' on the HP85 in place of 'XMT85'. If the link hangs, then execute the
transfer file /HP85" which should clear things out.

16

BIT BUCKET

There are two modem routines listed here, auto-answer and originate. Use the auto-answer module if you are automatically
dailing the HP85 from the HP1000. Otherwise, use the originate routine to dial the HP1000 from the HP85.

:#+++TRANSFER FILE TO SET UP 12966A CARD
:#++++FOR 1200 BAUD, NO PROMPT & MAP HP85 LU INTO SESSION
:+2+#2HP85 LU IS 18.

HE S X X J

:SYLU,18,0

:SYLU,18,18

:CN,18,21B

:#+ SET UP 1200 BAUD AND NO PARITY
:CN,18,30B,411B

:#+ SET UP FOR AUTO ANSWER

:CN,18,32B

:#+ USE CN,18,31B,1B FOR HARDWIRED (NO MODEM)
:++ INSTEAD OF CN,18,32B

:#+ DISABLE PROMPT

:CN,18,21B

FTN4
PROGRAM XMIT

C PROGRAM TO TRANSMIT DATA TO THE HP85 VIA 12966 CARD & DVAOS
C LU FOR HP8S5 (MODEM) IS 18
c
DIMENSION IDATAC10),IBUFC10)
c
C SEND SPACE UNDERSCORE (SUPRESSES CR LF)> TO CLEAR OUT LINE
WRITE €18,7)
7 FORMAT (" _")
WRITEC1,10)
10 FORMAT("SENDING TO HP85....")
C RECEIVE FIRST HANDSHAKE FROM 85
IFLAG=2H 0

CALL EXECC1,18,IFLAG,1)
IFCIFLAG .NE. 2HOK)GOTO 999
WRITEC1,20)

20 FORMATC("ENTER DATA (20 CHARS)--->_")
READ(C1,30)IBUF

30 FORMAT(10A2)

c WRITE TO HPS8S
CALL EXEC(2,18,IBUF,10)

c SEND THE EOF (##)
IEQF =2H##
CALL EXEC(2,18,IEOF,1)
IFLAG=2H 0
CALL EXECC1,18,IFLAG,1)
WRITEC1,77) IFLAG

77 FORMAT("™IFLAG ",A2)
IFCIFLAG.EQ.2HOK)GOTO 1000

999 WRITEC1,1020)

1020 FORMAT("BAD HANDSHAKE...BYE BYE'")
GOTO 1900

1000 WRITEC1,1200)

1200 FORMAT("DONE...AOK"™)

1900 END
ENDs

17

BIT BUCKET

FTN4

PROGRAM RECV
C GETS DATA FROM HP-85 AND STORES IN DISC FILE ON HP1000
C LU OF HP1000 MODEM IS 18

DIMENSION JK(40),IDCB(144) ,NAME(3)

INTEGER FLAG
DATA NAME /2HHP,2H85,2H /
C DISC LU WHERE DATA FILE “HP85’ IS LOCATED IS ON LU 40
ICR=-40
c OPEN FILE FOR UPDATE MODE--NON-EXCLUSIVE OPEN
I0PTN=3B
c SECURITY CODE IS ZERO
1SC=0

CALL OPENCIDCB,IERR,NAME,IOPTN,ISC,ICR)
IFCIERR .LT. 0)GOTO 999

c
C CLEAR DATA LINE BY OUTPUTTING SPACE UNDERSCORE (SUPRESS CR LF)
c
WRITEC18,7)
7 FORMATC*™ _")
WRITEC1,10)
10 FORMAT("HERE COMES THE JUDGE....... ")
FLAG=2H 0

CALL EXEC(1,18,FLAG,1)
IFCFLAG .NE. 2HOK)GOTO 101
C CLEAR INPUT BUFFER AND READ
20 DO 21 1=1,40
21 JKCI)=2H
C READ HP8S
CALL EXEC(1,18,JK,40)
WRITE(1,40) (JKC(K),K=1,40)

(@]

C WRITE DATA TO FILE ‘HP85‘ ON DISC

o

CALL WRITFCIDCB,IERR,JK,40)
I[F CIERR .LT. 0> GOTO 1010
40 FORMATC40A2)
c CHECK FOR TERMINATION OF DATA (#¢) HPBS SENDS ‘##¢’ TO
C SIGNIFY END OF TRANSMISSION
I[F (JKC1).NE.2H##)GOTD 20
C WRITE THE DATA FROM HP8S5 TD SCREEN
WRITE(1,48)
48 FORMATC("THAT’S ALL FOLKS*")
CALL CLOSECIDCB,IERR)
IFCIERR .LT. 0> GOTO 1020
GOTO 200

18

BIT BUCKET

c

Censsnnnsnnnss ERROR SECTION

101
102
200
c

c

c
999
1000

1010
1011

1020
1021
2000
c

WRITEC1,102)
FORMAT(*HANDSHAKE ERROR'")
GOTO 2000

FMP ERROR SECTION

WRITEC1,1000)IERR
FORMAT("OPEN ERROR *,IS5)
GOTO 2000
WRITEC1,1011)IERR

“FORMAT("FILE WRITE ERROR *,I5)

GOTO 2000
WRITEC1,1021)IERR
FORMAT("CLOSE ERROR *,I5)
CONTINUE

END
ENDs$

19

BIT BUCKET

1 ! ANSWER & RECVYV DATA FROM HP1000 TO HP85
2 ! DVER BELL 212A MODEM AT 1200 BAUD (ASYNC)
3 1! BOB NIEKAMP HP-KANSAS CITY
4 1 SELECT CODE QOF HP85 RS232 INTERFACE = 10
S ' THIS ROUTINE HANDLES ENQ/ACK HANDSHAKE FROM HP1000
6 ! LIKE HP264X TERMINALS.
7 1 PROGRAM ANSS8S5

10 CLEAR

20 DIM Ds[2],P$[45]

30 Q=0 @ R=2 & B=0

40 ' GO SET UP MODEM BAUD RATE,PARITY AUTO-ANSKWER

S0 GOSUB 310

65 ' ESTABLISH LINK TO HP1000

60 D¢="0K"

70 ENTER 10 USING "¢ ,B";B ® IF Be17 THEN GOTO 70 !INPUT & CHECK FOR DC1
80 DUTPUT 10 USING *K'":Ds$ ' SEND “0OK' TO HP1000

90 R=2 ITELLS SUBROUTINE RESPONSE HOW MANY ACK’S TO SEND TO HP1000
100 GOSUB 250 'RESPONSE SUBROUTINE

105 YLINK ESTABLISHED TO 1000...READY TO XMIT DATA

110 R=3 ® DISP "HERE COMES THE CRUD..... " ISEND 3 ACK’S (R=3)

120 !

130 ENTER 10 USING '"K'";Ps

140 PRINT Ps$ 1PRINT DATA FROM HP1000--DATA IS IN Ps

150 GOSUB 250 ' RESPONSE

160 IF Ps=vge THEN GOTO 180 ICHECK FOR EOT FROM HP1000 PROGRAM

170 GOTO 120

175 1 CHECK FOR DC1 (17)--PENDING READ ON HP8S

180 ENTER 10 USING "#,B":B

190 IF B#17 THEN GOTO 180

200 OUTPUT 10 USING "K":Ds

210 R=2 @ Q=0 ITELL RESPONSE TO SEND 2 ACK’S

220 GOSUB 250 'RESPONSE

230 DISP "DONE'"™ ®& ABORTIO 10

240 STOP

241 !

242 !

295 1 aa a0 aatant st aa st insntasntianasrans

246 Ys» RESONSE SUBROUTINE -- HANDLES ENQ/ACK HANDSHAKE

247 las

250 ENTER 10 USING "#,B":B

260 IF B#S THEN GOTO 280

270 DUTPUT 10 USING *#,B'";6 8 Q=Q+1 ISEND ACK (6)

280 IF Q<R THEN GOTO 250 'HAVE WE SATISFIED THE 1000 YET??

290 Q=0

300 RETURN

301 1!

302 !

303 lassasnantanantsnatsnans

310 t'+»+ MODEM INITIALIZE SUBROUTINE CAUTO ANSWER)

320 taa GOES IN HERE -- SEE PROGRAM XMT8S

330 1} SET BAUD TO 1200

340 ' NO PARITY-- 8-BIT DATA

345 END

350 !

20

BIT BUCKET

’

10 ' ANSWER MODEM & TRANSMIT DATA TO HP1000
20 ' OVER BELL 212A MODEM AT 1200 BAUD ASYNC
30 ! BOB NIEKAMP HP-KANSAS CITY

40 PROGRAM XMT8S

50 CLEAR

60 ASSIGN #1 TO *"BOX1' '0PEN FILE ‘BOX1‘ ON TAPE TO READ DATA FROM
61 ! NOTE-- ‘BOX1‘ EXISTS & CONTAINS DATA ON TAPE IN HP8S
62 1! YOU MUST CHANGE THIS LINE OR CREATE “BOX1‘7 & PUT DATA IN IT
70 DIM Ds(2] ID$ IS STRING ‘0K’ TO HANDSHAKE WITH 1000
80 ¢ SET-UP MODEM

90 GOSUB 550 !'MODEM

95 1ESTABLISH LINK TO 1000

100 DISP "WAITING ON 1000..."

110 ENTER 10 USING *#,B";C

120 ' CHECK FOR DC1 (17) FROM 1000---PENDING READ

130 IF Cs#17 THEN GOTO 110

140 Dg=*0K"

150 OUTPUT 10 USING "K'":Ds

155 ' LINK ESTABLISHED

160 GOSUB 300 DO ENQ/ACK HANDSHAKE

170 DISP "READING DATA *

171 ' READ DATA FROM FILE ‘B0OX1‘ ON TAPE

180 READ #1;Rs$,2%,S,V @ DISP R$,2¢%,5,V ® ASSIGN #1 TO «
190 GOSUB 430 'DO DC1/ACK HANDSHAKE

200 OUTPUT 10 USING "™K'";R$,2%,S,V

210 GOSUB 430 iDO DC1/ACK HANDSHAKE

220 QUTPUT 10 USING "K";'ses ISEND EOT--WE’RE DONE

230 GOSUB 300 'DO ENQ/ACK HANDSHAKE

240 DISP "DATA XMITTED"

250 ABORTIO 10

260 STOP

261 1

262 1t

270 1 an s s at n s a s sttt et R RN R R R AR R R RN RBR RN

280 t+s+ HANDSHAKE SUBROUTINE (ENQ/ACK)

290 taus

300 FOR I=1 TO 2

310 ENTER 10 USING “e¢ ,B";B

320 IF Be#5 THEN GOTO 310

330 OUTPUT 10 USING "#,B";6

340 NEXT 1

350 RETURN

351 1

352 1

353 !

354 1

360 1 ana e st an s st st l e n s Rt RN R RN RN R RN R RNRRRRRS

370 '++ HANDSHAKE SUBROUTINE (DC1/ACK)

380 iss
390 1ss
400 Va»
410 1 »a
420 aa

430 ENTER 10 USING "#,B";T !GET CHARACTER
440 IF T=5 THEN OUTPUT 10 USING "#,B'";6 !CHECK FOR ENQ (5)-SEND ACK (6)

450 IF Te17 THEN GOTO 430 !'IF NO DC1¢17) THEN KEEP HANDSHAKING ENQ/ACK”’S
460 RETURN

21

BIT BUCKET

470 ¢

480 1

490 Taaaaantaaaitasntnnnnns

500 '«s MODEM INITIALIZE SUBROUTINE (AUTO ANSWER)
510 Va»

520 ! SET BAUD TO 1200

530 ! NO PARITY-- 8-BIT DATA

540 !

541

542 ' SET DATA RATE SELECT (DRS)> TO MODEM FOR AUTO SPEED SENSE
550 ! MUST DO THIS FOR 1200 BAUD

560 ! RS-232 INTERFACE SELCT CODE IS 10
570 CONTROL 10,3;8 11200 BAUD

580 CONTROL 10,453 ¢ 8-BIT DATA

590 CONTROL 10,2;4 ! DRS SET (DATA RATE SELCT LINE)
600 ASSERT 10;3 @& DISP "WAITING TO BE CALLED...™
610 ! LOOK FOR CTS (CLR TO SEND) ON

620 'WAIT FOR INCOMING CALL

630 STATUS 10,3;M

640 IF NOT BIT(M,1) THEN 630

650 DISP *CALLED"

660 ! START 25 SEC CONNECT TIMER

670 ' ENABLE AUTO-DISCONNECT

680 ! IF DSR,DCD,OR CTS DROP

690 ! THEN DISCONNECT

700 ON TIMER #1,25000 GOTO 860

710 ON INTR 10 GOTO 880

720 ENABLE INTR 10;4

730 CONTROL 10,5311 ' SET DCD,DSR,CTS
740 ' CHECK DCD

750 STATUS 10,3;M

760 IF NOT BIT(M,3> THEN 750

770 ! IF DCD ON THEN DISABLE TIMER--CARRIER ESTABLIHED
780 ! AND TRANSFER DATA

790 OFF TIMER #1 & OFF INTR 10

800 DISP "READY"

810 RETURN

820 ! IF TIMER TIMES OUT BEFORE

830 ! DCD DN THEN TURN OFF

840 ! DTR & RTS---SET UP FOR

850 ' NEXT CALL

860 ASSERT 10;0

870 PRINT "“ILLEGAL CALL*™

880 CONTROL 10,530

830 OFF TIMER #1

900 STATUS 10,1;M

910 GOTO 550

920 RETURN

930 END

22

BIT BUCKET

HP85 TO HP1000
MODEM ORIGINATE MODULE

USE ALSO FOR HARDWIRE

BOB NIEKAMP HP-KANSAS CITY

PROGRAM MODS8S
USE TO SEND DATA TO HP1000 .
SETS BELL 212A MODEM FOR 1200 BAUD, NO PARITY
8-BITS PER WORD & SET MODEM LINES PROPERLY
MODEM LINE ABBREVIATIONS:

DTR= DATA TERMINAL READY

RTS= REQUEST TO SEND

DSR= DATA SET READY

DCD= DATA CARRIER DETECT

CTS= CLEAR TO SEND

HP85 RS5-232 INTERFACE SELCT CODE=10

CONTROL 10,3;8 ! SET TO 1200 BAUD
CONTROL 10,433 ! SET 8-BIT DATA WORD
ASSERT 10;3 ! RTS,DTR

DISP “DIAL NO.--PRESS CONT."

PAUSE

! ENABLE AUTO-DISCONNECT

! IF DSR,DCD,O0R CTS DROP

! THEN DTR & RTS WILL GO NOT TRUE

! AND GENERATE AN ERROR

CONTROL 10,5311
!I..III.lIII.III..II..III..II..II..
t++ DATA XMIT ROUTINE GOES HERE

!llllllllllllllllllllllllllllllllll

23

BIT BUCKET

AVOIDING MAG TAPE LOCKUP

by Bill Hasselll HP Santa Clara

For some time the number of magtapes on 1000 systems has steadily increased due to their use in data collection and data
processing applications. As a result, some of the idiosyncrasies of DVR23 are becoming more noticeable. One of these
idiosyncrasies is the system 'lockup’ when the 7970E (1600 bpi) tape is rewound and immediately followed by any other motion
request. While the reason that the driver locks up the system is buried in both hardware and software, | have been using a very
simple workaround that will prevent this lockup condition. A direct benefit is that the routine monitors the break-bit thus allowing
graceful termination of a program (if desired) while waiting for the tape to rewind. Basically, the tape rewind is intiated and then
periodically tested for BOT (begining of tape or load point) status or the break condition. Since the status bits for CTU’s also
match DVR23 bits, this routine can be used interchangeably with magtapes or CTU's. Typical usage:

CALL REWWTC(LUTAPE)
or
LOGICAL REWWT

<code>

IFCREWWTCLUTAPE)) GOTO 900 (Exit on Break)

In the first example, the break bit is not needed so the routine returns to the same point whether break was set or BOT was
reached. In the second example, REWWT will return .TRUE. if the break bit was set, while REWWT = .FALSE. means that the
tape is now rewound and ready for a new command. Since the routine places the program into the time list, it uses no CPU time
while waiting for the tape to reach BOT.

A hardware note: the 13183B controller is now available to replace the 13183A controlier which causes the lockup condition.
This routine is provided to allow older systems to eliminate the problem with a simple software fix, as well as a technigue to
ilustrate the wait EXEC call as a way to avoid wasting CPU time.

LOGICAL FUNCTION REWWTCLUTAPE),REWIND TAPE W/ WAIT REV.2039-BH

CII---IIIIIIIIIII..II-..IIIII..---II.II.-III.I--.-I.----II-I.--II-IIII

C REWIND A MAGTAPE WITH A 2 SECOND SUSPEND TO ALLOW SWAPPING, AND TO

C ELIMINATE THE DRIVER ‘LOCKUP’ FOR PE TAPES. THIS ROUTINE

C RETURNS IMMEDIATELY IF THE LU ISN‘T TYPE 05, 23 OR 24, OR

c THE STATUS IS OFFLINE. DURING THE REWIND WAIT, THE BREAK BIT

c IS ALSO TESTED WITH THE ROUTINE RETURNING IMMEDIATELY WHEN

c BREAK IS DETECTED AND SETTING REWWT .TRUE.

C

C SINCE FORTRAN ALLOWS CALLING A FUNCTION AS WELL AS USING ITS RETURN
C VALUE, USE CALL REWWTC(LUTAPE) WHEN YOU DON’T CARE WHETHER BREAK

c OR BOT WAS DETECTED. IF YyQU NEED TO KNOW THE DIFFERENCE, BE

c SURE TO DECLARE: ‘LOGICAL REWWT’ IN EACH PROGRAM UNIT REFRENCING
c REWWT AND THEN USE SOMETHING LIKE THIS:

C

c IFCREWWTC(LUTAPE)) ...ACTION...

c .

c THE ACTION IS TAKEN ON BREAK, WHILE FALL THRU TO THE NEXT STATEMENT?
c OCCURS WHEN TAPE GETS TO BOT.

c
C-I--I-.-..-II-I....-I...II---II.l.......-...IIII-...IIII.-I--I-I.-I-I

REWWT = .FALSE.

24

BIT BUCKET

OO0 OO0 OO0

O0O0O00O000

c
c
c

c
c
c

USE THE EQT STATUS INFO (DOESN’T ENTER DRIVER) TO BYPASS 0OBVIOUS
ERRORS WITHOUT HAVING TO QUEUE THE REQUEST ON A DOWN UNIT.

CALL EXEC(13,LyTAPE,JEQT4,JEOTS,LUSTAT)
RETURN IF THE UNIT IS NOT AVAILABLE, NOT A TAPE (DVR05/23/24)
OR ONLINE
JTYPE = IANDCJEQGT4/256,77B)
IFCIANDCLUSTAT,120000B) .NE. 0.OR.
+ (JTYPE.NE.OSB.AND.JTYPE.NE.23B.AND.JTYPE.NE.24B)) RETURN
REWIND (USE EXEC RATHER THAN REWIND TO ELIMINATE .TAPE MODULES)
CALL EXEC(3,LUTAPE+400B)
NDW LOOP AROUND WAITING FOR THE TAPE TO GET TO BOT
USE A DYNAMIC STATUS REQUEST SO THE DRIVER WILL UPDATE WHAT’S
GOING ON (GOES ALL THE WAY THRU THE DRIVER SO THE TABLES
ARE UPDATED).
0 CALL EXECC3,LUTAPE+600B)
CALL ABREG(LUSTAT,IB)
IFCIANDCLUSTAT,101B).NE.0) RETURN
NOW WAIT 2 SECONDS AND TEST THE BREAK BIT,

CALL EXECC12,0,2,0,-2)
IFCIFBRKCLUSTAT).GE.O0) GOTO 10

BREAK WAS SET...RETURN IMMEDIATELY WITH REWWT .TRUE.
REWWT = .TRUE.
RETURN
END

25

OPERATING SYSTEMS

SHARING THE FORTRAN FORMATTER IN RTE-L

by Kent Ferson/HP Data Systems Division

The Fortran formatter is a group of subroutines that allow the user to do I/O or data conversion according to a specified format
statement. Any program using a Fortran READ or WRITE statement causes all of the formatter's subroutines (about 3K of code)
to be loaded into the user’s partition. This article presents a method for sharing the formatter subroutines among several user
programs in an RTE-L operating system environment. The mechanics of generating the system are laid out in detail followed by
a mathematical analysis of the system’s performance.

The RTE-L system has a total of 32K words of memory. Any application with two or more real time (i.e. memory resident)
programs can not afford to have independent copies of the formatter for each program. Therefore, it becomes necessary to
devise some technique for sharing this code. Examining the memory map of RTE-L, there are three locations where the
formatter could reside and still be shared among several programs; the memory resident library, labelled system common, and
within a real time or background program’s partition. The method presented here uses labelled system common.

background program

reaitime program n

realtime program 1 32K Words

labelled system
common

memory resident
library

operating system

RTE-L MEMORY MAP

GENERATION PROCEDURE

The mechanics of relocating the Fortran formatter into labelled system common are a little tricky. The RTE-L generator will only
relocate type 14 or type 30 modules into labelled system common. Therefore, the first thing to do is to change the type of the
formatter's modules FMTIO, FMT.E, and FRMTR from type 6 and 7 to type 30. The program “TYPE" (see appended code) will
do the job. Next, make sure that all JSB's to .ZRNT and .ZPRV are replaced with an RSS opcode. The entry points .ZRNT and
.ZPRV have a special meaning to the RTE-L generator. If a JSB to .ZRNT or .ZPRV is encountered while relocating a subroutine
into the memory resident library or labelled system common, the generator replaces the JSB instruction with some privileged
code. On the other hand, if the JSB to .ZRNT or .ZPRV is encountered while relocating a subroutine into the user's partition, the

26

OPERATING SYSTEMS

generator replaces the JSB instruction with an RSS opcode. Because we want the the formatter's subroutines to logically be
part of a user partition, we must force the generator to replace the JSB’s to .ZRNT and .ZPRV with an RSS opcode. To do this,
relocate the assembly routine "RP" (see appended code) during the generation. The generation answer file should look like
this:

*
* Relocate labelled system common

*

REL ,%RP

REL,$MLIBX,FMTIO, = S$MLIBX is the output
REL ,$MLIBX,FMT.E, + of program "TYPE"
REL,$MLIBX,FRMTR,

SE,$SYSLB

SE,$MXLB

SE,$MLIB2

END

In order to gain access to labelled system common, each real time or background program must use the "SCOM” command
during relocation.

*+ Relocate real time programs
*

SCOM
REL ,XRTIM1
NEXT
sCOM
REL ,XRTIM2
NEXT

END

The user programs MUST be written to control access to the shared formatter. This can be done with an RTE-L semaphore
called a resource number. The user code should look like this:

g Lock the formatter
¢ CALL RNRQCCNTWD,RN,STAT)
(perform fo;matted 1/0 or data conversions)
c
g Unlock the formatter

CALL RNRQCCNTWD,RN,STAT)

The resource number must be common to all user programs. See the RTE-L Programmer's Reference Manual for a full
discussion on the use of resource numbers.

27

OPERATING SYSTEMS

SYSTEM ANALYSIS

Any scheme that shares a resource among several programs is going to have an impact on the system’s performance. We can
use a discrete state, continuous transition Markov model (Reference 1 and 2) to analyze the system mathematically. The model
is practical because it shows the effect of adjusting system parameters. S(i) represents a particular state where “i" programs
need access to the formatter (see figure 1). For example, in state S(3), one program would have access to the formatter and two
programs would be suspended waiting for the resource number lock. The probability that the currently executing program will
need access to the formatter in the next interval of time “dt” is given by "Wdt". “Udt” is the probability that a program (currently
executing in the formatter) will unlock the formatter in the next interval of time “dt”.

Wdt Wat Wdt
Udt Udt Udt
Figure 1

In the steady state, the probability of a S(i) — S(i+ 1) transition is equal to the probability of a S{i+1) — S(i) transition.

Therefore:

Wdt P(n-1) = Udt P(n)
Where P(i) is the probability of being in state S(i). Solving for P(i) in terms of P(0):
P(1) = P(0) (Wdt/Udt)
P(2) = P(1) (Wdvudt) = P(O)(W/U)**2

P(i) = P(0) (W/Uy**i

We also know that the state probabilities must sum to one:
Summation i=0ton P(i) = 1

Using these two facts, we can solve for P(i).

(W/U)™i
P() =

Summation k=0 to n (W/U)y*k

Observing the geometric series in the denominator, we can easily get a closed form solution.

28

OPERATING SYSTEMS

(W/UYi (1-W/U)
Pi) = —~————— and WU <> 1
1-(W/UY™(n+ 1)
This equation can be used to calculate the individual state probabilites for any given W, U, and n.

Another way to analyze the system’s performance is to calculate the expected (or average) number of programs suspended
due to lockout at any given instance of time.

By definition:

(i-1) (W/UY™i (1-W/U)

E(suspend) = summation i=1ton
1 - (WU**(n+1)

After a little manipulation, the closed form solution is:

(NW/UY*(n+1) - (N-1WUY™(n+2) - (W/UY*2

E(suspend) =
(1-(W/UY*™(n+ 1)) ((W/U)-1)

The model assumes that all the real time programs execute concurrently. This is true for a time sliced dispatching system, but
the RTE-L dispatcher always executes the highest priority program. Therefore, the model is only valid for an application where
the real time programs are periodically suspended for some reason (i.e. input, output, process synchronization, etc.).

OPTIMIZING PERFORMANCE

There are a number of ways to optimize the system's performance. Looking back at our mathematical model, we see that our
best results are obtained when the ratio of W to U is small. One way to do this is to programmatically reduce the time spentin the
formatter. If the formatter is used strictly for internal data conversion, we can significantly reduce the time any program will
spend in the formatter’'s code. For example, a typical HP-IB program uses the formatter to convert ASClI data from a device into
real numbers. If all the /O is performed using EXEC calls, the formatter is not locked up while data is being read from the
device.

“Inefficient Method” “Optimized Method”
c c
C Lock the formatter C Read data from device
c c
CALL RNRQCCNTWD,RN,STAT) CALL EXECC1,LU,BUFF,LEN)
c c
C Read data from device C Now lock the formatter
c c
READCLU,10) R1 CALL RNRQCCNTWD,RN,STAT)
10 FORMAT(F7.2) c
C C Convert the ascii to real
C Unlock the formatter C
c CALL CODE

READ(BUFF ,10) R1
10 FORMATC(F7.2)

Unlock the formatter

OO0

29

OPERATING SYSTEMS

Another way to reduce the time spent in the formatter is by adjusting system paramters. For example, if the formatter is being
used to output data or warning messages to a printer, the buffer limits of the printer could be adjusted to minimize (and maybe
eliminate) time spent waiting for the device.

CONCLUDING REMARKS

Earlier | mentioned two other possible locations for the formatter; the memory resident library and within one of the realtime
program’s partition. Locating the formatter in the memory resident library would work exactly like the labelled system common
approach, only the RTE-L operating system would do all the locking and unlocking of the shared resource. The problem is that
each subroutine placed in the memory resident library must be coded in a special format, and not all the entry points in the
formatter are coded this way. An alternate solution is to have one general purpose program do all the I/O or data conversion.
The other programs then use either class I/O, system common, or data files to communicate with the general purpose routine.
This is an acceptable solution for an application where all the I/O has a very similiar format, but is not as flexible as the labelled
system common solution.

The labelled system common solution works well in a number of applications.
Some examples:

1. HP-IB programs that use the formatter for internal data conversion.

2. Programs that execute sequentially (i.e. the completion of one program triggers the execution of the next).
3. Programs that do their formatted 1/O to disc files.
4

Compute bound routines that only occassionally use the formatter.
Any application where several real time programs need access to the formatter will save a great deal of memory space with this
technique. Sharing code is especially important in a small system environment where memory space is at a premium. The
disadvantage of sharing code is that a high priority program might be suspended when it tries to execute the shareable code.
The same technique could be extended to an RTE-XL operating system environment or to the Fortran 4X formatter with the

appropiate modifications (neither one has been tested). Since RTE-XL is a mapped system, the savings would be in physical

memory and not logical memory. Please let everyone know if you are successful using this technique with an RTE-XL or FTN4X
system.

REFERENCES
1. Drake, AW.; Fundamentals of Applied Probability Theory, McGraw-Hill Book Company, 1967, chapter 5.

2. Madnick, S.E. and Donovan, J.J.; Operating Systems, McGraw-Hill Book Company, p.240 and p.263.

30

OPERATING SYSTEMS

FTN4,L
PROGRAM TYPE
c
C THIS PROGRAM WAS WRITTEN TO MODIFY 3 MODULES
C TO TYPE 30 IN sMLIB1. IT HAS VERY LITTLE
C ERROR CHECKING.
c
IMPLICIT INTEGERCA-2)
DIMENSION BUFF(128),DCB1(144),DCB2(144) ,PBUF(10)
DIMENSION FNAMEC3)
EQUIVALENCE (PBUF(1),FNAMEC1)), (PBUF(5),SC)
EQUIVALENCE (PBUF(6),CRN), (PBUF(7),TYP), (PBUF(8),SIZE)
DATA MASK/160000B/, NAM/020000B/
c
C INIT
c
LU=1
ILU=128
ECHO=400B
c
C USER MUST ENTER FULL NAMR (IE. $MLIB1:SC:CRN:TYP:SIZE)
c

CALL EXEC(2,LU,22HENTER FULL $MLIB1 NAMR,-22)
LEN=-80

CALL REIOC1,LU+ECHO,BUFF,LEN)

CALL ABREG(IA,IB)

PARSE THE FILE NAMR

OO0

CHAR=1
CALL NAMR(PBUF,BUFF,IB,CHAR)

USE FILE NAME TO OPEN s$MLIB1

OO0

CODE=2HOP
CALL OPEN(DCB1,IERR,FNAME)
IF (IERR .LT. 0) GOTO 900

c

C MODIFY FILE NAME TO s$MLIBX

c
FNAME(3)=IANDCFNAME(3),177400B)
FNAME(3)=10R(FNAME(3),130B)
CODE=2HCR
CALL CREAT(DCB2,IERR,FNAME,SIZE,TYP,SC,CRN)
IF CIERR .LT. 0> GOTO 900

c

C READ A RECORD FROM s$MLIB1 AND CHECK FOR

C A NAM RECORD UNTIL EOF

c

10 CODE=2HRE

CALL READF(DCB1,IERR,BUFF,ILU,LEN)

IF (IERR .LT. 0> GOTO 900

IF (LEN .EQ. -1) GOTO 950

IF CIANDCBUFF(2) ,MASK) .NE. NAM) GOTO 100
CALL MOD(GHFRMTR ,BUFF)

CALL MOD(GHFMT.E ,BUFF)

CALL MODCGHFMTIOD ,BUFF)

31

OPERATING SYSTEMS

c

C WRITE THE BUFFER TO sMLIBX

c

100 CODE=2HWR
CALL WRITF(DCB2,IERR,BUFF,LEN)
IF (IERR .LT. 0) GOTO 900

GOTO 10
c
C COME HERE ON ERROR
c

200 WRITE(CLU,910)CODE, IERR

210 FORMAT(™ FMP *,A2," ERROR ",I4)
c

C COME HERE TO EXIT

c
950 CALL CLOSE(DCB1,IERR)
CALL CLOSE(DCB2, 1ERR)

END
FTN4,L
SUBROUTINE MODCINAM, IBUFF)
c
C MODIFY NAM RECORD TO TYPE 30 MODULE
c .
DIMENSION INAMC1),IBUFF(1)
DO 10 I=1,3
IF CINAMCI) .NE. IBUFF(I+3)) GOTO 100
10 CONTINUE
c
C SAVE OLD TYPE TO UPDATE CHECKSUM
c
ITEMP=TBUFF(10)
c
C CHANGE TYPE TO 30
c
IBUFF(10)=30
c
C UPDATE CHECKSUM
c

ITEMP = 30 - ITEMP

IBUFF(3) = IBUFF(3) + ITEMP
100 RETURN

END

ASMB, L
NAM RP,30
*
This module is generated into the system
*
ENT .ZRNT, .ZPRV
.ZRNT RPL 2001B
. ZPRV RPL 2001B
END

32

OPERATING SYSTEMS

ACCESSING PHYSICAL MEMORY IN FORTRAN AND PASCAL

By Larry W. Smith/Manufacturing and Consulting Services

In the event that there comes a time in your application where you need 1o access a portion of physical memory within your
program that is not available at load time or otherwise, then this articie is for you. In the paragraphs to follow, we will discuss in
detail how memory mapping can be accomplished on-line in FORTRAN and PASCAL languages. | will also exptain how the
user DMS map is constructed and what areas of physical memory they point to.

| could think of no better way to begin the discussion than with an actual example of its usage. There exists an application at the
Jet Propulsion Laboratory in Pasadena where security of the individual user and data is of the utmost importance. In order to
implement required security procedures, a method had to be devised in RTE-IVB to control the execution of user programs and
FMP data files. The contract stipulated that the vendor’'s standard supplied software must be used without modification for alf
areas of the application except those areas dealing with security and protection. This left the door wide open for the design of
some customized FORTRAN callable routines to implement the required security procedures. The remaining part of this article
will discuss the coding of these routines and related topics of DMS.

The entire application of JPL ran under the standard RTE-IVB system with Session Monitor always enabled. Whenever a
terminal user ran a program that was not supplied by HP, the program would be allowed to execute long enough to ask for a
clearance identification to continue. This is where mapping was utilized. A set of customized assembly routines was designed
to initialize, retrieve, and update a table of clearance identification ASCII strings residing in the fast two pages of physical
memory. | will discuss only one of these routines which performs memory mapping and retrieval. If the clearance identification
string entered by the user equals a matching string found in the string table, then execution would continue. Otherwise, the
program would update an attempted usage table, issue a message to the terminal user, and terminate. Since the last two pages
of memory were left undeclared during system generation and the configurator ($CNFX) was not included, this gave a
reasonably sound means of securing access to programs and data files.

In order to see how this can be done, let's assume that the layout of physical memory for the RTE system which was generated
~ for this application is as follows (see page B-9 of "RTE-IVB On-Line Generator Reference Manual"):

The resulting program partition sizes for this 512 kb system were as follows:

MAXIMUM PROGRAM SI2ZE:

W/0 CaOM 29 PAGES

W/ COM 26 PAGES

W/ TA2 19 PAGES
The above figures indicate that the largest number of pages that can be mapped into a user's address space when it is
dispatched by the system into a partition is 29 for large background (type 4) programs. The application required that most all
programs be at least 26k words in length and thus a large background program had to be used. The RTE system would
construct the user's 32 DMS mapping registers as follows for a type 4 program without common (refer to figure 1):

1. Load register 1 with base page from the 4th word in the memory allocation table ($MATA) which describes the
characteristics of the chosen partition.

2. Load register 2 with table area I.
3. Load registers 3-4 with driver partition area.
4. Registers 5 through n are loaded sequentially according to the size of the program.

5. The remaining registers are read/write protected.

33

OPERATING SYSTEMS

Page #s
Clearance ldentification Table 254-255
Disc Resident Partitions
APB 1-12 55-253
D R
APB SAM Extension 54
P
APB Memory Resident Programs 39-53
o
APB Memory Resident Library 37-38
——
APB Memory Resident Base Page 36
— P -
Driver Partitions 30-35
2-4
=
More SAM ($CNFG at Boot-up
RTE System 14-29
(DISP4,RTIME,RTIO4,EXEC4 efc.)
Table Area I 8-13
APB System Driver Area 7
B
Background Common
4-6
Real-Time Common
APB SSGA
——
APB Driver Partition 1 2-3
APB Table Area | (Remainder is SAM) 1
—e e -
System Base Page 0

APB - Aligned on a page boundary.

Figure 1

34

OPERATING SYSTEMS

The end result is that 32 pages of physical memory were selected out of 254 and combined into a 32 k word logical address
space with addresses ranging from 0 to 77777 octal. This process is similar to selecting the right options in the purchase of an
insurance policy or going to the grocery store and picking what you like best to eat.

To accomplish the actual memory mapping that will allow access to the clearance identification data, a privileged assembly
language subroutine called

MAPPER
was written with three entry points that accomplish the following:

MAPON — map in new physical page.
MAPOF — map back old physical page
MEMGT — return contents of mapped physical page.

Once the map is built by the RTE operating system, it is saved in words 2 through 42 octal before the first user loaded module
(or local common) only in the event the program is swapped to disc. Thus, when the program executes, it can only be
guaranteed to find its map registers by using the appropriate DMS instruction that copies the user map into memory. The USA
instruction will allow the contents of the current user's 32 map registers to be copied from the CPU to memory. The routine
MAPER iliustrates this as follows (altered slightly for this article):

ASMB,R,L,Q
NAM MAPPER, ACCESS PHYSICAL MEMORY
ENT MAPON,MAPOF ,MEMGT
EXT .ENTR,$SLIBR,SLIBX

*

*...MAP IN PHYSICAL PAGE OF MEMORY

*

IPAGE NOP PHYSICAL PAGE # TO MAP IN
MAPON NOP CCENTRY/EXIT>>
JSB .ENTR RETRIEVE CALLER’S PARAMETER
DEF IPAGE ADDRESSES.
LDA MAPS GET ADDRESS OF LOCAL TABLE.
RAL ,CCE,ERA
USA TRANSFER USER 32 MAP REGISTERS.
LDB MAPS+31 SAVE OLD MAP.
STB SAVPG REGISTER CONTAINS.

LDB IPAGE,I GET CALLER’S PAGE NUMBER.
STB MAPS+31 AND SET IN LOCAL TABLE.

JSB S$LIBR TURN OFF THE INTERRUPT SYSTEM.

NOP HERE WE GO! CISNT IT EXCITING.)
LDA MAPS

RAL,CLE,ERA SET BIT 15=0 TO SET USER MAP.

USA PAGE IS NOW MAPPED INTO LAST PAGE.
JSB $LIBX TURN THE LIGHTS BACK ON.

DEF #+1 THIS IS THE ONLY GUARANTEED

DEF =+1 SAFE RETURN.

JMP MAPER,I RETURN TO CALLER.
MAPS DEF #+1
BSS 32
SAVPG BSS 1 SAVE OF OLD MAP CONTENTS.

(program to be continued in next section of code.)

35

OPERATING SYSTEMS

After the above routine has been called with a valid page number, the user can now use addresses 76000 and 77777 octal to
retrieve memory on that physical page. Notice that the user's logical addresses stay the same regardiess of what physical page
of memory is mapped into it. This is where the term “logical memory” came from. Another way of putting it would be to say that a
person stays a person regardless of where he or she might move. The user must ensure that no code or constants are loaded
on the last page that is used in conjunction with the above subroutine. For example, if the MAPER subroutine were loaded at
addresses 76000 through 76065, then the second USA instruction would have the disastrous effect of mapping itself (MAPER)
into oblivion where the next instruction that would be executed would be the eighth word on the newly mapped page.

To retrieve the contents of any location on the newly mapped page, the following routine would be used:

(continued from the previous section)

»...RETRIEVE LOCATION ON MAPPED PAGE

IWORD NOP WORD NUMBER
MEMGT NOP CCENTRY/EXIT>>
JSB .ENTR
DEF IWORD
LDA LPAGE GET START PAGE MEMORY ADDRESS.
ADA IWORD,I ADD OFFSET WORD NUMBER.
LbA 0,1 RETREIVE CONTENTS.

JMP MEMGT, I RETURN TO CALLER.
LPAGE OCT 76000

Once a physical page is mapped into last page of the user's address space, then normal access of memory can be
accomplished with an indirect load without requiring privileged processing. As an example, let's code a FORTRAN program
that retrieves three consecutive words beginning at addresses 7-11 octal on physical page 254

CALL MAPON(254)
IW1=MEMGTC 7b)
IW2=MEMGT(10b)
IW3=MEMGT(11b)

36

OPERATING SYSTEMS

In PASCAL/1000, the program would look something like this:

)

program get_physical_memory;
(

type
single_integer = -32768..32767;
page_number = :ingle_integer;
word_offset = single_integer;
O
var
iwi single_integer;
iw2 single_integer;
iw3 : single_integer;
O
procedure mapon(page_number : single_integer); external;
procedure mapof; external;
function memgt(word_offset : single_integer) : integer; external;
O
begin
iw1l := memgt(7);
iw2 := memgt(8);
iw3 := memgt(9);
END;
END

Finally, the third part of the MAPER subroutine allows the original map to be restored to its former state. The coding would be as

follows:

(continued from previous section.)

*

+...RESTORE MAPPED PAGE

*

MAPOF

in order to see how the mapping is accomplished, the following two diagrams show what is mapped before and after the call to

MAPON:

NOP ENTRY/EXIT

JSB .ENTR

DEF MAPOF

LDA SAVPG GET OLD REGISTER CONTENTS
STA MAPS+31 AND PUT BACK IN LOCAL BUFFER.
LDA MAPS LOAD BUFFER ADDRESS.
RAL,CLE,ERA SET FOR LOAD INTO MAPS,
JSB $LIBR SEDATE RTE.

NOP CLICK!

USA MAP BACK ORIGINAL PAGE.
JSB $LIBX WAKE-UP.

DEF #+1 RTE.

DEF #+1

JMP MAPOF , 1 RETURN TO CALLER.

END

37

OPERATING SYSTEMS

Figure 2 shows a typical case where a program is dispatched into a partition beginning at page 149 and ending at page 178.
After the call to MAPON is issued, physical pages 254-255 are mapped into the user program area where there were previously
two unused and protected pages of memory, namely pages 177-178.

This article has attempted to present a technique of mapping physical memory within a FORTRAN or PASCAL program and
also reviews how RTE performs program mapping.

Before Call After Call
7] Cl Identificati
earanc_e} blen ification 254-255
Read and Write 176-178 able
Protected Read and Write 17
Protected 6
Program Program
and 150-175 and 150-175
Subroutines Subroutines
Driver Partition 2-3 Driver Partition 2-3
Table Area | 1 Table Area | 1
Base Page 149 Base Page 149
Figure 2

38

OPERATIONS MANAGEMENT

Computer
Museum

DESIGNING A HIGH-PERFORMANCE DATA-CAPTURE SYSTEM

By Carl Reynoids/HP Rochester, NY

During the past year, | worked closely with a customer as the customer installed a large-scale data-capture system. | think that
together we encountered almost all of the difficulties one could encounter in setting up such a system. As the recipient of a
summa cum laude degree from the School of Hard Knocks, | now presume to instruct the unwary.

The request for proposal specified 1500 transactions per day. Even though Datacap/1000 performance specifications were yet
months away (this was summer, 1979), | had to believe this transaction load would be a trivial burden to the HP1000. The
system would serve about 1000 union employees working three shifts at a large manufacturing company. Two functions were to
be provided by the system: time and attendance, and job labor accounting. The captured data was to be sent over a
DS/1000-3000 tink to the HP3000 which would be used for the corporation’s other data processing needs.

The hardware selected included an HP3000 with umpty-ump database inquiry/games CRTs, an F-series HP1000 with a
megabyte of high-speed fault-correcting memory, 14 3077A time and attendance (T&A) terminals, and 29 3076A data-capture
(DC) terminals with type V badge readers and multifunction readers. Of course, both systems were ordered with plenty of disc
space, magnetic tapes, printers, etc. The software on the HP1000 included Datacap/1000 and Image/1000.

Excedrin headache number 1 came the day we learned that Détacap/1000 did not have the performance to do time and
attendance for first shift. Six hundred workers were to come through the gates in about ten minutes. Datacap/1000 would have
needed thirty to fifty minutes to do the job. How would you explain the lines at the gates to an hourly union employee?

I could go on and on about headaches number 2 to 77B. Remember, we were working with what is now called Datacap/1000-I.
We used a modified version of TMATT (see Communicator Vol. lll, No. 6) to get the time and attendance performance we
needed, but then we ran into Datacap/1000-I's exclusive-open problems with databases and files. The most difficult problem of
all was getting performance at the DC terminals up to acceptable levels.

A transaction in this application required the selection of one of three similar transactions, the reading and validation (against a
database) of a badge, the reading and validation of a punched job number, and the writing of the data to disc and magnetic
tape. We did FORTRAN gymnastics to unburden the general-purpose Datacap/1000 software, but the best we could achieve
was about 900-1000 transactions per hour. If you look at the performance curves for standard Datacap/1000 (see Com-
municator Vol. lll, No. 5), you will see that we had done relatively well. However, that which impressed us computer jockies was
lost on the welders. In this case, 900-1000 transactions per hour meant typical response times of five seconds. With eight active
DC terminals and eight people working as fast as possible, response times varied from 5 to 15 seconds.

“So what?”, you may be asking. “You only needed 1500 transactions per day.”

Right, except that 600 of the 1500 had to occur between 8:00 and 8:10AM. As soon as the employees walked through the gates
and identified themselves to TMATT, they were to log-on to a job. TMATT had allowed us to delay total catastrophy by the length

of time it took the employees to get to their work stations from the gates. We needed a peak transaction rate of about 4000 per
hour.

Well, we solved the problem. The system runs so fast now we really can't measure its performance very easily. With eight or nine
people going as fast as they can, response time is virtually instantaneous. We have clocked rates of 6000 transactions per hour,
and | am sure higher rates would be observed if we could find people to experimentally work at all 29 stations at once.

| could tell you in detail what we did to achieve this performance, but | think this article will make a greater contribution to the
work of others if | instead explain in general what we would do next time. Even better performance should be possible.

39

OPERATIONS MANAGEMENT

Figure 1 shows a block diagram of the system | would design next time. At the center of the system is a validation program.
VALID would handle all validations against database information. However, instead of simply maintaining the database on disc,
the relevant contents of the database would be loaded into an EMA array. The array subscripts would be determined by
hashing the key values, much as Image hashes values to determine record addresses. A means for handling synonyms would,
of course, be necessary. The reason for putting the database into memory is speed. A keyed read of a master dataset requires
approximately 17ms. Database updates require more time. If the system has enough memory to accomodate the necessary
elements of the database, a significant performance gain may be realized by putting the database into memory. The customer
was successful in coding such a program for the application with which | worked.

| would have separate programs to handle the T&A and DC terminals. Such modularity would facilitate development,
debugging, and operation with no penalty in performance (assuming the system had enough memory to avoid any swapping
during execution). TMATT is a very satisfactory program for monitoring the T&A terminals, and it is readily modifiable for
application-specific needs. For monitoring the DC terminals, we would have a choice. We could write our own MTM-like class
I/0 terminal handler, or we could use Datacap/1000's Terminal Management System (TMS) subroutine calls within a Datacap/
1000 context. This choice will be discussed in detail later in this paper. Both TMATT and DCTRM would communicate with
VALID using class I/O. VALID would be able to distinguish between TMATT and DCTRM requests by looking at the value of one
of the optional parameters in the class /O request.

A separate program would be responsible for storing the data to disc and logging the transactions to magnetic tape. TMATT
and DCTRM would use class I/O to pass their data to STORE. This method would ensure that TMATT and DCTRM never had to
wait for /0 to the disc or tape. During peak periods, transactions could be buffered in SAM to the extent of SAM availability. This
idea was not implemented in the application with which [worked, and | think an appreciable improvement in the system’s ability
to handle peak loads could be achieved using this plan.

In order to provide maximum responsiveness at the DC terminals, | would want a second CPU, probably an HP3000, to
accommodate the other manufacturing applications. Program SEND would read the file written by STORE and pass the
information to its slave program on the HP3000. A file on the HP1000 would be used to buffer the data between STORE and
SEND so that operations could continue at full speed even if the DS/1000-3000 link went down for a period of time. The file
would be designed as a fixed-length-record, circular file with the first record indicating 1) the record last written by STORE and
2) the record last read by SEND. Since both STORE and SEND would need to read and write the same file, a resource number
would be used to synchronize the activities of the two programs.

Periodically, information in the HP1000's database and VALID’s EMA array would need to be updated (e.g., when an employee
was hired or fired). UPDAT would be a slave to a master program on the HP3000, and upon request from the HP3000, UPDAT
would 1) communicate with VALID using class /O (again, using one of the optional parameters in the class /O call to identify
itself as the source of the request), and 2) modify the reference database on the HP1000.

Program CNTRL would provide the means for system start-up and shut-down. When CNTRL was scheduled, it would allocate
all the required class numbers and resource numbers and put them where all programs could obtain them. A convenient and
secure method for doing this would be to generate into the system a reserved block of memory locations in SSGA. This would
require only a simple assembly language program of type 30 which had a BSS statement reserving the necessary room. This
module would be relocated with all the other modules at generation time. CNTRL could then put the allocated numbers into this
reserved space, and the other system programs could read them out. (Short assembly language subroutines would be
required to store the numbers and read them out.) Alternatives would include the use of system common (but Datacap/1000
has its own plans for background system common) or a disc file (but FMP routines appended to our programs would increase
the programs' sizes). CNTRL would, in any case, report the allocated numbers on a list device so that in the event of a program
malfunction some clean-up of system resources (class buffers, class numbers, resource numbers) might be attempted without
recourse to a re-boot of the system.

At start-up, CNTRL would schedule VALID. VALID would load its EMA array from the database and then schedule TMATT,

DCTRM, STORE, and SEND. SEND would put itself in the time list for an appropriate time interval so that it would not waste CPU
time constantly checking the data file when there was nothing new to transmit.

40

OPERATIONS MANAGEMENT

CNTRL

DATABASE

VALID
CL1 HP

~—L [UPDAT \3000
CLA1

TMATT| ~ DS
CL3

EMA

CLA1
CL2 SEND

DCTRM

I

1

RN
CL4
cLa CIRCULAR
y FILE

STORE

RECOV \

TAPE

O MAGNETIC
O

Figure 1. System Block Diagram

41

OPERATIONS MANAGEMENT

CNTRL would have the ability also to perform hard and soft shut-downs. A soft shut-down request would cause CNTRL to set
the break bits for VALID and STORE (via a call to MESSS). VALID would stop honoring new validation requests (and pass back
a "shut-down” flag in one of the optional parameters of the class I/O call), and TMATT and DCTRM would know then to 1)
deallocate their particular class numbers, 2) “sign-off"” to VALID using VALID's class number, and 3) terminate. STORE would 1)
honor pending storage requests, 2) close the disc file, 3) deallocate its class number, 4) set the break bit for SEND, and 5)
terminate. SEND would 1) transmit the remaining data records to the HP3000, 2) deallocate the resource number, 3) close the
data file, 4) close PTOP with its slave, and 5) terminate taking itself out of the time list. When VALID received the "sign-off”
messages from both TMATT and DCTRM, it would 1) deallocate its class number, and 2) terminate.

A hard shut-down request would cause CNTRL to abort VALID, TMATT, DCTRM, STORE and SEND, and itself deallocate all
class numbers and resource numbers. A hard shut-down might be necessary when the system was in place but inactive. Most
of the programs would be waiting on class [/O GET requests, and they would therefore be unable to examine the states of their
break bits.

One last module, called RECOV, would allow the reconstruction of most transactions in the event of some kind of system failure.
RECOV would read the logging tape and retransmit specitied transactions to the HP3000.

Having described the data-capture system as a whole, | would like to discuss the choice of DC terminal handling routines.
Whether we wrote our own class 1/O terminal handler or worked within a Datacap/1000 context, we would have to become
familiar with the escape sequences which control the terminals. The Quick Reference Guide for the 3075/6/7A terminals (part
no. 03075-90002) is probably ail we would need. Whichever choice we made, we would be writing our own code to display
messages, turn on prompting lights, read data from the keyboard, enable badge readers, etc. Controlling the terminals
ourselves, rather than letling Datacap/1000's general-purpose routines control them, would make, by far, the greatest
contribution to system performance of all. The other tricks, such as a database in memory or SAM data "storage”, could
improve performance by a factor of two, but controlling the terminals ourselves could improve performance by an order of
magnitude or more.

Our programming job would be easier if we worked within a Datacap/1000 context. Datacap/1000 uses a Terminal Manage-
ment System (TMS) to achieve a kind of reentrancy (called "breakpoint reentrancy”) for routines under its control. Code and
data are separated by putting all data in background system common, and TMS keeps track of the terminal context (i.e., which
terminal the code is now addressing) for us. TMS manages system common so that whenever a TMS 1/0 operation completes,
the present contents of system common are saved in an EMA array, and the data for the particular terminal needing service are
written back into system common. Thus we could write our subroutines as though we were concerned with only one terminal
when in fact we were controlling forty. The DATA, VALIDATION, DISPLAY, and STORAGE routines documented in the
Datacap/1000 manual (part no. 92080-90001) are good examples. Once one of our Datacap/1000 transactions called one of
our user subroutines, we could use the TMS subroutine calls directly, as described in the “Advanced Techniques” chapter of
the manual, to write to and read from the terminals.

Specifically, to make use of TMS to control the DC terminals, we would employ Datacap/1000 as follows. Using TGP, we would
generate a "dummy’” transaction. This dummy transaction would specify only one U-type question, and it would specify that a
user-written display routine was to be used to generate a character string display of, say, two characters in length. The dummy
transaction would also specify the automatic complete/select capability, and the “captured data” would be stored to some
dummy disc file.

The whole point of the dummy transaction would be to invoke the user-written display subroutine. In actual practice, control
would never return from our user subroutine; our “display” subroutine would use the TMS calls to write escape sequences to the
terminals, read data from the terminals, validate the data, and store the data as required. If it were ever appropriate to return
control to Datacap itself, our subroutine would simply generate a two-character string and return. Thanks to our display and
data subroutines, a four-character dummy record would be written to the dummy file, and the terminal would return to the
select-transaction state.

From within our display subroutine, we could make use of any of the TMS subroutines. There are six TMS routines described in
the Datacap Manual. Of these routines, four are most likely to be useful to us: TMDFN, TMRD, TMBWR, and TMPZ.

42

OPERATIONS MANAGEMENT

The first executable statement in a TMS routine must be a call to TMDFN. TMDFN defines up to six groupings of reentrant
variables (called common blocks) in system common. The groupings are defined by passing to TMDFN first-word and
last-word-plus-one addresses for various common blocks (CBs). Actually, CBs must not only be defined but also “enabled”.
Ordinarily, the calling routine enables the subroutine’s CBs by virtue of the fact that enabled CBs in the caller are also enabled
in the subroutine, if the CBs are defined in the subroutine. Only those variables stored in the defined and enabled CBs will be
saved whenever a TMS service request (i.e., a call to a TMxxx routine) is issued. This is very important to remember; any data
that must be preserved over one or more TMxxx calls must be stored in common! An error here will only show up when several
terminals are active; you can think your programs are completely debugged until you call your manager in, bring the system
on-line, and discover right in front of the whole world that ali your data is GARBAGE! (Yes, | did.)

The form of the TMDFN call is as follows:
CALL TMDFNcICBO,ICB1,ICB2 (,ICB3 [,ICB4 (,ICBS (,ICB5E]111]

where,

ICBO = 1st word of CBO

ICB1 = 1st word of CB1 or last-word-plus-one of CBO
ICB2 = 1st word of CB2 or last-word-plus-one of CB1
ICB3 = 1st word of CB3 or last-word-plus-one of CB2
ICB4 = 1st word of CB4 or last-word-plus-one of CB3
ICB5 = 1st word of CB5 or last-word-plus-one of CB4
ICBSE = last-word-plus-one of CB5

A common block may be omitted by either leaving it off the end of the list or specifying that its starting and ending addresses
are the same.

For example, look at the TMDFN call for the user-written display subroutine. The manual tells us to write the following code:

SUBROUTINE DISPL

LOGICAL BKSFL

COMMON KEEP1(¢3),ISTAT,ITLOG

COMMON KEEP2(5),LUQ,LMQ, IBUF(512)

COMMON ITSNU, INDEX,IQNUM,ITMTP,ITMLN, IBUPT,BKSFL,INBKS, IQBKS
COMMON IER,NSTAT,IUTRN,IUINP(E4),ITEMP(256)

COMMON KEEP3(210),IMGBUF(512)

COMMON ICOMEN

CALL TMDFNCKEEP1,KEEP2,I1TSNU,ITSNU,KEEP3,1COMEN)

The TMDFN call defines CB1, CB2, CB4, and CB5. CB0 and CB3 are not defined and not used. CB1 has information about the
particular terminal the routine is addressing at any moment. KEEP1(1) contains the LU, and ISTAT and ITLOG contain the status
and transmission log. CB2 has the data collected thus far in the transaction with this terminal. CB4 has a number of pointers and
flags as well as the buffer for data subroutine use and the buffer for temporary storage of reentrant variables. CB5 is used when
the transaction has access to a database.

So, what is there to know about using TMDFN? Usually, we have only to follow the cookbook in the manual precisely. However,

in our case we could reduce system overhead by not defining CB5 (omitting the fifth COMMON statement and the sixth
subroutine parameter in the code above), if we were not going to access a database in our transaction.

43

OPERATIONS MANAGEMENT

TMBWR and TMRD would be used heavily in any code we would write to control the terminals. TMBWR is a buffered (i.e., no
wait) write call, and TMRD is a read call. The calling sequences are well described in the “Advanced Techniques” chapter of
the manual. As an example, the following code would disable the keyboard and the type V badge-reader, enable the
multifunction reader (holes not marks, no clock, ASCH not binary, corner cut detection enabled, “single field” operation not
buffering within the terminal), turn off all prompting lights, turn on prompting light 2, clear the display, write “INSERT CARD",
and read all 80 columns of a punched card. For those interested in following the escape sequences, Escape- equals 0154558,
and EscapeJ eguals 015512B.

DIMENSION DBKEM(22)

c

DATA DBKEM /015455B,2Hc0,2Hb0,2Hk1,2HR ,

& 015455B,2Hr 0,2Hn0,2Hi1,2Hc0,2HM ,

& 015455B,2Hd0,2H{1,2HA ,

& 015512B,2HIN, 2HSE ,,2HRT ,2H C,2HAR,2HD /
c

300 CALL TMBWR(DBKEM, 22)
70 CALL TMRDCITEMP(S),40)

TMPZ has several uses. It may be called either with or without a time parameter (see the Datacap manual) expressed in tens of
milliseconds. TMPZ permits a pause in the processing for the terminal currently being addressed, and it allows TMS to handle
other terminals while processing has paused for the one. When TMPZ is called with no parameter, all other pending processes
(i.e., requests from other terminals) are serviced before TMS returns to the paused process. When a time parameter is
specified, the process is paused, and other processes serviced, only as long as the time specified.

One occasion on which to use TMPZ is when we know that our subroutine would have to wait anyway. For instance, the
subroutine might do a class /O WRITE/READ to VALID to check a badge, and then do a class GET to wait for and receive the
reply. We would want to call TMPZ between the WRITE/READ and the GET so that other terminals could be serviced during the
time that otherwise would be wasted while the subroutine waited on the GET.

In many cases, it will make sense to call TMPZ with no time parameter. However, there is appreciably less system overhead

incurred when a TMPZ call does specify a time, so if we could guess at a reasonable time to specify, we could really optimize
our code.

Another occasion on which to use TMPZ is when we want certain timing between messages to the terminal. For instance, in the
event of an error, it would often be nice to display an error message long enough for the employee to read it, and then redisplay

the question. The following code would display an error message, wait two seconds, and then GO TO 10 to redisplay the
question.

CALL TMBWR(ERRMS,14)
CALL TMPZ(¢200)>
GO TO 10

The TMS calls | have discussed are all the calls we would need to write the sort of terminal handling routine I have in mind.
Writing our terminal handler within the TMS framework would certainly simplify the programming task, and it would leave us

within the Datacap/1000 system so that we could easily shift back to standard Datacap transactions whenever we chose to and
whenever performance requirements permitted.

44

OPERATIONS MANAGEMENT

The alternative terminal control routine would be a program using class /O to address all the DC terminals at once. We would
use class 1/O writes (EXEC 18) to send our escape seguences and messages to the individual terminals, and we would use
class /0 reads (EXEC 17) to collect data from the terminals. Most students of the RTE Users’ Course have had some
experience writing an elementary class /O terminal handler. In addition to concerning ourselves with terminal escape
sequences, rules and methods of validation, and plans for data storage, we would also have to think about the following
questions. How would the routine learn which terminals were to be addressed? How would the program keep data from each
terminal distinct from data from every other terminal? How would the program keep track of the transaction flow for each

terminal? How would the program put an error message on a terminal for two seconds, and then ask the question again, without
suspending the entire operation for that period of time?

These challenges could certainly be met, but | am sure you will agree that these challenges would be far greater than those we
would face if we stayed within the TMS framework. | am confident that a class /O terminal handler would substantially
outperform a TMS routine doing the same job, but there would be a price to pay in terms of program development, flexibility,
and maintenance. If adequate performance could be obtained using TMS, that method would probably be the method of

choice. In the application with which | worked, we used TMS routines to achieve our transaction rates of upwards of 6000 per
hour.

Datacap/1000 is a terrific tool for implementing a data-capture system, and | hope this paper has suggested ways in which one
could expand the capabilities of an HP1000-based data-capture system to include applications which off-the-shelf Datacap/
1000 would otherwise be incapable of addressing. There is an enormous reserve of performance in the HP1000 computer, and
it can be tapped in several ways in order to meet exceptional demands placed upon the system.

45

LANGUAGES

A COMPARISON OF HEWLETT-PACKARD PASCAL/1000 WITH
UCSD PASCAL

By John Stafford/HP Data Systems Division

One of the most frequently asked questions about Pascal/1000 is how it compares with other Pascal implementations, most
notably UCSD Pascal(1).

UCSD Pascal is a P-code compiler which runs under the UCSD Pascal system. The UCSD Pascal system comprises not only
the compiler but also a screen oriented editor, a file system manager, an adaptable assembler, a linker, and a number of other
utilities. It is in fact a complete single user operating system. Most of the UCSD Pascal system is written in the UCSD Pascal
language. The UCSD Pascal compiler (as noted above) generates P-code, which are instructions for a hypothetical stack-
based computer. A P-code interpreter program which runs on the host computer “executes” these P-code instructions. This
makes the UCSD system extremely portable, because once a P-code interpreter is written for a new machine, the entire system
can be used on that machine. The resultant availability of the UCSD Pascal system (and thus compatible versions of the UCSD
Pascal language) on a number of microprocessor-based systems have made it very popular with small computer users.

Pascal/1000 is a native code compiler which runs under the RTE-IVB operating system. The RTE-IVB system provides an editor,
file system manager, assembler, linker, and other utilities that are available to the user of Pascal/1000. Pascal/1000 produces
assembly code for the 1000 series machines which is automatically assembled to produce a relocatable file. As such, the
compiler is not portable to other machines (nor is the RTE-IVB system or other utilities).

This article compares the languages and to some extent the runtime support provided. It does not deal with the other aspects of
the UCSD Pascal system or the RTE-IVB system (editor, loader, other utilities) except as required. Hence the term UCSD Pascal
will for the purposes of this document refer to the language compiled by UCSD Pascal compiler and the runtime support
provided by the UCSD Pascal system.

It is assumed that the reader is familiar with the basics of RTE-IVB, as terms like partition, EMA, and segment will not be
explained any more than the context requires. Some knowledge of Pascal/1000 will be useful and access to the Pascal/1000
Reference Manual (92832-90001) is assumed. Any unqualified references to a chapter or appendix refer to that manual.
Detailed knowledge of UCSD Pascal is not assumed. See the references for sources of information on UCSD Pascal,
Pascal/1000, and Pascal in general.

(1) UCSD Pascal is a trademark of the Regents of the University of California. All further references to UCSD Pascal in this
document acknowledge that fact.

SYNTACTIC AND SEMANTIC DIFFERENCES

Program Heading: Pascal/1000 permits file names to be specified in the program heading and will automatically
associate them with the external file names specified in the run string at execution time. If the files INPUT and/or OUTPUT
appear in the program heading, their appearance represents their declaration, and they must not be declared in the program
VAR section (although local files of those names can be declared in procedures or functions). If INPUT appears, it will
automatically be RESET when execution starts. If OUTPUT appears, it will automatically be REWRITTEN when execution starts.
Files other than INPUT/OUTPUT which appear in the program heading must also be declared in the program VAR section so
their type will be known. When any of these other files are opened (with RESET, REWRITE, APPEND, or OPEN) the external file
specified in the runstring (associated by position in the list) will be accessed.

UCSD Pascal permits file names to be specified in the program heading but the specification is ignored. The standard files

INPUT, QUTPUT, and KEYBOARD are always declared and will be opened when execution starts. Additional files must be
declared in the program VAR section.

46

LANGUAGES

Segment Procedures: Pascal/1000 does not provide a mechanism which corresponds exactly to this feature. A
compilation unit may be designated a segment (with the SEGMENT compiler option) and must be explicitly loaded by the users
program before any routine in it may be called. Only one segment may be loaded at a time and segments may not load other
segments (only the main program can load segments).

UCSD Pascal permits a procedure or function to be specified such that it will only be loaded into memory from an external
storage medium when it is actually needed. The load is automatic when the routine is called, if it is not already in memory.
Segment routines can call other segment routines subject to the limitation that only six such routines (not including the main
program) may be in memory at any given time.

Include Files: Pascal/1000 has a compiler option that permits a file to be included (merged in at compile time) in the
source. The included file may not itself contain an include option. The inclusion is a simple textual substitution; the file is literally
inserted in the source at the specified place and no other restrictions apply.

UCSD Pascal has a compiter option that permits a file to be included. The inclusion has the same properties and limitations as
that of Pascal/1000 (except see 'Declaration order’ below, for an additional special property of UCSD Pascal include files).

Identifiers: Pascal/1000 identifiers must start with a letter and can contain any letter, digit, or the underscore character.
They are normally significant for their entire length (150 characters is the maximum line length, hence the maximum identifier
length, as an identifier cannot be split across aline). Upper and lower case are considered identical. There is a compiler option
to limit the number of significant characters in identifiers to anywhere in the range 1 to 150 characters.

UCSD Pascal identifiers must start with a letter, can contain any letter or digit, and are significant for only 8 characters. They
may be longer than 8 characters, but only the first 8 characters are used when distinguishing identifier names. It is not known if
lower case letters are accepted at all, and if accepted if they are considered identical to upper case letters.

Declaration Order: Pascal/1000 permits declarations of CONST, TYPE, and VAR to appear in any order and to be
repeated as necessary. A LABEL declaration, if present, must come first. CONST, TYPE, and VAR may not appear after any
PROCEDURE or FUNCTION declaration.

UCSD Pascal requires CONST, TYPE, and VAR to appear in that order (and after LABEL if present) and each only once. The
exception is that if an include file is included after the last VAR declaration and before the first PROCEDURE or FUNCTION it
may contain another declaration section (i.e. LABEL, CONST, TYPE, VAR, and PROCEDURES or FUNCTIONS).

GOTO: Pascal/1000 allows a label to only appear in the statement list of the block in which it was declared. It allows a
GOTO to branch within the current block or to any outer block. The results of branching into a compound statement are
undefined. The environment is not cleaned up if a branch is made out of a recursive invocation of a procedure or function and
the results of calling that routine again later are undefined.

UCSD Pascal has a compiler option which allows or disallows the presence of GOTO statements (and LABEL declarations?) in
the source. If allowed, a GOTO may only branch within the same block. The results of branching into a compound statement are
undefined.

EXTERNAL Routines: Pascal/1000 can call any routine which uses either the [ENTR or DIRECT (no DEF to the retum
address) calling sequences. Thus it can call PASCAL, FORTRAN, C, assembler, and system library routines which follow these
conventions (PASCAL, FORTRAN and C always do). Such external routines are accessed by declaring the procedure heading
and replacing the body with the directive EXTERNAL. The compiler option DIRECT must be specified if the routine uses the
direct calling sequence, and the compiler option ALIAS may have to be used if the routine has a name which is not a valid
Pascal identifier. Calls to the routine are checked by the compiler just as if the routine were present; however no check is made
for number, type, or number of words of arguments being passed when the program is loaded.

47

LANGUAGES

UCSD Pascal can call UCSD Pascal, UCSD Fortran 77, and host machine assembly language routines by making an eqguivalent
EXTERNAL declaration. The rules for Fortran and assembly language calls may be found in UCSD Pascal system documenta-
tion. The total number of words of arguments (but nothing else) is checked for correctness by the loader.

CASE Statements: Pascal/1000 allows the specification of a range of values for a case label, e.g. (assuming 'i' to be
INTEGER or subrange)

CASE i OF
1
2..10,20:
99: ..
OTHERWISE

END;

It also permits the presence of an OTHERWISE clause to which control will be transferred if none of the explicit cases is
matched. A runtime error will occur if none of the explicit cases is matched and no OTHERWISE clause is specified.

UCSD Pascal does not permit the specification of a range of values nor does it have an OTHERWISE clause. If none of the
explicit cases is matched, control will simply fall through to the end of the case statement. This falling through behavior can be
performed in Pascal/1000 by having an OTHERWISE clause containing no executable statements.

Comments and Compiler Options: Pascal/1000 permits both kinds of comment delimiters {...} and (*...") to be
used. A comment must end with the matching delimiter. This permits code which contains comments to be commented out with
the other type of comment delimiters.

{the following code is commented out

FOR i:= 1 TO 10 DO BEGIN (* process the data *)
ali] ;= a[i] *[il + c[i * 2];
IF a[i] < O THEN BEGIN

ali] := 0; (* negative treated like zero *)

END;

END;

down to here}

Comments of the same type do not nest, so the following will cause a syntax error somewhere in the 'not here *)' part.
(* this is a comment (* but it ends here *) not here *)

UCSD Pascal has the same rules for comments but with the additional feature that if the first character after the start of comment
delimiter is $ then the rest of the comment is a compiler option. UCSD has a number of compiler options,
(B,C,D,G,,L,P,Q,R,S,U) which control things like: whether or not to generate a listing and to what file, whether GOTO should be
allowed, whether range checking should be done, where to eject a page in the listing, where to include a file, and several
others. UCSD documentation should be consulted for more information.

Pascal/1000 does not recognize compiler options within comments. They are specified outside of comments but within a pair of
$'s. If the trailing $ is not present in a compiler option, the option is assumed to stop at the end of the source line. Pascal/1000
has a number of compiler options that do things similar to those done by the UCSD compiler (except GOTO’s are always
allowed) as well as things that are unique to Pascal/1000 (see Appendix D).

48

LANGUAGES

Procedures and Functions as Formal Parameters: Pascal/1000 aliows both procedures and functions as
formal parameters. The parameter list must be specified, so it can likewise contain a procedure or function formal parameter.
The parameter lists of actual parameters must match (Chapter 4) those of the formal parameters. Standard procedures and
functions may not be actual parameters.

UCSD does not permit either procedures or functions as formal parameters. The UCSD Pascal intrinsic EXIT does take either a
procedure or function identifier as its argument.

Extended Comparisons: Pascal/1000 permits the operations = <> < <= >= and >on arrays of element type
CHAR, either PACKED or not PACKED. No comparisons are permitted on any other type of array or on any type of record.

UCSD Pascal permits the operations = and <> between objects of any array or record type.

Units: Pascal/1000 has no feature which is significantly similar to the UCSD Pascal concept of a UNIT. Pascal/1000 does
permit the separate compilation of groups of level 1 procedures and functions either to be relocated with a program or segment
(the SUBPROGRAM option), or to be a dynamically loadable segment (the SEGMENT option). Both of these objects must use
the same globals as the main program (if they use any globals at all) and they do not have their own private data area (they may
have their own type definitions, and the routines can have their own local data).

UCSD Pascal has a separate compilation facility called a UNIT. The following paragraph, quoted from the UCSD Pascal System
I1.0 User's Manual, is a good description of a UNIT.

“A UNIT is a group of interdependent procedures, functions, and associated data structures which perform a specialized task.
Whenever this task is needed within a program, the program indicates that it USES the UNIT. A UNIT consists of two parts, the
INTERFACE part, which declares constants, types, variables, procedures, and functions that are public and can be used by the
hostprogram, and the IMPLEMENTATION part, which declares constants, types, variables, procedures, and functions that are
private. These are not available to the host program and are used by the UNIT. The INTERFACE part declares how the program
will communicate with the UNIT while the IMPLEMENTATION part defines how the UNIT will accomplish its task.”

A UNIT cannot access the globals of the host program, but the host can access the INTERFACE variables of the UNIT. If a host
program uses a unit a USES <unitname> declaration must come after the program heading and before the first declaration.
Name conflicts can occur if a host program global identifier is the same as an INTERFACE identifier in the UNIT. A procedure or
function may not USE a UNIT locally. The Turtle Graphics facility of UCSD Pascal is an example of a UNIT.

TYPE DIFFERENCES

Integers: The predefined type INTEGER in Pascal/1000 is a two word integer with a range of
-2,147,483,648..2,147,463,647. A one word integer may be declared as a subrange -32,768..32,767 (or any subrange within
that range inclusive). No larger integers are provided.

The predefined type INTEGER in UCSD Pascal is a one word integer with a range of -32,768..32,767. Larger integers are
declared as having a type INTEGERn (1 <= n <= 36) where 'n’ is the number of digits. The Pascal/1000 predefined type
INTEGER can hold all the values of UCSD Pascal INTEGER1 through INTEGER9 (actually up to INTEGER10 if within the range
noted above).

49

LANGUAGES

Sets: Pascal/1000 limits sets to a maximum of 32,767 elements. Sets of sixteen or fewer elements fit in one word (or less if a
part of a packed structure). Sets of more than 16 elements require (number of elements) DIV 16 + 1 words of storage (whether
or not part of a packed structure). The extra word is allocated at the beginning of the set and holds its current length. If a set
denotation with integer components appears in an ambiguous context it will be assumed to be a set of 0..255. A set denotation
may be explicitly typed by placing a type identifier immediately before it, e.g.

TYPE
BIGSET = SET OF 1..1000;

y = 500;

{this won't do what we want, compiler assumes 0..255}
IF x IN [10, 40, 70, y] THEN

{this will do what we want, compiler knows better}
IF x IN BIGSET [10, 40, 70, y] THEN {it's a BIGSET}

UCSD Pascal limits sets to a maximum of 4,080 elements. It is not known what it does with ambiguous sets, but presumably it
allocates the largest possible set (which was deemed a potential waste of space in Pascal/1000, 32,767 elements is 2,049
words).

Extended Precision Real Numbers: Pascal/1000 has a predefined type LONGREAL which is similar to type REAL.
Its magnitude limits are identical to type REAL but it allows more significant digits of precision. A variable of type LONGREAL
requires four words, a variable of type REAL requires two words.

UCSD Pascal does not have the LONGREAL type. A variable of type REAL requires two words. The magnitude limits and
number of significant digits is almost the same as that for the Pascal/1000 type REAL.

Arrays: Pascal/1000 does not have a limit on the number of array dimensions or the number of elements in a dimension
except that the total number of elements must not be greater than 2,147,483,647. Note that an array larger than 32,767 words
could not be declared as a variable, but it could be declared as a type and a dynamic variable of that size might be allocatable
if the heap is in the EMA area.

UCSD Pascal has a limit of 16,384 words in any one dimension.

Strings: Pascal/1000 has no predefined string type. An array of characters, either PACKED or not PACKED, is considered
a string. The length of the array is user defined, and if only part of the string is valid this length information must be kept by the
user. String constants are considered PACKED ARRAYS OF CHAR. Two strings may be compared (see Extended Compari-
sons). The shorter will be blank filled to the length of the longer and packing/unpacking will occur as needed. A string can be
assigned to another string if the source is of the same length or shorter than the destination. Blank filling and packing/unpacking
will occur as needed.

UCSD Pascal has a predefined type STRING which is essentially a PACKED ARRAY [1..80] OF CHAR with an associated length
value of type 0..255. The default length may be overridden (i.e. STRING[100]) and the maximum string length is 255. String
operations and intrinsics are provided (LENGTH, POS, CONCAT, COPY, DELETE, INSERT, and STR). Additional intrinsics for
PACKED ARRAY OF CHAR include SCAN, MOVELEFT, MOVERIGHT, and FILLCHAR (it is not clear if these can be used on the
STRING type).

50

LANGUAGES

PACKED:

ARR = PACKED ARRAY [1..10] OF PACKED ARRAY [1..8] OF BOOLEAN;
REC = PACKED RECORD
sign: BOOLEAN,;
digit: PACKED ARRAY [1..5] OF 0..7;
END:

Pascal/1000 packs data into words from high order bits toward low order bits. If an object cannot fit in the remaining bits of the
word currently being packed and it must be word aligned {see below) then some remaining low order bits may be unused.

PACKED in Pascal/1000 may be effective on more than the last occurence of ARRAY in a declaration. Array ARR {above) uses
five words. Pascal/1000 packs by the rules that an object requiring a word or less of storage will not cross a word boundary (it
will be aligned at the next word boundary if it won't fit in the word currently being packed), and an object requiring more than a
word of storage will always be aligned on a word boundary. So in the above example, each element of the PACKED ARRAY
[1..8] OF BOOLEAN requires one bit, so each PACKED ARRAY [1..8] OF BOOLEAN requires eight bits, so two such objects
can be packed per word.

The fields of PACKED RECORDS in Pascal/1000 are packed according to the above rules. Thus a PACKED RECORD, or a
PACKED ARRAY which is a field of a PACKED RECORD, may or may not be packed depending on its size. If a variant part is
specified it is always word aligned (this is an exception to the rules noted above). Record REC (above) requires one word.

UCSD Pascal packs data into words from low order bits toward high order bits. If an object cannot fit in the remaining bits of the
word currently being packed, or if it must be word aligned because it is structured (see below), some remaining high order bits
may be unused.

PACKED in UCSD Pascal is only effective for the last occurence of ARRAY in a declaration. Array ARR (above) uses ten words.
UCSD Pascal packs by the rules that any scalar object that occupies less than a word will not cross a word boundary, and that
any structured object or an object which requires more than a word of storage will be aligned on a word boundary. So in ARR,
each element of the PACKED ARRAY [1..8] OF BOOLEAN takes one bit, however each PACKED ARRAY [1..8] OF BOOLEAN is
a structured object and so must be word aligned.

The fields of PACKED RECORDS in UCSD Pascal are packed according to the above rules. Thus a PACKED RECORD, or a
PACKED ARRAY which is a field of a PACKED RECORD, will not be packed. It will always be word aligned because it is a
structured object. If a variant part is specified it is probably word aligned (this is not known for sure). Record REC (above)
requires two words in UCSD Pascal.

I/O DIFFERENCES

File Association: Pascal/1000 has two ways to associate an internal Pascal file name with an outside world file. The first
way is to place the file in the program parameter list. When the file is opened (RESET, REWRITE, OPEN, or APPEND) the name
specified in the appropriate argument position in the run string will be used as the name of the outside world file to be
accessed. The second way is to name the file explicitly in the open call. The second parameter to any of the above routines can
be a string (constant or PACKED/unPACKED ARRAY OF CHAR) which contains the file name. This form can be used even if the
file was specified in the program parameter list and will use the explicit association. If a file is not in the program parameter list
and the explicit form of an open routine is not used, then a scratch file will be created (only REWRITE, OPEN, or APPEND may
be used initially). [f that file is subsequently reopened for reading, the scratch file can be read. Scratch files are normally purged
when explicitly closed. See CLOSE below for more information on the actions taken when a file is closed.

UCSD Pascal does not have the program parameter method of associating file names. The predefined files INPUT, OUTPUT,

and KEYBOARD are automatically associated with the terminal at program start. RESET can optionally have a second
parameter, a string to specify a file explicitly, and REWRITE must always have one.

51

LANGUAGES

Interactive Files: There is a basic problem with 1/O in Pascal when it comes to dealing with interactive devices. It results
from the original definition of the way RESET and READ work on text files. RESET is to perform a GET to load the file window.

READ is to use the current window, then use GET as many times as it needs, and then do a GET to leave the window valid when
it is finished.

The problems this causes are as follows. By definition the file INPUT (if present) is to be automatically RESET when the program
starts. If INPUT is associated with an interactive device this requires that a character be read from it to load the file window. This
means the user must type something, even before his program has done anything. The program will be unable to issue a

prompt, and it may not even want any input yet. When a program READs the end of line character, READ will want to load the
window with another character, so the READ will hang until the next line is typed.

Pascal/1000 and UCSD Pascal take different approaches to solving these problems.

Pascal/1000 does what is known as ’'lazy /O’ to solve the problem. This is nothing more than not loading the window until its
contents are actually going to be used. So RESET does not perform the initial GET and READ does not do a GET when it is
finished doing a READ operation. Instead an internal flag is set that says that a GET has to be done before the window can be
used, and any use of the window (explicitly Ft, or with another READ, EOLN or EOF) will cause the GET to occur. To the user
program this technique is almost invisible. Programs written assuming the specified behavior of I/O will work as expected. The
only known problem involves the EOF function. To determine if EOF has occured from an interactive device on a HP/1000
system, a physical read operation has to be done on the device (a control-d, or carriage return with no data are considered end
of file indications). Thus a program may hang on an EOF call until something is typed. If the EOF call is at the top of a loop that
prompts the user and then reads data, the prompt will not be seen because the loop can't be entered until after the data is
typed. The following restructuring of the loop will solve this problem.

REPEAT
prompt (prompt, 'What now?');
done := eof (input);
IF NOT done THEN BEGIN
read ...
END
UNTIL done;

UCSD Pascal solves the problem by declaring a new kind of text file, the predefined type INTERACTIVE. INTERACTIVE files
have the attribute that the GET is not done by RESET and READ does a GET to load the window before accessing it. It has a
side effect on the behavior of the EOLN function (see below).

EOLN and EOF: Pascal/1000 EOLN/EOF behave as originally specified with the exceptions noted above. The behavior
that just typing a carriage return on a terminal causes end of file is not a function of Pascal/1000 but of the underlying file access
routines. it is expected that this inconvenience will eventually be fixed. It can be worked around with something like this:

IF eof (input) THEN BEGIN
reset (input);
emptyline := true;
END
ELSE BEGIN
readin (data);
emptyline ;= false;
END;

UCSD Pascal files of type INTERACTIVE behave differently on EOLN than originally specified. In Pascal/1000, and in the
original specification, EOLN becomes true when the last character on the line is read, and the next character will be the EOLN
character (which reads as a blank). In UCSD Pascal on an interactive file, EOLN becomes true after the EOLN character (which
reads as a blank) has been read, not before. UCSD does not have the EOF problem on INTERACTIVE files because an explicit
end of file character must always be typed to cause end of file.

52

LANGUAGES

WRITE and WRITELN to text files: Pascal/1000 allows parameters of type BOOLEAN in WRITE and WRITELN to text
files. WRITE does not cause data to be written, the data will be buffered until a WRITELN or PROMPT (see Other I/O Intrinsics
below) is performed, or the file is closed (and the buffer flushed).

UCSD Pascal does not allow parameters of type BOOLEAN in WRITE or WRITELN to text files. WRITE will cause data to be
written, the data is not buffered. The procedure PROMPT is not available (or necessary).

READ and WRITE to non-text files: Pascal/1000 allows the procedures READ and WRITE to be used on files of all
types.

UCSD Pascal limits the use of READ and WRITE to files of type INTERACTIVE, TEXT, or CHAR.

I/O DIFFERENCES

Random Access Files: Pascal/1000 provides a number of intrinsic routines to do random access 1/O. One of the
routines it provides is SEEK. SEEK takes a file and a position. Records are assumed to be numbered from one. SEEK sets the
window so that the next GET/READ or PUT/WRITE will access the object at the specified position. Random access /O cannot
be performed on text files. To use a file in random access mode, the file must be opened with the routine OPEN. The routines
READDIR and WRITEDIR are provided to perform both the SEEK and the specified I/O. The function POSITION returns the

current position in the file. The function MAXPOS returns the largest possible position in the file. An attempt to READ or WRITE
beyond MAXPOS will cause a runtime error.

UCSD Pascal provides the routine SEEK to position the file window. SEEK takes a file and a position. Records are assumed to
be numbered from zero. SEEK sets the window so that the next GET or PUT (not READ/WRITE, see below) will access the object

at the specified position. SEEK can apparently be used on text files. It sets both EOF and EOLN to false. The subsequent GET or
PUT will set these conditions as appropriate. An attempt to PUT past the physical end of file will set EOF true.

Untyped Files: Pascal/1000 does not have untyped files.

UCSD Pascal has untyped files which are used when /O is done totally with the UCSD I/O intrinsics BLOCKREAD,
BLOCKWRITE, and IORESULT. They are declared by leaving the 'OF <type>" part off of the file declaration:

VAR binfile: FILE;

RESET and REWRITE: In Pascal/1000 a RESET closes the file if already open and then opens it for reading at the start
of the file. REWRITE closes the file if already open, then clears it out and opens it for writing at the start of the file. APPEND
closes the file if already open, then opens it for writing at the end of the file, without clearing out the old contents. OPEN (not
allowed with text files) closes the file if already open, and then opens the the file for random access at the start of the file. The
second parameter to any of these routines is described above in 'Associating Files'. The third optional parameter is a string
which allows specification of certain file attributes. For REWRITE or APPEND on text files the options are 'CCTL’ (default) or
'NOCCTL' to specify if the file should have an initial carriage control character prepended on each line (the PAGE and
OVERPRINT routines cannot be used with NOCCTL). All files may be opened 'SHARED' (for shared access with up to six other

users) or 'EXCLUS’ (for exclusive access). If the second parameter is not used, but the third is, the second can be omitted (i.e
the two commas appear next to each other).

In UCSD Pascal files may all be RESET, as reset simply marks a file available for /0. To create an output file REWRITE must be
used. If a file is already open a RESET or REWRITE will cause a non-zero IORESULT (see Other I/O Intrinsics) and the state of
the file will not change. Files must be closed first and then reopened.

53

LANGUAGES

CLOSE: Pascal/1000 has an explicit CLOSE routine that the user may call to cause other than the default close action on a
file. Files are normally closed when the block in which they are declared is exited. Files in arrays or records are not closed and
must be explicitly closed by the user with CLOSE. The second parameter to CLOSE is an optional string that specifies the
disposition of the file. If an actual (as opposed to scratch) file is opened with RESET, REWRITE, APPEND, or OPEN, the normal
action of CLOSE is to flush any output buffers (if applicable) and then close the file (so that it cannot be read from or written to).
If it is desired to have such a file removed, the option string 'PURGE’ can be specified. When a scratch file is closed, the normal
action is to purge it. If it is desired to write onto a scratch file and then later read from it, do not explicitly CLOSE the file after
writing on it. Simply do a RESET on the file, this will close (but not purge it) and then open it for reading. When the routine in
which the scratch file is declared terminates (or CLOSE is explicitly called) the file will then be purged. If a scratch file is to be
preserved it must be explicitly closed with the "SAVE' option string.

UCSD Pascal has an explicit CLOSE routine as well. It is assumed but not known if files are normally closed at block exit. The
second parameter to CLOSE is an option word (not a string) that specifies the disposition of the file. Files opened with REWRITE
are normally purged (if on disk, not if a printer); to save them the option LOCK should be specified. The option PURGE will
remove the file, and the option CRUNCH will LOCK the file at the point of last access (i.e. will truncate)

Other 1/O Intrinsics: Pascal/1000 has the following additional IO intrinsics:

APPEND — opens a file for writing (like REWRITE) but does not erase the old contents. Sets the file window after the
last component in the file so that new components can be appended on the end.

LINEPOS — returns the number of characters read from or written to a text file since the last EOLN. It does not include
the character in the window.

PROMPT — causes any data output by previous calls to WRITE and any data specified in the PROMPT call to be
displayed without a new line being started (the cursor is left at the end of the output line). This call is only
allowed for text files, and is of most use when the file is associated with a terminal, although it will work
with files. Data written to a text file will be buffered (and not displayed) until a WRITELN, PROMPT, or
OVERPRINT is performed, or the file is closed.

OVERPRINT — causes any data output by previous calls to WRITE and any data specified in the OVERPRINT call to be
written to the file in such a way that the next line of data written will overwrite it. This call is only allowed for
text files, and is of most use when the file is associated with a terminal or line printer, although it will work
with files. See PROMPT for information on the normal buffering action for text files.

UCSD Pascal has the following additional I/O intrinsics.

BLOCKREAD, BLOCKWRITE, IORESULT — Used to read and write blocks of data from and to untyped files. Any
number of blocks of data can be transferred. A block is 512 bytes. The function IORESULT returns non zero if an error
occurred on the last transfer. Both BLOCKREAD and BLOCKWRITE return the number of blocks transferred. If this is
not the specified number of blocks, an error has occurred. This type of operation can be performed in Pascal/1000 by
declaring variables to hold DCB’s and then using FMP routines which are declared EXTERNAL.

UNITREAD, UNITWRITE, UNITBUSY, UNITWAIT, UNITCLEAR - Used to read and write data to low level peripheral

devices. UNITBUSY returns status information, UNITWAIT waits for NOT UNITBUSY, and UNITCLEAR cancels an /O
operation. This type of operation can be performed in Pascal/1000 under RTE-IVB using EXEC calls.

54

LANGUAGES

DYNAMIC MEMORY DIFFERENCES

Implementation: . Pascal/1000 allows the heap/stack area to reside in the 32K logical address space (the HEAP 1 option,
which is the default) or in the EMA area (the HEAP 2 option). Pointers are one word variables in the former case, two words in the
latter. The stack grows from lower address to higher addresses, the heap from higher addresses to lower addresses. If the top
of heap passes the top of stack a runtime error occurs.

UCSD Pascal keeps its heap in the 32K address space and pointers are one word variables. The stack grows from higher

addresses to lower addresses, the heap from lower addresses to higher addresses. If the top of heap passes the top of stack a
runtime error occurs.

Dispose: Pascal/1000 implements the DISPOSE routine to deallocate dynamic variables created by NEW so that the
space they occupied can be subsequently reused. Both the standard and extended forms of NEW and DISPOSE are
implemented. See Chapter 8, Reducing the Size of Loaded Programs, for information on a version of the heap management
routines in which DISPOSE does not actually return the space to the free space list.

UCSD Pascal does not implement DISPOSE.

MARK and RELEASE: Pascal/1000 implements MARK and RELEASE to manage the heap in large chunks. If it is known
that a group of dynamic variables will be created, used, and then will all no longer be needed, the state of the heap can be
MARKed. Then when all the variables are no longer needed, the heap can be RELEASEd back to the state at which it was
marked, effectively disposing of all of the dynamic variables at once. However any pointers to these variables are not cleaned
up and the user must take care not to dereference them. The argument to MARK may be of any pointer type, and it must be
passed unaltered to RELEASE at the appropriate time.

UCSD Pascal implements MARK and RELEASE. The above discussion is also applicable with the exception that the argument
to MARK and RELEASE must be a pointer to INTEGER.

Available Memory Information: Pascal/1000 has two routines @GHS1 and @GHS2 which can be called from user
programs to acquire information about the state of the heap/stack area. The particular routine depends on the setting of the
HEAP compiler option. See Appendix F.

UCSD Pascal has an intrinsic function MEMAVAIL that returns the number of words between the heap and the stack.

INTRINSICS DIFFERENCES

PACK and UNPACK: Pascal/1000 implements the PACK and UNPACK routines. Implicit packing and unpacking occur
in assignments and comparisons.

UCSD Pascal does not implement the PACK and UNPACK routines. Implicit packing and unpacked occur in assignments and
comparisons.

EXIT: Pascal/1000 does not provided a similar facility. A GOTO can be used to get to a more outer block, but there is no way
to return automatically to the statement following the statement that invoked any particular routine earlier in the call chain (see
below). Also if any recursive invocations of a routine are active, the environment is not cleaned up on the GOTO.

UCSD Pascal provides the intrinsic procedure EXIT as a way to leave cleanly a series of PROCEDURE or FUNCTION calls. The
call EXIT (P) causes control to return to the statement immediately following the the statement which invoked the routine P. This
can be several levels up the call chain. For example the main program could call P, P could call Q, Q could call R, R could call
S, and S could to an EXIT (P). The effect is that S, R, Q, and P are all exited and control is returned to the main program

immediately following the call to P. If EXIT is used to exit a function, the results will be undefined if no value has been assigned
to the function before the EXIT call.

55

LANGUAGES

Turtle Graphics: Pascal/1000 does not provide anything similar to this feature. Pascal/1000 programs can use graphics
routines provided by the system or written in a language with a compatible calling sequence.

UCSD Pascal provides a series of primitive graphics intrinsics. These include CLEARSCREEN, MOVE, MOVETO, PENCOLOR,
TURN, TURNTO, and WHEREAMI. They are intended for use on a video display device with graphics capability.

Other Intrinsics: Pascal/1000 does not have any other intrinsics that are not described elsewhere in this document.
Pascal/1000 has access to FMP, IMAGE, DS/1000, VIS, RLIB, and other system routines which can be called with either the
.ENTR or DIRECT calling sequence if these routines have been declared EXTERNAL in the Pascal source. Pascal/1000 does
have user callable library routines which are described in detail in Appendix F of the Reference Manual and briefly noted below.

RSPAR — get run string parameters or the entire run string.
@RDCB — get address of DCB within Pascal file variable.
@RNAM — get the name of a scratch (or any) file.

@GHS1 — get heap/stack information in HEAP 1 program.
@SHS1 — set heap/stack information in HEAP 1 program.
@INH1 — initialize heap/stack information in HEAP 1 program.
@GHS2 — get heap/stack information in HEAP 2 program.
@SHS2 — set heap/stack information in HEAP 2 program.
@INH2 — initialize heap/stack information in HEAP 2 program.
@TIME — get time string, e.g. 'Mon Sep 29, 1980 2:26 pm'.
@SGLD — load a segment.

UCSD has the following additional intrinsics.

GOTOXY — places the cursor at the specified position on the screen.

IDSEARCH — routine used by the Pascal compiler and the PDP-11 assembiler.

LOG — returns as a real result the log to the base ten of the argument.

PWROFTEN — returns as a real result the number ten raised to the power of the argument.
SIZEOF — returns the number of bytes allocated to a variable.

TREESEARCH — routine used by the Pascal compiler.

SIMILAR RUNTIME SUPPORT ROUTINES
HALT Procedure: Pascal/1000 has a standard procedure HALT which takes an integer argument. The routine displays

PASCAL HALT: n

where n is the integer passed as the argument. It then makes an effective branch to the end of the main program. Main program
files will be closed, but any local files open in any active procedures and functions being terminated by the HALT will not be
closed.

UCSD Pascal has a standard procedure HALT which takes no parameters. It causes a non-fatal runtime error and normally the
debugger is entered. If the debugger is not loaded a fatal runtime error occurs.

TIME Procedure: Pascal/1000 has a library routine @ TIME which takes a single VAR parameter of type PACKED ARRAY
[1..26] OF CHAR and returns a time string of the form that appears at the top of the source listing generated by the compiler.
Time of day information can be obtained from the RTE-IVB system with an EXEC 11 request. Note that @TIME is not an intrinsic,
it must be declared EXTERNAL with an ALIAS to @TIME (which is not a legal Pascal identifier).

UCSD Pascal has an intrinsic procedure TIME which takes two one word integer VAR parameters and returns the high and low

order word of the system clock (which is assumed to be a 32 bit quantity which is incremented every 60th of a second). This
procedure will not work if the hardware does not support a system clock.

56

LANGUAGES

LIMITS DIFFERENCES

Maximum Size of Object Code: A Pascal/1000 program source with a total code and data size in excess of 32,767
words will not compile (a location counter overflow syntax error will occur). In a segmented program, the size of the main plus
that of the largest segment must be considered {(since they are separate sources the compiler can't detect a potential overflow,
but the loader will if it occurs). The particular machine and/or operating system that the program runs on/under will impose its
own limits. This can range from 26 to 28 pages (of 1,024 words each). The program as well as Pascal runtime support and
system routines must fit within the limit. So there are programs that will compile but which will not load. Other than this there are
no restrictions on the amount of code or local data a program, procedure, or function may have.

UCSD Pascal procedures and functions may occupy up to 1,200 bytes of code and have up to 16,383 words of local variables.
Total program size limits are not known, but must be less than 32,767 words on standard sixteen bit machines.

Maximum Number of Procedures and Functions: Pascal/1000 imposes no limit except those noted above.
Compilation units with large numbers of identifiers will require that the compiler be given a larger workspace, which can affect
compile speed, and could possibly be impossible to compile in a given size EMA partition.

UCSD Pascal has a limit of 127 declared procedures and functions per program.

SUMMARY

It has not been my intention in this comparison to rate either UCSD Pascal or Pascal/1000 as “better” or “worse”, but rather to
simply make clear where the differences lie.

There is currently no “standard” Pascal although there is an ANSI committee working on one (in collaboration with the British
Standards Institute and the International Standards Organization). During the development of Pascal/1000 every attempt was
made to keep track of the standardization effort and to make Pascal/1000 conform as closely as possible. Most probably
Pascal/1000 will not conform exactly to the standard when the standard appears, however we are committed to bring it into
conformance with the standard.

At the time UCSD Pascal came into existence there was no such standards effort that they could track. UCSD Pascal has
become a sort of de facto standard in the small computer area and they have lobbied to have some of their features in the
official standard. One would presume that when the standard appears that SoftTech (the current source of UCSD Pascal) will
either make UCSD Pascal conform or will produce a new Pascal product which meets the standard. However the question of
the large number of UCSD Pascal programs that will not compile under a “standard” compiler remains unresolved.

Both UCSD Pascal and Pascal/1000 have provided extensions to the language that are specific to their users requirements. In
this sense both languages deviate from the standard, and a program which uses any extension of either language may not be
easily portable to another Pascal compiler environment. Pascal/1000 provides a compiler option that will cause the use of any
extension to be flagged as a syntax error, in an attempt to make the writing (and verifying) of portable programs possible.

57

LANGUAGES

ACKNOWLEDGEMENTS

I'd like to thank Linda Siener and Gary Lauber for providing me with some of the documentation on UCSD Pascal, and Ron Mak
for making some empirical tests of 'the facts' on his UCSD Pascal system, as well as for his diligent proofreading of this
document.

REFERENCES
On HP Pascal/1000

Hewlett Packard Pascal/1000 Reference Manual (92832-90001)
Library Index No. 2RTE.320.92832-90001
Hewlett Packard Company, Data Systems Division, May 1980

Grogono, Peter
Programming in Pascal, With Pascal/1000 (92832-90002)
Addison-Wesley, 1980

On UCSD Pascal

Shillington, Keith Allen and Ackland, Gillian M. (ed.)
UCSD PASCAL System 11.0 User's Manual March 1979
Institute for Information Systems,

University of California, San Diego

Bowles, Kenneth L
Microcomputer Problem Solving Using PASCAL
Springer-Verlag, 1977

On Pascal in general

Wirth, Niklaus and Jensen, Kathleen
Pascal User Manual and Report, 2nd edition
Springer-Verlag, 1978

Grogono, Peter
Programming in Pascal (the original)
Addison-Wesley, 1979

Addyman, A. M. and Wilson, I. R.

A Practical Introduction to Pascal
Springer-Verlag, 1979

58

BULLETINS

A NEW FORTRAN INDEPENDENT STUDY COURSE

By Shauna Uher/HP Data Systems Division

The FORTRAN 1V independent study course has been updated to include instruction in the new FORTRAN 4X compiler and the
EDIT/1000 text editor. The course now consists of eight color videocassettes: the original six videocassettes of the FORTRAN IV
course and two additional videocassettes.

This course is fully modular in design, divided by subject into 11 sessions for easy use by first time FORTRAN programmers,
and for selective review by previously experienced programmers.

Session Topic

introduction, Course Organization, History of Programming Languages
RTE-IVB procedures, including EDITR
RTE-IVB procedures, including EDIT/1000
FORTRAN Character Set, Operators, Expressions
Input/Output Procedures
Branching, Testing and Looping
DO Loops
Array Processing
Functions and Subprograms
Debugging a FORTRAN Program

10 Additional FORTRAN Statements, VIS/EMA Features
— 11 part 1 FORTRAN 4X Features
part 2 File /O with FORTRAN 4X

©CoOoO NGO WNN=

The arrows point out the sessions that were added to the FORTRAN 1V course. Session 2’ teaches program development with
EDIT/1000 HP's new text editor. Either session 2 or session 2' can be viewed depending on the editor used on your system.
Once the student is proficient in FORTRAN, session 11 can be viewed to learn the FORTRAN 4X enhancements, such as, the
IF/THEN/ELSE block, double integers, and file I/O.

A student workbook is used by each student to supplement the material on the videocassettes. Self-evaluation questions at the
beginning of each session allow the student to evaluate the session for content prior to viewing the videocassette, and skip to
the next session if he or she feels proficient in the material. Supplemental problems and lab exercises (as well as possible
solutions) are provided for hands-on experience.

A person knowledgeable in FORTRAN 4X should be available to assist the inexperienced student when required. An

instructor's guide is is provided with each set of videocassettes to facilitate this “advisor” in providing aid to the student. The
instructor's guide also provides information on giving a classroom course for group on-site training by the user.

59

BULLETINS

ORDERING INFORMATION
22958C FORTRAN INDEPENDENT STUDY COURSE PRODUCT NUMBER

OPT 001
OPT 002
OPT 003
OPT 004
OPT 010

U-Matic 3/4 inch color videocassettes
VHS 1/2 inch color videocassettes
one student workbook

Betamax 1/2 inch color videocassettes
for update videocassettes only

To order the complete set of videocassettes specify option 001, 002, or 004. List price for this set is $1350.00.

If you already have the FORTRAN IV independent study course, you can order the 2 updated videocassettes by specifying
option 010 in conjunction with option 001, 002, or 004. List price for the update package is $350.00.

Both of the above sets include a copy of the updated instructor's guide.

As many student workbooks as required may be ordered as option 003. List price for each workbook is $68.00. A set of
overhead slides are separately orderable as part number 22999-90330. List price for this set of slides is $350.00.

Note that for customers who desire off-site training in FORTRAN, this course is being offered at HP Regional Training Centers
with systems and experienced instructors available to the student through an intensive five-day schedule. -

60

BULLETINS

ATTENTION EUROPEAN USERS!!

Do you feel underprivileged, listless, and lacking in software? The diagnosis is lack of user interaction. The cure is to join a local
user group.

User groups now exist in six European countries, and we are all waiting for you to join us.

A local User Group meeting will have on its agenda some or all of the following items, some of which will be of interest to
everyone.

User presentation.

H.P. presentation.

Problems session.

“Would'nt it be nice if”.

Presentations of user software available at no charge.

Swap shop.

Plus a variety of other items, including news about the International User Group.

In addition to the local user group, some countries have sub- groups covering, for example in the U.K., Image, Mi-
croprocessors, and in the near future Graphics.

If you live in Spain, Austria, Luxemborg, Denmark, Sweden, Italy or Finland, then contact your main H.P. office, and they will
either put you in contact with another local group, or, why not form a group in your country. The European committee will be
pleased to give you advice on how to set up a group and present you with the “How to start a user group kit”.

Jean-Louis Rigot Graham Lang
Technocatome TA/DE/SET Laboratories RCA Ltd
Cadarache Badenerstrasse 569
BP. 1 8048 Zurich

13115 Saint Paul les Durance Switzerland

France Tel. (01) 526350

Tel. (42) 25-39.52
Mike Bennett

Hermann Keil Riva Turnkey Computer Systems
Vorwerk +Co Elektrowerke Caroline House

Abt. TQPS

Rauental 38-40
D-5600 Wuppertal 2
W. Germany

Tel. 202-603044

Albert R. Th. van Putten

National Institute of Public Health
Antonie van Leeuwenhoeklaan 9
Pbox 1

3720 BA Bilthoven

The Netherlands

Tel. 30-742344

61

125 Bradshawgate
Bolton

Lancashire

U.K.

Tel' 0204-384112

Prof. Tibergen

Vrije Universiteit Brussel
Dienst Informatie Verwerking
Pleinlaan 2

1050 Brussels

Belgium

BULLETINS

JOIN AN HP 1000 USER GROUP!

Here are the groups that we know of as of December 1980. (If your group is missing, send the Communicator/1000 editor all of
the appropriate information, and we’'ll update our list.)

NORTH AMERICAN HP 1000 USER GROUPS
Area User Group Contact

Arizona Jim Drehs
7120 E. Cholla
Scottsdale, Arizona 85254

Boston LEXUS
P.O. Box 1000
Norwood, Mass. 02062

Chicago David Olson
Computer Systems Consultant
1846 W. Eddy St.
Chicago, lllinois 60657
(312) 525-0519

Greenville/S. C. Henry Lucius It
American Hoechst Corp.
P.O. Box 1400
Greer, South Carolina 29651
(803) 877-8471

Huntsville/Ala. John Heamen ED35
George C. Marshall Space Flight Ctr,
Nasa
Marshall Space Flight Ctr., AL. 35812

New Mexico/El Paso Guy Gallaway
Dynalectron Corporation
Radar Backscatter Division
P.O. Drawer O
Holloman AFB, NM 88330

New York/New Jersey Paul Miller
Corp. Computer Systems
675 Line Road
Aberdeen, N.J. 07746
(201) 583-4422

Philadelphia Dr. Barry Perlman
RCA Laboratories
P.O. Box 432
Princeton, N.J. 08540

Pittsburgh Eric Belmont
Alliance Research Ctr.
1562 Beeson St.
Alliance, Ohio 44601
(216) 821-9110 X417

62

BULLETINS

NORTH AMERICAN HP 1000 USER GROUPS (CONTINUED)

Area User Group Contact

San Diego Jim Metts
Hewlett-Packard Co.
P.O. Box 23333
San Diego, CA 92123

Toronto Nancy Swartz
Grant Hallman Associates
43 Eglinton Av. East
Suite 902
Toronto M4P1A2

Washington/Baltimore Mal Wiseman
Hewlett-Packard Co.
2 Choke Cherry Rd.
Rockville, MD. 20850

General Electric Co. Stu Troop

(GE employees only) Special Purpose Computer Ctr.
General Electric Co.
1285 Boston Ave.
Bridgeport, Conn. 06602

OVERSEAS HP 1000 USER GROUPS

London Rob Porter
Hewlett-Packard Ltd.
King Street Lane
Winnersh, Workingham
Berkshire, RG11 5AR
England
(734) 784 774

Amsterdam Mr. Van Putten
Institute of Public Health
Anthony Van Leeuwenhoeklaan 9
Postbus 1
3720 BA Bilthoven
The Netherlands

South Africa Andrew Penny
Hewlett-Packard South Africa Pty.
private bag Wendywood
Sandton, 2144 South Africa

Belgium Mr. DeFraine
K.U.L.
Celestijneulann, 300C
B-3030 Heverlee
Belgium

63/64

Although every effort is made to ensure the accuracy of the
data presented in the Communicator, Hewlett-Packard can-
not assume liability for the information contained herein.

Printed in U.S.A. 4/81

Prices quoted apply only in U.S.A. If outside the U.S., contact
your local sales and service office for prices in your country.

Part No. 5951-6111

D,

)

