BI]MMIINII:MI]H

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

HEWLETT-PACKARD
COMPUTER SYSTEMS

josue 2 COMMUNICATOR/1000

o

Feature Articles

OPERATING SYSTEMS 21 MULTI-STATION TRAPS WITH BASIC 1000/D
Marty Silver/HP Data Systems Division

OPERATIONS MANAGEMENT 40 USING MEMORY BEHIND YOUR FORTRAN
PROGRAM
John Pezzano/HP El Paso

44 FMP CONSIDERATION IN IMAGE SHARED
DATABASE ACCESS
Gary Ericson/HP Data Systems Division

Departments

EDITOR'S DESK ABOUT THIS ISSUE

5

6 BECOME A PUBLISHED AUTHOR IN THE
COMMUNICATOR/1000

8 CORRECTIONS TO PREVIOUS ISSUES

9 LETTERS TO THE EDITOR

BIT BUCKET 12 FORWARD FILE BY FILE NUMBER
13 GET MORE OUT OF YOUR DISC WITH THE
SPARE CARTRIDGE POOL & TAPE
16 SYSTEM IDENTIFIER FOR RTE

BULLETINS 47 JOIN AN HP 1000 USER GROUP

3/4

EDITOR’S DESK

ABOUT THIS ISSUE

Before | let you know about the second issue of the Communicator/1000 for 1981, bear with a plea from the Editor. We are
receiving an underwhelming number of Feature Articles. Articles for future issues have yet to be selected, so if you have any
ambition to write the Great American novel, perhaps you would consider starting with an article for the Communicator. As a
general guideline, this is predominately a textual magazine rather than a forum for lengthy program listings.

Our first article in this issue is in the area of Operating Systems. Marty Silver of HP's Data Systems Division has written an article
on Multi-Station Traps with Basic/1000. This will be of particular interest to those readers in the automatic test field who have a
need for on-going testing in conjunction with program development. Marty has obviously put a lot of effort into this Feature

article. Thanks for a fine job! Unfortunately, Marty was not eligible for a calculator since he is a member of our Technical
Marketing Department.

We have two articles in the area of Operations Management. One is from one of HP's Systems Engineers from the El Paso,
Texas office, John Pezzano. John has written a concise, useful article on utilizing the unused memory at the end of a FORTRAN
program. If his name seems familiar, that's because John has been one of our past contributors. We appreciate your strong
support, John, but where do you keep all those calculators?

The second article in Operations Management is by another one of our own, Gary Ericson from Technical Marketing, Data
Systems Division. (Boy, did we get off cheap this time!!) Gary's contibution will increase our readers abilities to work with FMP
calls effectively in Database Management. As Gary points out, there are some pitfalls to watch out for and with his tips, we
hopefully will avoid some wasted time and effort.

Our calculator awards are easy this time, since two out of our three articles were not eligible for selection. The remaining
contributor will receive an HP32E calculator.

Best Feature article by an HP Field Employee:

John Pezzano “Using Memory behind your FORTRAN Program”
HP El Paso, Texas

I hope you enjoy this issue. Keep those cards and letters coming!.
Sincerely,

The Editor

EDITOR’S DESK

BECOME A PUBLISHED AUTHOR IN THE COMMUNICATOR/1000. ..

The COMMUNICATOR is a technical publication designed for HP 1000 computer users. Through technical articles, the direct
answering of customers’ technical questions, cataloging of contributed user programs, and publication of new product
announcements and product training scheduies, the COMMUNICATOR strives to help each reader utililize their HP 1000’s
more effectively.

The Feature Articles are clearly the most important part of the COMMUNICATOR. Feature Articles are intended to promote a
significant cross-fertilization of ideas, to provide in-depth technical descriptions of application programs that could be useful to
a wide range of users, and to increase user understanding of the most sophisticated capabilities designed into HP software.
You might think of the COMMUNICATOR as a publication which can extend your awareness of HP 1000's to include that of
thousands of users worldwide as well as that of many HP engineers in Data Systems factories at Cupertino, California and
Grenoble, France.

To accompilish these goals, editors of the COMMUNICATOR actively seek technical articles from HP 1000 customers, HP
Systems Engineers in the Field, and Marketing and R&D Engineers in the factories. Technical articles from customers are most
highly valued because it is customers who are closest to real-world applications.

WIN AN HP-32E CALCULATOR!

Authoring a published article provides a uniquely satisfying and visible feeling of accomplishment. To provide a more tangible
benefit, however, HP gives away three free HP-32E hand-held calculators to Feature Article authors in each
COMMUNICATOR/1000 issue! Authors are divided into three categories. A calculator is awarded to the author of the best
Feature Article in each of the author categories. The three author categories are:

1. HP 1000 Customers;

2. HP field employees;

3. HP division employees not in the Data Systems Division Technical Marketing Dept.

Each author category is judged separately. A calculator prize will be awarded even if there is only one entry in an author
category.

Feature Articles are judged on the following bases: (1) quality of technical content; (2) level of interest to a wide spectrum of
COMMUNICATOR/1000 readers; (3) thoroughness with which subject is covered; and, (4) clarity of presentation.

What is a Feature Article? A Feature Article meets the following criteria:
1. lts topic is of general technical interest to COMMUNICATOR/1000 readers;
2. The topic falls into one of the following categories —

OPERATING SYSTEMS

DATA COMMUNICATIONS

INSTRUMENTATION

COMPUTATION
OPERATIONS MANAGEMENT

EDITOR’S DESK

3. The article covers at least two pages of the COMMUNICATOR/1000, exclusive of listings and illustrations (i.e., at least 1650
words).

There is a little fine print with regard to eligibility for receiving a calculator; it foliows. No individual author will be awarded more
than one calculator in a calendar year. In the case of multiple authors, the calculator will be awarded to the first listed author of
the winning article. An article which is part of a series will compete on its own merits with other articles in the issue. The total of
all articles in the series will not compete against the total of all articles in another series. Employees of Technical Marketing at
HP's Data Systems Division factory in Cupertino are not eligible to win a calculator.

All winners of calculators will be announced in the issue of the COMMUNICATOR/1000 in which their articles appear. Again, all
Feature Articles are judged by an impartial panel of three DSD Technical Marketing Engineers.

A SPECIAL DEAL IN THE OEM CORNER

When an HP 1000 OEM writes a Feature Article that is not only technically detailed and insightful but also application-oriented
as opposed to theoretical, then that OEM may ask that the article be included in THE OEM CORNER. A Feature Article included
in THE OEM CORNER may contain up to 150 words of pure product description as well as a picture or illustration of the OEM'S
product or its unique contribution. HP’s objective is twofold: (1) to promote awareness of the capabilities HP 1000 OEMs’
products among all HP 1000 users; and, (2) to publish an article of technical interest and depth.

IF YOU'RE PRESSED FOR TIME ...

If you are short of time, but still have that urge to express yourself technically, don't forget the COMMUNICATOR/1000 BIT
BUCKET. It's the perfect place for a short description of a routine you've written or an insight you've had.

THE MECHANICS OF SUBMITTING AN ARTICLE

If at all possible please submit an RTE File containing the text of your article recorded on a Minicartridge (preferrably) or on a
paper tape along with the line printer or typed copy of your article. This will help all of us to be more efficient. The Minicartridge
will be returned to you promptly. Please include your address and phone number along with your article.

All articles are subject to editorship and minor revisions. The author will be contacted if there is any question of changing the
information content. Articles requiring a major revision will be returned to the author with an explanatory note and suggestions
for change. We hope not to return any articles at all; if we do, we would like to work closely with the author to improve the article.

HP does, however, reserve the right to reject articles that are not technical or that are not of general interest to
COMMUNICATOR/1000 readers.

Please submit your COMMUNICATOR/1000 article to the following address:

Editor, COMMUNICATOR/1000
Data Systems Division
Hewlett-Packard Company
11000 Wolfe Road

Cupertino, California 95014
USA

The Editor looks forward to an exciting year of articles in the COMMUNICATOR/1000.
With best regards,

The Editor

7

EDITOR’S DESK

CORRECTIONS TO PREVIOUS ISSUES

Volume 1V, Issue Six of the Communicator/1000 included an article by Charles F. Fugee entitled “Documentation Enhance-
ment”. Mr. Fugee’s article discusses different methods of invoking the expanded and compressed print modes of the 263X line
printer family. The article also states that the same escape sequences can be sent to the 2608 line printer. The 2608 however,
has neither a compressed print mode nor an expanded mode and the RTE-IVB driver far the 2608 requires Exec control
requests (not escape sequences) to enable alternate print modes. Therefore, the documentation enhancements that Mr. Fugee
discusses apply only to the 263X family of printers, and not to the 2608.

Volume V, Issue One of the Communicator/1000 had an error in the article entitled “Designing a High-Performance Data-

Capture System” by Carl Reynolds. On page 43, the last line of FORTRAN code omitted the second of seven parameters. The
line should have appeared as follows:

CALL TMDFN(KEEP1,KEEP1,KEEP2,ITSNU, ITSNU,KEEP3, 1COMEN)

The editor of the Communicator apologizes for any inconvenience that may have been caused by these oversights.

EDITOR’S DESK

LETTERS TO THE EDITOR

Dear Editor,

in the Communicator/1000 Volume 1V, Issue 3 was an article entitled "Generating RTE for Pleasure and Performance”. This
article was excellent with many ideas that we have been forced to learn through experience.

The section with the title "Reduce the Number of Tracks Your System Requires” prompts me to write. Although the suggestion
of loading permanent programs on-line after the System Generation is a good one (and at times necessary since RT4GN has

finite table areas), a permanent program loaded later is assigned a whole track and as a result, this method actually uses more
disc space.

Atechnique that I evolved about four years ago to solve the problem is as follows. | determined the NAM's of all members of the
non- essential libraries. In the parameter setting portion of the RT4GN answer file, | now set all these NAM's to type 8
(subroutine only required at RT4GN time). This technique works well and as stated in the article greatly reduces LOADR time.

Yours truly,

Robert J. Meldrum
Telesat Canada

Dear Mr. Meldrum,
Thank you for the additional suggestion to Mr. Kurtz’s article.
Sincerely,

The Editor

EDITOR’S DESK

Dear Editor,

Mr. Liu's program to print the contents of a 264X terminal screen (Volume IV, Issue 3, pp. 15-17) works great for my 2645 and
2647 terminals. However, whenever | tried it on my 2640B terminal, the message “1B” appeared on the screen, and the

keyboard locked. The terminal was restored to normal operation after | OFed the program from another terminal. Any
explanation?

Sincerely,

Ronald F. Lee
Gulf Qil Chemicals Company

Dear Mr. Lee,

Escape commands on the 264X line of terminals are upward-compatible to terminals introduced within the family. However,
those introduced with a later member of the family are not backward-compatible. The command <ESC>&k1B is used by Mr.
Liu to enable block mode on the terminal. This command unfortunately is not available on the 2640B. The message “1B" is
caused by the terminal entering command mode upon receipt of the escape character and returning to display mode upon
detection of an invalid command (after the lower-case k).
Sorry for any confusion caused by the phrase 264X terminal.

Sincerely,

The Editor

10

EDITOR’S DESK

Dear Editor,

| have to modify some system programs in the RTE-IV operating system. | would like to know the purpose of two entry points,
$PVCN and $BMON.

Sincerely,
Jaromir Vostry
Institute of Physics

Charles University
Prague, Czechoslovakia

Dear Mr. Vostry,

$PVCN is an entry point in Table Area 1. It is used as a level count for privileged and reentrant calls. If entering a "privileged”
mode in $LIBR, $PVCN is incremented from zero to one. If $LIBR is entered again, $PVCN will indicate how deep reentrancy
has gone. Exit via $LIBX will set $PVCN from non-zero to zero upon return to “non-privileged” mode.

$BMON is a flag in %BMPG1. The value of $BMON is equal to one in RTE-IVB systems and zero in RTE-II, RTE-lll and RTE-IVA
systems.

Sincerely,

The Editor

11

BIT BUCKET

FORWARD FILE BY FILE NUMBER

by Keith J. Kunz/HP Salt Lake City

You want to get to the ninth file on that mag tape or mini- cartridge. You find the 'CN,lu,FF command only to discover that you
must type nine of them to get where you want to go! If you are lazy you put the command in a softkey but if you are clever you
build the following transfer file called "CN'.

:SE£,16,26,3G,00
:CN,16G,26

:CA,4,4G,+,1
:I1F,3G,NE,4G,-3

Now you simply type :TR,CN,Iu,FF,x where lu is the logical unit of the mag tape or minicartridge and x is the index of the file you
want positioned. No more counting CN commands!

Idea Credit - Harry Geary - H. E. Cramer/Salt Lake City

12

BIT BUCKET

GET MORE OUT OF YOUR DISC WITH THE SPARE CARTRIDGE POOL AND
TAPE

by Jeff Deakin/Lever & Kitchen, Australia

The files in most systems can be classified into a number of sets containing files that are related in some way. For example, the
files comprising FORTRAN 4X could form one group, and those comprising IMAGE another group. Very frequently, such
groups are stored on the disc in a fairly disorganised manner.

One technigue for maintaining an ordered system is to create a “large” number of pool cartridges which can be dynamically
allocated and dismounted from the system. This can be done through the use of the :AC,crn and :DC,cr,RR commands. In
conjunction with magnetic tape backup {(using WRITT), this enables a highly organised system which can actually utilise far
more space than exists on the disc. Prior to dismounting, each cartridge should be backed up onto tape. Later, when
re-allocating, run READT to overlay the disc. Note that both READT and WRITT have the capability to move directory tracks if
different sized cartridges are used for a given set of files.

A major disadvantage of this technique is that all information about UNMOUNTED cartridges in the spare cartridge pool is

unavailable since such cartridges do not appear on the cartridge list. To make effective use of the spare cartridge pool, the user
needs to know:

1. which cartridges are free, and
2. how many tracks each has.

With a view to providing this information, the program POOLS has been written, and is listed below. The program obtains the
pool cartridge list from the accounts file, and compares it with the current cartridge list to see which pool LU's are not mounted.
For each spare LU, it then fetches the subchannel number from the Device Reference Table as well as the associated number
of tracks from $T332. The output has the form:

1 Spare out of 8 Pool Disc LUs

LU #Tracks
25 200

13

BIT BUCKET

FTN4X,L,Q

10
11
12

13
14
15

18
19
20

PROGRAM POOLS(3),LIST POOL CARTRIDGES
INTEGER DCB(144) ,ABUF(128),NAM(3),ISTAT(125) ,SPARE(40)
DATA NAM/25500B,41503B,52041B/,15C/103066B/,1CR/-3/,10PTN/1B/
OBTAIN POOL LIST
CALL OPEN(DCB, IERR,NAM,I0PTN,ISC,ICR)
IFCIERR.GE.0) GO TO 1
WRITEC1,19) IERR
GO TO 18
CALL READF(DCB, IERR,ABUF,128,LEN,1) 'READ HEADER IN ACCOUNT FILE
IFCIERR.GE.0) GO TO 2
WRITEC1,20) IERR
GO TO 18
1POOL=ABUF(3) !'DISC POOL ADDRESS
CALL READF(DCB,IERR,ABUF,128,LEN,IPOOL) !READ POOL LU’S
IFCIERR.GE.0) GO TO 3
WRITEC1,20) IERR
GO TO 18
CALL CLOSE(DCB)
DO 4 I=1,128
IFCABUF(I).EQ.0) GO TO S
NPOOLS=1-1
NP=0
IF(NPOOLS.EQ.0) GO TO 11
CALL FSTATCISTAT,125,0,1) !'GET CARTRIDGE LIST
CHECK EACH POOL LU TO SEE IF ALLOCATED
DO 10 I=1,NPOOLS
LUPOOL=ABUFCI)
DO 6 J=1,125,4
IFCISTATCJ).EQ.0) GO TO 6
IFCISTATCJ) .EQ.LUPOOL) GO TO 10
CONTINUE
NP=NP+1
SPARE(NP)=LUPDOL
CONTINUE
WRITEC1,12) NP,NPOOLS
FORMAT(I4,* SPARE OUT OF",I3," POOL DISC LUS")
IF(NP.GT.0) THEN
WRITEC1,14)
DO 13 I=1,NP
CALL SUBCH(SPARECI),ISUBCH,IEQT) 'GET SUBCHANNEL
CALL TRAKCISUBCH,ITRK) !GET LAST TRACK
WRITEC1,15) SPARECI),ITRK

CONTINUE
FORMATC(* LU #TRACKS*")
FORMAT(3X,13,17)

END IF

CONTINUE

FORMAT("OPEN ERROR",I4)
FORMAT("READ ERROR®",I4)
END

14

BIT BUCKET

SUBROUTINE SUBCH(LU,ISUBCH,IEQT),GET SUBCH & EQT # OF LU
* RETURNS SUBCHANNEL # & EQT # OF DISC LU
IDRT=IGET(1652B)+LU-1 'DRT ADDRESS OF LU
ID=IGETCIDRT) !DRT ENTRY
IEQT=IANDCID,77B) 'EQT #
ISUBCH=ISHFTCID,-11) 'GET SUBCHANNEL #
* IS IT A DISC SUBCHANNEL?
IQT=IGET(1650B)+15+(IEQT-1)+4 'ADDRESS OF ENTRY IN EQT WORD S
IQT=IGETCIQT)
IQT=1ANDCIQT,37400B) /256
IFCIQT.NE.32B) THEN
[SUBCH=0
[EQT=0
ENDIF
RETURN
END
ENDs

ASMB, L
NAM TRAK Get #tracks from $TB32
ENT TRAK
EXT $TB32,.ENTR

SUBCH BSS 1

TRAKS BSS 1

TRAK NOP
JSB .ENTR
DEF SUBCH Address of subchannel
LDA SUBCH,I Get subchannel

MPY =DS Form address
ADA =D4 in $TB32
XAX store in index reg X
LAX TB32,]1 Get word in $TB32
* indexed by X

STA TRAKS,I Save in TRAKS
JMP TRAK, I Exit
TB32 DEF $TB32 Address of $TB32
END
ENDs

15

BIT BUCKET

SYSTEM IDENTIFIER FOR RTE

by Dan Barnes/HP Data Systems Division

Do you need a way to identify which system RTE is running on? Do you have multipie systems that are configured similarly but
require different adjustments for each one, such as initializing the DS node? Would it help if you could get a number indicating
which hardware configuration RTE is running on? This article presents a program (SYSNO) that retrieves a system number and
suggests a way to use that number.

I have four systems linked with DS/1000-1V (labeled nodes 1-4). RTE needs to know which system it is running on to initialize the
DS subsystem with the correct node number. The program SYSNO will retrieve a system number from 010 7 (I use 1to 4). Using
the IF statement in FMGR | can transfer control to the statement that will initialize DS with the correct node number.

:RU,SYSNO Get the system number
:CA,8,1P Transfer it to the global 86
:IF,8G,NE,1,2 Is this system 1?
:RU,DINIT,«DINI1 Yes, initialize DS as node 1
:1F,8G,EQ,8G,10 Skip the remaining tests
:IF,8G,NE, 2,2 Is this system 2?
:RU,DINIT,#DINI2 Yes, initialize DS as node 2
.1F,8G,EGQ,8G,7 Skip the remaining tests
:1F,86G,NE, 3,2 Is this system 3?
:RU,DINIT,#DINI3 Yes, initialize DS as node 3
:1F,86,EQ,8G,4 Skip the remaining tests
:1F,8G,NE, 4,2 Is this system 4?
:RU,DINIT,+DINI4 Yes, initialize DS as node 4
:1F,8G,EQ,8G,1 Skip the error message

:DP,Unable to initialize D5/1000. Call the system manager

+DINIA1 initializes the systemas node 1
#DINI2 initializes the systemas node 2
+DINI3 initializes the systemas node 3
+DINI4 initializes the systemas node 4

The program SYSNO requires a 129798 Dual-port I/0 extender. The /O bus switch feature is used to hold the system number.

[lock my /O extender to port A and configure the 1/O bus switch to one of eight select codes (70B through 77B). | use select
codes 71B through 74B to indicate systems 1 through 4. A SFC is performed on all eight select codes. The se!gct code thgt
causes a skip condition indicates which system is which (e.g. select code 74B is system 4). The value O through 7 is returned in

the global 1P.

16

BIT BUCKET

ASMB,R,L
NAM SYSNO,3,1 GET SYSTEM NUMBER REV 1.0 <810710.1644>

sl
sal B EOLRDRIDRORDRDORLREDRDORORERARRNRRRRE R ERRPNL LR RNl PNt ntitlgs,

#s! NAME: SYSNO lss
aal las
+s+! PURPOSE: TO RETURN THE SYSTEM # (0-7) AND THE SYSTEM ID. less
sl Tas
s#t ENTRY SYSNO les
«%! POINTS: les
aul laas
##1 CALLING RU,SYSNO lss
#»0 SEQUENCE: Tan
walt fun
#s! PARAMETERS: NONE las
*al las
#»! RESULT: SYSTEM #» IN 1P. Tas
wat SYSTEM ID IN 2P. Tas
#at ZERO IN 3P, 4P AND 5P Tas
*al las
#»! ERRORS: RETURNED VALUE OF -1 (IN 1P) INDICATES IT COULD NOT lae
wal DETERMINE WHICH OF EIGHT SYSTEMS IT WAS RUN ON. IT Tas
#al MIGHT MEAN YOU DO NOT HAVE AN 1,0 EXTENDER HOOKED UP Tas
LE2 OR YOUR 1/0 EXTENDER HAS A PROBLEM. Tase
nt las
#«! EXTERNAL $LIBR,$LIBX,EXEC,PRTN Tas
#«! REFERENCES: Ten
*ul faa
#+! METHOD: THE EIGHT SELECT CODES (70B THROUGH 77B) USED BY THE lTes
*al 12797B 1/0 EXTENDER FOR SWITCHING THE 1/0 EXTENDER Tan
#al BETWEEN TWO CPU’S IS USED AS A SYSTEM IDENTIFIER. LR
a+al lawn
#al A SFC SC IS PERFORMED ON ALL 8 SELECT CODES. THE ONE ten
#al SELECT CODE THAT DOES CAUSE A SKIP IS ASSUMED TO Tan
el INDICATE THE SYSTEM # (I.E. SC 74B INDICATES SYSTEM Tes
LE #4). IF MORE THAN ONE SELECT CODE CAUSES A SKIP OR Tas
sl NONE OF THE SELECT CODES CAUSES A SKIP, AN ERROR IS Tan
#al ASSUMED AND A VALUE OF -1 IS RETURNED IN GLOBAL .1P. las
el THE SYSTEM ID IS RETURNED IN 2P, IT WILL INDICATE Tes
*al WHICH SELECT CODES CAUSED A SKIP CONDITION (WERE las
#al CONFIGURED) . Vase
*al las
#+t NOTES: YOU SHOULD NOT USE THIS PROGRAM IF YOU ARE SHARING A Tase
#al 1/0 EXTENDER BETWEEN TWO CPU’S. MAKE SURE YOUR Van
*al EXTENDER IS LOCKED TO THE PORT YOU ARE USING. THIS lan
LE PROGRAM IS BEING RUN ON SYSTEMS LQCKED TO PORT A. LR}
*ul Tas
##! ASSUMPTION: THE SELECT CODES NOT CONFIGURED WILL NOT CAUSE A SKIP. Tan
#al THE SELECT CODE CONFIGURED WILL CAUSE A SKIP. Tas
»ul Lan
#+! PARAMETERS SYSTEM # - A VALUE FROM 0 TO 7 (IN A 16 BIT WORD) Tas
##! RETURNED: INDICATING WHAT SYSTEM SYSNO IS BEING RUN ON. Tas
#ul RETURNED IN GLOBAL 1P. Tasn
*al las
!l SYSTEM ID - A VALUE INDICATING WHICH SELECT CODES Tas
#al CAUSED A SKIP TO OGCCUR IN RESPONSE TG A SFC SC tos
sl INSTRUCTION ON EACH SELECT CODE. STATUS OF SELECT Taw
#al CODES 70B THROUGH 77B ARE RETURNED IN BITS 0 THROUGH 7 LI
#ul OF GLOBAL 2P. BITS 8 THROUGH 15 WILL BE SET TO ZEROS. Taw
!l GLOBALS 3P, 4P AND 5P ARE SET TO ZERO. LR
wal Lasn
N NN NN NN RN NN NN NN R NN RN NN NN NN
*ul

17

BIT BUCKET

waul
wnl
wal
wal
aal
*nl
*ul
wul
aal
sl
anl
aal
wal
*al
*ud
vl
anl
wal
aal
vl
wal
wal
antl

BITO
BIT1
BIT2
BIT3
BIT4
BITS
BITe
BIT?7

COUNT

DEFS

DEFTB
EXIT
KT
mMD8
PARM3
PARM4
PARMS
SC70
SC71
SC72
SC73
SC74
SC75
SC76
SC77

SYS#

SYSID VARIABLE HOLDING THE SYSTEM ID TO BE PASSED BACK IN GLOBAL 2P.

MASK USED TO ZERO QUT BITS 8 THROUGH 15 OF THE SYSTEM ID
BEFORE IT IS RETURNED IN 2P,

USED TO INDICATE (IN THE ID) SELECT CODE 70B WAS CONFIGURED.
USED TO INDICATE (IN THE ID)> SELECT CODE 71B WAS CONFIGURED.
USED TO INDICATE (IN THE ID) SELECT CODE 72B WAS CONFIGURED.
USED TO INDICATE (IN THE ID) SELECT CODE 73B WAS CONFIGURED.
USED TO INDICATE C(IN THE ID) SELECT CODE 74B WAS CONFIGURED.
USED TO INDICATE C(IN THE ID) SELECT CODE 75B WAS CONFIGURED.
USED TO INDICATE C(IN THE ID) SELECT CODE 76B WAS CONFIGURED.
USED TO INDICATE C(IN THE ID) SELECT CODE 77B WAS CONFIGURED.
VARIABLE USED TO HOLD THE NUMBER OF SC‘S THE RESPONDED
(HOPEFULLY ONLY ONE) AND USED TO CONVERT THE SYSID TO THE
SYSTEM # (0-7).

VARIABLE USED AS A POINTER TO INDEX THROUGH THE TABLE OF
SELECT CODE CONFIGURED INDICATERS.

POINTER USED TO INITIALIZE THE VARIABLE DEFS.

USED TO INDICATE TO RETURN TO THE SYSTEM.

VARIABLE USED AS A LOOP COUNTER.

CONSTANT OF -8 USED TO INITIALIZE THE LOOP COUNTER KT.
DUMMY VARIABLE FOR PASSING INFORMATION TO GLOBAL 3P.
DUMMY VARIABLE FOR PASSING IN#ORMATIUN TO GLOBAL 4P,
DUMMY VARIABLE FOR PASSING INFORMATION TO GLOBAL 5P.
EQUATE SETTING UP THE SELECT CODE 70B.

EQUATE SETTING UP THE SELECT CODE 71B.

EQUATE SETTING UP THE SELECT CODE 72B.

EQUATE SETTING UP THE SELECT CODE 73B.

EQUATE SETTING UP THE SELECT CODE 74B.

EQUATE SETTING UP THE SELECT CODE 75B.

EQUATE SETTING UP THE SELECT CODE 76B.

EQUATE SETTING UP THE SELECT CODE 77B.

VARIABLE HOLDING THE SYSTEM » TO BE PASSED BACK IN GLOBAL 1P.

Taw
Tas
lan
Tas
Tas
Lan
lan
laas
taa
las
lan
lLasn
lan
las
Lan
lan
tasn
lan
las
lan
laan
tawn
tagn
las
Lan
lLasn
IEX}
laas
1an
[E X
LX)
laas
las
las
Yaa
Lasn
s
Lasn
Taa
tawn
laas
taa
las
laa
lan
las
Taw
las
las
tan
las

18

BIT BUCKET

SC70
SC71

SC72
SC73
SC74
SC7S
SC76
SC77

SYSNOD

* % % % & * *

LDDOP1

EXT
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

JSB
NOP

CLA
SFC
10R
SFC
[OR
SFC
I0R
SFC
10R
SFC
I0R
SFC
I0R
SFC
I0R
SFC
I0R
CMA
AND
STA
JSB
DEF
DEF

$LIBR,$LIBX,EXEC,PRTN

0

1

70B
71B
72B
73B
74B
75B
768B
77B

$LIBR

SC70
BITO
SC71

BIT1

SC72
BIT2
SC73
BIT3
SC74
BIT4
SC7S
BITS
SC76
BIT6
SC77
BIT?7

B377
SYSID
$L1BX
*+1
*+1

SC70-SC77 ARE THE SELECT CODES TO

BE CHECKED

TURN OFF MEMORY PROTECT AND
THE INTERRUPT SYSTEM

BY CLEARING THE A REG AND THEN
TURNING ON A BITS REPRESENTING
THE SELECT CODES THAT DD NOT

CAUSE A SKIP (BITS 0-7) AND THEN

COMPLEMENTING THE RESULT. THE
ONE BIT REMAINING SET INDICATES

WHICH SELECT CODE IS CONFIGURED.
SELECT CODE 74B WOULD BE INDICATED
BY BIT 4 BEING SET AND ALL OTHERS

BEING CLEAR

ZERO BITS 8-15

SAVE THE ID FOR LATER PROCESSING

TURN MEMORY PROTECT AND THE
INTERRUPT SYSTEM BACK ON

CHECK TO SEE IF MORE THAN ONE BIT IS ON OR
IF NONE OF THE BITS ARE ON. IF MORE THAN
ONE IS ON OR NONE ARE ON IT MEANS THAT

NONE OR MQORE THAN ONE SELECT CODE RESPONDED
THIS IS AN ERROR.

LDB
LDA
STA
LDA
STA
CLA
STA

SZB,

JMP

LDA DEFS,1

CPA
1sZ
1Sz
Isz
JMP
LDA

CMA,

1sZ
JMP

SYSID
MD8
KT
DEFTB
DEFS

COUNT
RSS
ERROR

B
COUNT
DEFS
KT
LOOP1
COUNT
INA

A
ERROR

GET THE VALUE TO BE CHECKED
SET THE COUNTER TO -8

INITIALIZE THE TABLE POINTER

IF THE SYSTEM ID IS ZERO

THIS IS AN ERROR

GET A TABLE ENTRY

DOES IS MATCH

YES, BUMP THE COUNTER BY ONE
BUMP THE TABLE POINTER

BUMP THE LOOP COUNTER

IF NOT ZERO GO LOOP

SEE IF THE COUNT IS 1

IF IT IS NOT THEN THERE IS AN
ERROR (MULTIPLE SELECT CODES
RESPONDED INSTEAD OF ONLY ONE)

19

BIT BUCKET

* & * %

LooP2

* & % x

OVER2

QuUIT

ERROR

*
EXIT
SYS#
SYSID
PARM3
PARM4
PARMS
BITO
BIT1
BIT2
BIT3
BIT4
BITS
BITe
BIT?
MD8

DEFTB
DEFS
COUNT
B377

CONVERT THE SYSTEM ID TO A NUMBER FROM 0 TO 7

TO BE PASSED BACK

LDB
LDA
STA
LDA
STA
CLA
STA
LDA
CPA
JMP
I1sZ
152
1sZ
JMP

JMP
LDA
STA
JSB
DEF
DEF
JSB
DEF
DEF
HLT
CMA
STA
JMP

DEC
DEC
DEC
DEC
DEC
DEC
ocT
ocT
ocTt
ocT
ocT
ocT
ocT
ocT
DEC
BSS
DEF
DEF
BSS
act
END

SYSID
MD8
KT
DEFTB
DEFS

COUNT
DEFS, I
B
OVERZ2
COUNT
DEFS
KT
LooP2

ERROR
COUNT
SYS#
PRTN
2
SYS#
EXEC
“+ 2
EXIT
0

SYS#
QuUIT

SYSNO

IN GLOBAL 1P

GET THE VALUE TO BE CHECKED
SET. THE COUNTER TO -8

INITIALIZE THE TABLE POINTER

INITIALIZE THE CONVERTER

GET A TABLE ENTRY
DOES IS MATCH
YES GET QUT
BUMP THE CONVERTER COUNTER
BUMP THE TABLE PDINTER
BUMP THE LOOP COUNTER

IF NOT ZERO GO LOOP

IF YQU GO THROUGH THE LOOP 8 TIMES IT MEANS THAT MORE
THAN ONE BIT WAS SET.

THIS SHOULD NEVER HAPPEN

IF YOU GOT HERE IT IS AN ERROR
PUT THE CONVERTED VALUE IN

SYS# TO BE PASSED BACK IN 1P
PASS THE SYSTEM # AND SYSTEM ID
BACK TO FMGXX

RETURN TQ THE SYSTEM

HALT IN CASE THE EXIT FAILS
SET THE ERROR VALUE OF -1 IN SYS#
TO BE RETURNED IN THE GLOBAL 1P

RETURN

PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER

SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT

TO SYSTEM PARAMETER FOR EXEC

CODE
CODE
CODE
CabptE
CODE
CODE
CODE
CODE

TO BE
T0 BE
T0 BE
T0 BE
TO BE

70B
71B
72B
73B
74B
75B
76B
77B

RETURNED IN GLOBAL 1P
RETURNED IN GLOBAL 2P
RETURNED IN GLOBAL 3P
RETURNED IN GLOBAL 4P
RETURNED IN GLOBAL SP
INDICATER (BIT 0)
INDICATER (BIT 1)
INDICATER (BIT 2)
INDICATER (BIT 3)
INDICATER (BIT 4)
INDICATER (BIT 5)
INDICATER (BIT &)
INDICATER (BIT 7)

LOOP COUNTER INITIALIZER

LOOP COUNTER

TABLE POINTER INITIALIZER
TABLE POINTER (SETUP FROM DEFTB)

MASK QUT BITS 8-15

20

OPERATING SYSTEMS

MULTI-STATION TRAPS WITH BASIC/1000D

by Marty Silver/HP Data Systems Division
INTRODUCTION

Multi-Station traps are used on systems where more than one copy of BASIC is running concurrently and each copy of BASIC
needs its own trap table. Multi-Station traps are most commonly used on automatic test systems, where BASIC is used as a test
programming language. A copy of the trap table is needed for each copy of BASIC that is executing on the system.

With Multi-Station traps a test operator can be conducting a test at the test station terminal, while test programmers can be
doing test program development at program development terminals. Each user has his own copy of BASIC and his own trap
table. The copies of BASIC can be executing concurrently thereby sharing system resources.

Multi-station test systems are test systems with one computer controlling more than one separate test station. The Multi-
Terminal Interface Software (MTIS) provides the multi-station test system capability, as well as the multi-station trap capability.
Once a multi-station test system has been setup with multi-station traps, device interrupts from each of the separate test
stations can be serviced independent of the other test stations.

For example, suppose a test program executing on test station one of the test system has been setup in the following manner to
handle interrupts for HP 9411A Switch Controller.

100TRAP 11 GOSUB 7000
110CALL SRQ(L9,16,"DVINT™)

7000REM TRAP SERVICE ROUTINE FOR SWITCH CONTROLLER
QéQSEND

If the switch controller interrupts, the BASIC program needs to be notified on the interrupt. This occurs through a series of steps,
which are listed below:

1. DVR37 takes the interrupt and begans to process it. It finds the name of the device interrupt program, DVINT, in the EQT
extension area for the switch controller and schedules it.

2. DVINT finds the station number containing the interrupting switch controlier and the trap number assigned to the switch
controller. It then sets the assigned trap cell in the trap table for that test station.

3. BASIC checks the trap table before the execution of every statement. It finds the trap cell set, so it starts executing the trap
service routine starting at statement 7000.

4. Once the trap service routine is finished executing, BASIC resumes executing the statements of the program at the point of
the interrupt.

The following sections explain the software modules involved in communicating the hardware interrupt to the BASIC test
program.

21

OPERATING SYSTEMS

DESCRIPTION OF THE MULTI-STATION TRAP SOFTWARE MODULES

Traps are used to interrupt or change the course of BASIC program execution, e.g., to signal some asynchronous data, or to
indicate an error condition, or an operator command. BASIC checks the trap table between execution of each statement to
determine whether any trap has been set. Multi-Station traps are implemented using several separate software modules:
$TRPL5, %IB4A, %DSCHD, %DVINS, and &TRTBS. $TRPL5, %DVINS, and &TRTBS are part of the HP 92425C Multi-Terminal
Interface Software. The remaining two modules are included with the HP 92068A RTE-IVB Operating System.

The trap library, $TRPLS, contains the trap setting subroutine (TRPNT), the multi-station trap table (TRTBL), and the trap
program (TRAP). The trap library replaces the library normally used in the Multi-User Real-Time BASIC, %BAMLB. The HP-IB
library, %IB4A, contains the subroutine (SRQ) used to set up the alarm program name into the EQT extension for HP-1B devices.
Each of the multi-station trap software modules will be described in the following sections.

THE MULTI-STATION TRAP TABLE

The multi-station trap table, TRTBL, is a trap table that is configured to allow up to four BASIC programs to execute at different
stations simultaneously. Each copy of BASIC will have a station trap table with sixteen trap cells. Included with the sixteen trap
cells are four words used by the TRAP program for control purposes. The first word is used to connect a trap table to a copy of
BASIC, the second word is not used, the third word is used to hold the priority of the current interrupt, and the last word is used
as a flag to specify whether or not there is a need to search the sixteen trap cells. The general form of the trap table is shown
following:

ASMB,Q,C
NAM TRTBS,30 92425-1X069 REV.2001 791130¢< 4 STN, 16 TRAPS >>

*

ENT TABLS$,STN$,TRTBL,TREND,SRQ.T

SUP
#*
B o e
» THE STRUCTURE OF THE TRAP TABLE FOR EACH STATION 1S BELOW
#*
. WRD FUNCTION
. - Ll
» 1 STATION # FOR THIS TRAP BLOCK
. 2 NOT USED CURRENTLY
. 3 PRIORITY OF CURRENT INTERRUPT (1 TO 16, 1=HI)
. 4 FLAG not equal to 0, SEARCH TABLE BEFORE EVERY LINE
. equal to 0, DON‘T SEARCH TABLE BEFORE EVERY LINE
#*
. 5 TRAP CELLS:
» through BIT 15 1=TRAP SET/ 0=CLEAR
. 20 BIT 14 1=TRAP IN PROCESS/ 0=CLEAR
. BIT 13-0 SEQUENCE NUMBER, 0 IMPLIES NOT ENABLED
#*
B o e e e e
*
TABL$ DEC 16 16 ENTRIES/STATION
STN$ DEC 20 TOTAL SIZE OF A STATION’S TABLE
SRQ.T EQU » DUMMY ENTRY POINT FOR HPIB SUB. DON‘T USE!
TRTBL DEF s+1
REP 80
NOP
TREND DEF +
END

22

OPERATING SYSTEMS

The entries in the trap table listing are explained below.

TABLS

STNS

SRQ.T

TRTBL

REP X

TREND

This entry determines the number of trap cells per station. All stations must have the same number of trap cells.

This entry is ALWAYS four more than the number of trap cells per station. Four words are used for control
purposes.

This entry point is used by the HP-1B subroutine SRQSN(SESLU,TRAP) for indexing into the trap table. This routine
is not used on systems with multi-station traps, so the entry point is not used on systems with multi-station traps.

Beginning address of the trap table.

This entry specifies the actual size of the table. The value of X is determined by multiplying the value in STN$ by
the total number of copies of BASIC executing simultaneously.

Ending address of the trap table.

The four control words for each station trap table are described below.

Word 1

Word 2

Word 3

Word 4

Trap Cells

This entry is used for connecting the station trap table to a copy of BASIC. The station number is the same as the
system logical unit of the terminal the user is logged on to.

This entry is not used at this time.

This word is used to hold the priority of the current interrupt. When the trap program finds a station trap cell set, it
enters that trap cell number into this word.

The search table flag is stored in this word. When this word contains a zero the station trap table is not searched.
This word will contain a non-zero value when it is necessary for the trap program to search the station trap table.

Each trap cell (see Figure 1) has three separate parts. Bit fifteen is used to signify the state of the trap cell, and bit
fourteen is used to signify whether or not the trap service routine is in process or not. The rest of the fourteen bits
are used to hold the first statement number of the trap service routine.

15 14 0
8IT 15 1 = TRAP SET 0 = TRAP CLEAR
8IT 14 1 = TRAP IN PROC 0 = TRAP NOT IN PROC
8IT 13-0 SEQ # 0 = NOT ENABLED

Figure 1: Trap Cell

The trap table (see Figure 2) shown is the default table included in the trap library. If the number of trap cells per station trap
table or the number of station trap tables needs to be changed, the source for the trap table is provided with the HP 92425C
product. The source file is & TRTBS. To change the number of traps per station, change the TABLS$ entry, then add four to the
new TABL$ value and use this value for the STN$ entry. Finally, update the value in the REP statement. To change the number of
station trap tables or the number of copies of BASIC that can execute simultaneously, change the REP statement. After the trap
table has been assembled, it must be relocated following relocation of the trap library during the system generation. Relocating
the modified trap table after the trap library during the system generation is going to cause one GEN ERR 08 error because of

the duplicate module and five GEN ERR 05 errors because of duplicate entry points. Twenty is the maximum number of trap
cells per station.

23

OPERATING SYSTEMS

FUNCTION

TABLS 16
STNS 20
TATBL * 4
1 STA # FOR CURR TRAP BLOCK
2 NOT USED CURRENTLY
3 PRIORITY OF CURR INT (1 TO 16) (1 = HI)
. FLag O SEARCH TBL BEFORE EVERY LINE
= 0 DON'T SEARCH TBL BEFORE EVERY LINE
5 TRAP CELLS
6
. .
. .
. .
8
19
20
1 STA # FOR CURR TRAP BLOCK
2 NOT USED CURRENTLY
3 PRIORITY OF CURR INT (1 TO 16) (1 = HI)
4 FLag * O SEARCH TBL BEFORE EVERY LINE
= 0 DON'T SEARCH TBL BEFORE EVERY LINE
5 TRAP CELLS
sl
. .
. .
. .
18
19
20
1 STA # FOR CURR TRAP BLOCK
2 NOT USED CURRENTLY
3 PRIORITY OF CURR INT (1 TO 16) {1 = HI)
" FLag * O SEARCH TBL BEFORE EVERY LINE
= 0 DON'T SEARCH TBL BEFORE EVERY LINE
5 TRAP CELLS
6
. .
. .
. .
18
19
20
1 STA # FOR CURR TRAP BLOCK
2 NOT USED CURRENTLY
3 PRIORITY OF CURRA INT (1 TO 16) (1 = HI)
4 FLaG * 0 SEAACH TBL BEFORE EVERY LINE

0 DON'T SEARCH TBL BEFORE EVERY LINE

TRAP CELLS

20

TREND

Figure 2: Default Multi-Station Trap Table

24

«

>

L

,

STATION
TRAP
TABLE

STATION
TRAP
TABLE

STATION
TRAP
TABLE

STATION
TRAP
TABLE

OPERATING SYSTEMS

THE TRAP PROGRAM

The trap program, TRAP, is called from the BASIC interpreter for all trap table processing. TRAP performs five different
operations on the trap table. The user can use the BASIC TRAP statement to specify a particular operation on the trap table.
This operation is to set up a trap cell to handle real time interrupts. The TRAP statement is the only way a programmer can
specify to BASIC to call the TRAP program. The other four operations of the trap program are inherent in the BASIC interpreter,
and are transparent to the user.

The first operation of the trap program is to initialize a station trap table at the beginning of the program execution phase. When
the BASIC RUN command is entered, the BASIC interpreter calls the trap program in the following manner.

LDA 1 DECIMAL ONE INDICATES AN INITIALIZE REQUEST
JSB TRAP

JMP ERROR ERROR RETURN, NOT USED WITH THIS CALL

RETURN IF B REGISTER CONTAINS MINUS ONE, IT MEANS NONE

OF THE STATION TRAP TABLES WERE AVAILABLE

If one of the station trap tables is available (the first control word of the station trap table containing a zero), the trap program will
first claim the table by putting the station number (terminal system logical unit number) in the first word of the table (see Figure
3) and the number of trap cells plus one in the third word. The trap program will initialize the station trap table by putting zeros in
the remainder of the words.

WORD FUNCTION

1 STATION # FOR CURRENT TRAP BLOCK

CONTROL

3 17 WORDS
4 0
<

TRAP
CELLS

20 ofo o |16

Figure 3. Trap Table Just initialized

If the trap program returns a minus one in the B register from an initialization request, the BASIC interpreter outputs a trap table
full message to the station terminal. This case will occur when more copies of BASIC are trying to execute simultaneously than
there are station trap tables available. This means if you plan to have more than four copies of BASIC executing programs
simultaneously, you need to modify the trap table to increase the number of station trap tables.

25

OPERATING SYSTEMS

The BASIC TRAP statement, shown below, is used to associate a task with a trap cell.

TRAP 8 GOSUB 8000

The TRAP statement associates the task (trap service routine) starting at statement number 8000 with station trap cell number 8
(see Figure 4). When BASIC executes the TRAP statement it calls the trap program in the following manner.

LDA -TRP MINUS THE TRAP NUMBER

LDB STMT STATEMENT NUMBER SPECIFIED IN TRAP STATEMENT
JSB TRAP

JMP ERROR ERROR RETURN

RETURN NORMAL RETURN

The trap program makes sure a valid trap number and a valid statement number were specified in the TRAP statement. The
statement number specified in the TRAP statement cannot be used in more than one station trap cell. Each station trap cell must
have its own unique statement number. Specifying a statement number already used in another station trap cell would cause
the trap program to exit through the error path. The statement number specified is put into the lower bits (bits 0-13) of the station
trap cell specified in the TRAP statement. The search table flag is set to a non-zero value, so the station trap table is searched
before the execution of the next program statement.

WORD FUNCTION
1 STATION # FOR CURRENT TRAP BLOCK 1
2 0
CONTROL
3 7 WORDS
4 SEARCH TABLE FLAG # 0

12 OIOl 8000 |8

TRAP
CELLS

20 0 0 0 |16

Figure 4. Trap Table After BASIC Trap Statement

The most often performed operation of the trap program is to check the station trap table before executing each statement in
the BASIC program. The trap program checks to see if any of the trap cells have been set. A trap cell is set when bit fifteen of
the trap cell is one. The trap program performs this operation when called in the following manner from BASIC.

LDA -1000 MEANS TO CHECK THE STATION TRAP TABLE

LDB PTR POINTER (PTRY TO NEXT STATEMENT TO BE EXECUTED
JSB TRAP

JMP ERR ERROR RETURN

RETURN NORMAL RETURN

26

OPERATING SYSTEMS

The trap program first finds the station trap table, which was initialized at the beginning of the execution phase. It checks the
search table flag, which is contained in the fourth control word. If the search table flag is zero, the trap program does not check
the trap cells. The trap program returns the following values to BASIC specifying the program is not to be interrupted.

® A register contains a minus one (—1)
® B register contains the address of the statement to be executed next

The trap program will return the same values shown above to BASIC if the search table flag is set, and none of the trap cells
have been set. Before the trap program returns to BASIC, it clears the search table flag. This way time will not be wasted

searching the table between every BASIC statement until a trap cell has been set (by the trap setting program TRPNT) or the
BASIC TRAP statement is executed.

WORD FUNCTION
\
1 STATION # FOR CURRENT TRAP BLOCK
2 ° CONTROL
3 17 WORDS
£l SEARCH TABLE FLAG # 0
b
N
e o] ot

12 1 1 [l 8000 (8

TRAP
CELLS

20 0 0 0 |18

Figure 5: Trap Table After TRPNT Sets Trap Cell

The BASIC TRAP statement and the trap setting program TRPNT both set the search table flag to a non-zero value, so the trap
table will be searched before the next BASIC statement (see Figure 5).

It the TRAP program finds the search table flag set, it will search the station trap cells. The current priority word is checked to
see how much of the trap table is to be searched. The current priority word will contain the number of trap cells plus one if the
entire table is to be searched. If the current interrupt being serviced is for station trap cell eight, the current priority word will
contain an eight. This means only the trap cells of higher priority will be searched. The lower the number of the trap cell the
higher its priority. At this point the trap table may be in one of many possible states. The trap program will search part or all of
the trap table depending on the current interrupt priority looking for a station trap cell set (bit 15 equal one). If a trap cell is set,
bit 15 is cleared and the in progress bit (bit 14) is set to one (see Figure 6). The trap program will then enter the priority of the set

trap cell into the third control word of the station trap table. The priority is equal to the number of the set trap cell. The trap
program then returns the following values to BASIC:

® A register contains statement number from the station trap table cell

® B register contains statement number that would have been executed if no interrupt

27

OPERATING SYSTEMS

WORD FUNCTION
1 STATION # FOR CURRENT TRAP BLOCK h
2 ° CONTROL
3 8 WORDS
4 SEARCH TABLE FLAG # 0 J
5 0 [0 J 0 ‘W

12 0 1 8000 | 8

TRAP
CELLS

20 Q o 0|16

Figure 6: Trap Table after BASIC finds Trap Cell Set

BASIC will then begin to process the trap service routine starting at the statement number returned in the A register. If BASIC
was currently executing a trap service routine, it is queued while the returned trap service routine is executed. BASIC knows the
more recent trap service routine is of higher priority because the trap program only checks station trap cells of higher priority.

While executing a trap service routine BASIC is still checking the trap table before executing each statement. If the trap service
routine is not interrupted by a trap of higher priority, the last statement of the trap servce routine will be executed. If the last
statment of the trap service routine is a BASIC RETURN statement, another operation of the trap program will be executed.
BASIC will call the trap program in the following manner.

LDA -256 MEANS END OF TRAP SERVICE ROUTINE

LDB -STMT MINUS STATEMENT NUMBER TO BE EXECUTED NEXT
JSB TRAP

JMP ERROR ERROR RETURN (NOT USED WITH CALL>

RETURN NORMAL RETURN

The current interrupt priority word is used to find the trap cell associated with the trap service routine that just completed. The
trap in progress bit is cleared, and the trap program begins to look for the next highest priority trap cell with its trap in progress
bit set. If it finds a station trap cell with its trap in progress bit set, the current priority word is updated to contain that trap cell
number. If no trap cell has its trap in progress bit set, the current priority word is set to the lowest priority. In either case, the
search table flag is set to a non-zero value, so the station trap table will be searched before the execution of the next statement.

28

OPERATING SYSTEMS

WORD FUNCTION
-~
1 STATION # FOR CURRENT TRAP BLOCK
2 ° CONTROL
3 17 WORDS
4 SEARCH TABLE FLAG # 0O
~
5 [l 0 L 1W
12 0 10 1 B000 | B
TRAP
CELLS
.
.
19 Q Q 15
20 0 0 |GJ

Figure 7: Trap Table After BASIC RETURN Statement in Service Routine

The last operation of the trap program is to free up a station trap table at the end of the execution phase. This occurs when a
BASIC program completes execution, not to be confused with the processing of the BASIC BYE command. The TRAP routine is
called in the following manner.

LDA 2 MEANS A TERMINATE REQUEST
JSB TRAP

JMP ERROR NOT USED WITH THIS CALL
RETURN NORMAL RETURN

The trap program will find the station trap table and zero out the first control word, which contains the station number. This
makes the station trap table available for other users.

THE TRAP SETTING PROGRAM TRPNT

TRPNT is a trap setting routine used by interrupt handling programs to set bit 15 of a specified trap cell in the trap table. The
trap number and the station number are passed to TRPNT in the following manner.

LDA TRP TRAP NUMBER TO BE SET
LDB STN SESSION LU OF TERMINAL
JSB TRPNT

JMP ERROR ERROR RETURN

RETURN NORMAL RETURN

TRPNT finds the station number from the passed session logical unit. Using the station number, TRPNT finds the proper station
trap table. Once the validity of the trap number has been checked, TRPNT sets the search table flag to a non-zero value and
sets bit 15 of the specified trap number (see Figure 5). TRPNT does not check to see if the trap cell contains a statement
number. If the trap cell does not contain a statement number, the trap program will ignore the interrupt.

29

OPERATING SYSTEMS

DEVICE INTERRUPT HANDLING PROGRAM DVINT

DVINT is a general purpose interrupt trap setting program. It is a part of the HP 92425C product, and the source filename is
&DVINS. It may be used with both general purpose and HP-IB devices. It contains a table of 255 entries, one per system logical
unit. The table is used to map the system LU of a device to a particular trap cell number. A sample of the table is shown below.

LU1 DEC 0
Lu2 DEC 0

LU2ss ‘DE(.: 0

The source of DVINT must be modified to set up the mapping between the trap cell and the system LU. For example, changing
“[LU80 DEC 0” to "LUB0 DEC 10" in DVINT's table will cause trap cell 10 to be set if system LU 80 interrupts. The source for

DVINT must be assembled and loaded as a permanent program, so its ID segment will exist when it is needed to service an
interrupt.

Once DVINT has been scheduled, it finds the station number and obtains the trap cell number from its internal table. If a HP-1B
device interrupts, its driver schedules DVINT and passes it the status word, subchannel of the device, and the EQT number of
the HP-IB card. Using the EQT number and the subchannel of the device to obtain the system LU from the device reference
table, DVINT is able to find the station number from the MTIS device reference table extension. If a DVM72 device interrupts,
DVINT uses passed EQT word 4 and the EQLU routine to find the system LU of the interrupting device. DVINT is then able to
find the station number from the MTIS device reference table extension.

It then calls TRPNT to set the proper trap cell. The next time the trap program searches the trap table it will find the trap cell set.
TRPNT is called in the following manner.

LDA TRAP NUMBER

LDB STATION NUMBER

JSB TRPNT

RETURN1 (ERROR RETURN)
RETURN2 (SUCCESSFUL RETURN)

DRIVER INTERFACES FOR SELECTING DVINT AS THE INTERRUPT PROGRAM

On an interrupt the HP-IB driver DVR37, looks into the EQT extension area of the interrupting device for an alarm program. This
alarm program is DVINT. The SRQ routine is used to put the name of the DVINT program into the EQT extension area for the
interrupting device. SRQ is a part of the HP-IB library, %IB4A,

CALL SRQC SESLU, IV, "DVINT")
CALL SRQC SESLU, IV, 0

SESLU = Session LU of the interrupting device.

IV = Arbitrary value passed (not used by DVINT).
DVINT = Alarm program to be scheduled on interrupt.
0 = Remove alarm program name from EQT ext. area

Where as the SRQ routine is used for the HP-1B devices the DSCHD routine is used for the general purpose driver, DVM72.
DSCHD is called from BASIC in the following manner.

CALL DSCHD(C SESLU, 3, "DVINT")
CALL DSCHD(SESLU, 3, 0)

30

OPERATING SYSTEMS

Instead of putting the program name into the EQT extension area, DSCHD places the ID segment address of the program into
EQT13 for the device. On an interrupt from the device, specified by the session logical unit, the driver will schedule the alarm
program whose ID segment address is inEQT13.

USING MULTI-STATION TRAPS IN A BASIC PROGRAM

All of the pieces for using multi-station traps have been talked about. To effectively use multi-station traps all of the pieces have
to be brought together in an example. The following numbered steps in the example refer to the numbers in Figure 8.

1. The BASIC RUN command causes the trap program to obtain and initialize a trap table (see Figure 1). BASIC then begins
to execute the program.

2. When BASIC executes the TRAP statemenit, the TRAP program puts the sequence number in the specified trap cell and
sets the search trap table flag word to a non-zero value (see Figure 2).

3. BASIC automatically checks the trap table for set trap cells using the TRAP program. The TRAP program first checks the
search trap table flag. At this point the search trap table flag is non-zero, but no interrupts have occurred. The TRAP
program searches the trap table and finds no trap cells set (bit fifteen set), so it clears the search table flag (set to zero).

4. Again BASIC is automatically checking the trap table for set trap cells using the TRAP program. At this point no interrupts
have occurred and the search table flag was cleared in step 3. This means, the TRAP program checks the search table

flag and finds it cleared. The TRAP program returns to BASIC indicating no interrupts occurred because the search table
flag was cleared.

5. The program makes a call to SRQ to set up the alarm program for the device that may interrupt. The HP-IB driver does the

set up by modifying the equipment table for the card the device is attached to and the equipment extension area for the
device.

a. The HP-IB driver moves the the alarm program name into words two, three, and four of the equipment extension area
for the device specified by the session logical unit parameter of the SRQ call.

b. The HP-IB driver then sets the SRQ interrupt arming flag in the equipment table for the HP-IB card which the specified
device is controlled by.

6. The device (session logical unit; “L" in SRQ call) sends a hardware interrupt to the HP-IB card via the SRQ line. At this
point, the alarm program has been set up for the interrupting device.

a. The HP-IB driver gets the status from the device pulling the SRQ line and schedules the alarm program (DVINT)
passing it the following parameters.

PARAMETER #1 — status of interrupting device
PARAMETER #2 — device bus address

PARAMETER #3 — device equipment address
PARAMETER #4 — arbitrary value passed by SRQ call

b. The HP-IB driver also sets the alarm program scheduling active bit.

31

OPERATING SYSTEMS

7.

The alarm program DVINT uses the passed device equipment address and bus address to determine the system logical
unit number of the interrupting device.

a. Once the system logical unit number has been determined, DVINT can find the trap cell number assigned to the
interrupting system logical unit number by looking in its internal table.

b. DVINT uses the trap setting routine TRPNT to set bit fifteen of the trap cell specified in its internal table. TRPNT also
sets the search table flag to a non-zero value.

8. The TRAP routine, which is always checking trap table for BASIC, finds the search table flag set. It then searches the trap

10.

11

12.

cells of higher priority than specified in the current priority word. At this point all trap cells get searched because no current
interrupt is being serviced.

a. The TRAP routine finds the trap cell eight set. It clears the trap set bit (bit fifteen) and sets the trap in process bit (bit
fourteen).

b. The TRAP routine updates the current priority word with the valug of the current interrupt trap cell number (trap cell
eight).

c. The TRAP routine returns the first statement of the trap service routine it obtains from the lower fourteen bits of trap cell
eight.

BASIC begins to execute the trap service routine for the device assigned to to trap cell eight.

Between each statement of the trap service routine, BASIC is checking the trap table. The search table flag is still set after
the TRAP routine found trap cell eight set, so the trap table is searched. The TRAP routine searches only the lower seven
trap cells because of the value in the current interrupt word. At this point no other interrupts have occurred, so TRAP clears
the search table flag after finding no trap cells set.

BASIC encounters the RETURN statement in the trap service routine for trap cell eight. BASIC uses the TRAP routine to
clear the in process bit of trap cell eight and searches for the next trap cell with its in process bit set. At this point no other
trap cells have their in process bits set. The search table flag is set, in case trap cells of lower priority than trap cell eight
had been set during the processing of the service routine, and the priority word is set to the lowest value. (If TRAP had
found a in process bit set the current priority word would have been set to the value of that trap cell.)

BASIC returns to the point of the program that was executing at the time the interrupt was serviced. If no more interrupts

occur, the program will finish executing. At this point, BASIC uses the TRAP routine to release the trap table by zeroing out
the first control word.

32

OPERATING SYSTEMS

> AUN PROGRAM

STATION TRAP TABLE (BASIC STARTS EXECUTION OF THE PROGRAM]
STATION NUMBER
@ 10 TRAP & GOSUB 8000
o .
CURRENT PRIORITY -
j—@ 40 CALL SRO (L, 16. DVINT)

SEARCH TABLE FLAG ‘Z .

HP 503308
HP-8 kF
CARD

TEST PROGRAM

@ f~—— 8000 REM TRAP SERVICE ROUTINE

@~
D) 50 merue ¢ RN gy
9999 END SESSION t | 1 [
1 oiGmaL | | PoweR | |
HP-18 | VOLTMETER SUPPLY
DEVICE | | [
(BASIC DONE EXECUTING PROGRAM) | | | e
[ORI I ——— 4
HP-18
ORIVER
(DVR37)
70
CURRENT
sTep | STATION # | Colic | SEARCH TABLE TRAP CELL 8
WORD WORD FLAG WORD
1 STATION # 7 ZERO ofo o EgWTE on
N
POINTER TO AREA FOR
: STATION # 4 NON-ZERO. b I OVINT PROGRAM HP-18 DEVICE
wit 101
a STATION # 7 ZERO oo | sooo £OT ADDRESS o ":5555 N
) STATION # 17 NON-ZERO 1o sooo @ BUS ADDRESS .
8a STATION # 8 NON-ZERO o] eooo 2 @ :
0
10 STATION # 8 2eRO oo sooo ’
8 |- '
n STATION # 7 NON.ZERQ olo| eooo X
12 STATION # 17 ZERO oo | sooo °
e FLAGS USED WITH EOT TABLE
FOR HP-IB IF
PROGRAM DVINT
ALARM PROGRAM D CARD CONTROLLING
DEVICE WITH
SESSION LU L
SET T BITIN
TRAP CELL 8
AND MAKE
SEARCH TABLE
FLAG NON-ZERO

Figure 8: Trap Processing Example

33

OPERATING SYSTEMS

The previous example shows the details of the trap processing, but doesn't give an example of how multi-station traps work.
The following program and explanation describes the use of traps on a system with two stations.

100 CALL SRGC 21, 16, “DVINT")

110 TRAP 11 GOSUB 7000

120 FLAG = 0

130 PRINT " WAITING FOR SRQ FROM INSTRUMENT '
140 IF FLAG = 1 GO TOD 1000

150 GO TO 130

1000 PRINT ™ END OF MULTI-STATION TRAP PROGRAM
1010 STOP

7000 PRINT " TRAP ROUTINE FOR TRAP CELL 11 ENTERED *
7010 FLAG = 1

7020 RETURN

9999 END

Statement 100 puts the name of the alarm program into the EQT extension area for the device with session LU 21. Statement
110 puts the number 7000 into the lower fourteen bits of trap cell 11. The device with session LU 21 must have its system LU
mapped to trap cell 11in the alarm program DVINT. To demonstrate the use of multi-station traps, the sample program must be
used on a system with at least two stations. For the example, assume session LU 21 on station one is mapped to system LU 71.
While session LU 21 on station two is mapped to system LU 81. Both system LUs 71 and 81 are mapped to trap cell 11 in the
alarm program DVINT. A copy of the sample program can be executing on both stations simultaneously and receive interrupts
from session LU 21. As each device interrupts, DVR37 finds and schedules the alarm program DVINT. DVINT finds the station
number (station one for system LU 71 and station two for system LU 81), then finds the trap cell number from its table. DVINT
uses TRPNT to set bit fifteen of trap cell 11 in the trap table for station one and in the trap table for station two. (Note: The station
number is actually equal to the system logical unit number of the terminal, but for ease of explanation station one and station two
were used in the description.)

Multi-station traps are necessary in automatic test systems where two or more test stations are controlled by one computer
system. They allow test programs to handle interrupts from test station instruments in real time. In RTE-IVA, automatic test
systems had multi-station traps with keyboard traps. In RTE-IVB it is up to the user to implement keyboard traps in the automatic
test systems. This is the subject of the next section.

USING KEYBOARD TRAPS IN RTE-IVB AUTOMATIC TEST SYSTEMS

Keyboard traps are used by the test operator to alter the progress of a test program during its execution. The test operator
strikes the terminal keyboard to get the break-mode prompt. In RTE-IVA the test operator would enter a number between one
and seven depending on the keyboard trap desired. In RTE-IVB the user must write a program to set a trap upon an interrupt
from a terminal keyboard. The program must obtain the station number, check the keyboard trap requested, and use TRPNT to

set the trap cell in the trap table. Below is a copy of the keyboard trap setting program used for our RTE-IVB automatic test
training system.

34

OPERATING SYSTEMS

ASMB,R,Q

HED << "SET"™ THE KEYBOARD TRAP SETTING PROGRAM >>

NAM SET,2,41

EXEC, LOGLU, TRPNT, $PARS

ERROR 1 - INVALID TRAP CELL NUMBER PASSED TO PROGRAM

ERROR 2 - TERMINAL NOT IN SESSION. PROGRAM WILL NOT

ERROR 3 - TRAP SETTING SUBROUTINE *"TRPNT" ENCOUNTERED

THE SOURCE FOR THIS PROGRAM CAN BE ASSEMBLED WITH THE

AS SHOWN BY THE FOLLOWING EXAMPLE:

*
» NAME: SET
» SOURCE: &SET:RT
* RELOC: %SET:RT
* PRGMR: MARTY SILVER
* DATE: 11/11/80
*
mmm e e e m e mmm e —mm——— e
*
* ENTRY POINT:
*
ENT SET
*
» EXTERNAL REFERENCES:
*
EXT GETST, ERROR,
*
*
#« ONLY TRAP CELLS OF 1 TO 7 ARE VALID
*
*
SET ANY TRAPS UNLESS TERMINAL IS IN SESSION
*
*
+ PROBLEMS IN SETTING THE TRAP CELL
*
*
» RTE-IVB ASSEMBLER,
*
» :RU,ASMB,&SET,6,%SET
*
*

LOAD THIS PROGRAM AS A PERMANENT PROGRAM WITH THE

* THE RTE-IVB LOADR, AS SHOWN BY THE FOLLOWING EXAMPLE.
*
+ RU,LOADR:IH
+ /LOADR: 0P,SS
+ /LOADR: 0P,PE
+ /LOADR: RE,%ZSET
+ /LOADR: EN
*
B o o o e e e —mm e —m e ———m—— e
*
* GET KEYBOARD TRAP CELL NUMBER TO BE SET
*
SET NOP ENTRY POINT
JSB GETST GET THE RUNSTRING
DEF #+4 RETURN POINT DEFINED
DEF IRBUF RETURNED STRING BUFFER
DEF ILEN NEGATIVE CHARACTER LENGTH OF STRING
DEF 1LOG TRANSMISSION LOG
*
* PARSE THE STRING RETURNED FROM GETST INTOD PARAMETERS

35

OPERATING SYSTEMS

LDA IRBAD ADDRESS OF STRING TD BE PARSED

LDB ILOG POSITIVE CHARACTER LENGTH OF STRING
JSB $PARS PARSE THE STRING

DEF IBUF RESULTS OF PARSE OPERATION

IS THE FIRST PARAMETER A NUMERIC VALUE

LDA IBUF GET FLAG WORD
CPA D1 IS IT NUMERIC?
JMP CHK YES, NOW CHECK FOR A VALID NUMBER
JMP BADPM *NO, OUTPUT ERROR CODE 1
L
* CHECK TO SEE IF VALID KEYBOARD TRAP CELL 1-7)
L
CHK LDA IBUF+1 GET THE TRAP CELL NUMBER
SSA IS IT NEGATIVE?
JMP BADPM YES, OUTPUT ERROR CODE 1
*
SZ2A,RSS IS IT EQUAL TO ZERO?
JMP BADPM YES, OUTPUT ERROR CODE 1
*
ADA M8 IS NUMBER GREATER THAN 7
SSA,RSS CHECK SIGN BIT
JMP BADPM YES, OUTPUT ERROR CODE 1
L
* GET THE STATION NUMBER USING THE LOGLU
* (STATION IS EQUAL TO SYSTEM LU OF TERMINAL)
*
JSB LOGLU GET STATION NUMBER
DEF #+2 DEFINED RETURN POINT
DEF LUSYS RETURNED SYSTEM LU
STA SESLU SAVE RETURNED SESSION LU
L
» CHECK TD SEE IF TERMINAL IS IN SESSION
* (LUSYS IS NEGATIVE IF TERMINAL NOT IN SESSION)
L
LDA LUSYS GET THE SYSTEM LU NUMBER
SSA IS THE TERMINAL IN SESSION
JMP NOSES NO, OUTPUT ERROR CODE 2
L
» SET THE SPECIFIED KEYBOARD TRAP CELL USING
* MTIS SUBROUTINE *“TRPNT™
L
LDA IBUF +1 PASS TRAP CELL TO BE SET
LDB SESLU PASS STATION NUMBER
JSB TRPNT SET THE SPECIFIED TRAP CELL
JMP TRPER ERROR RETURN FROM TRPNT
*
* TERMINATE PROGRAM
L
EXIT JSB EXEC CALL TD SYSTEM TO TERMINATE
DEF #+2
DEF 06 EXEC CODE OF 6
»
* ERROR ROUTINES

36

OPERATING SYSTEMS

BADPM JSB ERROR INVALID TRAP CELL SPECIFIED
DEF #+3 DEFINE RETURN POINT
DEF IERR1 ERROR CODE 1
DEF IERMS PROGRAM NAME
JMP EXIT TERMINATE PROGRAM
*
NOSES JSB ERROR TERMINAL NOT IN SESSION
DEF #+3 DEFINE RETURN POINT
DEF IERR2 ERROR CODE 2
DEF IERMS PROGRAM NAME
JMP EXIT TERMINATE PROGRAM
*
TRPER JSB ERROR “TRPNT' ERROR
DEF #+3 DEFINE RETURN POINT
DEF IERR3 ERROR CODE 3
DEF IERMS PROGRAM NAME
JMP EXIT TERMINATE PROGRAM
*
* CONSTANTS AND TEMPORARY STORAGE
*
IBUF BSS 33 ARRAY RETURNED FROM $PARS
IRBAD DEF IRBUF ADDRESS OF IRBUF ARRAY
IRBUF BSS 20 ARRAY USED BY ROUTINE GETST
ILOG NOP TRANSMISSION LOG
LUSYS NOP SYSTEM LU RETURNED FROM LOGLU
SESLU NOP SESSION LU RETURNED FROM LOGLU
M8 DEC -8 USED CHECKING FOR VALID TRAP CELL
06 0CT & EXEC CALL CODE OF ©&
D1 DEC 1 USED TO CHECK FOR NUMERIC PARAMETER
IERR1 DEC 1 ERROR CODE 1
IERR2 DEC 2 ERROR CODE 2
IERR3 DEC 3 ERROR CODE 3
IERMS DEC S PROGRAM NAME
ASC 3,SET FOR USE IN OUTPUTTING ERROR CODES
ILEN DEC -40 MINUS CHARACTER LENGTH OF
* STRING BUFFER
END SET

This program is scheduled from the break-mode prompt after BASIC has been scheduled. It is necessary for BASIC to be
running, so a trap tabie is initialized and attached to the station. The test operator can interrupt the executing BASIC test
program by striking the keyboard and getting the break-mode prompt. The test operator will then run the keyboard trap setting

program SET passing it a keyboard trap cell number to set. For example, the following entry would set keyboard trap cell
number three.

$=20 COMMAND ?RU,SET,3

The preceding command is what the test operator would enter in response to the break-mode prompt. The program SET will
check the trap number to see if it is a number between one and seven. An error one if an invalid trap number is requested using
the HP 92425C MT!S error routine ERROR. If the trap number is valid, SET will check to see if the test operator is operating
within session. An error two if the test operator is out of session. SET will use the HP 92425C MTIS trap setting program TRPNT
to set the requested trap cell if the test operator is operating in session. If TRPNT encounters any problems in setting the trap
cell, SET will output an error three. After the trap cell has been set, BASIC will find the trap set and begin to execute the interrupt

service routine for that trap cell. The following BASIC program can be used to test the operation of the keyboard trap setting
program.

37

OPERATING SYSTEMS

140

150

160

1000
1010
1020
1030
2000
2010
2020
2030
3000
3010
3020
3030
4000
4010
4020
4030
5000
5010
5020
5030
6000
6010
6020
6030
7000
7010
7020
7030
9999

This BASIC program will allow the user to test all of the keyboard traps. While the program is in the loop the user can get
break-mode by striking the keyboard, and run the program SET to set a keyboard trap. BASIC will find the trap set and start

TRAP
TRAP
TRAP
TRAP
TRAP
TRAP
TRAP
LET F

Noonbswn =

GOSUB
GOSUB
GOSUB
GOSUB
GOSUB
GOSUB
GOSUB
=0

1000
2000
3000
4000
5000
6000
7000

PRINT * TRY THE KEYBOARD TRAP SETTING
1 GOTO 120

IF F =
GOTO 8
PRINT
PRINT
PRINT
PRINT
STOP
PRINT
WAIT (
FLAG =
RETURN
PRINT
WAIT (
FLAG =
RETURN
PRINT
WAIT (
FLAG =
RETURN
PRINT
WAIT (
FLAG =
RETURN
PRINT
WAIT (
FLAG =
RETURN
PRINT
WAIT (
FLAG =
RETURN
PRINT
WAIT (
FLAG =
RETURN
END

0

» KEYBOARD TRAP SETTING PROGRAM

3000
1

3000
1

3000)
1

3000)
1

3000)
1

3000)
1 .

3000)
1

END OF PROGRAM 1!

KEYBOARD

KEYBOARD

KEYBOARD

KEYBDARD

KEYBOARD

KEYBOARD

KEYBOARD

executing the proper trap service routine.

This program gives the test operators the use of keyboard traps, if they have a capability level of 30. It requires a capability of at
least 30 to be able to run a program from break-mode. Many users of automatic test systems set the capability of test operators
at 10, which means the test operators can not run SET to set any keyboard traps. The user can change the capability level for
the break-mode RUN command from 30 to 10 by altering the system capability table SCMND. The source for SCMND is part of
the HP 92068A RTE-IVB product and is contained in the file &$CMND. Pages J-12 through J-15 of Appendix J in the RTE-IVB
System Manager's Manual give the directions for altering the capability level of system and break-mode commands. The
following changes were made to our automatic test system to allow test operators with capabilites of 10 to run programs from

break-mode.

TRAP

TRAP

TRAP

TRAP

TRAP

TRAP

TRAP

ONE WORKS !

TWO WORKS

PROGRAM 1t

WORKED ¢ *

THREE WORKS ! "

FOUR WDRKS 1t

FIVE WORKS 1*

SIX WORKS

SEVEN WORKS ! "

38

OPERATING SYSTEMS

Original &$CMND Modified &$CMND
ASC 1,PR ASC 1,PR
OCT O 0CT 0
* *
L.30 ASC 1,RU L.30 ASC 1,0F
0CT O OCT 40000
ASC 1,0F .
OCT 40000 .
ASC 1,L2
. OCT 0
ASC 1,L2 *
OCT 0 L.10 ASC 1,RU
* OCcT 0
L.10 ASC 1,FL ASC 1,FL
0CT O OCcT 0
ASC 1,RS ASC 1,RS
0

acT o acT

The modified &$CMND file was assembled and relocated after the operating system modules during the generation. This
solution allows the test operator to run the program set because it is loaded as a permanent program. Any programs the test
operator is not allowed to run should be saved as Type 6 files and not RPed during boot up or log on.

Multi-station traps have been used in automatic test systems for a long time. They allow the user to separate two or more test

stations and still have the capability to handle real time interrupts. Keyboard traps give the user some added flexibility in
designing their BASIC test programs. Best of luck in the use of multi-station traps.

39

OPERATIONS MANAGEMENT

USING MEMORY BEHIND YOUR FORTRAN PROGRAM

by John Pezzano/HP E! Paso

RTE systems (including RTE-IVB, RTE-L/XL, and RTE-M permit the user to use the space between the end of the program and
the end of the partition. For the Assembly programmer, this is an easy job, but in the past this has been virtually impossible for
the FORTRAN programmer unless he wrote an assembly interface between his main program and his subroutines. | have
developed a general purpose routine written in Assembly which does not require the knowledge of Assembly writing to use but
will interface between virtually anly FORTRAN routines to give the FORTRAN programmer the dynamic memory use now
afforded only to the Assembly programmer.

WHY USE THIS MEMORY?

When RTE runs a program, rarely does the program fill all the space to the end of a page boundary. Normally this space is
wasted. In addition, the LOADR can be requested to oversize the program beyond what is required. in fact, many HP programs,
including the LOADR itself, require this oversizing. This space ¢an have many uses. Programs such as LOADR, FTN4, ASMB,
etc. use this space for table areas. A user program might want this space to save temporary information, rather than saving it on
the disc which would be much slower. However, the most common and beneficial use of this area in most circumstances would
be for the file management Data Control Block (DCB).

In a program using files, a DCB of at least 144 words must be used for the temporary storage of buffers to/from the disc.
Generally, the larger the DCB defined, the better will be the program performance. However, sometimes the user does not know
if there will be a farge enough partition to hold a larger DCB, so the minimum size is defined. To change the size would require
‘modifying the program, recompiling, and reloading it which is usually not worth the effort. However, by using the space
between the end of the program and the end of the partition, the size of the DCB is dependent only on the size specified at load
time or changed with the RTE-IVB "SZ” command.

FINDING OUT HOW MUCH SPACE IS AVAILABLE

There are a number of different calls in different RTE systems that will tell the user how much space is available and how long it
is. However, there is one call common to all current systems that will give this. It is the LIMEM call, used as follows:

CALL LIMEM (0,FWAM,LEN)

where:
0 no meaning in RTE-IVB. Required for compatability with RTE-M and RTE-L/XL.
FWAM is the address of the first word after the main program or the largest segment in a segmented program.
LEN is the number of words between the FWAM and the end of the partition.

Itis obvious, therefore, that if we know where our array can be and how big it is, we should be able to use it. But there is a catch!

40

OPERATIONS MANAGEMENT

WHY CAN'T WE USE LIMEM IN FORTRAN?

Theoretically, we should be able to call LIMEM to get the array address and length and call a subroutine with these values. By
dimensioning the array to 1 and using the length as the actual size, the subroutine should work. For example,

PROGRAM MAIN
CALL LIMEM (0,I1BUF,LEN)
CALL SUB (IBUF,LEN)

SUBROUTINE SUB (IBUF,LEN)
INTEGER IBUF(1)
CALL OPENCIBUF,IERR,6HFILENM,0,ISC,ICR,LEN)

Alas, this will not work! The problem is that instead of passing the address of IBUF to the subroutine as an address, the main
passes the address of a local variable which contains as a value the address. There is no way in FORTRAN that | know of to get
around this problem. For the Assembly programmer, the value can be passed as an address.

THE SOLUTION

The programmer who knows Assembly can call an Assembly subroutine which in turn calls another FORTRAN subroutine or

does it in Assembly. However, if the user does not know Assembly, this method is not much use. In addition, the user would
have to write an Assembly routine for each different requirement.

As an alternative, | have written an Assembly routine which will call any FORTRAN subroutine whose address is passed to it,
pass up to 15 parameters to it (only the first two, array address and length, are restricted) all without any modification. It
therefore can be used as a general purpose routine for passing the extra memory array to any FORTRAN subroutine.

Subroutine PASST, as it is called, requires only the following:

1. The caller must define the callee as a BLOCK COMMON name.

2. The caller must pass this name as the first parameter to PASST which will be replaced by the array address.
3. The caller must provide a second (dummy) parameter which will be replaced by the length.
4

The callee must have the first two parameters defined as the array and length respectively. The other parameters are
optional.

5. The callee must define the array as an array.

6. The callee must not write past ARRAY(LEN).

There are no other restrictions. Other parameters if used, can be of any type or size. Since restrictions 5 and 6 apply to any
passed array, there really are only four hard requirements.

41

OPERATIONS MANAGEMENT

An simple demonstration program will illustrate this:

FTN,L
PROGRAM MAIN
COMMON/SUB/SUB
CALL PASST(SUB,SUB,1,2,3,4,5,6,7,8,9)
END
SUBRDOUTINE SuB¢I,L,I1,12,13,14,15,16,17,18,19)
INTEGER IC1)
WRITE ¢1,10) 11,12,13,14,15,16,17,18,13,L
DD 34 J=1,L

34 I¢J)=J
10 FORMAT (2I6)
END

HOW DOES IT WORK?

For those sophisticated enough to understand Assembly and those that wish to use it, a listing of PASST follows this article, but

here is a brief explanation.

By defining SUB as a BLOCK COMMON name, FORTRAN considers it to be an external variable. We pass this to PASST, thus
passing the address of the subroutine we want to call. This is required since PASST has no idea what the name of the routine is.
(When a program is loaded, addresses, not names are used.) The second parameter is just a placeholder for the length. PASST
picks up the parameters. The routine .ENTR will do this for us and prevent overwriting if we are passed too many parameters.
PASST then picks up the address of the subroutine and sets it up for a call to it. Next, a call to LIMEM is made, getting the
starting address and length of the array. We put the starting address into the call to the subroutine (which is the one thing

FORTRAN cannot do) and call it. Upon return, we do our own return back to the caller. VOILA!

We can now call any subroutine through PASST.

1

PAGE 0001 #»01 1:03 PM MON., 13 JULY, 1981

0001 ASMB,L,Q,R

#+ NO ERRORS PASS#1 ##RTE ASMB 92067-16011+#+

1

PAGE 0002 »01 1:03 PM MON., 13 JULY, 1981

0001 ASMB,L,Q,R
0002 00000 NAM PASST,7 PASSES ARRAY

0003 ENT PASST

0004 EXT LIMEM, .ENTR

0005+

0006+ THIS SUBROUTINE IS USED AS A GENERAL PURPOSE INTERFACE BETWEEN A
0007+ FORTRAN MAIN OR SUBROUTINE AND ANOTHER FORTRAN SUBROUTINE IN

0008+ ORDER TO PERMIT THE CALLED ROUTINE TO USE THE AREA BETWEEN THE
0009+ END OF PROGRAM (0OR LARGEST SEGMENT) AND THE END OF MEMORY. THIS
0010« ROUTINE ALLOWS THE PASSING OF UP TO 13 PARAMETERS TO THE SUBROUTINE
0011« EXCLUDING THE ARRAY AND THE ARRAY LENGTH. THE CALLED ROUTINE MUST
0012+ HAVE AT LEAST TWO PARAMETERS, THE FIRST OF WHICH IS THE ARRAY AND
0013+ THE SECOND OF WHICH IS THE ARRAY LENGTH. SINCE THESE ARE NOT DIRECTLY
0014+ PASSED BY THE SOURCE ROUTINE, VALUES IN THE ARRAY CANNOT BE RETURNED
0015+ TO THE SOURCE UNLESS THEY ARE MOVED. THE CALLED ROUTINE MUST BE OF
0016» THE FORM:

42

OPERATIONS MANAGEMENT

0017«
0018+
0019+
0020+
0021+
0022+
0023+
0024+
0025+
0026+
0027+
0028+
0029+
0030+
0031+«

PAGE

0033
0034

0036
0037

0039
0040
0041

0043
0044

0046
0047
0048
0049
0050

0052
0053

0055
0056

0058
0059
0060
0061

0062
0063
0064

=+ NO ERRORS

WHERE THE P’S ARE OPTIONAL PASSED PARAMETERS FROM THE SOURCE AND L

XXX IS ANY LEGAL FORTRAN SUBROUTINE NAME.

IF THE ARRAY IS DIMENSIONED AS REAL, 3 WORD OR 4 WORD DOUBLE
PRECISION, THEN THE SIZE WILL BE L/2, L/3, OR L/4 RESPECTIVELY.

(OR SUBROUTINE YYYC...)) YYY IS ANY LEGAL FORTRAN NAME

WHERE XXX IS THE NAME OF THE SUBROUTINE TO BE CALLED
(ANY LEGAL FORTRAN SUBROUTINE NAME)

1:03 PM MON., 13 JULY, 1981

CALL DEFINED FORTRAN ROUTINE
RETURN ADDRESS

15 PARAMETERS ALLOWED
EXIT TO CALLING ROUTINE

ENTRY TO THIS ROUTINE
GET CALLING PARAMETERS
AND PUT HERE

GET ADDRESS OF FORTRAN SUBROUTINE
AND STORE IN ANODTHER LOCATION

GET STARTING ADDRESS AND SIZE
OF ARRAY TO END OF MEMORY
(REGQUIRED BY CALL)

PUT ARRAY ADDRESS HERE

PUT LENGTH HERE

.ENTR MAY OVERWRITE OUR CODE
SO WE REWRITE IT JUST IN CASE

CONTAINS THE ADDRESS OF LENGTH

CALL FORTRAN SUBROUTINE

STORAGE FOR FORTRAN SUBROUTINE ADDRESS
LENGHT PLACED HERE

ADDRESS OF ABOVE

SUBROUTINE XXX CIARRY,L,P1,P2,P3...,P13)

INTEGER IARRY(1)

IS THE LENGTH OF IARRY,

THE SOURCE ROUTINE MUST BE OF THE FORM:

PROGRAM YYY

COMMON / XXX/ XXX

CALL PASST (XXX,XXX,P1,P2,P3...P13)
0003 #01
00000 000041R FSUB JSB ADDR,I
00001 000021R DEF JSUB
00002 000000 PARMS BSS 15
00021 000022R JSUB JMP PASST,I
00022 000000 PASST NOP
00023 000002X JSB .ENTR
00024 000002R DEF PARMS
00025 000002R LDA PARMS
00026 000041R STA ADDR
00027 000001X JSB LIMEM
00030 000034R DEF #+4
00031 000045R DEF DO
00032 000002R DEF PARMS
00033 000042R DEF L
00034 000044R LDA JSUBS
00035 000021R STA JSUB
00036 000043R LDA AP1
00037 000003R STA PARMS+1
00040 000000R JMP FSUB
00041 000000 ADDR NOP
00042 000000 L NOP
00043 000042R AP1 DEF L
00044 000022R JSUBS JMP PASST, I
00045 000000 DO DEC 0

END

*+TOTAL »=RTE ASMB 92067-16011++

43

OPERATIONS MANAGEMENT

FMP CONSIDERATION IN IMAGE SHARED DATABASE ACCESS

by Gary Ericson/HP Data Systems Division

It has been pointed out to me recently from a number of different sources that there is an idiosyncracy (if you want to call it that)
in the File Management Package which affects IMAGE programs, but which is not readily apparent to the user. This affects
programs like QUERY, DATACAP, and any user-written programs that access a database in shared read/write mode.

HOW DOES FMP WORK?

FMP was written with the concept of using a Data Control Block (DCB) buffer to speed up applications by reducing the number
of disc accesses required to retrieve data from the disc. Basically, it works like this: when the first READF call is made, one or
more 128 word blocks of data are read from the disc into the DCB buffer (the number of blocks depends on the size of the
DCB). Then the actual record requested is transferred from the DCB into the user's buffer. For each READF call after that, the
DCB is examined to see if the record desired is currently there. If so, the record is just transferred from the DCB to the user's
buffer (just a memory to memory transfer). If the record is not currently in the DCB, a disc access is made to fill up the DCB with
the blocks that contain the record, and then the record is transferred from the DCB to the user's buffer.

This works similarly for WRITF calls. If the record to be modified is already in the DCB, the WRITF call just transfers the user's
buffer to the DCB (not to the disc). If the record is not in the DCB, the DCB is written out to the disc (if the DCB has modifications
in it that haven't been written out to disc yet), the disc is read to fill up the DCB with the blocks containing the record, and the
user’'s buffer is transferred to the DCB. This modified DCB is not written out to disc until the file is closed or until the DCB is
written out to make room for other records.

You might want to read the RTE-IVB Programmer’s Reference Manual for a more complete description of how all this works.

The net result is this: if the record to be read or written currently resides in the DCB buffer, the disc will not be accessed, but the
record will just be read from or written to the DCB. If the record is not currently in the DCB (the DCB is empty or it has as different

set of records in it), then the disc is read to get a copy of the blocks containing the record into the DCB. The DCB will then be
accessed for the record.

The advantage to all this is that disc accesses are reduced. This is accomplished by only going to the disc when it's really
necessary, and then transferring large amounts of data so that it will be necessary less often.

The disadvantage comes when a file is being shared in read/write mode by two or more programs. If one program does a
WRITF call, his own DCB will be modified, but the disc will not be updated until one of the conditions mentioned above are met.
This means that other programs reading the disc may not immediately see the changes the first program intended to make.
Similiarly, if one program does actually modify the disc, another program doing a READF call will only read from the disc if one
of the conditions mentioned above are met. This means that the second program may not see the changes that are physically
on the disc.

The POST call was written to help this situation. If a DCB has been modified, the POST call will write the DCB to disc. If there

have been no modifications to the DCB, the POST call just clears out the DCB. In either case, the result is that the DCB will now
be empty, and the next record access will have to go to disc, both for READF and WRITF calls.

44

OPERATIONS MANAGEMENT

HOW DOES THIS AFFECT IMAGE?

Since all IMAGE calls eventually break down into standard FMP calls, the above discussion affects IMAGE directly. The impact
with respect to modifying a database is reduced because of the fact that in 92069 IMAGE, all update calls (DBPUT, DBUPD,
DBDEL) are concluded internally with a POST call which will force any updates to be written to the disc. This means that when
you add, update, or delete a record, the change will show up on the disc immediately, and any other programs having the
database open will have the chance to get the information you just put there.

The impact on reading the database is a little greater. When a database read is done (DBGET), a READF call is eventually
generated. If the record being requested is already in the DCB, the data will not be retrieved from the disc. The problem, then,
shows up in this kind of a sequence:

QUERY #1 QUERY #2

1. open database D'B in mode 1

2. open database DB in mode 1

3. FIND item IS “x" END;
(this reads, say, record #7,putting record #7 into
this local DCB)

4. FIND item IS "x" END;
(this also reads record #7, putting that record into
this local DCB)

5. UPDATE R;
(make some change to the record)

6. REPORT ALL;
(list the contents of record #7)

In step 6, QUERY #2's REPORT will not reflect the changes made to record #7 by QUERY #1 because the unmodified record
is still in QUERY #2's local DCB. The READF call that is generated to do the report will get the record out of the DCB, not off the
disc.

It might be important to note that this occurs with any IMAGE programs, including DATACAP. Following the same kind of
scenario as above, if DATACAP modifies record #7, QUERY may not see the changes made to that record. It's also important to
note that while it appears from QUERY #2’s perspective that no change has been made to record #7, the fact is that the real
disc copy of that record has been modified. The disc will always be good because IMAGE posts its DCB's everytime it makes a
change (whether from DBPUT, DBUPD, or DBDEL calls).

HOW DO WE GET OUT OF THIS?

When sharing a file like we've been discussing, it's apparent that at times it's desirable to force the READF call to go to the disc
to pick up any changes that may have been made to the record. Basically what you need to do is change the contents of the
DCB so that the record you are looking for is not in there. The READF routine will then have to go to the disc to get a copy of that
record. The two possible ways to accomplish this are:

1. Change the contents of the DCB so that it contains some records other than the one you want.

2. Clear out the DCB altogether so that nothing is in there.

45

OPERATIONS MANAGEMENT

To change the contents of the DCB, you have to do a READF (or WRITF) call on a record that is not currently in the DCB. For
example, if you want to get record #7 from disc, you could do a READF on record #99 (assuming that record #99 is not in your
DCB). READF will look for record #99 in the DCB, and, not finding it, will go to the disc for it. This removes record #7 from the
DCB. Now if READF is called for record #7, it won't find that record in the DCB, and it will have to go to disc for it. This whole
process results in reading the real disc copy of record #7. The same thing applies to IMAGE: you make a DBGET call that
retrieves a record that is not in the DCB, and then make the DBGET call for the record you want. This works fine, but it requires
at least one extra disc access, and it's not always easy to know which records are not currently in your DCB. This is especially
true in QUERY where you don't have any information about the physical records you're looking at.

The most efficient way to clear out the DCB is to do a POST call on the DCB as was mentioned above. In IMAGE, though, the
DCPB's for datasets are kept internally and the user doesn't have access 1o them. The only other way to clear out a DCB is to
close the file and re-open it. This method is rather costly, but it's easy and it works. In IMAGE, a user can use DBCLS to close
the whole database (very time-consuming) or he can use DBCLS (mode=2) to just close the individual dataset he is reading
from. Unfortunately, in QUERY, the user has only the option of closing the whole database and re-opening it.

THE BOTTOM LINE

The bottom line of this whole discussion is this: when two or more IMAGE application programs (user-written, QUERY,
DATACAP, etc.) have the same database open in shared read/write mode (mode= 1), modifications made to the database by
one program may not be seen immediately by the other programs. The disc will be up-to-date, but the local DCB in a program
may not have the updated copy. The solution under IMAGE is to either do a DBGET on a record that’s far enough away from the
record you want that you're sure it's not currently in the DCB, or close the specific dataset and re-open it, or close the whole
database and re-open it. In QUERY, this translates into doing a FIND on something you know is far enough away, or closing and
re-opening the database with the DATA-BASE= command.

46

BULLETINS

JOIN AN HP 1000 USER GROUP!

Here are the groups that we know of as of December 1980. (If your group is missing, send the Communicator/1000 editor all of

the appropriate information, and we'll update our list.)

NORTH AMERICAN HP 1000 USER GROUPS

Area

Arizona

Boston

Chicago

Greenville/S. C.

Huntsville/Ala.

Montreal

New Mexico/El Paso

New York/New Jersey

47

User Group Contact

Jim Drehs
7120 E. Cholla
Scottsdale, Arizona 85254

LEXUS
P.O. Box 1000
Norwood, Mass. 02062

David Olson

Computer Systems Consultant
1846 W. Eddy St.

Chicago, lllinois 60657

(312) 525-0519

Henry Lucius Il

American Hoechst Corp.
P.O. Box 1400

Greer, South Carolina 29651
(803) 877-8471

John Heamen ED35

George C. Marshall Space Flight Ctr.
Nasa

Marshall Space Flight Ctr., AL. 35812

Erich M. Sisa

Siemens Electric Ltd.

7300 Trans Canada Highway
Pointe Claire, Quebec

HIOR 1C7

Guy Gallaway

Dynalectron Corporation
Radar Backscatter Division
P.O. Drawer O

Holloman AFB, NM 88330

Paul Miller

Corp. Computer Systems
675 Line Road
Aberdeen, N.J. 07746
(201) 583-4422

BULLETINS

NORTH AMERICAN HP 1000 USER GROUPS (CONTINUED)

Area User Group Contact
Philadelphia Dr. Barry Perlman
RCA Laboratories
P.O. Box 432

Princeton, N.J. 08540

Pittsburgh Eric Belmont
Alliance Research Ctr.
1562 Beeson St.
Alliance, Ohio 44601
(216) 821-9110 X417

San Diego Jim Metts
Hewlett-Packard Co.
P.O. Box 23333
San Diego, CA 92123

Toronto Nancy Swartz
Grant Hallman Associates
43 Eglinton Av. East
Suite 902
Toronto M4P1A2

Washington/Baltimore Mal Wiseman
Hewlett-Packard Co.
2 Choke Cherry Rd.
Rockville, MD. 20850

General Electric Co. Stu Troop

(GE employees only) Special Purpose Computer Ctr.
General Electric Co.
1285 Boston Ave.
Bridgeport, Conn. 06602

OVERSEAS HP 1000 USER GROUPS

Belgium J. Tiberghien
Vrije Universiteit Brussel
Afdeling Informatie
Pleinlaan 2
1050 Brussel
Belgium
Tel. (02) 6485540

48

BULLETINS

OVERSEAS HP 1000 USERS GROUPS (CONTINUED)

Area

France

Germany

Netherlands

Singapore

Switzerland

United Kingdom

49/50

User Group Contact

Jean-Louis Rigot
Technocatome TA/DE/SET
Cadarache

BP.1

13115 Saint Paul les Durance
France

Tel. (042) 253952

Hermann Keil

Vorwerk + Co Elektrowerke
Abt. TQPS

Rauental 38-40

D-5600 Wuppertal 2

W. Germany

Tel. (0202) 603044

Albert R. Th. van Putten

National Institute of Public Health
Antonie van Leeuwenhoeklaan 9
Postbox 1

3720 BA Bilthoven

The Netherlands

Tel. (030) 742344

W. S. Wong

Varta Private Ltd.

P.O. Box 55

Chai Chee Post Office
Singapore

Tel. 412633

Graham Lang
Laboratories RCA Ltd.
Badenerstrasse 569
8048 Zurich
Switzerland

Tel. (01) 526350

Mike Bennett

Riva Turnkey Computer Systems
Caroline House

125 Bradshawgate

Bolton

Lancashire

United Kingdom

Tel. (0204) 384112

Although every effort is made to ensure the accuracy of the
data presented in the Communicator, Hewlett-Packard can-
not assume liability for the information contained herein.

Printed in U.S.A. 7/81

Prices quoted apply only in U.S.A. If outside the U.S., contact
your local sales and service office for prices in your country.

Part No. 5951-6111

TN
\

J

L

