[ﬁp HEWLETT

PACKARD

Hewlett-Packard
Computer Systems

GOMMUN
el)

T T 431 34

e

1981 Volume V Issue 3

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

HEWLETT-PACKARD |
COMPUTER SYSTEMS

tosue s COMMUNICATOR/1000

OPERATING SYSTEMS

LANGUAGES

OPERATIONS MANAGEMENT

EDITOR’S DESK

BIT BUCKET

BULLETINS

Feature Articles

24

33

37

50

USER WRITTEN 1/O ROUTINES FOR
HP 1000 COMPUTER
M. VaraninifUniversity of Pisa

ABOUT FORTRAN COMMON
John Pezzano/HP E|/ Paso

MOVER: A FILE MOVING PROGRAM

Dan Laskowski/HP Indianapolis

CUSTOMIZED SERVICE USING THE HELLO FILE
Don McLaren/Martin Marietta

Departments

(= 24 |

10
15
21

55
56

ABOUT THIS ISSUE

BECOME A PUBLISHED AUTHOR IN THE
COMMUNICATOR/1000...

CORRECTION TO PREVIOUS ISSUE

HOW TO FIND SYSTEM STATUS WITHOUT REALLY
LOGGING ON

QUICK DATA BASE CHANGES

DATE RANGING

PACKING LU’S 2 AND 3 DURING THE OFF HOURS

NEW ATS DTU MANUAL UPDATE
JOIN AN HP 1000 USERS GROUP

3/4

EDITOR’S DESK

ABOUT THIS ISSUE

| am pleased to let you know that this third issue of 1981 has a good turnout of customer contributions. My thanks to all of you
out there who are supporting the Communicator/1000. We still have a need for articles for future issues; perhaps this issue will
stimulate more of our readers to share some of their ideas.

Before telling you specifics of Volume 5, Issue 3 I'd like to refer you to a change of policy regarding calculator awards. The
decision has been made to no longer exclude HP's Data System Division Technical Marketing Department employees from
consideration. Whereas this will have no impact on the competition between either the customer or field employee judgments, |
wanted to call your attention to this change. We feel that as long as impartiality can be achieved, this new policy will be in effect.
In addition, we have added the category Languages to our list of topics.

Another subject I'd like to make a note of is regarding requests for back issues of the Communicator/1000. Our method of
publication is to handle techincal editing, typesetting and graphics within Hewlett Packard. Printing however is done by an
outside vendor and is limited to a specific number of issues. Distribution is then done by an HP distribution center. This
precludes therefore individual requests for reprints of earlier issues. For copies of specific articles, | suggest you contact your
local sales office — they should have a library of Communicators.

Now about our articles — our first article is in the area of Operating Systems. This feature is a team effort from the Institute of

Clinical Physiology, University of Pisa. The subject is data acquisition in a real-time environment without operating system
overhead.

Our second article is from one our more prolific writers, John Pezzano from the HP El Paso, Texas office. John's latest
contribution is in the category Languages and is about FORTRAN Common. You will also find a second contribution from John
in the Bit Bucket section. Thanks for such strong support, John!

We have two articles in the area of Operations Management. The first is by Dan Laskowski, a Systems Engineer in the HP

Indianapolis, Indiana office on "MOVER", a file moving program. The second article is another useful concept, “Customized
Hello Files”. Thanks to Don MclLaren from Martin Marietta in Orlando, Florida.

Our calculator award this time in the category HP field employees goes to Dan Laskowski. John Pezzano was not eligible for the
competition as he has already received an award in 1981. Our award for best feature article by an HP customer goes to the
group effort from University of Pisa. Congratulations!

Best feature article “User Written /0 Routines for HP 1000 Computer”
by an HP Customer: M. Varanini

University of Pisa

Best feature article “MOVER: A File Moving Program”
by an HP Field Employee: Dan Laskowski
HP Indianapolis, Indiana

Until next time . . .

Best Regards.

The Editor

EDITOR’S DESK

BECOME A PUBLISHED AUTHOR IN THE COMMUNICATOR/1000 ...

The COMMUNICATOR is a technical publication designed for HP 1000 computer users. Through technical articles, the direct
answering of customers’ technical gquestions, cataloging of contributed user programs, and publication of new product
announcements and product training schedules, the COMMUNICATOR strives to help each reader utililize their HP 1000's
more effectively.

The Feature Articles are clearly the most important part of the COMMUNICATOR. Feature Articles are intended to promote a
significant cross-fertilization of ideas, to provide in-depth technical descriptions of application programs that could be useful to
a wide range of users, and to increase user understanding of the most sophisticated capabilities designed into HP software.
You might think of the COMMUNICATOR as a publication which can extend your awareness of HP 1000's to include that of

thousands of users worldwide as well as that of many HP engineers in Data Systems factories at Cupertino, California and
Grenoble, France.

To accomplish these goals, editors of the COMMUNICATOR actively seek technical articles from HP 1000 customers, HP
Systems Engineers in the Field, and Marketing and R&D Engineers in the factories. Technical articles from customers are most
highly valued because it is customers who are closest to real-world applications.

WIN AN HP-32E CALCULATOR!

Authoring a published article provides a uniquely satisfying and visible feeling of accomplishment. To provide a more tangible
benefit, however, HP gives away three free HP-32E hand-held calculators to Feature Article authors in each
COMMUNICATOR/1000 issue! Authors are divided into three categories. A calculator is awarded to the author of the best
Feature Article in each of the author categories. The three author categories are:

1. HP 1000 Customers;
2. HP field employees;
3. HP division employees.

Each author category is judged separately. A calculator prize will be awarded even if there is only one entry in an author
category.

Feature Articles are judged on the following bases: (1) quality of technical content; (2) level of interest to a wide spectrum of
COMMUNICATOR/1000 readers; (3) thoroughness with which subject is covered; and, (4) clarity of presentation.

What is a Feature Article? A Feature Article meets the following criteria:
1. lts topic is of general technical interest to COMMUNICATOR/1000 readers;
2. The topic falls into one of the following categories —

OPERATING SYSTEMS

DATA COMMUNICATIONS
INSTRUMENTATION
COMPUTATION
OPERATIONS MANAGEMENT
LANGUAGES

EDITOR’S DESK

3. The article covers at lgast two pages of the COMMUNICATOR/1000, exclusive of listings and iflustrations (i.e., at feast 1650
words).

There is a little fine print with regard to eligibility for receiving a calculator; it follows. No individual author will be awarded more
than one calculator in a calendar year. In the case of multiple authors, the calculator will be awarded to the first listed author of
the winning article. An article which is part of a series will compete on its own merits with other articles in the issue. The total of
all articles in the series will not compete against the total of all articles in another series.

All winners of calculators will be announced in the issue of the COMMUNICATOR/ 1000 in which their articles appear. Again, all
Feature Articles are judged by an impartial panel of three DSD Technical Marketing Engineers.

A SPECIAL DEAL IN THE OEM CORNER

When an HP 1000 OEM writes a Feature Article that is not only technically detailed and insightful but also application-oriented
as opposed to theoretical, then that OEM may ask that the article be included in THE OEM CORNER. A Feature Article included
in THE OEM CORNER may contain up to 150 words of pure product description as well as a picture or illustration of the OEM'S
product or its unigue contribution. HP's objective is twofold: (1) to promote awareness of the capabilities HP 1000 OEMs'
products among all HP 1000 users; and, (2) to publish an article of technical interest and depth.

IF YOU'RE PRESSED FOR TIME . ..

If you are short of time, but still have that urge to express yourself technically, don't forget the COMMUNICATOR/1000 BIT
BUCKET It's the perfect place for a short description of a routine you've written or an insight you've had.

THE MECHANICS OF SUBMITTING AN ARTICLE

if at all possible please submit an RTE File containing the text of your article recorded on a Minicartridge (preferrably) or on a
paper tape along with the line printer or typed copy of your article. This will help all of us to be more efficient. The Minicartridge
will be returned to you promptly. Please include your address and phone number along with your article.

AH articles are subject to editorship and minor revisions. The author will be contacted if there is any question of changing the
information content. Articles requiring a major revision will be returned to the author with an explanatory note and suggestions
for change. We hope not to return any articles at all; if we do, we would like to work closely with the author to improve the article.

HP does, however, reserve the right to reject articles that are not technical or that are not of general interest to
COMMUNICATOR/1000 readers.

Please submit your COMMUNICATd‘RNOOO article to the following address:

Editor, COMMUNICATOR/1000
Data Systems Division
Hewlett-Packard Company
11000 Wolfe Road

Cupertino, California 95014
USA

The Editor looks forward to an exciting year of articles in the COMMUNICATOR/1000.
With best regards,

The Editor

EDITOR’S DESK

CORRECTION TO PREVIOUS ISSUE

Volume V, Issue One of the Communicator/1000 included a letter to the Editor by Charles L. Elliot of Elliot Geophysical
Company. The included program, SCAN, contained errors when published. Following is a corrected version of the program.
The Editor apologizes for any inconvenience that may have been caused by these mistakes.

FTN4,L
Cassnsaanasana
Ce#0176 SCAN
Cesnnsananangs
PROGRAM SCAN(3)>,791121 C.L. ELLIQOT
ADAPTED FROM LOCUS PROGRAM 22683-90017
THIS PROGRAM EMULATES A HARD COPY DEVICE BY
READING THE CONTENTS OF THE 26XX MEMORY
AND WRITING THAT DAT TO LUPR
DEFAULT IF LUPR=6
RU,SCAN,LUPR WILL COY FROM CURSOR POSITION
AND ENDS AT ~~~~ 0OR :RU,SCAN
DIMENSION IBUF(50),IPAR(CS),IREG(2)
EQUIVALENCE (REG,IREG(C1),IA),C(IREGI(2),IB)
c GET TERMINAL LOGICAL UNIT NUMBER AND PARAMETERS
CALL RMPARCIPAR)
LU=LOGLUCLU)
LUN=LU
10UT=1PARC1)
IFCIPARC1).EQ.LUXIOUT=6
c DEFINE CONTROL FUNCTIOGNS
IDC1=10537B
NLESC=33B
IDUN=62137B
1UP=40537B
IEND=57136B
5 FORMAT(2A2)
c PUT TERMINAL IN BLOCK MODE
WRITECLU,5)IDC1
WRITECLU,S5INLESC,IUP
Cc REQUST 1 LINE FROM TERMINAL
20 WRITECLU,S)NLESC,IDUN
Cc READ THE LINE
IBUF(1)=2H
REG= EXEC(1,LUN,IBUF,50)
LEN=IB
c CHECK FOR END -- #aaa gR :RU,SCAN
IFCLEN.GT.6) GO TO 50
IFCCIBUF(1)>.EQ. TEND) .AND.(IBUF(2) .EQ. IEND))GOT099
IFCCIBUF(1).EQ.2H:R) .AND.(IBUF(2).EQ. 2HU,)
$.AND.(IBUF(3).EQ.2HSC) .AND.(IBUF(4).EQ.2HAN))GO TO 99
12 FORMAT(1H ,50A2)
c WRITE THE LINE TO THE LINE PRINTER
50 WRITECIOQUT,12)CIBUF(JJ) ,JJd=1,LEN)
GO TO 20
Cc EJECT PAGE AND END
99 ICNWD=I0OR(1100B,I10UT)
CALL EXEC(3,ICNWD,-1)
999 END
ENDs

OOO0OOO0O0

BIT BUCKET

HOW TO FIND SYSTEM STATUS WITHOUT REALLY LOGGING ON

John Pezzano/HP El Paso

Recently, a customer asked me why we don't provide a capability for the user to find out how active a Session Monitor System is
without going through the effort of Logging On. In other words, how can a person run WHZAT without having to type in his/her

user name, group name, and password? Wouldn't it also be nice if the system manager could quickly examine the programs
and/or partitions?

There is an easy way to do these things. When you log on to session, you provide a USER.GROUP/PASSWORD. The user name
must be provided but the others are not necessary. The group name is defaulted to GENERAL and the password to NONE. The

system manager can create a user with user name WHZAT with defaulted group and password. If the capability level is set to 1
(one) and a “"HELLO” file

:WH,AL
1EX

is set up, anyone can examine the system by typing WHZAT in response to a LOGON message. The result is that the user is
logged on as WHZAT.GENERAL, the "HELLO"” file is executed (running WHZAT with the “ALL" option), and the user is
immediately logged off. Similarly, "WHZATPA” can, with

:WH,PA
sEX

find partition status. Voilal One can find system status without “really” logging on.

BIT BUCKET

QUICK DATA BASE CHANGES

Camilla Foppes/Fairchild Test Systems

Listed below is an interactive FORTRAN utility used to standardize ASClI entries in an Image data base and to eliminate missed
data due to abbreviations, misspellings, etc., during either a Query search or applications program string comparison. 'UPDAT’
prompts the user for the name of the data base, level, data set item, old data string (to be replaced), and new data string. The

user has the option to update more than one data item within a data base, more than one data base or {o exit the program
before any changes are made.

Compilation: (usual HP FTN4 manner)
:RU,FTN4, &UPDAT ,6,XUPDAT
Loader sequence:

:RU,LOADR

/LOADR: SZ,14
/LOADR: RE,XUPDAT
/LOADR: END

Note

‘UPDAT must be sized 1 to 2 pages larger than required — therefore the
'SZ,14" in the LOADR sequence.

Programmer: Camilla Foppes
Fairchild Test Systems Group
MS 32/756
1601 Technology Dr.
San Jose, California 95115
(408) 998-0123 ext. 2873

10

BIT BUCKET

IEEEREREEEREERRERRRENREARREREERERE RRERREAEREREAREREREEEREREERRRERRERREERE R R R R ER X R R

FTN4,L
PROGRAM UPDAT(),IMAGE UPDATE USER’S PROGRAM+s 6-5-81 CF REV 3

IMAGE UPDATE USER PROGRAM
PROGRAMMER: CAMILLA FOPPES

FAIRCHILD TEST SYSTEMS
DATE: 6 JUNE 1981

THIS PROGRAM CAN BE USED TO UPDATE DATA ITEMS IN A GIVEN DATA SET.
OLD DATA WILL BE REPLACED WITH THE NEW DATA THAT IS INPUT THROUGH
THIS PROGRAM. USER MUST INPUT INFORMATION SUCH AS LEVEL,DATA BASE
NAME, DATA ITEM TO BE CHANGED PLUS OLD AND NEW DATA.

IBASE
LEVEL
MODES
LISTD
LISTN

DATA BASE NAME
ACCESS LEVEL

MODE 1, 2, 3, 4, 8
OLD DATA STRING
NEW DATA STRING

OO0 OOOOOOO0O0O0

INTEGER IBASE(8)>,LEVEL(4),STAT(10),LIST(3>,ID(3)
INTEGER TANS(1),LALLC1),IARG(2)
INTEGER LISTO(36),LISTN(36),0BUF(36),0BUF1(36)

EQUIVALENCE (STAT(2),ILEN)

DATA MODE1/1/

DATA MODE2/2/

DATA MODE3/3/

DATA MODE4/4/

DATA MODESB/8/

DATA IBLANK/2H /
DATA LALL/2H® /
DATA IBASE(C1)/2H /

10 WRITE (€1,20)
20 FORMAT (*TD EXIT THIS PROGRAM AT ANY TIME, TYPE ‘EX’.%/
“PLEASE ENTER YOUR LEVEL: ")
READ (1,30) CLEVELCI),I=1,3)
30 FORMAT (3A2)
IF (LEVEL(1).EQ.2HEX) GOTO 999

—_

GET DATA BASE NAME (IBASE)

OO0

WRITE €1,40)
40 FORMAT (*"ENTER NAME OF DATA BASE IN THE FOLLOWING FORMAT: '+/
“DATA BASE:SECURITY CODE:CRN; ')
READ ¢1,50) (IBASEC(I])>,1=2,8)
S0 FORMAT (8A2)
IF (IBASE(1).EQ.2HEX) GOTO 950

—_

c

c OPEN DATA BASE

c
CALL DBOPN(CIBASE,LEVEL,MODE1,STAT)
IF (STATC1).NE.O0) GOTO 800

c

c LOCK DATA BASE

1

BIT BUCKET

100

OO0

120

o NeNe!

130

140

0000

o0 OO0

CALL DBLCK(IBASE,ID,MODE1,STAT)
IF (STAT(1).NE.O0) GOTO 860

GET DATA SET NAME CID)

WRITE €1,60)

FORMAT (*"PLEASE ENTER DATA SET ID: ")
READ (1,70 CIDCI),I=1,3)

FORMAT (3A2)

I[F (IDC1).EQ.2HEX) GOTO 950

GET DATA ITEM (LIST)

WRITE €1,90)

FORMAT (*PLEASE ENTER DATA ITEM TO BE CHANGED: ')
READ (1,100) (LIST(CID),1=1,3)

FORMAT (3A2)

IF (LISTC1).EQ.2HEX) GOTO 950

GET OLD DATA STRING (LISTO)

WRITE ¢1,110)

FORMAT ("PLEASE ENTER OLD DATA STRING TO BE REPLACED:

READ (1,120) (LISTOCI),I=1,36)
FORMAT (36A2)
IF (LISTOC1).EQ.2HEX) GOTO 950

GET NEW DATA STRING (LISTN)

WRITE €1,130)

FORMAT ("PLEASE ENTER NEW DATA STRING: ™)
READ (1,140) (LISTNCI), I=1,36)

FORMAT (36A2)

IF (LISTN(1).EQ.2HEX) GOTO 950

POINT TO FIRST RECORD

CONTINUE

I1ARG(1)=0

[ARG(2)=0

CALL DBGETC(IBASE,ID,MODE4,STAT,LIST,0BUF,1ARG)
IF (STAT(1).NE.0) GOTO 820

FETCH NEXT DATA ENTRY

CALL DBGET(IBASE,ID,MODE2,STAT,LIST,O0BUF,0)
IF (STAT(1).NE.O)> GOTOD 820

WRITEC1,190) (OBUF(I),I=1,36)
FORMAT("READING =~ ',36A2)

COMPARE DATA FOR REPLACEMENT
IF (JSCOMCOBUF,1,STAT(2),LISTO,1,1ERRY) 170,200,170
UPDATE DATA BASE

12

ll)

BIT BUCKET

CONTINUE

CALL DBUPD(IBASE,ID,MODE1,STAT,LIST,LISTN)
IF (STATC1).NE.0) GOTO 840

GOTO 170

CONTINUE

CALL DBUNL(CIBASE,ID,MODE1,STAT)
IF (STAT(1).NE.0) GOTO 880

GOTO 950

CONTINUATION ROUTINE

CONTINUE

WRITE €1,701)

FORMAT (DO YOU WISH TO UPDATE MORE ITEMS?
READ €1,702) IANS

FORMAT (1A2)

IF CIANS.EQ.2HY) GOTO 760

WRITE €1,703)

FORMAT ("DO YOU WISH TO UPDATE ANOTHER DATA SET?

READ (1,704) IANS

FORMAT (1A2)

IF CIANS.EQ.2HY) GOTO 7S50
GOTO 900

CONTINUE
WRITE €¢1,751)
FORMAT ('UNLOCKING OLD DATA BASE ')

UNLOCK OLD DATA BASE

CALL DBUNLCIBASE,ID,MODE1,STAT)
IF (STATC1).NE.O0) GOTO 880

CLOSE OLD DATA BASE

WRITE €1,752)
FORMAT (*"CLOSING OLD DATA BASE')

CALL DBCLSCIBASE,ID,MODE1,STAT)
IF (STATC1).NE.O) GOTO 999
GOTO 10

BLANK OUT OLD BUFFERS

CONTINUE

DO 777 1=1,36
LISTOCI)=IBLANK
LISTNCID>=IBLANK
CONTINUE

GOTO 80

ERROR MESSAGES
WRITE €1,810) STAT(1)

FORMAT (*"SYSTEM ERROR = *,I5,'" ON OPEN'")
GOTO 999

13

Y/N

ll)

Computer
Museunt

Y/N ™)

BIT BUCKET

820 IF (STAT(1)>.EQ.12) GOTO 700
WRITE (1,830) STATC(1)

830 FORMAT ('"SYSTEM ERROR = ',I5,"™ ON GET')
GOTO 2S00

840 CONTINUE
IF (STAT(1).EQ.112) 841,850

841 WRITE €1,842) STATC1)

842 FORMAT ('*SYSTEM ERROR = *,I5,'"0ON UPDATE."/"ATTEMPT WAS MADE TO
1 ALTER THE VALUE OF A KEY ITEM."/"“PLEASE TRY ANOTHER DATA ITEM.'/)
GOTO 700

850 WRITE €1,851) STATC1)

851 FORMAT (**SYSTEM ERROR
GOTO <00

860 WRITE (1,870) STAT(1)

870 FORMAT (*"SYSTEM ERROR
GOTO 9S50

880 WRITE (1,820) STATC1)

890 FORMAT ('SYSTEM ERROR
GOTO 950

w,I15," ON UPDATE'")

*,I5,"™ ON LOCK'™)

»,I5," ON UNLOCK'™

CLOSE DATA BASE AND END PROGRAM

00 CALL DBUNL (IBASE,ID,MODE1,STAT)
IF(STATC1).NE.O) GOTO 880

950 CALL DBCLS(IBASE,ID,MODE1,STAT)
IF (STAT(1)>.EQ.0) GOTO 999
WRITE €1,960)
960 FORMAT (*"SYSTEM ERROR = ",I5,*" ON CLOSE'
999 CONTINUE
WRITE €1,1000)
1000 FORMAT (“END OF UPDATE PROGRAM. BYE.')
END

[EXEEREEERERRERRRRERERERRRRRERERRERRRRRR R R RRRRRRRRRRERR SR RE R R AR R A R R R XS R XX X B J

14

BIT BUCKET

DATE RANGING

R. Arthur Gentry/{American Tel & Tel

A problem facing most Data-Base programmers, is how to easily range dates. An EXEC (11) call will give you the Julian date
and year, but this requires several statements to test if the date you are testing is, for example Dec. 20 and your range is Dec.
10 to Jan 5. GDATE eliminates this problem by setting each date to its chronological number since the begining of time. Now
Dec. 20, 1980 becomes 723169 and the range dates become 723159 and 723185 respectively, making ranging a snap!

This subroutine is based on the Gregorian Calendar. The Gregorian Calendar defines a leap year of 366 days as occuring
whenever the year is divisible by 4 except for centesimal years (years ending in Q0) which are leap years only if divisible by 400.
All other years are common years consisting of 365 days. The extra day in a leap year is added on by giving Feb. 29 days.
Sept., April, June & Nov. have 30 days & all the other months have 31 days.

Dates are expressed in the narmal manner — Month,Day & Year — or in terms of the “Equivalent Gregorian Day” (EGD). The
EGD is defined as the number of elapsed days from the beginning of the calendar (1/1/1) to a given Month, Day & Year. For
example, 12/31/1973 equals 720623 EGD.

In my particular use, | store the Gregorian Date in my Image/ 1000 Data-Base records for fast and easy date testing. It takes up a
lot less room than placing an ASCIl 12/20/1980 and is easier to handle than 354,1980.

Call: CALL GDATE (OPT,MON,DAY,YEAR,DWK,DYR,DMON,EGD, #)

All arguments are Integer 2 except EGD which is Integer*4 and have the following meanings:

OPT = 1 The caller supplies the Month, Day & Year and the other arguments are computed and returned.
= 2 The caller supliies the EGD and the other arguments are computed and returned.

MDN = The month (1-12) DAY

DAY = The day of the month (1-31)

YEAR= The year (1-up)

DWK = The day in the week (where 1-7 = Sunday-Saturday)

DYR = The day in the year (1-366 — Julian Date)

DMON= The total days in the month (MON)

EGD = The Equivalent Gregorian Day (1-up)

* = “nnn Where nnn Equals a statement No. to GO TO on an error

If valid date information is passed by the caller, return is made to the next statement following the CALL statement. [f invalid
date information is passed by the caller, retumn is made to *nnn.

The subroutine’s use is illustrated by the following:

1. Given a date, the day of the week is determined.

2. Adate may be tested to be in a report by seeing if its GREG. day falls within the range of the two Gregorian Days that define
the report period.

Cyclical date functions may be performed by utilizing the Gregorian day function (e.g., — defining dates of recurring 45
day periods, Biorythm Analysis, etc.)

If Feb. 29, (year) is offered to the subroutine and the return arguments indicate that the date is valid, then the year is a leap
year.

5. Perpetual calendars may be generated.

15

BIT BUCKET

This subroutine is based on the adoption of the Gregorian Calendar on 9/14/1752, which is still in effect. All dates from
9/14/1752 forward will be valid until the calendar is changed again. All date info prior to 9/14/1752 has been extrapolated to
1/1/1 based on the various calendar systems in effect prior to 9/14/1752.

Note

This subroutine will work in systems that do not have Fortran 4X by
changing the INTEGER*4 to REAL and eliminating the error return,

Also, the LYEAR Function can be used by any program to test for Leap
Years, and will be accurate until they change the calendar again.

16

BIT BUCKET

FTN4Y,L

Al

$TITLE TRUE GEGORIAN DATE ROUTINE ISS. 2 801126 R.A.G.(MWR)
SUBROUTINE GDATE (OPT,MON,DAY,YEAR,DWK,DYR,DMON,EGD,+)
>, GREGORIAN DATE ROUTINE 801126

c
IMPLICIT INTEGER=*2 (A-2)
c
c
c
C=I======II====8================288========8==========================
c
C REVISION LIST
c
C --DATE-- --BY-- ~- DESCRIPTION -~
c
C 03/19/80 R.A.G. -ORIGINAL ISSUE
C 11/26/80 R.A.G. -CONVERTED REAL NUMBERS TO DOUBLE INTEGER AND ADDED
c DAY OF THE WEEK, DAY OF THE YEARCJULIAN DATE),
c AND NUMBER OF DAYS IN THE MONTH. ALSO ADDED AN
c ERROR RETURN ADDRESS.
c
C=II=============================8===================================
c
INTEGER=*2 M(12)
c A
INTEGER+4 EGD,EEGD,GDATS
c
LOGICAL LYEAR
c
DATA M/31,28,31,30,31,30,31,31,30,31,30,31/
c
C INITIALIZE SOME VARIABLES
c
M(2)=28
DYR=0
c
C CHECK FOR OPTION
c = CALLER SUPPLIES MONTH DAY YEAR
c >1 = CALLER SUPPLIES GREGORIAN DATE
c
IF (OPT.GT.1)> GO TO 120
c
C THIS SECTION CONVERTS TO A GREGORIAN DATE
c
C TEST ARGUMENTS FOR VALIDITY
c
IF (MON.LT.1.0R.MON.GT.12.0R.DAY.LT.1.0R.DAY.GT.31.
> OR.YEAR.LT.1) GO TO 180
c
IF (LYEARCYEAR)) M(2)=29 ! TEST FOR LEAP YEAR
c
IF (DAY.GT.M(MON>> GO TO 180 ! DAY > NO. DAYS IN MON ??

c
C CALCULATE GREG. DATE TO 1st OF REQUESTED YEAR
c

Y=YEAR-1
EGD=GDATS(Y)

C CALCULATE TO CURRENT GREGORIAN DATE

17

BIT BUCKET

J=MON-1
IF (J.EQG.0)> GD TD 110
DO 100 I=1,J
DYR=DYR+M(I)

100 CONTINUE
EGD=EGD+DYR

110 EGD=EGD+DAY
DYR=DYR+DAY

GO 7O 170
c
C THIS SECTION CONVERTS FROM A GREGORIAN DATE
c
120 IF (EGD.LT.1) GO TO 180 ! ARGUMENT 0K ?2°?
c
C CALCULATE CURRENT DATE (MM/DD/YYYY)
c

YEAR=(CEGD/366) -1
130 YEAR=YEAR+1
EEGD=GDATSC(YEAR)
IF (EGD-EEGD-368) 140,140,130
140 YEAR=YEAR+1
DYR=EGD-EEGD
c
IF (LYEARCYEAR)) M(2)=29 ! LEAP YEAR ?°?
c
DO 150 MON=1,12
EEGD=EEGD+M(MON)
IF (EGD.LE.EEGD) GO TO 160
150 CONTINUE
M(2)=28
GD TO 140
c
C CALCULATE THE REMAINING ARGUMENTS
c
160 DAY=EGD+M(MON)-EEGD
170 DMON=M(MON)

DWK=MODCEGD,7)+1
RETURN

c

180 RETURN 1 ! ERROR RETURN
END

c

c

$TITLE FUNCTION LYEAR (LEAP YEAR) ISS. 1 801126 R.A.G.(MWR)
FUNCTION LYEARCYEAR), LEAP YEAR TESTER 801126
c
IMPLICIT INTEGER#2 (A-2)
c
C THIS FUNCTION WILL TEST A GIVEN YEAR AND RETURN A TRUE/FALSE
c INDICATION.

18

BIT BUCKET

c
Cssxsszzzzszszassrss TN EE N EE SR S EEEE N RN TSR TERSSXEESRE=RRRTETRRTS==S==xX
c
C REVISION LIST
c
C --DATE-- --BY-- -- DESCRIPTION--
c
C 11/26/80 R.A.G. -ORIGINAL ISSUE
c
Casx=ssazzasssssssscrs s sass S S S rETEEREErEEESSSSSESTSCSSSEEEITISESSSSSESSS
c
LYEAR=0
IF (MOD(YEAR,4).EQ.0.AND.MODCYEAR,100).NE.O.OR.
> MODCYEAR, 400) .EG.0) LYEAR= -1
RETURN
END
c
c
$TITLE FUNCTION GDATS (GDATE) IsS. 1 801126 R.A.G.(MWR)
FUNCTION GDATSCYEAR), GDATE FUNCTION 801126
c
IMPLICIT INTEGER+2 (A-2)
c
INTEGER#4 GDATS
c
c
C THIS FUNCTION IS PART DF THE GDATE SUBROUTINE, AND RETURNS A
c GREGORIAN DATE TO THE 1ST OF THE YEAR BASED ON THAT YEAR.
c
Ceszszsszsxssz2z22 R TR = =2 XSRS XN XXEETEEEEIES=SRI-CREEERITISTEXIBBRISSSS==
c
C REVISION LIST
c
C --DATE-- --BY-- -- DESCRIPTION--
c
C 11/26/80 R.A.G. -DRIGINAL ISSUE
c
Czzzszszzsaxzssazssssszsssssssssrc-cSS T NmR=-SEExTRSISSSEX======E==S============
c
C#»+ NOTE #»
c
C GDATS MUST BE DECLARED AS AN INTEGER+#4 FUNCTION 1111
c
GDATS=365+#YEAR
GDATS=GDATS+(24*(YEAR/100))
GDATS=GDATS+(YEAR/400)
GDATS=GDATS+(MOD(YEAR,100)/4)
RETURN
END
$

19

BIT BUCKET

TEST PROGRAM FOR GDATE

FTN4X)
PROGRAM DATE -,
IMPLICIT INTEGER+#2 (A-2)
c
C THIS 1S A PROGRAM TO TEST THE SUBROUTINE "“GDATE®'.
C |:', ;!.
INTEGER*#4 EGD
c . .
100 M= 0
D=0
Y=0
DWK=0
DYR=0
DMON=0
EGD=0 .-
WRITE (f,’(*" ENTER 1 FOR CALENDER DATE, 2 FOR EGD, 3 TO END _*)‘)
READ (1,+) ANS
IF (ANS.GT.2) GO TO 910
IF (ANS.EG.1) GO TO 110
WRITE C€1,“C*" ENTER EGD _")*)
READ (1,+) EGD
OPT=2
105 CALL GDATE (OPT,M,D,Y,DWK,DYR,DMON,EGD, #900)
GO TO 120
110 WRITE €1,/C" ENTER M;D,Y _*")’)
READ (1,#) M;D,Y :
0PT=1 SRR
GO TO 105
120 WRITE ¢1,1000) OPT,M,D,Y,DWK,DYR,DMON,EGD
1000 FORMAT ¢’ DPT=‘,12,/,¢ DATE= ‘,12.2,7/*,12.2,°/*,14.4,/,
> * DAY OF WEEK= /,12,/,’ DAY OF YEAR= /,l4,/,
> * DAYS IN MONTH= 7,13,/,
> * GREGORIAN DATE= “,I110,/)
GO TO 100 7
900 WRITE C€1,‘C"™ ERROR IN CALL TO GDATE"™)’)
910 STOP L. G
END

o
VA

20

BIT BUCKET

PACKING LU °S 2 AND 3 DURING THE OFF HOURS.

Wayne P. Reidinger/Bell Laboratories

There’s nothing more aggravating on RTE-IV than to attempt to save a file or program on LU 2 or 3 only to receive a FMGR-033
error (not enough room on cartridge). Packing the appropriate disc LU will usually gain back the needed space, but if it's LU 2,
the packing can't take place until all active ID-segments have been OFF'ed. If you're the only user, no problem, but if there are
other users, they probably would not appreciate having their programs OFFed just to allow you to save your file or program.
One answer to this problem is to have a time-scheduled program that would do the offing and packing during the off-hours
thereby avoiding any inconvenience to system users. Presented here is a program {(actually 2 programs and one transfer file)
that does just this. Three modules are required for this job:

1. Program PACK2

2. #PACK2

3. Program IDSEG

to execute the transfer file #PACK2.

This is the main program that is put in the time list. PACK2 kills the FMGR and then reschedules FMGR

The transfer file that OFF's the ID-segment names returned by program IDSEG. This transfer file also

issues the pack command and may be edited to include RP’s to restore vital ID-segments after the disc

packing has been performed.

Gets the name of a temporary ID-segment from the system table and returns it to #PACK2. If all

temporary segments have been OFFed then IDSEG will return $3$$$$$ for the name. IDSEG will NOT
return it's own ID-segment name. Transfer file #PACK2 will off IDSEG just before packing begins.

Program PACK2

THIS PROGRAM TERMINATES THE FILE MANAGER (FMGR)>, THEN

RESCHEDULES FMGR AND PASSES TO IT THE NAME OF THE XFER

FILE #PACK2 WHICH WILL PACK LU 2.
PROGRAM PACK2

DIMENSION IBUFA(S)

INTEGER BUFR(7),FMGR(3)

DATA BUFR/2H:T,2HR, ,2H#P,2HAC,2HK2,2H:: ,2H3 /
DATA IBUFA/2HOF ,2H,F ,2HMG,2HR, ,2H1 /
DATA FMGR/2HFM,2HGR,2H /

DATA IBUFL/-13/

FIRST OFF THE CURRENT FMGR

ICOUN=9

I=MESSSCIBUFA,ICOUN,1)

NOW SET UP ARGUMENTS TO RESCHEDULE FMGR AND PASS
THE NAME OF THE XFER FILE TO BE EXECUTED.
ICODE=23

1ASC=2HXX

LIST=1

ISv=0

LOG=1

IDUM=0

SCHEDULE FMGR AND XFER TO #PACK2

CALL EXECCICODE,FMGR,0,LIST,ISV,L0G,IDUM,BUFR, IBUFL)
END

21

BIT BUCKET

Transfer File #PACK2

:SV,0

THIS TRANSFER FILE ATTEMPTS TO PACK LU-2.

BEFORE DOING SO, HOWEVER, PROGRAM IDSEG 1S CALLED
TO DETERMINE IF THERE ARE ANY PGMS THAT HAVE TO

BE QFF’D. IF PGM IDSEG FINDS A TEMP ID SEGMENT,

IT RETURNS THE NAME IN 10G (1P,2P,3P) WHERE IT CAN
OFF’D BY THE TRANSFER FILE. IF ALL PGMS HAVE BEEN
OFF’D , THEN IDSEG RETURNS WITH $$$$$$ IN 106G -
INDICATING THAT PACKING MAY BEGIN.

IT IS RECOMMENDED THAT THIS XFER FILE BE TIME-SCHEDULED
TO BEGIN EXECUTION OUTSIDE OF WORKING HOURS TO AVOID
:# INCONVENIENCE TO SYSTEM USERS.

:RU, IDSEG

:IF,1P,NE,9252,6

:IF,2P,NE,9252,5

:1F,3P,NE,9252,3

:0F,IDSEG

:PK,2

:PK,3

:IF,1,EQ,1,2

:0F,106

:IF,1,EQ,1,-10

:» WHEN DONE REINITIALIZE TIME FOR DISC PACKING

ea wx sx se e as me = au am
® % % & % x & ¥ & *

:RP,PACK2
:SYIT,PACK2,4,24,3,00
:SYON,PACK2::3
: TR
Program IDSEG
FTN4

PROGRAM IDSEG(3,70), GET ID SEGMENT
DIMENSION IGLOBL(S)
DATA IGLOBL/2HS ,2HS$S ,2HSs$/

g.....GET ADDR OF KEYWORD BLOCK

¢ KEYWD=1GET(1657B)

C.....SEARCH ID SEGMENTS AND CHECK FOR TEMP ONES.
gO IDSEG=1GETC(KEYWD)

g CHECK FOR END OF KEYWD BLOCK

c

IFCIDSEG.NE.0)GO TO 21
C.....RETURN WITH 10G =$$$sss
IGLOBLC1)=2Hs$
IGLOBL(2)=2Hs$
IGLOBL(3)=2Hs$$
CALL PRTNCIGLOBL)
CALL EXEC(6)
21 CONTINUE

22

BIT BUCKET

OO0

404

RECORD NAME

IGLOBLC1)=1GET(IDSEG+12)
IGLOBLC(2)=1GETCIDSEG+13)
IGLOBL(3)=IGET(IDSEG+14)

SKIP BLANK OR PERM. ID SEG’S
IDBLNK=ITANDCIGLOBL(1),177400B)
IFCIDBLNK.NE.0)GO TO 400

COUNT BLANKS AND CONTINUE
KEYWD=KEYWD+1

GO TO 20

IF TEMP MAKE THIRD WORD PRINTABLE.
SKIP OVER PERM. ID SEG’S
ITEM=1ANDCIGLOBL(3),200B)
IFCITEM.EQ.0)GO TO 22
IGLOBLC3)=TI0RCIANDCIGLOBL(3),177400B),40B)
CHECK FOR ID SEG OF THIS PGM.
IFCIGLOBLC1).NE.2HIDYGO TO 404
IFCIGLOBLC2).NE.2HSEYGO TO 404
IFCIGLOBLC3).NE.2HG)GO TO 404
GO TO 22

CALL PRTNCIGLOBL)

CALL EXEC(®)

END

Program Execution

To put PACKZ2 into the system time list to execute at 3 A.M,, enter the following commands (assuming we're running under

FMGRY):

:RP,PACK2
:SYIT,PACK2,4,24,3,00
:SYON,PACK2

Don't forget it will be necessary to reenter these commands whenever the system is rebooted since the time list will be lost.

23

OPERATING SYSTEMS

USER WRITTEN I/O ROUTINES FOR HP 1000 COMPUTER

M. Varanini, A. Macerata, P. Pisani,
and C. Marchesi/University of Pisa

BACKGROUND

There are some fields of computer applications where it is useful to work without the operating system overhead. In research
laboratories where the computer is extensively used to process data and to develop new programs in a very broad range of
problems, the enhanced capabilities of operating systems are appreciated; on the other hand, other applications are required
which are not well supported by standard procedures. We refer to high speed acquisition or, more in general, to the control of
all devices by completely user written programs. Solutions suggested by manuals are not always adequate. For example, to
program continuous real time acquisition by the Class I/0 Exec approach (Ref.1), the operating system requires an unavoida-
ble time interval to control the process. Also the privileged interrupt method needs an extra copy of the I/O cards plugged in
privileged slots. The advantages of an "outside operating system” technique are: no duplications of /O cards and, simple, well
known technigques, grown using previous HP operating systems (DOS,RTEIN) (Ref. 2). The main results of this technique are: a
very fast response to interrupts, friendly implementation, easy updating, compatibility with DOS, RTEII program structure. The
disadvantages are: the loss of multiprogramming capability during program run time (relevant only when some system
resources are left) and the impossibility to access standard 1/O drivers through EXEC calls.

In the next pages we describe three ways to operate outside the operating system. The first one uses the Skip on Flag
technique. The second one uses the two DCPC channels. In both examples the interrupt system is left disabled. The third one is
the most general and flexible approach and it allows multiinterrupt processing. The example given refers to a case of two
interrupts.

Let us summarize, for reader convenience, the main features of HP1000 computers that are involved in these techniques to
process flags and interrupts. These computers can host up to 2 Megabytes memory, but they cannot address more than 32
pages (1k words per page) of memory at a time (that is the maximum fifteen bit address). To address all available pages, the
computer uses a group of four maps, made of 32 registers each. The maps are associated to the system, to the user, to the first
DCPC channel and to the second DCPC channel. Each map points to its particular 32 pages of memory. In every instant the
computer sees only 32 pages. It is the duty of the operating system to call the system map or the user map and to change
dynamically the map contents to satisfy the requests of many users working in a multiprogramming configuration. Also the two
DCPC maps are changed dynamically by the operating system, according to the system or user requests. When the system is
turned off by the $LIBR subroutine, the configuration of the four maps is frozen. The system map contains the 32 pages
associated to the system, the user map contains the pages of that user who killed the system, while the DCPC maps contents
depend on the last request. Furthermore the system and the user base page are different because of a fence dividing it in two
parts. Only one is common to the system and to the user. Normally the part containing the trap cells belongs to the system and it
cannot be addressed directly from the user pages. To overcome this limitation, it is necessary to employ the DMS instructions,
which link the two maps and control the contents of all four maps. If it is considered preferable to avoid the use of most of the

DMS instructions, the same procedure can be applied over the base page shared between system and user by changing the
base page fence.

The following examples have to be considered as samples of the techniques used; they are working, although shortened for
space saving.

24

OPERATING SYSTEMS

SAMPLE PROGRAMS

The programs run on a HP21MX-F computer with a RTEIVB Operating System. The /O configuration is:

HP Time Base Generator
HP 91000 A/D Converter
HP Magnetic Tape Interface
HP 12966 Terminal Interface

All programs use the system subroutines $LIBR and $LIBX to disable and enable the interrupt system and the memory protect
option.

Skip on Flag Technique

This example is given through a funny program that displays running seconds on the switch register.

ASMB

*

* Subroutine to display seconds on switch register.
Counting last 30 seconds.
*

NAM TIME,?7
ENT TIME
EXT $LIBR,$LIBX
TIME NOP
JSB S$LIBR Disable interrupt system
NOP and memory protect.
CLC CTIME Turn off Time Base Generator (TBG).
LDA =B4 TBG control word = 1 second
0TA CTIME Output to TBG
STC CTIME,C Turn on TBG
CLA Clear A register
LDB M30 B register = complemented time counter
cT1 SFS CTIME Wait flag
JMP #-1 of TBG
0TA 1B Flag arrived. Output the time counter on switch reg.
INA Increment time counter
CLF CTIME Clear TBG flag
INB,SZ2B Increment complemented time counter; test if zero
JMP CT1 No, jump to CT1
LDA =B2 Yes, it is zero. Restore
0TA CTIME time period to 10 msec.
STC CTIME,C Turn on TBG
JSB s$LIBX Turn on
DEF #+1 interrupt system
DEF #+1 and memory protect.
JMP TIME,I Return
CTIME EQU 11B Select code of TBG
M30 DEC -30 Time set value
END TIME

25

OPERATING SYSTEMS

Direct Memory access technique (DCPC)

This subroutine is designed to sample an analog signal and store it on mag tape. It uses the double buffer technique to obtain a
continuous acquisition. The converter is paced. The first DCPC channel is used to transfer data from converter to memory. The
second DCPC channel transfers data from memory to mag tape. The flag of the first channel signals the filling up of an
acquisition buffer. We suppose that the time to transfer a buffer on mag tape by the DCPC is less than the time necessary for an
acquisition. An error condition takes care of speed incompatibility. The program through the DMS instructions assigns the user

map to both the DCPC maps (two DCPC channels are used).

ASMB

*

* ® %

Vi1

ve
NSAMP
NREC
ERR

CANVI

NAM
ENT
EXT
NaP
NOP
NOP
NOP
NOP
NOP

NOP
JSB
DEF
LDA
CMA
STA
LDA
CMA
STA
CLA
STA
JSB
NOP
CLC
LDA
0TA
STC
NOP
STC
SFS
JMP
cLC
CLC
LDA
I0R
PAA
LDA
I0R
PBA
LDA
XMA

signal.

CANVI,?
CANVI

Subroutine to sample, store and transfer on mag tape a continuous
analog

.ENTR,$LIBR,$LIBX

.ENTR
c
NSAMP , 1

L
NREC,I

NRES

ERR,I
$LIBR

MV
=B140001
MV

MV, C

MV

Mv

-1

MV, C
00,C
MAPA
=B100000

MAPB
=B100000

=B100000

Address of converter channel number

" " first buffer

" " second buffer

" " number of sample per record
number of mag tape record
" " error cell

Load first external parameter address
Address of first word of parameter buffer

Complemented

buffer length
Prepare

negative counter

for records

Clear

error cell
Disable interrupt system

and memory protect
Turn off converter
Control word to normalize converter

Normalize start

Wait
flag
Yes,flag arrived. Turn off converter
Disable all devices
Control word to save
Port A map
Save Port A map
Control word to save
Port B map
Save Port B map
Transfer user map to
Port A map

26

OPERATING SYSTEMS

LDA =B100001 Transfer user map to
XMA Port B map
LDA C,1I Prepare control word for converter:
ALS differential input
IOR CONT digitize mode, paced.
DTA MV
STF MV
LDA V1 A register = address of buffer for DMA acquisition.
JSB INDMA Subroutine call to acquire with DMA (first time).
WAIT SFS DMAH2 Wait the end of
JMP +-1 the first buffer acquisition.
CLC DMALZ2,C When the DCPC flag is on,
CLC DMAH2,C clear the control.
SFS DMAHA1 Test if transfer on mag tape has finished.
JMP ERROR No, go to ERROR routine.
ISZ NRES Yes, increment record counter.
JMP ANCD* Acquisition is not terminated. Continue.
JMP DECOF Acquisition is terminated. Go to deconfiguration routine.
ANCO1 LDA V2 A register = address of buffer for DMA acquisition.
JSB INDMA Subroutine call to acquire with DMA.
JSB MTURI Subroutine call to store on mag tape.
DEF #+3
DEF V1,1 Address of buffer to store
DEF L Buffer length.
WAIT2 SFS DMAH2 Wait until the end of
JMP »-1 the second buffer acquisition.
CLC DMALZ2,C When the DCPC flag is on,
CLC DMAH2,C clear the control.
SFS DMAHA1 Test if transfer on mag tape has finished.
JMP ERRDR No. Go to ERRDOR routine.
ISZ NRES Yes. Increment record counter.
JMP ANCD2 Acquisition is not terminated. Continue.
JMP DECODF Yes. Go to deconfiguration routine.
ANCD2 LDA W1 A register = address of buffer for DMA acqisition.
JSB INDMA Subroutine call to acquire with DMA.
JSB MTURI Subroutine call to store on mag tape,.
DEF #+3
DEF V2,1 Address of buffer to store
DEF L Buffer length.
JMP WAIT End of the acquisition of the second buffer.
*+
DMACW OCT 120000 DMA control word
DMAL1 EQU 2B DMA channel 1
DMAH1 EQU ©B " " 1
DMAL2 EQU 3B v " 2
DMAH2 EQU 7B " " 2
M1S 0OCT 100000
VSS NOP

*

Subroutine for acquisition with channel 2 DMA,

*+ Input: A register

= address of the acquisition buffer

27

OPERATING SYSTEMS

*

INDMA NOP
STA VSS Save buffer address
cLC DMALZ2,C Disable DMA channel
CLC DMAH2,C " " "
LDA DMACW DMA control word
I0OR INMV for input data.
0TA DMAH2
CLC DMAL2
LDA VSS Prepare
I0R M15 DMA
0TA DMAL2 channel
STC DMALZ2 for
LDA L acquisition
OTA DMAL2 of N samples
STC mMv,C Converter start

STC DMAHZ2,C DMA start
JMP INDMA, I Return

*
Error routine

*

ERROR CLA,INA If DMA mag tape transfer time > DMA acquisition time
STA ERR then ERR cell = 1

*

DECOF CLC MV,C Routine to deconfigure used devices & to restore status

CLC DMAL1,C Disable DMA channel 1
CLC DMAH1,C " " " 1

CLC DMALZ2,C " " " 2
CLC DMAHZ2,C " " " 2
CLC MTC,C Disable mag tape control channel
CLC MTD,C " . * data channel
LDA MAPA Restore
PAA DCPC map A
LDA MAPB Restore
PBA DCPC map B
JSB $LIBX Restore
DEF =+1 interrupt system
DEF =+1 and memory protect.
JMP CANVI, 1 Exit from CANVI subroutine.
»
NFCB NOP
NRES NOP

MSKK OCT 3400
MASK OCT 10

L NOP

CONT OCT 130000

CONTC NOP

SW NOP

MAPA DEF =#+1
BSS 32

MAPB DEF #»+1
BSS 32

MTD EQU 14B
MTC EQU 15B
My EQU 25B
INCA DEF MTD
INMV DEF MV

28

OPERATING SYSTEMS

*
*+ Subroutine to write on mag tape. [t uses the DMA channel 2.
#+ Input: Address of data buffer
» Buffer length
*
PARA BSS 2
MTWRI NOP
JSB .ENTR Input parameter
DEF PARA address.
CLC MTC,C Disable mag tape data channel.
CLC MTD,C " " " control channel.
LDA PWC Prepare
ADA INCA DMA control word.
O0TA DMAH1
CLC DMAL1
LDA PARA Prepare
0TA DMAL1 DMA
STC DMAL1 channel
LDA PARA+1,I to store a buffer
OTA DMAL1 on mag tape.
LDB WCC Test
RIP OTB MTC on
LIA MTC magnetic
AND MASK tape.
SZA
JMP RIP Tape busy. Try again.
STC MTC,C Tape ready. Record
STC MTD,C on mag tape.

STC DMAHT1,C DMA start.
JMP MTWRI, I

WCC 0CT 31

PWC 0CT 20000
END

29

OPERATING SYSTEMS

Interrupt process technique

This subroutine acquires a N-sized sample buffer and writes it on a terminal. The sampling rate is controlled by the Time
Base Generator. User written routines are used to process the interrupts from Time Base Generator and Converter. The
interrupts can be processed by altering the trap cells and using short routines which have to be in the physical base page. Of
course cells not used by the system must be chosen. They link the system pages to user pages. The interrupt processing
routine has a special structure. It is divided in two parts. The first one, stored in the base page, is executed when the
corresponding interrupt occurs (every interrupt automatically enables the system pages). Its duty is only to link the trap cells to
the interrupt service routines loaded in the user page. We point out that the next example uses the DMS instructions to
communicate with the system pages. The same result can be obtained by changing the fence of the system base page so the
base page is available to the user and can be addressed with no-DMS instructions.

ASMB

Subroutine to acquire and store N samples using a technique which
switches off the operating system and processes interrupts in a
user written way.

The used devices are:

HP Time Base Generator

HP 91000 A/D Converter

* % *x % k ¥ * *

NAM SBAC,7
ENT SBAC
EXT .ENTR,SLIBR,sLIBX

ITB NOP

1A NOP

N NOP

SBAC NOP
JSB .ENTR
DEF ITB
LDA N, I
CMA, INA
STA CONT
JSB S$LIBR Turn off interrupt system
NOP and memory protect.
CLC 13B Turn off terminal 1
CLC 17B " " " 2
CLC 20B ” " " 3
XLA 11B Save
STA SAV11 trap cells
XLA 25B using
STA SAV25 the system map.
LDA =B114040 Modify
XSA 11B trap cell
LDA =B114050 using
XSA 25B the system map.
LDA INDTM Move
LDB =B40 a string
LDX =B4 of words
MW from
LDA INDCV user’s map
LDB =BS5S0 to
LDX =B4 system
MW map .

30

OPERATING SYSTEMS

#*

LDA
0TA
STC
STF
LDA
SZA
JMP
CLF
CLC
cLe
LDA
XsA
LDA
XSA
LDA
aTA
STC
STC
STC
STC
JSB
DEF

ITB, I
11B
11B,C
00
CONT

*-2
00
11B
25B,C
SAV11
11B
SAV25
25B
=B2
11B
11B,C
13B
17B
20B
$LIBX
SBAC

Set Time Base Generator
to selected time.
Turn on Time Base Generator.
Turin on interrupt system.
Loop
to wait
the end of acquisition.
End of acquisition. Turn off interrupt system.
Clear control of Time Base Generator.
Clear control of A/D converter.
Restore
trap
cells.

Restore Time Base Generator
to 10 msec.
Turn on Time Base Generator.
Turn on terminal 1
(1] (1] (1] 2
(1) [1] (1] 3
Turn on interrupt system and memory protect.
End of subr. Return to the main program.

* Timer interrupt process routine

TIME

= A/D

»
CONV

CONT
SAV11
SAV2S
sv1a
SV2A
RTTM
RTCV
INDTM
INDCV

CLF
STA
LDA
aTA
XLA
STA
LDA
STC
JMP

11B
SV1A
=B100000
25B

41B
RTTM
sv1Aa
25B,C
RTTM, I

Clear flag
Save A register
Output A/D
control word.
Take the return address
from own link routine.
Restore A register.
Turn on A/D converter.
Return.

converter interrupt process routine

CLF
STA
LIA

ARS,
ARS,

STA
1s2
1s2
NOP
XLA
STA
LDA
JMP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
DEF
DEF

25B
svaa
258
ARS
ARS
IAa,l
1A
CONT

51B
RTCV
svaa
RTCV, I

SYTM
sSycv

Clear flag.
Save A register.
Load data from converter.
Normalize

data.
Store data in the buffer.
Increment the address of buffer.
Increment the sample counter.

Take the return address

from own link routine,
Restore A register.
Return

31

OPERATING SYSTEMS

*

Link routine of timer; it is moved in the base page of the

* system. When an interrupt occurs, the system map is enabled,
+ this routine is executed and it links the timer interrupt

+ process routine in the user’s map.
*
S

YTM 0OCT 41
NOP
UJP TIME Enable user’s map and jump.
*
* Link routine of A/D converter. It is moved as in timer routine.

*
SYCv 0CT 51
NOP

UJP CONV Enable user’s map and jump.
END

References

1.

MULTI-TERMINAL ACCESS TO A REAL-TIME DATA ACQUISITION SYSTEM
Bradley Ward/Consultant, Atlanta, Ga.
Communicator/1000, Vol.lV, Issue 3

HP 1000 F-Series Computer
Operating and Reference Manual

32

LANGUAGES

Computer

Museum

ABOUT FORTRAN COMMON

John Pezzano/HP E! Paso
INTRODUCTION

The HP 1000 computer supports many different options for common variables in FORTRAN. Each of these has its own uses and

advantages. To get the most out of your system, it is important that you, the user, understand the features, benefits and
limitations of each one.

TWO BASIC KINDS

As far as the FORTRAN program itself is concerned, there are two different kinds of COMMON. UNLABELED COMMON is
declared by naming each COMMON block such as:

COMMON X, Y, 2€100)

All routines accessing any one of these variables must declare them in the same manner or provide dummy placeholders that
agree in size with the original declaration. For example, if one subroutine needed to access the array Z and variable |, it could

declare: COMMON DUMMY (2), Z(100), I. DUMMY would then replace both "X and “Y". Variables after "|" are not needed and
could be ignored.

Unlike untabelled Common, BLOCK COMMON (or LABELLED COMMON) is accessable to other routines by the label name.
For example, instead of the previous COMMON statement, we could use in the main program:

COMMON/DATA1/X,Y

COMMON/DATA2/2¢100), 1

COMMON/DATA3/J,KC100)
Now our subroutine need only declare:

COMMON/DATA2/2¢100), I

without having to declare dummy placeholders for the other COMMON variables. This, of course, is far easier. But then, why
use unlabelled COMMON?

WHY USE COMMON?

Since most FORTRAN programmers know and understand about COMMON there is no need to gc into detalls. But to
summarize, COMMON permits programs and subprograms to share "COMMON" areas of memory by declaring these areas in
the affected routines. COMMON eliminates the need to pass variables to subroutines and is very useful in the HP 1000 for
segment-to-segment and program-to-program communication.

33

LANGUAGES

THE HP 1000 AND COMMON

Each type of COMMON is handled differently in an HP 1000. Uniabelled COMMON is treated as true COMMON in the HP 1000.
On the other hand, BLOCK COMMON is treated as external variables (and/or arrays). Unlabelled COMMON cannot be
initialized with DATA statements but needs no special declarations. BLOCK COMMON can be initialized with DATA statements
but requires a separate BLOCK DATA declaration. Since BLOCK COMMON is actually external variables, loading programs
without the BLOCK DATA routines results in an undefined external error by the loader. The external will be the BLOCK name
(not the variable name).

In unlabelled COMMON, it is only important that variable positions line up.

For example:
COMMON X, Y, 2C€100)
and
cCOMMON I, J, K(2), XC100)

in two different routines are acceptable if X, Y, are real and I, J, & K are single integer. | & J (one word each) together make up X
(2 words long). K and Y both are the same size and array Z and X are equivalent. Note, however, that putting something in I, J,
or K, will destroy the integrity of X or Y. In BLOCK COMMON, the BLOCK name is critical. It is this name, not the variables in it
that will be the external name. However, the preceding information about uniabelled COMMON is also true within any BLOCK.

WHERE IS COMMON LOCATED?

One of the nicest features of the HP 1000 is its ability to load COMMON in different places. Again, each has its own advantages.
Unlabelled COMMON can be loaded in three areas. The usual (and default) location is to load the COMMON with the program
itself (local COMMON). The COMMON is then put in front of the program. If the program is swapped, so is the COMMON. This
means that COMMON is shareable only by the program, its subroutines, and its segments. Since COMMON is located at the
front of the program (that is just the way the loader was designed) the routine declaring the largest COMMON must be loaded
first. Otherwise, a loader error results. A program can also be loaded with SYSTEM COMMON. This means that the COMMON
variables will be put in the system area and will not be swapped with the program. This also permits multiple programs to share
COMMON variables and not just within a single progam. There are two problems with SYSTEM COMMON: (1) At generation
time, sufficient SYSTEM COMMON must be allocated to hold the entire COMMON area. COMMON variables cannot be split
between local and system areas. The system area cannot be changed in size except by a new system generation. (2) All
programs declaring SYSTEM COMMON share the same area. This means that your cooperating programs may share SYSTEM

COMMON while someone else’s programs may also want to use it. Remember, SYSTEM COMMON is a shared resource with
no user protection.

There is a second area of SYSTEM COMMON called Reverse Common. To a background program (default load), SYSTEM
COMMON is Background Common and Reverse Common is REAL TIME COMMON. To a Real Time Program SYSTEM
COMMON is Real Time COMMON and Reverse COMMON is Background COMMON. Thus, two background programs can
communicate with each other if they are both loaded with System (Background) COMMON or Reverse (Real Time) COMMON.

A Real Time and Background program can communicate if the Background program is loaded with System (Background)
COMMON, and the Real Time program is loaded with Reverse COMMON or vice versa. Note that rules (1) and (2) above apply
except programs sharing a Real Time COMMON will not interfere with programs sharing Background COMMON and vice
versa, except as described later. (Confusing, isn't it?) HP programs DO NOT USE either types of COMMON. They are reserved
strictly for the user. There are also choices for BLOCK COMMON. Again the default is to load COMMON with the program.

34

LANGUAGES

Unlike unlabelled COMMON, BLOCK COMMON can be loaded anywhere in the program area and there are no restrictions as
to which routine is loaded first. For segmented programs, the BLOCK COMMON must be loaded with the main if it is to be
shared by multiple segments or if its integrity must be maintained when a new segment is loaded. If the COMMON {S ONLY TO
BE USED BY A SEGMENT and is only to be used by a segment and its subroutines, it is not needed when the segment is
overlaid; it can be loaded with that segment. BLOCK COMMON can also be loaded into the SYSTEM. If it is, it is put into the
Subsystem Global Area (SSGA) which is RTE's Labelled COMMON area. Like System and Reverse COMMON, SSGA area
must be allocated at generation and cannot be increased in size. However, unlike them, the allocation is not done by declaring
a size but by putting the COMMON modules themselves into SSGA at generation. This consequently considerably reduces the
usefulness of SSGA to the user. Many of HP subsystems make use of SSGA. The System Manager must declare the Real Time
and Background COMMON sizes of generation. However, RTE-IVB likes to see all areas end on page boundaries. Therefore,
because SSGA exists in all systems there will aimost always be Background COMMON. The default size being the end of SSGA
to the end of the next page boundary.

WHAT KIND OF COMMON SHOULD | USE?

Now that you realize all the COMMON options available, what should you pick? Your choice depends upon your intentions. If
you intend to use the COMMON only with the program, either type of COMMON will do. BLOCK COMMON will probably be
preferable because of the convenience of only declaring what is necessary in each routine and the fewer loading restrictions.

System and Reverse Common are useful for inter-program communication (it is faster than CLASS I/O since no data need be

moved between programs), for programs that need to maintain their data even if swapped, and for use when the data must be
in the system map (which is required for some user written privileged drivers).

SSGA, because of its generation requirements, should be restricted to use only when absolutely necessary. Since the variables
in the SSGA are accessed by name, they are especially useful for keeping special variables that must be maintained for use

between programs or if a program is reloaded or restarted. For example, a class or resource number or disc file name could be
kept in SSGA.

WHAT ABOUT PROTECTION?

Unlabelled COMMON loaded locally is located at the beginning of a program in memory. It is protected from other programs by
the system. The system and Reverse Common have two limitations. Multiple sets of programs can use the areas and RTE will
not care if they are overwriting each other's variables. In addition, the protection is according to a priority. Programs loaded with
Background Common cannot have their area overwritten by programs with local or no COMMON. They cannot overwrite the
Real-Time area or SSGA. Programs with Real-Time Common are protected from Background or Common programs but
because of the way that the system protects areas, blowing a COMMON array can cause Background Common to be
overwritten. Similarly, SSGA programs can overwrite other SSGA areas or Real Time or Background Common.

HOW ABOUT ASSEMBLY ROUTINES?

Assembly routines can declare unlabelled COMMON with the "COM" pseudo instruction. This is equivalent to the FORTRAN
unlabelled COMMON statement. BLOCK COMMON is accessed by the pseudo instruction “EXT name” where name is the

BLOCK name. Variables in the BLOCK are equivalent to the BLOCK name with offset. For example, in FORTRAN, COMMON/
DATA1/1, J, K would be written in assembly:

EXT DATA1
1 EQU DATA1
J EQU DATA1+1
K EQU DATA1+2

35

LANGUAGES

SUMMARY

The HP 1000 is designed as a Real Time System primarily for scientific and engineering applications. Therefore, there is a lot of
versatility even in such mundane things as COMMON declaration and loading to provide a broad application area for users. It
also means, therefore, that users should understand and use COMMON to their advantage.

Summary Table of COMMON

TREATED | LOADED COMMAND
NAME BY RTE TYPE LOCATION | REQUIRED | ADVANTAGE | ACCESS BY PROTECTION | RECOMMENDED
Unlabelled | As Local Beginning OP, NC Loaded program, | Protected from | Normal Use
COMMON | COMMON of program (Default) Segments and all other
space Subroutine only | programs
Back- System OP, SC Background | Any program Protected from | Program-to-
ground | area Programs using same area | programs not Program Com-
using RT, BG munication or
OP. RC Real Time and SSGA. special drivers
programs
Real Systemn OP, RC BG Programs | Any program Protected from | Same as above
Time area OP, SC RT Programs | using same area | programs not
using RT or
SSGA
BLOCK As External Local Anywhere (Default) Loaded program | Protected from | Normat use
COMMON | Variable in program (REL, % Segments and all other
space COMMON Subroutines only | programs
file)
System | SSGA OP, SS Programs declar- | Protected from | Only when abso-
ing variables only | programs not utely necessary
using SSGA

36

OPERATIONS MANAGEMENT

MOVER: A FILE MOVING PROGRAM

Dan Laskowski/HP Indianapolis

Have you ever needed to move a few files from one system to another? Did you just store the files to the cartridge and supply a

list of the files on the cartridge? Or did you store*a procedure file as the first file that could be used to restore the files? If any of
this sounds familiar, read on.

| found myself doing file transfers often as an SE and got the technique down pretty well. | created both store and restore files
and used the store file to build the tape with the restore file as the first file on the tape. When you got the tape you simply loaded

in the first file, modified it as necessary, and executed it to load in the remaining files. But that took time and errors were easily
made.

MOVER is a program | wrote that reads in a list of files to store on tape, and creates the tape complete with procedure files for
restoring the files. The restore procedure files are unigue in themselves because they do not need to be restored from the
cassette/mag tape before use. They can be executed right from the tape! Let's see how that can work.

Using the cassette as an example, consider three files stored on the cassette. The file contents are as follows:

File 1

0001 :ST,4,/RSTR
0002 :ST,4,/TEMP
0003 :ST, 4, DUMMY
0004 :CN,4

0005 :PU,/TEMP
0006 :PU,/RSTR
0007 ::-2

File 2

0001 ::/RSTR
0002 : Dummy line

File 3

0001 Dummy data file!

With the cassette at the beginning, typing 'TR.4’ in response to the FMGR prompt would execute the first command
'ST,4,/RSTR’. This would store the remainder of the first file in a file called /RSTR. When that file store is finished, the cassette is
positioned at file two. The next command is /RSTR’ which is a transfer control to the file /RSTR. Commands will now be
executed from the first file, and the remainder of the restore will be controlled by the first file.

The first command in /RSTR is ‘ST,4,/TEMP which stores the remainder of file 2 into a dummy file called /TEMP. With the
cassette now positioned at file three, stores of the data can be made for as many files as there are to move. The procedure file

/RSTR then ends by purging itself and /TEMP. The ::—2 erases the transfer stack so that the cassette will not attempt to execute
itself again.

37

OPERATIONS MANAGEMENT

The process is simple, straightforward, and can be modified to store a file to disc. compile the file, and then load and run the
program if necessary. The original intent was to move files, and when moving files. three rules need to be obeyed.

1. File type and record format do not need to be specified in a store command if the source is a disc file. Security is necessary
only if the file has negative security, and supplying disc CRN wilt speed up finding the file to be stored.

2. File type and record format do need to be specified in a store command if the source file is non-disc. The security will
default to zero if not supplied, and the file will be placed on the first cartridge if a disc CRN is not specified.

3. If the file is type two, you must specify the record length.

File type, record format, and record length is not stored to tape. This makes it necessary to specify file type and record format
when restoring files. In most cases, the files are ASCIl source or binary relocatable, and specifying 'AS’ or 'BR' as record
formats defaults to file types 4 and 5. This is okay for most file moves, but if you are not careful, ignoring the file type can be
disasterous.

MOVER is a program that writes procedure files using this process to move files. Additional features have been added for
flexibility. MOVER can be run interactively, or from an answer file. The output can be to cassette or mag tape, and can be
restored from any LU. The files can be restored with any security code, and to any disc cartridge. There is a purge and pack
option for updating purposes.

MOVER first asks for the LU# to store the files to. Then, line by line, MOVER asks for files to be moved. MOVER takes the name,
(security and cartridge reference can be specified), and opens the file. If the open is successful, MOVER gets the file type and

writes three procedure files. The first procedure file will create the final tape and contains the store commands to move the files
from disc to tape.

The second procedure file is the main file used to restore the files on the receiving system. It contains the store commands to
move the files from tape to disc. Record formats in the store commands are assigned according to file type as follows:

Type Record format
1.2 BN
3,4 AS
5 BR
6 BN
7 BA
8 or greater BN

The lasi procedure file is an optional file that can purge the named files from disc and then pack the disc. This is useful in an
update situation.

There are cautions when using MOVER. The restoring procedure files are standard FMGR procedure files and all rules
concerning procedure files apply. MOVER uses FMGR when building the tape, so if you are running the 'real’ FMGR, you will
have to 'OF' it sometime in the process to finish creating the tape. Note: MOVER is not needed in the receiving system to restore
the tapes. MOVER is only used to build the tapes! image data bases need to be restored with the original security code and
cartridge reference number to be useable. The last caution to using MOVER s that it is not as efficient in tape useage as
routines like READT/WRITT, JSAVE/JRSTR, and/or READR/SAVER. These routines all use large buffers for reading and writing
to tape. Large buffers cut down the quantity of inter-record gaps on the tape, with each inter-record gap taking roughly 1/2 or
more inches of tape. Fewer inter-record gaps means more data per the same amount of tape, hence the larger buffers in
READT and WRITT. MOVER uses FMGR store commands which means many inter-record gaps on the tape. MOVER was not
designed to replace READT/WRITT, but rather to make easy the process of moving a few files from system to system.

38

OPERATIONS MANAGEMENT

The source code is written using the FTN4X compiler. To keep the partition requirements at their minimum, EXEC and FMP calls
replace READ and WRITE calls. Extensive use of the IF-THEN-ELSE-ENDIF construct is used. The directions for using MOVER
is in the source.

if you have any questions or suggestions, | can be found in the HP Indianapolis office.

FTN4,L
PROGRAM MOVER(3,90),Tape transport program #810506.0939+«

This program will create a mag tape with built in
procedure files for resioring files saved on the tape.
Run the program and answer the questions. Type /E as
the last file. /A will abort MOVER. MOVER will then
proceed to build the tape as necessary. When the tape
is moved to the new system, to restore the files simply
type “:X,X,Y,Z,[PU or NOPU]’ in response to FMGR where
‘X’ is the LU of the tape device and ‘Y’ is the security
you want, and ‘2’ is the cartridge reference number of
where you want the files to go. PU is an option to purge
the files before restoring them. Purge will also pack
cartridge ‘Z2’. You must specify purge to get a purge.
The only requirements on the receiving system is that

it have FMGR, and should restore on all versions of RTE
and RTE-L/XL.

To run mover simply type ‘RU,MOVER’ and answer the
questions. If the answers are put into an answer file
in the form of:

4 <== Tape device LU number

NAMR 1 <== File Namr number 1
NAMR2 <== File Namr number 2

NAMRnR <== File Namr number n
/E == /E ends the list

then type ‘RU,MOVER,FILE’ to build the tape.

OO0 O0O0OO0O

Dan Laskowski-HP-Indianapolis

39

OPERATIONS MANAGEMENT

INTEGER DCB1(144) ,DCB2(144) ,DCB3(144) ,DCB4(144) ,DCB5(144)
DIMENSION IBUF(128) ,NAMEC10) ,LINE1¢14),LINE2C14),LINE3(8)
DIMENSION LINE4¢20),LINES(3),LINEGC7),LINE7(7),LINEB(5)
INTEGER LINES(33),COUNT(3?

INTEGER ERROR,OPT,SEC(3),CRN(3),SIZE(C2),A,B,TYPE(3),TEMP(3)
INTEGER NMRBF(10),PARM(S),STRT,0U,PRSBF(33),LUBUF(C10),LENC3)
DATA SIZ2E/12,0/,COUNT/0,0,0/

DATA LINE1/7:ST,16,XXXXXX:26:3G: XX:-1,XX’"/

DATA LINE2/7:ST,XXXXXX: XXXXXX:XXXXXX, XX’/

DATA LINE3/7:PU,XXXXXX:2G:3G’/

DATA LINE4/7:ST,16,XXXXXX:2G:3G: XX:-1:XXXXXX,BN’/

DATA LINES/’:CN,XX’/

DATA LINEG/’:ST,/RSTR\, XX’/

DATA LINE?7/7:ST,/PURG\, XX’/

DATA LINEB/7:CN,XX,ED */

DATA LINE9/’ XXXXXX is a type 2 file with record length greater th
1an 128 words‘’/

C Get input info
CALL RMPAR(PARM)
CALL GETSTCIBUF,20,LEN)
STRT=1
CALL NAMRCNMRBF,IBUF,2+#LEN,STRT)

Set up input/output lu for questions and errors

[eNeNel

LU=1

QU= 1

TYPE=IAND(NMRBF(4) , 3B)
IFCTYPE.EQ.0.0R.TYPE.EQ.1) LU=PARM
IFCIFTTY(LUY.EQ.~1.AND.TYPE.NE.3) 0OU=PARM

Qutput rev code

OO0

CALL REIOC2,0U,14H Mover 06May81,7)

Check if we need to open a namr for input to mover

OO0

IFCTYPE.EQ.3) THEN

Need to open input file

OO0

LU=0

CALL OPEN(DCBS,ERROR,NMRBF(1),0,NMRBF(5) ,NMRBF(6))

IFCERROR.EQ.-6) THEN
CALL REIOC2,0U,22H Input file not found!,11)
GO TO 999

ENDIF

IFCERROR.LT.0) GO TO 999

ENDIF

c Get the lu of the tape device

40

OPERATIONS MANAGEMENT

29

eNeoNel

OO0

o NoNe]

000

11

12

CALL REIODC2,0U+2000B,18H Enter tape Lus:

IFCLU.NE.O0) THEN
CALL SFILLCLUBUF,1,20,2H)
CALL REIOC1,LU+400B,LUBUF,10)
CALL ABREG(A,B)

Read tape lu # from file

ELSE
CALL READF(DCBS,ERROR,LUBUF,20,B)
IF(B.EQ.-1) GO TO 1000
IFCERROR.NE.O) GO TO 999
CALL REIDC2,0U,LUBUF,B)

ENDIF

Check if input is numeric

CALL PARSECLUBUF ,2+B,PRSBF)
IFCPRSBF .NE.1) THEN

»=17)

We need a number here return and prompt again

IFCLU.EQ.0) CALL REIDC2,0U,20H First line in file ,10)
CALL REIO(2,0U,22H Needs to be a number!,11)

IFCLU.EQG.0) GO TO 999
GO TO 99
ENDIF

Now convert to ascii and place in line buffers

CALL CNUMD(PRSBF(2),LUBUF)
LINE2¢14)=LUBUF(3)
LINESC3)=LUBUF(3)
LINEGC7)=LUBUF(3)
LINE7¢7)=LUBUF(3)
LINEB(3)=LUBUF(3)

First create the files as necessary

CALL CREAT(DCB1,ERROR,6H/BLD\ ,SIZE,4)
IERR=ERROR

IFCIERR.EQ.-2) CALL PURGE(DCB1,ERROR,6H/BLD\)

IFCIERR.EQ.-2.AND.ERROR.NE.0) GO TO 999
IFCIERR.EQ.-2) GO TO 10

IFCERROR.LT.0) GO TO 999

CALL CREAT(DCB2,ERROR,BH/RSTR\,SIZE,4)
IERR=ERROR

IFCIERR.EQ.-2) CALL PURGE(DCBZ2,ERROR,6H/RSTR\)

IFCIERR.EQ.-2.AND.ERROR.NE.O0)> GO TO 999
IFCIERR.EQ.-2) GO TO 11

IFCERROR.LT.0) GO TO 999

CALL CREAT(DCB3,ERROR,6H/PURG\,SIZE,4)
[ERR=ERROR

IFCIERR.EQ.-2) CALL PURGE(DCB3,ERROR,6H/PURG\)

[FCIERR.EQ.-2.AND.ERROR.NE.O) GO TO 999
IFCIERR.EQ.-2) GO TO 12
IFCERROR.LT.0) GO TO 999

41

OPERATIONS MANAGEMENT

Now start /PURG\ file

OO0

CALL WRITF(DCB3,ERROR,8H::/RSTR\ ,4)

IFCERROR.NE.O0) GO TO 999

CALL WRITF(DCB3,ERRDOR,14H:1F,4G,EQ,PU,1,7)
IFCERROR.NE.O0) GO TO 999

CALL WRITF(DCB3,ERROR,2H::,1)

IFCERROR.NE.O) GO TO 999

CALL WRITF(DCB3,ERROR,26H:DP, Purging these files! ,13)
IFCERROR.NE.O) GO TO 999

CALL WRITF(DCB3,ERROR,10H:SV,0,,IH ,5)

IFCERROR.NE.O0)> GO TO 999

Now start /RSTR\ file

OO0

CALL WRITF(DCB2,ERROR,10H:Sv,2,9,IH,5)

IFCERROR.NE.O) GO TO 999

CALL WRITF(DCB2,ERROR,4H:*» ,2)

IFCERROR.NE.O) GO TO 999

CALL WRITF(DCB2,ERROR,S58H:*» To restore this tape first rewind th
1e tape and type: ,29)

IFCERROR.NE.O) GO TO 999

CALL WRITF(DCB2,ERROR,64H:#» TR,X,X,Y,Z2,[PU or NOPU] where X is t
1he LU of the tape unit,,32)

IFCERROR.NE.Q) GO TO 999

CALL WRITF(DCB2,ERROR,64H:#+ Y is the Security for the files, Z2 i
1s the CRN or -LU of the,32)

IFCERROR.NE.O) GO TO 999

CALL WRITF(DCB2,ERROR,62H:++ disc and PU or NOPU is an option to
1first purge the files,31)

IFCERROR.NE.O0) GO TO 999

CALL WRITF(DCB2,ERROR,24H:++ and pack the disc. ,12)
IFCERROR.NE.DO) GO TO 999

CALL WRITF(DCB2,ERROR,4H:#» ,2)

IFCERROR.NE.O) GO TO 999

CALL WRITF(DCB2,ERROR,18H:DP, Mover 06May81,9)

IFCERROR.NE.O) GO TO 999

CALL WRITF(DCB2,ERRDR,14H:ST,1G,/RSTR\ ,7)

IFCERROR.NE.O) GO TO 999

CALL WRITF(DCB2,ERROR,14H:ST,1G,/PURG\ ,7)

IFCERROR.NE.O) GO TO 999

CALL WRITF(DCB2,ERROR,8H::/PURG\,4)

IFCERROR.NE.O) GO TO 999

CALL WRITF(DCB2,ERROR,28H:DP, Restoring these files! ,14)
IFCERROR.NE.O) GO TO 999

CALL WRITF(DCB2,ERROR,BH:SV,0 ,3)

IFCERROR.NE.O) GO TO 999

42

OPERATIONS MANAGEMENT

OO0

OO0 OO0 -=>2000
o
[=}

OO0 OO0

OO0

OO0

Now start the /BLD\ file

CALL WRITF(DCB1,ERROR,10H:SV,2,,IH ,5)
IFCERROR.NE.O0) GO TO 999

CALL WRITF(DCB1,ERROR,LINES,3)
IFCERROR.NE.O0) GO TO 999

CALL WRITF(DCB1,ERROR,LINEG,7)
IFCERROR.NE.O0) GO TO 999

CALL WRITF(DCB1,ERROR,LINE?7,7)
IFCERROR.NE.0) GO TO 999

CALL WRITF(DCB1,ERROR,26H:DP, Storing these files! ,13)
IFCERROR.NE.O0)> GO TO 999

CALL WRITF(DCB1,ERROR,10H:5V,0,,IH ,5)
IFCERROR.NE.O0) GO TO 999

Check if break bit is set
IFCIFBRK(I).LT.0) GO TO 2994
If from lu get filename
CALL REID(C2,2000B+0U,18H Enter filename: »=17)
IFCLU.NE.O0) THEN
CALL REIODC1,400B+LU,IBUF,20)

. CALL ABREG(A,B)
ELSE

If from disc file read filename
CALL READF(DCBS,ERROR,IBUF,20,B)
IF(B.EQ.-1) GO TO 1000
IFCERROR.NE.O) GO TO 999

CALL REIOC2,0U,IBUF,B)
ENDIF

If 2zero length record, then end
IF(B.EQ.Q) GO TO 1000
Parse into a namr buffer

STRT=1
CALL NAMR(NAME,IBUF ,2#B,STRT)

Check if /E to end of /A to abort

IF(NAME.EQ.2H/E.AND.NAME(2) .EQ.2H .AND.NAME(3).EQ.2H) GOTO 1000
IF(NAME.EQ.2H/A.AND.NAME(2) .EQ.2H .AND.NAME(3).EQ.2H) GOTO 1003

Open the file to get file type

CALL OPEN(DCB4,ERROR,NAME,0,NAME(S) ,NAME(B))
IFCERROR.EG.-6) THEN

File not found. Try again!

43

OPERATIONS MANAGEMENT

CALL REIO(C2,0U,22H File does not exist! ,11)
GO TO 100
ELSE IFC(ERROR.EQ.-7) THEN

File has read security. Try again!

OO0

CALL REIOC2,0U,22H Check file security! ,11)
GO TO 100
ELSE IF(ERROR.EQ.-8) THEN

File locked. Try again!

OO0

CALL REIODC2,0U,22H File is locked open! ,11)
GO TD 100
ELSE IFC(ERROR.EQ.-32) THEN

CRN not found. Try again!

OO0

CALL REIOC2,0U,26H That disc is not mounted!,13)
GO TO 100
ELSE IFCERROR.LT.0)> THEN

Some other Fmgr error. Abort!

OO0

GO TO 999
ENDIF
TYPE=ERROR

If type 2, get record length

OO0

IFCTYPE.EQ.2) CALL READF(DCB4,ERROR, IBUF,128,LEN)
IFCTYPE.EQ.2.AND.ERROR.NE.Q0) GO TO 999

o NeNe]

Check if CRN given was null. If null, get CRN from file

IFCIAND(NAME(4) ,60B) .EQ.0) THEN

CALL LODOCF(DCB4,ERROR,IREC,IRB,I0FF,JSEC,JLU)
ENDIF

OO0

Close the file and continue

CALL CLOSE(DCB4,ERROR)
IFCERROR.NE.0) GO TO 999
IFCTYPE.EQ.2.AND.LEN.GT.128) THEN

Type 2 files with record lengths cannol be moved with FMGR

OO0

CALL SMOVE(NAME,1,6,LINF9,2)
CALL REIOC2,0U,LINE9,33)
CALL REIOC2,0U,28H FMGR cannot move this filel!,14)
GO TO 100
ENDIF

44

OPERATIONS MANAGEMENT

o NeNe] OO0 o NeNe] OO0

OO0

14

OO0

OO0

ol eNe]

Increment count for count of files moved

COUNT=COUNT +1
Build sec in ascii

SEC=NAME(S)
TEMP=(IANDC(NAME(4) ,14B))>/4
IFCTEMP.EQ. 3) THEN

Sec is already ascii--fill last four characters with blanks

CALL SFILL(SEC,3,6,2H)
ELSE IFCTEMP.EQ.0> THEN

Sec was null--fill all six characters with blanks

CALL SFILLC(SEC,1,6,2H)
Sec was numeric. Break out into ascii

ELSE IFC(TEMP.EQ.1) THEN

IFCNAME(S).LT.0) SEC=IXORCNAME(S),177777B)+1
CALL CNUMD(SEC,SEC)
IFCNAME(S) .LT. 0> THEN

DO 14 I=6,1,-1

CALL SGET(SEC,I,Jd

IFCJ.EQ.40B) THEN

CALL SPUT(SEC,I,2H -)

1=0
ENDIF
CONTINUE
ENDIF
ENDIF

Build CRN in ascii

CRN=NAME(6)
TEMP=(IAND(NAME(4) ,60B))>/16
IFCTEMP.EQ.0) THEN

CRN was null--use negative JLU from the LOCF call

NAME(G)=-JLU
CRN=-JLU
TEMP=1
ENDIF
IFCTEMP.EQ.3) THEN

CRN is already ascii--fill last four characters with blanks

CALL SFILLCCRN,3,6,2H)
ELSE IFC(TEMP.EQ.1) THEN

The CRN was numeric, break out into ascii

45

OPERATIONS MANAGEMENT

IFCNAME(SG) .LT.0) CRN=IXORCNAME(G) ,177777B)+1
CALL CNUMDCCRN,CRN)
IF(NAME(®G) .LT.0) THEN
DO 13 I=6,1,-1
CALL SGET(CRN,I,J)
IFCJ.EQ.40B) THEN
CALL SPUTCCRN,I,2H -)
I=0
ENDIF
13 CONTINUE
ENDIF
ENDIF

Now update /BLD\

OO0

CALL SMOVE(NAME,1,6,LINE2,5)
CALL SMOVE(SEC,1,6,LINE2,12)
CALL SMOVECCRN,1,6,LINE2,19)
CALL WRITF(DCB1,ERROR,LINE2,14)
IFCERROR.NE.O) GO TO 999

Now update /RSTR\
First check if file to be moved is type 2.

OO0

IFCTYPE.NE.2) THEN

File is not type 2. Record size is not needed.

[eNeoNel

LINE1(14)=2HBN
IFCTYPE.EQ.3.0R.TYPE.EG.4) LINE1(14)=2HAS
IFCTYPE.EQ.5) LINE1(14)=2HBR
IFCTYPE.EQ.7) LINE1(14)=2HBA
CALL CNUMDCTYPE,TYPE)
CALL SMOVE(NAME,1,6,LINE1,8)
CALL SMOVE(TYPE,S,6,LINE1,21)
CALL WRITF(DCB2,ERROR,LINE1,14)
IFCERROR.NE.O0)> GO TO 999

ELSE

Type two files need record size passed also

oNeoNe]

CALL CNUMDCLEN,LEN)
CALL CNUMDCTYPE,TYPE)
CALL SMOVE(NAME ,1,6,LINE4,8)
CALL SMOVE(CTYPE,S5,6,LINE4,21)
CALL SMOVECLEN,1,6,LINE4,27)
CALL WRITF(DCB2,ERROR,LINE4,18)
IFCERROR.NE.O)> GO TO 999

ENDIF

Now update /PURG\

OO0

CALL SMOVE(NAME ,1,6,LINE3,5)
CALL WRITF(DCB3,ERROR,LINE3,8)
IFCERROR.NE.O) GO TO 999

46

OPERATIONS MANAGEMENT

OO0

- 000

OO0

OO0

Now go back for more
GO TO 100
Close out /BLD\

CALL WRITF(DCB1,ERROR,10H:SV,2,,IH ,5)
IFCERROR.NE.0) GO TO 999

CALL WRITF(DCB1,ERROR,LINES,S)
IFCERROR.NE.0) GO TO 999

CALL WRITF(DCB1,ERROR,LINES,3)
IFCERROR.NE.O) GO TO 999

CALL WRITF(DCB1,ERROR,10H:PU,/RSTR\,5)
IFCERRDR.NE.D0) GO TO 999

CALL WRITF(DCB1,ERROR,10H:PU,/PURG\,5)
IFCERROR.NE.0) GO TO 999

CALL WRITF(DCB1,ERROR,10H:PU,/BLD\ ,5)
IFCERROR.NE.O0) GO TO 999

CALL WRITF(DCB1,ERROR,4H:EX ,2)
IFCERROR.NE.0) GO TO 999

Now close out /RSTR\

CALL WRITF(DCB2,ERROR,10H:SV,2,,IH ,5)
IFCERROR.NE.0) GO TO 999

CALL WRITF(DCB2,ERROR,BH:CN,1G,3)
IFCERROR.NE.O0) GO TO 999

CALL WRITF(DCB2,ERROR,10H:PU,/PURG\,5)
IFCERROR.NE.O0) GO TO 999

CALL WRITF(DCB2,ERROR,10H:PU,/RSTR\,5)
IFCERROR.NE.0)> GO TO 999

CALL WRITF(DCB2,ERROR,10H:DP,Done! ,5)
IFCERROR.NE.0)> GO TOD 999

CALL WRITF(DCB2,ERROR,BH:S5V,9G,3)
IFCERROR.NE.0)> GO TO 999

CALL WRITF(DCB2,ERROR,4H::-2,2)
IFCERROR.NE.0) GO TO 999

Now close out /PURG\

CALL WRITF(DCB3,ERROR,BH:PK,3G,3)
IFCERROR.NE.0) GO TO 999

CALL WRITF(DCB3,ERROR,10H:SV,2,,IH ,5)
IFCERROR.NE.O0O) GO TO 999

CALL WRITF(DCB3,ERROR,2H::,1)
IFCERROR.NE.O0) GO TO 999

47

OPERATIONS MANAGEMENT

Now close the files

OO0

CALL CLOSE(DCB1,ERROR)
IFCERROR.NE.0) GO TO 999
CALL CLDSE(DCB2,ERROR)
IFCERROR.NE.0)> GO TO 999
CALL CLOSE(DCB3,ERROR)
IFCERROR.NE.0> GO TO 999
IFCLU.NE.O) GO TO 93
CALL CLOSE(DCBS,ERROR)
IFCERROR.NE.O)> GO TO 999

Check count for .GT. zero

VOO0

3 IFCCOUNT.EQ.0) CALL REIO(2,0U,18H No files to move! ,9)
IFCCOUNT.EQ.0) GO TO 995

Schedule FMGR with /BLD\ to be run

OO0

CALL EXEC(23,6HFMGR ,2HXX,1,2,1,0,8H,,/BLD\ ,4)

Now end

OO0

CALL REID(2,0U+2000B,12H Tape built!,6)
CALL CNUMD(CCOUNT,COUNT)

CALL REIDC2,0U+2000B,COUNT,3)

CALL REIDC2,0U,14H files moved. ,7)
CALL EXEC(®)

Error return for IFBRK or count=0
CALL REID(2,0U,18H Break requested! ,9)

IBUF=2H/A
GO TO 1003

o w
na

FMGR error exit handler

QOO0 WOWOOO

03}
o

IFCERROR.LT.0) J=I1XDRCERROR,177777B)+1

CALL CNUMD(J,TEMP)

IFCERROR.LT.0> TEMP(2)=I0R(CIANDCTEMP,377B),26400B)
CALL EXEC(2,2000B+DU,10HFmgr error,5)

CALL EXEC(2,0U,TEMP,3)

Also post the error to the SCB for help to find

OO0

LUBUF(1)=2HFM

LUBUF(2)=2HGR

CALL SMOVE(TEMP,3,6,LUBUF,5)
IFCERROR.LT.0) CALL SPUT(LUBUF,S,2H -)
IFCERROR.GE.O0)> CALL SPUT(LUBUF,5,2H)
CALL PTERR(CLUBUF)

48

OPERATIONS MANAGEMENT

c
o Now close all the files
c
1

Computer
Museum

003 CALL CLOSE(DCB1,ERROR)

IFCERROR.NE.O0.AND.ERROR.NE.-11)

1CALL REIOC2,0U,24H Problems closing /BLD\!,12)
CALL PURGE(DCB1,ERROR,EH/BLD\ ,2HDL)
IFCERROR.NE.O.AND.ERROR.NE.-6)

1CALL REIO(C2,0U,24H Problems purging /BLD\!,12)
CALL CLDSE(DCBZ ERROR)
IFCERROR.NE.O0.AND.ERROR.NE.-11)

1CALL REIO(C2,0V,26H Problems closing /RSTR\! ,13)
CALL PURGE(DCB2,ERROR,B6H/RSTR\,2HDL)
IFCERROR.NE.O.AND.ERROR.NE.-6)

1CALL REIOC(C2,0U,26H Problems purging /RSTR\! ,13)
CALL CLOSE(DCB3,ERROR)
IFCERRDOR.NE.O.AND.ERRDR.NE.-11)

1CALL REIQ0(2,0U,26H Problems closing /PURG\! ,13)
CALL PURGE(DCB3,ERROR,EH/PURG\,2HDL)
IFCERROR.NE.O.AND.ERROR.NE.-6)

1CALL REIOD(C2,0U,26H Problems purging /PURG\! ,13)
IFCLU.NE.O)> GO TO 1005

CALL CLOSE(DCBS,ERROR)
IFCERROR.NE.O.AND.ERROR.NE.-11)

1CALL REIOC2,0V,30H Problems closing INPUT FILE! ,15)

1005 IFCIBUF.EQ.2H/A) CALL REIOC2,0U,16H Mover aborted! ,8)
END

ENDs

49

OPERATIONS MANAGEMENT

CUSTOMIZED SERVICE USING THE HELLO FILE

Don MclLaren/Martin Marietta

The system manager of an RTE-IVB Operating System is responsible for setting up and maintaining all user and group
accounts. This becomes a full time responsibility when the number of accounts is not only large but also requires a unique
operating environment for each user within each general classification.

The 'HELLQ' file can become a very valuable asset and means by which each user account can be customized to fit the needs
of the user. Ideally the same 'HELLCO’ file would be used by all users of the system. A single 'HELLO' file to be maintained and
updated would make the system manager's task somewhat easier. The requirements for a common ‘HELLQ' file include some
unique characteristics and features utilized to provide the customized services.

A general section for common user requirements and common system messages would be needed. This general section would
also be used by the systern manager to abort log-on processes which were not desired. It may be desirable to abort all log-on
attempts due to such reasons as maintenance, instaliation of new system resources or other site oriented reasons.

A specialized section would be required to serve the needs of each individual user or set of users. Specific resources might
need to be assigned to individual users. A line printer may need to be assigned to users utilizing a specific terminal. Other
needs peculiar to certain users must also be provided for. This specialized section would serve all of these needs.

The structure of a ‘"HELLO' file custom designed to fulfill these needs becomes a file with a single entry point and several exit
points as depicted in figure 1.

The single entry point provides the means to display messages of a general nature and also to perform functions which are

required by all users. it is in this section that the log-on process may be terminated when deemed necessary by the system
manager.

ENTRY POINT

SYSTEM ORIENTED FUNCTIONS AND
MESSAGES OF GENERAL INTEREST

INDIVIDUAL

USER
REQUIREMENTS
AND

USER #1 USER #2 USER #3 USER #N FUNCTIONS
SECTION

LOG-ON LOG-ON LOG-ON LOG-ON

COMPLETION COMPLETION COMPLETION COMPLETION
Figure 1

50

OPERATIONS MANAGEMENT

The individual requirements and functions section is utilized to perform services for specific users. These would include
functions such as enabling a special soft key set, enabling spooling for specific applications, scheduling programs, etc.

Chapter 3 of HP 92068A RTE-IVB Terminal User’s Reference Manual defines and describes all of the File Manager commands.
All of these commands are candidates for use in the ‘"HELLO' procedure file. The 'IF command described on page 3-65 is of
particular interest. This command will allow testing of globals and logical decisions to be made as a result of these tests. As an

example, assume that the soft keys must be enabled from file ‘SFKEYS' if global '9P" equals 42. The procedure file would take
the following form.

:1F,9P,NE, 42, 1
: DU, SFKEYS, 1

The 'IF statement wilt skip one command if ‘9P' is not equal to 42 (i.e. will not enable the soft keys). If ‘9P’ is equal to 42 then no

commands are skipped and the soft keys are enabled from ‘SFKEYS'. This technique will be expanded to enable specified
functions to be performed for specific users.

The means to identify specific users within the ‘HELLO' file is accomplished through strategic use of the user capability level
and globals 8P and 9P.

Globals 8P and 9P-are new ‘P’ type globals which were introduced in the software revision update for RTE-IVB. Globals 8P and
9P are provided for session use and identification. These globals may be tested or read with standard procedure file
commands. They can not be altered by procedure file commands.

The actual value contained in global ‘9P’ is the capability level of the user who is currently utilizing the ‘HELLO' file and is in the

process of logging on. This value is defined when the user accounts are defined by the system manager (see HP 92068A
System Manager's Manual, page 6-18).

The actual value contained in global ‘8P is the system LU number of the log-on terminal. This system LU number is defined
during system generation.

The system manager has a fair degree of freedom in choosing the capability level of a particular user. An examination of the
capability level table on page 6-22 of HP 92068A RTE-IVB System Manager's Manual reveals that there are actually ten (10)
different numbers available to specify a particular capability level. As an example, capability level 40 can be specified by
selection of any of the numbers 40 through 49. In selecting one of the numbers 40 through 49 keep in mind that this number will
be placed in global ‘9P every time the user logs on and this number can be used to identify this specific user. The ‘HELLO’
procedure file can interrogate this number which provides the means whereby this user can be given special services.

The limit for identification is limited to ten (10) specific users for each capability level which should suffice for most systems. The

system terminal LU number in global ‘9P’ is also available and can be used to identify users who are restricted to a specific
terminal or set of terminals.

A hypothetical system will be defined to illustrate the construction of a '"HELLO' file to provide customized service for its users.
The 'SYSTEM' will be kept simple with only the variations necessary to demonstrate the ideas and concepts already described.

Assume the following system:

1. All users will receive the ‘NEWS BULLETIN' each time they log-on.

51

OPERATIONS MANAGEMENT

2. All users have automatic spooling to the line printer 'LU 6, except users of terminal #83. The output from terminal #83 will
have automatic spooling to the auxiliary line printer LU 7.

3. The user with capability 42 is to be provided with a set of soft keys enabled from file 'SFKEYS'.

4. The user with capability 43 has a procedure file printed on his terminal each time he logs on. He uses auxiliary mag tape
‘LU 9" instead of the standard mag tape 'LU 8', also disc "LU 33 is to be mounted as a private cartridge.

5. For simplicity assume that the equipment numbers are the same as the LU numbers in all cases.

6. The user accounts are defined by the system manager to include the line printer ‘LU 6" and the mag tape ‘LU 8'. At least
two spare SST entries are allowed and an aditional disc cartridge for the user with capability level 43.

The 'HELLO' procedure file takes the form shown following:

+ » »» HELLDO PROCEDURE FITLE L R

00017 :SVv,0,,IH

0002) BRA R R R R R R A AR RN BB R RERN AR BB R RRARRRRRRNARRRR RN
0003 =« » »
0004 :» « NEWS BULLETTIN .
0005 :» » .
0006 X RRRARRRRRRRAR AR RN R R ERRRRARARRBRRARARR BB RRR
0007 :+ * *
0008 :=» » THE NEW SORT ROUTINE WILL BE AVAILABLE »
0009 :+ * MONDAY MORNING. -
0010 :» » TO SCHEDULE THIS PROGRAM FOLLOW .
0011 HEJ * INTERACTIVE INSTRUCTIONS AFTER TYPING *
0012 :+ » .
0013 HRJ *= RU,NSORT *
0014 :» * »
0015 X FRR R R R R R AR R R RN AR R R R R BB R R RN BRRRRRRRBRR RN RS

0016 :SV,4,,IH

0017 :1F,8P,EQ,83,4
0018 :SYLU,6,6

0019 :SYUP,6

0020 :SL,6,,,6

0021 :IF,8P,EQ,B8P,4
0022 SL,?7,7

0023 :SYLU,?7,7

0024 :SYUP,?

0025 :SL,6,,,7

0026 :1F,9P,EQ,43,6
0027 :1F,9P,EQ,42,2
0028 :Sv,0,,IH

0029 ::

0030 :DU,SFKEYS,1
0031 :5v,0,,IH

0032 ::

0033 :5L,8,9

0034 :SYLU,9,9

003§ :SYUP,9

0036 :MC,33,P

0037 :Sv,0,,IH

0038 :»

0039 :+« BE SURE TO REMOVE THE WRITE ENABLE RING
0040 :+ AND MOUNT THE LATEST TEST TAPE ON TAPE DRIVE #2
0041

52

OPERATIONS MANAGEMENT

The following section details the steps in the sample 'HELLO' file:

line #1
lines
#2-15

line #16

line #17

line #18

line #19

line #20

line #21

line #22

line #23

line #24

line #25

This section is the general section and is executed each time a user logs
on.

The following command used in this section will abort the log-on process
for all users.

‘EX

Sets the severity code to 0 which allows the ‘NEWS BULLETIN' to be printed on the terminal. The ‘IH" parameter
inhibits the echo of the severity code command on the screen.

This is the news bulletin and is updated with the news of the day. The length of the news flash is variable as
required.

This command sets the severity code to 4. Severity code 4 inhibits the command echo back to the terminal and
forces continuation in case of error.

This command tests the number of the log-on terminal.

If the terminal is terminal #83 then, skip four (4) lines and execute line #22 next.

If the terminal is not terminal #83 then, execute line #18 next.

Lines #18 through #20 set up spooling to the line printer 'LU 6'.

This command reinitializes 'LU 6’ to be 'EQ 6'. The purpose of this command is to insure that ‘LU 6" is not pointing to
another EQT number from a previous operation.

This command 'UPs’ the line printer just in case it was down from a previous operation.

This command sets out-spooling to ‘LU &'. All output to the line printer will be spooled and normally printed when
the user logs off.

This command is a form of a ‘GO TO'. It forces four (4) lines to be skipped unconditionally. The next command for
execution is on line #26.

Lines #22 through #25 set up spooling to the auxiliary line printer ‘LU 7'
for the users of terminal #83.

This command adds 'LU 7' to the session switch table (SST). this must be done prior to addressing 'LU 7.

This command reinitializes ‘LU 7' to be 'EQ 7'. The purpose of this command is to insure that ‘LU 7’ is not pointing to
another EQT number from a previous operation.

This command 'UPs’ the fine printer just in case it was down from a previous operation.

This command sets up out-spooling to ‘LU 7'. All output normally addressed to 'LU 6’ will be spooled to ‘LU 7’ and
printed when the user logs off.

53

OPERATIONS MANAGEMENT

line #26

line #27

line #28

line #29

line #30

line #31

line #32

line #33

line #34

line #35

line #36

line #37

lines
#38-41

This command tests the capability level of this user.
If the capability level is 43 then, skip 6 lines and execute line #33.

If the capability level is not 43 then, execute line #27 next.

This command tests the capability level of this user.

If the capability level is 42 then. skip 2 lines and execute line #30.

If the capability level is not 42 then, execute line #28 next

Sets the severity code to 0 which allows the operator entered commands to be printed on the terminal. Severity

code 0 also allows operator intervention in the case of errors. The 'IH parameter inhibits the echo of the severity
code command on the screen

This command is executed if the capability leve: is not 42 or 43. It serves as an exit for the ‘HELLO' file and the next
command is taken from the user

Lines #30 through #32 provide special services for the user with
capability level 42.

This command enables the soft keys for the current users terminal.
Sets the severity code to 0 which allows the operator entered commands 1o be printed on the terminal. Severity
code 0 also allows operator intervention in the case of errors. The 'IH parameter inhibits the echo of the severity

code command on the screen.

Serves as an exit for the HELLO' file and the next command is taken from the user.

Lines #33 through #41 provide special services for the user with
capability level 43.

This command modifies 'LU 8" in the session switch table (S8T) to select 'LU 9'. This will direct all - O for 'LU 8 to the
auxiliary mag tape, LU 9"

This command reinitializes "LU 9 to be 'EQ 9. The purpose of this command is to insure that ‘LU 9" is not pointing to
another EQT number from a previous operation.

This command "UPs’ the mag tape unit just in case it was down from a previous operation.
This command mounts disc cartridge ‘LU 33" as a private cartridge.

Sets the severity code to O which allows the operator entered commands to be printed on the terminal. Severity

code 0 also allows operator intervention in the case of errors. The 'IH parameter inhibits the echo of the severity
code command on the screen.

These lines are the procedure message and are printed on the users terminal.

54

BULLETINS

NEW ATS DTU MANUAL UPDATE

Bob Desinger/HP Data Systems Division

Newly updated for RTE-IVB is the HP 9415A Digital Test Unit Subsystem Manual, part number 09580-93091. If you have an
ATS/1000 with RTE-IVB and a Digital Test Unit (DTU), you'll want to obtain the update.

The old information, Update 1 from July 1979, pertained to RTE-IVA. The new Update 2 explains the differences between the

standard DTS-70 software and its implementation in RTE-IVB ATS/1000 systems, and tells how to configure TESTAID/

FASTRACE and the SFTs/SPTs into your ATS system. Additionally, the update contains listings of MANDTU, TSEQ15, __ #SFT,
__#SPT, &FTSF5, and &XSINS.

Contact your sales representative for a copy of Update 2 or for the combined package of the DTU Manual and Update 2.

55

BULLETINS

JOIN AN HP 1000 USER GROUP!

Here are the groups that we know of as of December 1980. (If your group is missing, send the Communicator/1000 editor all of
the appropriate information, and we’ll update our list.)

NORTH AMERICAN HP 1000 USER GROUPS

Area User Group Contact

Arizona Jim Drehs
7120 E. Cholla
Scottsdale, Arizona 85254

Boston LEXUS
P.O. Box 1000
Norwood, Mass. 02062

Chicago David Olson
Computer Systems Consultant
1846 W. Eddy St.
Chicago, lllinois 60657
(312) 525-0519

Greenville/S. C. Henry Lucius [lf
American Hoechst Corp.
P.0O. Box 1400
Greer, South Carolina 29651
(803) 877-8471

Huntsville/Ala. John Heamen ED35
George C. Marshall Space Flight Ctr.
Nasa
Marshall Space Flight Ctr., AL. 35812

Montreal Erich M. Sisa
Siemens Electric Ltd.
7300 Trans Canada Highway
Pointe Claire, Quebec
H9R 1C7

New Mexico/El Paso Guy Gallaway
Dynalectron Corporation
Radar Backscatter Division
P.O. Drawer O
Holloman AFB, NM 88330

New York/New Jersey Paul Miller
Corp. Computer Systems
675 Line Road
Aberdeen, N.J. 07746
(201) 583-4422

56

BULLETINS

NORTH AMERICAN HP 1000 USER GROUPS (CONTINUED)

Area

Philadelphia

Pittsburgh

San Diego

Toronto

Washington/Baltimore

General Electric Co.
(GE employees only)

User Group Contact

Dr. Barry Periman
RCA Laboratories
P.O. Box 432
Princeton, N.J. 08540

Eric Belmont

Alliance Research Ctr.
1562 Beeson St.
Alliance, Ohio 44601
(216) 821-9110 X417

Jim Metts
Hewlett-Packard Co.
P.O. Box 23333

San Diego, CA 92123

Nancy Swartz

Grant Hallman Associates
43 Eglinton Av. East
Suite 902

Toronto M4P1A2

Mal Wiseman
Hewlett-Packard Co.
2 Choke Cherry Rd.
Rockville, MD. 20850

Stu Troop

Special Purpose Computer Ctr.
General Electric Co.

1285 Boston Ave.

Bridgeport, Conn. 06602

OVERSEAS HP 1000 USER GROUPS

Belgium

57

J. Tiberghien

Vrije Universiteit Brussel
Afdeling Informatie
Pleinlaan 2

1050 Brussel

Belgium

Tel. (02) 6485540

BULLETINS

OVERSEAS HP 1000 USER GROUPS (CONTINUED)

Area User Group Contact

France Jean-Louis Rigot
Technocatome TA/DE/SET
Cadarache
BP.1
13115 Saint Paul les Durance
France
Tel. (042) 253952

Germany Hermann Keil
Vorwerk + Co Elektrowerke
Abt. TQPS
Rauental 38-40
D-5600 Wuppertal 2
W. Germany
Tel. (0202) 603044

Netherlands Albert R. Th. van Putten
National Institute of Public Health
Antonie van Leeuwenhoeklaan 9
Postbox 1
3720 BA Bilthoven
The Netherlands
Tel. (030) 742344

Singapore W. S. Wong
Varta Private Ltd.
P.O. Box 55
Chai Chee Post Office
Singapore
Tel. 412633

Switzerland Graham Lang
Laboratories RCA Ltd.
Badenerstrasse 569
8048 Zurich
Switzerland
Tel. (01) 526350

United Kingdom Mike Bennett
Riva Turnkey Computer Systems
Caroline House
125 Bradshawgate
Bolton
Lancashire
United Kingdom
Tel. (0204) 384112

58

Although every effort is'made to ensure the accuracy of the
data presented in the Communicator, Hewlett-Packard can-
not assume liability for the information contained herein.

Printed in U.S.A: 9/81

Prices quoted apply only in U.S.A. If outside the U.S., contact
your local sales and service office for prices in your country.

Part No. 5951-6111

D

