EIIMMIINIBATIIB

INVENTORY
CONTROL

MATERIAL
REQUIRMENTS
PLANNING

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

HEWLETT-PACKARD
COMPUTER SYSTEMS

oo 6 COMMUNICATOR/1000

Computer
Museum

OPERATING SYSTEMS 48 SIMPLIFIED DEVELOPMENT OF CUSTOM
/O DRIVERS
John Trueblood

Feature Articles

OPERATIONS MANAGEMENT 64 TRICKS WITH EDIT/1000
Michael Wiesenberg

73 MANUFACTURING PRODUCTIVITY AUTOMATION
AT BENDIX
Michael Miller

LANGUAGES 77 2250 BUFFER MANAGEMENT FROM
DOWNLOADED SUBROUTINES
Diana Bare

Departments

EDITOR'S DESK 2 YES, VIRGINIA, THERE IS A COMMUNICATOR/1000
4 BECOME A PUBLISHED AUTHOR IN THE
COMMUNICATOR/1000
6 LETTERS TO THE EDITOR
7 CORRECTIONS TO PREVIOUS ISSUES

BIT BUCKET 10 FOR/NEXT LOOPS IN FORTRAN

13 RESTORING PURGED FILES

21 HELLO-TWO SESSIONS AT ONE LU

40 OPTIMIZING MLS-LOC LOADER PERFORMANCE

42 TROUBLE FREE SEGMENTED DGL GRAPHICS
PROGRAMS

43 COMMUNICATOR/1000 INDEX

45 PERFORMANCE CONCEPTS FOR SOFTWARE
DESIGN AND IMPLEMENTATION

BULLETINS 85 CUSTOMER COURSES FOR ATS/1000 USERS
86 NEW PRODUCT ANNOUNCEMENTS
89 JOIN AN HP 1000 USER GROUP!

EDITOR’S DESK

YES, VIRGINIA, THERE IS A COMMUNICATOR/1000

Reports of the Communicator/1000’s demise have been greatly exaggerated! Late — Maybe! Dead — No!

Hewilett-Packard in general, and Data Systems Division specifically, experienced a very active year of rapid growth and the
introduction of an impressive number of new products. Unfortunately, the Communicator/ 1000 does not have a full-time editor,
and the division's acceleration was at the expense of time available to work on the magazine.

We indeed recognize the importance of the Communicator/1000 as a tool for those of you who rely upon HP 1000 Computer
Systems in your daily operations. With this thought in mind, we are placing increased emphasis on getting the magazine back
on schedule.

After studying the monthly workload and the volume of submissions received, it has been decided that the number of issues per
year should go from six to four. So, we are setting a goal of going to press guarterly, counting from the publication date of this
current issue. That means you can expect an issue in early May, August, November 1983 and February, 1984. The tentative
deadlines for Volume VI submissions work out to be:

Issue 1 15 March 1983
Issue 2 13 June 1983
Issue 3 14 September 1983
Issue 4 12 December 1983

In this issue, we have a variety of contributions from around the world on a myriad of topics, but with a slant toward industrial
automation. Data processing manager Michael Miller explains how HP 1000 Computer Systems have been successfully
applied to industrial automation at the Bendix Corporation, in the Operations Management section. In the Languages section,
Diana Bare of HP's Roseville Division discusses how to cope with language variations when downloading subroutines to an HP
2250 Measurement and Control Processor. The process monitor and control theme continues as Hewlett-Packard announces
Process Monitoring and Control/1000 applications software, in the Bulletin section.

Since most of us use Edit/1000 extensively for text processing or file manipulation, don’'t miss Michael Wiesenberg's article,
“Tricks with Edit/1000”, in the Operations Management section. His tricks are so practical that it's difficult to call them fun — but
they are.

This month's feature in the Operating Systems section is “Simplified Development of Custom I/O Drivers”, by John Trueblood, a
senior systems analyst with the Sony Corporation of America. John did it the hard way by discussing driver writing to handle
communication protocol, I/O transfer, and peripheral control for the entire spectrum of active RTE operating systems! And for
lighter reading, the Bit Bucket is filled with goodies.

With this being the last issue of Volume V, we have also included the traditional index of articles for the entire set of six issues.

And now for this month's winners of an HP32E calculator for best feature article. With no articles from HP Field Employees, we
only have two winners.

Best feature article “Simplified Development of Custom /O Drivers”
by an HP Customer: John Trueblood, Senior Systems Analyst
Sony Corporation of America, San Diego

Best feature article 2250 Buffer Management from Downloaded Subroutines”
by an HP Division Diana Bare
employee: HP Roseville Division, California

EDITOR’S DESK

Needless to say, we encourage you to continue to send in contributions and share those great ideas you've discovered. The
selection of articles always seems biased by the convenience of transferring it to a disc file. On the following page, we explain
the desire for a minicartridge or other machine readable medium. The ideal format is a basic text file (without RUNIT
commands, security codes, etc.) that can be loaded with a :STore command. If your format differs, please explain how to read

and store it. Also, files that are in all-capital letters have to be converted (then we have to guess the capitalization of your special
terminology, such as acronyms).

Another way to enhance the acceptance of your contribution is to establish a reasonable balance between the volume of your
explanatory text and the program code. The theory is that readers are unwilling to type in a long program without a good
appreciation of “what, why and how.” (We'll concede that generous comment statements within the program do help.)

The programs that are published have been carefully reviewed by the authors themselves and responsible people here at Data

Systems Division. But we cannot guarantee that they will work on your system. We consider the risk of your damaging your

system to be at an absolute minimum, but remember that the listings will have gone through multiple iterations by the time they
appear in print.

Enough said. Keep those cards and letters coming in!

Editor

EDITOR’S DESK

BECOME A PUBLISHED AUTHOR IN THE COMMUNICATOR/1000. ..

The COMMUNICATOR is a technical publication designed for HP 1000 computer users. Through technical articles, the direct
answering of customers' technical questions, cataloging of contributed user programs, and publication of new product
announcements and product training schedules, the COMMUNICATOR strives to help each reader utililize their HP 1000’s
more effectively.

The Feature Articles are clearly the most important part of the COMMUNICATOR. Feature Articles are intended to promote a
significant cross-fertilization of ideas, to provide in-depth technical descriptions of application programs that could be useful to
a wide range of users, and to increase user understanding of the most sophisticated capabilities designed into HP software.
You might think of the COMMUNICATOR as a publication which can extend your awareness of HP 1000's to include that of

thousands of users worldwide as well as that of many HP engineers in Data Systems factories at Cupertino, California and
Grenoble, France.

To accomplish these goals, editors of the COMMUNICATOR actively seek technical articles from HP 1000 customers, HP
Systems Engineers in the Field, and Marketing and R&D Engineers in the factories. Technical articles from customers are most
highly valued because it is customers who are closest to real-world applications.

WIN AN HP-32E CALCULATOR!

Authoring a published article provides a uniquely satisfying and visible feeling of accomplishment. To provide a more tangible
benefit, however, HP gives away three free HP-32E hand-held calculators to Feature Article authors in each
COMMUNICATOR/1000 issue! Authors are divided into three categories. A calculator is awarded to the author of the best
Feature Article in each of the author categories. The three author categories are:

1. HP 1000 Customers;
2. HP field employees;
3. HP division employees.

Each author category is judged separately. A calculator prize will be awarded even if there is only one entry in an author
category.

Feature Articles are judged on the following bases: (1) quality of technical content; (2) level of interest to a wide spectrum of
COMMUNICATOR/1000 readers; (3) thoroughness with which subject is covered; and, (4) clarity of presentation.

What is a Feature Article? A Feature Article meets the following criteria:
1. Its topic is of general technical interest to COMMUNICATOR/1000 readers;
2. The topic falls into one of the following categories —

OPERATING SYSTEMS

DATA COMMUNICATIONS
INSTRUMENTATION
COMPUTATION
OPERATIONS MANAGEMENT
LANGUAGES

EDITOR’S DESK

3. The article covers at least two pages of the COMMUNICATOR/ 1000, exclusive of listings and illustrations (i.e., at least 1650
words).

There is a little fine print with regard to eligibility for receiving a calculator; it follows. No individual author will be awarded more
than one calculator in a calendar year. In the case of multiple authors, the calculator will be awarded to the first listed author of
the winning article. An article which is part of a series will compete on its own merits with other articies in the issue. The total of
all articles in the series will not compete against the total of all articles in another series.

All winners of calculators will be announced in the issue of the COMMUNICATQOR/1000 in which their articles appear. Again, all
Feature Articles are judged by an impartial panel of three DSD Technical Marketing Engineers.

A SPECIAL DEAL IN THE OEM CORNER

When an HP 1000 OEM writes a Feature Article that is not only technically detailed and insightful but also application-oriented
as opposed to theoretical, then that OEM may ask that the article be included in THE OEM CORNER. A Feature Articte included
in THE OEM CORNER may contain up to 150 words of pure product description as well as a picture or illustration of the OEM'S
product or its unique contribution. HP's objective is twofold: (1) to promote awareness of the capabilities HP 1000 OEMs'
products among all HP 1000 users; and, (2) to publish an article of technical interest and depth.

IF YOU’'RE PRESSED FOR TIME . ..

If you are short of time, but still have that urge to express yourself technically, don't forget the COMMUNICATOR/1000 BIT
BUCKET. It's the perfect place for a short description of a routine you've written or an insight you've had.

THE MECHANICS OF SUBMITTING AN ARTICLE

If at all possible please submit an RTE File containing the text of your article recorded on a Minicartridge (preferrably) or on a
paper tape along with the line printer or typed copy of your article. This will help all of us to be more etficient, The Minicartridge
will be returned to you promptly. Please include your address and phone number along with your article.

All articles are subject to editorship and minor revisions. The author will be contacted if there is any question of changing the
information content. Articles requiring a major revision will be returned to the author with an explanatory note and suggestions
for change. We hope not to return any articles at all; it we do, we would like to work closely with the author to improve the article.

HP does, however, reserve the right to reject articles that are not technical or that are not of general interest to
COMMUNICATOR/1000 readers.

Please submit your COMMUNICATOR/1000 article to the following address:

Editor, COMMUNICATOR/1000
Data Systems Division
Hewlett-Packard Company
11000 Wolfe Road

Cupertino, California 95014
USA

The Editor looks forward to an exciting year of articles in the COMMUNICATOR/1000.
With best regards,

The Editor

EDITOR’S DESK

LETTERS TO THE EDITOR

Dear Editor:

| am very pleased with the responses and alternative methods to the one | proposed for dynamic use of memory behind your
FORTRAN program. | would like to point out for those using FTN7X (the FORTRAN 77 Compiler) that none of the previously
mentioned methods is required.

FTN7X has a simple method described on page 7-17 of the reference manual. By defining an array that begins at the beginning
of absolute memory (location 0), one can use LIMEM to find the first word after your program which would be ARRAY (FWAM).

Hats off to the compiler writer for adding this feature!

Best regards,
John A, Pezzano

Dear Mr. Pezzano,
Thanks for the additional input.
Sincerely

The Editor

EDITOR’S DESK

CORRECTIONS TO PREVIOUS ISSUES

In a recent Bit Bucket article (Volume V, Issue 4), Elaine Mosakowski and Terry O’Neal presented a FORTRAN program for
automatic scaling and logarithmic plotting for Graphics/1000-11. Unfortunately, two subroutines were omitted. MGETC extracts a
character from a string, and MPUTC puts a single character in an integer array. These subroutines are listed below.

FTN4X,L
INTEGER FUNCTION MGETC (PLACE, STRING)
» GET A CHAR FROM A STRING

IMPLICIT NONE
INTEGER PLACE, STRING
DIMENSION STRING(C1)

CillllllllllllIllllllllll'lll"ll'lllll'llllllllllllllllllilllIlllllllllll

PURPOSE:

THIS ROUTINE EXTRACTS A CHARACTER FROM A STRING

PLACE - ORIGIN 0 OFFSET INTO STRING

c

c

c

c

C PARAMETERS:
c

c

c

c STRING- ARRAY THAT FROM WHICH CHARACTER IS EXTRACTED
c

CilllllllllllllllllIlllllllll"llllllll'll'lllllll...QQQQQQQQQQQQQQQQQQQQQ

c

C #=+ss++ | OCAL VARIABLES:
c

c WORD -- HOLD THE WORD THAT CHAR RESIDES IN
c

CQIQQQQQQQQQQQQQQQQQlQQQ

INTEGER WORD

#++ GET WORD OUT OF STRING THAT CONTAINS CHARACTER
#+s ASSUMPTION: 2 CHARACTERS PER WORD

OO0

WORD = STRINGC (PLACE+2)/2)

OO0

#++ NOW EXTRACT THE CHAR FROM THE WORD. WHAT CHARACTER POSITION IS IT?
IF ¢ MODCPLACE,2) .EQ. 0 > GO TO 10

+++ CHAR IS IN LOW BYTE

oo Nal

MGETC= I0ORCISHFT(WORD, 8),40B)
GO TO 9999

10 CONTINUE

EDITOR’S DESK

c
C #»+ CHAR IS IN HIGH BYTE
c
MGETC= IOR(IAND (WORD, 177400B), 40B)

c
c
9999 RETURN

END
FTN4X,L
c

SUBROUTINE MPUTC (CHAR, PLACE, STRING)

#, PUT A SINGLE CHARACTER IN AN INTEGER ARRAY
c

IMPLICIT NONE

c

INTEGER CHAR, PLACE, STRING
DIMENSION STRING(1)

Cr R R R R R BB R R R R R R R R R R RN R RN RN R R R R R R BB RN RN RRR R R RERRRRRRRRRRRRRRRRRR R

C PARAMETERS:

c

c CHAR -- THE CHARACTER TO PUT INTO STRING IN GRAPHICS 1000-11

c PACKED ASCII FORMAT

c

c PLACE -- THE ORIGIN 0 OFFSET INTO STRING THAT INDICATES WHERE TO
c PLACE THE CHARACTER

c

c STRING -- THE ARRAY TO PLACE A CHARACTER IN

c

C PURPOSE:

c

c THIS ROUTINE PUTS CHARACTER *CHAR' INTO *STRING" AT OFFSET "PLACE".
c

c

ClllllI'I'I'I'll'l'l'IIIIIII..I.II.IIIIIII'I'IllllI'I'I'I'I'IlllllllllllllllllllllllIll’.lll
CllllllllllllllllllllI»I»I»I»IlllllllIIIIII.IIIIII'I'I'I'll'l'llillllllllllllllllllilll

c
c
c LOCAL VARIABLES:
c
c WORD -- THE WHOLE WORD OF THE ARRAY THAT "CHAR" 1S LOCATED IN
c
c WPLACE -- THE INDEX OF THE WORD THAT THE CHARACTER IS CONTAINED IN
c
ol E R R N R B R AR R R R RN AR PR RN R R R R R R R DR R RN RN RN N
c
INTEGER WORD, WPLACE
c

C ##+ FIND WHAT WORD THE CHAR IS IN

EDITOR’S DESK

¢ WPLACE= ((PLACE +2) /2)

g «#++ GET WORD FROM ARRAY

¢ WORD = STRING(C WPLACE)

g «++ FIND THE BYTE THE CHAR IS IN

¢ IFC MOD ¢ PLACE, 2).EQ. 0> GO TO 10
E #++ PUT THE CHAR IN THE LOW BYTE

STRINGC WPLACE) = [0RC
IAND (WORD,177400B),

pry

2 ISHFTC CHAR, -8))
GO TO 999
c
10 CONTINUE
c
C #»+ PUT THE CHAR IN THE HIGH BYTE
c
STRINGC WPLACE > = IOR(
1 IAND ¢ WORD, 377B),
2 IAND ¢ CHAR, 177400B))
999 CONTINUE
RETURN
c
END

BIT BUCKET

FOR/NEXT LOOPS IN FORTRAN

by Alf Lacis, c/o Chatads P/L.,
P.O. Box 846, Traralgon, Vic., 3844
Australia

Here is a little library which takes the hassle out of devising explicit incremental instructions for loops. The subroutines shown
can be adapted equally well for type “real” or type “double precision” (3 or 4 word).

The FOR/NEXT loops work with positive or negative increments, and like DO loops, will execute at least once. On completion,
the loop variable value is always “outside” the loop limits.

A pair of FOR/NEXT subroutines may be used many times throughout the programme, but a difficulty arises if they need to be
nested. The nesting difficulty is overcome by having pairs of routines called "FOR1/NEXT1”, “FOR2/NEXT2”, “FOR3/NEXT3",
etc, or as many as are required. | have found that three sets suffice for even the most amazing programmes.

EXAMPLE 1: A single pair of routines used in different parts of a programme.
FROM = 1.,
T0 = 100.
STEP = 2,
SuM = 0,
CALL FORO ¢ VALUE, FROM, 7O, STEP)

(calculations)

CALL.NEXTO ¢ VALUE, FROM, TO, STEP)

B = 25.
C = -25.
D= -5.

CALL FORO ¢ A, B, C, D)
&calculations)

CALL NEXTO ¢ A, B, C, D)

EXAMPLE 2: Nested loops, using FORO/NEXTO and FOR1/NEXTT.

CALL FORO ¢ A, PI, -PI, -PI/10.)

FROM = 0.

T0 = 100.

STEP = 2.

CALL FOR1 ¢ BIT, FROM, TO, STEP)

CALL.NEXT1 ¢ BIT, FROM, TO, STEP)

CALL NEXTO ¢ A, PI, =PI, -PI/10.)

10

pIT BUCKE!

otice that the CALLO FORD s 3(3\%\\\!

' N
ere is a brief schemalic of how they work

i ary! H
i { no line numbers are NeCess ! . s ONCE.
ziggjt;hdaon\y once, while a normal exit to NEXTO again only oC

: “SUBROUTINE FORO®
fprogramme code) y ASSIGN 10 TO LABEL

CALL FORQ ------=-=-=--= »oo
(return address) <<-- (10 RETURN <« H

!
‘I
{
“SUBROUTINE NEXTO" :

iloop code)

: (IF END-OF-LOOP? 6OTO --
NEXTD --------=--- » (
P ELSE DO A NORMAL RETURN

(return address) <<----- (

These routines were originally developed as part of a sub-division plotting routine, where we needed to draw segment? of arcs
incrementally at any orientation and in both clockwise and anticlockwise directions. They reduced the amount of IFing and

ELSE'ing to nit.

Here is the code:

SUBROUTINE FOR1(A, B, C, D),16-10-81 S: For...
COMMON /FRNX1/ LABEL, E
A =B
E = C«D
ASSIGN 10 TO LABEL
10 RETURN
END

SUBRQUTINE NEXT1¢(A, B, C, D),16-10-81 S: ...Next
COMMON /FRNX1/ LABEL, E

A=A+D

IF ¢ A+D .LE. E) GOTO LABEL

RETURN

END

SUBROUTINE FOR2(A, B, C, D)>,16-10-81 S: For...
COMMON /FRNX2/ LABEL, E
A= B
E = C#D
ASSIGN 10 TO LABEL
10 RETURN
END

SUBROUTINE NEXT2C A, B, C, D),16-10-81 5.

COMMON /FRNX2/ LABEL, S: e oNext
Aepa+D

IF ¢ A*D .LE. E) 6OTO LABEL

RETURN

END

BIT BUCKET

BLOCK DATA FN,16-10-81 B: Return address
COMMON /FRNX1/ LAB1, E1

COMMON /FRNX2/ LAB2, E2

END

The NEXT call could be simplified by leaving out all the parameters and passing the parameters through COMMON, eg:

SUBROUTINE FOR1C A, B, C, D)»,16-10-81 S: For...
COMMON /FRNX1/ LABEL, E1, B1, C1, D1
A =B
Bt =~ B
Ci1 =¢C
D1 =D
E1 = C»D
ASSIGN 10 TO LABEL
10 RETURN
END

SUBROUTINE NEXT1¢ A, B, C, D),16-10-81 S: ...Next
COMMON /FRNX1/ LABEL, E1, B1, C1, D1

A=A+ D1

IF ¢ A*D1 .LE. E1) GOTO LABEL

RETURN

END

12

BIT BUCKET

RESTORING PURGED FILES

by Paul M. Dunphy
Nova Scotia Departrnent of Health

Have you ever hit the return key after purging an obsolete file, then had the sudden realization that the file was not as obsolete
as you had thought, and then have a File Manager Directory Listing confirm that the purge command was indeed doing its job? |
have had this happen several times, even when the files were protected with security codes. If the file is a user-generated
relocatable program (type 5) or an absolute program (type 6), this is usually not a problem, as they can be recompiled,
reloaded, etc. However, other file types leave the operator with several less desirable options:

1. There is a copy of the file on a cartridge or magnetic tape unit. This can be restored to the cartridge rather easily.
2. ltis atype 4 file (source program). There may be a recent listing that can be retyped in.

3. ltis a data file (e.g. type 1 or 2). The file may be recreated and the data recollected.

4. It is a data file, and the data is unique and cannot be replaced.

5. ltis a program, and there is no recent listing.

None of these options is particularly appealing, especially the last two. To solve this problem, we have developed the
FORTRAN program GETBK, which can restore purged files. Each cartridge has a file directory located on one or more of its
tracks. This directory consists of a 16-word entry for each of the files on that carnridge. The first three words in each entry
contain the ASCII name of the file. The end of the directory is marked by a binary zero in the first word following the last active
file entry.

When File Manager purges a file, the first word of the corresponding entry in the file directory is replaced by minus one (—1).
The rest of the directory and the file itself are unchanged. This action leaves the file unprotected and inaccessible by FMP. If a
write request occurs for a file of equal or smaller size, the purged file will be written over. Likewise, if the cartridge is packed,
files below the purged one will be moved up and it will also be written over. In either case, the directory is modified to conform to
the new file. If this happens, the purged file is permanently lost, and there is no way to recover it.

However, if neither of these events has occurred, it is relatively easy to restore the file. Changing the first word of the
corresponding file directory entry from minus one back to its original state is all that is necessary. In fact, this word may be
changed to any two ASCIl characters that File Manager will recognize as valid, thus giving the restored file a new name.
However, | would recommend that you not use this method to rename files!

Program GETBK scans the directory tracks of a specified cartridge, looking for purged files. If it is not known which cartridge
contains the file in question, all cartridges can be checked. When a purged file is encountered, the remaining portion of the file
directory entry is displayed on the operator's terminal. The first two file name characters can then be specified. After checking
the cartridge to ensure that a duplicate file name is not being created, and that no illegal characters have been used, GETBK
will restore the file. If this is not the file sought, it can be bypassed and GETBX will proceed to the next purged file. This process
is repeated until a file is restored or an end of directory is encountered.

END OF DIRECTORY

As mentioned above, the end of directory mark is a binary zero in the next word following the last active file entry. If the purged
file was the last file on the cartridge, File Manager realizes this and places a zero where the minus one purge indicator would
normally go. GETBK checks the format of the next 15 words, and if they conform to file directory rules, this entry is considered a
purged file. If it is restored, the file directory is returned to its original size automatically, as an end of directory mark must have
existed beyond the restored file, prior to its being purged. This process also takes place when restoring extents.

13

BIT BUCKET

FILE EXTENSIONS (EXTENTS)

A special situation can exist with file types greater than 2. When a write request points to a location beyond the range of the
currently defined file, a file extension or extent is created by FMP. This extent has the same name and size as the original file.
FMP repeats this process as often as necessary as file size increases. Each extent is given an extent number that is stored in
the left byte of word 5 in the the corresponding entry of the file directory. There may be up to 255 extents for each file. It is a
good practice to keep the number of extents to a minimum. Alan K. Housley and Clark Johnson/HP Data Systems Division,
describe an excellent program for doing so in a previous Communicator, Volume 1V, Issue 4.

In any event, file extensions do exist and must be taken into consideration when restoring files. When a File Manager PU, (namr)

command is executed, the cartridge directory is searched for all entries with the specified name. Thus, any extents that may
exist are purged, along with the original file.

Conversely, when GETBK restores a file, it must also ensure that all extents are restored. Beginning at the original file, GETBK
searches down the directory tracks for additional purged entries. Since extents have directory entries that are the same as the
original file, except for words 4 and 5, they are readily identified and restored with the same name as the original. This process
continues until up to 255 extents are restored or no further entries exist. In the event that some of the extents were lost by being
written over, GETBK will still restore any that do exist. This will allow the operator to at least recover as much of his file as
possible.

TYPE 6 FILES

When a program is SP'ed by File Manager, it is assigned a setup code word that is unigue to each system generation. This word
is determined by summing the contents of words 1650 through 1657, and words 1742 through 1747, and words 1755 through
1764 in the base page. Itis then stored in word 34 of the first sector of the file. File Manager verifies this word when a program is
RP'ed. This is designed to prevent incompatible programs from being run on systems other than that on which they were
loaded. When such a program is purged, this number is also removed from the file. Thus, if type 6 files were to be restored by
GETBK, they would give a File Manager 19 error (Program not set up by SP on current system).

It would be possible to determine this code word by summing the contents of these locations and then restore it to the file.
However, this could lead to trouble. Consider the following sequence of events. A type 6 file has been purged, and this action
goes unnoticed for several days. Meanwhile, the system manager generates a new system. The purged file is discovered and
restored, with a new setup code word that has been determined from the new system base page. The program can now be
RP'ed because File Manager does not find an incorrect code word. Since the program is not compatible with the new system,
numerous system errors can occur. Therefore, GETBK does not attempt to recover type 6 files, as they are user-loaded
programs, and can easily be recovered by reloading.

CONCLUSION

Accidently purging a file can be quite common where disc space is limited, as with Session Monitor. In such cases, one does
not have the luxury of keeping unused files indefinitely, and must constantly be purging them as they become obsolete. GETBK
will be particularly useful to operators in this situation. You will find that the sooner you try to recover your file after it is purged,
the greater your success will be. Every time another file is written on the cartridge, the danger exists that your program will be
lost, particularly with files at the end of the directory. | have found it good practice to scan the cartridge with GETBK before
packing it to ensure that there are no accidently purged files that have gone unnoticed.

14

BIT BUCKET

FTN4

PROGRAM GETBK(3,99) ,PURGED FILE RECOVERY PROGRAM ¢821208.0842>
C
Cataa s R AR R AR R R R R AR R RN R R AR RN R AR R R AR RN RN AR
C »
C PROGRAM NAME: GETBK (GET PURGED FILE BACK) »
C »
C DATE: JAN. 5, 1982 »
C »
C AUTHORS: PAUL DUNPHY AND JAMES MATHERS *
C VICTORIA GENERAL HOSPITAL *
(o HALIFAX, NOVA SCOTIA »
C »
C DISCRIPTION: PROGRAM TO RECOVER ACCIDENTIALLY PURGED »
C DISC FILES. DIRECTORY TRACKS OF SPECIFIED *
C CARTRIDGE OR CARTRIDGES ARE SCANNED FOR PURGED +
C FILES. AT OPERATOR'’S DISCRETION, DIRECTORY IS »
C MODIFIED TO RESTORE FILE AND ANY EXTENTS THAT »
C MAY EXIST. »
C »
I nnIInInnInnmnImnmnmmTTIInImnmMmMImmIIIIIIInmmTIIoIIIooTTT
C

IMPLICIT INTEGER(CA-2)

INTEGER STATUS(125) ,BUFFER(4) ,DIRECT(16)

INTEGER CARTDR(136) ,CTEMP(136) ,BUFF(3),EXTENT(16)
EQUIVALENCE (CARTDR(129),ENTRY),(CARTDR(130) ,DTRACK)
EQUIVALENCE (CARTDR(132),1),(CARTDR(133),SECTOR)
EQUIVALENCE (CARTDR(134),NUMBER) ,(CARTDR(135),COUNT)
EQUIVALENCE (CARTDR(136),KOUNT) ,(CARTDR(131),BL0OCK)
DATA K/0/

GET LU # OF SCHEDULING TERMINAL

OO0

LU=LOGLUCT)
ASSIGN 900 TO NEXT
ASSIGN 9000 TO END

USE FMP ROUTINE ‘FSTAT’ TO OBTAIN LISTING OF ALL
MOUNTED CARTRIDGES.

OOOO0

2 CALL FSTAT(STATUS)
WRITECLUQ,350)
350 FORMAT(/," Cart. LU# Last Track Cart. Ref. # /)
DO 20 [1=1,120,4
DO 10 J=0,3
BUFFER(CJ+1)=STATUS(J+1)
IF(BUFFER.EQ.0) GOTO S0
10 CONTINUE
K=K+ 1

CONVERT CARTRIDGE REFERENCE NUMBER TO ASCII

OO0

LBYTE=IAND(BUFFER(3),77400B)
RBYTE=IAND(BUFFER(3),377B)
IF(RBYTE.LT.40B.0OR.RBYTE.GT.176B) RBYTE=40B
IF(LBYTE.LT.20000B.0R.LBYTE.EQ.77400B) LBYTE=20000B
ASCII=I0ORCLBYTE,RBYTE)

o0

LIST MOUNTED CARTRIDGES

15

BIT BUCKET

20 WRITE(CLU,45) (BUFFER(N) ,N=1,3),ASCII
45 FORMAT(2(16,6X),4X,16" = "A2)

DETERMINE WHICH CARTRIDGE CONTAINS THE PURGED FILE.

OO0

50 WRITECLU,300)
300 FORMAT(/," Enter cartridge LU # to be processed (0 = all, 9999
1 "= exit) _™)
READCLU,*)> DISC
IF(DISC.EQ.9999) GOTO END

ENSURE SPECIFIED CARTRIDGE IS MOUNTED.

OO0

DO 15 I=1,120,4
IF¢(STATUSCI).EQ.DISC)Y GOTO 4

15 CONTINUE
WRITECLU,500)

500 FORMAT(/" Cartridge not mounted.®)
G0TO0 2

DETERMINE IF ALL CARTRIDGES ARE TO BE SEARCHED. IF NOT,
SET LOOP COUNTER AT 1

(s XoNoNe]

4 CARTDS=1
IF(DISC.EQ@.0) CARTDS=K
DO 90 J=1,CARTDS
IFCCARTDS.NE.1) DISC=STATUSC((J-1))+4+1)

LOCATE DIRECTORY TRACKS OF CURRENT CARTRIDGE

OO0

75 WRITECLU,120) DISC

120 FORMAT(/* Cartridge LU ¢ "I3)
IF(CARTDS.EQ.1) DTRACK=STATUS(I+1)
IFCCARTDS.NE.1) DTRACK=STATUSC((J-1)#4)+2)

INITIALIZE FLAGS

OO0

FLAG=0
FLAG1=0
FLAG2=0

DETERMINE THE NUMBER OF DIRECTORY TRACKS AND THE NUMBER
OF SECTORS PER TRACK.

OO0

80 CALL EXEC¢1,DISC,DIRECT,16,DTRACK,0)
NUMBER=-DIRECT(9)
SECTOR=DIRECT(7?7)
KOUNT=0

600 COUNT=0

750 BLOCK=COUNT=14

800 IF(BLOCK.LT.SECTOR) GOTO 810
BLOCK=BLOCK-SECTOR

G070 800
810 ENTRY=1
c
c READ IN THE DIRECTORY TRACK, ONE BLOCK AT A TIME.

16

BIT BUCKET

c
CALL EXEC(1,DISC,CARTDR,128,DTRACK,BLOCK)
DO 30 I=1,8

c

c CHECK EACH 16 WORD DIRECTORY RECORD FOR PUGRED FILES

c FLAG -- END OF DIRECTORY FOUND

c FLAG1 -- CHECKING FOR DUPLICATE FILE NAME

c FLAG2 -- LOOKING FOR EXTENTS

c DO NOT ATTEMPT TO PROCESS TYPE 6 FILES

c
IF(CARTDR(ENTRY+3).EQ.6) GOTO 400
FWORD=CARTDRCENTRY)
IFCFWORD.LT.1.AND.FLAG2.EQ.1) GOTO 710
IFCFWORD.EQ.0> FLAG=1
IF(FWORD.GE.1) GOTO 400
IFC(FWORD.EQ.0.AND.FLAG1.EQ.1) GOTO 430
IF(FWORD.EQ.-1.AND.FLAG1.EQ.1) GOTO 400
IFCFWORD.NE.-1.AND.FWORD.NE.O) GOTO 400

c

c DECODE DIRECTORY ENTRY

c

710 CALL SGET(CARTDRCENTRY+S5),1,LBYTE)
SIZE=CARTDR(ENTRY+6)/2
SECRTY=CARTDRCENTRY+8)

IF END OF DIRECTORY HAS BEEN ENCOUNTERED, CHECK TO
SEE IF NEXT ENTRY CONFORMS TO DIRECTORY RECORD FORMAT
IF SO, TREAT IT AS A PURGED FILE.

OMDOOO

IFC(FLAG.EQ.0) GOTO 720

LAT=DTRACK-NUMBER
IFCCARTDRCENTRY+3).LT.1.0R.SIZE.LT.1.0R.CENTRY+4).GT.LAT)
1 GOTO 210

DO 43 M=1,4

CALL SGET(CARTDR,(ENTRY#2+M) ,BYTE)
IF(BYTE.EQ.S3B.0R.BYTE.EQ.54B.0R.BYTE.EQ.55B.0R.
1 BYTE.EQ.72B.0R.BYTE.EQ.0) GOTO 210

43 CONTINUE

DETERMINE IF WE ARE LOOKING FOR EXTENTS, AND IF SO
SEE IF THE DIRECTORY ENTRY IS THE SAME AS THE
ORIGINAL FILE.

OO0OO0OO0O0

IFCFLAG2.NE.1) GOTO 40

DO 41 M=1,15

IF(M.EQ.4.0R.M.EQ.5) GOTO 41

IFCCARTDRCENTRY+M) .NE.EXTENT(M+1)) GOTO NEXT
41 CONTINUE

IF EXTENT IS FOUND, RESTORE USING THE SAME NAME
AS THE ORIGINAL FILE

OO0

17

BIT

BUCKET

150

0oO0O0

40
100

OO0

210
130

OO0 O0

720
170

180
620
260

250

OO0

POSN1=ENTRY+2-1

POSN2=POSN1 + 31

CALL SMOVECCARTDR,POSN1,POSN2,EXTENT,1)
CARTDRCENTRY)=BUFF

CALL EXEC(2,DISC,CARTDR,128,DTRACK,BLOCK)
NOFEXT=NOFEXT+1

WRITECLU,150) NOFEXT

FORMAT(/" Extent #"I3," restored.')

GOTO NEXT

PRINT END OF DIRECTORY MESSAGE AND TRY TO PROCESS NEXT RECORD

WRITECLU,100)
FORMATC(/," End of directory encountered, next record conforms*"

1 /," to directory record format.")
GOTO 720

PRINT END OF DIRECTORY MESSAGE AND GET NEXT CARTRIDGE LU #

WRITECLU,130)

FORMAT(/," End of directory encountered, next record does not"
1 /," conform to directory record format.")

GOTQ 35

PURGED FILE ENCOUNTERED. LIST DIRECTORY RECORD AND
DETERMINE IF IT SHOULD BE RESTORED.

WRITECLU,170) (M,CARTDRCENTRY+M) ,M=0,15)
FORMAT(/*" Directory word "I12,3X,Ke"B*",2(/16X,12,3X,A2,5X,"CASCII)"

1),13¢/,16X%X,12,3X,K6,"*B*"))

WRITECLU,180) (CARTDR(M) ,M=ENTRY+1 ,ENTRY+3),LBYTE,SIZE,SECRTY
FORMAT(/" File: --"2CA2)," Type "13,» Extent number"]3,
1 /" Size(BLKS):"IS,", Security Code:"16)

FLAG1=0

WRITECLU,260)

FORMAT(/* First word ASCII characters? (‘return’ = continue,"”
1 "Wy’ = end) _")

READ(LU,250) NAME

FORMAT(A2)

IF(NAME.EG.2H//) GOTO END

IFC(NAME.EQ.2H) FLAG1=0

IF(NAME.EQ.2H) GOTO NEXT

IS IT IS NOT TO BE RESTORED, CONTINUE LOOKING FOR ANOTHER.

IF IT IS, ENSURE THAT THE TWO ASCII CHARACTERS ENTERED
WILL NOT CREATE AN ILLEGAL OR DUPLICATE FILE NAME.

18

BIT BUCKET

OO0

OO0

oMo Nel

700

70
65

200

310

140

430

190

760

220

DO 700 M=1,2
CALL SGET(NAME,2#M-1,BYTE)
IF(BYTE.GE.60B.AND.BYTE.LE.71B) GOTO 70

IF(BYTE.EQ.53B.0R.BYTE.EQ.54B.0R.BYTE.EQ.55B.0R.
1 BYTE.EQ.72B.0R.BYTE.EQ.40B) GOTO 70
CONTINUE

GOTO 200

WRITECLU,B5)

FORMAT(/™ FMGR -15 jillegal name™)

GOTO 620

FLAG1=1

ERROR=0

REMEMBER WHERE WE ARE, THEN START OVER AND LOOK FOR
DUPLICATE FILE NAMES.

CALL SMOVE(CARTDR,1,272,CTEMP,1)
BUFF =NAME
BUFF(2)=CARTDRCENTRY+1)
BUFF(3)=CARTDRCENTRY+2)

GOTO 80

INITIALIZE FOR FILE ENTENSION SEARCH

FLAG1=0

FLAG2=1

NOFEXT=0

POSN1=ENTRY#2-1

POSN2=P0OSN1+31

CALL SMOVE(CARTDR,POSN1,POSN2,EXTENT,1)
WRITECLU,140) BUFF

FORMAT(/" Checking for extensions of file "3(A2))
GOTO NEXT

CALL SMOVE(CCTEMP,1,272,CARTDR, 1)
IFCERROR.EQ.1) GOTO 620

VERIFY THAT DIRECTORY IS TO BE MODIFIED

WRITECLU,190) NAME,(CARTDR(M) ,M=ENTRY+1,ENTRY+2)

FORMAT(/' Restored name: "3(A2),", Confirm? (YEXS OR (NOY _*
READ(CLU,250) ANSWER

IFCANSWER.EQ.2H//) GOTO END

IFCANSWER.NE.2HYE) GOTO 620

RESTORE FILE

CARTDRCENTRYQC =NAME

CALL EXEC(2,DISC,CARTDR,128,DTRACK,BLOCK)

WRITECLU,220) DISC,BUFF

FORMAT(/,*" File directory of cartridge LU #"13" has been "
1 /," modified to include *,3(A2))

GOTO 310

DUPLICATE FILE NAME ROUTINE

19

BIT BUCKET

400 [IF(FLAG1.EQ.0) GOTO NEXT
ERROR=0
DD 410 M=0,1
IF(BUFF(M+1) .NE.CARTDRCENTRY+M)) GOTO NEXT
410 CONTINUE
WRITECLY,420) BUFF
420 FORMAT(/'" FMGR -02 duplicate file name: "3(A2))
ERROR=1
GO0TO 430

CHECK NEXT RECORD

c
900 ENTRY=ENTRY+16
30 CONTINUE

SEE IF WE ARE AT THE END OF THE TRACK, IF SO DETERMINE
IF THERE IS ANOTHER ONE. IF SO CHECK IT AS WELL
OTHERWISE GET LU # OF NEXT CARTRIDGE.

OO0

COUNT=COUNT +1
IFCCOUNT.NE.SECTOR/2) GOTO 750
KOUNT=KOUNT+1
IFC(KOUNT.GT.NUMBER) GOTO 35
DTRACK=DTRACK-1

GOTO 600

INDICATE TO OPERATOR THE NUMBER OF EXTENTS FOUND
FOR THE RESTORED FILE.

OO0

35 IF(FLAG2.EQ.1.AND.NOFEXT.EQ.0) WRITECLU,160)

160 FORMAT(/* No extents found")
IFCFLAG2.EQ.1.AND.NOFEXT.GT.0) WRITECLU,1000) BUFF ,NOFEXT

1000 FORMAT(C/,X,3(A2)," restored with"I3" extents.')
IFCFLAG2.EQ.1) GOTO END

a0 CONTINUE
IFCCARTDS.EQ.1) GOTO SO

TERMINATE

OO0

9000 WRITEILU,110)

110 FORMAT(2/" %ZEND GETBK'")
END
ENDs

20

BIT BUCKET

HELLO — TWO SESSIONS AT ONE LU

by James Donahue/Naval Weapons Support Center
Crane, Indiana

How often have you found yourself needing some other user's capability and/or resources? Some users find this to be a
recurring need, especially if you use WRITT to back up the system (including private cartridges). Sure, you could just log off
from your session and log onto the other. Doing this, however, destroys the user command stack, aborts temporary loaded
programs, and creates other inconveniences which may not be acceptable. What is needed is a method which allows you to
log onto another session, at the same terminal, without first iogging off from your session. Moreover, it should preserve the
command stack and temporary loaded programs, while preventing those other inconveniences. Essentially, it should leave
your session intact.

HELLO is a program which provides a quick and simple solution to the problem described in the previous paragraph. You need
only type 'RU,HELLO user.group/password’ or 'RU,HELLO user.group’ and you will find yourself logged onto another session
containing the capability and resources defined by the user.group account structure! in the latter method of scheduling
HELLO, the user will be prompted for the password. When HELLO logs you onto another session, the system message file will
not be printed. It is a quick, clean log on procedure. You have a fresh copy of FMGR, complete with station configuration, ready
and waiting to go. And when FMGR receives the EX command, HELLO will log that session off and return control to your original
session. The log off message will not be printed.

Let's take a look at the program flow of HELLO. There are three main phases to the program:
1. Gathering the user.group, password, verifying that this information is valid, and performing the log on.

2. Repairing the session control block (SCB), placing any station LUs into the session switch table (SST), renaming the
program itself, and scheduling a copy of FMGR through the cioning routine XQPRG.

3. Releasing the copy of FMGR, restoring HELLO to its original name, performing the log off, and halting.

An EXEC 14 call is used to retrieve the account string, which takes the form previously mentioned. The ‘RU,HELLO * is
discarded and the remaining data is checked for validity. The account string is scanned to determine whether or not a
password was supplied in the runstring. If it was not a password and the supplied user.group is valid, then a prompt for the
password is issued.

The validity of the user.group and password is checked by the subroutine CHKUSR (Check User). This module opens the
Accounts File (+@CCT!) and finds the location of the Accounts File Directory in the Accounts File Header (record one). The
directory is scanned to see if it contains the user.group that has been supplied. If it is found, the location of account entry for
that user is retrieved. The password is found in the user account entry and passed back to the main program. After this, the
Accounts File Header is again accessed to find the location of the Configuration Table. This table is scanned to see if there are
any station LUs assigned to the user's terminal.

Once HELLO is satisfied that all is in order, DTACH is calied. The call to DTACH is a requirement of XLGON. The log on and log
off are performed indirectly by the Assembly routines XLGON and XLGOF. These were written by Ron Williams of HP/
Pittsburgh. These routines appeared in a very early publication of WHZUP, distributed locally in Pittsburgh.

Assuming that XLGON is successtul in its atternpt to perform the log on, ATACH is called to link to the new session. The next
step is to repair the SCB. The actual log on and log off is performed by the system routine .CLGN, which is called from XLGON
and XLGOF. During this process, the SCB is built, but it contains a small flaw. The entry for session LU 1 points back to the
system console rather than to the user's terminal. The 1D segment contains a pointer to the SST in word 32 (origin 0). It points to
the SST length word in the SCB. The location of this ID segment address is XEQT(1717B) of the system communications area.

21

BIT BUCKET

15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0 Word
1 [l y I 1 1 { {) S
T T Ll A v LI L) I L

List Linkage 0)=—-XeEQT

TEMP 1 ’

TEMP 2 2

TEMP 3 3

TEMP 4 4

TEMP 5 5

Priority 6

Primary Entry Point 7*

Point of Suspension 8

A-Register 9

B-Register 10

EO-Registers 1

Name 1 Name 2 12*

Name 3 Name 4 13*
Memory-

Name 5 T™ [ML | TS | 8S | Type 14* > Resident
Programs

NA F\IS ‘LNPJ W LA rFSW (o} rLP R D Status 15

Time List Linkage 16

RES T Muttiple 17

Low Order 16 Bits of Time 18

High Order Bits of Time 19

BA | FW | M I Arl RM FRE PW l RNl Father ID Segment No. 20

RP # pgs. (no BP) MPFi I DE I Partition No. —1 21

Low Main Address 22*

High Main Address + 1 23*

Low Base Pg Addr (Non-MLS Prog) or # Sectors on LU 2 or 3 for MLS Prog 24*

High Base Page Address + 1 25% J

Program: Track # 26*

LU Swap: Track # 27

ID Extension No. T EMA Size 28

High Address + 1 of Largest Segment or Node 29

Timeslice word 30
Memory-

SEQCNT SH | DC | CP | DS] Session ID 31 Residents

SCB Pointer 32

MS | # pages disc resident # pages memory-resident 33

MP | # pgs dynamic buffer area E | DB | # of swap tracks 34

Start sector address of program LU # of prog 35

8100-2A
Figure A

22

BIT BUCKET

Using the system routines IXGET and IXPUT, the system LU of the user’s terminal is patched into the SCB so that session LU 1

will point to it. The mapping of the SST is not quite straightforward.

SESSION WORD ———»
(WORD 33 OF

NEGATIVE SST LENGTH

PROGRAM'S ID
SEGMENT)

SYSTEM LU

SESSION LU

SST

Figure B

SCB

In an entry in the SST, a single word represents a mapping of a system LU to a session LU. Bits O thru 7 contain the session LU
and bits 8 thru 15 contain the system LU that it should be mapped to. Well, it's almost that way. Let us consider that the user’s
terminal is system LU 84. Then we would expect to find an entry containing an 84 in its upper byte and a 1 in its lower byte (See

Figure C).

SST ENTRY
15 8,7 0
oft{of[1|of1|ofo]jo]oflo]o]o]o|o]1
Figure C

23

UPPER

LOWER

84

01

BIT BUCKET

Actually the values contained in each byte of the entry would be one less than the corresponding logical unit number. That is,
we would find an 83 in the upper byte and a 0 in the lower byte (See Figure D).

SST ENTRY
15 8 7 0 UPPER = LOWER
of1jo|1|o]oji|1]o|ofojo]o]o|O}oO = 83 | 00
Figure D

Also, entries in the SST are placed in the table from the bottom up. For example, if the SST is 24 entries long and the user only
needs to have 10 mappings, these entries would be found in the last ten table words. Any unused entries are found at the
beginning of the table and are denoted by a —1 (177777B).

In addition to the SCB patch, if there are any station LUs, they are also patched into the SST by IXPUT. The name of HELLO is
changed in the 1D segment from HELXX (XX=system LU of user's terminal) to HEL.XX. This is done so that HELP can be run in
the new session. This is necessary because, if a person ran HELLO, it would be renamed by FMGR as HELXX. If he then tried to
run HELP, a FMGR 023 (Duplicate program name) would occur. This happens when FMGR also tries to rename HELP to
HELXX. Then FMGR is cloned with XQPRG and the new session is ready to go. This copy will be named FM.XX. This is the
reason for choosing HE. XX as the new name for HELLO.

When the user is ready to exit the new session, he simply enters EX to FM.XX. This releases the copy of FMGR. HELLO is then
renamed back to HELXX to maintain the proper father-son links. XLGOF is called to perform the log off. You will then find
yourself back in your original session. All of your previous processing will be intact. Problem solved!

There are a few remaining features of HELLO which may be of some interest. Multiple copies of HELLO may not be run from the
same terminal. That is, schedulings of the program may not be nested. Rather, all calls to HELLO must be independent of each
other. This limitation is forced by the method by which HELLO chooses the session identifier for the new session. XLGON
requires that this identifier be between 100 and 200. The number used is derived from the system LU of the scheduling terminal.
it is simply the system LU plus 100 (new session identifier=1XX). This should create a number within XLGON's required range
and also serves as a method of identifying the location of the new session (as through WHZAT, etc.). By using this method, if
HELLO were run twice in a row, the second attempt would be in error, because there would already be a session 1XX. if HELLO
should be aborted abnormally before the call to XLGOF is made, the new session 1XX will be left hanging by itself without any
link back to the user. It will then be necessary for the system manager to run ACCTS and shut down that session via a SD, 1XX
command.

HELLO was written in FTN7X on an RTE-6/VM system in order to take advantage of the DO WHILE construct. Care was taken,
however, to keep the variable and subroutine names to a six character maximum. This was done so that users not operating off
an RTE-6/VM system can use HELLO by simply simulating the DO WHILE construct with standard FORTRAN. If there are any
questions regarding HELLO, my phone number and address are listed in the scurce code.

24

BIT BUCKET

FTN7X,L

* % % & % % % *

x ¥ £ * » & * = = = = $

* & & *

* & »

= & *

* %

PROGRAM HELLD() ,Non-interactive LOGON and LDGOFF. <821208.1050>

This program allows a user to log onto another person’s account while

remaining logged onto his own. This gives the user the resources
and capability of the other user until the program is terminated.
Once the HELLD is terminated the user returns to his first session
with all earlier processing still intact, i.e., TR STACK, edits, etc.
If HELLO has been used to log onto another account then it cannot

be used again until the user logs off this account. That is, HELLO
calls cannot be nested among each other.

HELLO is invoked by:

RU,HELLO user.group
or

RU,HELLO user.group/password
or
RU,HELLO user *.GENERAL’ implied

or
RU,HELLO user/password ‘.GENERAL’ implied

The program only requires an eight page partition and must be loaded with

the assembly routines XLGON and XLGOF which appeared in a very early
publication of WHZUP.

Author: Bill Donahue

NWSC 7071
Crane, IN 47522
(812) 854-3206

IMPLICIT INTEGER(CA-2)

DIMENSION Acct(16),Fmgr(3),Code(2),Parm(5),Pass1(5),Pass2(5)
DIMENSION Table(S),Genrl(4)

LOGICAL Found,Pass,Statn,Group

DATA fmgr/’'FMGR '/

DATA Code/2#0/

DATA Genrl /’.GENERAL‘/

Retrieve the runstring and the length of the runstring (in characters)

and check to see that a ’‘user.group’ was specified in the runstring.
If no user was specified then inform the user and stop execution.

CALL EXECC14,1,Acct,-32)

CALL ABREG(A,Lacct)

IFC(Lacct.LE.9) THEN
CALL EXEC(2,1,22HHi!' No user specified.,11)
CALL EXEC(®)

ENDIF

Calculate the length (in characters) of the ‘user.group/password’ string

by subtracting the 9 characters (‘RU,HELLO ‘) retrieved by EXEC from the
runstring. Also move the Acct string to the beginning of the buffer.

Lacct=Lacct-9
CALL SMOVE(CAcct ,10,10+Lacct ,Acct,1)

Test the last character for a space and decrement

Lacct one if it is.

Call Sget(Acct,Lacct,Count)
IF(Count.eq.40B) Lacct=Lacct-1

25

25 Aug 82

BIT BUCKET

Scan the runstring to see if the password was supplied in it. Set the
flag Pass accordingly. The /'’ character signifies that a password
was supplied

- %

Pass= FALSE.
Count=0
DO WHILEC.NOT.Pass.AND.Count.LE.Lacct)
Count=Count+1
IFCJSCOMCAcct ,Count ,Count ,2H/ ,1,Error).EQ.0) Pass=.TRUE.
ENDDO

Scan the runstring to see if a GROUP was supplied in it. Set the
+ flag Group accordingly. The character ‘.’ signifies that a

+ group was supplied. If no group was supplied, insert the char-
* acters ’.GENERAL’ in the runstiring.

Group = .FALSE.
Count2 = 0
DO WHILEC.NOT.Group.AND.Count2.LE.Lacct)
Count2 = Count2 + 1
if(JSCOM(Acct ,Count2,Count2,2H. ,1,Error).EQ.0) Group=.TRUE.
ENDDO

IFC.NOT. Group) THEN
IF(Pass) CALL SMOVE(Acct,Count,Lacct,Pass2,1)
CALL SMOVE(Genrl,1,8,Acct,Count)
Lacct = Lacct + 8
Count = Count + 8
IFC(Pass) CALL SMOVE(Pass2,1,10,Acct,Count)

ENDIF
+ Call the routine that scans the accounts file to see if the ‘user.group’
* is s valid one. Acct and Lacct are passed and the subroutine will
* set the flag Found and if the ‘user.group’ is valid it will
* return the correct password in Passi.

Lu=LOGLUCSyslu)

CALL Chkusr(Acct,Lacct,Found,Pass1,Syslu,Statn,Table,Ltable)
¢« [f the ‘user.group’ is invalid then inform the user and stop execution
* of the program. If the password was supplied then the length of the
) ‘user.group’ will be just the value in Count-1. Otherwise il justi be
* the value of Count.

IFC.NOT.Found) THEN
CALL EXEC(2,1,30H Logon Error. No such user: _,15)
[F(Pass) Count = Count - 1
CALL EXEC(C2,1,Acct,-Count)
CALL EXEC(®)
ENDIF

26

BIT BUCKET

® & X ¥k x ¥ ¥

® & ¥

* &k ¥ *x %

If the ‘user.group’ supplied by the user is valid and no password was
supplied AND a password is required then prompt the user for the
password. To insure that the
password given will be in capital letters AND each word of the user
supplied password with 157737B. This is done because the password
returned from the Accounts file will be in capitals. After this is
done move the password into Acct in preparation for the call to XLGON.

IF(Pass1¢1) .NE. 0)THEN ! Password required?
IFC.NOT.Pass) THEN ! YES

CALL EXEC(2,1,12H Password: _,6)
CALL EXECC1,1,Pass2,-10)
CALL ABREG(A,Lpass2)
DO I=1,Lpass2/2+1
Pass2(1)=Pass2(1).AND.157737B
ENDDO
CALL SMOVE(2H/ ,1,1,Acct,Lacct+1)
CALL SMOVE(Pass2,1,Lpass2,Acct,Lacct+2)
Lacct=Lacct+Lpass2+1
ELSE
CALL SMOVECAcct,Count+1,Lacct,Pass2,1)
Lpass2=Lacct-Count
ENDIF

Compare the user supplied password to the one retrieved from the Accounts
file. If they do not match then inform the user that an invalid
password has been supplied and stop execution.

IF(JSCOM(Pass2,1,Lpass2,Pass1,1,Error).NE.0) THEN
CALL EXEC(2,1,35H Illegal access. winvalid password!,-35)
CALL EXEC(6)
ENDIF
ENDIF

Since the user has supplied a valid ‘user.group’ and the appropriate
password continue onward. Use the session and system lu of the
terminal and then call DTACH to remove the program from session.
Set up the code for XLUEX. Create a unique session id by adding
100 to the system lu from which the program was scheduled.

Code(1)=Syslu
Sesslu=Syslu+100

CALL DTACH

Attempt a non-interactive logon and inform user of the status of
this attempt. If this attempt was successful clone a copy of FMGR
with XQPRG. If the error return is zero then the logon was
successful. On a successful logon call ATACH to attach to the

new session.

CALL XLGONCError ,Sesslu,Acct,Lacct)

IFCError.EQ.0) THEN
CALL ATACH(Sesslu)

27

BIT BUCKET

¢« Find the SCB of the newly logged on session via the id-segment and

+ patch the terminal lu into the new SCB. This is done by scanning
» the session switch table for the entry containing session lu 1 and
+ adding the terminal lu to the map.

Idseg=IXGET(1717B)

Sst=IXGET(Idseg+32)

Last=-IXGET(Sst)

Count=1

DO WHILECCount.LE.Lsst.AND.IXGET(Sst+Count).NE.O)
Count=Count+1

ENDDO

IFCIXGET(Sst+Count).eq.0) THEN
CALL IXPUT(Sst+Count,(Syslu-1)»256)

Change the name of the program in the ID segment to HE.XX so that when
HELLO is running the user can also run HELP. This is done because
if HELXX is already running then FMGR does not know how to rename
HELP.

* & % &

Name=1 XGET(Idseg+13)
Name=(Name.AND.377B).0R.027000B
CALL IXPUT(Idseg+13,Name)

Check to see if there are any station lus to be assigned to this
session. If there are then put the lu assignments passed back from
the subroutine Chkusr into the SST of this session.
the subroutine Chkusr into the SST of this session.

IF(Statn) THEN
Offaet=1
Entry=IXGET(Sst+0ffset)
DO WHILECEntry.EQ.-1)
Offaet=0ffset+1
Entry=IXGET(Sst+0ffset)
ENDDO
DO I=1,Ltable
CALL IXPUT(Sat+Offaet-1,Table(I))
ENDDO
ENDIF

28

BIT BUCKET

* & ® & %

* & ® %

Computer
Museum

If the SCB patch was successful then inform the user that he has been
logged on and clone the copy of FMGR with XQPRG. If FMGR cannot be
cloned then inform the user that FMGR is not available and stop

execution.

If the patch was not successful then inform the user of

the status and exit.

CALL EXECC2,1,11H Logged ont,-11)

CALL XQPRG(Dcb,9,Fmgr,Parm,0,0,Parm,Error)
IFCError .NE.O0O) THEN

CALL EXEC(2,1,20H FMGR not available!,10)

ENDIF

ELSE

CALL EXEC(2,1,24H SCB entry patch failed!,12)
CALL EXEC(®)

ENDIF
ELSE
CALL
CALL
CALL
CALL
CALL
ENDIF

CITACError,Acct)

XLUEX(2,Code,16H XLGON error # _,8)
XLUEX(2,Code ,Acct(3),1)

EXEC(®)

EXEC(®B)

When the user exits FMGR call XLGOF to log off the active session logged
into the sccount Acct. Also inform the user of the status of the
logoff attempt. Change the name in the id segment back to its original
form so that the id segment will be properly found by FMGR.

Name=IXGET(Ildseg+13)
Name=(Name.AND.377B) .0R.046000B
CALL IXPUT(ldseg+13,Name)

CALL XLGOF(Error)

[FCError.EQ.0) THEN
CALL XLUEX(2,Code,25H Successfully logged off.,-25)

ELSE

CALL CITA(Error,Acct)
CALL XLUEX(2,Code,16H XLGOF error ¢ _,8)
CALL XLUEX(2,Code,Acct(3),1)

ENDIF

END

29

BIT BUCKET

SUBROUTINE Chkusr(Acct,Lacct,Found,Passwd,Syslu,Statn,Table,
+ Ltable)

The purpose of this subroutine is to scan the Accounts file and determine
if the user has supplied a valid ‘user.group’. Found is a flag which
will be true if the ‘user.group’ is valid and will be false otherwise.
The password will also be retrieved so that the user supplied password
may be checked before a call is made to XLGON. If there are any station
lus they will be passed back and the flag Statn will be set.

IMPLICIT INTEGERCA-2)

DIMENSION Acct(20) ,Acctfl(3),Buffer(128),Dcb(144) ,User(5),Group(5)
+ yPasswd(5) ,Table(5)

LOGICAL Found,Statn

DATA Acctfl/’+8CCTV’/,Lu2/-2/,Secur/(see note)/

*

Open the accounts file. It must be opened with non-exclusive access,

CALL OPEN(Dcb,Error,Acctfl,1,Secur ,Lu2)
IFCError.LT.0) CALL FMPerr(Error)

*

Read the first record of the accounts file and determine the location
of the account directory.

*

CALL READF(Dcb,Error ,Buffer,128,Lread, 1)
[FCError.LT.0) CALL FMPerr(Error)
Recnum=Buffer(5)

*

Scan through the user entries of the account directory to see if the
supplied ‘user.group’ is valid. If it is valid then extract the
password for that user to be returned for later comparison.

* &

CALL READF(Dcb,Error ,Buffer,128,Lread,Recnum)

IFCError .LT.0) CALL FMPerr(Error)

Posni=1

Found=.FALSE.

Statn=.FALSE.

DO WHILEC.NOT.Found.AND.Buffer(Posni1).NE.O)

IF(Buffer(Poasn1+11).NE.Q) THEN

Luser=(Buffer(Posn1)/256) .AND.377B
Lgroup=Buffer(Posn1).AND.377B
CALL SMOVE(Buffer(Posn1+1),1,10,User,1)
CALL SMOVE(Buffer(Posn1+6),1,10,Group,1)

If the search is successful then get the record number which points to
» the location of ithe user’s account definition which contains the
* pas:word.

IF(JSCOM(Umer,1,Luser ,Acct,1,Error) . EQ.0.AND. JSCOM(Group, 1,
Lgroup,Acct ,Luser+2,Error).EQ.0.AND.JSCOM(2H. ,1,1,Acct,
Luser+1,Error).EQ.0) THEN

Found=.TRUE.

Recnum=Buffer(Posni+14)

NOTE: See your system manager to obtain the Accounts file security code and insert it in the data statement for SECUR.

30

BIT BUCKET

Check to see if the account definition is in the first or second half of
* the block. Then get the length of the password and move the correct
* pasaword from the ACCTs file to the buffer.

Of fset=0
IF(Recnum.LT.0) THEN
Offset=64
Recnum=Recnum.AND.77777B
ENDIF
CALL READF(Dcb,Error ,Buffer,128,Lread,Recnum)
[F(Error.LT.0) Call FMPerr(Error)
Lpass=Buffer(0ffset+1).AND.377B
CALL SMOVE(Buffer(OQffset+2),1,Lpass,Passwd,1)

¢« Since the ‘user.group’ is valid then check the configuration table to
* see if there are any station Lus to be assigned to this location.

CALL READF(Dcb,Error ,Buffer,128, L read,1)
IFCError.LT.0) CALL FMPerr(Error)
Recnum=Buffer(2)
CALL READF(Dcb,Error ,Buffer,128,Lread,Recnum)
IFCError.LT.0) CALL FMPerr(Error)
Posn2=1
Length=Buffer(Posn2)
DO WHILE(Length.NE.O.AND..NOT.Statn)
IF(Buffer(Posn2+1)/256+1.EQ.Syslu) THEN
Statn=.TRUE.
DO I=1,Length-1
Table(l)=Buffer(Posn2+1+1)
ENDDO
Ltable=Length-1
ENDIF
Posn2=Posn2+Length+1
Length-Buffer(Posn2)
ENDDO
ENDIF
ENDIF

» Check to see if there is a need to read another block of account
» definitions from the Accounis file.

Posn1=Poan1+16

IF(Posn1.GT.113.AND. .NOT.Found) THEN
Posni=1
Recnum=Recnum+1
cAlLL READF(Dcb,Error,Buffer,128,Lread,Recnum)
IF(Error.LT.0) CALL FMPerr(Error)

ENDIF

ENDDO

31

BIT BUCKET

¢+ Close the Accounts file and return to the calling module.

CALL CLOSE(Dcb,Error)
IFCError.LT.0) CALL FMPerr(Error)
RETURN

END

SUBROUTINE FMPerr(Error)

IMPLICIT INTEGERCA-2)

DIMENSION Err(5)

DATA ErrC1)/2HFM/ ,Err(2)/2HGR/

CALL CITACError,Err(3))

CALL EXEC(2,1,22H Error in FMP call! _,11)
CALL EXECC2,1,Err,5)

CALL EXEC(®)

END

ASMB,R,L
NAM XLGON,7 Non-interactive LOGON procedure <810514.1605>

Subroutine to allow a program to log itself onto
another account. The program must be non-session at
the time the call to XLGON is made, [.E. the program
must have logged itself off of its original account
via a call to the counter part routine XLGOF or a call
to DTACH

CALL XLGONCIE,ID,ACCT,LACCT)

IE = Error code return
0 = Normal return, no error

>0 = Logon error number

-1 = Program already in session

-2 = Session not initialized or not installed
~3 = Class [/0 error on logon reply

-4 = SCB not built properly

-5 = Session id not in range 100-200
ID = Session id to be used (100-200)
ACCT = ASCII arrag designating the account to log onto
/

O * % & 2 % & #

“USER.GROUP/PASSWORD" (Password muat be supplied!)
LACCT = Length of acct array in characters
AUTHOR: Ron Williams Version 1.0
Systems Engineer <810514.1605>
HP-Pittsburgh
EQU 1
EXT SESSN,.CLGN,.ENTR,EXEC,LUSES,$LIBR,$LIBX
ENT XLGON
IE NaP
ID NOP
ACCT NOP
LACCT NOP
XLGON NOP Entry point / Exit address
JSB .ENTR Get parameter addresses
DEF IE

32

BIT BUCKET

CODE

LRSPN

AGAIN

LDA ID,I

AND =B177400

SZA

JMP BADID
LDA =D-100
ADA ID,1I
SS5A

JMP BADID
LDA 1D,1
CMA, INA
ADA =D200
SSA

JMP BADID
JSB SESSN
DEF #+2
acT 1717
SEZ,RSS
JMP [NSES
LDA ID,1
STA CODE
LDB ACCT
LDA LACCT,I
CMA, INA
JSB .CLGN
NOP

SSA

JMP NOSES
STA CLASS
JSB EXEC
DEF =+8
DEF DS21
DEF CLASS
DEF BUFFR
DEF ZERD
DEF Pt
DEF P2
DEF IP3
JMP CLERR
LDA [P3
CPA =D1
RSS

JMP LRSPN
LDA IP2
SSA,RSS
S2A,RSS
RSS

JMP LRSPN
STA 1E,I
LDA CLASS

XOR =B20000

STA CLASS
JSB EXEC
DEF #+5
DEF DS21
DEF CLASS
DEF BUFFR
DEF ZERD
RSS

JMP AGAIN
LDA IE,I
SZA

Check for negative or bad session ID
Check to see if session ID >= 100

Check for session ID > 200

See if already attached to session

Program in session
Call LOGON

Convert to -# characters

Skip if no error

Session not initialized or not installed

Save class no. for LOGON reply
Get logon reply

Class 1/0 error
Fetch call type
Must be read or wriite/read

Try again
Fetch LOGON status
If negative or zero, then continue

Else get next message
save logon error
Clear save class buffer bit

Release LOGON reply class #

Complete procesasing id-segment if IE=D

33

BIT BUCKET

JMP LGERR Go take LOGON error return
JSB $LIBR Go patch id-aegment
NOP
JSB LUSES Get pointer to SCB
DEF ++2
DEF ID,I1
SZA,RSS Skip if found
JMP NOSCB
LDB 17178 Get id-segment address
ADB =D32 Offset to session word
XSA B,1 Store session word
ADB =D-1 Backup to sesion id field
XLA B,I Mask out old session id
AND =B177400
IOR ID,I Replace with new session id
XSA B, I Put back word
JSB sLIBX Turn system back on
DEF #+1
DEF »+1
JMP XLGON, I Normal return
LGERR ALF,ALF Extract LOGON error code
RAL ,RAL
AND =B77
JMP RTN
NOSCB LDA =D-4 Scb not built properly
JSB s$LIBX
DEF #+1
DEF RTN
CLERR LDA =D-3 Bad class 1/0 get on LOGON reply
JMP RTN
BADID LDA =D-2 Session id not in range 100-200
JMP RTN
INSES CCA Already logged on error return
JMP RTN
NOSES LDA =D-2 Session not installed or uninitialized error return

RTN sTA IE,I
JMP XLGON, I

CLASS NOP Logon reply class number
DS21 OCT 100025
BUFFR NOP
ZERD DEC 0
IP1 NOP
IP2 NOP
IP3 NOP
END

34

BIT BUCKET

ASMB,R,L

NAM XLGOF ,7 Non-interactive LOGOFF procedure <810514.1631>

CALL

IE =

EQU

CALL XLGOFCIE)

XLGOFCIE,ID)

Routine to force a logoff for the calling program

This form of call uses the session
ID from the program’s id-segment

This form of the call uses the argument
"ID" as the session id. It must be in
the range of 100-200

Error return parameter
>0 = Logoff error return

o
[}

or: Ron Williams

Logoff successful, normal return
Session id not in range 100-200

SCB not found for given session ID
Session not installed or uninitialized
Bad class [/0 get on LOGOF reply

Version 1.1

Systems Engineer <810514.1631>
HP-Pittsburgh

1

EXT .ENTR,EXEC,DTACH,$DSCS,LUSES,$LGOF

ENT
IE NOP
ID ocT
XLGOF NOP
JSB
DEF
LDA
SSA,
JMP
LDB
ADB
XLA
AND
STA
JMP
DOUBL LDA
STA
CHECK LDA
AND
SZA
JMP
LDA
ADA
SSA
JMP
LDA
CMA,
ADA
SSA
JMP
LDB
ADB
XLA
AND

XLGOF
100000

.ENTR
IE

ID
RSS
DOUBL
1717B
=D31
B,!
=B377
.ID
CHECK
ID,!1
.ID
.ID
=B177400

BADID
=D-100
.ID

BADID
.ID
INA
=D200

BADID
1717B
=D31
BU,I
=B377

Entry point / exit address
Get parameter addresses

check

Fetch

for single argument

this program’s id-segment address

Offset to session id word

Fetch

word

Mask out garbage

Store

Fetch

Check

Check

Check

Fetch

for local use
session id locally
for negative or bad session ID

to see if session id >= 100

for session id > 200

calling program’s session ID

35

BIT BUCKET

CPA .1ID If requested session id matches that of calling
JMP %42 Then detach it from the session
JMP DOIT

ASB DTACH

DEF #+1

JMP DOIT
BADID CCA Session ID not in range 100-200
RTN STA IE,1 Store error parameter

LDB =B100000 Reset ID address to null

STB ID
JMP XLGOF,1 Return
BADSM LDA =D-2 Session not installed or unitialized error return
JMP RTN
NOSES LDA =D-3 SCB does not exist for session ID
JMP RTN
CLERR LDA =D-4 Bad class [/0 get on LOGOF reply
JMP RTN
DOIT LDA .ID Add in kill active programs bit
I0R =B20000
STA .ID
XLA $DSCS Fetch disc pool pointer C(up/down)
SSA
JMP NOSES Sessjon not init. or not installed
LDA .ID Mask out all butr session id
AND =B377
STA BUFFR
JSB LUSES Find SCB address
DEF #+2
DEF BUFFR
SZA,RSS See if found it
JMP BADSM
STA .SCB
XLA $LGOF Get lgoff’s class #
S2A,RSS See if session up yet
JMP NOSES
IOR =B20000 Set no deallocate bit
STA .CLAS
JSB EXEC Make sure LGOFF exists & is executing
DEF #+3
DEF DS10
DEF LGOFF
NOP
CPB =A05 Check for SCO0S5 error
JMP NOSES
CLA Get class # for LGOFF reply
STA CLASS
JSB EXEC Do zero length class write to reply class
DEF ++8
DEF D18
DEF ZERO
DEF ZERO
DEF ZERD
DEF ZERO
DEF ZEROD
DEF CLASS

36

BIT BUCKET

LRSPN

AGAIN

CLASS
DS10
D18
DS20
LGOFF

JSB EXEC
DEF «+8
DEF DS20
DEF ZERD
DEF CLASS
DEF D1
DEF .ID
DEF .SCB
DEF .CLAS
JMP NOSES
JSB EXEC
DEF #+3
DEF DS10
DEF LGOFF
NOP

LDA CLASS
I0R =B20000
STA CLASS
JSB EXEC
DEF «+8
DEF DS21
DEF CLASS
DEF BUFFR
DEF ZERO
DEF 1IP1
DEF IP2
DEF IP3
JMP CLERR
LDA IP3
CPA =D1
RSS

JMP L RSPN
LDA IP2
SSA,RSS
SZA,RSS
RSS

JMP | RSPN
sSTA 1E,I
LDA CLASS
XOR =B20000
STA CLASS
JSB EXEC
DEF #+5
DEF DS21
DEF CLASS
DEF BUFFR
DEF ZEROD
RSS

JMP AGAIN
LDA IE,1
JMP RTN
NOP

0CT 100012
DEC 18
OCT 100024
ASC 3,LGOFF

Computer
Museum

Issue class write/read to LGOFF

Make sure LGOFF IS executing

Insert save class bit into reply class #

Get LOGON reply

Class 1/0 error

Fetch call type

Must be read or write/read

Try agsin

Fetch LOGON status

If negative or zero, then continue

Else get next message
Save LOGON error
Clear save class buffer bit

Release LOGON reply class #

Complete processing

LOGOF reply class number

37

BIT BUCKET

.CLAS NOP LGOFF class # storage
.SCB NDP Session SCB address storage
.ID NOP LGOFF control parameter storage
DS21 0OCT 100025
BUFFR NOP
IP1 NP
IP2 NODP
IP3 NOP
ZERO DEC 0
D1 DEC 1
END

WAITING FOR INPUT
:wh

13:34:13:920

«2FMGB84 3 00090 14 12 » » « #« 3,WHZAT # » » » « P:36136
WHZAT 1 00001 O e P: 36540

ALL LU’S DK
ALL EQT’S OK
LOCKED LU’S (PROG NAME) ©63(EDI6G3), 64(EDIG4), 87(EDIB7),117(DBD59),

13:34:15;: 20

:s]

SLU 1=(U #» 84 = E 34

SLU 2=LU # 2 = E 1

SLU 3=lU # 3 =E 161
SLU 4=l #» 85 = E 34

StLuU S={U # 86 = E 34

SLU 6=U # 6 = E 7

SLU 7=LU #1116 = E 53

SLU B8=LU #105 = E 38 S S5
SLU 9=V # 9 = E 8

SLU 10=tU # 10 = E 18 2
SLU 11=LU # 11 = E 163
SLU 12=LU # 12 = E 16 4
SLU 13=LU # 13 = E 1 85
SLU 14=LU #» 14 = E 1 86
SLU 17=LU # 17 = E 189

38

BIT BUCKET

SLU
SLU
SLU
SLU
SLU
redit
EDI84

EOF

22=LV
28=LU
33=LU
44=LU
57=LU

Us

L I I

mmmmm

e 7 for help
FI,namr specifies file

/ru,hello bill_d.co_op
Password:
Logged on!

:wh

13:34:38:890

Logge

-- Running HELLO from an EDIT!

d onto the new session!

»+FMGB4

EDI
HE.
Fi,

3
84 4
84 3
84 3
1

WHZAT

3,EDI84 #» » » » » P:361306
3,HE.84 P:36364
3,Fm.84 ., P:34233
3,WHZAT . . P:36136
Coe e P:36540

ALL LU’S OK
ALL EQT’S OK
LOCKED LU’S (PROG NAME)

13:34:40: 300

:sl

SLU 1=LU
SLU 2=LU
SLU 3=LU
SLU 4= U
SLU S=LU
SLU 6=LU
SLU 7=LU
SLU 8=LU
SLU 9=LU
SLU 10=LU
SLU 11=LU
SLU 12=LU
SLU 13=LU
SLU 14=LU
SLU 17=LU
SLU 22=LU
SLU 28=LU
SLU 33=LU
SLU 44=LU
SLU S7=LU
:ex

$END FMGR

"R R RR R R RER LR RRRRRN

mMmMmMmMmMmMmMmMMmMmmmmMmMm MM mm

34

- -

ww
SHh

w w
OGO A2 a2 =200 0N

(GRGRGRGRG RO RO RO wwm
N_,ohnbsbwh

U w;m
n -
w

Successfully logged off.
Resume EDI8B4 on

/a/

EDIB4 aborted by user
end of edit

----- Station lus 4 and 5 (ctu)!

Returned to edit

39

BIT BUCKET

OPTIMIZING MLS-LOC LOADER PERFORMANCE

by Julie Leon

The MLS-LOC loader's performance can be optimized by using the the following techniques:

1.

Don't use the SGMTR's “A” option when generating the MLS-LOC command file. When the A option is not used, NA and SY
commands are not emitted for leaf node modules that would be loaded anyway during default searches. Therefore, the
MLS loader accesses the command file on disc fewer times.

Use one indexed library. This saves time doing multiple opens and when searching. The program INDXR can be used to
merge and index the library.

Delete the one line comments in the MLS command file. This reduces the number of disc accesses required to read the
command file. This can be done easily with the following EDIT commands:

:RU,EDIT,#PROG edit the command file

/SEREON turn on reqular expression option
/18X/ //Q remove spaces quietly
/1$D/*(A-21/AQ delete all commenta quietly
/EC#PR0OG2 create a second output file

Of course using the largest possible path will aliow SGMTR to build the smallest number of nodes. Since there is loader
overhead associated with each node, the fewer the nodes, the faster the load.

If all else fails, the tree structure produced by SGMTR can be manipulated by hand. I the tree has leaves (bottom nodes)
that are not all on the same level, it is possible that the tree structure can be changed to save more loading time. Rotating
base page when the loader runs out of links, and the corresponding overhead can be optimized by grouping brother
nodes that are leaves at the same level.

See example below:

Not Optimized Optimized
| |
I | | I | I
B c D B D o
E F E F

40

BIT BUCKET

These techniques can substantially decrease loading time. We tested two medium size programs to determine the savings.
One was the Pascal demo PSDEM, the other was the SPICE program. See chart below for savings when loading the SPICE

program.

MLS-LOC TIMING TESTS

SPICE #1 #2 #3 #4
SGMTR “A" Yes No No No
INDEX LIB No No Yes Yes
COMMENTS Yes Yes Yes No
TIME(MINUTES) 60 43 24 21

SAVINGS — 28 44 4

41

BIT BUCKET

TROUBLE FREE SEGMENTED DGL GRAPHICS PROGRAMS

by Anjali Magana/HP ESO

A number of points must be considered when a segmented program using Graphics/1000-1l DGL communicates with a single
workstation. [f all calls to DGL are included in one program segment, then users should simply follow the rules described in the
DGL Programmer’s Reference Manual, under Segmented DGL Programs. However, if all of the calls to DGL are not contained

within one program segment, then using the following guidelines in addition to rules in the manual will eliminate potential
execution problems.

1. When loading any program segment in which a locator device will be used in conjunction with a display device (e.qg.

tracking the position of the locator on the graphics display) then both the locator library and the display library should be
searched.

2. When operating in-system buffering mode, ZMCUR should always be the last graphics call made in segments which
reference the graphics display device.

3. If an application program takes advantage of display devices which suppon hardware clipping, then all calis which modify
the viewing system of the display (ZBEGN, ZASPK, ZDLIM, ZVIEW, and ZWIND) can only be made in a program segment
which calls ZDINT. The exception to this is when there is no display device enabled at the time these calls are made.

4. Al devices should be explicitly terminated (e.g. ZLEND) instead of relying on ZEND to implicitly terminate them.

42

BIT BUCKET

COMMUNICATOR/1000 INDEX

With this issue, we close out Volume V of the Communicator/1000. The index beiow covers the six issues of Volume V in
chronological order, with each article coded according to its category.

Legend
Bl Bit Bucket
0Ss Operating Systems
oM Operations Management
LA Languages
IN Instrumentation
BU Bulletins

COMMUNICATOR INDEX BY ISSUE, VOLUME V

ISSUE

[G T U G TG

WWwwww DR NN

wwww

O A

CAT

Bl
Bl
Bl
0s
0Ss
oM
LA
BU

BI
Bi
Bl
08
oM
oM

B!
Bl
B!
Bl
ON}

LA
oM
oM
BU

BI
BI
Bl
Bl
BI

0os

TITLE

Measuring Time Base Generator Overhead

RS-232 Link Between the HP 1000 and the HP 85

Avoiding Mag Tape Lockup

Sharing the FORTRAN Formatter in RTE-L

Accessing Physical Memory in FORTRAN and Pascal
Designing a High Performance Data Capture System

A Comparison of Hewlett-Packard Pascal/1000 with UCSD Pascal
A New FORTRAN Independent Study Course

Forward File by File Number

Get N :re Out of Your Disc With the Spare Cartridge Pool and Tape
System Identifier for RTE

Multi-station Traps with BASIC/1000

Using Memory Behind Your FORTRAN Program

FMP Consideration in IMAGE Shared Database Access

How to Find System Status Without Really Logging On
Quick Data Base Changes

Date Ranging

Packing LUs 2 and 3 During Off Hours

User Written 1/O Routines for HP 1000 Computer

About FORTRAN Common

Mover: A File Moving Program
Customized Service Using the Hello File
New ATS DTU Manual Update

File Management Using Symbocls and Reserved Words
Scheduling BASIC on Multiple Terminals

One More Time

An Editor for Type 1 File

Automatic Scaling and Logarithmic Plotting for Graphics/1000-11
Program to Program Data Passing Using FIFO Ques in SSGA

43

AUTHOR

Bob Hallenbeck
Bob Niekamp
Bill Hassell
Kent Ferson
Larry Smith
Carl Reynolds
John Stafford
Shauna Uher

Keith J. Kunz
Jeff Deakin
Dan Barnes
Marty Silver
John Pezzano
Gary Ericson

John Pezzano
Camilla Foppes
R. Arthur Gentry
Wayne P. Reidinger
M. Varanini,

A. Mascerata,
P. Pisani,

C. Marchesi
John Pezzano
Dan Laskowski
Don McLaren
Bob Desinger

Arthur P. Briscoe
Olaf Meyer

Dave Markwald
Paul Henderson
Terry O'Neal
Matt Betts

12
16
24
26
33
39
46
59

12
13
16
21
40
44

10
15
21
24

33
37
50
55

13
15
23
30
42

BIT BUCKET

ISSUE

(SRS NG O NG I NG, IO RO)

v n

[o)Me)Me)Ne)NerNe)le) o) o) e i) e Ner I

CAT

IN
BU
BU

Bi
BI
BI
Bl
BI
Bl
Bi
Bl
Bi
B!
Bl

Bl
B!
B!

Bl
Bl
Bl
Bi
Bl
Bi
B
08
oM
oM
LA
BU
BU
BU

TITLE

The Fundamentals of HP-IB Addressing
The Most Powerful RTE Ever
New Languages Extend Programming Capabilities on RTE-6/VM

Who's Logged On?

Who Am 1?7

How Long Have | Been Here?

Executing a Procedure After Logoff

Fast FORTRAN — An Update

Accessing Physical Memory

More Notes on the Use of Undeclared Memory

Short Formatted 1/O for LUs in Pascal/1000

Pascal Error Trapping and Reporting

MVDIR — The Case of the Moving Directory

How to Build System Utilities Using a Disc Directory and
Edit/1000 Subsystem

Restarnt Spooled Printing

Set Up Your 2608 Line Printer

1351A Graphics Generator With a 21MXM Computer in RTE-IVB

For/Next Loops in FORTRAN

Restoring Purged Files

HELLO — Two Sessions at One LU

Optimizing MLS-LOC Loader Performance

Trouble Free Segmented DGL Graphics Programs
Communicator/1000 Index for Volume V

Performance Concepts for Software Design and Implementation
Simplified Development of Custom I/O Drivers

Tricks with Edit/1000

Manufacturing Productivity Automation at Bendix

2250 Buffer Management from Downloaded Subroutines
Customer Courses for ATS/1000 Users

New Product Announcements

Join an HP 1000 User Group!

44

AUTHOR

Neal Kuhn
Jim Williams
Linda Haar

Dan Wagner

J. L. DeSchutter
William J. Loye
Bob Desinger
John Pezzano
Stephen Botzko
Jeff Wynne
Dave Redmond
Jeffrey Hirschl
John McCabe
Bob Gordon

Jay McCanta
Linnea L. Fort
K.H. Kitching,
J. Robinson

Alf Lacis

Paul Dunphy
James Donahue
Julie Leon
Anjali Magana
Editor

Marc Katz

John Trueblood
Michael Wiesenberg
Michael Miller
Diana Bare
Editor

Editor

Editor

53
59
61

14
20
23

30

38
42
53
59
61

74
76
80

10
13
21
40
42
43
45
48
64
73
77
85
86
89

BIT BUCKET

Computer

Museum

PERFORMANCE CONCEPTS FOR SOFTWARE DESIGN
AND IMPLEMENTATION

by Marc Katz/HP Data Systems Division

This paper will define some basic concepts that may be used to produce software which performs optimally. Good design can
eliminate potential performance problems. The techniques outlined here should help designers produce good designs.
Implementation techniques are also discussed. Although these concepts are simple, they are often overlooked, as system
complexity increases or functionality changes.

LOOK AT THE SYSTEM AS A WHOLE

When a large software system is developed, the project is generally divided into parts, each part treated separately. This is the
classic divide and conguer strategy. Although this strategy is often the only way for a large project to be reduced into
manageable pieces, the resulting interface between these pieces can be a source of problems.

There must be coordination between the parts of the system. The design must extend to the interconnection of the parts,
insuring that data is in a consistent format and that information is not lost. A balance must be maintained between the local and
global view, 1o insure cohesiveness throughout the whole system.

MINIMIZING DATA TRANSFORMATION

One problem we have when different parts of a system are designed independent of each other is data transformation. In one
graphics system, data items were transformed four times in their short lifetime. The first transformation was from the user's
format to an internal format, then from internal format to a communications format, then to a database storage format, then to
communication format to another graphics system!

Each transformation when viewed separately seemed justified and logical. When viewed as a whole, however, it became clear
that too much transformation was occurring, and that system performance would suffer as a result. The overall system
complexity grew also, since different mechanisms were needed to access and convert among the different data formats. This
problem is solvable through a global look at the data flow in the system.

THE TIME/SPACE TRADEOFF

Time/space tradeoff is an underlying concept in any discussion involving performance. It could also be phrased, “use the
correct algorithm for the given performance and storage constraints.” In most cases, several different algorithms can be used
to solve a particular problem. Each algorithm has different storage requirements and different performance properties. It should
not be assumed that an algorithm which requires more space is a faster algorithm. This tends to be the case with established
algorithms since algorithms which require more space and run slower generally are not popular.

An interesting example of this phenomenon can be found in the subroutine mechanism. The subroutine mechanism can be a
great space saving device. Code that is common to many routines is stored in one place and is shared by routines which need
it. The downside of this is that subroutine calling overhead takes time. A small subroutine could spend more execution time in
the subroutine call overhead than in the body of the subrautine. In one time-critical application, we found that 35% of the

execution time was spent in subroutine overhead. By changing the subroutine structure, we reduced this overhead
considerably.

In this case, there was another tradeoff involved — performance vs. structure. This sticky subject must be carefully treated, to
balance out the real concerns on both sides. One must be careful not to sacrifice structure and maintainability in areas which do
not justify such sacrifice.

45

BIT BUCKET

OPTIMIZE FOR THE COMMON CASE

This section could also be phrased, “worry about the things which need worry”. Optimization always involves tradeoffs.
Optimizing all operations for improved performance will result in programs which may be too large and too hard to understand.
An analysis of the most common operations will allow the most useful optimization.

A good example of this concept is the method of optimizing instruction sets of computers. A small number of instructions
commonly account for the majority of processing time. By identifying those instructions and optimizing them, the overall
performance of the computer is improved. Another example is found in a graphics system. There are many different graphics
instructions which must be processed. The most common, however, are moves and draws (or polylines). These are the
operations which should be optimized in order to increase the overall system performance.

OPTIMIZING FOR CONSTRAINTS ’

The constraints of a system are the properties of inputs and outputs which are known to be restricted. We may know that some
data will never be accessed or that some functionality will never be required.

For example, if a user needs a computer for one specific use, certain models will be better than others. Some models are better
for real-time operations, and some are better for number crunching operations. The model is chosen according to the
constraints of the environment. Optimization would not be possible if the user did not know what he would be using the
computer for.

There are numerous examples of constraints which may allow more efficient design. The downside, of course, is that if
constraints change, performance may suffer and large amounts of code may need to be modified.

MICRO-OPTIMIZATIONS

This is the class of optimizations which can be applied to time-intensive or often-called routines to decrease execution time.
These optimizations tend to be machine-dependent and rather tricky. The following are some examples that are common:

o Reduce the use of floating point operations, where possible

e Optimize the order of comparisons so that the most likely situation is tested first

o Reduce parameter overhead by minimizing the number of parameters and the number of subroutine levels
¢ Optimize register usage and use of hardware and firmware features

As we have shown in this paper, these optimizations form only a small part of the overall effort. Historically, these classes of
optimizatons have been well treated to the neglect of other more global optimizations.

UTILITIES FOR INCREASING PERFORMANCE

Last is the class of machine-dependent solutions for producing more optimat routines. These utilities allow access to hardware
and firmware capabilities which can be used to obtain optimal performance. Some common capabilities are bit and byte
manipulation instructions, move and compare instructions, hardware or firmware math and arithmetic subroutines, vector
instruction sets and custom microcode. Assembly language routines can often make better use of hardware registers than can
higher level languages. They also produce more optimal code.

As always, there are tradeoffs. The use of special hardware features produces programs which are more machine-dependent
(and less portable) and may be hard to understand.

46

BIT BUCKET

The use of profiling and timing routines can help identify problem areas. The use of assembly language listings of higher level
language code can help to identify the possibilities for optimization, using some of the techniques above. A knowledge of the
way that compilers generate code can also help in writing more efficient higher level code.

CONCLUSION

The use of all these techniques is the art and elegance of software design and implementation. A careful balance must be
maintained between generality and specificity, simplicity and complexity, machine independence and dependence. These
concepts can be extremely useful in making the decisions which will produce efficient systems.

47

OPERATING SYSTEMS

/O USING A
CONVENTIONAL DRIVER

APPLICATION
PROGRAM

[/{e] Vo

REQUESTS \ RESULTS

OPERATING SYSTEM -

/O USING A
SUBROUTINE DRIVER

(/0 SCHEDULING ROUTINE)

/O REQUESTS

/O COMPLETION INTERRUPT
ABORT REQUEST

POWER FAIL REQUEST
DEVICE STATUS

TIME-OUT AND INTERRUPT REQUEST
YO RESULTS

OPERATING SYSTEM DIRECTIVE

-l
o

y

[

CONVENTIONAL
/O DRIVER

r=—--

; HANDSHAKING

OUTPUT & INPUT

1o
INTERFACE

APPLICATION
PROGRAM

/0 Vo
REQUESTS RESULT

S

SUBROUTINE
/O DRIVER

T
i HANDSHAKING
1.

Lo

yy

/O COMPLETION .

L 4
T

DEVICE

CARD INTERRUPT

OUTPUT INPUT

o
INTERFACE

[{e]
COMPLETION

CARD

wr] T wer
v T

DEVICE

FLAG

Figure 1. Information Fiow Between an Application Program and a Peripheral Device

OPERATING SYSTEMS

MEMORY MAP (RTE-XL)

END OF PHYSICAL MEMORY
PROTOTYPE DRIVER SUBROUTINE
USER PARTITION #N

APPLICATION PROGRAM

o
b

))

PROGRAMS CAN BE LOADED
BY THE RELOCATING APPLICATION PROGRAM

LOADER }
PROTOTYPE DRIVER SUBROUTINE }

USER PARTITION #2

USER PARTITION #1
APPLICATION PROGRAM

SYSTEM COMMON PARTITION
PAGE #=$SCO0+1

B MEMORY
PROTECT

Y V,
SYSTEM AVAILABLE MEMORY FENGE

(BUFFER AREA)

SYSTEM TABLES

PROGRAM LOADING REQUIRES
SYSTEM GENERATION

CONVENTIONAL

/O DRIVERS > OPERATING SYSTEM PARTITION

SYSTEM MODULES
(INCLUDING O SCHEDULING)

SYSTEM BASE PAGE
ADDRESS = 000008 /

Figure 2. Relative Memory Locations of Prototype Subroutine vs Conventional Drivers

51

OPERATING SYSTEMS

WRITING A SUBROUTINE DRIVER
A subroutine driver basically consists of four parts:

Parameters passed from the calling program
I/O transfer preparation

I/O transfer execution

System restoration

AL~

Status reporting, muiti-buffered requests, control requests, etc., can be added if desired, but are not necessary in the
prototype. The flowchart in Figure 3 illustrates typical subroutine driver logic.

Four parameters are required to process general I/O requests. First, the direction of the transfer must be indicated. Next, either
the physical or logical unit number of the I/O device must be specified. Using the physical unit number (select code) will
simplify the routine, but use of the logical unit number (LU) adds fiexibility and is recommended. The I/O buffer address and
length for the data transfer comprise the remaining parameters.

Preparation for the data transfer constitutes the major portion of a subroutine driver. A significant complication occurs on 21MX
type computers if DMA is needed, since only two DMA channels exist. For instance, the programmer must ensure that a DMA
channel is free before it is used, a function normally managed by the operating system. Therefore, a subroutine driver in an
RTE-IVB system is better off not utilizing DMA for data transfers. However, in A- and L-Series computers, the distributed
processing architecture provides a separate DMA channel for each /O port. Thus, for those systems, self-configured, chained
DMA is the most efficient method of data transfer, which is therefore the technique henceforth discussed.

First, the value and status of the global register must be saved (to be restored at the end of the routine). Next, determine the
select code of the device and load it into the global register, then enable the global register (the global register is normally
managed by the operating system prior to driver entry, but must be handled by the programmer in a subroutine driver). If the
host is running RTE-XL, the relocation register corresponding to the select code must be set to the starting page number of the
user partition so the I/O card can properly map into the /O buffer in the user partition. For RTE-A.1, each select code has a
complete set of mapping registers, rather than a single relocation register. In that case, the mapping register set of the desired
port must be calculated (subtract 10B from the select code) and the 32 mapping registers must be copied to that I/O mapping
register set using DMS instructions (i.e. MWW). Depending on which is used, either the relocation register number or the
mapping register set number must be included in the lower bits of the DMA control register 21B. An operating system routine
($SETR) normally manages the relocation register and the mapping register sets, but because that routine cannot be called
from a user partition, the programmer must oversee that function himself. (See the example for the method used.)

Also, for RTE-XL and -A.1, a portion of system common must be saved so it can be overwritten and subsequently restored, and
pointers must be set up to direct DMA quad storage into the system common area. (See example — note that system common
is accessed by the physical address instead of mapping into the user partition, since DMA register 20 must contain a physical
address.) System common is used in RTE-XL and -A.1 for quad storage because the DMA self-configuration feature can
access only the first 32 pages of memory, thus precluding access of user partition areas. If the target system is very large so
that system common begins beyond page 32, then an eight-word storage area must be generated into the first 32 pages of the
operating system with a unique entry point (i.e., $QUAD). The subroutine driver must then be altered to access that area for
quad storage instead of system common. In most cases, however, the method used in the example enables execution of a
subroutine driver on the existing operating system without modification.

Now the appropriate DMA quad must be built according to the direction of the IO transfer. For RTE-XL, the relocation register
number (the mapping register set number for RTE-A.1) must be logically added (inclusive “OR”) to the OMA control word. Any
additional characters to be transferred (i.e., a carriage return/line feed) require a contiguous DMA quad utilizing chaining of
self-configured DMA. Everything is now set to begin the /O transfer.

52

OPERATING SYSTEMS

PARAMETER
SECTION

VO
PREPARATION
SECTION

START

GET
PARAMETERS

CLEAR THE
ERROR CODE

|

SET UP
GLOBAL
REGISTER

B —

[PERFORM
| RTEXL
SET UP I

L___l,_.__;

SET UP
DMA QUAD
STORAGE
POINTER

READ

REQUEST
?

WRITE

REQUEST

TYPICAL SUBROUTINE DRIVER LOGIC

/O SYSTEM
EXECUTION RESTORATION °
SECTION SECTION
SUSPEND RESTORE
AND GLOBAL
TERMINATE REGISTER
ANY PENDING
DMA _L
- L
RESTORE \
| SYSTEM |
START ! :::8: II';(T)EI xe |
DMA -
I |

PARAMETERS
DMA
. COMPLETE INTO A & B
" REGISTERS

SUSPEND
AND
TERMINATE
DMA

|
I
I
!
I
|
I
|
|
I
!
I
|
|
|
[
I
|
l LOAD RETURN
I
|
I
I
|
|
I
I
I
|
|
I
|
|
I

L

ERROR CODE

O

BULLD BULLD

READ WRITE

QUAD QUAD
Il

BULLD

CR LF

QUAD

I
|
I
|
|
|
|
I
I
|
|
|
I
I
I
|
|
|
I
I
|
I

Figure 3. Example flowchart for a prototype subroutine driver. Any necessary protocol may be added to the
1/O Execution Section

53

OPERATING SYSTEMS

Communication protocol is of primary concemn in the development of a custom driver and is normally an integral part of 1O
transfer execution. However, since handshaking requirements are device specific and vary greatly, the topic of protocol
development is beyond the scope of this discussion. Rather, attention is focused on how to locate a driver in the user partition.
Therefore, the example driver included uses no handshaking so that it may be used on a variety of serial terminals for
demonstration purposes.

The execution of the DMA transter, once the protocol is satisfied, is very simple. Suspend and terminate any pending DMA by
clearing the flags associated with DMA registers 21 and 23 (i.e., CLC 21B, C). Now load DMA register 20 with the physical
address of the first word of the DMA quads and initiate DMA with the STC 20B,C instruction. Wait for the register 20 flag to be
set, indicating completion of the DMA chain. Although interrupt processing is conceivable in a subroutine, the procedure gets
rather involved and emulation of this particular operating system function is not practical in a prototype. Upon DMA completion,
suspend and terminate DMA as before and set the VO card to a known state. (See example.) Finally, the number of bytes
actually transferred may be calculated if desired.

The last step consists of returning the system to the condition it was in prior to subroutine entry. This task is difficult for RTE-IVB
systems because system time is lost for the duration of privileged execution, so rebooting may be a simpler solution. For A- and
L-Series systems, up to 2'® 10-millisecond TBG tics (about 10.92 minutes) are held during privileged execution to be added to
the system clock automatically (by RTIOL) on subroutine exit, thus maintaining time management and facilitating system
restoration. First, restore the contents of the global register, then enable or disable the register according to its previous state.
For RTE-XL and -A.1, the contents of system common that were overwritten must be restored. The subroutine is now complete.

Although some routines are required in a subroutine driver that are not necessary in a conventional driver (operating system
emulations such as global register management), these routines are straightforward and easy to write. The subroutine
prototype remains simpler than a conventional driver, in addition to all the other advantages heretofore discussed.

AN EXAMPLE OF A SUBROUTINE DRIVER

Included here is an example subroutine driver that performs simple input and output to a serial RS-232 device using an
asynchronous serial interface card (HP 12005A). The parameters are compatible with EXEC 1 and 2 call formats. For example:

CALL DRIVR (CODE,CNTWD,BUFR,LEN)

where:

CODE = an integer 1 or 2 for read or write regests respectively

CNTWD = the integer LU number

BUFR = an integer buffer for the transfer

LEN = the positive number of words or negative number of bytes
for the transfer.

On return from subroutine, the A register contains an error code and the B register contains the positive number of bytes or
words transferred (according to the sign of LEN in the EXEC request). The driver is compatible with both RTE-L and -XL. This is
accomplished by determining which system is running (compare an XL entry point with 0). If the system is RTE-L, NOP's are
written over the JSB's to the XL setup and restoration routines. In either case, a NOP is written over the JSB to the test routine so
the system will only be checked the first time the subroutine executes. {f the target system is known, this function may be
performed by changing the code and removing unnecessary routines. If the subroutine is to be loaded without change on an
RTE-L system, a dummy library must be searched to satisfy external references unique to RTE-L. (See example dummy library
included in the listing that follows.) For RTE-XL, even though system common is used, it should only be specified to the loader if
required by the main program, since the subroutine accesses system common by its physical address. Application programs
using both system common and the subroutine driver are permitted since the driver restores all system common that it uses.

Note the use of system entry points in determining the select code from a logical unit number, calculating the relocation register

number, determining the partition starting page by use of the ID segment and partition table, and in the use of system common.
This enables the subroutine driver to run on nearly any system configuration for RTE-L and -XL.

54

OPERATING SYSTEMS

A simple FORTRAN program to demonstrate the example driver is as follows:

FTN4,L
PROGRAM DEMO(), DEMONSTRATE THE EXAMPLE SUBROUTINE DRIVER
DIMENSION IBUFR (40)
LU=t OGLU CIDUMY)
C Prompt the user for input
CALL DRIVR ¢2,LU,1SHEnter some data,-15)
C Receive user input
CALL DRIVR (1,LU,IBUFR,-80)
C The B register contains the positive number of bytes read
CALL ABREG (IA,IB)
C Prompt the return data
CALL DRIVR (2,LU,25HThis is what was entered:,-25)
C Send the data to the user terminal
CALL DRIVR (2,LU,IBUFR,-1B)
C Now demonstirate formatted [/0
CALL DRIVR (2,LU,34HNow enter an integer less than 180,-34)
C Receive input from the terminal
CALL DRIVR (1,LU,IBUFR,-80)
CALL ABREG (I1A,IB)
C Use the formatter to interpret the ASCII number received
CALL CODECIB)
READ (IBUFR,#*) 1|
C Perform a calculation to verify proper formatting
J=lal
C Format the output buffer into ASCII data
CALL CDDEC20)
WRITE (IBUFR,10) I,J
10 FORMAT (14," squared=",16)
C Output the formatted buffer to the terminal
CALL DRIVR (2,LU,IBUFR,-20)
END

This program requests input from the user's terminal and displays what the user sends, utilizing only the subroutine driver for
I/O. 1t then demonstrates how to perform formatted I/O using the prototype.

In conclusion, by using the example subroutine driver prototype as a skeleton, one can develop a custom subroutine driver with
minimal effort. The author has used this technique to set up a communication link between an HP 1000-XL and a Z-80 based

microcomputer, thus even complex protocol requirements may be satisfied with increased programming efficiency using the
prototype method herein described.

55

OPERATING SYSTEMS

EXAMPLE PROTOTYPE DRIVER SUBROUTINE

EXAMPLE PROTOTYPE DRIVER SUBROUTINE

ASMB,L,Q,R
HED Example Subroutine Driver for RTE-L and -XL Systems
(2 X X R R R R R R R R R R R R R R R R X R X A S R R X S R RS RS SR S XS RZS SRS RE R SRR 4
Subroutine Terminal Driver

This ia an example subroutine driver to execute simple

s+ input and output to an RS5232 device using an Asynchronous

#+ Serial Interface Card (ASIC HP 12005A). The parameters follow
s+ the format of EXEC 1 and 2 calls for compatability: simply

*+ replace the name EXEC with DRIVR.
#+ it is being run on an RTE-L or -XL system the first time it is
#+ executed and changes the machine code as necessary, so it may

* %
* %

#+ be run as is on either system.

This routine tests whether

The driver performs the function

#+ of both device and interface driver, though it is possible to
*» separate the two.

The A and B register returns are the same as with EXEC calls:

#+ the A reg contains an error/status code (0 if successful) and
#» the B reg contains the positive number of words or bytes

#*+ transferred (depending on the sign of the length parameter as
#» with EXEC calls).

[ZZZEZRZE SRR SR SRR RS ZL S22 228X RS R R il i i 22 2 2 2 R 2 X2 22 RZ 1

SPC 2

NAM DRIVR,7,30

ENT DRIWVR

Subroutine Terminal Driver

EXT SLIBR,.ENTP,$LIBX,$LUTA,.XLA,.XLB,.XSB,$SC

SPC 1
The followin
1f the targe

?

externals are only used by the RTE-XL routines.
system is RTE-L, simply search the dummy library

listed following this routine.

SPC 1

EXT $SCO,.MWF,.MWI,$MATA
EXT $MASZ,$BASE, .LDX

SPC 1

* %
* %
* %
* 8
L&]
L3
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %

FRAFAARZR AR AR RRBRARRRERRRRRRARRRBRRRRRARAARRBRRARAARRAARRSRARRRARRRRRS

Parameters Passed from Calling Program
I Z X E XX E R EZ R R R R R R R R ERZEE R ERRZZZ R ERZ AR RN R ZERREZE R R R R EZZ R R SRR R R X 1

* %

CODE
CNTWD
BUFR
LEN

DRIVR

SPC 1

NOP

NOP

NOP

NOP

SPC 1

NOP

JSB SLIBR
NOP

JSB .ENTP
DEF CODE

SPC 1

ENTRY POINT FOR THIS ROUTINE

LEVEL 1 SUBROUTINE

ENTRY

TURN OFF INTERRUPTS & MEM PROTECT

PICK UP PARAMETERS
AND PUT THEM HERE

* %

RRBRABRARRBRRBRRARRRRERRFRRRRRRRARRFRARBRRRRRRABRRRRRRRERRBRRARRRRERRRERAR

1/0 Transfer Preparation
RRRRBRRRBRRRRRARRRRERRARRRRARRARRFRRRRRRRARARARRARARRAARRRRRARRARBIRRRRRRN

SPC 1

LDA LEN,I
SZ2A,RSS
JMP EXIT

GET LENGTH OF BUFFER
ZERD LENGTH TRANSFER?
YES, DON’T DO ANYTHING

56

* %

OPERATING SYSTEMS

Computer

Museum

L2 22

#++ The following JSB alters the code for RTE-L & -XL compatability

L 22

FIXIT JSB LXLFX SET UP DRIVR FOR L OR XL SYSTEM
SPC 1
CLB
STB ERR START W/ NO ERRORS
JSB GLBST SET UP GLOBAL REG
LDA CODE,1I DETERMINE DIRECTION OF TRANSFER
CPA B1 READ?
JMP READ YES, READ DATA
CPA B2 WRITE?
JMP WRITEI YES, WRITE DATA
LDA DS6 NO,ERR=56 (BAD PARAMETER)
STA ERR STORE ERROR CODE
JMP QUIT RETURN
READ LDA RELRG GET RELOCATION REGISTER
10R RCTWD PUT REL REG IN DMA CONTROL
STA #+2 STORE DMA CONTROL FOR QUAD
JSB QUAD BUILD READ QUAD (RETURN #+5)
NOP DMA CONTROL WORD
DEF RASIC ASIC CONTROL WORD
DEF BUFR BUFFER ADDRESS
DEF LEN,I BUFFER LENGTH
LDA DMAAD GET DMA POINTER
STA RDUE STORE AS RESIDUE POINTER
JMP SDMA START DMA
SPC 2
WRITE LDA RELRG GET RELOCATION REGISTER
C I0OR WCTWD PUT REL REG IN DMA CONTROL
STA #+2 STORE CONTROL FOR QUAD
JSB QUAD BUILD WRITE QUAD (RETURN #+5)
NOP DMA CONTROL WORD
DEF WASIC ASIC CONTROL WORD
DEF BUFR BUFFER ADDRESS
DEF LEN,]I BUFFER LENGTH
LDA DMAAD GET DMA POINTER
STA RDUE STORE AS RESIDUE POINTER
SPC 2 .
SDMA LDA RELRG GET RELOCATION REGISTER
10R CRWD PUT IN CRLF DMA CONTROL WCRD
STA #+2 STORE IT
JSB QUAD BUILD CRLF QUAD
NOP CRLF DMA CONTROL WORD
DEF WASIC ASIC WRITE CONTROL WORD
DEF CRLFA CARRIDGE RETURN / LINE FEED
DEF DN2 TWO BYTE OQUTPUT
SPC 1
FHBRBRBBRRRRRRRBRRRRBRRBRRBRRRRRRRRRR BB RRBRRRR R RBRRBRRRRRRS
L34 1/0 Execution Section s
FRERBRRRRBRRRRRBBRRRRRRRR R BB RRBRRRRRRRRRRRRRRRRRRRRRRRRRRRRRBRBRRRRS
SPC 1
cLC 21B,C SUSPEND AND
CLC 23B,C TERMINATE DMA

57

OPERATING SYSTEMS

LA 2]
AL This is where any communicatior protocol required must be satisfied
e before continuing. In this example, no handshaking is used so as to

ren not restrict the devices on which this driver may be demonstrated.
** e

LDB QuaDA GET QUAD STARTING ADDRESS
0TB 20B PUT IN 1/0 CARD REG
STC 20B,C START DMA

* %R

an For a conventional driver, an interrupt would signal DMA completion.

L3 For simplity in the prototype driver, we will wait for completion.
LE X 4

SFS 20B DMA COMPLETE?
JMP x-1 NG, CHECK AGAIN
SPC 1
CLC 21B,C SUSPEND AND
CLC 23B,C TERMINATE DMA
CLB
0TB 31B CLEAR CARD CONTROL
0TB 21B CLEAR DMA CONTROL
STC 30B,C ENABLE BREAK
JSB .XLB GET RESIDUE
DEF RDUE,I FROM QUAD STORAGE AREA
ADB DN1 SUBTRACT TERMINATION CHARACTER
LDA LEN,I GET ORIGINAL BUFFER LENGTH
SSA NEGATIVE?
JMP SDMA1 YES, MAKE POSITIVE & ADD TQ RDUE
ALS NO, DOUBLE FOR # BYTES
JMP SDMA1+1 ADD TO RESIDUE
SPC 1
SDMA1 CMA,INA MAKE LENGTH POSITIVE
ADA B CALCULATE # OF BYTES IN XFER
STA L STORE IT
LDB LEN,I GET ORIGINAL BUFFER LENGTH
SSB BYTE MODE?
JMP QUIT YES, QUIT
CLE,ERA NO, DIVIDE BY TWO
SEZ AND ROUND
INA UPWARD
STA L STORE IT
SPC 1
I X R YRR R T RS EIR R RS R ER R R R R RS REZERRZ RS RE SR RRRERRR R RS RI R ERRR R R R R RN R X ¥ 3
e System Restoration Section e
[ZXXEERXEE RS EARERRZRERARRAREZERRRRRZARERRARZRRRAARER AR AR RAR AR AR AR AR E R R J
SPC 1
QUIT JSB GLBRT RESET GLOBAL REG
LDA ERR GET ERROR CODE FOR RETURN
LDB L GET LENGTH OF XFER
EXIT JSB s$LIBX END THE ROUTINE
DEF DRIVR
SPC 2

58

OPERATING SYSTEMS

I E X R XX EEE RS RRERRERRESER RS RRESRR RS R RS R222 222 XXX R R R RS RS R AR RS]

#++ The routines that follow are for setting up the system and 1/0 e

#» card for the DMA transfers e
{l{.{.......{.{.{Q{;Q.iQi.iii.!.i...l...{{.{{{.{..0...{.{...{..l......{
SPC 2
GLBST NOP SET UP THE GLOBAL REGISTER
LIB 2B GET CURRENT GLOBAL SETTING
STB GLOBL STORE IT
CLA
SFC 2B GET THE FLAG STATUS
INA
STA GFLG STORE IT
STF 2B DISABLE GLOBAL REG
JSB LUSC GET SELECT CODE
0TA 2B PUT IT IN GLOBAL REG
CLF 2B ENABLE GLOBAL

LX X]

##+ The following JSB is only for RTE-XL set-up

LX X J

JXL1 JSB XL1 RTE-XL SET UP
SPC 1
LDB QUADA GET ADDR FOR QUAD STORAGE
ADB DN1 SUBTRACT 1
STB DMAAD STORE IN DMA POINTER
JMP GLBST, I RETURN
SPC 2
GLBRT NOP RESTORE GLOBAL REGISTER
LDB GLOBL GET ORIGINAL GLOBAL
STF 2B DISABLE GLOBAL
0TB 2B PUT ORIGINAL VALUE IN GLOBAL
LDA GFLG GET GLOBAL FLAG
SLA,RSS ENABLED?
CLF 2B YES, RE-ENABLE

LEX X)

2es The following JSB is only for RTE-XL housekeeping
tas (may be deleted for RTE-L)

LE X)

JXt2 JSB XL2 RTE-XL CLEAN UP
SPC 1
JMP GLBRT,I RETURN
SPC 2

59

OPERATING SYSTEMS

L X X 3

[Ty This routine finds the select code given a logical unit number.
Y By using this routine, the operator is able to redirect the

e I/0 with the LA command.

LE X}

LUSC NOP FIND THE SELECT CODE
LDA CNTWD,I GET CONTROL WORD
AND B77 GET LU »
ADA DN1 SUBTRACT 1
JSB .XLB GET ADDRESS OF
DEF sLUTA LU TABLE
ADB A ADE DISPLACEMENT FOR LU
JSB . XLA GET DVT ADDR
DEF B,I FOR LU
ADA D4 SET FOR IFT ADDR (DVTS)
JSB .XLB GET IFT ADDR
DEF A,I
ADB DS SET FOR IFTe
JSB .XLA GET IFT6
DEF B, I
AND B77 TAKE SELECT CODE ONLY
STA SC STORE IT
JMP LUSC, 1 RETURN (SELECT CODE IS IN A REGISTER)
SPC 2
L X X 3
“an The next two routines are modified versions of routines from

tas I1D.00. They build contiguous quads for self-configured DMA into
he either system common or a user area depending on how the DMAAD

ten pointer is set up.
LE X J
QUAD NOP BUILD DMA GQUADS
LDA DMAAD GET DMA POINTER
INA INCREMENT POINTER
LDB QUAD,I GET DMA CONTROL WORD
JSB .XSB STORE IT
DEF A,I
JSB NEXT ASIC CONTROL WORD
JSB NEXT BUFFER ADDRESS
JSB NEXT BUFFER LENGTH
ISZ QUAD FIX RETURN ADDRESS
STA DMAAD FIX DMA POINTER
SSB CHARACTERS?
JMP QUAD, I YES, QUAD COMPLETE
BLS NO, SAVE
CMB, INB BUFFER LENGTH
JSB .XSB_ IN CHARACTERS
DEF A,l
JMP QUAD, I RETURN
SPC 2
NEXT NOP SET UP A WORD IN THE QUAD
INA INCREMENT ADDR POINTER
I1SZ QUAD INCREMENT POINTER TO QUAD WORD
LDB QUAD GET ADDR OF PTINTER TO NEXT WORD
LDB B,I GET POINTER TO NEXT WQORD
RBL,CLE,SLB,ERB INDIRECT ADDR?
JMP #-2 YES, INTERPRET AS INDIRECT POINTER
LDB B,I NO, GET QUAD WORD
JSB .XSB STORE IN QUAD
DEF A,l
JMP NEXT, ! RETURN
SPC 2

60

OPERATING SYSTEMS

L X]
san This routine adjusts the machine code for RTE-L or -XL execution
2aa (may be omitted if the target system is known and appropriate

ey changes are made by hand to the source code)
* %8

LXLFX NOP FIX DRIVR FOR L OR XL SYSTEM

CLA THIS ROUTINE WILL BE BRANCHED TO ONCE

STA FIXIT CHANGE FIXIT TO A NOP (WAS *JSB LXLFX')

JSB .XLB GET POINTER TO

DEF $SCO XL SYSTEM COMMON (RTE-L DUMMY LIBRARY)

SZB RTE-XL SYSTEM? (RTE-L RETURNS 0)

JMP LXLFX,I YES, NO PROGRAM CHANGES

STA JXLA1 NO, DON’T SET UP FOR RTE-XL

STA JXL2 DON’T HOUSEKEEP FOR RTE-XL

JMP LXLFX,I RETURN

SKP
FHBBBRRBRRRRRRRRRRRRRRRRRRRRBRBRRRRRRRRRRRRRRRRRBRRRRRRRRRRRRRRRRRRRRRS
e The following group of routines takes care of setting up e
#+ for an RTE-XL system. This consists of setting the proper e
#+ relocation register to the starting page of the user partition, =
#»+ saving a portion of system common, setting up the quads to be L2
#»+ placed into system common, and restoring the used portion of L 2]
#»+ system common at the end of the routine. None of this is s
#»+ npecessary in RTE-L. LR
BB RRBRRBRBRRBRRRBRBRRBRRRRBRRRRRRBRRRRRRRRRRRRRRRRRRRRBRRRRBRRRBRRS

SPC 2
XL1 NOP RTE-XL SET UP

JSB .XLA GET POINTER TO

DEF $SCO SYSTEM COMMON

ADA B1 ADD 1 FOR BEGINNING PAGE #

LSL 10 CHANGE PAGE # TO PHYSICAL ADDR

STA QUADA STORE ADDRESS

LDB SCHA GET ADDR OF HOLD AREA

JSB .LDX LOAD COUNTER IN X REG

DEF D8 (COUNTER = 8)

JSB .MWF SAVE SYCOM AREA TO BE OVERLAID

JSB SETR SET UP RELOCATION REGISTER

JMP XL1,1 RETURN

SPC 2
XL2 NOP RTE-XL HOUSEKEEPING

LDA SCHA ADDR OF SYSCOM HOLD AREA

LDB QUADA ADDR OF SYSCOM OVERLAID

JSB .LDX LOAD COUNTER IN X REG

DEF D8 (COUNTER=8)

JSB .MUWI RESTORE CONTENTS OF SYSCOM

JMP XL2,I RETURN

SPC 2
SETR NOP SET RELOCATION REGISTER

JSB .XLA GET IDSEG ADDR

DEF $SC OF CURRENT PROGRAM

ADA D25 INCREMENT TO 26TH WORD

JSB .XLA GET CONTENTS OF

DEF A,lI 26TH WORD OF IDSEG

AND B377 GET PARTITION »

ADA DN1 SUBTRACT 1

JSB .XLB FIND LENGTH OF EACH

DEF $MASZ PARTN TABLE ENTRY

MPY B FIND DISPLACEMENT TO PRGM PARTN

JSB .XLB GET ADDR OF

DEF $MATA PARTITION TABLE

ADA B ADD PRGM DISPLACEMENT

61

OPERATING SYSTEMS

* 8

ADA
JSB
DEF
JSB
DEF
ADA
ADA
JSB
DEF
STA
JMP
sPC

SPC
EQU
EQU
ocT
ocT
ocT
ocT
DEC
DEC
DEC
DEC
DeC
DEC
DEC
DEC

B2
.XLB
A,l
.XLA
$BASE
DN1S
sC
.XSB
A,l
RELRG
SETR,I
2

2

0

1

1

2
77
377
-15
-2
-1
4

5

8
25
56

INCREMENT TO PARTN PAGE # ENTRY
GET PARTN STARTING

PAGE #

GET ADDR OF

RELOCATIDN REGS

SUBTRACT 15 FOR ADDING SELECT CODDE
ADD SELECT CODE

STORE PARTN PAGE # INTO

RELOCATION REGISTER

STORE REL REG #

RETURN
LA A2 Z R R Z AR Z SRR R A AR R R R AR SR RS R R AR R R RS R SR RS R RS RS RS RS R R R X
Symbol Definitions e
AFRRRBABRBRABRERRBRRRARRRRRRRRRRRRRRBRRRRRRSRRBRRRRRBRRRRRAERRRRRRRRRRARE
A REGISTER
B REGISTER
<CR><LF>

CRLF
CRLFA
CRWD
DMAAD
ERR
GFLG
GLOBL

QUADA
QUADS
RASIC
RCTWD
RDUE

RELRG

SCHA
WASIC
WCTWD

ocT
DEF
ocT
NOP
NoP
NOP
NOP
NOP
DEF
BSS
ocT
ocT
NOP
NOP
NOP
DEF
ocT
ocT
SPC
END

6412
CRLF
65400

QUADS

46000
175200

QUADS
1000
175400
2
DRIVR

ADDRESS 0OF CRLF

CRLF DMA CONTROL WORD

DMA QUAD POINTER

ERROR CODE

GLOBAL FLAG

GLOBAL HOLD AREA

LENGTH HOLD AREA

ADDRESS DOF QUADS

QUAD STORAGE AREA FOR RTE-L
READ ASIC CONTROL WORD

READ DMA CONTROL WORD
RESIDUE ADDRESS

RELOCATIDON REGISTER #
SELECT CODE

ADDRESS OF SYSCOM HOLD AREA
WRITE ASIC CONTROL WORD
WRITE DMA CONTROL WORD

62

OPERATING SYSTEMS

DUMMY LIBRARY FOR RTE-L

ASMB,L,Q,R

HgD Dummy Library to Satisfy RTE-XL externals on an RTE-L Sysatem

SPC 1
[Z 2 X2 ZZZZZZZXZZZZZERZEEZZZEEZRRZZZZZZZZZZZZAAZZE ISR R ARSI A AR S Z R & X X 1
e RTE-L Dummy Library 12
* % * %
e This is a dummy library to satisfy the externals used in the s
e subroutine DRIVR unique to RTE-XL. This library must be e
e searched when loading DRIVR for execution on an RTE-L system 127
e (i.e. SEA,X..XLB) unless the external references are removed e
. from the DRIVR source code. L
[ZZ XS ZZEXZZZZZZZESSZRZZZE RS RZZESZLZ RIS T EZZZR S RIS S ZZZZ ARSI S Z A X 2 & X 4

SPC 1

ggg ..XLB,7 Dummy library to satisfy XL externals

1

ENT $BASE,$MASZ,$MATA,$SCO

SPC 1
$BASE NOP POINTER TO THE RELDCATION REGISTERS
$MASZ NOP SIZE OF ENTRY IN THE PARTITION TABLE
sMATA NOP ADDRESS OF THE PARTITION TABLE
$SCO0 NOP PAGE # PRECEDING SYSTEM COMMON

SPC 1

END

63

OPERATIONS MANAGEMENT

TRICKS WITH EDIT/1000

by Michael Wiesenberg/HP Data Systems Division
EDIT/1000 is as powerful as almost any word processor on the market (particularly when regular expressions are used), but
many people do not use all its capabilities because the manual does not present as many examples as it might. Perhaps this is

not a fault in the documentation, because there are so many things you can do, that no one manual could cover them all. Here
are some tricks you can do with EDIT/1000.

COLUMN EXCHANGES

Here's how to exchange any number of columns in any order, with a one-line command.

For example, you want to exchange columns 1 and 3 in the following (a “rule line” is also displayed, so that you can readily see
where the columns begin and end; use the HL command to get a rule line). Here's what you start with:

1111 11 111 1111 222222222222222222 333333

1 2 2 333 333333
11 1 11 22222222 2 2 2 3

11 1 11 22222222 2 2 2 3
1M1111111111111 222222222222

11111 2222 22222 22 333333333
1111111119 222 33 33
111111 2 2 2 2 22 33 3333
1111111111 22222222 3333 333

llll/llll1Illl/llll2llll/lll13llll/llll4llll/llll5llll/llll6llll/llll7l

Here's what you want to end with:

333333 222222222222222222 1111 11 111 1111

333 333333 2 2 1

3 22222222 2 2 2 11 1 11

3 22222222 2 2 2 11 1 11
222222222222 11111111111 111

333333333 2222 22222 22 11111

33 33 222 111111111

33 3333 2 2 2 2 22 111111

3333 333 22222222 1111111111

First, pad the last column with spaces such that the spacing extends beyond the longest itern in that column. Put in as much
spacing as you want that column to have when it is moved. If you want the spacing to line up the same as before making the
switch, extend the column as far as the spacing of the first.

The first field begins at 1 and ends at 23; the second at 24 and 42; and the third begins at 43, with its widest element ending at
52. To switch fields 1 and 3 such that 3 occupies the same space as 1, first make 3 as wide as 1 with the U command:

sewc 65
1$usz7 7/
sewcC

64

OPERATIONS MANAGEMENT

(If you use the SE WC command without specifying parameters, the action is to revert to the default condition. That is, SEWC is
the same as SEWC 1 150.) The first field is 23 “ticks” wide. To make the third the same, it had to be extended to tick 65. What the
U command does is make an untonditional exchange. Anything at tick 65 is exchanged for a space. If the end of the line is
shorter than that, the intervening area is padded with spaces. (To verify that EDIT does this, first list, in line mode, the file, with
DISPLAY FUNCTIONS on. Notice that the carriage returns all come at the end of a line, or one space after. (EDIT fills an
odd-numbered byte at the end of a line with a space.) Turn DISPLAY FUNCTIONS off, issue the three commands, and again list
the lines with DISPLAY FUNCTIONS on. Notice that the carriage returns are all neatly lined up.)

Now use the “.” to represent any character, and "<n>" to repeat the specification. That is, *.<23>" means any 23 consecutive
characters. Tag the three fields to be recalled. “{.<23>}" means a field consisting of any 23 characters. The braces (“{}")
mean that we will recall this field later. And this command, “1$x/{. <23>}{. <19>}{.<23>}/83&2&1//"", means, in each line let's
label the first 23 characters Field 1, the next 19 Field 2, and the following 23 Field 3. Let’s bring them back again in this order:
first Field 3, then Field 2 then Field 1.

Here's the entire move in a one-line command:

serelsewcBSi1su// //1sewcl18x/{.€23>}{.<C19>}{.<23>}/&34241//

Let's say you want the third field to be only as wide as it is in the original, with, perhaps, two extra spaces so the columns don't
run together. The command looks like this:

sereonlisewcS54118u// //1sewcl18x/{.€<23>}{.<19>}{.<12>}/4384241//
You could add a space between the second and third fields, if you wish, this way:
sereonlsewcS54118u// //1sewcl1$x/{.<€23>3{.<19D>}I{.€12>)r/8&34241//

Don't repeat the “SEREON” command each time. Just “turn on” regular expressions once, and leave them on for that editing
session. (If you don’'t know the state of regular expressions, type “SHRE.”) The "SERE” command has no default; it toggles
back and forth between on and off. If you don’t know the “state” of regular expressions (whether turned on or off), and you want
to turn them on without the bother of issuing the “SHRE” command (and you want to make sure that you don't accidentalily turn
them off), use “SEREON.” If you know they are not turned on, you can use the short form, “SHRE.”

This sort of procedure can be extended to more columns (or done with two). Just remember to pad the last column with spaces.
If the last column is not moved, you can omit this padding

MIXING COMMANDS

You could make exchanges like the preceding on noncontiguous lines. If the lines come at regular intervals, you do it one way; if
the lines to be exchanged share a certain common characteristic, they don't even have to be regularly spaced.

65

OPERATIONS MANAGEMENT

For example, you wish to make an exchange on every third fine. The original could look like this:

1M111111111111111111111

11 1111111111111

22222 2222222222222
11 1111111111 11
111 11111111 111

11
33

11

11

2222222222222222222
222222 222
3333333333333333 33
2222 22222222222222
222 222222222222222

3333333333333333333333

3333333333333333
1T 111111111111 A
3333333333333333
3333333 3333333

22 2222222222222222 33 333333 33 333333 33 11 1111 111111 1111 11
11 11111 1111 11111 11 22 2222222222222222 33 33333 3333 33333 33
11 111111 11 111111 11 22 2222222222222222 33 3333 333333 3333 33
22 22222222 22 33 333 33333333 333 33 11 1111111 1111111 11
11 1111111111111111 11 22 222222222222 222 33 33 3333333333 33 33
11 1111111111111111 11 222 2222222222 2222 33 3 333333333333 3 33
2222 22222 33 33333333333333 33 11 1111111111111111 11

119191111111911191111111

2222222222222222222

3333333333333333333333

r 222 28222 22 22 r 222 2222 2222 rr 22 r 222 r 2 22 222722 2222 r 222 2222 r2 1 r
/ 1 / 2 / 3 / 4 / S / 6 / 7

You want to move all the 1s into the first column, the 2s into the second, and the 3s into the third. Notice that only every third line
is out of place. First turn on regular expressions (SEREON). Mark the first and last lines (control-K and type a letter after the
colon that appears near the right margin of the screen). Next, add two spaces to the end of every line. Then, use the repeat

command (an underscore followed by a number as the last element of the command).

sereon

ta:bg/{@}$/81 //
+31g/{.€¢2132}{.€29>}{.<c29>}/438182//1_3

Voila!

If the affected

1111111111111111111111

11
11 1
11
11
11
11

1M111111111111

111111111111 1
111111111111 1
111 11111111 111
1111 111111 1111
11111 1111 11111
111111 11 111111
111111 1111111
1111111111111
IRRRRRERRRRRRRRE
1111111111111

11
11
1
11
11
11

ARRRRRRRRRRRRRRRRRRRER

2222222222222222222
222222 222
22222 2222222222222
2222 22222222222222
222 222222222222222
22 2222222222222222
22 2222222222222222
22 2222222222222222
22 22222222 22
22 222222222222 222
222 2222222222 2222
2222 22222
2222222222222222222

3333333333333333333333

33 3333333333333333
3333333333333333
3333333333333333
3333333 3333333
333333 33 333333
33333 3333 33333
3333 333333 3333
333 33333333 333
33 3333333333 33
3 333333333333 3

33 33333333333333

33

3333333333333333333333

lines are not evenly spaced, you use a different approach. This is what you have:

2222222222222222222 3333333333333333333333 1111111111111111111111
1M1 1111111111111 11 222222 222 33 3333333333333333 33
22222 2222222222222 33 3333333333333333 33 11 1 111111111111 1 11
11 11 1111111111 11 11 2222 22222222222222 33 3333333333333333 33
11 111 11141111 111 11 222 222222222222222 33 3333333 3333333 33
22 2222222222222222 33 333333 33 333333 33 11 1111 111111 1111 11
22 2222222222222222 33 33333 3333 33333 33 11 11111 1111 11111 11
11 111111 11 111111 11 22 2222222222222222 33 3333 333333 3333 33
11 1111111 1111111 11 22 22222222 22 33 333 33333333 333 33
22 222222222222 222 33 33 3333333333 33 33 11 1111111111111111 11
11 1111111111111111 11 222 2222222222 2222 33 3 333333333333 3 33
11 1111111111111 11 2222 22222 33 33333333333333 33
2222222222222222222 3333333333333333333333 1111111111111111111111

66

OPERATIONS MANAGEMENT

Issue this set of commands:

ta:bg/{@}$/81 //
ra-1
f/22/8x/{.€21>}{.<€24>}{.<24>)r/438182//1_5

CREATING A COMMAND FILE

A command file provides a convenient way of executing several edit commands, such as executing one or more commands
upon several files. You can let EDIT open each file, execute the commands, and then write the file back to disk, without having
to oversee the operation. You can even use EDIT's capabilities to generate the contents of the command file.

For example, to produce the list of files, use the RU command. Suppose you were writing a language manual. The names of all
the files of the manual would probably be related in some way. Say you were writing a FORTRAN manual. You might have
named all the files FTN.x, where x is a number for a chapter or a letter for an appendix. Suppose you had used the term
“FORTRAN 77" everywhere, and the marketing department decided to issue the language under the name FORTRAN/S000.
Within each file in the manual set, you wish to execute this command:

1$g/FORTRAN 77/FORTRAN\/9000//

(Notice that the slash that is part of the name “"FORTRAN/9000" must be preceded by the escape character (“\") so that EDIT
does not interpret it as the terminator for the field to be exchanged. That is, if you used this command:

1$g/FORTRAN 77/FORTRAN/9000//

You would get this response:

18g/FORTRAN 77/FDORTRAN/9000//
/1$g9/FORTRAN 77/FORTRAN/9000//
2 a

/

EDIT questions the slash because it thinks the slash is part of the command. You must use the escape character — that back
slash — to tell EDIT that you mean to use the slash literally.)

You could call up each file individually, issue the command, write the file back to the disc, and call up the next file. But why not
let the computer do all the work? Get a list of appropriate files by running FMGR, and then using the DL command:

/RU,FMGR
:DL,FTN.--::AA

(Specify the cartridge or you may get a longer list than you want.)

67

OPERATIONS MANAGEMENT

That produces something like this on your screen:

CR= AA
ILAB=FTNMNL NXTR= 00169 NXSEC=118 #SEC/TR=128 LAST TR=00227 #DR TR=0

NAME TYPE SIZE/LU OPEN TO

FTN.1 00004 00024 BLKS

FTN.1 00004 00024 BLKS +001
FTN.1 00004 00024 BLKS +002
FTN.2 00004 00024 BLKS

FTN.2 00004 00024 BLKS +001
FTN.2 00004 00024 BLKS +002
FTN.2 00004 00024 BLKS +003
FTN.2 00004 00024 BLKS +004
FTN.2 00004 00024 BLKS +005
FTN.2 00004 00024 BLKS +006
FTN.2 00004 00024 BLKS +007
FTN.2 00004 00024 BLKS +008
FTN.2 00004 00024 BLKS +009
FTN.2 00004 00024 BLKS +010
FTN.2 00004 00024 BLKS +011
FTN.2 00004 00024 BLKS +012
FTN.3 00004 00024 BLKS

FTN.3 00004 00024 BLKS +001
FTN.3 00004 00024 BLKS +002
FTN.3 00004 00024 BLKS +003
FTN.3 00004 00024 BLKS +004
FTN.3 00004 00024 BLKS +005
FTN.3 00004 00024 BLKS +006

3

FTN. 00004 00024 BLKS +007

+EX
Resume EDI.B on CMDFIL:Q:Q:4

Use the DELETE LINE key to remove all lines from your screen that are not part of the list of files (including the heading lines).
Use the SC (copy screen) command to copy the contents of the screen into your file. Eliminate all the extents, as shown in the
EDIT/1000 User's Guide ("Create Procedure Files from Disc Directory Listing”), using the command this way:

D/\+[0-9]1+ +$/AVQ/

You should now have a list of lines, each of which begins with the characters “FTN." followed by one or more characters, and
then a number of spaces and numbers in which you will have no interest. In fact, the only part of each line with which you are
concerned is that “FTN.” plus one more character. Now issue this command:

189/~ «{[*» 1+}08/F1,81::AA118g\/FORTRAN 77\/FORTRANN\\/9000\/\/lwr//

Notice the extra escape (“\"'} characters. Notice also that you need not precede the vertical bars by escape characters, even
though the vertical bar is a special character for EDIT/1000 (command separator). EDIT is “smart” enough to “know" that a
vertical bar in the replace field is meant in its literal sense rather than in its special sense as the command separator. (The same
applies to the dollar sign, which would otherwise be interpreted as the special character signifying "linked to the end of the
line.”) The final two slashes actually terminate this command; the two slashes preceded by backslashes (" \/\/") will become

the terminating slashes in the exchange to be made on each file. Execute the command, and the previous contents of the file
now become:

68

OPERATIONS MANAGEMENT

FI,FTN.1::AA11$g/FORTRAN
FI,FTN.2::AAl11$g/FORTRAN
FI,FTN.3::AAl1$g/FORTRAN
FI,FTN.4::AAl1$g/FORTRAN

77/FORTRAN\/9000//twr
77/FORTRAN\/9000//lwr
77/FORTRAN\/9000//twr
77/FORTRANN/9000//lwr

Computer

Museum

FI,FTN.S::AAL1$g/FORTRAN 77/FORTRAN\/9000//1wr

FI,FTN.6::AA11$g9/FORTRAN 77/FORTRAN\/9000//twr
FI,FTN.7::AA11$g/FORTRAN 77/FORTRAN\/9000//1wr
FI,FTN.8::AAl11$g/FORTRAN 77/FORTRAN\/3000//1wr
FI,FTN.9::AA11$g/FORTRAN 77/FORTRAN\/9000//1wr
F1,FTN.A::AAL118g/FORTRAN 77/FORTRAN\/9000//1wr

FI,FTN.B::AAl1$g/FORTRAN 77/FORTRAN\/9000//1wr
FI,FTN.C::AA11$g/FORTRAN 77/FORTRAN\/9000//1wr
FI,FTN.D::AA11$g/FORTRAN 77/FORTRAN\/9000//1wr
FI,FTN.E::AAl11$g/FORTRAN 77/FORTRAN\/9000//1wr
F1,FTN.F::AA118g/FORTRAN 77/FORTRAN\/9000//1wr
FI,FTN.G::AA11$g/FORTRAN 77/FORTRAN\/9000//1wr
FI,FTN.H::AAl11$g/FORTRAN 77/FORTRAN\/9000//1wr

Now use this file as a command file. First write the command file back to the disc, then transfer to it:

wrltr,cemdfil,q/

Use the “q” option to speed things up. The "q" means “don’t tell me what you're doing,” so that commands and actions are not
echoed to your display. Without the “g”, you would see this on your display:

EOF

writr,cmdfil/

posted file CMDFIL::Q:4
EOF

/tr,cmdfil/

opened file CMDFIL::Q:4

/F1,FTN.1::AA118g/FORTRAN\/9000/FORTRAN 77//twr
closed file CMDFIL::Q:4
opened file FTN.1::AA: 4
490 lines read.

.chapter Introduction to FORTRAN 77
/1$g9/FORTRAN\/9000/FORTRAN 77//

the FORTRAN 77 compiler.
/wr
posted file FTN.1::AA: 4

the FORTRAN 77 compiler.
/F1,FTN.2::AA11$g/FORTRAN\/9000/FORTRAN 77//1wr
closed file FTN.1::AA: 4
opened file FTN.2::AA:4
1888 lines read.
1888 lines read.

.chapter Language Elements
/1$g/FORTRAN\/9000/FORTRAN 77//

a FORTRAN 77 extension to the ANSI 77 standard.
/wr
posted file FTN.2::AA: 4

a FORTRAN 77 extension to the ANSI 77 standard.
/File already closed cmdfil::Q:4

a FORTRAN 77 extension to the ANSI 77 standard.

69

OPERATIONS MANAGEMENT

The “qg" suppresses this display. On the other hand, if you want to monitor the commands as they are executed, do not specify
the “q" option.

The final slash suppresses “asking.” That is, without it, EDIT asks “OK?”

Also, make sure that everything will work as you want. If you make any mistakes, such as forgetting to specify a security code,
or issuing a command that confuses EDIT, EDIT returns to interactive mode.

CHANGING LOWER CASE TO INITIAL CAPITALS

You are a technical writer. An engineer has given you input in the form of a file he created with EDIT/1000. Ali of the figures in his
text look like this:

Figure 1-1 The timing modifications generator
Figure 1-2 Line noise signal monitor program block diagram etc.

You want them to look like this:

Figure 1-1. The Timing Modifications Generator.
Figure 1-2. Line Noise Signal Monitor Program Block Diagram.

First set regular expressions on and case folding on:
sereonjsecfon

Then, do it in essentially two steps. First find an instance of the line you want to change, like this:
f/Figure 1-/

Then capitalize the first letter of every word in that line:
g/{la-z)}r{la-z]1+}/>182//

Specify doing this for some number greater than the number of occurrences in which you want to make the change; the first
time EDIT/1000 doesn't find the string “Figure 1-", it returns to interactive mode. The whole thing then looks this:

f/Figure 1-/1g/{la-z]1}{la-2]+}/>142//1_100
That produces the following:

Figure 1-1 The Timing Modifications Generator
Figure 1-2 Line Noise Signal Monitor Program Block Diagram

Now you just need to add two periods and one extra space. First issue the command to remove trailing spaces. (EDIT/1000
pads lines with odd numbers of bytes with an extra space.) The whole command looks like this:

bki1$x/{Figure 1-[0-9)+}{/®}/81. &2.//

70

OPERATIONS MANAGEMENT

Voila! Well almost. Notice that you specified “x” in the last exchange instead of “g.” That was so you could actually see what all
of those lines look like. Since you capitalized, earlier, every word in them, you probably ended up with some instances of “of,”

“and,” “to," etc., capitalized If you don't see any such in the list you just generated (with that “x”; remember that the “g
command suppresses the listing of exchanges), then it really was “voila!” Otherwise, set case folding off (“SECFOFF"), and
issue this command:

1$x/{Figure 1-\0}:{0)>{f}:/41¢243//
The two colons ensure that the 0" of “of” comes at the beginning of a word and the "f" at the end, so that words like “Often”
don't get affected. If there are any lings that have more than one “of” in them, you have to issue the command again, because
the \\@ covers all characters up to the last occurrence in the line of the following specified string. If you saw that at most there
were two “of’s in any affected line, you could issue the command this way:

1¢x/{Figure 1-\@}:{0r{f}:/41<243//1_1
Yes, “1" and not “2”. EDIT/1000 was written by a programmer; to a programmer, O is the first number, and 1 the second. Now
you have to take care of the occurrences of “to”. You needn't retype the command. Just enter two slashes (*'//”) to display the
last command on the EDIT/1000 command stack. This is what you see:

---Commands-~-
1$x/{Figure 1-\8}:{0}{f}:/81{243//

Move the cursor to the “O” and type in “T", move to the “f” and type in “0", and this is what you have:
1¢x/{Figure 1-\0}:{T}{o}:/41¢243//
Press RETURN, and that command is executed.

Enter two slashes again, change the “T" to “A”, the “0” to “n”, use the INSERT CHAR key to add a “d", and this is what you
have:

1$x/{Figure 1-\@}:{[A1}{nd}:/&<243//
Press RETURN, and the new command is executed.

Keep it up until you've fixed all the words you didn't want capitalized. Yes, it takes a little while and a few commands, but it sure
beats going in and hand modifying all those lines.

You can fix all occurrences of “Of,” “On,” and “To"” in one operation, instead of three, by issuing this command:
1¢x/{Figure 1-\0}:{ITO1}>{(ofnl)}:/&1¢243//

That would also change “Tn,” “Tf,” and “00,” but you're not likely to have any of those.

71

OPERATIONS MANAGEMENT

COUNTING THE WORDS IN A FILE

You can't just search for all of an inclusive group; the “f” command finds only the first occurrence on each line. You can however
make a replacement throughout the file that doesn’t change the file; such a replacement counts all exchanges:

sere(1$x/{(a-20-91+}/81/q/

(The "q” means “make the exchanges but don’t show them to me.") The group to be replaced must be inclusive enough that it
doesn't count certain single words as two or more each. For example, because we are considering only groups of one or more
letters or numbers or both (but no other characters), 18 replacements would be counted in the following:

My father-in-law, Mr. Smith’s, company, A-1 Charters, was rated
*No. 1," wasn’t it?

There are not 18 words in the sentence. You could improve with this command, which, in fact, finds 13:
1$x/{la-20-9-.,2;"1+}/81/q/

But what if some of the words include colons, angle brackets, braces, asterisks, etc.? Better would be, first, to insert at least one
space at the end of every line, and then replace everything except spaces:

1¢g/7{@)8/81 //
18x/{[~ 1+}/8&1/q/

(If you don't first insert spaces at the ends of lines, you won't "find" words at the ends of lines, because not every line ends in a

space.) That results in 13 exchanges, which is fine if you want to consider "father-in-law" as one word. If you're getting paid by
the word for an article, however, you want it to be three words, so use the following:

1¢x/{[~- 1+}/81/q/

That gives 16, so be prepared to argue with the magazine about whether “A-1" is one or two words!

72

OPERATIONS MANAGEMENT

Computer
Museum

MANUFACTURING PRODUCTIVITY AUTOMATION AT BENDIX

by Michael J. MilleriManager, Data Processing
The Bendix Corporation, Hydraulics Division
St. Joseph Michigan

INTRODUCTION

This article describes the use of a Hewlett-Packard HP 1000 system to monitor production at the Hydraulics Division of the
Bendix Corporation located in St. Joseph, Michigan. This division is a major supplier of wheel cylinders, master cylinders, disc
brake caliper and housing assemblies and power brake booster units for the passenger car and light truck industries. Foundry
and manufacturing operations are performed at this facility. The application described herein, however, is relevant only to the
machining and assembly operations performed in the manufacturing segment of the business.

HISTORY

Use of a computer-based system to monitor production began here in 1973 when a system was installed to monitor a new disc
brake machining line. Data collection hardware and software were designed and developed by the supplier of the machining
equipment — BUHR Machine Tool Company, then a subsidiary of the Bendix Corporation. From the original four machines, the
system was quickly expanded to include the entire disc brake machining department — approximately 30 machines.

By today’s standards, the hardware was archaic — a 4-microsecond processor, disc drives with a 500 millisecond average
access time, a typewriter-like console, and a card read/punch for loading programs and data. Recompiling and reloading
programs was clumsy; reconfiguration of the operating system usually took an entire weekend. There was no power fail
recovery system, resulting in frequent calls to data processing personnel at all hours of the day and night for assistance in

performing restarts. The serviceability of the custom built data collection and video display subsystems was of constant
concerm.

In spite of its shortcomings, the system quickly gained favor with the manufacturing managers in the machining area. Video
monitors displayed the status of all machines in the area; it was no longer necessary to have the office find out which machines
were down or how long they had been down. A quick glance at the monitor would tell a foreman whether or not his attention was
needed somewhere. The tool management system was quickly adopted by machine setup men as an easy way to keep tools
changed without any manual record keeping. At the same time, the foreman and superintendent in the department were getting
reports, monitoring the status of tools. The system became a source of information that manufacturing people depended upon
to make their jobs easier, and to keep their machines producing parts.

In 1976, a decision was made to replace the computer, data collection system and video display system with more up-to-date
hardware, one which could be more easily expanded, more easily programmed and more readily serviced. Several systems
were evaluated, and the HP 1000 system with an RTE operating system was eventually selected for the following reasons:
1. The RTE operating system was very similar to the existing system, making software conversion fairly simple.

2. HP offered a data collection system which could easily be interfaced with the computer.

3. HP has a sound reputation for product quality and support. Based on the existing lease and maintenance costs, the cost of
purchasing the equipment would be recovered in less than two years.

The conversion to the HP system was an easy one. The basic design of the application software was not changed. The major
task involved rewriting the data collection module from Assembler to FORTRAN IV. The entire conversion required less than two
months, and actual out-of-service time was less than one week.

73

OPERATIONS MANAGEMENT

In 1978, the system was expanded from 30 monitored machines to 200. This expansion included all of the machining and
assembly lines for the four major product lines. Operator entry stations were installed at each machine and features were
provided to assign operators to machines, report production by part number, process dispatch service requests, etc.

Today, the system is in a relatively static state. Occasionally a change is made to accommodate a new machine or to
disconnect an obsolete one. New reports are added from time to time as needed, but the system is often just casually
monitoring machines, updating monitors, responding to requests for reports, printing end-of-shift production summary reports
and sending service requests to the dispatch pager.

FEATURES
Four major functions are provided by the system:

1. Production status reporting
2. Production history reporting
3. Tool management
4

Service paging

The "production status reporting” function provides status information for machines on CRT monitors located at supervisors’
work stations in each department. Each monitor displays only the status of stations in the immediate department. Information is
updated at 90-second intervals. The information being displayed for each machine includes “idle time”, current “downtime
reason’, "current-shift production” from a cycle relay and from a part-present sensor (if instalied), and “current-shift runtime”.
This function is supported by continuous monitoring of cycle relay contacts, part-present sensors, and operator stations located
at each machine.

The “production history reporting” function provides printed production and downtime summary reports for previously
completed shifts. Reports are printed on keyboard/printer terminals located at the supervisors’ work stations at the end of each
shift and as requested from these terminals at other times. Production statistics are retained by the system for monthly
transmission to a large host system.

The “tool management” function provides manufacturing personnel with a mechanism for replacing cutting tools at regular
predetermined usage intervals. The system provides tool status reports as requested on keyboard/printer terminals and
automatically generates “overdue tool change" reports at regular intervals. The keyboard/printer terminals are also used to
enter tool change transactions as tools are replaced and to change the “standard tool change interval” as necessary.

The “service paging” function permits a machine operator to request assistance from a foreman or stock handler without
interrupting his work cycle. A request for service is initiated by use of a “service request” switch on the operator station located
at each machine. The monitoring system senses the request and forwards an appropriate message to a CRT monitor in the
dispatch center. The message is then broadcast on the PA system.

BENEFITS

Broadly stated, the objective of the system is to reduce controllable manufacturing costs. Specific benefits provided are as
follows:

Reduction in Avoidable Machine Downtime Based on user experience, the production status reporting system

can be expected to reduce operator-related machine downtime by 20 to 30 percent. This is accomplished by providing
supervisory personnel with information needed to quickly react to a downtime-producing situation.

74

OPERATIONS MANAGEMENT

Retooling downtime is a significant contributor to total downtime on multi-station, multi-spindle machines. On machines of this
type, the tool management system can be expected to reduce total retooling time by 30 percent. This is accomplished by
reducing the number of occurrences in which a machine is down to replace broken or worn tools and by permitting setup
personnel to consolidate tool changes.

Stockup downtime results when a machine operator must wait for a stock trucker to deliver material to his machine. The service

paging system reduces downtime due to stockup by permitting the operator to request service without interrupting his work,
before his stock is depleted.

Reduction in Cutting Tool Costs in an uncontrolled environment, cutting tools will be replaced when they break or
become worn to the extent that the machined part is inspected and determined to be out of spec. The tools used in this type of
environment often have little, if any salvage value. The tool management system provides the means to monitor the number of
pieces machined by each tool {or group of tools) on a machine, and to change them before they are permanently damaged.
The system can potentially increase average tool life by 10 percent, providing a 10 percent reduction in tooling costs.

Reduction in Rejected Material Costs Costs of rejected material in a machining environment are affected by a
number of factors including inspection procedures, the type of metal-working operation, the design of the machine, the type of
tools used, and the manner in which tools are replaced. Costs can be especially significant on a high volume line because
many rejects may be produced in a given inspection interval before being detected. In a situation such as this, a tool
management system can conservatively be expected to reduce scrap and rework costs by five percent.

Reduction in Inventory Costs Many companies are today using automated requirements planning systems to order
raw material from their vendors. These systems use production data from manufacturing departments to determine the current
balances of raw material in stock, look at projected manufacturing schedules, and then release orders to vendors for more
material. Systems of this type are nearly a necessity in a sizeable manufacturing operation today due to the importance of
controlling inventory levels. One potential problem with this type of system, however, is that it is very sensitive 10 errors in raw
data. Overstated or understated production figures will quickly be transformed into over-buys and under-buys of specific raw
material items. Those errors often result in premium freight billings, obsolete inventory costs, late shipments, and in lost labor

costs. The production status and history reporting features of this system provide information which has been proven to be
more accurate than when collected by more conventional means.

HARDWARE
The equipment companents supporting the monitoring system are as follows:

Cycle Relays The cycle relay is located in the machine’s electrical control panel. An electrical contact on the relay
changes from “Open” to "Closed” status whenever the machine cycles.

Part-Present Sensors Part-present sensors are devices which detect the presence of parts. The sensors contain a
relay contact which changes from Open to Closed status when a part passes in front of the sensing device.

Operator Entry Stations These entry stations, located at machines, are used by operators to enter downtime causes
and to request service from foremen and material truckers.

Keyboard/Printer Terminals Keyboard/printer terminals are used by manufacturing personnel to enter data, and

request reports. The system controller, usually connected by a standard RS-232 connector, can automatically print messages
and reports onto the terminal.

Video Driver Subsystem The video driver subsystem converts serial digital data from the system controller into a video

signal needed to drive a standard video monitor. This device is normally connected to the system controller with a standard
RS-232 connector.

75

OPERATIONS MANAGEMENT

Video Monitors Television-like CRT units are placed at strategic locations throughout the shop, normally displaying
current machine status information.

Data Collection Subsystem Operator entry stations, cycle relay and part-present relay contacts are connected to the
data collection subsystem, which, in tumn, is connected to the system controller.

System Controller The system controller is an HP 1000 process control computer equipped with 192k bytes of main
memory and a 15M byte disc drive.

SOFTWARE

Computer functions run under control of an HP RTE real-time operating system. The system was designed to be unattended. It
operates continuously and is shut down only when maintenance is necessary. A computer operator is needed only to
periodically transmit accumulated production data to a host batch processing malnframe. About 30 application programs,
written in FORTRAN by the division's software development group, provide the following functions:

Collecting machine status data from cycle relays, part sensors, and operator entry stations
Updating machine status information on video monitors at regular intervals

Reporting and initializing production statistics at the end of each shift

Maintaining production data for historical production reports

Servicing requests for production and tool status reports

Reporting overdue tool changes on a regular schedule

Changing the part number that a machine is producing

Assigning machine operators to specific machines

Routing foreman and material trucker requests to a dispatch area for paging

76

LANGUAGES

2250 BUFFER MANAGEMENT FROM DOWNLOADED SUBROUTINES

by Diana Bare/HP Roseville Division

ABSTRACT

The HP 2250 Measurement and Control Processor gives the user control over a system of buffers and variables for local data
storage and manipulation. Buffer data is stored and fetched relative to a buffer pointer for each buffer. The 2250's on-board
language, MCL/50, provides several commands for manipulating buffer pointers, but these commands are not accessible to
subroutines downloaded from an HP 1000 host. Also, MCL/50 does not provide commands for determining the current position
of a buffer's pointer, or for other types of buffer status information.

This writing describes how buffers are managed internally by the 2250 firmware, and how HP 1000 Assembly language
subroutines can be written to examine and change 2250 buffer status without using MCL/50. It is assumed that the reader is
familiar with the 2250 and with programming in MCL/50.

INTRODUCTION

The 2250 uses an HP 1000 L-Series computer, which has a 32k word address space. The 2250 firmware resides in ROM in 16k
of those words. The remaining 16k address space is RAM: 1k of base page, and 15k of system table space and user available
memory. Since the 2250 uses an HP 1000 computer, subroutines can be written in HP 1000 Assembler or FORTRAN and
‘downloaded’ to the 2250 to be executed there. Half of the 2250’s base page is reserved for use by downloaded subroutines;
the other half, from 0B to 777B, is used for internal registers (A and B}, interrupt trap cells, stack management, and firmware
base page variables. (If no subroutines are downloaded, the 1000B words of base page reserved for downloaded subroutines
become part of the user available memory.)

Several of the firmware base page variables are used to manage the 2250's buffers and buffer pointers. Buffers are allocated
by executing the MCL/50 DIMENSION command. Buffers can be used to store and operate on input and output data from the
2250 function cards. Each buffer has one pointer, which is used to indicate a ‘current position’ in the buffer, and all I/O is done
relative to the buffer pointer. The buffer peinter is a pre-increment pointer, which means that it always points to the last used
word in the buffer, and must be incremented to point to the next word to be used. For example, data read into the current input
buffer is stored, starting at the word immediately after the word pointed to by the buffer pointer.

-«———START OF BUFFER

-«————CURRENT POINTER

-«——FIRST WORD OF NEW INPUT DATA STORED HERE

77

LANGUAGES

The rest of this writing discusses tables used by the firmware to manage 2250 buffers, and presents several subroutines that
demonstrate how to use the firmware base page locations to examine and alter those tables.

NUMBER OF BUFFERS

2250 buffers are allocated when the MCL DIMENSION command is executed. The DIMENSION command specifies the
number and size of the buffers. The buffers have fixed names: for example, if the DIMENSION command allocated 10 buffers,
they are named B1, B2,...,B10. In addition to any buffers allocated by the DIMENSION command, the main MCL task executing
in the 2250 always has access to a dynamically allocated result buffer, named BO. Buffer O contains all the unallocated, unused

memory available to the user. After a main task is compiled; thus, its size changes for each new main task, and for any
execution of the DIMENSION command.

The DIMENSION command can be executed at any time, from any task. Memory space for buffers is allocated from high
memory, and does not interfere with memory used for storing resident tasks and down-loaded subroutines, which are stored in

low memory. The DIMENSION command will not execute if doing so would not leave enough unused memory (buffer 0) to
compile and execute a new main task.

320008

FIRMWARE (ROM)
16000B

SYSTEM TABLES Built at power-up

VARIABLES Allocated by DIMENSION command
AND BUFFERS

BUFFER 0 Memory remaining after DIMENSION
and task definitions

MAIN TASK

RESIDENT TASKS
AND
DOWN-LOADED
SUBROUTINES
(IF ANY)

20008

BASE PAGE If no subroutines have been downioaded,
RESERVED FOR resident tasks begin at 1000B. If no
DOWN-LOADED resident tasks are defined, the main

SUBROUTINES task begins at 1000B
{IF ANY)

1000B

FIRMWARE
BASE PAGE

78

LANGUAGES

In the word at address 756B on the 2250’'s base page, the firmware keeps the number of buffers currently defined in the 2250.
This count always includes buffer 0, even if there is currently no main task. Thus, this word will always contain 1 plus the number
of buffers allocated by the last DIMENSION command executed.

The subroutine CHECK, listed below, can be called by other subroutines to verify that a buffer number passed to the calling
subroutine exists in the current 2250 buffer configuration. It examines location 756B, described above, to check the buffer
number passed to it. If the buffer does not exist, CHECK returns-a negative number as the result, flagging an error. If there is no
error, the buffer number is returned as the result. This subroutine might be used by other subroutines to verify the existence of a
2250 buffer; some of the other subroutines given later in this paper use the CHECK routine.

ASMB,R,L

-

NAM CHECK Check 2250 buffer number ¢821207.1620>

ENT CHECK
*
EXT .ENTR
*
#+ This subroutine checks a 2250 buffer number for validity.
+ It has 2 parameters: the address of the buffer number,
+ and the address of the location where the result of the
+ check is to be posted. If the buffer number is 0K, the
+ result will be the buffer number; if the buffer number
+ is not OK, the result will be -1. The calling routine
+ should test the result, and if it is negative, report an
+ error.
*
+ Parameter storage
*
BNUM BSS 1 s ADDRESS of buffer number
oK BSS 1 ;s ADDRESS for decision
*
CHECK NOP
JSB .ENTR ; fetch parameters
DEF BNUM
LDA BNUM,I ; get buffer number
STA B ; copy into B reg : use A reg for result
SSA 3 if it’s negative,
CCA] error : make A reg negative
CMB ; otherwise, add 1 and negate
ADB BUFNM ; add number of buffers (includes B0)
SSB ; if still negative,
CCA H error : make A reg negative
STA 0OK,I ; store decision : either buf num or -1
JMP CHECK,I ; exit
*
*
B EQU 1
BUFNM EQU 756B ; number of 2250 buffers defined

END

79

LANGUAGES

BUFFER SIZE

The 2250 firmware maintains a table in RAM of the sizes of the buffers allocated, and the size of BO. This table has one word for
each buffer, including buffer 0, and its address is stored in the base page word 760B. The buffer number is used to index into
the table; that is, adding the number of the buffer to the contents of location 760B gives the address of the word containing the
size of that buffer. For example, the first word of the table is the size of buffer 0, the second word is the size of buffer 1 (if
defined), and so on.

The subroutine BSIZE, given below, can be called to determine the size of a particular 2250 buffer. BSIZE has two parameters,
both passed by reference: the address of the buffer number, and the address where the buffer size is to be placed. If the buffer
does not exist, the error will be flagged by reporting the buffer size as —1. This subroutine is written to be called from MCL:
minor changes would make it more suitable for calling from another down-loaded subroutine. A sample MCL call would be:
‘CALL BSIZE(V1,V2), which would place into variable V2 the size of the buffer whose number is in V1. One example of the use
of BSIZE would be for a resident task which is written to fill a variable buffer with some data. The task could call BSIZE to
determine the size of the buffer it is to fill, and so it could be used for variable size buffers.

ASMB,R,L

) NAM BSIZE Find 2250 buffer size <¢821207.1620>
) ENT BSIZE

) EXT .ENTR,CHECK

: Parameter storage

*

BNUM BSS 1 s ADDRESS of the buffer number

RESLT BSS 1 s ADDRESS for the result

*

+ BSIZE returns the size of a specified 2250 buffer. It
+ has two parameters: the number of the buffer, and the
*+ location for the result. Both parameters are passed
*+ by reference, allowing BSIZE to be called directly

« from MCL. If the buffer does not exist, BSIZE will

+ return a buffer size of -1, flagging an error.

*

B

S1Z2E NOP
JSB .ENTR ; fetch parameters
DEF BNUM
JSB CHECK 3 go check the buffer number param
DEF +#+3
DEF BNUM,1
DEF RESLT,I

LDA RESLT,I get CHECK result

STA RESLT,I store as result

SSA 3 check for error
JMP BSIZE,lI ; if error, return
LDA BNUM, I ; otherwise, get buffer number
ADA BUFSZ2 3 index into buffer size table
LDA A,l ; get buffer size
JMP BSIZ2E,I ; return
*
*
A EQU 0
BUFSZ EQU 760B ; pointer to buffer size table
*
END

80

LANGUAGES

Computer
Museum

BUFFER ADDRESS

The address of the table containing the starting address for 2250 buffers is kept in location 753B in base page. This table also
has only one word per buffer, including buffer 0. The number of the buffer in question is used as an index into this table to get
the starting address of the buffer; thus, this table is accessed in the same way as the buffer size table, described above.

Examining the contents of the buffer starting address table and the buffer size table reveals that the buffers are allocated
sequentially in high memory, and that the space set aside for each buffer has one word more than the buffer's size. Thus, if

buffer 1 was dimensioned to have 100 words, then the starting address for buffer 2 would be 101 plus the starting address of
buffer 1. An example:

Buffer Number Starting Address Buffer Size
1 342168 = 14478 100
2 34363B = 14579 200
3 346748 = 14780 300
4 353518 = 15081 400

The numbers given in this table will vary from system to system, depending on the configuration of the 2250. The extra word per
buffer is allocated for use by a 2250 firmware feature that is unsupported at this time.

As an example of the use of the buffer starting address and size tables, the subroutine CLEAR given below will initialize all
words in a 2250 buffer to 0. None of MCL's buffer management commands cause a buffer to be cleared, and the combination of
MCL commands to put a 0 in each word would execute much slower than this subroutine.

ASMB,R,L

*

NAM CLEAR Clear 2250 buffer <¢821207.1620>

ENT CLEAR
*
EXT .ENTR,BSIZE
*
+ Parameter storage
*
BNUM BSS 1 ;3 ADDRESS of the buffer number
*
CLEAR initializes the contents of a 2250 buffer to
+# 0’s. It has only one parameter, the number of the buffer
+ to be cleared. If the buffer does not exist, no action
+ is taken.

81

LANGUAGES

*
CLEAR NODP
JSB .ENTR ; fetch parameter
DEF BNUM
JSB BSIZE 3 check buffer number and get its size
DEF #+3
DEF BNUM, I
DEF RESLT
LDA RESLT 3 get BSIZE result
SSA ; if result is negative,
JMP CLEAR,1 buffer doesn’t exist - exit
CMA,INA : negate buf size to use as loop counter
STA RESLT
LDA BNUM,I ; otherwise, get buffer number
ADA BUFAD 3 index into buffer addreas table
LDA A,I 3 get buffer address
CLB ; make B reg 0
LOOP STB A,l ; write 0 to current buffer word
INA ; point to next buffer word
1SZ RESLT 3 increment loop counter
JMP LOOP ; not done yet, go do the next word
?

JMP CLEAR,I all done : return
*

*

A EQU 0
BUFAD EQU 753B ; pointer to buffer address table
#*
RESLT BSS 1 ; BSIZE result and loop counter location
*
END

BUFFER POINTER LOCATION

The current positions of the pointers for the 2250 buffers are kept in a table whose starting address is at location 753B on the
firmware's base page. This table also has only one word per buffer, including buffer 0. Each word in the buffer pointer table
contains the address of a word in the corresponding buffer. This word is the ‘current’ word in the buffer: the next I/O instruction
using this buffer (via the IN or OUT commands) would begin with the word immediately after the word pointed to.

Example: if buffer 1 has just been rewound, and the starting address for buffer 1 is 14478, then the pointer for buffer 1 contains
the address 14477, which is the word just before the first word of buffer 1 to be used for 1/O. if 10 words of data are then read
into buffer 1, the pointer will be changed to contain the address of the last word read in, 14487, which is also the address of the
word just before the next word to be used.

It is important to understand which MCL commands change the contents of a buffer pointer, and which commands just examine
the pointer contents, leaving them unchanged. The descriptions below are summaries of all MCL commands which affect the
contents of a 2250 buffer pointer. More information on these commands is available from the 2250 Programmer’s Manual
(25580-90001).

The DIMENSION command creates the buffer pointer table and leaves each buffer pointer word containing the address of the
word just before the start of the buffer (in the rewound position).

The REWIND command changes a buffer's pointer word to contain the address of the word just before the start of the buffer, as
explained in the example above.

The SKIP command adds the given number to the contents of the buffer pointer location, first checking that the new pointer
value is within the buffer bounds.

82

LANGUAGES

The RELEASE command looks at the current buffer pointer, using it to set up a port release of the data from the start of the buffer
up to and including the word pointed to by the buffer pointer. Once the port release is set up, RELEASE then rewinds the buffer
by changing the pointer word to contain the address of the word just before the start of the buffer.

The IN and OUT commands do not themselves change the contents of a buffer pointer. Execution of these commands causes
the firmware to copy the input or output buffer number into a base page location, to be used by any following I/O commands. It
is only when an IO command is executed that the input or output buffer's pointer is changed.

The CBUFFER command can be used to move a buffer’'s pointer to the end of a block of converted /O data. More details on this
command are given in the 2250 Programmer's Manual.

No other MCL commands change a buffer pointer's contents. All arithmetic references to a buffer's contents cause the buffer
pointer to be examined, but do not change its contents. For example, the MCL command ‘B1(0) = 100" will change the contents
of the word being pointed to by the pointer for buffer 1, which is not necessarily the first word of the buffer. Similarly, ‘B1(10) =
100" will change the contents of the word whose address is 10 plus the current buffer pointer.

As an example of the use of the buffer pointer tabile, the subroutine BPTR given below will return the current position of a buffer's
pointer relative to the start of the buffer. BPTR has two parameters, both passed by reference: the number of the buffer whose
pointer is to be looked at, and the location where the result is to be stored. BPTR can be called directly from MCL. Example: the
MCL task ‘DIMENSION(10,1,100) ; SKIP(B1,20) ; CALL BPTR(1,V1) !’ will cause variable V1 to be set to 20, which is the number
of words that the buffer pointer has moved past the start of the buffer. Another example: 'REWIND(B1) ; CALL BPTR(1,V1) I will
cause V1 to be set to 0, indicating that buffer 1 was in the rewound position when subroutine BPTR was called.

ASMB,R,L
*

NAM BPTR Find current buffer pointer <821207.1620>

*
ENT BPTR
*

EXT .ENTR,CHECK

-

+ Parameter storage

*

BNUM BSS 1 3+ ADDRESS of the buffer number

RESLT BSS 1 ; ADDRESS for the result

*

BPTR returns the current position of a 2250 buffer’s
pointer. The pointer position is given as an offset
from the start of the buffer: that is, the number of
words past the start of the buffer. BPTR has two
parameters: the number of the buffer, and the location
for the result. Both parameters are passed by reference,
allowing BPTR to be called directly from MCL. If the
buffer does not exist, BPTR will return a pointer
value of -1, flagging an error.

® % & & % & % & &

83

LANGUAGES

BPTR NOP
JSB .ENTR
DEF BNUM
JSB CHECK
DEF #+3
DEF BNUM, I
DEF RESLT,I
LDA RESLT,I
SSA
JMP BPTR,1
ADA BUFAD
LDA A,l
CMA, INA
LDB BNUM,I
ADB BUFPT
ADA B,
INA
STA RESLT,I
JMP BPTR,I

EQU 0
EQU 1
BUFAD EQU 753B
BUFPT EQU 75SB

WD =* =

END

SUMMARY

Ne we we wE wE we ws we

fetch parameters

check buffer number param

get result parameter
check for error

index into buffer address table
get buffer starting address
negate
get buffer number parameter
index into buffer pointer address table
add pntr addr to -(buffer start addr)
and add 1,
giving the current pointer position

pointer to buffer address table
pointer to buffer pointer table

2250 buffers are managed by the firmware using 4 base page words and three tables. The three tables are the buffer size table,
the buffer starting address table, and the buffer pointer table. Three of the base page words contain the addresses of these
tables, and the fourth word contains the number of buffers defined in the 2250.

Base Page Address

7568
7608B
7538
7558

Contents

Number of defined buffers

Address of buffer size table
Address of buffer start address table
Address of buffer pointer table

Each of the three tables contains one word for each buffer, including buffer 0. By examining and changing the contents of these
tables, subroutines written to be downloaded to the 2250 can use the 2250 buffer system to better advantage.

Some other examples of what subroutines can do using these tables are:

1. Change the position of a buffer pointer.

2. Redefine buffers to be in the 1000B words of base page reserved for downioaded subroutines, thus making better use of

available memory.

3. Cause a port release to send data from a buffer starting at some word other than the first word in the buffer, by temporarily
changing the ‘start of buffer word before executing the RELEASE command.

84

BULLETINS

Computer
Museum

CUSTOMER COURSES FOR ATS/1000 USERS

Two customer courses are available at Data Systems Division, Cupertino, California, for users of ATS/1000 Automatic Test
Systems.

The ATS/1000 User Test Programming Course (22972B) covers the development of test programs, including sections on
implementing a “system” of test programs and an overview of test system components and configurations. Prerequisites are a
knowledge of BASIC, and completion of the RTE-IVB Session Monitor User's Course (22994A) and the FORTRAN IV Pro-
gramming Course (22974B), or equivalent. The User Course will be held February 28, 1983, May 16, 1983, and August 8, 1983.

The ATS/1000 Advanced Course (22973B) provides in-depth study of system installation and generation, software internals,
and system maintenance information for system managers and system level programmers. It is not a test programming course.
Prerequisites for the Advanced Course are completion of the ATS/1000 User Test Programming Course (22972B), RTE-IVB

System Manager’s Course (22995A), and HP-IB User's Course (22963B), or equivalent. Dates for the Advanced Course are
March 7, May 23, and August 15, 1983.

Each course is one week in length and is held at the Cupertino site only. The Advanced Course follows the User's Course, but
each course requires separate registration. Customers must register through their HP field representative, who will forward by

TWX or phone, your name, company name and address, and an HP sales order number to the ATS registrar at Data Systems
Division.

The cost of each course is $2,000. Approximately three weeks before the course starts, a pre-study packet is sent to the
registrant.

85

BULLETINS

NEW PRODUCT ANNOUNCEMENTS

FAST NEW HP 1000 REAL-TIME COMPUTER RUNS AT 3 MIPS

The fastest computer ever introduced by HP, a new “flagship” for the HP 1000 real-time computer family providing 3
million-instructions-per-second speed for less then $24,000, was recently released by HP.

The new A900 technical computer is the highest-performance member of the HP 1000 family, and is believed to be the fastest
real-time computer on the market today. It features a very high-speed cache memory, two-level pipelined architecture, 3.7
megabytes-per-second peak I/O bandwidth, and a standard floating-point processor capable of performing a typical mix of
floating-point instructions at 560,000 instructions per second. The new A-Series computer can support up to 6 megabytes of
64k RAM main memory, and provides three times the performance of previous HP 1000 processors.

The new top-of-the-line HP 1000 AS00 is targeted primarily for the OEM market as a very high-performance, real-time engine for
industrial automation and process applications. It is particularly well-suited to process monitoring and control, high-speed data
acquisition and image- and signal-processing applications, where the A900's raw computationat speed, floating-point per-
formance and sophisticated I/O capabilities are typical customer requirements.

New Price/Performance Standard “We believe the A900 has just redefined the price/performance standard for the
minicomputer industry,” said the HP Data Systems Division marketing manager. “It's not only the fastest real-time minicomputer
we're aware of — it's one of the most capable. While we dramatically improved our existing HP 1000 architecture to give the
A900 its exceptional performance, its software is not only compatible with, but identical to, that of other A-Series computers —
the AB00 and A700 machines we introduced in February. With only 25 percent of the number of parts in our previous HP 1000
flagship, the F-Series, the A-Series is expected to be the most reliable family of minicomputers ever built by HP.”

The A900 processor is implemented in Schottky TTL discrete logic and comes standard with a hardware floating-point
processor and HP's Scientific Instruction Set (SIS} and Vector Instruction Set (VIS) tirmware. The A900 design makes liberal use
of state-of-the-art programmed components and the most advanced Schottky technology available.

The floating-point capability is implemented through three LSI chips developed in HP's CMOS/SOS technology. Unlike most
processors requiring a separate board for hardware floating point, the A900 floating-point chips are designed as an integral
part of the CPU for maximum performance and efficiency. When executing the single-precision Whetstone benchmark (B1), the
A900 is capable of nearly 1,200,000 instructions per second.

“On a dollar-for-dollar comparison, we know of no other computer that even comes close to this level of performance,” the

manager added. “Comparably priced computers provide only one-half to one-third, or much less, of the computational
horsepower of the A900.

Available Software As with all other HP A-Series computers, the A900 supports the HP 1000 line’s major software
packages. These include Graphics/1000-11 2D and 3D graphics software and Image/1000 database-management software.
A-Series computers also can use DS/1000-1V networking software to connect to other HP 1000 or HP 3000 systems, as well as
X.25 packet-switching data-communications software.

All A-Series computers execute under the new RTE-A.1 real-time operating system which supports programming in FORTRAN
77, Pascal, BASIC, and Macro/1000 Assembly languages.

To complement its processing power, the A900 supports up to 6 megabytes of main memory available in the latest generation
64k RAM technology. A single memory array board is offered with 768k bytes of storage and up to eight boards can be
configured in the A900 computer. Add-on memoary packages of 768k bytes, 1.5M bytes and 3M bytes are available for $6,000,
$10,000, and $16,000 respectively.

86

BULLETINS

The memory controler card includes built-in error-correction logic, making this feature standard for any memory configuration
used in the A900. The memory controller utilizes a 32-bit data bus to memory, which improves the efficiency of memory access.

All HP A-Series computers support up to 250 megabytes of mass storage.

Available in box or system-level products, the HP A300 computer is designed for OEMs, in-house systems designers and
software suppliers who require ultra-high computational performance in low-cost packaged products.

Customers can equip the A900 with a choice of nine models of graphic input/output devices (including two recently introduced
color graphic terminals), six models of HP CRT terminals, a variety of printers and several disc drives, including HP’'s newest 3
1/2-inch, 270k byte micro-floppy flexible disc drive.

Key features of the A900 include:

Base set speed — 3.0 MIPS

Floating-point speed — 560 KFLOPS

Supports 6M bytes physical memory (64k RAMSs)
Addressability to 32M bytes

3.7M bytes /O bandwidth

DMA per channel

4K bytes of cache memory

Wide 48-bit micro-instruction word

Runs all A-Series software without modification
Error-correcting, high-performance memory standard
Power fail recovery for 3M bytes of physical memory
High reliability (box MTBF = 8,000 hours)

Very low mean-time-to-repair (MTTR box = 90 minutes)
Support of large-system peripherals

Support of full networking capabilities

87

BULLETINS

NEW APPLICATIONS SOFTWARE FOR INDUSTRIAL MONITORING AND CONTROL

Process Monitoring and Control/1000 (PMC/1000), a high-level, menu-driven applications software package for direct or
supervisory monitoring and control of continuous industrial processes, was recently introduce by Hewlett-Packard.

PMC/1000 is designed for small- to medium-scale continuous processes found in both process and discrete manufacturing
environments: It is also appropriate for pilot plants and hybrid manufacturing applications.

Tested for more than two years in a variety of process applications, PMC/1000 runs on HP 1000 real-time computers. A typical
PMC/1000 system also would use an HP 2250 measurement and control processor as a high-level interface between the

computer and sensors, actuators and loop controllers. Color displays and a large number of HP instruments and peripherals
can be part of a PMC/1000 system.

“PMC/1000 bridges the gap between expensive and difficult-to-customize turnkey systems and the costly and time-consuming

approach of a user's writing process control software from scratch,” said James D. Olson, manager of HP's Manufacturing
Applications Program.

“Its low cost — relative to existing alternatives — and the fact that no user programming is needed to configure or operate a
PMC/1000 system should go a long way toward justifying the many benefits of bringing computer control to process
applications,” Olson said. “While you don't have to be a computer expert to use it, PMC/1000 is extremely flexible, and can be
applied to virtually any continuous process. We believe it offers far more computational capabilities than larger process control
systems, and at a much lower cost.”

The new HP software uses a fill-in-the-blanks menu format to specify control loops, conversions, tolerance limits, alarm
conditions, historical logs and color displays. A “HELP" key accesses a built-in guidance system that gives users "how to”
information as they go along.

The software’s flexible, block architecture enables more experienced users to configure complex control structures and access

the entire process data base. All program development, networking and system capabilities of the host HP 1000 computer
remain fully accessible.

Customizable capabilities of PMC/1000 include flexible scanning and updating of all measured and controlled process
parameters. Control actions include both proportional-integral-derivative (PID) loop control and Boolean logic control. Standard
functions include engineering unit conversions and averaging, accumulation, and ratio computations. Dead-time, filtering and
non-linear functions are provided, and user-defined algorithms also can be accommodated.

A large number of process strategies are within the software package's capabilities, such as feed-forward, cascade,
cross-coupled and non-linear control. PMC/1000 thus is a good fit for such sophisticated applications as material and energy
balancing.

Color display choices include showing the current status, or trends, of one, eight, or 32 process parameters at a time. Area,
group, detail and multi-variable trends can be displayed.

In the event of an alarm condition, PMC/1000 ensures that appropriate action is taken automatically — from simple operator
notification to shutdown of the process. A logging feature for historical data provides long-term graphical trending, as well as
information needed for statistical analysis and management reports.

PMC/1000 is the latest addition to HP's Manufacturers Productivity Network (HP-MPN), which is the strategy for providing linked
computer solutions throughout a manufacturing company. HP focuses existing products, and product development efforts, on
providing practical computer tools and solutions for manufacturers.

The HP-MPN concept emphasizes providing both hardware and software products in four major areas: factory and plant
automation, computer-aided engineering, operational planning and control, and administrative and office services.

88

BULLETINS

JOIN AN HP 1000 USER GROUP!

Our thanks to Sandra Hawker, Interface 1000 editor, for providing this list.

U.S. LOCAL USERS GROUPS

Callfornla Michigan
Bay Area Detroit/1000
Paul Vallis P.O. Box 332
Amdahl Corp. Southfield, Michigan 48037
1250 E. Arques Aves. M/S 140
Sunnyvale, California 94086 New Jersey and New York
408/746-8285 Bennett Meyer
Singer-Kearfott
LAB 1000 Users Group 1150 McBride Avenue
Eva Kuiper Little Falls, New Jersey 07424
Puritan-Bennett Corporation
12655 Beatrice Street New Mexico
Los Angeles, California 90066 Greater White Sands Users Group
213/827-9000 Guy Gallaway
Dynalectron Corp.
San Diego Radar Backscatter Division
Dave Petrie P.O. Drawer O
Code 6111 Holloman AFB, New Mexico 88330
Naval Ocean Systems Center Ph, 505/679-2472, ext 2770
San Diego, California 92152
Ph. 714/225-2556 Pennsylvania
Harry Spain
Georgla Westinghouse Electric Corp.
Bob Albers Bettis Automatic Power Lab.
AT&T P.O. Box 79
P.O. Box 7800 West Misslin, Pennsylvania 15122
Atlanta, Georgia 30357 Ph. 412/462-5000

404/873-7784
DVR 1000 Delaware Valley Region Users Group

Eastern Idaho Jock McFarlane

George E. Santee, Jr. RCA Laboratories

P.O. Box 1604 Princeton, New Jersey 08540
Idaho Falls, Idaho 83401 609/734-2206

208/523-7255
Paciflc Northwest Local Users Group

lilinois (Washington, Oregon, N. Idaho)
David Olson Phil Hardin

1846 W. Eddy St. LYNX Corporation

Chicago, lllinois 60657 15122 SE 46th Way

Ph. 312/542-7036 Bellevue, Washington 98006

Ph. 206/643-7472
Missoun

Greater Kansas City Users Group
William D. Jackson

P.O. Box 7535

N. Kansas City, Missouri 64116
Ph. 816/997-4763

89

BULLETINS

U.S. LOCAL USERS GROUPS (CONTINUED)

Rhode Island Salt Lake City HP 1000 Users Group
HP Oceanographic David Pope

227 Watkins BPC

Graduate School of Oceanography 391 South Chipeta Way, Suite F
University of Phode Island Salt Lake City, Utah 84108
Kingston, Rhode Island 02881 Ph. 801/581-5850

Ph. 401/792-6116
Washington, D.C. — Baltimore

Texas Dan Steiger

DFW HP 1000 Users Group Naval Research Lab

Ken Penrod Code 5003

P.O. Box 2674 Washington, D. C. 20375
Richardson, Texas 75080 202/767-2384

Ph. 214/690-4449

Utah

North Central Utah HP 1000 Users Group
Malcolm Crawford

Brigham Young University

459 CB

Provo, Utah 84602

Ph. 801/378-4344

EUROPEAN LOCAL USERS GROUPS

Belgium Netherlands
Belgian HP 1000 Users Group Dutch HP 1000 Users Group
J. Tiberghien Johannes Mondria, Chairman
Vrije Universiteit Brussel Delft Hydraulics Laboratory
Afd. Informatie P.O. Box 152
B-1050 Brussell (8300 AD Emmeloord
Belgium The Netherlands

Ph. 05274/2922
France

French HP 1000 Users Group
Jean-Louis Rigot

Technicatime TA-DE-SET Cadarach Mathijs Beekman, Secretary
B.P. 1 Cyt-U-Universitair
F-13115 Saint Paul les Durance Radboutkwartier 261
France NL 3511 CK UTRECHT
Ph. 42/253952 The Netherlands
Ph. 030/315624
Germany
German HP 1000 Users Group
Hermann Keil

Vorwerk & Co Elektrowerke KG
Rauental 38-40

D-5600 Wuppertal 2

Germany

Ph. 202/6093-3105

90

BULLETINS

EUROPEAN LOCAL USERS GROUPS (CONTINUED)

Norway Sweden

Norwegian HP 1000 Users Group Swedish HP 1000 Users Group
Per Otterson Fred Moller

National Inst. of Technology SAAB-SCANIA

Akersveien 24C C-Lab

Oslo 1 S-15787 Sodertalje

Norway Sweden

Ph. 02/204550 Ph. 0755/51000

USERS GROUPS OUTSIDE U.S.

Australia South Africa
Sydney South African HP 1000 Users Group
HP 1000 Users Group Andrew Penny
Jeffrey Deakin Hewlett-Packard
GPO Box 3060 South Africa Pty.
Sydney NSW 2001 Private Bag Wendywood
Australia Sandton, 2144 South Africa
Ph. 802-1040
Melbourne
HP 1000 Users Group Switzerland
Owen Marsh Swiss HP 1000 Users Group
Department of Transport, (RDSE) Graham K. Lang
G.P.O. Box 1839Q RCA Laboratories
Melbourne, 3001, Australia Badenerstrasse 569
8048 Zurich, Switzerland
Canada Ph. 01/526350
Western Canadian HP 1000 Users Group
John Blommers United Kingdom
Defense Research Establishment United Kingdom HP 1000 Users Group
Pacific Kevin O’Meara
FMO Victoria VOS 1BO Thurston Software
Canada Bldg. 73B Stansted
Airport London
Toronto HP 1000 Users Group Stansted, Essex
Brenda Hogg England CM24 8QW
Grant Hallman Associates Ltd. United Kingdom

155 Gorden Baker Road, Suite 207
Willowdale, Ontario M2H 3N5
Canada

Ph. 416/498-8500

91/92

Although every effort is made to ensure the accuracy of the
data presented in the Communicator, Hewlett-Packard
cannot assume liability for the information contained herein.

Printed in U.S.A. 2/83

Prices quoted apply only in U.S.A. If outside of U.S., contact
your local sales and service office for prices in your country.

Part No. 5955-6111
Vol. V #6

)

