®
computer systems

COMMUNICAROR

ysininin

Repmﬁs

Issue No. 18

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

TABLE OF CONTENTS

EQitor S NOLE 4 iitieeneneeeeooesosseecaoocsnnses et e et neeseaaes 1

Computing Directory Size....ieceeeesscescens e eseteetetseetsstaneenns 2
(issue #7; page 282)

Tips on Using EDIT/3000ceieeeeeceencnanan e et s estanststsenn 3
(issue #3: page 128)
(issue #4: page 151)
(issue #8: page 346)

Retrieving EDITOR Work Files After a System Crash¢ccec... 5
(issue #3: pages 128-129)

Memory Dump Procedures for Series IIieeeieeceeeecncancsnsns 7
(issue #16: pages 156-159)

Magnetic Tape CoOnsiderationNsSeieeeeeeesecsecasscenssnsansas 10
(issue #6: pages 247-248)

Calculating the Approximate Size of Output Spoofles 14
(issue #1: page 12)

Spool ing and Job Management NOteScceescenns cesseectcnaas 16
(issue #2: pages 59-62)

Segmentation for Efficiency of System-Type Programs ...:cesese 22
(issue #5: pages 206-210)

Segmentation in COBOL .t veteevecesonscssssosesassosarssssnscecssns 31
(issue #12: pages 615-617)

How to Build an Interface Between COBOL and Any
MPE Intrinsic from SPL v eieectsesscsoacsasscsccscsans ceesensaes 37
(issue #11 pages 542-545)

Journey from an Abort Message to a Line of Source Code 44
(issue #1ll: pages 545-551)

RIN S tiiienresosesssnsssscssonsassssossasessssssssainsssnsoas 54
(issue #7: pages 283-285)

Calling SPL from RPG and Calling COBOL from SPL .ceceescocsees 60
(issue #12: pages 617-619)

EDITOR’S NOTE

Since June of 1975 when the COMMUNICATOR was introduced as part
of Hewlett-Packard s support service, eighteen issues of the mag-
azine have been published. During the same period, the number of
subscriptions ta the magazine has greatly increased. For exam-
ple, while several hundred copies of the first COMMUNICATOR were
printed, 3500 copies of issue #16 were printed.

As the number of subscribers has grown, so also has the freguency
of requests for copies of the earlier issues. This COMMUNICATOR
has been prepared to make available some of the more impor tant
information contained in previous issues. All of the material
presented here has been previously published in the COMMUNICATOR
and, other than Len Croley’s article dealing with memory dump
procedures, all of the reprints are from issues prior to #13.

For your reference, the issue and page number for the original
printing of each article have been included in the Table of Con-
tents.

Articles were selected for reprinting because of their usefulness
and in consideration of the continued interest shown in them by
subscribers. Each article has been reviewed for accuracy, with
respect to changes in the HP 3000 environment since the article
was originally published, and for completeness. The result is a
document which we hope you will find informative at first read-
ing, and useful later as a reference.

A number of people, other than the authors, helped update the
articles. They deserve mention here:

Ed Canfield Wendell Henry

Bob Crum John Pavone

Robert Day Bill O°Shaughnessy
Jim Francis Steve Zinc

Editor

Computer Systems - COMMUNICATOR 3000
HP General Systems Division

5303 Stevens Creek Boulevard

Santa Clara, CA 95051

Address your subscription and distribution
correspondence to:

Subscription Supervisor

Computer Systems - COMMUNICATOR 3000
HP Computer Services Division

P.O. Box 61809

Sunnyvale, CA 94088

COMPUTING DIRECTORY SIZE ®

Bill O’Shaughnessy
General Systems Division

The System Disc Directory currently has the following usable max-
ima: 630 accounts; 95 groups per account; 200 users per account;
and 1385 files per group. The following egquation should be used
to determine the approximate number of sectors needed for the
directory:

SECTORS = 6+6*A +(05.4*G) +(.15*U)+(.05*F)+(.5*VS)+(.5*VC)

TOTAL NUMBER OF ACCOUNTS IN SYSTEM
" GROUPS "
" USERS "
" FILES " DOMAIN.
" VOLUME "
SETS
vC " VOLUME "
CLASSES

Where :

A
G
U
F
S

|| T T I 1

Y

(Note all guantities in parentheses should be rounded up to the
next whole number.)

The number yielded by the above equation is the approximate max-
imum number of sectors required. This formula will most closely
approximate the number of sectors required by the directory at
initial configuration or after a RELOAD. Normal use of the system
(the creation/purging of accounts, files, and so forth) may cause
the directory to become fragmented and, consequently, to use ad-
ditional disc space.

*This equation replaces the one found in Appendix E of the
HP 3000 System Manager/System Supervisor manual.

® TIPS ON USING EDIT/3000

Dick Sleght
General Systems Division

1) When you sign on to the HP 3000 with a terminal connected to
a port that has a smaller configured record width than your
terminal, you can use:

o0 The formal designator "EDITOUT" to change the output size
o "EDITIN" to change the input size.
The example below illustrates the use of an 80-character
device on a configured 72-character port. Remember that the
FILE command must go before the EDITOR command.

¢:FILE EDITOUT=SSTDLIST ; REC=-80

:FILE EDITIN=$STDINX;REC=-80

:EDITOR

HP32201A.07.02 EDIT/3000 WED, SEPT 20, 1978, 3:04 PM
/SET LENGTH=80,RIGHT=80

e

1
12345678901234567890123456789012345678901234567890123456789
01234567890
2 2 3 4 5 6

7 8

With a 132-character terminal you can obtain an editor listing
formatted the same as the offline option without folding at the
configured width. For example, :FILE EDITOUT=$STDLIST;REC-132.

2) :FILE L;DEV=LP
:EDITOR *L
HP32201A.07.02 EDIT/3000 WED, SEPT 20, 1978, 3:18 PM
/SET FRONT, FROM=10, DELTA=10,SHORT; ADD

10 TO ADD LINE NUMBERS TO
20 THE FRONT FOR SEQUENCE
30 NUMBERS OR BASIC LINE
40 NUMBERS...

50 SET FRONT

60 THEN KEEP IN A FILE.

70 TEXT THAT FILE UNNUMBERED.
80 CHANGE THE UNNEEDED COLUMNS
90 TO BLANK OR NULL

100 //

/KEEP X;SET FROM=1, DELTA=1,REAR;TEXT X,UNNUMBERED
/LIST FIRST

1 00010000TO ADD LINE NUMBERS TO
/CHANGEQ 1/3 TO "" IN ALL
/LIST FIRST

1 10000TO ADD LINE NUMBERS TO
/CHANGEQ 3/5 TO " " IN ALL
/LIST ALL

1 10 TO ADD LINE NUMBERS TO

2 20 THE FRONT FOR SEQUENCE

3 30 NUMBERS OR BASIC LINE

4 40 NUMBERS ...

5 50 SET FRONT

6 60 THEN KEEP IN A FILE.

7 70 TEXT THAT FILE UNNUMBERED.

8 80 CHANGE THE UNNEEDED COLUMNS

9 90 TO BLANK OR NULL

/KEEP ABC,UNNUMBERED
/EXIT

:END OF SUBSYSTEM

3) Question! How do I list the contents of 27?

Answer! Use Q #Z::#

¢tEDITOR

HP32201A.07.02 EDIT/3000 WED, SEP 20, 1978, 4:26 PM
JZ::=

ENTER Z: :=

Z CAN CONTAIN ANY "TEXT", CHARACTERS, OR COMMANDS
VAL YARE i

Z CAN CONTAIN ANY "TEXT", CHARACTERS, OR COMMANDS

Remember any special character except -+/().,; & can be used to
delimit strings.

If Z contains the delimiter the display will only be up to the
delimiter.

/Q"Z: :ll
Z CAN CONTAIN ANY
/E

END OF SUBSYSTEM

RETRIEVING EDITOR WORK FILES
AFTER A SYSTEM CRASH

Madeline Lombaerde
General Systems Division

As most 3000 users know by now, the EDIT/3000 subsystem saves the
contents of the user’s wcrk area in a file generally named
Kdddtttt where ddd is the day of the year and tttt is the time.
When the system crashes or the user aborts the EDIT/3000 sub-
system, this "k" file is saved in an attempt to preserve the
user’s work.

However, the various types of system crashes possible make it
difficult to predict the exact state of the work file. Forward
and backward pointers are stored in the file and if a block was
not yet updated when the crash occurred, the pointers may be
invalid.

There are certain techniques that may help you recover all or
most of your work files. Follow this sequence of steps after you
have logged on to the system.

a. Identify the workfile with a :LISTF,2 command.

b. Enter the EDITOR.

c. Activate the file as a workfile using the TEXT command.

d. Assure yourself that the workfile belongs to you and that its
linkages are intact in both the forward and backward direc-
tions. LIST ALL can be used to check the forward pointers.
To check the backward pointers, SET TIME equal to the number
of records in the file then use WHILE FLAG;LIST*-2.

e. If the forward pointers are OK, KEEP the file (do not use
KEEPQ.) .

f. TEXT your workfile into the EDITOR; it should be in good
order .

Suppose, however, at the time of the crash, the last block (con-

.taining pointer information) was not written out. The LIST ALL

fails near the end of the file. One solution might be to do a
partial KEEP: that is, KEEP with a range that ends just before
the line that couldn’t be listed. Then TEXT the file in and fix
the last lines. Another possibility (providing it s not essen-
tial to preserve your line numbers) would be to HOLD the lines
that are OK, do a DELETE ALL (this is important), and then ADD
from the HOLD file. This will set up a new work file and the
lines will be renumbered.

In the case where backward pointers are correct but the forward
pointers are not, do a FIND LAST (if possible), or whatever you
can do to get to the end of the file. Then set TIME equal to the
number of records in the file and use the following:

/W

/FQ*

/BEGIN

/HQ* ,APPEND
/FQ*-1

/ END

This will store the records in the HOLD file in reverse order.
Then DELETEQ ALL and ADD from the HOLD file. The file will be in
reverse order and repeating the process will restore it to its
original form.

When there’s a "hole" in the file, that is, a few lines in the
middle of the work file are not accessible, a partial keep (i.e.,
KEEP using a range) of the beginning part and then of the end
part can help save most of the file. Similarly, multiple KEEP's
using ranges can help get around multiple "holes." Do a TEXT of
the first part kept and then JOIN the other part(s). A key point
to keep in mind is that an ADD after a DELETE ALL will set up a
new work file; a TEXT command always sets up a new work file.

MEMORY DUMP PROCEDURES
FOR SERIES II)

Len Croley
HP General Systems Division

l. Use the following standard procedures to take a dump:

. Put a magnetic tape on DRT 6 UNIT 0 with a write ring.

Press both the ENABLE and DUMP switches at the same time.

Check the code which appears in the CIR register on the
front panel. (Refer to Section 5 of the Console Operator’s
Guide, part no. 30000-90013) . If the correct code does not
appear in the CIR register, go to step 2.

If step 2 has been performed at least once, and if the dump
just completed is good (CIR code is correct), then go to
step 3.

If the dump worked the first time through, the tape can now
be handled by DPAN2 and the stream file DUMPJOB. Go to 3.D.

Accomplish the following procedures (Note: Do not rewind the
tape):

A.

B.

Put 006606 in the switch register.

Push the ENABLE and LOAD switches. (The tape will move only
a small amount. This writes an end-of-file mark on the
tape.)

If you accidentally press ENABLE and DUMP instead of ENABLE
and LOAD, rewind the tape or mount another tape and start
over at step 1.B.

Make a note each time this segquence (i.e., step 2) is com-
pleted.

Perform steps 1.B and 1.C again.

(*) Differences in microcode should make these procedures
unhecessary on Series I and III.

AdOO avol y31s193d
NOY fa—| %2 378VN3 HOLIMS OLNI
SS3Hd 909900 HILN3
S1dW311V avol ¥31s1934
40 HIGWNN B 318VN3 HOLIMS OLNI
LNIWIHONI SSIHd 909900 HILN3I

g0rdNna
Wv3dls

dANg
® 3719VN3
$S3Hd

0=S1dW3lLlv
40 H3gWNN

14dvi1s

3. Accomplish the following steps if step 2 has been performed at
least once:

A. Enter 006606 in the switch register and simul taneously
press the ENABLE and LOAD switches. (This writes a final
End-Of -File on the tape. The EOF is not required by DPAN2
but will be needed for the following steps.)

B. Bring up the system.

C. Log onto the system and issue the following commands:

1)
2)
3)
4)

5)

:FILE DUMPTAPE; DEV=TAPE; REC=4096,1,F, BINARY

:BUILD MDUMP; REC=4096,1,F,BINARY;DISC=100,1,1

:RUN FCOPY.PUB.SYS
>FROM=*DUMPTAPE; TO=MDUMP ; SUBSET; SKIPEOF=(Insert the
number of times you performed step 2.)

SEXIT

(NOTE: The formaldesignator of the dump source in DPAN2 is
MDUMP. If the dump source specified by the user is other than
MDUMP, the file command

:FILE MDUMP=filename

must be entered before DPAN2 can be run.)

D. Bring up the system and stream DUMPJOB.PUB.SYS, fill out
the Problem Report, and submit this documentation to your
Hewlett-Packard service representative.

E. Purge MDUMP.

MAGNETIC TAPE CONSIDERATIONS

Denis Winn
General Systems Division

Every standard reel of magnetic tape designed for digital com-
puter use has two reflective markers located on the back side of
the tape (opposite the recording surface). One of these marks is
located behind the tape leader at the beginning of tape (BOT)
position, and the other is located in front of the tape trailer
at the end of tape (EOT) position.

These markers are sensed by the tape drive itself and their posi-

tion on the tape (left or right side) determines whe ther they
indicate the start or end of tape positions. (See below.)

MAGNETIC TAPE

|

LEADER BOT FILE SPACE EOT TRAILER

As far as the magnetic tape hardware and software are concerned,
the BOT marker is much more significant than the EOT marker. BOT
signals the start of recorded information, but EOT simply indi-
cates that the remaining tape supply is running low and the pro-
gram writing the tape should bring the operation to an orderly
conclusion.

The difference in treatment of these two physical tape markers is
reflected by the MPE file system intrinsics when the file being
read, written, or controlled is a magnetic tape device file. The
following paragraphs discuss the characteristics of each appro-
priate intrinsic.

FWRITE

When a user program attempts to write over or beyond the physical

EOT tape marker, the FWRITE intrinsic returns an error condition

code (CCL). The actual data has been written to the tape, and a

call to FCHECK will reveal a file error indicating END OF TAPE,

All writes to the tape after the EOT tape marker has been crossed

will transfer the data successfully but will return a CCL condi-

tion code until the tape winds off the reel or until a backspace .
operation (rewind, backspace file) causes the EOT marker to pass

the sensor in the reverse direction.

10

FREAD

A user program can read data written over an EOT marker and be-
yond the marker into the tape trailer. The intrinsic returns no
error condition code (CCL or CCG) and does not initiate a file
system error code when the EOT marker is encountered.

FSPACE

A user program can space records over or beyond the EOT marker
without receiving an error condition code (CCL or CCG) or a file
system error. The intrinsic will, however, return a CCG condi-
tion code when a logical file mark is encountered. If the user
program attempts to backspace records over the BOT marker, the
intrinsic returns a CCG condition code and remains positioned on
the BOT marker.

FCONTROL (WRITE EOF)

If a user program writes a logical end of file (EOF) mark on mag-
netic tape over the reflective EOT marker, or in the tape trailer
after the marker, the FCONTROL intrinsic returns an error condi-
tion code (CCL) and sets a file system error to indicate END OF
TAPE. The file mark is actually written to the tape.

FCONTROL (FORWARD SPACE FILE MARK)

A user program which spaces forward to logical tape file marks
(EOFs) with the FCONTROL intrinsic cannot detect passing the
physical EOT marker. No special condition code is returned.

FCONTROL (BACKWARD SPACE TO FILE MARK)

The EOT reflective marker is not detected by FCONTROL during
backspace file (EOF) operations. If the intrinsic discovers a
BOT marker before it finds a logical EOF, it returns a condition
code of CCE and treats the BOT as if it were a logical EOF. Sub-
sequent backspace file operations requested when the file is at
BOT are treated as errors and return a CCL condition code and set
a file system error to indicate INVALID OPERATION.

In summary, only those intrinsics which cause the magnetic tape
to write information are capable of sensing the physical EOT
marker. If a program designed to read a magnetic tape needed to
detect the EOT marker, it could be done by using the FCONTROL
intrinsic to read the physical status of the tape drive itself.
When the drive passes the EOT marker and is moving in the forward
direction, tape status bit 5 (%2000) is set and remains on until
the drive detects the EOT marker during a rewind or backspace
operation. Under normal circumstances, however, it is not neces-
sary to check for EOT during read operations. The responsibility

11

for detecting end of tape and concluding tape operations in an
orderly manner belongs to the program which originally created '
(wrote) the tape.

A program which needed to create a mutli-volume (multiple reel)
tape file would normally write tape records until the status re-
turned from FWRITE indicated an EOT condition. Writing could be
continued in a limited manner to reach a logical point at which
to break the file. Then several file marks and a trailing tape
label would typically be added, the tape rewound, another reel
mounted, and the data transfer continued. The program designed
to read such a multi-volume file must expect to find and check
for the BOF and label sequence written by the tape’s creator.
Since the logical end of the tape may be located past the physi-
cal EOT marker, the format and conventions used to create the
tape are of more importance than determining the location of the
EQOT.

END-OF-FILE MARKS ON MAGNETIC TAPE

An FWRITE to magnetic tape, followed by any intrinsic call which
reverses tape motion (for example, backspace a record, backspace
a file, or rewind) causes the file system to write an EOF mark
before initiating the reverse motion.

For example, if a user program has just written several data ‘
records to magnetic tape, writes a file mark, rewinds the tape,

and closes the file, the tape file will be terminated by two file

marks (EOF). The first of these was reguested by the user by

calling FCONTROL to write an EOF, and the second was provided by

the system because the direction of tape motion had been reversed

after a write (rewind). See below.

E E
Record Record Record 0] 0
1 2 n F F

SPACING FILE MARKS

When you space forward to a tape mark (EOF), the tape recording
heads have just read the EOF and are positioned beyond it, as
follows:

12

E
0

F
U BEFORE ’H AFTER

When you space backward to a tape mark (EOF), the mark is recog-
nized as the tape travels in the reverse direction. The tape

heads are left positioned just in front of the EOF that was read,
as follows:

0w

HOm

HOoOw

B E
0 0
F T

H AFTER =& HBEFORE

Note: BOT (beginning of tape) and EOT (end of tape) correspond
to the reflective markers on the reel of magnetic tape.

When FREAD has found a logical file mark and returned a condition
code of CCG, an EOF mark has been read and the tape heads are
positioned immediately following the mark . (similar to spacing
forward to a tape mark, as described above).

13

CALCULATING THE APPROXIMATE SIZE
OF OUTPUT SPOOFLES

Madeline A. Lombaerde
General Systems Division

An output spoofle contains variable length records; each record
has an overhead of 5 words (including carriage control when not
embedded in the record). The records are blocked to a maximum of
508 wcrds (4 sectors) per block. Using this information, it is
possible to approximate the disc space required by a particular
output spoofle.

Example:
6600 lines, each 132 characters long was written into an output
spoofle and reguired 3772 sectors. This number can be calculated

by the following method:

1. # werds per record = [132/2] + 5 = 71 werds.

508 words/klock
2. # records per block = |71 words/record| = 7 records.

6600 records
3. # blocks = |7 records/block| = 943 blocks.

4, Disc Space = 943 blocks * 4 sectors/block = 3772 sectors.

Where[]nmans truncate to nearest whole number less than
or equal to the value of the expression and [T | means round
up to nearest whole number greater than or equal to the value
of the expression.

Please note that since records normally vary considerably in
length, an average record length must be estimated in order to
follow these calculations. A certain amount of error will almost
always result but at least you’'ll have a reasonable approximation
of the reguired disc space (*).

It might also be useful to know the approximate number of sectors
reguired for each page of output. The number of sectors reguired
for one page (60 lines) of records of the specified number of
characters are shown as follows.

14

SECTORS PER

CHARACTERS/LINE PAGE (60 LINES)
132 36
118 32
72 20
36 12
18 8

Note that the greater the number of pages to be printed per out-
put spoofle, the more efficiently the Spooler can utilize disc
space. In the calculations given above, 3772 sectors were re-
quired to print 110 pages, 60 1l32-character-lines on each page
(6600 lines). However, if we multiplied the number of sectors
required for one page, the number would be 110 x 36 = 3960 sec-
tors (5% error).

SPOOK UTILITY

The SPOOK utility provides another way of finding out both the
number of sectors actually used and the number of printlines
produced.

:RUN SPOOK.PUB.SYS
SPOOK B00.00 (C) HEWLETT-PACKARD CO., 1976

>SHOW; @

#FILE #JOB FNAME STATE DEV/CL PR CP RFN OWNER
#012 #5107 our READY LP 8 1 USER.ACCT
#FILE LDEV LABEL SECTORS LINES TIME

#012 %3 $1026400 1024 169 8:49 8/23/78

>EXIT

(*) Output spoofles contain variable length records: trailing
blanks are truncated.

15

SPOOLING AND JOB
MANAGEMENT NOTES

The information presented in this article is taken from a prev-
iously published System Analyst Note (3000.MPE.GENERAL-22, Jan-
uary 10, 1975).

USER FACILITIES
1. JOB SUBMISSION
1.1 Sequential JOBs

Normally, every JOB in a sequence of JOBs is independent of
the other. Such JOBs can be submitted and executed in any
order. In certain exceptional cases, however, a sequence of
JOBs is ordered such that a particular JOB must be completed
before the following JOB(s) may be executed, or even submit-
ted. When such a JOB sequence is submitted on a nonspooled
device, this ordering is implicitly effected, because every
command record is executed when it is physically read.
Spooling a job-accepting device can essentially nullify this
ordering since: 1) JOBs are admitted (by the spooler) before
preceding JOBs have executed; and 2) the concurrency of JOB
execution is not necessarily limited to 1.

A JOB contains a grouping of requests which are presumably logi-
cally related in the indicated order. Every request pertaining

to the JOB's chore is included; and no function not relating to

the JOB is included. That s why JOBs are treated independently

in MPE. When an "ordered" seguence of JOBs is to be submitted,

the following can be considered:

1) Why are the JOBs all separate? The applications in which
separate ordered JOBs must be submitted are rare. Users are
encouraged to combine into one JOB all those functions
necessary to implemnt the JOB's chore. Different JOBs are
required only when a separate logon domain is necesary, such
as account creation JOBs, or to cause billing to another
account, group, or user. [Sometimes, users use separate,
ordered JOBs so that the aborting of one step will not cause
succeeding steps to be skipped. In these cases, :CONTINUE
should be used. The next two suggestions address those
applications where an ordered JOB sequence is required.

16

:JOB

:EQJ
:JOB

:EQJ
:JOB

:EOJ

Unspool device. This is obviously the simplest procedure.
It makes the JOB sequence ordered because JOB execution is
tied to physical reading.

"Spawn" JOBs with STREAM. A sequence of two or more dis-
joint, ordered JOBs can be converted into one JOB, in which
every JOB is :STREAMed by its immediate predecessor. For
example, the following two sequences of three JOBs are
equivalent:)

Jl :JOB J1
: STREAM ,!
J2 [~ 1JoB J2
. (leading ":" replaced by "1!"
| STREAM ,#
J3 #JOB J3
. (leading ":" replaced by "#"
$EQT J3
! EOD
| IEOT J2
:EOD
:EQJ J1

Note that the :STREAMed version is properly nested; i.e.,
the third JOB is :3TREAMed by the second, not by the first -
disjoint :STREAMed JOBs all originating from the outer
(first) JOB would not work. This would not work if STREAM
was not enabled, of course. Also, see Note 1.6 for special
conventions necessary where nesting :STREAMs.

:STREAM from Cards

When preparing ;STREAM source from cards on the IBM 029
keypunch, remember that certain 029 and ASCII (Hollerith)
characters are transposed. In particular, 029 s "!" is not
ASCII "!" (it“s ASCII "]"). Place "!" in the :STREAM com—
mand (:STREAM,!), or use another character.

17

": STREAMing Nothing"

:STREAM performs a recognition function similar to that done
for real devices. For example, the first action is to
"flush" (ignore) the stream until a legimate :JOB or :DATA
command is found. No error message or job number will
appear if no :JOB or :DATA command is found. This will be
the case if the prompt character supplied (explicitly or
implicitly) by the :STREAM command is different than :STREAM
source, as may sometimes be the case, mistakenly, when using
a disc file.

Terminating Batch :STREAMs

Although SESSIONs can terminate :STREAM with break, JOBs
must signal end-of-file. The default :STREAM input is
SSTDIN, so any ":" will terminate the operation, not the
STREAMed JOB’s EOJ. For example:

:JOB
:STREAM ,!
!JOB

IECJ
:FILE L .

will result in the :FILE command being "swallowed" by
:STREAM, signaling end-of-file to it. :EOD should be used
to terminate :STREAM in JOBs.

:STREAM :JOB/:DATA Recognition - Read Length
It is possible to extend a terminal input line by using LF.
However, because :STREAM reads only the record width of the

source file, this should not be used for long :J0B/:DATA
commands; use "&" continuation.

18

Nested :STREAMs

When one :STREAMed JOB is introduced from within another
:STREAMed JOB be sure they use different prompt characters.
Consider, for example:

:JOB OUTER

—
-
-

[1
#

#
!
Tl

-
L. *

STREAM ,!

'JOB MIDDLE

STREAM ,#
JOB INNER

EQJ

EOD

COMMENT THIS IS "MIDDLE"

EOJ

EOD

COMMENT DONE "OUTER s" STREAM

Here "OUTER" initiates one :STREAM JOB ("MIDDLE"); "MIDDLE",
in turn initiates "INNER" when "MIDDLE" executes. [This is
a method to ensure the desired JOB sequence, see 1.1.1] If
"#" hadn’t been used for "INNER", then "OUTER" would wind up
initiating both "MIDDLE" and "“INNER". Note, also, the
proper nesting of EODs.

INTERPRETING JOB/SESSION OUTPUT

When JOB S$SSTDLIST to line printers is examined, the fol-
lowing times are noted:

HEADER - Timestamp, Ty

:JOB & WELCOME info - Timestamp, Tj
:EOJ - Elapsed Time, E - Timestamp, Te
TRAILER - Timestamp, T,

The following attempts to clear up any confusion regarding
the interpretation and relationship of these times:

19

Ty - the (wall) time that the header is printed; .
T; - the (wall) time that the JOB actually began execution;
E - the time between the job finishing execution and the

time that the JOB was introduced, which means that it
includes the time that the JOB was waiting to begin
processing;

T, - the (wall) time that the JOB finishes execution;

T, the (wall) time that the trailer is printed.

In analyzing these times, keep in mind that they can be off
by + one minute, due to rounding. The following relation-
ships can be derived from the definitions above:

Th < Ty

E >> Te - T; (E includes waiting time)

T, =T; < Te = Ty, when S$STDLIST not spooled

Tj <Teg <= Ty < Tt, when $STDLIST is spooled

[The equal relationship, above, should be interpreted as
"close to".]

" (INCOMPLETE)" Trailers

The message "(INCOMPLETE)" on a trailer indicates that the
spooled output has been interrupted and does not appear in
its entirety. This will occur if:

a. The console operator has explicitly interrupted it by
command while it was being printed. It can be "defer-
red" for possible later printing or deleted.

b. A disc I/0 error was detected while it was being
printed.

c. The system crashed while the output was being created
(before FCLOSing the file). The console operator should
know the specific reason.

No Trailer

A trailer will not appear with an output line printer or

card punch file if the system crashes during printing of the
file; or, if spooled, a spoolee (device) error is detected. ‘

20

Card Punch Headers/Trailers

Files produced on spooled card punches are preceded by
header cards and followed by trailer cards. These contain
only descriptive information about the file which can be
read by "interpreting" the cards.

DEVICE ALLOCATION

Allocate Algorithm
The first determination made when allocating a non-sharable

device is whether the request is for an "OLD" or "NEW"
devicefile:

in l out
devicetype ~\
{r * in/out Y

in out
OLD user access NEW
(default)

in/out
OLD # NEW
User OLD/NEW

(default)

OLD means to search for a pre-defined input file (e.g.,
:DATA,SSTDIN). If an OLD file cannot be found, the console
operator is queried. If a NEW request fails, the user’s
FOPEN is rejected. The console operator is asked to
"locate" all mag tape requests.

Refer to Section IV of the Console Operator ‘s Guide for a
discussion regarding the relevant names (job, file) when
allocating a :DATA devicefile.

Allocating :DATA Terminals

:DATA devicefiles can only be allocated as OLD; see Note
3.1. When the target is a card reader, OLD is implied by
the device type; i.e., input. But when the :DATA devicefile
is a terminal (input/output device), the user specifications
become relevant. 1In particular, he should not reguest out-
put - only access; and if he’s not requesting input access,
he must specify OLD. Otherwise, he will get an FOPEN
failure.

Device Assignment for Partially Spooled Classes

When a device class is configured such that some devices on
it are spooled and some are not, NEW allocations will prefer
available real devices to spooled devices.

21

SEGMENTATION FOR EFFICIENCY
OF SYSTEM-TYPE PROGRAMS

John Page/Madeline Lombaerde
General Systems Division

The purpose of this article is to describe, for the benefit of
system programmers, some guidelines for the optimum design of
programs for the 3000; in particular, attention will be given to
the questions of segmentation.

The 3000 is a process or iented machine, incorporating the separa-
tion of code and data, and stack architecture. This permits easy
design of re-entrant code. The purpose here is to discuss ways
of making a particular process:

a. Run as fast as possible.

b. Have minimum effect on other processes in the system.

PROCESS ENVIRONMENT

When you write a program, it is executed by MPE in the form shown
in Figure 1. The process has a single data segment {or "stack")
and a variable number of code segments of varying sizes. When
you write your program you can control:

a. the size of the stack

b. the number of your code segments

c. the size of each segment

d. which code goes into which segment.

PROCESS
-
Data
Segment | Code
{Stack) Segments
Figure 1.

22

The preceding diagram is actually a simplification since it

does not show the externals referenced by your program (see
Figure 2). 1If for example, your SPL-written program calls FOPEN,
then a link will be created from your code to an MPE segment con-
taining the FOPEN intrinsic code. Most of these intrinsics and
all the Compiler Library routines are not in memory permanently,
thus they are viewed by MPE as code segments identical to your
own even though they were not written by you. For programs writ-
ten in SPL, you are in control of which external procedures are
called, since the calls are made explicitly. For other lan-
guages, the compiler will implicitly create in your program calls
to external routines in order to perform, for example, a Fortran
WRITE or a COBOL DISPLAY. The environment of a non-SPL program
is harder to control because it requires a knowledge of when the
compiler will emit those external calls. We will limit this dis-
cussion to those areas over which you have primary control: your
own program code and data stack. Given any language, there are
some fundamental principles to follow which will decrease the
run-time of a process and its impact on system load.

PROCESS

Your Code

Segments
belonging

Data to MPE.

Segment Code - Intrinsics,
{(Stack) Library Routines,
Language, Run-
time Routines,

Se gments etc.)

Figure 2.

HOW TO DETERMINE A PROGRAM ENVIRONMENT

When you prepare your program the PMAP option will show the size
of each segment, which procedures are in which segment, and the
names of externals called by each segment. The MPE Commands and
Debug/Stack Dump reference manuals describe the format of the
PMAP in detail.

23

HOW MPE RUNS YOUR PROGRAM

There are two MPE modules concerned here - the dispatcher and the
memory management system. The dispatcher is responsible for the
allocation of CPU time to all the executing processes. The
memory manadgement system has the job of fitting code and data
segments into memory as they are required, this operation often
requiring the decision of which segment (s) to delete to make
space. When your time-slice starts, the stack is made present in
memory and control is passed to the program. As the program
proceeds, it will call procedures which are not in the current
segment . At this point your program is suspended while MPE
arranges to make the required segment present. This can take
from 20 to 100 milliseconds since a disc access is involved.
While this is going on the dispatcher tries to run the process
with the next highest priority which is already resident in
memory. When the destination segment has been made present,
control is passed to the procedure originally called.

The point to note here is that calling a procedure in an absent
code segment is a time-consuming job.

HOW DO I TELL IF A SEGMENT WILL BE PRESENT?

You can’t. The memory management system will simply attempt to
keep the most popular segments in real memory. The smallest set
of segments (both code and data) which must be in real memory for
a program to execute efficiently is called the program’s working
set. This dynamic set of segments may, and most often does,
change continuously during the life of the executing program.

The philosophy of the HP 3000 memory manager is based on the idea
that there is an ideal absence frequency for an executing pro—
cess. If a process gets more than the expected number of absen-
ces, the memory manager concludes that the process does not have
enough segments in its working set, and proceeds to add the re-
guested (absent) segments to the working set.

However, if a process executes for a long time without absence
traps, the memory manager concludes that the working set is too
large and real memory is not being used efficiently. The least
used segments will be removed from the working set and made
available for overlay.

From the user’s point of view, he cannot influence the internal
function of the memory manager. The user can, however, design
his application with the working set concept in mind. First, he
should keep in mind that a total of all working sets active at
the same time (i.e., a total of all the commonly used segments,
at any given time, for all application programs running
concurrently) should be less than or equal to 75% of his linked
(i.e., available to user) memory. This restriction on working
set size is critical and directly reflects the memory management
segment replacement algorithm.

24

—_—

RULES FOR SEGMENTING YOUR PROGRAM
Rule No. 1

Minimize the number of times the program crosses a segment
boundary. In other words, stay within a segment for as long as
possible. When you leave it, stay out for as long as possible.

DESIGN OF PROGRAMS IS IMPORTANT

Do not leave segmentation to the last minute. As will be shown
below, it is possible to write programs that cannot be correctly
segmented.

Any procedure or outer block Relocatable Binary Module (RBM) must
reside wholly within a segment. Thus if it proves necessary to
move a block of code into a separate segment, it will only be
possible if the code is a procedure. You cannot take an arbi-
trary set of instructions and place them into a named segment

- the whole RBM must be moved. Therefore, the way you divide
your program into procedures is vitally important in the design
phase.

CONCEPT OF LOCALITY

The locality of a program is the degree to which control remains
in the same general area of code. A high locality means that
control remains in the same area for a long period of time. Poor
locality means the program branches wildly and rapidly, all over
the place. The 3000 needs programs that have good segment
locality but does not care about the degree of locality within
any given segment. That is to say, i1t does not want programs
that jump from segment to segment continuously but once inside
any given segment, it doesn’t matter what the locality is like.

If correctly applied, the principle of locality minimizes the
number of possible absence traps and minimizes segment switching
during execution. Although transferring control between memory
resident code segments takes less time than accessing segments cn
disc, it still requires more execution time (approximately 2.5
times longer) than transferring within the same segment.

FUNCTIONAL vs. TEMPORAL SEGMENTATION

Intuitively, one segments according to the function of the proce-
dures. That is, all the command decoding routines are put to-

ge ther, the command executors are put together, etc. This is
wrong. Wrong! Segmentation is a speed-enhancing operation;
time, not function, is the critical dimension. Since Rule No. 1
says stay inside a segment for as long as you can, control must
pass smoothly.from segment to segment as the program progresses.

25

As an example, consider a small utility program which dumps a
file to the line printer in some special format. Let us suppose
that the operator can choose the name of the file and which of
three possible formats to use. The program is written with four
procedures: A, B, C, and D.

Let us further suppose that each dump routine has a procedure to
fetch a record from its file and a procedure to format a print
line:

Ask user for file «———— -
name and dump format (:)

Open file
. NO - error
. msg
OK?

. Procedure A talks to
Choose dump routine operator {(might be the
outer block).

/’T\
e ! ~
- H N Procedures B, C, D,
e / N o produce the dumps.
- [} ~
’/ I \\

e ! S o

I ~
Format 1 Format 2 Format 3
Figure 3.

26

— A
P AN
- | =~ -
- { \\\
Bl Cl D1 Get records
| B2 | C2 | D2 Format output
T) .
Figure 4.

It would be tempting to put all the formatting routines in one
segment, and the record fetching routines in another. This would
cause a segment boundary to be crossed twice for every record
dumped - perhaps a thousand times. The correct way is to put
B1B2 together, C1C2, etc. If A is in its own segment then only
three segment boundaries are crossed for a whole dump. 1In a busy
system this simple change could make large differences in the run
time of your program.

To sum up, estimate the number of times a segment boundary is
crossed in your program and multiply this by 40 milliseconds.
This is the time your program could be doing no useful work and
other processes will be disrupted.

Rule No. 2

DO NOT BURDEN YOUR WORKING SET WITH
INFREQUENTLY USED CODE

let us suppose that you have arrived at some segmentation scheme
using the above rule so that you have good segment locality. The
next step is to reduce the size of the ‘working set’.

FREQUENCY OF CODE USE

The ‘working set’ of segments is the set that consumes most of
the CPU time. For example in the program above the working set
is the code that executes the main loop such as ClC2. Let us
assume that CIC2 are in a segment of their own called CSEG. The
system may spend minutes in this segment for a large dump. It is
important, therefore, to minimize its size in order to reduce
compe tition for the sgcarce memory.

27

To do this, examine the code in the working set and remove any .
code that executes infrequently. Very often, this applies to
code which does error-handling. When your program detects an
error, do not handle it in~-line. Write an error-message
generating procedure and call it with a parameter indicating
which message to output. This can be put in a separate segment
and thus not clutter up memory while doing normal error-free
processing. As another example, suppose that in the program
ment ioned above, after doing an FWRITE, you check the condition
code for end-of-file and, if required, execute a somewhat
elaborate sequence to extend the file by building a new one and
copying the o0ld into it and then purging the old file. If this
condition is likely to occur once in every 500 runs, why hold it
in precious memory with the working set? Banish it to some
auxiliary segment and let MPE bring it in only when needed.
Remember that you can only move this code if it is a procedure.

WRONG RIGHT
FWRITE(...); FWRITE(...);
IF >THEN IF>THEN EXTEND FILE;
BEGIN
<<LENGTHEN FILE>> Procedure EXTEND’ FILE
is put in another
. segment .
END;

SEGMENT SIZES

This is a trade-off. 1If you have a lot of small segments, then
they are easier for the memory manager to place in real memory
However, a scarce resource is being used up in the form of Code
Segment Table Extension (CSTX) entries. One entry in the CSTX is
needed for every program segment, and the table has a maximum of
63 entries per program executing.

At the opposite end of the spectrum, your program might have a
few large segments. While this does minimize segment-boundary
crossings, the effect on memory can be devastating for other
users. There 1is no simple answer to the gquestion of optimum
segment size. The main idea is to minimize the size of the
working set.

Rule No. 3

Keep the principal working set small and make infrequently
used segments large.

28

IF YOUR CODE IS SHARED

If your program is going to be run from multiple terminals then
the code segments will automatically be shared by the multiple
processes. Each process will have its own stack, of course. If
your program design reguires data which is never altered, such as
error messages, look-up table, etc., then by placing them in the
code rather than the stack, only one copy is required for all
processes.

WRONG

BEGIN
BYTE ARRAY MESSG (0:22) :="TOO MANY TIMES ENTERED"; Global
Declarations

PROCEDURE MESSOUT; Procedure to print error message
BEGIN
PRINT (MESSG,-23,0);

END;
END.

WHY WRONG? The array MESSG is present in the stack perpetually.
Each process running this program carries the
message string around in its stack.

RIGHT

BEGIN MESG only exists while MESSOUT executes. SPL will store
. the string in quotes in the code segment - effectively
. making it shared. The stack is now smaller.

PROCEDURE MESSOUT;

BEGIN

BYTE ARRAY MESG(0:22);

MOVE MESG:="TOO MANY VALUES ENTERED";
PRINT (MESG,-23,0);

END:

END.

29

GENMESSAGE .

Another way to keep the principal working set small is to use

the new message system provided by MPE III through the GENMESSAGE
intrinsic. This intrinsic allows you to keep error messages in a
disc file, avoiding placing them in either the stack or code seg-
ments. The messages can be read from disc whenever needed.

Implementing this idea involves the following steps:

® creating a message catalog using the EDITOR subsystem and
MAKECAT program

e opening the catalog in your application program

e including in your application a procedure for selecting
and displaying messages from the catalog.

For example:

BEGIN

PROCEDURE MESSOUT (MESS 'NUM) ;

VALUE MESS 'NUM;

INTEGER MESS ‘NUM;
BEGIN
GENMESSAGE (FILE 'NUM, SET 'NUM,MESS "NUM)
END;

END.

In this example, FILE 'NUM is provided for the message catalog at

FOPEN, and SET 'NUM is a predefined value. The GENMESSAGE intrin-
sic, using the value in MESS ‘NUM, will select the proper message

from your catalog and print it. Other capabilities of GENMESSAGE
are described in the MPE Intrinsics reference manual.

Rule No. 4

In SPL, keep initialized variables, especially arrays, out of the
GLOBAL DECLARATIONS.

In Fortran, infrequently used variables and arrays should not be
initialized in DATA statements. ‘

30

SEGMENTATION IN COBOL

Greg Gl css
General Systems Division

COMPILE TIME SEGMENTATION

To use the Segmenter effectively with COBOL programs, you shculd
first understand how the COBOL compiler generates code segments.
A COBOL -program produces twc or more code segments depending on
the number of sections in the Procedure Division. The first seg-
ment contains one unit which initial izes the run-time data area.
For the main program, this initialization unit is the Outer
Blcck. The unit name is formed by appending an apostrophe to the
name specified in the PROGRAM-ID paragraph.

By using sections with different priority numbers in your prc-
gram, you can segment your program into several code segments,
For COBOL subprograms, the name of the PROGRAM-ID paragraph is
used for the unit and segment name of the first such segment.
This unit contains the subprogram’s primary entry point. In
addition, a secondary entry point is present which is used to
per form some initialization functions outside of the initializa-
tion procedure. The name for this secondary entry point is fcrmed
ky appending an 'S to the name in the PROGRAM-ID paragraph. All
remaining subprogram segments and all main program seoments
except the outer blcck derive their names from the section name
and priority number of the first section in the seoment. In the
case of a main program without any sections, the name is formed
from the first paragraph name.

If you do not segment your program, it will be put into one
seoment. The program shown belcw produces three segments, one
for initialization and two for the Procedure Division code.

001000 IDENTIFICATION DIVISION
001100 PROGRAM-ID. MAIN.
001200 ENVIRONMENT DIVISION.
001300 DATA DIVISION.

001400 PROCEDURE DIVISION.
001500 FIRST-SEC SECTION.
001600 START-1.

001700 DISPLAY "START OF MAIN PROGRAM."

001800 CALL "SUB."

001900 SECOND-SEC SECTION |[02. Priority Number
002000 START-2.

002100 CALL "SUBA."

002200 DISPLAY "END OF MAIN PROGRAM."

002300 STOP RUN.

31

When using the Segmenter to move COBOL program units around, the
following restrictions apply:

1. The outer block must be the first program unit presented at
PREP time which allocates Secondary DB storage. The base
address for the main program data area must be DB+0.

2. The outer block and non~dynamic subprograms cannot be put
into an SL.

When studying the following examples, remember that the Segmenter
inserts new procedures and new segments at the top of the list.
Therefore, you may have to take action to put things in the pro-
per order.

The following items allocate Secondary DB storage and therefore
cannot precede the outer block:

1. Procedures from non-dynamic COBOL subprograms which contain
the subprogram’s primary entry point.

2. SPL procedures with TRACE, EXTERNAL, or OWN variables.

3. FORTRAN procedures with DATA, COMMON, LABELED COMMON, or
TRACE variables.

Dynamic COBOL subprograms and other procedures which do not use
global storage may precede the outer block. Segments from non-
dynamic COBOL subprograms other than the first segment (i.e., the
segment containing the primary entry pcint) fall into this
category.

Consider the USL file, shown below, which was produced by com-
piling a main program containing two Sections in the Procedure
Division.

Outer Block Designation
MAIN —

MAIN’ 75 A C N

SECONDSEC(02 ’

SECONDSEC02” 34 P A C N R
FIRSTSEC00’
FIRSTSEC00 ’ 36 P A C N R

Now, suppose you have compiled a non-dynamic subprogram into an-
other USL file and want to move it into the master USL file. The
first step is to COPY the two subprogram segments into the master
USL file using the Segmenter.

32

USL DOCUSL

AUXUSL DOCAUX

COPY SUB (Copy first subprogram body segment)
COPY SECONDSUBSEC02 (Copy second subprogram body segment)
COPY SUB’ (Copy subprogram initialization)
LISTUSL

USL FILE DOCUSL .HP32213.SUPPORT

4 Computer

SUB Museun
SUB* 153 P A C N R :
SECONDSUBSEC02 "
SECONDSUBSEC02° 51 P A C N R
SUB
SUB 62 P A C N R=—Subprogram Primary
SUB’S CP A C R Entry Point
MAIN
[MAIN’ 75 OB A C N |
SECONDSEC02°
SECONDSECO02° 34 P A C N R
FIRSTSEC00°
FIRSTSECO00 ° 36 P A C N R

However, this leaves the USL file in an improper condition since
a non—-dynamic subprogram primary entry point precedes the Outer
Block. There are two ways to correct this situation. The first
way is to move the Outer Block to the first segment by using a
NEWSEG command as shown below.

NEWSEG SUB’ ,MAIN’
PURGERBM SEGMENT,MAIN
LISTUSL

USL FILE DOCUSL.HP32213.SUPPORT

’,

SUB

IMAIN 75 OB A C N |

SUB 153 P A C N R
SECONDSUBSEC02°

SECONDSUBSEC02 ° 51 P A C N R
SUB

SUB 62 P A C N R

SUB S CP A C R
SECONDSEC02 "

SECONDSEC02” 34 P A C N R
FIRSTSEC00°

FIRSTSECO00 ’ 36 P A C N R

The second way is to use the NEWSEG command to create a new seg-
ment for the Outer Block as shown in the following example.

33

NEWSEG NEWMAIN,MAIN’
LISTUSL

USL FILE DOCUSL.HP32213.SUPPORT

NEWMAIN

IMAIN’ 75 OB A C N |
SUB”’

SUB’ 153 P A C N R
SECONDSUBSEC02”

SECONDSUBSEC02 51 P A C N R
SUB

SUB 62 P A C N R

SUB’S CP A C R
SECONDSEC02

SECONDSECO02° 34 P A C N R
FIRSTSEC00”

FIRSTSECO00 ’ 36 P A C N R

The USL file can now be prepared.

If you want to add a dynamic subprogram or a procedure in another
language (such as SPL or FORTRAN) which does not use global
storage, the COPY command can be used without any further action.

COPY SUBA’ (Copy subprogram initialization)
COFY SUBA (Copy first subprogram body unit)
COPY SECONDDSUBSEQ02 ~ (Copy second subprogram body unit)
LISTUSL

USL FILE DOCUSL.HP32213,.SUPPORT

SECONDDSUBSEQ2

SECONDDSUBSEQ2’ 5. P ACNR
SUB A

SUBA 52 P A CNR

SUBA’S CP A C R
SUBA’

SUBA’ 233 P ACNR
NEWMAIN

MAIN’ 75 OB A CN
SUB’

SUB’ 153 P A CNR
SECONDSUBSEC02°

SECONDSUBSEC02° 51 P ACNR
SUB

SUB 62 P A CNR

SUB’S CP A C R
SECONDSECO02 °

SECONDSECO02’ 3 P ACNR
FIRSTSECO00”

FIRSTSECO00 ’ 36 P ACNR

34

Now, suppose you want to combine some segments together. You can
use the NEWSEG command to combine initialization procedures, main
program modules and subprogram compilations.

NEWSEG SUB,SUB
PURGERBM SEGMENT, SUB
NEWSEG SUBA’,SUBA
PURGERBM SEGMENT ,SUBA
LISTUSL

USL FILE DOCUSL .HP32213.SUPPORT

SECONDDSUBSEOQ2 °

SECONDDSUBSEQ2 ° 51 P ACNR
SUBA’

SUBA 52 P ACNR

SUBA’S Cp A C R

SUBA’ 233 P ACNR
NEWMAIN

MAIN’ 75 OB A CN
SECONDSUBSEC02°

SECONDSUBSEC02 " 51 P ACNR
SUB

SUB’ 1s3 P A CNR

SUB 62 P ACNR

SUB’S CP AC R
SECONDSEC02°

SECONDSEC02 " 3 P ACNR
FIRSTSECO00°

FIRSTSEC00 ’ 36 P ACNR

You can also move a main program segment into another segment.
NEWSEG SUBA’,FIRSTSECO00°

PURGERBM SEGMENT,FIRSTSECO00 ’

LISTUSL

USL FILE DOCUSL.HP32213.SUPPORT

SECONDDSUBSEO02 ’

SECONDDSUBSE02° 51 P A C N R
SUBA’

FIRSTSECO00 " 36 P A C N R

SUBA 52 P A C N R

SUBA’S CPp A C R

SUBA’ 233 P A C N R
NEWMAIN

MAIN’ 75 OB A C N
SECONDSUBSEC02°

SECONDSUBSEC02° 51 P A C N R

35

SUB
SUB’ 153 p A C N R
SUB 62 P A C N R
SUB 'S cp A C R

SECONDSEC02”

SECONDSEC02° 34 p A C N R

COBOL code modules (except for the outer block) can be put into
an RL.

In sumrary, the following items can be put into an RL:
COBOL subprograms
Procedures in other languages
Subprogram initialization procedures
Main Program modules.
The following cannot be put into an RL:
Outer Block (Main program initialization).
The following can be put into an SL:
Dynamic subprograms

Subprogram initialization routines
Procedures in other languages without global data.

The following cannot be put into an SL:

Outer Block (Main program initialization)
Non-dynamic COBOL subprograms
Procedures in other languages with global data.

36

HOW TO BUILD AN INTERFACE
BETWEEN COBOL AND ANY
MPE INTRINSIC FROM SPL

Terry Von Gease
HP General Systems Division

There are few (if any) MPE Intrinsics callable directly from
COBOL. This is due to the way COBOL sends parameters (in the
USING clause) and the way the various MPE Intrinsics expect to
receive them.

Some MPE Intrinsics are "Option Variable". This means that some
of the parameters are optional. When an option variable pro-
cedure is called one or more extra words will be passed along
with the parameters to indicate which parameters are present.

The extra word, or words, are passed, one word for each 16 pos-
sible parameters. Bits are set on or off to indicate which para-
meters are present and which are not. The bits in the extra
word, or words, correspond to the actual parameter list on a one
for one basis from right to left. When calling an option vari-
able intrinsic it is the responsibility of the calling process to
provide this additional information. SPL handles this automati-
cally, however, COBOL will not provide the proper data so any
option variable intrinsic cannot be called directly from COBOL.

Also, many of the MPE Intrinsics are "Typed Procedures”. A Typed
Procedure returns a value (one, two, or four words) that is inde-
pendent of any passed parameters. This is a value generated by
the procedure itself. For example, assume that we have an SPL
program that is going to call the MPE Intrinsic BINARY. This
intrinisc will convert a byte array containing ASCII numeric
characters for a specified length to a one word integer and re-
turn this integer as the value of the intrinsic. For this
example assume that we have a byte array called BUFFER that con-
tains the character string "1234", we have a one word integer
called LENGTH that contains the number 4 (4 characters in BUF-
FER), and we have another one word integer called RESULT which
will be used to contain the result. The actual call to BINARY
would look like this:

RESULT:=BINARY (BUFFER,LENGTH) ;

Note that the ":=" is SPL for "replaced by", a single "=" means
something else.

In this case the value of the integer RESULT is replaced by the
binary numeric value of the character string BUFFER. COBOL has
no way of coping with this returned value so this MPE Intrinsic
is useless to us on that basis alone. (Not to mention what it

does to the stack internally).

37

Another feature of many MPE Intrinsics is the use of the Condi-
tion Code to indicate the result of a call to a particular ‘
intrinsic. In the preceding BINARY example the condition code

would be set to < (less than) if the character string contained

one or more non-numeric characters (except a leading minus in

this case), a > (greater than) if the result was beyond the capa-

city of a one word integer (less than -32768 or greater than

+32767), or = (equal) if the call functioned properly and the

returned value in RESULT is valid. In SPL it is a simple matter

to interrogate the condition code after a call, we simply

say:

IF < THEN (if the condition code is less than)

IF > THEN (if the condition code is greater than)

IF = THEN (if the condition code is egual)

IF <> THEN ... (if the condition code is not equal)

IF <= THEN ... (if the condition code is less than or egual)

IF >= THEN ... (if the condition code is greater than or equal)

What follows the THEN statement in each case is code for whatever
you want to do if the statement is true.

Since COBOL has no way of interrogating the condition code we
would have no way of knowing whether or not the call to BINARY
worked properly even if we could call BINARY directly.

Furthermore, if we examine the description of the BINARY intr in-
sic in the MPE Intrinsics Manual we find that not only is BINARY
a procedure that sets the condition code, but also that the char-
acter string parameter must be a byte array passed by reference
(COBOL passes word arrays by reference, so that’s out) and that
the length parameter is a one word integer (so far so good)
passed by value (so we lose here also).

The difference between a reference and a value parameter is this:
When a reference parameter is used the ADDRESS of the parameter
is passed; when a value parameter is used the actual value of the
parameter is passed. In the case of our call to BINARY, the ad-
dress of the byte array BUFFER and the binary value 4 are passed.
Let s take a look and see what actually happened when we called
BINARY:

We know (or we should know) that we have something called a stack
for our program. The stack contains all of the data area for our
program and is referenced by the STACK or S register (there are
other references but S is all we need to consider for this
example).

When the SPL compiler encounters the call to BINARY it generates:
code which does the following:

l. SPL interrogates the MPE Intrinsic file to determine the
various characteristics of BINARY. : .

38

S e o

. 2. SPL notices that this procedure will return a one word inte-

ger value. To accomodate this a zero is loaded onto the
stack and the S register is incremented by 1.

3. SPL sees that the first parameter is by reference, so it
places a one word address of the first variable specified
(BUFFER in this case) on the stack and the S register is
incremented by 1.

4. SPL sees that the next parameter is passed by value so it
places the value of the specified parameter (LENGTH in this
case) on the stack and the § register is incremented by 1.

5. SPL sees that all of the parameters have been taken care of
SO it generates a PCAL machine instruction for BINARY.

6. PCAL places 4 more words on the stack and increments the S
register by 4. These 4 words are referred to as a "Stack
Marker" and contain all of the information needed to return
to the proper place in the calling program.

7. PCAL does whatever is necessary to make BINARY present in
the system and transfers control to it.

8. BINARY does whatever it is that BINARY s do. One of the

back in the stack in the location of the first word that
SPL placed there.

. things that it will do for sure is place the result value

9. BINARY exits. When this happens all of the passed parameters
(both of them in this case) and the 4 word stack marker are
removed from the stack and the § register is decremented by
the proper value (6 in this case). Note that the first loca-
tion that was for the returned value is NOT removed from the
stack. The condition code is set and control returns to the
proper place in the calling program.

10. SPL remembers that this procedure will return a one word
value so it removes it from the stack and places it in
RESULT. The S register is now decremented by 1.

11. We are now back at the start of the next sequential instruc-
tion from where we left and the stack is back to what it was
before the call to BINARY. The pot’s right.

All of this may or may not make any sense at this time but it
does serve to point out what we must do to get at any MPE Intrin-
sic from COBOL. We must construct an interface to resolve the
parameter types, return variables, and the condition code. At
this time a few words about COBOL data types may be in order.

‘ 1. Any field included in a USING clause MUST be located on a

word boundary. This is easily accomplished by defining
everything that may be used as a parameter at an 01 or 77
level. 1If this proves to be annoying, word alignment may be

39

. . . . D
insured by using the SYNC clause or merely by insuring thgt,/
there is ALWAYS an EVEN number of bytes between parameters. ‘
(this method is not recommended).

2. COBOL keeps numeric data in four forms:

A. The display numeric form of PIC S9(3). All this is a
string of ASCII numeric characters.

B. The edited numeric form of PIC Z%ZZ%ZZ. This is still a
string of ASCII characters.

C. The COMPUTATIONAL-3 form of PIC S9(3) COMP-3. This, of
course, is packed decimal information with 2 digits per
byte except for the last byte which contains 1 digit and
the sign.

D. The COMPUTATIONAL form of PIC S$9(3) COMP. This is
numeric data in integer form. COBOL uses no floating
point data, all binary numeric data is kept in one to
four word integers. Four or fewer digits are one word;
from 4 to 9 digits are two words; and greater than 9
digits are four words.

Generally only numeric data of type COMPUTATIONAL will be
of any use to us for passing numbers. And of the
COMPUTATIONAL types only the one and two word integers will
be used.

Now let us define and construct an interface so COBOL may call
BINARY. The simplest way to do this is to write the calling
program in COBOL and then write the interface in SPL.

The portions of the COBOL program doing the calling should look
something 1like this . . .

In the working-storage section:

01 BUFFER PIC X(4).

01 LENGTH PIC S9(4) COMP.

01 RESULT PIC S9(4) COMP.

01 COND-CODE PIC S9(4) COMP.

In the procedure division (assume that the COBOL program
has moved "1234" to BUFFER and 4 to LENGTH):

CALL "CBINARY" USING BUFFER, LENGTH, COND-CODE,
RESULT.

Note that we have called our procedure CBINARY and we
have included a couple of extra parameters, as you surely
must have guessed, to contain the condition code and the

result value. .

40

The

LwaoJonuyidwh K+
.

=
o

11.
12,

Note

SPL interface will have to look something like this . . .

SCONTROL SUBPROGRAM
BEGIN
PROCEDURE CBINARY (BUFFER,LENGTH,COND " CODE,RESULT);
ARRAY BUFFER;
INTEGER LENGTH,COND " CODE,RESULT;
BEGIN
BYTE ARRAY BBUFFER(*)=BUFFER;
INTRINSIC BINARY;
RESULT:=BINARY (BBUFFER,LENGTH) ;
IF < THEN COND’ CODE:=-1 ELSE IF > THEN COND’ CODE:=1
ELSE COND’° CODE:=0;
END;
END.

that the line numbers are NOT used for SPL but only included

so we may reference each line for discussion . . .

Line

Line

Line

Line

Line

Line

Line

Line

1: This puts the compiler into SUBPROGRAM mode.

2: All SPL programs of any sort must start with a BEGIN
statement.

3: This declares the procedure and all of its parameters
to the compiler.

4: Each of the parameters included in the procedure
declaration (line 3) must now be described. Since
COBOL always passes word pointers by reference we de-
clare BUFFER to be a word array.

5: The rest of the parameters are declared as integers
since we have described them to COBOL as one word inte-
gers. Note that we had to change the name of COND-CODE
slightly since SPL does not allow the use of the hy-
phen. 1In fact the only special character SPL allows in
names is the apostrophe.

6: Like the program itself, each procedure must start with
a BEGIN statement.

7: This is a local data declaration and is the heart of
the whole interface. We have declared a byte array
that shares the same storage location as the word array
BUFFER. We call this "Equivalencing" the two arrays.
Byte arrays may always be equivalenced to word arrays
but never word arrays to byte arrays since there is no
certainty of having a byte array begin on a word
boundary. We could gain or lose a leading byte.

8: This declares that BINARY can be found in the MPE
Intrinsic file.

4]

Line 9: This is the actual call to BINARY. Note that we used
the parameters LENGTH and RESULT just as they were
passed but we had to use the equivalenced array BBUFFER
for the string parameter. When SPL encounters the
LENGTH parameter, even though this parameter was passed
by reference, it will take the data found at the ad-
dress that was passed. In other words, SPL will always
resolve value parameters whether the value parameter is
a literal or a variable. If we knew somehow that there
were exactly four characters contained in BUFFER (or
BBUFFER since both of these are really references to
the same thing) we could have called BINARY thusly:

RESULT: =B INARY(BBUFFER,4) ;

In this case the SPL compiler would have immediately
placed the binary value four on the stack rather than
have gone to the storage location LENGTH and used what
it found there. The results would have been identical
in either case.

Line 10: This takes care of the condition code. The passed
parameter COND-CODE is set to -1 if the condition code
was <, +1 if the condition code was >, or 0 if the con-
dition code was =.

Line 11: This terminates the procedure.
Line 12: This terminates the program.

Now that we have written the source for both the COBOL main pro-
gram and the SPL subprogram we can compile all of this into one
USL file and PREP it into a runnable PROGRAM file. To do this
always make sure that all of the non-COBOL source is compiled
first, then compile the COBOL source. This is because of the way
COBOL must link things internally.

What we have done is resolve any reguired byte arrays by
declaring a local byte array that is equivalenced to the passed
word array, included an extra parameter from COBOL to handle the
return value, and included an extra parameter to represent the
condition code. If a particular system intrinsic does not return
a value, then that parameter can be omitted. Likewise, if the
condition code does not matter to you, there is no need to
include a parameter for it either.

In any case the outline for the SPL interface must look like
this:

42

S$CONTROL SUBPROGRAM
BEGIN
PROCEDURE name your procedure and state its parameter list in
parentheses;
ARRAY declare any arrays for future eguivalencing here;
INTEGER declare any single word integers here;
DOUBLE declare any integers with 4 to 9 digits here;
BEGIN
BYTE ARRAY name of local byte array (*)=name of passed word
array;
INTRINSIC names of the System Intrinsics that you want to call;
call the System Intrinsic;
set up the condition code;
END;
END.

This all looks guite complicated but be assured after the first
time you“1ll love it.

We have not covered all of the possibilities here. We have only
tried, through a representative sample, to show what generally
must take place for an interface to function properly. Perhaps
one important factor that was not brought out is that any number
of interface procedures can be contained in one SPL source file.
Merely stick them in between the main BEGIN/END pair like this:

SCONTROL SUBPROGRAM
BEGIN

PROCEDURE first procedure;
BEGIN

code for first procedure;
END;

PROCEDURE next procedure;
BEGIN

code for this procedure;
END;

and soon . . .

END.

And there you are.

43

JOURNEY FROM AN ABORT MESSAGE
TO A LINE OF SOURCE CODE

Madeline ILombaerde
General Systems Division

A key element in isolating program problems (user or subsystem)
is the proper interpretation of an abort message. This note
deals with the principal methods for going from an abort message
back to the line of source code where the abort occurred. The
examples for FORTRAN and BASIC compiled programs use the methods
that apply to SPL as well.

While it may seem as if the same methods can be applied directly
to COBOL, there are certain conventions used by COBOL that are
hidden from the user and significantly complicate the search for
a program bug when the methods in this note are used. Therefore,
the recommended procedure for debugging COBOL for now is to put
in tracing DISPLAY statements, for example, at the beginning of
each paragraph and/or section. As for RPG, built-in debugging
features should be used.

The following examples show two compiled programs and the steps
required to identify the location of an error in the source code
of each program when given an abort message.

NOTE
The figures in EXAMPLES 1 and 2 have
been edited. Only data directly
pertinent to the discussion of the

examples is included.

Example 1 is a program (ABCINFO) compiled using FORTRAN A
{figures 1A and 1B) and FORTRAN B (figures 2A and B).

44

Example 1: FORTRAN A and B

While running program ABCINFO,
occurs:

the following abort message

ABORT :SOLDPASS...%0.%13
PROGRAM ERROR #24: BOUNDS VIOLATION

The program PMAP is:

PROGRAM FILE SNEWPASS.HLBOOK.MAL

ABC1 0

NAME STT CODE ENTRY SEG

ABCSETUP 1 0 0

SEGMENT LENGTH 20
ABCO 1

NAME 'STT CODE ENTRY SEG

ABCINFO 1 0 11

ABCSETUP 2 0

TFORM ’ 3 ?

FMTINIT’ 4 ?

TERMINATE ’ 5 ?

110° 6 ?

AIIO’ 7 ?

SEGMENT LENGTH 110
PRIMARY DB 0 INITIAL STACK 1440 CAPABILITY
SECONDARY DB 3 'INITIAL DL 0 TOTAL CODE
TOTAL DB 3 MAXIMUM DATA 11610 TOTAL RECORDS

ELAPSED TIME 00:00:02.134

PROCESSOR TIME 00:00.446

45

The source was compiled using Fortran A with the S$CONTROL options
Using Fortran B, SCONTROL LOCATION was used.

of LABEL and

MAP.

See figure 1 and 2.

46

00001000 SCONTROL USLINIT,LABEL,MAP,SEGMENT=ABCO
00002000 PROGRAM ABCINFO
00003000 INTEGER ABC(100)
00004000 5 WRITE (6,600)
00005000 600 FORMAT (" NUM? ")
00006000 READ (5,*) NUM
00007000 IF (NUM.EQ.0) STOP
00008000 CALL ABCSETUP (ABC ,NUM)
00009000 10 WRITE(6,601) ABC
00010000 601 FORMAT (10F6.2)
00011000 GO TO 5
00012000 END

SYMBOL MAP
NAME TYPE STRUCTURE ADDRESS
ABC INTEGER ARRAY Q+ 1,1
ABCSETUP SUBROUTINE
NUM INTEGER SIMPLE VAR Q+ 2

LABEL MAP

STATEMENT CODE STATEMENT CODE STATEMENT CODE

LABEL OFFSET LABEL OFFSET LABEL OFFSET
5 15 10 53 600 FMT 0
601 FMT 5
Figure 1A.

00013000 SCONTROL SEGMENT=ABC1l
00014000 SUBROUTINE ABCSETUP(I,N)
00015000 INTEGER I (N)
00016000 DO 1 J=1,N
00017000 1 I(J)=J
00018000 2 RETURN
00019000 END

SYMBOL MAP
NAME TYPE STRUCTURE ADDRESS
ABCSETUP SUBROUTINE
I INTEGER ARRAY Q- 5,I
J INTEGER SIMPLE VAR Q+ 2
N INTEGER SIMPLE VAR Q- 4,1

LABEL MAP

STATEMENT CODE STATEMENT CODE STATEMENT CODE

LABEL OFFSET LABEL OFFSET LABEL OFFSET
1 11 2 15
Figure 1B.

47

PAGE 0001 HP32102B .,00.09 FORTRAN/3000 (C)HEWLETT-PACKARD CO. 1976
00001000 SCONTROL USLINIT,LABEL,MAP,SEGMENT=ABCO,LOCATION
00015 000062000 PROGRAM ABCINFO
00015 00003000 INTEGER ABC(100)
00015 00004000 5 WRITE (6,600)
00032 00005000 600 FORMAT (" NUM? ")
00032 00006000 READ (5,*) NUM
00043 00007000 IF (NUM.EQ.0) STOP
00047 00008000 CALL ABCSETUP (ABC,NUM)
00053 00009000 10 WRITE(6,601) ABC
00074 00010000 601 FORMAT (10F6.2)
00074 00011000 GO TO 5
00075 00012000 END

SYMBOL MAP
NAME TYPE STRUCTURE ADDRESS
ABC INTEGER ARRAY Q+ 1,I
NUM INTEGER SIMPLE VAR Q+ 2
ABCSETUP SUBROUTINE

LABEL MAP

STATEMENT CODE STATEMENT CODE STATEMENT CODE

LABEL OFFSET LABEL OFFSET LABEL OF FSET
5 15 10 53 600 FMT 0
601 FMT 5
Figure 2A.

48

PAGE 0002 HEWLETT-PACKARD 32102B.00.09 FORTRAN/3000
00004 00013000 SCONTROL SEGMENT=ABCl
00004 00014000 SUBROUTINE ABCSETUP(I,N)
00004 00015000 INTEGER I(N)
00004 00016000 DO 1 J=1,N
00011 00017000 1 I(J3)=J
00015 00018000 2 RETURN
00016 00019000 END
SYMBOL MAP
NAME TYPE STRUCTURE ADDRESS
ABCSETUP SUBROUTINE
J INTEGER SIMPLE VAR Q+ 2
I INTEGER ARRAY Q- 5,I
N INTEGER SIMPLE VAR Q- 4,1
LABEL MAP
STATEMENT CODE STATEMENT CODE
LABEL OFFSET LABEL OFFSET
1 11 2 15
Figure ZB.

49

The place to start is the PMAP.

1. Find the name of the program unit in the segment %0 whose
code begins before location %13 and whose last code location
is greater than %13.

——w»SEGMENT 0

ABC1
NAME STT CODE ENTRY SEG
1 0 0
SEGMENT LENGTH 20 TT—=13 IS BETWEEN

0 AND 20

Now we know the abort is in the subroutine ABCSETUP.
Next,
2. Calculate the relative program unit offset (RPUO) as follows:
RPUO=Abort location - start of code
From this formula, our RPUO for this example is
213 - %0 = %13
3. Now go to the compiler listing of ABCSETUP.
a. Fortran A (Fig. 1lb): Locate the statement label whose

offset is less than %13 but such that the offset for the
next label in the source code is greater than %13.

The abort occurred between line 17 (statement 1) and line
18 (statement 2).

b. Fortran B (Fig. 2b): Locate the statement whose relative
code offset is less than %12 such that the offset for the
very next statement is greater than %13.

The abort occurred while trying to execute this
statement.

A bounds violation indicates that an attempt was made to
address a location outside of the code or data statement.
To check why the loop was going out of bounds, the user
should check the data for NUM making sure that it is less
than 100. If the data is OK, DEBUG can be used to check
the value of J at the time of the abort (do a :SETDUMP
and then check Q+2 in ABCSETUP).

50

Example 2 is a program (ABCBSC) compiled using BASIC.

Example 2: BASICOMP

While running program ABCBSC, the following abort message occurs:

ABORT :SOLDPASS...%0.%367:SYSL.%154.%3741
PROGRAM ERROR #24: BOUNDS VIOLATION
The program PMAP is

PROGRAM FILE SNEWPASS.HLBOOK.MAL

SEG’ 0

NAME STT CODE ENTRY SEG

B 'LLBL 0 0

B "ABORT

TERMINATE ’ 12 ?

NOECHO 3 233 236

ABCBSC 4 242 242

B "INPUTNUM 13 ?

B “TERMIO 14 ?

B "PRINTNUM 15 ?

B ‘STOP 16 ?

B ‘ABORTPLUSN UM 17 ?

SEGMENT LENGTH 424
PRIMARY DB 17 INITIAL STACK 1440 CAPABILITY 600
SECONDARY DB 424 INITIAL DL 0 TOTAL CODE 424
TOTAL DB 443 MAXIMUM DATA 11610 TOTAL RECORDS 11
ELAPSED TIME 00:00:03.708 PROCESSOR TIME 00:00.621

L

51

The Basic Fast Save file was compiled with S$CONTROL SOURCE,LABEL,
MAP

PAGE 0001 HEWLETT-PACKARD 32103B.00.08 (4WD) BASICOMP

SCONTROL USLINIT,SOURCE,MAP, LABEL
SCOMPILE ABCBSC

10 DIM A[50]

20 INPUT "I=",I

30 IF I=0 THEN STOP

40 FOR J=1TO I

50 A[J]=J

60 NEXT J
70 PRINT (FOR J=1 TO I,A[J])
80 GOTO 20
SYMBOL MAP
ABCBSC
NAME TYPE ST RU CTURE ADDRESS
a REAL ARRAY 0+ 4,I
I REAL SIMPLE VAR 0+ 5
J REAL SIMPLE VAR o+ 7
LABEL MAP ENTRY POINT 0 STACK 111
LABEL LOCATION LABEL LOCATION LABEL LOCATION LABEL LOCATION
10= 20 41 20 41 30 54 40 61
50 73 60 100 70 106 80= 20 136

Figure 3

Again, start with the PMAP:

1. Locate the program unit in Segment zero whose code begins
before location %367 and whose last code location is greater
than %367. This is in segment %0. The reason we go to
%0.%367 instead of to location %154.%3741 is because this
library (SL.PUB.SYS) routine is called at location %0. %367
and probably received bad data to begin with.

52

PROGRAM FILE S$NEWPASS.HLBOOK.MAL

EGMENT 0
SEG”’
NAME STT CODE ENTRY SEG
B LLBL 1 0 0
M
rd
ADPROC 7 ?
B ‘ABORTPLUS - 10 ?
B “RUNOB 2 233 233
B INITIAL 11 ?
TERMINATE ° 12 ?
NOECHO 3 233 236 FAST SAVE FILE WAS
[ABCBSC 4 (242) 242 jt/ ABCBSC
"B 'INPUTNUM 13 ?
B “TERMIO 14 ? STARTING LOCATION OF
B "PRINTNUM 15 ? CODE FOR ABCBSC
B’STOP 16 ?
B ‘ABORTPLUSNUM 17 ?
SEGMENT LENGTH 424 367 IS BETWEEN 242

AND 424.

2. Now we know that the abort occurred in ABCBSC and we can cal-
culate the RPUO as before:

RPUO=Abort location - start of code
RPUO=%367 - %242 = %125

3. Now go to the campiler listing (Fig. 3): look for the state-
ment whose starting location is less than %125 but such that
the next sequential statement has a beginning location
greater than %125.
The abort occured during execution of statement 70. The data

for I should be checked to assure that the value of I is less
than or equal to 50.

53

RIN’S

Madeline Lombaerde/Hal Goodwin
General Systems Division

Several requests have been received asking for an example of a
way to use global RIN's. 1In providing the following example, we
assume that the reader has some familiarity with the concept of
RIN's. Section VI of the MPE Intrinsics reference manual should
be reviewed as background for this article.

LOCKING AND UNLOCKING GLOBAL RIN’S

Any global RIN assigned to a group of users can be locked by one
job at a time with the LOCKGLORIN intrinsic. Once a RIN is
locked, any other jobs that attempt to lock this RIN are
suspended.

In order to lock a global RIN, you must know: 1) the RIN number
returned by MPE when the RIN was acdguired with the :GETRIN com-
mand, and 2) the password which was specified in the rinpassword
parameter of the :GETRIN command. If you are a user with only
the standard MPE capability, you can lock only one global RIN at
a time.

USING RIN'S TO MANAGE FILE RECORDS

Most users are aware that a file can be locked in order to pre-
vent concurrent access to a file by other processes trying to
lock the same file. This allows a user to make sure, for in-
stance, that a part of the file is not read while an update is
being performed. This file locking is accomplished through the
mutual cooperation of all processes accessing the file by means
of the FLOCK and FUNLOCK intrinsics.

There may be times, however, when a file is large enough and
enough processes need to access it regularly, that locking the
entire file can result in a significant amount of lost time.
This happens when all the other processes must remain suspended
until the file is available.

One possible solution is to lock only part of the file, allowing
processes which plan to access a different part of the file to
continue processing. Only those processes attempting to access
the "locked" records would be suspended.

Figure A contains a program which uses the LOCKGLORIN and UNLOCK-
GLORIN intrinsics. The program allows a user to lock four re-
cords, as a RIN, in a file so that a record can be updated with-
out any chance of another user updating the same record simul tan-
eously. Additionally, the other users are not suspended when
attempting to access and update records elsewhere in the file.

54

The file used in the example below contains 20 records and there-
fore five contiguous RIN’s have to be acguired (there are four
records per RIN) before the program is run. This is accomplished
by entering five :GETRIN commands as follows:

:tGETRIN BOOKRIN
where BOOKRIN is specified as the rinpassword parameter. BOOKRIN

is the password which is used in the program to lock the RIN (see
statements 6 and 36 in figure A).

TITLE: THE BORROWERS LOCN: AVAILABLE
TITLE: ALICE IN WONDERLAND LOCN: AVAILABLE
TITLE: PETER PAN LOCN: AVAILABLE
TITLE: JUNGLE BOOK LOCN: AVAILABLE
TITLE: MARY POPPINS LOCN: AVAILABLE
TITLE: TOM SAWYER LOCN: AVAILABLE
TITLE: TREASURE ISLAND LOCN: AVAILABLE
TITLE: A CHRISTMAS CAROL LOCN: AVAILABLE
TITLE: HOUSE AT POOH CORNER LOCN: AVAILABLE
TITLE: THE WIZARD OF OZ2 LOCN: AVAILABLE
TITLE: SLEEPING BEAUTY LOCN: AVAILABLE
TITLE: TALES OF MOTHER

GOOSE LOCN: AVAILABLE
TITLE: AESOP’S FABLES LOCN: AVAILABLE
TITLE: KIDNAPPED LOCN: AVAILABLE
TITLE: OLIVER TWIST LOCN: AVAILABLE
TITLE: DR. DOOLITTLE LOCN: AVAILABLE
TITLE: WHEN WE WERE

VERY YOUNG LOCN: AVAILABLE
TITLE: H.M.S. PINAFORE LOCN: AVAILABLE
TITLE: WORLD BOOK

ENCYCLOPEDIA LOCN: AVAILABLE
TITLE: COLLEGIATE

DICTIONARY LOCN: AVAILABLE

The program in figure A establishes the RIN number limits 2 and 6
(see statement number 14), thus using only RIN numbers 2, 3, 4,
5, and 6. MPE returns the RIN number assigned each time the
:GETRIN command is entered. Because MPE does not always assign
RIN numbers in sequence, however, it may be necessary to enter
more than five :GETRIN commands in order to acquire the five con-
tiguous RIN‘s 2, 3, 4, 5, and 6. Extra RIN's can be released
with the :FREERIN command.

The statements
FWRITE (OUT ,REQUEST ,8,%320) ;CCNE(5) ;
request a book number from the user and perform a condition code

check. Note that in statement number 16, CCNE has been defined
as

IF<>THEN QUIT#

55

SCONTROL USLINIT,INNERLIST

BEGIN
BYTE ARRAY INPUT (0:5):="INPUT ";
BYTE ARRAY OUTPUT(0:6) :="QUTPUT ";

BYTE ARRAY NAME (0:8):="BOOKFILE ";
BYTE ARRAY PASSWD(0:7):="BOOKRIN ";
INTEGER IN,OUT,BOOK,LGTH,ACCNO,RIN;
LOGICAL DUMMY,COND:=TRUE;

ARRAY BUFR (0:35);

BYTE ARRAY BBUFR (*)=BUFR;

ARRAY HEAD(0:13):="LIBRARY INFORMATION PROGRAM.";

ARRAY REQUEST (0:7):=%6412, "ACCESSION NO: ";
ARRAY CHANGE(0:9):=" NEW LOCATION: ";
EQUATE RINBASE=2, RECDS’'PER'RIN=4, MAXRIN=6;
DEFINE CCL =IF < THEN QUIT#%,

CCNE=IF <> THEN QUIT#;

INTRINSIC FOPEN,FREAD,FWRITE,FCONTROL, FREADDIR,FWRITEDIR,

LOCKGLORIN ,UNLOCKGLORIN,QUIT,BINARY;
<<END OF DECLARATIONS>>

IN: =FCPEN (INPUT,%45); CCL(1);

OUT:=FOPEN(OUTPUT,%414); CCL(2);

BOOK: =FOPEN (NAME , %5 ,%304); CCL(3);

FWRITE (OUT ,HEAD,14,0); CCNE(4);
LOOP:

FWRITE (OUT ,REQUEST ,8, $320) ; CCNE(5);

LGTH: =FREAD(IN,BUFR,-10) ; CCNE(6);

IF LGTH=0 THEN GO EXIT;

ACCNO:=BINARY(BBUFR, LGTH) ;

IF <> THEN GO LOOP;

RIN: =RINBASE+ (ACCNO/RECDS PER'RIN);
IF NOT(RINBASE<=RIN<=MAXRIN) THEN GO LOCOP;
LOCKGLORIN (RIN,COND, PASSWD) ;

FREADDIR(BOOK,BUFR, 36 ,DOUBLE(ACCNO)); CCL(7);
IF > THEN GO AGAIN;

FWRITE (OUT ,BUFR,36,0); CCNE(8);

FWRITE (OUT ,CHANGE ,10,%320) ; CCNE(9);

BUFR(19):=" ";
MOVE BUFR(20) :=BUFR(19), (16);
LGTH: =FREAD (IN,BUFR(19) ,17); CCNE(10);
IF LGTH>0 THEN
BEGIN
FWRITEDIR(BOOK,BUFR, 36 ,DOUBLE (ACCNO));
CCNE(11);
END;
FCONTROL (BOCK, 2,DUMMY);: CCL(12);
AGAIN:
UNLOCKGLORIN(RIN); CCNE(13);
GO LOOP;
EXIT:END.

<<$STDIN>>
<<$STDLIST>>
<<OLD DISC FILE>>
<<PROGRAM ID>>

<<KREQST BOOK NUMBR>>
<<KINPUT NUMBER>>
<KNO INPUT-EXIT>>
<<CONVERT NUMBER>>
<KIF BAD TRY AGAIN>>

<<COMPUTE RIN NO.>>
<<BOUNDS CHECK RIN>>
<KLOCK FILE SUBSET>>

<<READ BOOK DATA>>
<KEOF - TRY AGAIN>>
<<KDISPLAY DATA>>
<KREQST A CHANGE>>

<<BLANK OLD LOCN>>
<<READ NEW LOCN>>
<KNEW LOCN ENTERED>>

<KMODIFY THE FILE>>
<<CHECK FOR ERROR>>

<KFORCE RECD POST>>

<<UNLOCK SUBSET>>
<<KCONTINUE>>

Figure A. Using the LOCKGLORIN and UNLOCKGLORIN Intrinsics

56

This eliminates the need to repeat the entire statement at every
point in the program where such a condition code check is
reguired. Instead, the statement CCNE and an arbitrary number
(5 in this case) can be used.
The book number is read with the statement

IGTH: =FREAD(IN,BUFR,-10) ;
and converted to a binary value with the statement

ACCNO: =BINARY (BBUFR,LGTH) ;
The RIN number to be locked is computed with the statement

RIN: =RINBASE+ (ACCNO/RECDS "PER ‘RIN) ;
RINBASE and RECDS 'PER'RIN have been equated to 2 and 4,
respectively (see statement number 14). Thus, if book number 3

is entered by the user, the RIN number to be locked wculd be
computed as RIN number 2, as follows:

RIN 2+(3/4)

2+0(integer division)

The record specified by the book number is displayed for the user
and the change ("NEW LOCATION: ") is requested. The existing
location information: is filled with blanks with the statements

BUFR(19):=" ";
MOVE BUFR(20) : =BUFR(19), (16) ;

The new location is entered and read with the statement

LGTH: =FREAD(IN,BUFR(19) ,17) ;
and the record is updated with the statement

FWRITEDIR (BOOK,BUFR, 36 ,DOUBLE (ACCNO)) ;
The statement

FCONTROL (BOOK, 2 ,DUMMY) ;
is used in case the file which has been opened is a buffered
file. This statement insures that the process’ buffers are
posted to the disc before the RIN is unlocked.
Note that in a program of this kind, it is important that the
number of records per block and the number of records per RIN are

the same. The RIN must contain a complete block of records.

The statement

57

UNLOCKGLORIN (RIN) ; .

unlocks the RIN before the loop is repeated. When the user
enters a new book number, a new RIN number will be computed and

that RIN number will be locked.

When a carriage return is entered, signifying no input, the
program terminates.

The results of running the program and the updated condition of
the library file are shown below.

:RUN LIBIN

LIBRARY INFORMATION PROGRAM

ACCESSION NO: 3

TITLE: JUNGLE BOOK LOCN: AVAILABLE
NEW LOCATION: FACULTY LOAN - DR.
SCHWARTZ

ACCESSION NO: 10

TITLE: SLEEPING BEAUTY LOCN: AVAILABLE
NEW LCCATION: LOANED CARD#451, DUE
JUNE 6

ACCESSION NO: 3
TITLE: JUNGLE BOOK LOCN: FACULTY LOAN -
DR: SCHWARTZ
NEW LOCATION:

ACCESSION NO: 9
TITLE: THE WIZARD OF LOCN: AVAILABLE
0z
NEW LOCATION: INTERLIBRARY LOAN -
UNIV. of 0%

ACCESSION NO: 3
TITLE: JUNGLE BOOK LOCN: FACULTY LCAN -
DR. SCHWARTZ
NEW LOCATION: AVAILABLE
ACCESSION NO:

END OF PROGRAM

TITLE: THE BORROWERS LOCN: AVAILABLE
TITLE: ALICE IN WONDERLAND LOCN: AVAILABLE
TITLE: PETER PAN LOCN: AVAILABLE
TITLE: JUNGLE BOCK LOCN: AVAILABLE
TITLE: MARY POPPINS LOCN: AVAILABLE
TITLE: TOM SAWYER LOCN: AVAILABLE

58

TITLE:
TITLE:
TITLE:
TITLE:

TITLE:

TITLE:

TITLE:
TITLE:
TITLE:
TITLE:
TITLE:

TITLE:
TITLE:

TITLE:

TREASURE ISLAND
A CHRISTMAS CAROL

HOUSE AT POOH CORNER

THE WIZARD OF 0OZ

SLEEPING BEAUTY

TALES OF MOTHER
GOOSE

AESOP 'S FABLES
KIDNAPPED
OLIVER TWIST
DR. DOOLITTLE
WHEN WE WERE VERY
YOUNG

H.M.S. PINAFORE
WORLD BOOK
ENCYCLCPEDIA
COLLEGIATE
DICTIONARY

LOCN:
LOCN:
LOCN:
LOCN:

LOCN:

LOCN:
LOCN:
LOCN:
LOCN:
LOCN:
LOCN:

LOCN:
LOCN:

LOCN:

59

AVAILABLE
AVAILABLE
AVAILABLE
INTER-

LIBRARY LOAN -

UNIV. OF 01Z
LOANED

CARD #451,
JUNE 6

AVAILABLE
AVAILABLE
AVAILABLE
AVAILABLE
AVAILABLE
AVAILABLE

AVAILABLE
AVAILABLE

AVAILABLE

DUE

CALLING SPL FROM RPG AND
CALLING COBOL FROM SPL

Bruce Campbell
HP Neely Sales Region

I. When you call SPL from RPG using RLABL and EXIT, the RPG com-
piler generates the equivalent of a global byte pointer declara-
tion for fields used in an RLABL operation. For example:

RLABL XYZ
generates the eguivalent of:

global byte pointer XYZ;
To access parameters declared with the RLABL operation from an
SPL procedure, the parameter should be declared in the local dec-
laration section of the procedure as "EXTERNAL BYTE POINTER".

For example, given the following RPG code:

RLABL XYZ
EXIT EXTPRO

The SPL procedure would start:

PROCEDURE EXTPRO;
BEGIN
EXTERNAL BYTE POINTER XYZ;

Note the following points:

1. It does not matter whether the RPG field named in an RLABL
operation is alpha or numeric (i.e., packed). Both are refer-
enced as external byte pointers from a called SPL procedure.

2. Parameters passed to SPL procedures by RLABL are not defined
in the procedure head, but only in the local declarations.

Below is an RPG program, RPGDATE, that calls an SPL procedure,
MDYCON, and passes it two files, MDYRZZ and JDATZZ, through the
RLABL operation.

II. In calling COBOL from SPL there are three items to keep in
mind:
1. Conpile the COBOL program with the DYNAMIC option in the

SCONTROL statement. This forces the COBOL compiler to allocate
all data division storage Q-RELATIVE.

60

‘I' III.

STI

Specify the parameters passed to the COBOL program in both the
linkage section and in the USING option of the procedure
statement. For example:

LINKAGE SECTION.

01 PARAM]1 PIC S9(5) COMP-3.

01 PARAM2 PIC S9(4) COMP.

PROCEDURE DIVISION USING PARAM1I PARAM?2

The parameters must be specified in the USING option of the
Procedure Division statement in the same order that they are
given in the SPL call to the program. Also, the parameters
must be declared in the linkage section at the 01 level.

All parameters passed to a COBOL program must be word-
addressed since the COBOL compiler always generates word
addresses for external data items (as distinguished from byte
addresses). Also, the COBOL compiler always starts 01-LEVEL
COMP-3 fields in the left-hand byte of a word. This means that
the declaration

01 FIELD PIC S9(5) COMP-3.

which uses two words, has a slack byte in the right-most byte
of those two words. COBOL always handles parameters by refer-
ence, but file number is passed from COBOL by value.

Below are three example programs.

1. RPGDATE: An RPG program that calls an SPL routine called
MDYCON and makes two packed decimal data fields available to
it.

2. MDYCON: An SPL program that calls a COBOL routine called
MDYCONC. MDYCON takes care of the addressing incompatibility
between the RPG byte pointers and the COBOL word addresses.

3. MDYCONC: Translates the MM/DD/YY date passed from the RPG
program to Julian format and returns the Julian date to the
RPG program.

RPGDATE

TLE"***TEST DATE CONVERSION:

MM/DD/YY TO JULIAN***x %"

H

FINFILE IPEAF 72 72 DISC
FOUTFILE O F 72 72 DISC

IINFILE AA 01
I 1 60DATEIN

C

RLABL JDATZZ 50

61

RLABL MDYRZZ 60
Z-ADDDATEIN MDYRZ?Z
EXIT MDYCON

OUTFILE D 01

oo0oOOn

JDATZZX 10

MDYCON

SCONTROL SUBPROGRAM
BEGIN
PROCEDURE MDYCON:
BEGIN
<L
**%* ALIGN PARAMETERS ON WORD BOUNDARIES
**%* AND PASS WORD ADDRESS TO COBOL
>>
EXTERNAL BYTE POINTER MDYRZZ,JDATZZ;
LOGICAL ARRAY MDYR(0:1) ,JUL(0:1);
BYTE ARRAY BMDYR(*)=MDYR,BJUL (*)=JUL;
PROCEDURE MDYCONC (DATE “IN,DATE ‘OUT) ;
INTEGER ARRAY DATE ‘IN,DATE "OUT;
OPTION EXTERNAL;
MOVE BMDYR:=MDYRZZ, (4);
MDYCONC(MDYR,JUL) ;
MOVE JDATZZ:=BJUL, (3);
END;
END;

MDYCONC1

STITLE "****xx*x**x*CONVERT STANDARD TO JULIAN***%*xkkkkkxk1
$CONTROL DYNAMIC,MAP
IDENTIFICATION DIVISION.
PROGRAM-ID. MDYCONC.
ENVIRONMENT DIVISION.
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.
01 UNPAK-DATE PIC9(6).
01l DATE-SUBS.
02 MM PIC 99.
02 DD PIC 99.
02 YY PIC 99.
01 MONTH-DISPLACEMENT-TABLE.
02 MONTH-DISP PIC 999 OCCURS 12 TIMES.
01 QUOT PIC S999.
01 REM PIC S9.

62

LINKAGE SECTION.

01 MDY-DATE PIC S9(6) COMP-3.

01 JULIAN-DATE PIC S9(5)

* kkkk

COMP-3.

PROCEDURE DIVISION USING MDY-DATE JULIAN-DATE.

START-MDYCON SECTION.
DISPLAY "RECEIVED "

MDY-DATE.

MOVE "000031059090120151181212243273304334"
TO MONTH-DISPLACEMENT-TABLE.
MOVE MDY~-DATE TO UNPAK-DATE.

MOVE UNPAK-DATE TO DATE-SUBS.

DISPLAY "Y,M,D:" YY

L] ; n MM "

;ll DD ll;ll.

IF YY=0 OR MM=0 OR MM>12 OR DD=0 OR DD>31 THEN
MOVE 99999 TO JULIAN-DATE
DISPLAY "FLUSHED WITH "

GOBACK.
COMPUTE JULIAN-DATE
COMPUTE JULIAN-DATE
COMPUTE JULIAN-DATE
DISPLAY "SENT BACK "

JULI

YY*1000.
JULIAN-DATE + MONTH-DISP (MM).
JULIAN-DATE + DD.

AN-DATE.

JULIAN-DATE

DIVIDE 4 INTO YY GIVING QUOT REMAINDER REM.
IF REM NOT = ZERO THEN GOBACK.
IF MM>2 COMPUTE JULIAN-DATE = JULIAN-DATE + 1.

GOBACK.

LVL SOURCE NAME
"WORKING~STORAGE SECTION

01 UNPAK-DATE

01 DATE-SUBS

02 MM

02 DD

02 YY

01 MONTH-DISPLACEMENT-TABLE
02 MONTH-DISP

01 Quor

01 REM

LINKAGE SECTION

01 MDY-DATE
01 JULIAN-DATE

MDYCONC2

Symbol Table

Map

BASE

(o] ool ofofo) ol ol o

LINK
LINK

DISPL

000174
0oc 202
000202
000204
000206
000210
000210
000254
000260

000000
000000

63

SIZE

000006
000006
000002
000002
000002
000044
000044
000003
000001

000004
000003

USAGE CATEGORY R O D J
DISP DISP-N
GROUP
DISP DISP-N
DIsp DISP-N
DISP DISP-N
GROUP
DISP DISP-N 0
DISP DISP-NS
DISP DISP-NS
CcOMP~-3 N
COMP-3 N

PMAP

RPG 01 0
NAME ST
RPG 08
ROUT
RINT
R’CALT
R ‘CALD
R'CNTL
SEGMENT LENGTH 34

RPG 00
NAME
ROUT
RWRITE
R'CALT
R'CALD
MDYCON
RINT
R “ERROR
1°0001 65 110
SEGMENT LENGTH 150

RL SEGMENT 2
MDYCON 1
MDYCONC 2

C'LIT FIG 'MOVE 4

5
6
7

CODE ENTRY GSEG
0 0

[«) WS, I VeI O |
WHHRP

=
92]
p—3
—

CODE ENTRY SEG

33 33
37 37

65 65

'_J
MO B JWN =

C ‘DECABS

MPYD

C ‘DISPLAY INIT

C ‘DISPLAY’L 10

C 'DISPLAY ID 11

C’'DISPLAY FIN 12

DIVD 13

MDYCONC ’ 3 1154 1154
SEGMENT LENGTH 1420

[V RPYS TS BTG RO UG RETS IE

64

. ® . e ___

NOTE: This order form is for updates only. To order complete manuals (new, new editions,
reprints), use the Corporate Parts Center order form. After being incorporated into a manual

through reprinting, updates continue to be available for six months.

il

HEWLETT hp;

PACKARD

SOFTWARE/PUBLICATIONS DISTRIBUTION
ORDER FORM

UPDATES TO 3000 AND 2000
LEVEL MANUALS ONLY

SHIP TO:

NAME

COMPANY

STREET

CITY STATE ZIP CODE

MANUAL NAME

PART NUMBER

QUANTITY

When completed, please
mail this form to:

HEWLETT-PACKARD

SOFTWARE /PUBLICATIONS DISTRIBUTION
5303 Stevens Creek Blvd.

Santa Clara, CA 95050

There is no charge for manual updates.

Please photocopy this order form if Z

you do not want to cut the page off. HEWLETT 7'__ PACKARD

You will automatically receive a new

order form with your order. CONTRIBUTED SOFTWARE
Direct Mail Order Form

Please Print:

NOTE: No direct mail order can be
shipped outside the United States.

Name Title
Company
Street
City State Zip Code
Country
Item Part at Description List Price Extended
No. No. v scriptt Each Total
Sub-total
*Tax is verified by computer according to your ZIP CODE. If no sales tax is
added, your state exemption number must be provided: #
If not, your order may have to be returned. Your State & Local
Sales Taxes™
Domestic Customers: Cash required on. all orders less than $50.00. Mail the order
form with your check or money order (payable to Hewlett- Handling Charge 11 50
Packard Co.} or your U.S. Company Purchase Order to:
TOTAL

HEWLETT-PACKARD COMPANY
Contributed Software

P.O. Box 61809

Sunnyvale, CA 94088

International Customers: Order through your local Hewlett-Packard Sales office. No direct mail order can be shipped

outside the United States.

All prices domestic U.S.A. only. Prices are subject to change without notice.

HEWLETT-PACKARD
COMPUTER SYSTEMS COMMUNICATOR ORDER FORM

Please Print:
Name Date
Company
Street
City State Zip Code
Country
[J HP Employee Account Number Location Code
] DIRECT SUBSCRIPTION List Extended Total
Part No. Description Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 $48.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for.5951-6111
5951-6112 COMMUNICATOR 2000 ____ 25.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6112
5951-6113 COMMUNICATOR 3000 ______ 48.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6113
[] BACK ISSUE ORDER FORM (cash only in U.S. dollars)
(subject to availability) tssue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 $10.00
10.00
- 1000
TOTAL DOLLARS
5951-6112 COMMUNICATOR 2000 $ 5.00
5.00
5.00
TOTAL DOLLARS
5951-6113 COMMUNICATOR 3000 _— $10.00
10.00
- 10.00

TOTAL DOLLARS
TOTAL ORDER DOLLAR AMOUNT

] SERVICE CONTRACT CUSTOMERS

You will receive one copy of either COMMUNICATOR 1000,
2000, or 3000 as part of your contract. Indicate additional
copies below and have your local office forward. Billing will
be included in normal contract invoices.

Number of additional copies

[FOR HP USE ONLY |

CONTRACT KEY

5951-6111
5951-6112
5951-6113

Approved

Number of additional copies
Number of additional copies
Number of additional copies

HEWLETT-PACKARD
COMMUNICATOR SUBSCRIPTION AND ORDER INFORMATION

The Computer Systems COMMUNICATORS are systems support publications available from Hewlett-Packard on an annual
subscription.

The following instructions are for customers who do not have Software Service Contracts.

1. Complete name and address portion of order form,

2. For new direct subscriptions (see sample below):

Indicate which COMMUNICATOR publication(s) you wish to receive.

b. Enter number of copies per issue under Qty column.

c. Extend dollars {quantity x list price) in Extended Dollars column.

d. Enter discount dotlars on line under Extended Dollars. (If quantity is greater than 1 you are entitled to a 40% discount.”)
e. Enter Total Dollars (subtract discount dollars from Extended List Price dollars).

®

*To qualify for discount all copies of publications must be mailed to same name and address and ordered at the same time.

SAMPLE
DIRECT SUBSCRIPTION List Extended Total
Part No. Description Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 3 $48.00 #/4400
(if quantity is greater than 1 discount is 40%) 57 60
TOTAL DOLLARS for 5951-6111 ¥ 86-40

3. To order back issues (see sample below):
Indicate which publication you are ordering.
Indicate which issue number you want (check availability in latest COMMUNICATOR). .
Enter number of copies per issue.
. Extend dollars for each issue.
. Enter total dollars for back issues ordered.

@ a0 oo

All orders for back issues of the COMMUNICATORS are cash only orders (U.S. dollars only) and are subject to availability.

SAMPLE
[xX] BACK I1ISSUE ORDER FORM {cash only in U.S. dollars)
{subject to availability) Issue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
59516111 COMMUNICATOR 1000 X X /__ $1000 K000
XX 2 1000 _Ro-00
10.00
TOTAL DOLLARS ¥30.00

4. Domestic Customers: Mail the order form with your U.S. Company Purchase Order or check {payable to Hewlett-
Packard Co.) to: -
HEWLETT-PACKARD COMPANY
Computer Systems COMMUNICATOR
P.O. Box 61809
Sunnyvale, CA 94088
US.A.

5. International Customers: Order by part number through your iocal Hewlett-Packard Sales Office.

v--‘———“—-‘_——-_-__——.-_-_.,.__—.—______—,.,_,,_.--__.,.__....-..-..-.'..____.__._-___.—_——.——.—————-——-‘.——w—“-

USE THIS FORM TO ORDER MANUALS

Do not order updates separately. Existing updates are automatically included in shipments.
Only the current edition of a manual may be ordered.

HEWLETT 0p; PACKARD

CORPORATE PARTS CENTER

Direct Mail
Parts and Supplies Order Form

SHIP TO:
NAME
CUSTOMER
COMPANY REFERENCE #
STREET TAXABLE*?
CITY STATE 2P CODE
ttem |Check Part Qty. Description List Price Extended
No. | Digit No. Each Total
Special Instructions
Sub-total
* Tax 15 verified by computer according to your ZIP CODE. |f no sales tax s Your State & Local
added, your state exemption number must be provided: - — Sales Taxes”
If not, your order may have to be returned.
Check or Money Order, made payable to Hewlett-Packard Handling Charge 150
Company, must accompany order.
)]) TOTAL
When completed, please mail this form with payment to:

HEWLETT-PACKARD COMPANY

Mail Order Department Phone: (415) 968-9200
P.O. Drawer #20

Mountain View, CA 94043

Most orders are shipped within 24 hours of receipt. Shipments to California, Oregon and Washington will be made via UPS. Other
shipments will be sent Air Parcel Post, with the exception that shipments over 25 pounds will be made via truck. No Direct Mail
Order can be shipped outside the U.S.

Although every effort is made to insure the accuracy of the Prices quoted apply only in U.S.A. If outside the U.S., con-
data presented in the Communicator, Hewlett-Packard can- tact your local sales and service office for prices in your
not assume liability for the information contained herein. country.

Printed in U.S.A. 10/78
Part No. 5951-6113

