GNOSSTHLH

Journal of Hewlett-Packard DEC.
Technical Computer User Groups 1982

New HP 9000 Computer Family Heralds Entry Into

32-Bit Market

Bitl Cummings/ESD

The HP 9000, introduced to customers

in mid-November, features models with
up to three CPUs, 1 MIPS (million
instructions per second) performance,
three flexible packaging options,
ETHERNET" and HP Shared Resources
Manager networking, single - or muiti-user
capabilities and a choice of HP Enhanced
BASIC or a new UNIX**-based operating
system.

RESHAPING 32-BIT POWER: THE
ASTONISHING NMOS lil TECHNOLOGY
HP 9000 performance is equal to other
32-bit super-minicomputers that cost up to
four times as much. Its power, small size
and relatively low cost are the result of
significant HP advances in VLSI circuit
technology. This technology, called

NMOS I, squeezes a half million
transistors onto a single chip —

three to eight times the amount currently
available in the most dense chips on the
market. The resulting circuit spacing is only
one micron between devices. Five of these
new chips comprise the SPU used in the
HP 9000. As a group, they contain the
equivalent of more than two million
transistors. To put this into better
perspective, a standard 32-bit mainframe
requires as many as 1000 chips to build a
1 Mbyte system. The HP 9000 uses less than
100 chips.

The HP 9000’s “super chips” are

mounted on “finstrates” which are specially
designed PC boards. These finstrates
allow the chip to dissipate its heat directly
into the board’s copper core where it is
drawn off by a small, quiet fan. Because of
this unique IC packaging, the HP 9000

can work where the engineer or scientist
works — in the office, in the lab or on the
factory floor.

PLUG-IN ADDITIONAL CPUs TO MEET
FUTURE NEEDS

The HP 9000 features a multiple CPU
architecture that lets you configure the
computer in ascending levels of performance
— the HP 9000 Series 500 with a single
CPU, the Series 600 with two CPUs and
the Series 700 with three CPUs. in multi-
tasking or multi-user environments, adding
more CPUs can mean 2X or 3X performance
increases at very low incremental cost —
without having to rewrite software. The
Series 500 and 600 can be upgraded
on-site by simply plugging in additional
CPU finstrates.

The heart of the HP 9000 is a lunchbox-sized,
enclosed card cage (Memory/Processor
Module) which houses the finstrate

boards containing the CPUs, I/0

Processors, 128 Kbyte RAM, memory
controller and 18 MHz clock. These
components communicate over a Memory
Processor Bus with an exceptionally fast
36 Mbyte/sec bandwidth.

Other HP 9000 processor features include
a 55 nanosecond CPU microcycle time
and a 6 Mbyte/sec I/0 rate. Memory cycle
time is 110 nanoseconds.

The HP 9000’s 32-bit addressing
capability enables technical users to easily
deal with programs and data structures
thatare as large as the computer’s 500 Mbyte
physical memory limit.

FLEXIBLE HP 9000 PACKAGING
ALLOWS CUSTOMIZED SYSTEMS

Each series of the HP 9000 is available

in three packages: the Model 20 integrated
desktop workstation (built-in CRT,
keyboard, printer and flexible disc drive),
the Model 30 rack-mountable box and the
Model 40 offered in a desk-height mini-
cabinet.

HP 9000 customers have a choice of

two operating systems — a very high
performance version of HP’s Enhanced
BASIC and HP-UX, a fully supported,
extended-function version of Bell Labs’
UNIX. HP-UX adds several enhancements

CONTENTS

to the Bell System 1l UNIX such as virtual
memory, improved file reliability, IMAGE
Data Base Management and 2D or 3D
graphics. It also supports HP Pascal,
FORTRAN 77 and C languages.

HP 9000 BASIC is considerably more
powerful than standard BASIC systems.

It features a new “run time” compiler that
provides the friendliness and ease of use
common to interpretive BASIC, but adds the
faster final execution speeds of a compiled
language.

An asynchronous terminal emulator is
available for both operating systems.

HP 9000 SOFTWARE TO COME FROM
SEVERAL SOURCES

HP plans to introduce several proprietary
software packages for the HP 9000 during
the coming year, with emphasis on
integrated solutions for electrical and
mechanical engineering. HPSPICE Circuit
Simulation, HP FE |l Finite Element pack
and HP DESIGN Mechanical Design
software are available at introduction.

*ETHERNET is a registered trademark of
Xerox Corp.

**UNIX is a registered trademark of Bell
Laboratories, inc.

New HP 9000 Computer Family
Superchips Keep Computers Shrinking

New Products

— New HP 1000 Real-time Computer
— Series 200 Basic Extensions 2.0

Desktop Forum

— New H.P.D.C.U.G.V. Venue
—H.P.D.C.U.G.V. Pians for 1983

— Plotting onto Printers -

— Dumping Graphics on the 9826/36

Focus 1000
— DEBUG/1000

— Program Profiling with DEBUG/1000

— HP Auto Answers

— Program Cloning the Civilized Way
— A Comparison Between the User Interfaces of
the HP 1000 and the VAX 11/750

e Classifieds
e Coming Events

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Superchips
keep
Computers
Shrinking

How small can a computer be? With the
arrival of the superchips — complete
computer “brains” squeezed onto miniature
chips of sililcon only slightly thicker than this
paper — computers are shrinking even
more rapidly than in the past. Powerful
computers that once required rooms of
their own can now fit into a package about
the size of a child’s lunch box.

Five of the most remarkable of the
superchips have been put to work in a high-
performance 32-bit scientific computer,
called the HP 9000, just introduced by
Hewlett-Packard Company. These quarter-
inch-square chips handle all the main
functions of the new computer. The largest
of the HP superchips contains electronic
circuits equivalent to 600,000 transistors,
which is up to six times more circuitry than
on other commercially available chips.

Together, Hewlett-Packard's five
superchips pack the equivalent of more
than two million transistors — more than
four times the number of parts in a jumbo jet
liner.

The chips are able to hold all of these
electronics because of an HP advance in
very large-scale integrated-circuit
technology which squeezes the electronic
circuits on the chips down to only one
micron, or 40 millionths of an inch apart. To
illustrate this circuit density, a pinhead
would cover 25,000 of the chips’
transistors. With the circuits so close
together information gets transferred from
one circuit to another 18 million times
every second.

The extremely small size of the chips made
it possible for Hewlett-Packard to create
what is believed to be the world’s most
powerful computer workstation. Using the
superchips compresses the full power of a
large, expensive scientific and engineering
mainframe computer into the compact

HP 9000 integrated workstation. While it is
the size of a personal computer, the new
HP machine with its power is in an entirely
different class. A 32-bit computer typically
is used where fast calculations must be
made to solve complex mathematical
problems. An example of this is computer-
aided design, in which products such

as automobiles and airplanes are simulated
in the form of a math model.

Training
Courses

For several years now, the S.E.O. has

been providing customer training courses
for our customers, including both the

HP 1000 and various desktop computers.
These courses have typically been designed
by the particular division in the U.S.A.,
occasionally with changes made here to
meet our customers needs.

We would like to turn the tables somewhat,
and ask our customers what you want
from H.P. by way of training courses.

If you have any suggestions at all
concerning training courses — whom
they are directed to, content of courses,
structure (self-paced vs. instructor-
directed, etc.), time considerations (one
week full-time vs. longer-term part-time,
evening vs. daytime, etc.), or any other
suggestions please let us know.

If we can see a customer need for

training which we do not currently provide,
we will do everything possible to implement
that training.

Please pass comments to:
Philip Greetham,
C/- H.P. Australia,
P.O. Box 36,
EAST DONCASTER, Vic. 3109.

At lastProgrammer Productivity Tools
for the serious HP1000 user!

INSIGHT Image

SCONS
SORT
COBOL

Report Writer coBt

INSIGHT is everything QUERY is, plus much more.

TFORM
DELTA
SCREEN

Menu driven, fill in the blanks approach. Records can be VIEW

found from up to 6 datasets, and up to 3 databases
simultaneously. Generic, wild-card, conditional and

comparative searches.

INSIGHT also has extensive reporting features, which
time-dependent
reports, and shareable distribution lists for the output.

include automatic generation of

HORIZON

Also available are —

DIMENSION

source control system
general sorting package
ANSI-74 COBOL compiler
‘C’ language compiler
word processing program
file difference locator
forms management system
transaction generator
screen control software
project planning system

On-line user guide and power fail recovery are standard.

Price: US$3500 + $900/year support
RTE 4/6 compatible with
RTE A.1 support coming.

Sole Australian agents for CCS and POLARIS
software products.

Call J. Gwyther or M. Woodhams at

Tjuls|C

Computer Systems Pty. Ltd.
P.O. Box 125 Kew East, 3102.
Tel. (03) 859 9487 Telex AA33079

NEW PRODUCTS

SERIES 200 BASIC
EXTENSIONS 2.0

The BASIC Extensions has just been
released to greatly enhance the already-
powerful BASIC language on the Series 200
machines, (previously called 9826/9836).

BASIC Extensions 2.0 includes over

190 keyword additions or extensions to the
BASIC 2.0 language system. The
command set for BASIC Extensions 2.0
was designed to contribute to the features
already available in other HP desktop
language sets. These features include
advanced /0 such as DMA, fast handshake
and interrupt buffer transfers, matrix
operations and mass storage
enhancements. Other features were
added to support new peripherals including
the 7908/11/12 Winchester discs and
Shared Resource Management.

BASIC Extensions 2.0 is provided as

three separate ‘soft binary’ programs:
Advanced Programming, Shared Resource
Management, and the Color Video Output.
RAM or ROM-based BASIC 2.0 must be
resident in the computer before loading any
of these binaries. The binary programs

can be loaded separately or stacked
together to provide optimum memory
utilization.

FEATURES OF BASIC EXTENSIONS 2.0
The features can be divided into these
categories:-

* Entry and editing enhancements

* Debugging extensions

Matrix operations

String utilities

Timer routines and event controls

170 enhancements including DMA

and fast handshake

Buffered I/0 capabilities

Formatting enhancements

Mass storage enhancements
Command set 80 disc support

Callable Pascal or assembly language
sub-routines

BCD (98632A) interface support
Shared Resource Management support
Color video graphics extensions for
98627 A interface

* L Y LI

*

*

EXTENSIONS MEMORY REQUIREMENTS
Advanced Programming 150 K bytes RAM.
Shared Resource Management

43 K bytes RAM
Color Video Output 21 K bytes RAM.

New HP 1000 Real-Time
Computer Offers Cache

Memory, Pipelined
Architecture and 3 MIPS Speed

The new A900 technical computer is

the highest-performance member of the
HP 1000 family, and is believed to be the
fastest real-time computer on the market
today.

Pipeline technology with cache memory,
boosted even more by a fast hardware
floating point chip set with scientific and
vector instruction sets, provides unmatched
computation speed. Three million
instructions per second and 560 thousand
floating point operations per second
provide enough computational power to
conquer thousands of applications that
have previously been far beyond the reach
of minicomputers.

A sizeable 768k bytes of Error Correcting
Code (ECC) memory is standard and battery
backup is optional to maximize system
integrity. The base 768k bytes is expandabie
in 768k byte increments to a total of

6 Megabytes, providing enough capacity

for very large applications.

This powerful new processor is available

in a box Computer package (2139A) and in
fully-integrated Model 19 Computer Systems
(based on the 2199A and 21998 System
Processor Units). Standard in all
configurations are memory mapping and
virtual memory capabilities.

Comprehensive software support includes
the RTE-A.1 operating system;
programming in FORTRAN 77, Pascal,
BASIC, and Macro/1000 Assembly
language; Symbolic Debug/1000,
DS/1000-1V networking, Image/1000
Data Base Management, and Graphics/
1000-}I graphics application support
libraries.

A full line of HP manufactured interfaces
and peripheral devices support the highly
flexible configuration of one-vendor systems
to satisfy a wide variety of application
requirements.

The A900 is particularly well-suited to
process monitoring and control, high-speed
data acquisition and image and signal-
processing applications.

NEW PRICE/PERFORMANCE
STANDARD

We believe the A900 has just redefined

the price/performance standard for the
minicomputer industry,” said Joseph P.
Schoendorf, marketing manager for HP’s
Data Systems Division.

“It's not only the fastest real-time
minicomputer we’re aware of — it's one of
the most capable. While we dramatically
improved our existing HP 1000 architecture
to give the A900 its exceptional
performance, its software'is not only

compatibie with, but identical to, that of
other A-Series computers — the A600 and
A700 machines we introduced in February.

With only 25 per cent of the number of

parts in our previous HP 1000 F-Series, the
A-Series is expected to be the most reliable
family of mini-computers ever built by HP.”

The A900 processor is implemented in
Schottky TTL discrete logic and comes
standard with a hardware floating-point
processor and HP’s Scientific Instruction
Set (SIS) and Vector Instruction Set (VIS)
firmware. The A900 design makes liberal
use of state-of-the-art programmed
components and the most advanced
Schottky technology available. The floating-
point capability is implemented through
three LS| chips developed in HP’s
CMOS/SO0S technology. Unlike most
processors requiring a separate board for
hardware floating point, the A900 floating-
point chips are designed as an integral part
of the CPU for maximum performance

and efficiency. When executing the
single-precision Whetstone benchmark

(B1), the A900 is capable of nearly 1,200,000

instructions per second. “On a doliar-for-

“dollar comparison, we know of no other

computer that even comes close to this
level of performance,” Schoendorf added.
“Comparably priced computers provide only
one-half to one-third, or much less, of the
computational horsepower of the A900.”

CACHE MEMORY FOR FAST

MEMORY ACCESS

Pipeline technology gives the A900 computer
an extremely fast 133 nsec cycle time for
each successful cache memory access.
The cache incorporates hardware

address create logic for fast next-address
generations and supports a 32-bit data bus
to the memory controller. With a hit rate
typically 88%, average memory access
time is approximately 181 nsec.

HARDWARE FLOATING POINT
PROCESSOR FOR FAST FLOATING
POINT CALCULATIONS

The standard hardware Floating Point
Processor (FPP) in the AS00 computer
accelerates processing for single and
double precision floating point operations
to real-time speeds. With single precision,
the FPP can do over 600,000 additions
and/or subtractions per second, over
500,000 multiplications per second, over
200,000 divisions per second, and over
465,000 conversions per second.

Double precision add, subtract, and multiply
run at over 250,000 operations per second,
divide at over 100,000 operations per
second.

"Ew PRODUCTS Standard ECC assures system availability

SCIENTIFIC INSTRUCTION SET FOR
SCIENTIFIC AND ENGINEERING
CALCULATIONS

A Scientific Instruction Set (SIS) of nine
single precision and nine double precision
trigonometric and transcendental
functions and a polynomial evaluation
instruction uses the fast floating point
computational power of the FPP to solve
complex scientific and engineering
calculations quickly and accurately.

VECTOR INSTRUCTION SET

The Vector Instruction Set (VIS) applies
the floating point processing power of the
FPP to highly-efficient repetitive processing
of vectors and matrices. Because they
take advantage of the inherent efficiency
of vector processing, the VIS instructions
can achieve extremely fast rates.

HIGH-LEVEL PROGRAM
ACCELERATOR INSTRUCTIONS

The A900 base set includes instructions
designed to accelerate the execution speed
of programs written in FORTRAN or
Pascal. These routines speed up parameter
passing and other commonly used
high-level program operations 2 to 20 times,
compared to the same routines in software.

VIRTUAL CONTROL PANEL

A ROM-based Virtual Control Panel

(VCP) program enables an operator to
perform control panel functions via a

local or remote-connected terminal or an
adjacent HP 1000 Computer System
through a standard serial or DS/1000-IV
170 interface card. Only one I/O card in the
system can be given this capability at

any one time. That |I/0 card can connect

to a terminal or other computer system
accessible only to the system manager or
the maintenance department. The operator
at the VCP terminal or system can examine
and change the contents of registers and
memory locations, initiate the

macrocoded self test, and select a bootstrap
loader and initiate the boot-up of a system.

Because of its remote operating ability,

the VCP can be used for remote isolation

of system faults, which can help to minimize
support costs for OEM products that use
A900 components. When not being

used as the VCP, the VCP-assigned
terminal can be used in the same way as any
other terminal connected to the system.

BOOT-UP SOURCES AND

AUTO BOOT-UP

The A900 computer supports boot-up

from any of the following sources, the first

three of which can be used for auto boot-up.

1. An adjacent HP 1000 System in a
DS/1000-1V network via the 12007 A/B
or 12044A interface.

2. A disc memory via the 12009A HP-IB
interface.

3. 12008A PROM Storage Module.

4. Cartridge tape unit of CS/80 fixed disc
via the 12009A HP-IB interface.

MEMORY SYSTEM

The memory system for AS00 is a
dynamicalty mapped array with-base
memory of 768k bytes of Error Correcting
Code (ECC) memory expandable to 6
Megabytes in 768k byte increments, by
adding up to seven memory array cards.

4

and reliability. The ECC system detects and
corrects all singfe-bit memory errors and
detects all double-bit errors. The ECC system
also retains error syndromes when a
correction occurs.

Memory access is managed by the
dynamic mapping system, a powerful
combination of hardware and special
instructions. Because of this built-in
capability, AS00 users can efficiently use
large memory systems with minimal
programming effort.

INPUT/OUTPUT —

DISTRIBUTED INTELLIGENCE
ARCHITECTURE BOOSTS I/0
EFFICIENCY AND SIMPLIFIES
PROGRAMMING

Computation and input/output are often
both controlled by the central processor. In
the A900 system, the central processor
has been relieved of 170 DMA processing.
That function has instead been assigned

to an individual 170 processor (IOP) on each
interface card. Thus, the CPU is free to do
its real job of processing data. The CPU,
the IOPs on each interface, and memory all
communicate with each other via a
common bus.

LOW-OVERHEAD 1/0O

1/0 Processor-Managed DMA. The built-in
intelligence of each I0P supports
autonomous control of 1/0 operations.

This includes high-speed direct memory
access (DMA), and can even include
chained multiple DMA transfers without
interruption of the CPU except at the start
and completion of the entire chain.

Simplified I/O Programming. The same
level of intelligence that supports DMA-
per-channel operation also simplifies

1/0 programming. The master OP logic
provides for recognition of interface 170
addressing independently of 1/0 card position
on the card cage bus. This lets you
standardize I/0 addresses and functions

in programs without requiring any particular
arrangement of 1/0 cards in the card cage.

COMMUNICATIONS SUPPORT

The A900 processor can communicate

with terminals and other systems in the

following ways:

e With terminals via single-channel
interface or eight-channel multiplexer.

e With other HP 1000 systems via
DS/1000-1v HDLC point-to-point
interface or multidrop Data Link.

¢ With HP 3000 systems via DS/1000-IV
Bisync point-to-point interface.

e With HP 1000, HP 3000, and other
systems via DSN/X.25 interface to
packet-switching networks.

COMPATIBILITY WITH OTHER HP 1000
COMPUTERS

The A900 computer instructions are
identical with HP 1000 A600 and A700
instructions. The A900 executes the same
HP 1000 base instruction set (arithmetic,
memory reference, and register reference
instructions)as HP 1000 L, M, E and F-Series
Computers. Except for dynamic mapping
instructions, virtual memory instructions,
and I/0 instructions, other instructions
beyond the base set as defined have the
same mnemonics and format as they do in
HP 1000 M, E, and F-Series Computers,
which facilitates program transport ability

between HP 1000 A900 Computer and other
HP 1000 Computers.

1/0 drivers written for use with RTE-L/XL
operating system will run without change

in an A900 computer operating under
RTE-A.1 provided CPU timing is not a factor.
Drivers written for use with RTE-IVB or
RTE-6/VM will have to be rewritten for use
on RTE-A1.

KEY FEATURES OF THE A900 INCLUDE:
e Extremely high performance Computer.

¢ Built-in hardware floating point processor
with scientific and vector instruction set
firmware.

768kb ECC memory for maximum system
integrity, expandable to 6Mb.

Pipeline architecture and 4k byte cache
memory for fast memory access.
Distributed intelligence 170 with

DMA per channel for 1/0 efficiency.

50% CPU performance is available

at 3Mb/sec 1/0 bandwidth.

Compatibility with all A/L-Series 1/0
interface cards.

20-slot card cage with 15 slots in

2139A, 13in 2199 A/B available for
memory expansion and 1/0 interfaces.

® RTE-A.1 Real-Time Executive

operating system, optional with 2139A,

included in 2199 A/B, that supports:

— Multiprogramming and multi-tasking
facilitated by dynamic memory
partitioning.

— Up to 255 user partitions, which may
be reserved and/or allocated from a
dynamic memory pool.

— Virtual memory for data arrays up to
12.6M bytes divided between main
memory and fixed disc.

— Up to 15 Extended Memory Areas for
data arrays up to 2 Megabytes per
program, each sharable by up to 63
programs.

— Program development in FORTRAN
77, Pascal, BASIC, and Macro/1000
Assembly language.

— Image/1000 data base management,
Graphics/1000-1l graphics software,
and distributed systems networking.

® High reliability and maintainability
through the use of simple packaging,
self-test, and board level diagnostics.

¢ Instruction and program compatibility with

other members of the HP 1000 family
protects software investment of current
OEMs and end users and gives users
access to a broad base of proven
software.
¢ Built-in dynamic mapping system,
memory protect, and time base
generator.
® Power fail detection and auto restart
with optional battery backup for up to
3 Megabytes of memory.
¢ Fast on-line system generation.
¢ Boot loaders included for boot-up from:
— Other computer system in a
DS/1000-1V Distributed Systems
Network.
— Disc drive or its integral cartridge
tape unit.
— PROM Storage Module.
¢ Remote loading and diagnosis for
programming and operation of systems
from remote sites.
¢ Designed to comply with UL, CSA, and
IEC safety standards and VDE and
FCC RFI standards.

M
New H.P.D.C.U.G.V. Venue

The November meeting of the group was
held in the excellent conference facilities at
the C.S.1.R.O. Division of Geomechanics in
Glen Waverley. Situated at the end of a
quiet suburban street in a gum tree

setting the facility was most conducive to
‘gettin away from it all’ and concentrating
on the meeting’s events.

The meeting got off to a lively start with a
spirited presentation by Barry Liston of Assco
on the new H.P. 86. On display were the
H.P. 86, both 9” and 12” monitors and the
low cost 9130A disc drive. Barry

received an excellent response from the
audience who were obviously very
interested in this product.

We were then treated to a resume of
forthcoming H.P. products by Stan
Karpowicz of H.P. Stan spoke about
renumbering of the computer products into
new families and H.P.’s intentions to move
toward more standardisation of operating
systems, languages and file structures.
Members were particularly interested

in the new 3% inch H.P. diskette also
mentioned.

Tony Stevens then took the floor to
review mass storage systems available to
H.P. desktop computer owners. With well
prepared displays, Tony illustrated the
range of H.P. and non-H.P. mass storage
devices suitable for each of the popular
desk-top computer products.

Following a vote of thanks to Rory Cox of
C.S.1.R.O., who had organised the venue,
the meeting concluded with coffee and
biscuits and general informal discussion.

B. T. O'SHANNASSY

H.P.D.C.
U.G.V.

Our first meeting for 1983 will be held at
C.S.1.R.O. Glen Waverley (end of

Kinnoull Grove) on Tuesday, March 1 at

4 pm. The main topic entitled “Strings and
Things” will be presented jointly by

Chris Simpson and lan McWilliam. Chris will
discuss handling Strings on computers
from 9825 up, and lan will explain how our

own membership list is compiled and
maintained.

Our financial year finishes on February 28
and subscriptions fall due then. Remember
that “"CROSSTALK” will be mailed to
financial members only.

The next meeting (tentatively scheduled
for mid April) will be our Annual General
Meeting. The final date will be timed to fit in
with a whizz-bang product display yet to

be announced by H.P. We hope to have
several overseas speakers for that
meeting.

Further tentative meeting dates are:
7th July, 6th September, 9th November.

Topics presently being considered for
those meetings are:
CP/M on H.P. Desktop Computers
H.P. Graphics
Mastering the H.P. 85.

We are aiso hopeful of organising
presentations by software vendors.

If there is some other subject you would like
to see covered, don't keep it to yourself

~— call a committee member and air your
views!

Short talks on applications of desktop
computers are always popular at our
meetings. How about volunteering to talk
about YOUR application?

B. T. O'SHANNASSY

PLOTTING

ONTO
PRINTERS

KEYWORDS: desktop computers,
dot-matrix, graphics, plotting, printers,
raster.

“I've a 9825 and want to plot to our 9876
‘graphics’ thermal printer and, while you're
at it, also to our 1350A vector-graphics
display.”

“Er, yes . . . but can’t you get hold of a
9872 plotter or something else that speaks
HP-GL? It would save lots of fiddling
about!”

“But they all DO have HP-IB interfaces . . !”

OK, so it happens. Quite often. Its not always
the salesman’s fault that one is stranded
with subtlely incompatible equipment.

And it is not always possible to buy the easy
way out, what with HP hardware prices.

It's only the super new desktops that have
finally got the plotting act together. They
can cope with nearly all HP ‘graphics’
devices by allowing a simple declaration that
the “PLOTTER 1S Whizbang II". Then the
normal plotting statements can be used.
‘Unified’ plotting, you understand.

Not all 9845s can do this trick, though. Nor
can the 9835 or the brilliant (and much
maligned) 9825. Series 80 also has its
limitations. High-level plotting onto
‘graphics’ printers such as 9876A, 2631G or
2731G is simply not possible.

But wait! A 9845 with graphics or Series 80
can plot to its screen using normal plot
statements. Then the screen can be
DUMPED dot for dot onto a graphics
printer (inbuilt or otherwise). Great! But if
your computer cannot DUMP, read on . . .

The dot-matrix ‘graphics’ printers in
question have ONLY ONE graphics
command: “Print-a-line-of-dots”.
Somewhat rudimentary, | agree, but we
can use it. On any computer. To print a
replica of a graph, we must effectively

draw the graph in a big rectangular field

of dots. A raster. Just turn on the dots closest
to the line of the graph. Leave the others
off. Then starting with the top row of the
rectangular raster, Print-the-line-of-dots

for each row in turn onto the printer, and

lo, we have a printed graph. Easy?

A major problem exists: a LARGE chunk
of memory is needed to store this big
rectangular raster. Each dot can be
represented by one bit of memory, as it can
only be on or off. So, eight dots would
require one byte of memory, that is, one
character of a string variable. A 9876A
thermal line-printer uses 560 dots per row,
so to print a full-width raster line would
therefore require 560/8 = 70 bytes

(720/8 = 90 for a 2731G). Vertical spacing
of rows for the 9876 is 77 per inch (90 per
inch for a 2731G). Thus a full width raster
five inches deep would use 70 x 77 x § =
26,950 bytes (40,500 for a 2731G).

If memory is a limitation, reduced raster
size is one answer.

A simpler answer is valid in the case of
serial single and multiple plots, as we shall
soon see. For some other plots, however,
Y values at one X value may be influenced
by events at other X values. For hidden-
line piots, whether or not to turn on dots
depends on the other curves too. For
multiple curves, all the data may not fit into
memory at once. In other words, there

are cases when the whole picture needs
to be built up piecemeal in memory, hence
requiring a full raster. (And another
article).

A GOOD, SIMPLE APPROACH is to

tum the whole plot on its SIDE so that the
X-axis runs DOWN the page. Each
successive row now represents successive
values of X. In fact, we can calculate the

Y value for that row, turn on the correct

dot and print the dot row immediately. Then
the next row of dots may be prepared for
the next X value, etc. A string variable of
only 70 (90) characters is needed —

it is used over and over again. What is
more, the graph could be sixteen feet

long!

Some likely questions about this method
follow:

1. WHICHDOT IS TO BE TURNED ON? —
If dot no. 1 (the left most dot) represents
Y min and dot no. 560 represents Y max,

5

DESKTOP FORUM

then for any value of Y, we turn on dot no.:
D = 560" (Y-Ymin}/(Ymax-Ymin) - or better,
D = max (1,min(560,int(.5+560*(Y-Ymin)/
{Ymax-Ymin)))) where D is guaranteed to be
in the range 1¢=D <=560.

2. HOW DO WE TURN ON DOT NO. D? —

a) Reset the single line raster string R$
to all char (0)s.

b} The character number, C =
(between 1 and 70)

¢} The Bit No. (within the char), B = 8*C-D
{between 0 and 7)

d) Set the raster-stnng character:
R$[C,C] = char (2°B) or,
R$[C,C] = char (ior((2"B),
num{R$[C,C])) for multi-curve plots, to
retain any dots already set.

WHAT IS THE PRINT COMMAND? —
If a 70-byte string R$ represents a
single row of dots, and P is the printer
select code:
wtb P, char (27) &"*b70W"&RS$ for
9825, or PRINT USING "# ,k”; chr$ (27)
&""b70W"&R$ for 9835/45.
Note that the carriage-return-line-feed is
suppressed.
HOW CAN THE X-AXIS BE DRAWN? —
Determine which dot number on the raster
row represents Y = 0 and turn this dot on
as well before each row is printed.

int ((D+7)/8)

AND THE Y-AXIS? —

Include in the print loop an IF statement
that detects the occasion when X = 0. In this
case, simply turn ALL the dots on. (Each
character in R$ is set to char (255)).

CAN THE AXES BE LABELLED? —
Yes. Each time (horizontal) text is to
appear, the required text line is printed,
correctly formatted. But the line-feed is
suppressed and the carriage-return sent
alone. This has the effect of printing and
rolling the paper back one line (or simply not
advancing the paper). Typical print
statements are:

wtb P,T$,13 (where T$ contains the

text), or

PRINT USING "+ k”; T$

JOINING DOTS —

Often successive Y values will be more
than one dot removed horizontally from each
other, especially in wildly fluctuating
graphs. In this case it is desirable to fill in the
line between Y-values, by turning on

the closest intervening dots. Variously
complicated algorithms can be used. But in
the simplest case, where there is a

Y value calculated for EACH row of dots,
one can tum on all the dots from the
(previous Y value + 1) up to the new Y value
and then print the row.

Note:

1. Dot-fill techniques are worth a whole
article!

2. To SHARE dots with the previous line
would seem more symmetrical, but
requires looking ahead to the next value
before printing the current row.

3. For widely separated X-values, a more
complex method is necessary.

Perhaps some readers will recall the bad
old days before computer graphics was
invented. Lovely pseudo-curves were
obtained using identical methodology to
that described above. Still valid is this
9830/9866 example of plotting a SIN curve:

10 FOR X=1 TO 2*PI STEP P1/20

20 WRITE (15,7

TAB(79‘(1 +SIN(X)));"*”
30 NEXT

Horizontal resolution of the resuliing
‘asterisk’ graph is one character (0.1 inch)
rather than one dot (about 0.01). But
essentially, nothing much has changed!

Chris R. Simpson,
Simpson Computer Services P/L
(03) 859 6643

Dumping Graphics on the 9826/36

ilt-i 1 i i i 510 ' Th d e sets h d the 26716
lhe.982'6/36 :1a_s two built-in graphics dumping routines, invoked 2 : 3?(;5tgﬁ:p?tccgoeeiggﬁnamﬁ s graghics node in the 2
YSImpydecarlng: ! of information
540 E£5cS=CHRS(27)&"»b " &VALS(Hidth+(Iffset)& "H"
DUMP DEVICE IS 791 350 v>° dth+lffse
560 t Th the blank d to b tput h 1 t
DUMP DEVICE 1S 7p1, EXPANDED 270 ;Dghéspiituri ovi?oﬁﬁathe"néh‘é”si’ée on ach Tine fo move
3 F li_chr=1 T0 fset
The first gives a straight raster dump to the system printer 290 F 1167 leacHRS (01) Dffset chars are malls!

110 x 145mm (for the 9836) left-justified on the page. The latter gives buo NEXT Faull_ehr
a factor of 2 enlargement, rotated 90 deg. on the paper. ggg DUTPUT @Printer:CHRS(27)4"1A" ! Start raster mode transfer
| was recently posed the question: b ! Now Eslidmthe output string to create the picture
How can we dump the graphics to be right-justified on the paper, 560 FOR Rou=} TO 390
o atas-
rather than the standard [eft-justification? €50 Datas e el 10 32
. . 690 Uy _byte=(SHIFT(Pict (Row,Col 3.8
The following program was written for the 9826/36 to do just that. 700 Loper by te-BINAND(P 15 ture(Row,Column) | 255)
The main program allows you to choose a margin to suit your 7ig yplataSILEN(Datas) +11-CHRS (Upper by te)4CHRS (Lover_byte)
it : f 730 Data$=EscB&F 111%&Datas H3 1 tput st
needs and positions the graphics dump accordingly, anywhere ra T S5 ST S
margin o aper. 750 NEXT Row
between the left an 9 arg e pap 760 OUTPUT @Printer:CHRS(27)4"»rB" ' Flushes Graphics Buffer
i IR SRR
100 ! RE~SAVE “DUMP_GRAPH" @Printer: . .
T ! Pro;r;_m developed to position the dumped graphics screen 730 SUBEND ,
120 ! Philip Greetham & Robert Dey S.E.0. Melbourne DATE: 18 Dctober 1982 800 End_dump_graph: !
130 !
;ZO OPTION BASE
150 GCLEAR

160 GRAPHICS ON
170 INTEGER Picture_no.0ffcet,Graphics_width.Paper_width
'

190 STATUS 1,9:Graphics_uidth
;

é 9 ASSIGN #Picture TO “PICTURE2" ! "GSTORED picture file
20 !

230 IF Graphics_width=50 THEN ! For 9826

240 ALLDCATE INTEGER Screen(300,25)

250 ELSE ! Has to be 9836
260 ALLOCATE INTEGER Screent3%0,32)

270 END_IF

280 ENTER @Picture:Screents)

230 GLOAD Screent(=)

300 H

310 INPUT "Please enter the required left margun:".Difset

320 Dump_graphics(Screen{=) ,Graphics_width ,Dffset)
'

340 ASSIGN @Picture 10 »
END

360 !
370 Dump_graph:
0

t Determine if 9826 or 36

SUB Dump_grapnics¢INTEGER Pictured=) INTEGER Width,0ffcet)

Series 9800 Desktop
Computers Exchange
Library Software
Catalog

Hewlett Packard market this volume four
times a year. The catalog contains brief

38 {"Contenta of the araphics screen passed into Piotice oeray - descriptions of programs that are available
3 I st | for exchange. If you submit a program that is
an ! Datas is the 'massaged’ graphics data accepted for inclusion in the next
430 o btadTant, ST Catalog then you are entitled to make a free
25 ?E%EQR@;;;"&;LJ;S 7oi selection of 3 programs from the Library.
pitd e ith an'r £ w For further information on programs in the

F Hidth=80 TH dth=54 ' ; o
489 IF Dffset<0 THEN Dffsoro0 ' 38§§k°§3ﬁ22°§f“,‘"§§2m catalog ring the HPDCUGV Librarian.
ggg 1F Offset+didth>30 THEN Dffset=90-Nidth

SERIES 9800,

1000 AND 80
SOFTWARE

CATALOG

Hewilett Packard market 4 times a year a
‘Technical Computers HP and HP + Software
Catalog’ for use by program writers. This
book contains the description of various
programs in the fields of Engineering,
Mathematics, Management and
Communications. Some of the binary utilities
available, and useful on 9845 systems are:

NODUP — prevent duplication of
program tapes.

FIND — provide a global search of your
program for a literal string.

DUMP ALPHA — enables a CRT
dump to the current printer.

XREF — variable, label cross reference
lister.

STRIP — comment stripper.

BINARY
PROGRAM
SNIPPET

Many programs that are purchased as
‘LOAD’ programs contain inbuilt binary
routines. These can be stripped by first
loading the program and then executing a
STOREBIN command. This will give an
error if no binary programs are in memory.
An example of its use is the extraction

of the 'ONKBD’ binary used in programs with
menu selection. The stored binary

can then be used for other programmes
that require ON KBD statements inside
sub-programs.

LOAD SUB — enable STORED sub-
programs to be LOADED into memory
at the bottom of the current program.

:E — defines blocks of main
memory to act as a mass storage
device.

For further information on these or

others in the Catalog ring the HPDCUGV
Librarian.

H.P.D.C.U.G.V.

If any members have changed
their names, addresses or
telephone numbers, would
they please notify our
membership secretary, lan
McWilliam, on 819 8864.

Focus1000

Data Systems Division, Hewlett-Packard Company.

DEBUG/1000 &&=

1. ABSTRACT

Debug/1000 is a full-capability, interactive, source level

symbolic debugger for HP 1000 computer systems. The philosophy
behind Debug is that programmers should be able to examine

and modify the dynamic behavior of their programs in the same
terms they use in creating them. Also, the debugger should not intrude
into the user program or affect its performance in any way. These
design goals are achieved by enhancing the compilers and linker

to provide the required symbol table information and by

extending the operating system to support program monitoring

from a separate partition. Breakpoints are implemented by replacing
a user instruction with an operating system trap instruction.
Creative utilization of these features results in a very powerful
program debugging tool.

KEY WORDS: Debugging, Program development, Interactive tools,
Symbolic debugging.

2. INTRODUCTION
Debug/1000 is a full-capability, interactive, source level symbolic

debugger for HP 1000 systems. It allows programmers to examine their

programs in terms of the language in which they were written. By
using a full screen CRT display, users can interactively follow

the flow of their programs while viewing the original source code.
"They may display and modify program variables using the same
names and formats that their program uses. Single integer through
double complex, logical and character data types are all supported.
Breakpoints allow programs to execute at full speed until the area
of interest is reached. Then source level single stepping and
variable tracing facilities allow a detailed examination of

program behavior. Conditional breakpoints can be used to stop
programs when a specific condition is reached.

Friendly human interaction is a major feature of Debug/1000.

A simple but powerful command set is quickly learned by
programmers. English error messages and an online “help” facility
allow even novice users to perform sophisticated program
examinations. A “command stack” allows recently entered
commands to be edited and re-executed, thereby greatly reducing

the number of keystrokes required by the user. This stack is even
saved across invocations of Debug so that a user can easily
return a program back to the state of interest.

Users communicate with Debug in terms of variable names, source
line numbers and procedure (subroutine or function) names,

An example of what the user sees during a debugging session is
presented in Figure 1. To list subroutine FFT, the user simply

types ‘L FFT". Debug uses its symbol table to find the file and

line number in which FFT resides and then displays the first few
executable lines on the screen. To set a breakpoint at FFT, the
user types ‘B FFT" and Debug will insert a trap instruction at the
appropriate address and report the line number and module name to
the user. Table 1 presents a command summary.

How these features are implemented is the main subject of this
paper. First we examine Debug’s philosophy on program debugging,
then determine the system requirements to achieve the desired
goals. How the various system programs achieve these
requirements is presented next. Finally, how Debug accomplishes
some of its feats is presented.

B <Location> Sets a breakpoint at location specified.

C <Location> Clears the breakpoint set at location specified.

D <Locations> Displays variabie,

E Aborts your program and exits Debug.

G <Location> Allows your program to proceed from location
specified.

I <F1 [£F2)> Executes a set of commands from a file (f1) and
optionally 10g4s the putput to 2,

L <Location> Lists a screenful of source code in your program.

M <(Loc><value> Modifies the value of variable.

P <line> Allows your program to proceed to the next
breakpoint or specified line.

5] Gteps to the next line of source code.

T <Location> Shows location executed without stopping program.

V <number) Changes the number of source |lines dispiayed on

screen.
Shows the callers of the current subroutine.

£

Table 1, Debug/1000 Command Summary

40 1M = SIN (ANC)
41 2 IF (.NOT. NEW .AND. K¥KO .GE. I) GO TO 4
42 € mmmmmmesmmmcemm--smmsmss——-eam—oscsoee
43 C COMPUTE TWIDDLES IF NECESSARY ..
44 C mm-emmscemmmmcemmme—e---eoo---e--m--o-e-
45 U1} = CMPLX { RE , -SIGN(IM,FLOAT(K)))
46 DO 3 1 = 2,L2N
> 47 3 U = Utl-1)#0(I-1)
48 KO = K
49 C = mmmememomss-oe-
50 C BUTTERFLIES,
51 C -~s-m-msm-es-o-
52 4 SBYZ = N
53 DO 7 STAGE = 1i,L2N
54 V = UISTAGE)

DEBUG> b 47/ff¢
Breakpoint set at 47/FFT

DEBUG> p
Break at 47/FFT
DEBUG> d L2N new re ufll)

L2N = 5 NEW = true RE = 0.980785
Uity = (0,980785, -0,19509)
DEBUG> m L2N 6
L2N: 5 => 6
DEBUG>
Figure 1. Typical Debug Session

3. DEBUG’S PHILOSOPHY

Major difficulties in finding errors in programs often occur because
the programmer is trying to work from inadequate evidence. The
actual flow followed by a program is not recorded anywhere, nor

is the history of a variable’s values. Without an interactive debugging
tool, programmers have only limited methods for determining

the dynamic behavior of a program. Experienced programmers rely
on their intuition to determine where and how many print
statements should be inserted in order to gain sufficient clues for
understanding program behavior. This is a slow and iterative
process. Also, modifications can not be tested without re-editing the
source, recompiling, relinking and re-executing the program.

To overcome these obstacies, two fundamental capabilities of
Debug/1000 are explicit control over a program’s execution flow
and explicit control over a program’s data state.

Information is nearly useless if it is presented in a form difficult for
a human to interpret. Octal dumps, one of the traditional
debugging methods, present much extraneous information and are
extremely crude. The major disadvantages of most debugging
techniques include: not presenting the information in terms of the
source language, presenting much irrelevant detail and

presenting the data in a different format than the one the
programmer thinks in.

These deficiencies are overcome by a symbolic debugger. It must
understand the symbols used in the source code and it must be
able to convert the data types supported by the machine into
representations used by the programmer. There must also be a
convenient means to override the declared representation because
many times the data stored in a variable is not the same as the
declared type.

To successfully debug, programmers must analyze both program
execution flow and data state simultaneously. They need to be able to
concurrently view both the section of interest in the source code and
the values of selected variables in order to easily grasp the
condition of the program under test. Traditionally this is done

using clumsy listings for examining the source and a terminal for
examining the data. The major drawback of this technique is the time
and expense required to make a listing. Listings quickly become
incorrect as changes are made to correct bugs. Debug/1000
overcomes the need for listings by presenting the user with a
split-screen display. The top half of the CRT display is used to
present the source text. Whenever a breakpoint is encountered,

a portion of the original source file around the breakpoint is
displayed. The user can then look at other parts of the program or
even at other files. The lower half of the screen is where the user
inputs commands to Debug and where the current values of
variables are displayed. Thus, it is possible to do ‘paperless
debugging’ which is ecological but, more importantly, improves
programmer productivity.

A prime requirement for Debug/1000 is that it must not affect
program behavior. It is not acceptable for special code to be required
in the user’s program. There should be no need to restructure a
program just to debug it. The production software should be
identical to the final development software. This means that no

Focus 1000

user code gpace is lost and no exira statements must be added in
order to debug. The program being debugged must run exactly the
same as it would when not being debugged. No bugs can be
introduced by the debugger, and no bugs can disappear when the
debugger is present, only to reappear when the debugger

is not used. All this is accomplished by running the debugger in a
separate memory partition from the program being debugged.

There are many advantages of putting Debug in a separate
partition. As just stated, this allows Debug to be non-intrusive.

Debug does not affect a program in any way when it is not being
debugged. The separate partition also protects Debug from any
uncontrolled, destructive writes by the user’s program. No matter
what the user's program does, Debug can still examine it. Because
Debug does not use any of the user's address space, it can be
relatively large and powerful.

A final requirement is that Debug must be easy to use. It must be fast
and friendly. It should tell the user what it is doing and allow him to
interrogate the current state for breakpoints and other options.
English diagnostic messages and a online help facility should provide
a human-oriented interface. A few simple but powerful commands
minimize the number of keystrokes required, but not at the expense of
cryptic input sequences. Debug’s understanding of the scope

of names used by the program enables it to provide appropriate
defaults. The number of keystrokes required are also reduced by
saving all commands in a command stack. This stack is saved
between runs of Debug since it is likely that you will run a program
more than once before finding the exact area needing correction.
The commands in the stack can be edited and repeated as
required.

4. SYSTEM REQUIREMENTS

Debug must have explicit control over both the execution flow

and data state of a program. These capabilities are provided by the
operating system but only in a primitive form. Debug translates the
primitive information into the representation the user is familiar with.
Execution control is achieved with the use of code breakpoints.
This is the process of replacing a user instruction with a special trap
instruction which transfers control to the debugger. Debug/1000
uses a HALT instruction for this purpose. This is an illegal instruction
when the system is operating in user mode and it causes a
violation when it is executed. The operating system traps this and,

if the program is being debugged, transfers control to the debugger.

Correct handling of violations by the operating system is not a
trivial matter. Normally when a user’s program causes a violation it
is aborted. lts state is destroyed and a rude message is printed

to a terminal. However, if breakpoints are implemented using

illegal instructions then the operating system must perform special
processing upon the occurrence of a violation in the user’s program.
All of the user’s state information must be carefully saved and

no messages should be issued. To inform the operating system what
action to take upon violations, a “debug bit” was added to the
operating system'’s “ID segment” tables. When this bit is clear then
normal abort processing occurs upon a violation. When this bit is
set then a violation causes the offending program to be suspended
in the same manner as when the operating system pre-empts it.
Debug is then scheduled and is able to examine the suspended
program’s image. It has the responsibility of determining if the
violation is due to a breakpoint Debug inserted or if it is due to a real
violation by the program being debugged. This method of giving
Debug the responsibility for all violations while a program is being
debugged has the advantage of allowing the user to examine

the corpse of his offending program and possibly even correcting the
error and continuing.

Memory overlays by program segments must be communicated
to the debugger. When there is a breakpoint in the overlay area it
disappears when an overlay occurs. When the original segment is
brought back, this breakpoint must be re-installed. To handle this
properly, whenever a segment overlay is requested and the debug
bit is set, Debug is scheduled and given access to information
concerningwhich segment has been brought in. Debug must maintain
tables describing which segment is currently loaded and which
breakpoints must be re-installed. Debug can re-install breakpoints
in segments because it receives controls after the segment is
loaded but before the user program is allowed to execute any
instructions in the new segment.

Control over a program’s data state is achieved by giving the

debugger access to the address space of the program being
debugged. If the debugger resides in the same address space as the
program being debugged, this is easy. However, Debug/1000
resides in a different address space, so there must be a method for
mapping at least a part of the program being debugged into the
address space of the debugger. This is supported under the RTE
operating system by memory locking the program being

debugged so that it will not be moved to a different physical mermory
address. The debugger is allowed to use the physical memory
mapping instructions when accessing the target program. It uses
the operating system’s tables to find the physical page
corresponding to the logical absolute address it wishes to
reference. Debug then maps this page and the following page into
its high two logical pages and copies the data to or from a local
buffer. Two pages are mapped to insure proper operation when the
required data falls across a page boundary.

5. SYMBOL TABLE REQUIREMENT

Debug/1000 is a symbolic debugger. Compilers must communicate
their symbol table information to Debug. A dump of the compiler
symbol table alone is insufficient because the addresses in it are
all relative to the base of the module being compiled. To examine
and modify variables, Debug must know their absolute addresses
and this information can only be provided by the linker. Thus, both
the compilers and the linker had to be extensively enhanced to
support Debug.

Compilers now communicate the required information to Debug

via additional relocatable records. Obviously, there is a symbol
record. It contains the names of the symbols, their data types,

and their relocatable addresses. If a symbol is a parameter then its
parameter number is included. If a symbol is an array then
information about the number of dimensions, size of each dimension,
and the lower bound of each dimension is passed. There are

many more special cases, such as character string descriptor.
Debug needs to know how to use a string descriptor to access the
actual run time characters.

Line number records provide the information which enables

Debug to map between addresses and source line numbers. To
conserve space, this information is encoded into blocks. Each block
begins with a starting address and a corresponding line number.
Following in the rest of the block is the number of code words required
by successive lines. Comments generate zero words of code and
the compiler decides if it would be smaller to emit several zeros or to
start a new block. The record format also supports more than

one statement per source line.

Module name records were extended to include the source file
name from which the code was compiled. This aliows Debug to use
the original source file when displaying the program as it executes.
Entry point records were extended to supply starting line and
calling sequence information. Compilers may generate procedure
protogue code containing a jump to the actual starting line. When
the user sets a breakpoint at a procedure, he expects that this
prologue will be executed before his breakpoint is reached. Debug
uses the starting line information from the entry point record to
determine the proper address for this type of breakpoint.

Calling sequence information is needed because rapid single
stepping over a procedure requires that its return address be known.
This information is especially valuable when a variable number of
parameters are passed. Luckily, the standard calling sequence
supports a variable number of parameters quite well. If Debug knows
that the standard calling sequence is being used then it can easily
find the return address. If a procedure has more than one return
point then Debug is informed of this so that it can set multiple
breakpoints and discover the actual run time return point used.

Converting the relative addresses to the absolute addresses is

the job of the linker. It combines the debug information from all the
relocatable files used during linking of the program into one file which
is used by Debug. This file has all the modules, entry points,
symbols, and line numbers as well as their absolute addresses.
Information about segment overlays is created by the linker and
supplied in this file.

All these debug records can cause the total symbol table to become
very large. Debug manages this large amount of data by reading

in the file supplied by the linker and arranges the symbols into several
data structures which allow efficient searching. Modules, entry
points, and local variables and arranged into binary trees.

VO uter
s Mussop
A

Linked lists are woven through the binary trees to allow the
accessing of parameters and other types of special information.
Line number information is packed close together to reduce the
amount of disk paging required and is linked to its module. All the
tables are required because it must be easy to map from a symbol,
entry point or line number to an address and vice versa.

6. DEBUG’'S ALGORITHMS

Most of Debug’s feats are straightforward once it has built its
symbols and has access to the target program memory image. To
display a variable, Debug finds its name in the symbol table, gets
its address, reads its value from the target memory image and
formats the data according to its type from the symbol table. To set
a breakpoint, Debug consults the entry point or line number tables to
find the address, retrieves and saves the old value at this address,
and pokes a HALT breakpoint into the target program. Care must
be taken not to confuse the saved value with a breakpoint aiready
at the requested location. Listing the source once a breakpoint

is reached is achieved by obtaining the address at which the
breakpoint occurred and mapping it to a module and line number.
Once this is known, the file name is extracted from the symbol
table and the screen display routines are calied. They read from the
source file and write to the top half of the screen where the source
text is displayed. To decrease update time, the display routines keep
track of which lines are currently displayed. If the new screen is only
a few lines above or below the ones currently displayed then the
appropriate number of lines are deleted and the new lines inserted.
Update time is reduced because most of the lines just change
position and are not redrawn.

More sophistication is required to execute a single step command.
The normal single step is to step one source line. This is achieved
by examining each instruction in the line of code being stepped
over and setting breakpoints at all the possible locations to which
line can transfer. The user’s program is then allowed to execute until it
reaches one of these breakpoints. Debug regains control and
clears the breakpoints it just installed. The simplest case is when
every instruction in the line to be stepped over has only one
destination. In this case, only one breakpoint is needed to regain
control after the execution of the line. Things are more complicated
if there are conditional jumps in the line. Debug determines the
destination of each jump and sets a breakpoint there if it is

outside the line being stepped over. Destinations inside the line are
traced until their path extends beyond the line being single stepped.

Single-stepping over a line becomes very complicated when

there is a subroutine call in it. Debug is designed to step over the
subroutine and to do this it must know the return address. On the
HP-1000, subroutine parameters are usually passed in line by
pointers following the subroutine call. Debug can not distinguish
these pointers from instructions. Also, a subroutine may have

more than one return point, so Debug may be required to set more
than one breakpoint. Debug tries three strategies to determine
what breakpoints are required. First, it checks if the compiler
supplied information describes the number of parameters and the
number of return addresses. If this information is provided then it is
used for setting breakpoints. Otherwise, Debug must determine

the retum addresses on its own. It examines the code to be
executed in an attempt to ascertain that the standard calling
sequence is used. If it finds this to be the case, then the return
address can be determined by the first data word after the
subroutine call. If Debug is unsuccessful up to this point, it then
follows the control flow into the subroutine. It emulates all instructions
up to the first conditional jump. By putting breakpoints at the
destinations of this jump and allowing the program to execute

until one of these breakpoints is reached, the flow of control is
discovered. This process of emulating and setting breakpoints at
conditional jumps is repeated until the flow returns to the original
module or until Debug decides that it will be faster to get some help
from the user. If the return address is still in the line being stepped
over then Debug has a little more work to do before it finishes
single-stepping the line. If Debug decides to give up, it finds the next
line inthe source text and asks the user it itis OK to proceed to this
line. If the user knows that control will eventually transfer to this
point then he may type a carriage return and Debug will proceed

to this point. If the user knows that control flow will branch
elsewhere, then he must set breakpoints and use the normal proceed
command to get out of the unknown subroutine.

Emulation requires Debug to know about all the instructions the

Focus 1000

machine can execute. For each instruction, a table describes where
the next instruction will be executed and the number of conditional
skips this instruction may perform. Debug also needs this
information when it is requested to proceed from a location which
has a permanent breakpoint. This is accomplished by replacing
the permanent breakpoint with the original instruction and setting
temporary breakpoints at all the destinations of this instruction. The
user’s program is then allowed to execute for this one instruction.
When Debug regains control it puts back in the permanent
breakpoint and removes the temporary ones. Now, if the program
is not at another breakpoint, it is allowed to continue.

7. CONCLUSIONS

Debug/1000 has been demonstrated to be a very useful tool for
program development. The productivity of the user goes up and
frustration levels go down. lts feature set seems to be complete but
not extravagant. Its computational requirements are small, thus little
additional load is placed on the system. The users program usually
runs at full speed until a breakpoint is reached. The system is
required to have enough memory to allow the program being
debugged to be locked into core.

One of the most useful features of Debug is its ability to display

the source text while following the flow of a program. This enables
the user to quickly understand what the program is doing. Once
the program is understood, it is usually simple to correct the problem.

Program Profiling with Debug/1000

Debug/1000 provides a program profiling capability in addition to
the teatures described in the previous article.

A program profiler is a tool used to identify what parts of your
program are taking the most time, to help you make your program run
faster. A symbolic debug profiler knows the subroutine names in
the program. Therefore a histogram of which subroutines are taking
the most time can be displayed.

The Debug profiling capability is a separate mode from the debug

In the sample histogram, the subroutines that spent the most amount
of the total time are plotted with the busiest at the top. The
percentage is rounded up to the nearest whole number which
should be used only for comparison. Any of the subroutines that
took up less than .5% of the execution time are not listed by name
but are summed up and listed under “Other (known code)”. These
added up 1o 5% in the example plot. Time spent is subroutines which
have been compiled with ASMB or FTN4 or have been modified

mode. You can initiate a debugging session and switch into the

profiling mode.

Debug, while in the profiling mode, provides the foliowing features:
Plot a histogram of subroutines
Plot a histogram of a subroutine
Log profiling data to a specified file
Display lines of source code
Terminate profiling and exit Debug

In performing profiling functions, Debug alternately runs and waits
at 10 msec intervals and samples the program location counter for
your program at these intervals. Since it attributes the entire

10 msec time frame to your program, it is essential that no other
programs take up this time. Therefore, you should use only a
system that is not busy.

Foliowing is a plot of a histogram of the subroutines of a sample
program as output by Debug/1000.

by OLDRE appear in the “Other (unknown code)” line. Most of

the system library routines fall into this category. The 1/0 suspend
category includes time spent by the program waiting on unbuffered
I/0 devices, e.g., discs. The wait state is time spent while waiting
on another program or on buffered 1/O device suspend or other
waiting conditions. These states are different for RTE-A.1

because there are different types and more wait states. System
noise occurs whenever Debug samples the program and finds that tis
pre-empted by the operating system.

To plot a histogram of subroutine ATOL in the sample program:

Overview? h atol
Profile for module ATOL

7% of total time spent here

. Line No. Amount Histogram
Routine Amount Histogram
- — ———— | —————— 764 21 wess
G IMME 8‘ AR RRRRRRRNES 773 1’ [y
ATOL 79 NesessesBsneNy 778 15
GETCH 5% 783 17
WHERESLAVE 5% 786 19 &
RPEEK ug 790 17 ¢
IN 4f 802 17 e
ADROF ug SAERNRS 811 8y wesaaa
CLEARB 1% e 812 108 ¢ sang
MVW 14 e 813 7% ses
LTOA 19 e 821 g% was
SETB "’ e 822 17‘ LI X R LR X RS SRR ERRISRISSRIISRRZY)
DOPOK 11 T} 82[.[9‘ SHE AN NEREREEREN
DEST 19 827 133 SREERARSRRARARARRRRARARANENS
GTCLK [] 840 12 ¢
WINDX e ® gu3 1% ¢
SSTEP/DEBU" 1’ " Bua]B‘ [I R RS SRR SYNYINRIRSRIRZIRRZZRZS] S
MBT 1q # 852 1% ¢
- . 853 1%
WHERE 1% 868 11
Other (known code) Gg ssssdases
Other (unknoun code) 18‘ IllllllllllllllllllllIlllilllllllll . .
1/0 suspend 115 S8sstsssssnnssanrssss In this plot, any line number that took up an execution time is
Wait state D0F HANEEEAAEAARAARARRAAERARARRRRRARIRINNS listed, along with the corresponding per cent time. Comment lines and
System noise 1t lines without any data samples are not listed.

10

Focus 1000

HP AUTO ANSWERS

David Triggs, HP Systems Engineering,
Sydney.

Many HP 1000 users have expressed
interest in being able to dial into their
computers from remote sites. This can be
attractive in a number of situations. For
example, suppose that the 1000 is located in
a factory which is a long way from your
office. You want to be able to use it without
going out there each time. If you don't need
to access the 1000 all the time the cost of a
leased line probably can't be justified.
However a dial in modem can provide a
cost effective solution. Or as another
example suppose that your work frequently
takes you away from your office. With an
accoustic coupler and a terminal you could
take the capabilities of your computer

with you. You can even work from home if
you want. All that you need is a telephone.

Several 1000 users in Australia have
already installed dial up modems and
found them of great value. However others
have had difficulty in understanding what
they need to do to get a dial up modem
going. Hopefully this article will clear up
that confusion.

The first thing you need to do is select a
modem and a method of connecting it to
the 1000. As only Telecom supplied modems
can be connected to the telephone system
in Australia choosing a modem is just a
matter of selecting which type of service
(speed, etc.) is required. In order to talk to the
1000 the modem must be full duplex,
asynchronous and of a baud rate supported
by the 1000. While the 1000 will support
many baud rates the only speed traditionally
supported by Telecom was 300 baud.
Fortunately now Telecom are also supporting
1200 baud. So either of these can be
used. The application forms (called T76
forms) needed to abtain modem lines from
Telecom should be obtained from Hewlett
Packard. This is advised because you will
need to include on these forms approval
numbers etc. for the various pieces of
equipment. If we know what you want to
connect to what we can ensure that you have
all the correct forms-and information. The
question ofaninterface is a little more
-commplex. There are two basic contenders
on M/E/F processors.

The first and most widely used is the
12966A BAC! interface. This provides the
modem signals required by most modems
but is restricted to HP terminals. This is
because the RTE driver for this card is only
designed to work with terminals which use
HP style ENQ/ACK handshaking. With this
interface the modem is controlled by
software in the 1000.

The other option is to use the 12792A
Multiplexer (MUX). This device supports both
HP and non-HP terminals, however it
provides no modem control lines. If a
modem or a modem combined with a black
Box of some sort can be found that is
sufficiently smart all control of the line can be
done by the hardware. The 1000 can then
treat the modem as a hard wired terminal
and no additional software or programming
is required in the 1000. It is worth noting
that you can’t just build your own black box.
Any equipment connected to Telecom
modems must have Telecom approval.

At this time | am not aware of anyone in
Australia having a Telecom approved
installation of this type.

If you are using a BACI interface then the
control of the modem lines must still be
done by software. Fortunately the driver
DVAOS will do most of the work for you.
The driver provides a number of control
requests to do things like setting the baud
rate, automatically answering the phone
when it rings and hanging up the phone.

For more details see the DVR05/DVA05
reference manual. However they are not
quite as simple to use as just putting a couple
of CT requests in the WELCOM file, as a
couple of users have found out. The best
method is 1o write a simple program that just
loops issuing a line open, waiting for a
session to start and end and then issuing

a line close to hang up the phone.

Some time ago | wrote a simple program

to show several users what could be done.
This was submitted by Corrado DiQual for
the August issue of Crosstalk. Unfortunately |
didn’t see this copy before publication
because there is a fairly obvious error in it
which escaped detection. The “if”
statement after statement 350 should
contain an .ne. not an .eq. condition. Thisis a
very simple minded program. Most of the
code just logs messages to the console.

| have subsequently added several bells
and whistles such as finding the EQT and
subchannel from the system tables,
automatically configuring the commands

for the MESSS calls and the capability to
detect and correct several error conditions
which the first version could not cope with.
The techniques it uses should be easy to
apply to meet a range of requirements.

If anyone wishes a copy of the source for
this program they should contact me as it is
now too long to put in CROSSTALK. Itis
also starting to become too long to want to
type in. The code is now written in
FORTRAN 77 however with the addition of
a few goto statements it could be

madified to run with earlier fortran compilers:

| couldn’t bring myself to doit. The present
version also assumes RTE-6 although it
could also be ported to RTE-48 fairly easily.

The program makes use of a fair amount

of information about the internals of the
operating system. Some of this information
is not part of the external interface of the
operating system and as such is susceptible
to change without notice. Essentially it

just loops letting people log on and then off
again watching for any error conditions.

If any error state is detected and remains
after a reasonable delay all I/0O to the line
is flushed and the line hung up. The logging
on and off of users is detected with the
IDGET call. This returns the ID segment
number of the users FMGR or O if there is no
ID segment, which will be the case before
the user logs on and again after they log
off. Error detection is achieved by using
EXEC 1/0 so that error conditions can be
handled from within the program and by
watching the DRT and the EQT. There are
two other techniques of note.

The first one is used to detect that a call
has come in and that the driver is waiting
for carrier. Because the line open request
(32) does not terminate until carrier is
received it is necessary to cheat. When a call
is received the modem asserts the

RING signal. At this point the driver starts
polling to detect the arrival of carrier. This
is done because the card can not interrupt
on the arrival of carrier. The driver achieves
polling by setting its own timeout clock to
the polling interval and letting the

operating system time it out. This can be
detected by watching word 15 of the EQT.

The second one is used to flush pending
requests to the modem line so that a hang
up control request can be issued. This is

a four step process. The first step is to down
the EQT of the modem line. This forces all
pending requests to be queued off the DRT
instead of the EQT. The second step is to
point the LU to the bit bucket with the

SYLU command. All the requests are then
performed on the bit bucket at a very high
speed! Steps three and four involve restoring
the LU and upping the EQT. This approach
can be used for other devices as well. Itis
particularly handy for mag tapes.

Obviously this program is not going to do
all the things that everyone wants. It should
however provide a good start.

1"

Focus 1000
PROGRAM CLONING THE

parameters is an integer array equivalent to fmgr 1p..3p
which may he retrieved by the son using RMPAR
If the son returns these parameters using PRTN

*; they will be returned ;

CIv L z *1 to the calling program in parameters array. H

L H

l I En WAY *! if the the first character of the runstring is a &’ i

* | ther the program will be scheduled without wait, !

Have you ever come across the need to clone and run programs ¥ioenge cal) run_program(finfx ksource, -y =)} with wait:

. . . . H e.g,» call run_program (‘&ftn7x,ksource,-,-")! no wait
in type 6 files and discovered that you must RP them first or use a U U sl PN et .
FMGR transfer f“e') %] PRE-REQUISITES ¢ none that I can think of ;
Have you ever tried to run.FMGR from_ FMGR in bgckground 2 Crenve dave s izezz M wED.. 11 Auc.. 19mm
to do something long and time consuming like packing 8000 track ! Programmer : Corrado Diqual :
CanridgeS? YOU CAN'T do It, EH' * | Iﬁast change t {821122.1342> H

%! Revision date :
Here is a program (written in FORTRAN 77, but can be converted to i Revised by & {
. . i Revision description :

other languages) which will clone and run a program from an i :
existing ID segment or a type 6 file. Programs can be scheduled with :i___ff'jff_fffff?f_‘j?_'}f_'_‘f?ffff(j_fgf_fjfr_‘y_regffgom o
wait or without wait (e.g. compiling large source files in * o

background while you're doing something else).

E R R R E R R AR R R R R E R E R R R R E R R RN AR R AR R L AR
subroutine run_program(runstring,parm),CD® <B21122, 13425

Corrado DiQual, + <clone and run program and pass runstring parameters
(02) 699 0044 !li!!!lf}lii!!lll!!!!lliiiiil’l’l’llli!!!l}ii!!!}ii!!l}}l’l’ii!
implicit none
*
character* (*) runstring
R character*6 new_name

'l'{.q.'l-l'l!li!!!!}!!l’lllﬂl-lllll'll"l-l'lll'l'l'lil!!!ll!ii!i!}i}}i}}i intEger-}z par-m(S) N iSCb_EI‘F‘Qr-(‘;) ., counter

program clone(),CDQ@ program cioner <821122.1342% character*f program_name
lllll'l'!ii!!il’}i!i!!!!!!!l!!lill}l!ii{l}}}l’}ll!iii!l’il’l’iil’ character*8 SCD_EF‘F‘OF'
* character*30 drunstring

character#B80 runstring,dummy *

integer*Z irunstring (40) ,rcpar ,comma integer*2 error,idcb(144), schedule_code,wait,nowait

equivalence (runstring,irunstrirg) integer*#2 name(10),security, cartridge,start_char

integer*2 parameters (3) integer*Z areg,breg,new_id
* integer*2 inew_name(3), iprogram_name(3)

cali rmpar(parameters) integer#*2 irunstring(40) ,idget
* if no runstring Qo into interactive mode *

i$(rcpartl ,runstring) .eq. 0) goto 10 * [’ve got to fiddle with integer arrays kcharacters
* retrieve entire runstring * because EXEC & FMP won’t take character variables

if (rcpar{-1,runstring) .ne. 0) then equivalence (name(5},security), (name(&),cartridge)
* remove RU,CLONE, from string equivalence (program_name,name, iprogram_name)

comma = imdex(rumstring, "y ') equivalence (drunstring, irunstring)}
comma = index(runstring(comma+1:), » ') + comma equivalence (new_name, irew_name)
dummy = runstring(comma+!:) equivalence (scb_error,iscb_error)
runstring =dummy *
goto 20 wait = 9+100000b
endi f nowait = 10+100000h
* *
* interactive mode . # if first character of runstring ="&" then program will be
10 write(l, ("run what prqgram?:_ IS % scheduled without wait
read(l, "(a80) "} runstring cail uppercase(runstring} ! convert to uppercase
* if (runstringtl:t) .eq. "&°) then
20 call run_program(runstring,parameters) schedule_code = nowait
call priniparameters) . drunstring = runstring(2:)!strip "&° from string
write(l, ("new name=",a20)) runstring runstring = drunstring
* eise
end schedule_code =wait
* endif
*
P DR . drunstring = runstring
%iName : run_program H *
«Type : subroutine ! start_char = 1
x!Language : fortran 77 H call namr(name, irunstring, 80,start_char) !parse namr
P R e L T + new_name(1:3) = program_name(1:5)
! AESTRACT : ' new_name(4:6) = “#@ -
Hlommmmmmem 1 *
%! This subroutine will clone a program or a type 6 file! * Insert 'RU,” in the runstring becauss most programs
%, giving it a new name that does not conflict with any ! # which use the runstring expect FMGR to be the father.
%! system naming procedures. : *))) _
#i Possibie rumber of new names for eacn program = B8%26 | drunstring = ‘FU, "/ /runstring
%! Subroutirme will clean up id segments after program H runstring = drunstring
* | terminates if the program was scheduled with waiv . | *
* First we’l) check if an ID seg already exists
! ¥ with the riame we 're trying to use.
¢ * This check is done because IDDUP &k IDRPL do not return
%) call run_programirunstring, parameters | : * an error when you try to dupbicatg an existing ID
x! U H * segment,even though HP documentation says they will.
* | where runstring is of type character# and H *
¥} contains the following @ 1 cal) clone_new_name(riew_name)
*! progname, Parml, ParmZ. s es i+ @LC ! do while (idget{inew _name) .ne., 0)
*) fmgr namr ‘s are valid as program names although cniy! call clone_rniew_namel{rew_name)
*! security code and cartridge reference are used. ! enddo
. H *) .
%! The runstring is passed to the son which can retrieve | * 1f a cartridge reference is specified then
'y it using GETST library routine, H * go to the specified file
%! i if {(cartridge .ne. 0) goto 20
*] Tre name of the cloned program is returned in ! *
! runstring if cloning was succesfull, } # if ID segment already exists try to clone the program
*! H cali iddup(iprogram_name, inew_riame, error)
%! 1f an error occurs,the error mnemornic is placed in the: * .
%! session control block, ! if (error .eq. 17) then ! program can't be copied
«! This mnemonic can be retrieved by the cailing ! new_name = program_name ! use original name
#! program using GTERR !ibrary routine or
#! via the system HELF program. }
€| H

-
N

goto 100 ! go and rum the program
endi f

if (error .eq. 0) goto 100 ! go and run the program

* 1f we get here then the program is probably in a type &
* file so we'll try to open the fite non-exciusiveiy

20 call open{idcb,error, iprogram_name, i,security
+ j,cartridge)
it (error .eq.-6) error = &7 ! program not found
if (error .ne. 6) goto 9000 ! fmp errors

* now try and restore the program
call idrpllidch,error, inew_name, new_id)
* if (error .ne, 0) goto 9000

* close the file

call closelidcb,error) Tomeuter
. if (error .ne. 0) goto 9000 Lseuin
*
* now we'tl try and rurn the program
100 call exec(schedule_code, inew_rame,parm,
+ irunstring, -len(runstring}, #3002)

*
+ Retrieve any parameters passed back by the son and
return them to the caliing program.

call rmpar{parm)

*
*
* if program was scheduled with wait we’'til get
* rid of the id segment
*
if (schedule_code .eq. wait) then
call idrpd{inew_name, error)
if (error .me, 0) goto 5000
endif

if program was scheduled with rno wait

*# let the caller manage the id segment

so put the name of the cloned program into runstring
runstring = new_name
return

*

*
* error reporting routines

9000 write (sch_error, ("FMGR",14.3)°} error
write (1, "("FMGR",14,32)") error

* Place the error mnemonic in the session control block
call pterr{iscb_error)
return

Focus 1000

9002 call abreg(areg,breg}

write (sch_error, ' (2a2)") areg,breg
write (1, ("EXEC error=",a2,a2)) areq,breg
* Place the error mnemomnic im the session control hiock
call pterr(iscb_error)
return
*
end

*
{-(+l'l{-{-{-l’*{-{-{-{-{-*{-{-l’{-{-{-{-lll{-{-{-l{-{-{-{-l'{-{-{-{-l"l{-{-{-{-{-{-{-{-{'{-{-*{-{-{-{-{-{-

Subroutine clore_riew_name(new_name),CDQ <821122, 1342
{-l{-l'{-{-{-{-l'{-{-{-{-{-{-{-{-{-l’{-{-{-{-{-l’{-{-{-{-{-{-{-{-{-{-l{****{{{ll{{*{-l’{-{-{-*f{-f{-
*

implicit none

character#6 new_name

integer#*2 counter ,chard,charS
*

* replace all spaces im string with “#°

do counter = 1,3

if (new_name(courter:counter) .eq, ° ') then
new_rame(countericounter) = #'
erndif
enddo
char3 = ichar(new_name(5:5)) +1
if ((charS ,gt. 90) .or, (char5 ,it., €5)) then
charS = &5

char4 =ichar{new_riame(4:4)) 4+ 1
if ({char4 ,1t, 35) ,or, (chard4 ,gt.42)) then

char4 = 35
endif
rnew_rname(4:4) =char(char4)
endif
rew_name(5:5) = char(charb)
end

*
i(4-iiiii*iiiiiiiiii*iiiiiiiliiiliiiiii**iiiiiiiiiiiiii*ii

subroutine uppercase {(string),CDQ <821122,1342>
FEEREEEE R R R R AR R R AR R R R R R R AR R E R R R R R R R RN R RN RER
*

character* (%) string

integer#*2 count

do count = 1, lent{string)
1f ({stringf{counticount) .ge, “a’) .and.

+ (string(counticount) .le., “z°)) then

string{count:icount)

+ = char(ichar (string(count:count))-32)
endif

enddo

end

A comparison between the User Interfaces
of the HP 1000 and the VAX 11/750

by Jeffrey Deakin,
Australian Coal Industry Research
Laboratories Ltd.

1. INTRODUCTION

The purpose of this article is to present a subjective comparison
between the ways in which the HP 1000 and VAX-11 family present
themselves to the end user. While particular reference is made to
the ACIRL VAX 11/750, what is said applies to the other members
of the VAX family, which share a common operating system, VMS.

Over the years, I've used a number of different systems, each
containing features not found in the others. Comparisons are very
difficult; it is hard to do each system justice, and they can really
only be made in the context in which the different systems were
developed. For example, a common criticism of the HP 1000 is that
the user talks to the FMGR program, not RTE directly, and that
RTE doesn't know about files. But this seemingly odd arrangement
is reasonable when one considers what RTE evolved from, and
what its original purpose was. | personally think that if the HP team
had the advantage of starting from scratch, they would come up with
something like a UNIX or VMS look-alike, for these are the operating
systems of the 80’s. In thinking ahead, though, HP should look

to the 90’s as well, when systems along the lines of the

Smalltalk environment might become more common.

2. THE ACIRL APPLICATION

Before commencing the comparison, | will present a brief
description of the ACIRL system and application.

The hardware includes:

— a1 Mbyte 11/750 computer

— 240 Mbytes of disc (2 x RM80)

— dual density (800/1600 bpi) 125 ips TU77 magnetic tape unit

— 5 VT100 screen terminals, including one with graphics

— 2 hardcopy Decwriter terminals (one is the operator console)

— 1 Tektronix 4114 high resolution (1020 by 760) graphics terminal
which also acts as the system interface with:

— a Tektronix 4662 8 pen plotter
— a Calcomp 960 digitizing table

— 1 Calcomp 1051 drum plotter

— a remote HP9826 desktop computer situated at ACIRL's
Bellambi laboratory, connected by a 1200 bps leased line. It is
used for simultaneously controlling and logging 3 areas of testing,
namely rock testing, physical strata model, and the creep
testing rig.

As the nature of the hardware suggests, the software developed by

the ACIRL Mining Division makes extensive use of graphics output.

Our software systems, which are written in Fortran 77, encompass

the following areas:

— ageotechnical logging system

— more ventilation simulation

— structural stability programs

— in-seam long hole drilling program

— underground mine plan generating system

— washability performance prediction.

3. COMPARISON BETWEEN USER INTERFACES

From the user’s point of view, a system'’s features manifest
themselves in the areas of routine use, and program development.
With respect to the former, RTE and VMS are not all that different,

in the sense that:

— execution speed is much the same

— program invocation is similar.

For example, to produce a particular picture on our VAX, one types:
$ mpdraw/scale=8000/er=216000,217000/nr=1307500,
1308500 acme

13

The corresponding HP 1000 command might look like:
:mpdrw,acme,scale =8000,er=216000,217000,nr=1307500,
1308500

From the programmer’s point of view, the development environment
is important because it can profoundly effect the rate at which we
progress through the edit-compile-link cycle, which is the
characteristic limitation of the current generation of software. Because
the development user is the one most likely to notice system
differences, and also because Fortran is the language we use, |

will restrict my attention to the Fortran programming environment.

The systems side of the machines are not considered, although it
is worth mentioning in passing that the VAX provides some very
convenient facilities for setting up your own queues with forms types,
etc., and backup utilities that allow only files that have been
changed since the last backup to be saved.

3.1 THE SYSTEM ENVIRONMENT

Essentially, productive program development requires an Editor,

a compiler, a linking loader, a debugger and a friendly system
environment. This section deals with the latter feature, in terms of a
number of specific topics.

HELP

Both systems provide on-line help, however the VAX help is more
extensive and has the same format right across the system,
consisting of a tree whose branches you traverse as you require
more detail. The extent to which help is provided gives a very friendly
impression; significant portions of the manual are stored in the system
help library.

GENERAL

VMS tends to be excessively verbose if anything, while RTE is
more cryptic. For example, when a program crashes, RTE gives a
brief message informing the user that a DM or MP error has
occurred, the contents of various registers, and the address at
which the error occurred. The user would then go back to the loader
and computer listings, and locate the offending code. The VAX
provides a lengthy verbal diagnostic and (what is good) a traceback
sequence displaying the current line number for all modules back

to the main program. Together with the contents of registers the
assembly programmer is really only interested in seeing, you

get about6 lines in all. What makes it painful sometimes is that lengthy
error messages occur even if minor formatting errors occur.

While the purist would argue that this is a sign of system integrity,

it is often a bit much. The HP formatter is more forgiving and
flexible, and even lets you write reals with “I” format.

The VAX allows you to define symbols, which are useful as typing
savers and also lets you define your own commands (cf macros

in the SH program). The user can also define things called logical
names which are very useful in command procedures. Both systems
allow the user to pass parameters to command procedures.

TERMINAL INTERFACE

VMS allows typeahead, while you can only do it on the HP if it is
equipped with a MUX. FMGR allows the user to edit the pending
line, a very handy feature not found in VMS.

If a long listing is flashing past on the screen at 3600 baud and you
want to read part of it, the VAX allows control characters to
alternately stop and start output (CTRL S(XON) and CTRL Q (XOFF)),
to suppress output (CTRL O), or to abort the listing/process

(CTRL Y). CTRL Y can be trapped in a command procedure, for
example:

$ on controly then goto cleanup

$ exit
$ cleanupwrite sys$output “control Y intercepted”

Unfortunately, HP have written a lot of these control characters

into their editor, which means that standard characters like XON
and XOFF can't be used for their-more common use, handshaking.
The only way to suppress output is to bash the keyboard until the
“S=nn COMMAND?" prompt appears. While this seems to lack
elegance, | used this to my advantage when a regular HP user, to do
several things like edit, compile and link different routines
simultaneously.

14

Focus 1000

FILES ‘
The VMS file system is quite different to that of FMGR. On the HP,
each user has a specific fixed area of contiguous disc tracks
available to him or her alone, called a cartridge. The cartridge has an
associated logical unit number and cartridge reference number

(2 ASCII characters), and a file directory located in its last track or
tracks. In the system cartridge, a central cartridge directory points
to the user cartridges. On the VAX, each user is allotted a quota of
disc blocks on each disc device; these blocks can exist anywhere.
(A disadvantage of this arrangement is that it's harder to undelete
deleted files. An advantage is that it's more efficient). The user is
assigned a directory which can be partitioned into subdirectories
and sub-subdirectories to any level, corresponding to the user's
hierarchy of activities. File names within the directory are of the form
NAME.TYPE;VERSION. NAME is a 1-9 character name, TYPE is

a 3 character file type, and VERSION is a number, the highest
corresponding to the “latest”. Unlike FMGR, non-standard
characters like * or/ aren’t permitted in the file name, but having

9 characters plus a type compensates for this deficiency. The file
type is used to designate a file’s purpose: for example, .DAT, .FOR,
.OBJ, and .EXE are used for data, Fortran source, object code

and executable code respectively. Thus if you say $ fortran prog or $
run prog the system looks for PROG.FOR or PROG.EXE
respectively. We have a few standard file types of our own, for
example .PLT for neutral plot files.

Having version numbers is handy because when you edit a file
you get to keep the previous version as well as the new version.
In this context, the Fortran STATUS="NEW’ and ‘OLD’ have very
well defined meanings. The number of versions the user has is a
system parameter; older versions are automatically deleted. The
“purge” command gets rid of all but the latest version.

Like FMGR, VMS lets you do “wild card” directory lists, but you can
also do wild card deletes, purges, and copies, etc.

The VAX supports 3 file organizations: sequential, relative

(fixed length record, direct access), and indexed (keyed access).
FMGR supports only the first two of these: the third is something you
only get with other languages and is very handy if you're using
complex data records. Keys can be primary or alternate, character
or integer.

3.2 PROGRAM DEVELOPMENT

GETTING THE PROGRAM IN — THE EDITOR
The two editors, EDIT/1000 and EDT share the features of help,
line mode and screen mode. In line mode, they’re much alike, both
having their roots somewhere in UNIX. EDIT/1000 supports regular
expressions, while EDT doesn't, although you can use the other
VMS editor “SOS”, if you need that capability. Both allow you to
recover from interrupted sessions (system crashes) by writing a
journal file. EDIT/1000 lets you “undo” the previous command, which
is rather a nice feature. To do this on the VAX you have to interrupt
the Editor (using CTRL Y), edit the journal file and then
EDIT/RECOVER.

My productivity has significantly increased since | began to

use VMS, and | think it is due to EDT’s screen mode. In screen mode,
the two editors are quite different, reflecting their different design
philosophies. EDT uses the CPU and a “fairly dumb” terminal

(the VT100), while EDIT/1000 uses block reads and the local
editing capabilities of the “fairly smart” HP26xx terminals. EDT

is more expensive to run but gives you capabilities you just

can't have unless your terminal happens to be a microcomputer
with its own screen editor. EDT screen features include:

— cut and paste (character/word/line/section)

— move to next character/word/line/section, forwards or backwards
— delete/undelete character/word/line

— buffers for storing text .

— search for strings, forwards or backwards

— automatic search for/substitute strings

COMPILING THE PROGRAM — FORTRAN

Both systems support superb Fortran 77 compilers. Now that HP
support the character data type, they're no longer behind the
others. (After all, it is 1982!). About the only difference | have noticed
is that VAX Fortran gives you a cross-reference listing if you want
it: for every entry in the symbol table, a list is produced containing
all line numbers in the program where that entry appeared,

and whether it was a data or assignment statement, or subroutine
call. Of course, VAX Fortran is verbose: e.g., the keyword in

the OPEN statement to suppress Fortran carriage control

attributes in a new file is CARRIAGECONTROL="LIST’, a mouthful
that should be abbreviated.

LINKING THE PROGRAM

Both systems have linking loaders with similar features. The

VMS linker appears to be faster than the RTE-IVB loader, although
I'm told thatthe RTE-6 loader is a lot faster. Both allow libraries to be
searched for unresolved references. The VMS linker has one
deficiency here. Suppose MAIN calls SUB1 and SUB2, and SUB2
calls FRED, and that SUB1 and FRED are located in LIB1,

and SUB2 is located in LIB2. Then the command

$ link main,lib1/lib,lib2/lib

will fail to resolve the reference FRED because the linker does

not look at previously searched libraries. | think the HP 1000 does
automatically do this. To get around the problem, we have to use
the command $ link main,lib1/lib/include =fred,lib2/lib

One good application of logical names (mentioned earlier) is that
there are up to 1000 system logical names called LNKSLIBRARY xxx.
If such a logical name is defined to be some central storeable
library of commonly used utilities; then the linker automatically
searches that library if there are any unresolved references. Thus
all you have to type is $ link main.

DEBUGGING THE PROGRAM

Since | have never really used the RTE Debugger, | can't really
comment on it except to say that it is not a symbolic debugger
(although it soon will be!), and appeared to be unfriendly (and
hence discouraging)! However, the VAX debugger DBG is very nice,
and | think it is worth a mention. Again you get the full help facility,
ability to refer to program symbols, line numbers and statement
labels. You can even examine the source code! The examples
below indicate the sort of stuff DBG is made of:

deposit kount=5 examine/hex char
examine x(1):x(n),z cancel breaks/all
help set module show breaks

set break % label 80 show modules
examine/source %line 551 go

cancel break %line 551

At ACIRL we find that the debugger speeds up program
development quite significantly, and people tend to use it because
of its general friendliness and ease of use.

4. CONCLUDING REMARKS

Despite a number of shoricomings, VMS is very nice to use, and
has done much to shorten the program development process. The
Systems Improvement Committee would do well to examine VMS,
along with other systems, in the course of their study.

Focus 1000

HP 1000 Users
Group (N.S.W.)

The Annual General Meeting of the Group was held on ‘
Wednesday, December 1 at Hewlett Packard, North Ryde.
Elected Office bearers for 1983 are:

Corrado Di Qual, President, STC

Dr. N. T. Hai, Treasurer, Lever & Kitchen
Bill Wallace, Secretary, O.S.S.

Bill Filson, Committee, Dasys

Ralph Davies, Committee, Plessey

Tony Lane, Committee, Cullen, Egan Dell

Prior to the election, John Knaggs (HP) presented an
entertaining talk on the new 32 bit HP9000, with particular
reference to its innovative hardware features. General
business, after the election, included discussion of possible
workshops organised by the Users on aspects of HP Software,
etc. A very pleasant evening was topped off by an informal
Christmas party by courtesy of Hewlett Packard.

The N.S.W. Group wishes Crosstalk subscribers the
compliments of the season.

Bill Wallace,
(Secretary)

SPECIFICATIONS FOR
SUBMISSION OF ARTICLES
AND ADVERTISEMENTS

Crosstalk will be published each even numbered
month. Articles and advertisements must be
received by the appropriate group editor by the
third week of the preceding month.
ARTICLES: Articles should be typed with any
diagrams and program listings in camera-ready
form (Author’s name, address and phone
number should be included).
ADVERTISEMENTS: Display ads. should be in
camera-ready artwork form. The printer may

be instructed to layout ordinary typeface ads.

CURRENT ADVERTISING RATES:

Full page — $250

Half page — $125

Column/cm — $4

There is a 20% discount on these rates for
regular advertisers. Classified ads. are free

for user group members, and $10 each for
non-members.

Advertisers will be billed upon receipt of ad. The
user groups reserve the right to change rates,
limit space availability and reject advertising
which is deemed inappropriate.

ADDRESSES FOR SUBMISSION OF
ARTICLES AND ADVERTISEMENTS:
The Editor,

HP1000 Users Group (N.S.W.),

Box 3060 GPO,

Sydney, 2001.

N.S.W.

The Editor,

HP1000 Users Group (Vic.)

P.0. Box 132,

Mt. Waverley, 3149

Vic.

Ms. Barbara Harrison,

Canberra Technical Users Group
C/- Australian National Parks & Wildlife,
4th Floor, Adelaide House,
Phillip, A.C.T., 2606.

Phone: (062) 897 919.

Mr Keith Crellin,

Queensland Technical Users Group,
C/- Cameron McNamara Pty. Ltd.,
131 Leichhardt Street,

Spring Hiil, Qid., 4001.

Phone: (07) 228 9125.

H.P.D.C.U.G.V. articles only to:
Mr Bernie O’'Shannessy,

Arlec,

30-32 Lexton Road,

Box Hill, 3128, Vic.

H.P.D.C.U.G.V. advertisements only to:
Advertising Editor,

HP Desktop Computer Users Group (Vic.),
C/- 47 Bursaria Ave.,

Ferntree Guily, 3156, Vic.

‘S

15

COMING EVENTS

March 1:

March 14:

March 21:

March 21:

March 21:

IMAGE/DBMS 1000 Course,
HP Melbourne

RTE-A System User Course,
HP Sydney

RTE-A System Programmer/Designer
Course, HP Sydney

HP Basic Programming Course,
HP Melbourne

9845 Operating & Programming Course,
HP Sydney

9826/36 (Series 200) Operating &
Programming Course, HP Melbourne

RTE-6/VM Session Monitor Course,
HP Sydney

H.P.D.C.U.G.V. Meeting — “Strings and
Things”, 4 pm., C.S.L.R.O,,
Glen Waverley

9826/36 (Series 200) Operating &
Programming Course, HP Sydney

RTE-6/VM System Manager Course,
HP Sydney

PASCAL Course, HP Melbourne

HP85 Basic Programming Course,
HP Melbourne

L

CLASSIFIED ADVERTISEMENTS
b RN

FOR SALE
OR HIRE

Computers & (ROMs) — ;
9845A 64k (IOMM) ..o, $6000
9831A 16k (MM) ...l $2500
9831AB2K . -$2500
9825A 24k (SA, PG, SP) ..., $3800
9825T 64Koeeeveieeeeeeeeee e $6800
Printers —
9871A, attach, 25-451/F ..ol $1400
9871A alone (parallel) $750
2631A alone (HP IB)c...cooorrooo..... $2200
Other peripherals —
9885M & I/F (Master)cccooervueeenn.. $3300
9885S (Slave)cc.c.........
9869A Card Reader

Used, good disketts and tapes.

Units or Systems for HIRE.

Other equipment is available from clients
registered in my used equipment FORUM.

CALL: CHRIS SIMPSON
(03) 859 6643

WANTED:

Surplus HP desktop computers, periphera|s,
INTERFACES, ROMs, etc.

Call: Chris Simpson

'(03) 859 6643

CANBERRA TECHNICAL
USERS GROUP NEWS

The last meeting was held on 28 September

at Data Science’s office. John Rees described
and demonstrated GEODS/1000 —
Exploration and Mining Geology Data-Base and
Drafting System, and other software packages
for the HP1000.

Grant Spratt and Greg Atkinson from HP]
described HP’s latest offerings in the technical
computer and instrument lines respectively.
These included 30 channel D.A.S., HPIL,
D.V.M., 9836 software enhancements, 2700
Series colour terminals, HP75C micro.

NOTE

CROSSTALK is a publication of the
HP1000 and HP Desktop Computer user
groups. Hewlett-Packard accepts no
responsibility for the content herein, which
is subject to change without notice.
Hewlett-Packard shall not be liable for
errors contained herein or for incidential or
consequential damages in connection with
the furnishing, performance or use of this
material. Furthermore, no endorsement or
promotion of any product by Hewlett-
Packard is implied by its inclusion in this
publication.

