e—

HP TECHNICAL
CONFERENCE

] [Ee o i o

SAN JOSE
OCTOBER 18-22, 1987

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

o

INTEREX

the International Association of
Hewlett-Packard Computer Users

Proceedings

of the

1987 Conference of
HP Technical Computer Users

at
San Jose, California
October 18-22,1987

F. Stephen Gauss, Editor

The Paper Review Committee

Wayne Asp................. Hewlett-Packard Co

Tony geown Bobier Tool Supply

John Gampbell............. Campbell Computer Consulting
Dean Clamons.............. Naval Research Laboratory
Stephen Gauss, Chairman...US Naval Observatory

Art Gentry................ AT&T Communications

Paul Gerwitz.............. Eastman Kodak Co

Hugh Hanks Jr............. DOD

Mark Katz................. Graphicus

Jock McFarlane............ RCA Laboratories

Chris Pappagianis......... RCA Corp

Terie Robinson............ Hewlett-Packard Co

Larry Rosenblum........... Naval Research Laboratory
Nick Seidemman............ McDonnell-Douglas PSC
William Steele............ Tobacco Institute Testing Lab
Dan Steiger............... Naval Research Laboratory
Steven Telford............ Lawrence Livermore Laboratory
Alan Tibbetts............. Telos Computing

Don Wright................ Interactive Computer Technology

Introduction

This volume of the Proceedings of the INTEREX 1987 Technical Computer Conference was printed from
camera-ready copy supplied by the authors. Due to the proliferation of word procesors for HP and other
computers, it was deemed appropriate to request that the authors format and print their own papers, rather
than submitting them in machine-readable form, as in the past. It was gratifying to the editor to find that all of
the authors were able to meet this requirement, thus saving him several months of work. Papers have been
numbered sequentially in order of presentation at the conference with HP1000 papers numbered 10xx and
HP9000 papers numbered 90xx. Papers based on the tutorials are numbered with a T designator and appear at
the beginning of this volume. Several papers will be of interest to both communities, especially as the 1000 and
9000 lines merge at the high end. Because the tutorials often include a considerable amount of last minute
information, as well as requiring much more work than a paper, it is not practical to insist that the authors
prepare papers in time for the proceedings. Nevertheless, some of the tutorials are represented in this volume
and their authors are to be commended for their efforts.

Thanks go to the authors who met the submission requirements and had their papers in by the deadline. The
quality of the papers seems to be higher this year than ever before. Thanks also to the paper review committee
for their timely responses and helpful comments.

Finally, thanks to my wife, Vivian, and to my employers, for their continuing support of my activities on behalf of
the INTEREX conferences.

F. Stephen Gauss

U. S. Naval Observatory
Washington, D.C.

1 August 1987

-

Index By Author

Araujo, Argemiro Rodriguez, Occidental de Columbia. 9003
HP%000-IBM4381 Communications
Ashby, T.G.,, RJ. Reynolds Tobacco Co. 1018

A Real-Time Mini-Computer System For Automating
Radiolabeled Xenobiotic Disposition Studies

Asp, Wayne, Hewlett-Packard. 1029
Effective Usage of EMA/VMA in FORTRAN Programs

Bergman, Carol Hubecka, Hewlett-Packard Co. 1026
Disc Performance

Bomgardner, Mark, Hewlett-Packard Co. T1
RTE Performance Tuning

Burch, Carl, Hewlett-Packard Co. T3
FORTRAN Standards

Burchette, K.S.,, RJ. Reynolds Tobacco Co. 1018

A Real-Time Mini-Computer System For Automating
Radiolabeled Xenobiotic Disposition Studies

Carson, Bill, Graphicus. e e e e e 1006
Graphical Techniques In Data Analysis

Carter, Stephen, Eyring Research Institute. 1003
Relational View of Image With Real Zip

Chase, Tim, Corporate Computer Systems.« ¢ v v v v v v o v v v v . 1030
EMA and the C Programming Language

Christ, Phil, Hewlett-Packard Co. 1017
Manufacturing National Account Products Improve Manufacturers’ Productivity

Clucas, Geralyn, Graphicus. 1005
Elements Of Good Graphing Techniques

Davis, Charlie, Knight-Ridder Trade Cemter. 9005

Data Collection And Management System For
On-line Real Time Financial Market Information
deBethizy, J.D,, RJ. Reynolds Tobacco Co. 1018
A Real-Time Mini-Computer System For Automating
Radiolabeled Xenobiotic Disposition Studies

Drotning, William, Sandia National Laboratories. 1014
A Data Analysis Environment For HP 1000 Computers

Felman, Dan, Hewlett-Packard Co. 1028
An Implementation Of LISP

Fullerton, Steve, Statware. i it i e e e e e e e e e e e e e e T2b
PORT/HP-UX vs. Native Mode Migration

Fullerton, Steve, Statware. i i i it e e e e e e e e e e e 9004
Portable Tape Handling For HPUX

Gauss, F. Stephen, USNaval Observatory. 1019
A Word Processing System For the HP1000

Gerwitz, Paul, Eastman Kodak Co. 1013
A Database Manager Subsystem For Image/1000

Glover, David, Hewlett-Packard Co. v v v it e e T1

RTE Performance Tuning

-iii-

Goff, Thomas, NASA Goddard SFC. 1031
GIMMS Interactive Mapping/Image Processing

Gregg, A. D, City Computing Ltd., 1024
A Modular Multiprocessor Simulation Philosophy

Hanks, Jr, Hugh C, DOD. ittt it e e e 1033
Data Acquisition At High Clock Rates

Hellard, TJ., RJ. Reynolds Tobacco Co. v v v v v v v v v .. 1018

A Real-Time Mini-Computer System For Automating
Radiolabeled Xenobiotic Disposition Studies

Johnson, John, Hewlett-Packard Co. TS
The Ada/1000 Compiler and RTE-A Ada Run Time Support
Johnson, M.B,, RJ. Reynolds Tobacco Co. 1018

A Real-Time Mini-Computer System For Automating
Radiolabeled Xenobiotic Disposition Studies

Jonmes, Tony, Hewlett-Packard Co. 1015
HP1000/MEF to HP9000/500 Interface

Josal, Todd, Naval Undersea Warfare Eng. Station. 1023
Monitor and Control Of Test Software Executing On A Remote stsxmﬂar System

Kalb, Virginia, NASA Goddard SFC. 1031
GIMMS Interactive Mapping/Image Processing

Klier, Pat, Eastman Kodak Co. 1013
A Database Manager Subsystem For Image/1000

Klimpke, CM.H,, City Computing Ltd. 1024
A Modular Multiprocessor Simulation Philosophy

Kozuka, Masataka, Nippon System Gijutu Co. 1027
Random Vibration Control Program

Lawson, Greg, Advanced Microsolutions. 9001

Statistical Process Control - A Practical Approach
To Increased Manufacturing Productivity

Leslie, Donald, Raytheon. it ittt it e einn. 1001
A Table Driven Plot Program For Radar Data

McCormick, Ann D, Intelsat. i v it i i e e e 1016
Developing A Complex Engineering Test Database

McDorman, Dave, Hewlett-Packard Co. 9007
Computer-Aided Test Software: Do You Want To Do A Better Job?

McFarlane, Jock, David Sarnoff Research Center. . . . oo 1021
GOSPEL: Generating Organic Structures for Printing Entu'ely On A LaserJet

Mclnnes, Marvin, Consultant. e 1012
IMAGE/1000: Secrets HP Never Told You

McNabb, G., Naval Undersea Warfare Eng. Station. 1023
Monitor and Control Of Test Software Executing On A Remote Dlssumlar System

Miranian, Mihran, US Naval Observatory. 1032
Remote Monitoring and Control of Timing Equipment For Navigation Systems

Mooney, Lori, Advanced Microsolutions., 9002
Distributed Database Management For Manufacturing Automation

Nelson, Christopher, General Foods Corp. 1002
A Suite Of System Generation Tools

Pavlinik, Ed, Hewlett-Packard Co. 1022
Optical Solutions To Mass Storage User Needs

Pfeiffer, Richard, General Electric. T2a
Porting A Real-Time Package To HP-UX

Portessi, Peter, Cameo Systems. oo e e e 9006

Computer Aided Manufacturing Using Relational Database Technology

-iv.

Reeves, Alistair, Telesat Canada., 1004
Implementing A Centralized Plotting And Slide
Generation Facility For Hewlett-Packard Computers

Robinson, Terie, Hewlett-Packard Co. 9007
Computer-Aided Test Software: Do You Want To Do A Better Job?

Ryan, Robert, Hewlett-Packard.o, T2a
Porting A Real-Time Package To HP-UX

Sayed, Husni, IEM Inc. i it it et e e e e e 1034
An Introduction To Optical Disk Technology

Scadina, Russ, Hewlett-Packard Co., 1008
HP1000 A-series Crash Dump Analyzer

Schober, Dan, Graphicus. v v vttt e et e e e e e e e e e e 1005
Elements Of Good Graphing Techniques

Schumann, Paul, E-Systems. e e e e 1011
Some Advanced Software Techniques

Seidenman, Nick, McDonnell-Douglas PSC. 1009
Implementing High-Level Control Structures Using MACRO/1000 Macros

Stass, Nancy, Telesat Canada. 1004

Implementing A Centralized Plotting And Slide
Generation Facility For Hewlett-Packard Computers

Suzuki, Minoru, Nippon System Gijutu Co. 1027
Random Vibration Control Program

Tibbetts, Alan, Hewlett-Packard Co. v v ... T4
Unsupported Ultilities For RTE

Tibbetts, Alan, Telos Consulting.o..... 1010
Using the HPCRT Library

Vannicola, Francine, US Naval Observatory. 1032
Remote Monitoring and Control of Timing Equipment For Navigation Systems

Vogelsberg, Gary, Hewlett-Packard Co. 1025
Disc Interfaces For HP Systems

Webb, P. J., Admiralty Research Establishment.1024
A Modular Multiprocessor Simulation Philosophy

Whitney, Alan, MIT Haystack Observatory. 1020
TgX On the HP1000 and Laserjet+

Wood, R, Telesat Canada. ittt et e i 1004

Implementing A Centralized Plotting And Slide
Generation Facility For Hewlett-Packard Computers

-y-

Index By Title

A Data Analysis Environment For HP 1000 Computers.
Drotning, William, Sandia National Laboratories

A Database Manager Subsystem For Image/1000.

Gerwitz, Paul, Eastman Kodak Co.
Klier, Pat, Eastman Kodak Co.
A Modular Multiprocessor Simulation Philosophy.
Gregg, A. D, City Computing Ltd.
Klimpke, CM.H., City Computing Ltd.
Webb, P. J., Admiralty Research Establishment
A Real-Time Mini-Computer System For Automating

Radiolabeled Xenobiotic Disposition Studies.

Ashby, T.G., RJ. Reynolds Tobacco Co.
Burchette, K.S., RJ. Reynolds Tobacco Co.
deBethizy, J.D., RJ. Reynolds Tobacco Co.
Hellard, TJ., RJ. Reynolds Tobacco Co.
Johnson, M.B., RJ. Reynolds Tobacco Co.

A Suite Of System Generation Tools.

Nelson, Christopher, General Foods Corp.

A Table Driven Plot Program For Radar Data.

Leslie, Donald, Raytheon

A Word Processing System For the HP1000.

Gauss, F. Stephen, U. S. Naval Observatory

An Implementation Of LISP. 0. ..

Felman, Dan, Hewlett-Packard Co.

An Introduction To Optical Disk Techmology.

Sayed, Husni, IEM Inc

Computer Aided Manufacturing Using Relational Database Technology.

Portessi, Peter, Cameo Systems

Computer-Aided Test Software: Do You Want To Do A Better Job?.
McDorman, Dave, Hewlett-Packard Co.
Robinson, Terie, Hewlett-Packard Co.

Data Acquisition At High Clock Rates.

Hanks, Jr., Hugh C., DOD
Data Collection And Management System For

On-line Real Time Financial Market Information.

Davis, Charlie, Knight-Ridder Trade Center
Developing A Complex Engineering Test Database.
McCormick, Ann D., Intelsat

Disc Interfaces For HP Systems.

Vogelsberg, Gary, Hewlett-Packard Co.

Disc Performance. e

Bergman, Carol Hubecka, Hewlett-Packard Co.

Distributed Database Management For Manufacturing Automation.

Mooney, Lori, Advanced Microsolutions

EMA and the C Programming Language.

Chase, Tim, Corporate Computer Systems

-vii-

1014

. .1013

1024

Effective Usage of EMA/VMA in FORTRAN Programs. 1029
Asp, Wayne, Hewlett-Packard

Elements Of Good Graphing Techniques. 1005
Clucas, Geralyn, Graphicus
Schober, Dan, Graphicus

FORTRAN Standards. 0 ittt i e e e i e e T3
Burch, Carl, Hewlett-Packard Co.
GIMMS Interactive Mapping/Image Processing. 1031

Goff, Thomas, NASA Goddard SFC
Kalb, Virginia, NASA Goddard SFC

GOSPEL: Generating Organic Structures for Printing Entirely On A LaserJet. 1021
McFarlane, Jock, David Sarnoff Research Center

Graphical Techniques In Data Anmalysis. 1006
Carson, Bill, Graphicus

HP1000 A-series Crash Dump Analyzer. 1008
Scadina, Russ, Hewlett-Packard Co.

HP1000/MEF to HP9000/500 Interface. 1015
Jones, Tony, Hewlett-Packard Co.

HP9000-IBM4381 COommumications.« .+ v+ v v v v v v v v m v e e e e e e e 9003
Araujo, Argemiro Rodriguez, Occidental de Columbia

IMAGE/1000: Secrets HP Never Told You. 1012

MclInnes, Marvin, Consultant
Implementing A Centralized Plotting And Slide
Generation Facility For Hewlett-Packard Computers. 1004
Reeves, Alistair, Telesat Canada
Stass, Nancy, Telesat Canada
Wood, R., Telesat Canada

Implementing High-Level Control Structures Using MACRO/1000 Macros. 1009
Seidenman, Nick, McDonnell-Douglas PSC

Manufacturing National Account Products Improve Manufacturers’ Productivity. 1017
Christ, Phil, Hewlett-Packard Co.

Monitor and Control Of Test Software Executing On A Remote Dissimilar System. 1023

Josal, Todd, Naval Undersca Warfare Engineering Station
McNabb, G., Naval Undersea Warfare Engineering Station

Optical Solutions To Mass Storage User Needs. C e e 1022
Pavlinik, Ed, Hewlett-Packard Co.

PORT/HP-UX vs. Native Mode Migration. T2b
Fullerton, Steve, Statware

Portable Tape Handling For HPUX. 9004
Fullerton, Steve, Statware

Porting A Real-Time Package To HP-UX. T2a

Pfeiffer, Richard, General Electric
Ryan, Robert, Hewlett-Packard

RTE Performance Tuning. o vt v ittt i et it it e et e e e Tl
Bomgardner, Mark, Hewlett-Packard Co.
Glover, David, Hewlett-Packard Co.

Random Vibration Control Program., 1027
Kozuka, Masataka, Nippon System Gijutu Co.
Suzuki, Minoru, Nippon System Gijutu Co.

Relational View of Image With Real Zip. 1003
Carter, Stephen, Eyring Research Institute

-viii-

Remote Monitoring and Control of Timing Equipment For Navigation Systems. 1032
Miranian, Mihran, US Naval Observatory
Vannicola, Francine, US Naval Observatory

Some Advanced Software Techniques. 1011
Schumann, Paul, E-Systems

Statistical Process Control - A Practical Approach

To Increased Manufacturing Productivity. 9001

Lawson, Greg, Advanced Microsolutions

TgX On the HP1000 and Laserjet+. 0. .. 1020
Whitney, Alan, MIT Haystack Observatory

The Ada/1000 Compiler and RTE-A Ada Run Time Support. TS
Johnson, John, Hewlett-Packard Co.

Unsupported Utilities For RTE. T4
Tibbetts, Alan, Hewlett-Packard Co.

Using the HPCRT Library.ttt ittt i 1010

Tibbetts, Alan, Telos Consulting

RTE Performance Tuning

Dave Glover
Mark Bomgardner
Hewlett-Packard Co.
1266 Kifer Road
Sunnyvale, California 94086

With the introduction of the SNAPSHOT/1000 Performance Analysis Service we have had the
opportunity to investigate performance problems with several of our customers’ systems. by using the
data collection tools created by DSD for RTE-A and using the data reduction tools created by ITG, we
have been able to identify problems and use those tools to help recommend a solution.

This presentation will briefly cover the process of collecting and reducing performance data and will
identify the issues concerned with how to collect that data. The next step is trying to identify if a
performance problem even exists with the system under analysis. A problem can mask itself in many
different ways, where one area may be fixed by increasing a resource, another problem area may
intensify its impact on the system. Several examples of systems where problems were easily identified
and also those where the problems were not so obvious will be discussed.

RTE Performance Tuning T1

FORTRAN Standards

Carl Burch
Hewlett-Packard Co.
Sunnyvale, California 94086

The Draft Standard for the next revision of the ANSI Fortran standard is about to become available for
public review. Hewlett-Packard representatives have played an important role in its development. The
new revision, generally referred to as Fortran 8x, makes significant additions to FORTRAN 77 in five
areas:
e define array-level operations to efficiently utilize vector processing hardware and
provide more natural syntax as used in mathematics and the physical sciences

e improve facilities for portable numerical computation
e allow user-defined data types to support user-built abstract data types
e provide more structures means of data and procedure encapsulation

¢ introduce the concept of language evolution, giving notice of the possible deletion of
obsolete features in future standards

Many other additions have been made, as well, such as a new free-format source form, more general

control constructs, recursion, and dynamically allocatable arrays. No FORTRAN 77 features have been
deleted - 100% backwards compatibility.

FORTRAN Standards T3

Unsupported Utilities For RTE

Alan Tibbetts
Hewlett-Packard Co.
1266 Kifer Road
Sunnyvale, California 94086

Data Systems Division of Hewlett-Packard has been creating software for the HP 21xx family of
computers since 1968. In the 19 years since then over 10,000 software products, such as programs,
subroutines, librarics, diagnostics, drivers, operating systems, and subsystems, have been produced. In
the course of development of this software many other programs have been developed as tools for the
use of HP’s factory and field personnel. Some of the best of these programs have graduated to the
status of supported products, while others have ’leaked out’ to the user community at large. These latter
programs, while very useful, have not been given product status because of the commitment to
supporting the programs that product status implies.

In the summer of 1987 DSD personnel were asked to share their ’Goodie Bags’ with the users by
contributing the software to the G-Job project. The software was loosely categorized and then given to

Interex.

This session will explain what software waas donated to Interex, plus a short description of each
program, including "Why would I use it?’.

Unsupported Utilities T4

THE ADA*/1000 COMPILER AND RTE-A ADA RUN TIME SUPPORT

John Johnson
Hewlett-Packard Co.
Sunnyvale, California

This tutorial covers the technical issues concerning the Ada/1000 compiler and the RTE-A’s support for
an Ada run time environment, as viewed by one of the implementation team members. The goal is to
allow you to better use the functionality that Ada/1000 provides. The tutorial features a brief history of
the Ada/1000 development effort, a discussion of the requirements that Ada and its run time support
place upon the operating system and the RTE-A enhancements implemented in order to meet these
requircments. Enhancements to Link, initialized VMA, and software signals are covered. This tutorial
concludes with a discussion of the performance characteristics and general positioning of the Ada/1000
product.

* Ada is a registered trademark of the US. Government (AJPO)

ADA/1000 Compiler T5

PORTING A REAL-TIME PACKAGE TO HP-UX

Richard M. Pfeiffer

GE Corporate Research and Development
Schenectady, New York 12301

J. Robert Ryan

Hewlett-Packard Company
Woodbury, New York 11797

Introduction

The experience presented here is the result of a project at GE for porting a real-time
Fortran software package from an HP1000 system running RTE* to an HP9000
Model 840 running HP-UX,* the Hewlett-Packard superset of AT&T SVID UNIX.t
The project was particularly challenging because the principal programmer was highly
specialized in HP1000 machines and relatively new to a UNIX environment, and be-
cause of the complexity and size of the software package. The software, which is used
for real-time test management and monitoring at GE, consists of 20 or more interre-
lated programs (depending on the configuration), with a total of approximately 1500
files and 80,000 lines of code. The following sections discuss the project background,
describe the software package (calleld TMGR™) in more detail, outline the
differences between the two HP systems, explain the actual porting process used, and
summarize what was learned, with some practical guidelines for programmers.

Project Background

At the GE Research and Development Center, the group undertaking this project
works extensively with computers in online data acquisition and process monitoring.
They also work closely with two related groups that are involved with computer simu-
lation problems and finite element numerical problems. Because of the different re-

* HP, RTE, and HP-UX are trademarks of Hewlett-Packard Company.
+ UNIX is a registered trademark of AT&T in the USA and other countries.
TMGR™ is a trademark of GE.

quirements, each group specializes in different computer systems.

The project group has focused on HP1000s since 1969, when an HP2116B computer
was first purchased to monitor a particularly large and complex mechanical experi-
ment. Following the success of that experiment, the needs have grown, and computer
systems have expanded to include most of the HP1000 models that have become avail-
able. The software written has grown from user-written programs, to user-written
control programs with canned routines, to a complete package that can have routines
added to perform nonstandard tasks with results incorporated into the standard data
base maintained by the package. The present software package for HP1000s is called
TMGR, which stands for Test ManaGeR. It is used for real-time data acquisition and
data management. The scope and usefulness of this package is demonstrated in its
use by over 20 sites within GE for their day-to-day work.

Another system heavily used by groups at the R&D Center and around GE consists of
DEC VAX computers. They are used for many functions, including program develop-
ment, word processing, number crunching, and graphic display of data. Many canned
software packages are employed, as well as locally developed software.

Because of the different systems used at the company, a common question asked is
why TMGR cannot run on large systems, like the 32-bit DEC VAX* line of comput-
ers, or on small desktop machines, like IBM PCs.t The answer has been that the slow
response of the VMS* operating system to interrupts and the nondeterministic
scheduling of processes are major obstacles with the former system, whereas the lack
of multitasking in MS-DOSt creates problems with the PC. However, the evolving
computer environment of supported businesses has led to a serious look at ways of
adapting to these systems. In addition, a recent application of TMGR software, moni-
toring an unusually large set of experimental data, made it obvious that the limits of a
16-bit machine were being pushed on such projects. It had become clear that success
at solving problems could be much greater with the capability of using either 32-bit
computers with their large address space, small inexpensive machines for more mod-
est applications, or machines that run a more popular operating system.

As a result, an investigation was begun into moving to different machines. The first
machine considered was an IBM PC/AT running MS-DOS. Several Fortran com-
pilers were found that were almost as good as that available on the HP1000, but the
lack of a multitasking operating system was still a serious problem. Next, a DEC

* DEC, VAX, and VMS are trademarks of Digital Equipment Corporation.
4+ IBM and IBM PC are registered trademarks of International Business Machines Corporation.
$ MS-DOS is a trademark of Microsoft Corporation.

Porting a Real-Time Package to HP-UX 2

VAX running the VMS operating system was considered. It included a Fortran com-
piler that seemed as rich and comprehensive as that of the HP1000, and VMS was
multitasking. Unfortunately, the software tools available were found to be lacking
when it came to debugging the small-program/message-passing style of system. Also,
it only ran on a VAX, and therefore is limited to DEC hardware. Finally, a system
running UNIX was considered. UNIX runs on many manufacturers’ machines, in-
cluding the IBM PC/AT and the DEC VAX. It includes the necessary multitasking,
many useful tools, and also runs many of the same canned software packages available
under VMS. Unfortunately, however, a good Fortran compiler is not included or gen-
erally available.

About this time, HP introduced the HP9000 Model 840 computer, hereafter referred
to as the Model 840. This seemed to be a logical path to investigate, as the Model 840
offers a 32-bit machine that claims to address some of the real-time problems expect-
ed to be encountered. Also, HP claimed to have an emulation environment that
would assist in the migration, and an HP standard Fortran compiler. These features
seemed to resolve the major obstacles that had been identified in adapting the
software to a new system.

Description of TMGR

In order to illustrate the scope of the project undertaken, it is necessary to give a gen-
eral description of the TMGR package that was to be ported to HP-UX. TMGR has
been developed during the past 12 years at the GE Research and Development
Center. It is currently hosted on either an HP disc-based F Series or an A Series com-
puter running RTE6/VM or RTE-A with VC+ software. The user is provided with a
configurable package including 20 possible static signal front-end options and 10
dynamic signal front-end A/D hardware choices. Basically, static signals are defined
as signals that can be characterized by a single reading valid for a certain time period:
i.e., temperature, pressure, or voltage readings. Dynamic signals, on the other hand,
comprise many values per reading: i.e., time series readings from vibration or micro-
phone sensors. Typically, signal processing, such as Fourier transformations or corre-
lations, is done on the raw dynamic data before the information is copied to the data
base.

A single-user interface program is provided with TMGR that may be customized to
allow the monitoring of data collection and control of its progress. Typically, the data
collection is scan oriented. This means that every so many time units (usually
seconds) a certain sequence of operations is performed. First, data are collected from
the specified hardware. The data are then converted to engineering units, and, if
desired, out-of-range data are flagged. Next, an optional user-supplied calculation
program may be run which has full access to the current data and which may integrate

Porting a Real-Time Package to HP-UX 3

its results in the data base upon completion. Limits may be checked against supplied
values, and data may be archived either to disc, magnetic tape, or both. Finally, the
data may be displayed on multiple alphanumeric or graphic display terminals.

All these options may be controlled from the user interface as well as adding and
deleting channels from the scan lists. The scan rate may be changed and the limit in-
formation modified, as well as changing the display page information, while the test is
proceeding smoothly.

The package has found widespread use inside GE, with more than 20 installations cur-
rently in operation. An important feature of the package is that it looks the same to
the end user, regardless of the choice of computer system and/or front-end hardware.
In considering options for porting the package to other systems, this standardized user
interface was a high priority.

Description of Model 840 from an HP1000 User’s Point of View

A useful perspective for approaching the migration of programs to HP-UX is to look
at a Model 840 from an HP1000 user’s point of view. In this discussion, it is assumed
that the user has much more experience with RTE systems than with UNIX or other
similar systems. From this perspective, the following general areas stand out, and will
be discussed in more detail below:

« Filename conventions, especially case-dependency, filename length, and path-
names

« Processing differences, such as in EXEC call scheduling
« Documentation and the examples used

«» Fortran version differences, particularly the consequences of nonstandard
HP1000 extensions

Probably the first thing an HP1000 user notices when changing to HP-UX is lower-
case letters. Although most users have experience with lowercase, this system does
not up-shift automatically, and proper case is extremely important. In other words, if
there are a lot of INCLUDE files used in Fortran routines and they happen to be in
uppercase because that was correct in the RTE file system, when the INCLUDE files
are copied over to HP-UX, they must be converted to lowercase. As can easily be
seen, case-dependance can cause major problems.

Along the same line, no doubt many remember when the cry to HP was to allow for
filenames longer that six characters. “All the other systems have longer filenames,
and extensions!” was the complaint. Finally, the designers at HP heard the noise, so
that now 16-character names with 4-character extensions are allowed on the HP1000s.

Porting a Real-Time Package to HP-UX 4

Although this seemed to be great at the time, there is now HP-UX to consider, which,
like UNIX V, only allows 14 total characters, including the “dot”: i.e., 13 actual char-
acters. Just imagine trying to come up with 1000 new filenames as was required here,
and then think of the confusion caused if these filenames previously matched the rou-
tine names in the code. It’s as if all your old friends suddenly called themselves some-
thing different, and then refused to respond to their proper names. (The only consola-
tion in this matter is that 13 characters are better than 6.)

From an HP1000 programmer’s point of view, the Model 840 is a mixed bag. It is
different from the safe, familiar, and admittedly peculiar RTE system. Programs do
not schedule son and daughter programs with EXEC calls. Instead, they split into two
copies of the program itself, and then each examines itself and decides what its job is:
either to run the new process or wait for its sibling process to finish.

Devices will now have full-path filenames such as “/dev/nuil” versus the familiar logi-
cal unit O for the bit-bucket. In Fortran, the keyboard is unit 5 and the screen is unit 6,
not the familiar unit 1. This feature alone can cause a big headache.

Next, all the new documentation is presented in a C-language format, including all ex-
amples. This can be a major source of culture shock after 15 years of Fortran-
oriented documentation.

The last major difference encountered is that HP1000 Fortran 77 isn’t “standard,” it’s
better. A number of systems have been used over the years, and never have as many
dialect problems been experienced as with the HP-UX Fortran compiler, mainly
stemming from the nonstandard features that are taken for granted on the HP1000, It
seems that when useful features are available, people take advantage of them. The big
problem is that the HP1000 compiler does not let you know these extensions are being
used. Thus, a programmer can become lulled into making use of them. This alone is
not necessarily a problem, but the HP-UX “HP standard Fortran compiler” does not
address many of these extensions. To be fair, since this project was completed, several
other systems have been tried, including standard UNIX “f77,” and these were found
to be even worse in this respect.

Most of the differences mentioned here are really significant only on large software
packages. In the present case, the problems were more acute because the software
consists of many interrelated programs that depend heavily on interaction with the op-
erating system and that must function in real time. For many applications, the
benefits of the UNIX-like operating system and much larger memory may far
outweigh the difficulties. In addition, the PORT/HP-UX emulation environment al-
lows many programs from RTE systems to run on the Model 840 with very little
conversion effort. The porting process itself, as well as the choice of full conversion to
HP-UX or to PORT/HP-UX, is discussed in more detail in the next section.

Porting a Real-Time Package to HP-UX 5

Explanation of the Porting Process

Figure 1 shows the steps which were followed in the process of porting Fortran pro-
grams from an HP1000 to the Model 840. As shown, the initial steps are similar for
programs destined for either full HP-UX or PORT/HP-UX on the Model 840. First,
the MAU utility is run on the HP1000 source code. It generates many pages of output
detailing the system calls made by the code, and divides them into three categories:
routines emulated by PORT/HP-UX, routines partially emulated by PORT/HP-UX,
and routines not emulated by PORT/HP-UX. This very useful information can be
used to determine the amount of work required to move the code to either
PORT/HP-UX or full HP-UX. If many of the system calls are fully emulated by
PORT/HP-UX, it should be an easy task to make the code run in the emulation en-
vironment. If many of the system calls are not emulated or are only partially emulat-
ed, then consideration should be given to moving to full HP-UX. This gains the full
advantage offered by the Model 840. An annoying problem with the information is
that it only checks for system calls, and only those that it is familiar with. It does not
determine how much work must be done to the code for the new Fortran compiler to
accept it.

Let us assume that you decide to migrate your package to the PORT/HP-UX en-
vironment based on this information. Now you must decide what to do about
filenames. If you make use of INCLUDE files, they probably need to be made lower-
case on the HP-UX system. This requires that each SINCLUDE statement in the
source code be modified to reflect the change. Also, the files should be renamed so
that they are no longer than 14 characters. These conversions can all be performed on
the HP1000 because of its insensitivity to case and the availability of longer filenames.

Next, make sure all the files are type 4. Then the TF program must be used to write a
“tar” format tape. This step should be done with a relative path rather than an abso-
lute one, as the HP-UX “tar” program cannot modify the directory information when
reading the tape back in. Finally, use “tar” to read the tape into the Model 840.

Now, with all the files on the Model 840 in their proper directory position, the next
thing that must be done is pass them through the “sed” filter HP has supplied. This
filter addresses some of the Fortran differences between the two machines. For in-
stance, it will comment out most compiler directives and write the appropriate Model
840 compiler directives. It will also place INCLUDE filenames in quotation marks.
All directives that perform memory management on the HP1000, such as $CDS,
$EMA, and $MSEG are removed, as they are superfluous on a 32-bit machine. Also,
it removes any comments from subroutine and function statements if they do not oc-
cur on a continuation line.

Once the above work has been completed, the difficult part begins. Now the source

Porting a Real-Time Package to HP-UX 6

Run MAU
Utility

!

Make Choice:
PORT/HP-UX or
Full HP-UX

!

Filenames:
Lowercase

!

Filenames:
Type 4

i

Run TF to Make
Tar Format

:

Run HP Sed
Filter

!

Compile Source

Files on 840
Fix Errors;
Common Ones:
y
[] [] [] 1
Array Refs. wio REAL*6 Declar- Max of 59 Cont. Cont. Lines: It
Subscripts ations {N/A) Lines on 840 Autoconverted
L] |]

Use Ld Program
to Build EXEs

:

Ready for Full
HP-UX Convert?

l— No Yes—l

Copy for RTE Change Unit 1
Emulation Reads & Writes

:

Fix Directory/
Printer Manip.

!

Isolate System
Calls in Code

i

Implement System
Call Library

Figure 1. Steps for porting Fortran from HP1000 to HP9000 Model 840

Porting a Real-Time Package to HP-UX 7

files must be compiled using the Model 840’s Fortran compiler. Errors will occur un-
less extreme care was taken on the HP1000. These are some common problem areas:

« Array references without subscripts in other than call statements

o Real*6 declarations, which are not supported on the Model 840 (change them to
Real*8 or Double Precision)

» Continuation lines, because the Model 840 compiler has a maximum of 59 con-
tinuation lines, and it may be difficult to fix code exceeding the maximum

« Other errors that may arise if some of the automatically converted features oc-
cur in continuation lines

The major problem among these is related to variable subscripts of arrays passed into
subroutines. This problem occurs when array subscript names are not defaulted to in-
teger variables and are defined in the wrong order. For instance:

SUBROUTINE PEAR(ARRAY,SUB1,SUB2)

REAL*4 ARRAY(SUB1,SUB2)
INTEGER*2 SUB1
INTEGER*2 SUB2

etc.

This example will produce compiler errors on the Model 840 but not on the HP1000.
To correct this either change SUB1 and SUB2 to ISUB1 and ISUB2 or simply reverse
their order:

SUBROUTINE PEAR(ARRAY,SUB1,SUB2)

INTEGER*2 SUB1
INTEGER*2 SUB2
REAL*4 ARRAY(SUB1,SUB2)

etc.

After all the compiler errors are resolved, the next step is to attempt to build the exe-
cutable files. Depending on the number of routines included, either a library con-
structed with the “ar” utility, or a list of files, may be supplied directly to the “1d” pro-
gram. If this is expected to be done repeatedly, HP-UX has a “make” utility which
monitors changed files and updates the appropriate ones when any changes have been
made. The only problem is that the user must supply all the information in a text file

Porting a Real-Time Package to HP-UX 8

about which files depend on which other files for consistency. This means that if a
change is made in the source of an INCLUDE file, and several routines use that file,
“make” will schedule the compiler to update the relocatable files, the libraries they
are included in, and any executable files that use any of these files. It is very tedious
to build these “make” files and keep them up to date, although overall it tends to be
worth the effort. There are also utilities in development that will scan source files and
write the “make” files. Most of these are not perfect yet.

Once all the executable files are ready, they must be copied along with any required
data files into the file space set up for the emulation environment. Provided utilities
convert these files so that the RTE emulation thinks that they are RTE files.

These applications can only be run from within “rtesh,” the emulation environment
user interface program. Many RTE commands are available to the user, such as the
ability to “RP” programs, and the ability to flag programs as unsharable, i.e., non-
cloneable. The emulation seemed to be very complete but slightly slower than an
A900 if the code uses many system calls.

Assuming you now desire to finish the migration to full HP-UX, what must be done?
First, perform all the previous steps up to copying the files into the emulation file
space. This is obvious as the programs must still be compiled and linked. The next
thing to do is to go through the code and change all reads from unit 1 to reads from
unit 5 and all writes to unit 1 to writes to unit 6. Then, if necessary, explicitly open any
printer under a different unit number. Any code that manipulates the directory struc-
ture may have to be changed because of the single-root-directory structure of HP-UX.
Finally, the case and size of program data files may have to be changed to match the
conventions of HP-UX. The most difficult part is going through the code and isolat-
ing the system calls. Small interface routines can be written to perform generic sys-
tem functions. This is simpler in a large package than changing all the similar calls to
be HP-UX specific. The code is also more portable to other systems in the future.
Some examples of this type of routine are retrieving the system time, scheduling
another program, sending some data to/from another program, or outputting to a
specific device. While none of these routines is impossible to write, depending on the
specific requirements, a particular routine may be rather difficult to arrive at.

Some RTE features that must be simulated are suspend saving resources and running
on the clock. The ability to suspend saving resources in core is one of RTE’s greatest
assets. It allows a process to start up and get ready to perform some function. The
next time it is called for, it is all set to respond. It does not have to be searched for on
the disc, and files can already be open. In HP-UX, this feature can be simulated by
running a program that performs its setup and then suspends awaiting some signal or
message. It is more flexible than RTE’s technique, but requires more cooperation
among the programs. Running a program on the clock can be handled similarly. The
process itself must be set up and then suspended until a certain time. A parent pro-

Porting a Real-Time Package to HP-UX 9

cess may also be written to perform the same thing, but that adds additional overhead.

What Was Learned: Programming Guidelines and System Evaluations

One of the most significant lessons learned from the migration process was about the
programming techniques which have been in use. It must be admitted that this pro-
cess has forced a hard look at ways to improve programming practices, and thus avoid
many of the problems that were encountered. The guidelines below should be useful
for writing any software that might find itself on another machine someday (which
could cover almost all of it), and of course will be of particular interest for software
that is definitely earmarked for future porting.

1. Learn the “language standard.” After all these years writing Fortran, it was as-
sumed that what ran on the HP1000 was standard Fortran. It was also assumed
that everyone supported all of MIL-STD-1753. Only after starting this project
was it discovered how wrong these assumptions were.

2. Always use named constants. Many of the problems encountered were related
to what the default integer size was. It is usually easy to override the default,
but hard to enforce the presence of the option.

3. Try never to build structures with equivalences. Unfortunately, Fortran does not
have structures. This makes it very easy to abuse the equivalence feature. If it
is absolutely necessary to use it, do so at a low level, and only access the struc-
ture through function calls.

4. Never port code that is changing. While one group was porting the code, other
people were adding new enhancements. This makes it very difficult to compare
results because you do not know which machine has the error.

S. Things always take longer than planned. How much longer depends on the
programmer’s experience and on the complexity of the program. In this case,
about half the project effort went into learning and getting used to the new sys-
tem. With the large, complex set of programs that make up the software pack-
age being ported, it is estimated that the porting process took almost half the
time that would be needed to rewrite the programs completely. Porting less
complex software, on the other hand, may take only a small percentage of the
effort that would be required to rewrite the code. Keep in mind that if there is a
choice between porting software and buying more hardware, the hardware ap-
proach could be much less expensive in some cases.

6. Learn to use as many of the tools available on the new system as possible. There
may be compensating features and productivity improvements possible on the
new system that will eventually overcome any drawbacks of the transition. Un-
less the tools are learned, however, the full advantage of the new system will

Porting a Real-Time Package to HP-UX 10

-

never be exploited.

7. Use the source code control system (SCCS). One of the HP-UX tools deserving
special mention for porting projects is SCCS. This tool keeps track of all the
modifications made to each file in a compact format, i.e., by recording the
differences rather than each complete version. Any previous version can then be
restored as needed.

From this experience, a healthy respect for both HP-UX and RTE has been gained.
Quite honestly, both have good and bad features. Comparing file systems gives RTE’s
global directories on each volume the edge over HP-UX’s single root directory per file
system. Variable-length extensions and hidden files in HP-UX are better than RTE’s
maximum of 4-character extension with no hidden files. However, the two worst fea-
tures of the HP-UX file system are the short filenames and the amount of work it
takes to walk the directory tree in the shell,

In a comparison of utility tools available, HP-UX wins hands down. But RTE also has
several excellent utilities. In particular, EDIT/1000 wins handily over the combination
of “sed” and “vi.” This is not because one is better than the other, but because one is
definitely better than two: i.e., it is easier to learn the full power of EDIT/1000 than to
learn both utilities on HP-UX. Also deserving honors is RTE’s WH utility. HP-UX’s
system status display utility, “ps,” does not present the user with nearly as much useful
information. On the other hand, “make” under HP-UX is almost the answer to every
programmer’s prayers (if it could only write its own dependencies file).

Comparing Fortran compilers is easy. Except for one bug that was discovered in the
compiler on the HP1000, the only feature lacking is an option to flag nonstandard
usage. The Fortran compiler on the Model 840 has more VAX extensions than
HP1000 extensions. In fact, the compiler on the Model 840 was found to differ from
that found on the current HP9000 Model 320 system. This is not a good omen for fu-
ture compatibility.

The major Fortran deficiency of the HP1000 compiler is the Hollerith versus charac-
ter data storage problem. This is a hard problem to resolve, as the underlying archi-
tecture has byte-addressing problems. Other systems seem to have solved it, however.
Maybe an option could be added to RTE to optionally accept a byte address in an sys-
tem call; all the old user code could be converted to use character variables.

The primary two difficulties that cannot be efficiently addressed by the compiler, or
the system, are the size of numerical constants: i.e., whether a numeric 27 is a 16- or
32-bit constant. More insidious are alignment problems, particularly in common
blocks, and worse, in equivalence statements. The first problem may be addressed by
appending either an I or a J to all integer constants in the source code. This is an ugly
solution, but the only other answer is to always use parameter constants which are de-

Porting a Real-Time Package to HP-UX 1

- Computer
._.“_:Museum

clared like all other variables. This solution usually makes the code more self docu-
menting, assuming the symbolic name chosen is sensible and appropriate.

On the other hand, the equivalence problem is more difficult to resolve. First, all
equivalences that are not required should be removed. Although this seems obvious,
some Fortran code is old, and equivalences may have been used to speed up array ac-
cess to fixed locations. Most, if not all, modern compilers now perform this function
for the programmer automatically. The second reason for equivalences is variant use
of data space: i.e., using a variable as an integer area in some cases and as a floating
point area in others. Also falling in this area is the standard practice of using
equivalences to build “structures” in Fortran. Unfortunately, byte, word, and double-
word alignment problems are not addressed by any standard, and therefore if these
techniques are used the code may be hard to port to other systems in the future.

Conclusions

After completing this project, the authors’ conclusion is that porting a major software
package to a new operating environment can be a practical option if approached cau-
tiously and for the right reasons. Good reasons would include the necessity of moving
to a larger system or the requirement of using a more popular operating system, espe-
cially for those who are already comfortable in the UNIX environment. On the other
hand, if the goal is to change the software to save on new hardware, that may turn out
to be a very costly “saving” in the long run, especially for fairly specialized software
packages with a limited number of applications. Not only is the porting process itself a
potentially large and unknown cost factor, versus the known cost of the hardware, but
the hidden costs such as learning a new system and supporting two separate versions
of the software may carry on well into the future. For software that truly deserves the
available size and flexibility, however, the Model 840 has what appears to be a very re-
liable combination of hardware and a full range of software tools, especially for port-
ing Fortran from the HP1000s.

‘The overall impression of the HP9000 Model 840 with the HP-UX operating system is
that it is great. During the entire 7-month project using a very early machine, it had
no hardware problems. Very few software problems in the HP-supplied code were
found during that time, and they were all quickly resolved by HP.

References

1. American National Standard Programming Language Fortran, ANSI X3.9-1978,
American National Standards Institute, Inc., 1978.

Porting a Real-Time Package to HP-UX 12
i

Fortran 77/1000 to HP Fortran 77 or HP-UX Migration Guide, PN 92430-90003,
Hewlett-Packard Company, 1986.

Fortran 77 Reference Manual, PN 92836-90001, Hewlett-Packard Company,
198s.

Porting a Real-Time Package to HP-UX 13

PORT/HP-UX vs. Native Mode Migration

Stephen C. Fullerton
Statware, Inc.
P.O. Box 510881
Salt Lake City, UT 84151

July 20, 1987

1 Introduction

In April of 1986 Statware was invited by Hewlett Packard to participate in the Fast Start migration
program. In particular, we were invited to port our statistics package, STATS0, to the HP 9000
Series 840. Since all STAT80 development is done on a HP 9000 Series 550, the port would not have
been very difficult; however, rather than port the HP-UX code, I decided to port the HP 1000 code
as an experiment to test out the capabilities of the PORT/HP-UX system.

I'thought that this port would represent a worst case scenario for conversion to the HP 9000 Series 840
whereas taking the code from the HP 9000 Series 550 would be a best case scenario. This paper
describes the experience using PORT/HP-UX, then porting native mode, and finally, a comparison
of the two with some benchmarks.

Throughout this paper references to HP-UX and UNIX should be interchangeable except with the
PORT/HP-UX facilities.

2 Migration Problems

STATS80 is closely tied to the host operating system. For example, there is no FORTRAN I/0; all
I/0 is done directly through the kernel. In addition, there are many other operating system calls.
When I ported to the HP 1000, all system dependent HP-UX (UNIX) external references had to be
converted to the analogous HP 1000 system call.

The following sections give an overview of the changes and effort required to port STATS0 from HP-
UX to the HP 1000. These sections are important because I was trying to achieve UNIX functionality
on an HP 1000 and had to use many HP 1000 system calls and much of the FMP library. Once
the port was complete, a package that was tightly coupled to HP-UX was now even more firmly
bolted to the HP 1000. When this converted code is moved back to HP-UX using PORT/HP-UX
a complete, albeit circular, migration along Hewlett-Packard technical computers has been done.

2.1 System Calls

Strings passed to the kernel under UNIX must be ASCIZ strings; ASCII strings followed by a trailing
zero byte (null). The HP 1000 operating system wants none of this, strings are passed “as is”, or else

T2b

blank padded. Also, since FORTRAN passed all arguments by reference and character variables by
a descriptor, there are incompatibilities with the HP-UX kernel where arguments are passed strictly
by value or reference. The HP-UX FORTRAN 77 compiler provides the $ALIAS directive to help
alleviate this problem. For example, the system routine, write(2), has three arguments, the first and
third are passed by value and the second is passed by reference. The FORTRAN code to call this
routine would be something like:

$ALIAS WRITE = ’write’ (Yval,’ref,%val)
IKTEGER WRITE

ISTAT = WRITE(FD,BUF,NBYTES)

When passing a character string, the $ALIAS must declare the corresponding to be passed by refer-
ence, and a trailing null must be attached. For example,

$ALIAS SYSTEM = ’system’ (Vref)
INTEGER SYSTEM

isrAT = SYSTEM("date"//char(0))

2.2 Input and Output

Input and output conversion from HP-UX to the HP 1000 was especially difficult as the HP-UX
operating system views files as a stream of bytes, regardless of the content of the file. The HP 1000
has different types of record-oriented files. Also, I/O to and from a terminal is handled transparently
to the program and doesn’t require special coding. All I/0 in STAT80 is done under HP-UX by
using the creat(2), open(2), read(2), write(2), close(2), Iseek(2), and unlink(2) system calls. This is
as low level as you can get under UNIX and is roughly equivalent to HP 1000 system calls (EXEC,
XREIO). One problem with using the HP 1000 system calls is that STAT80 does all of its buffering
in EMA and assumes 4 byte integers. All HP 1000 system calls explicitly require 2 byte integers.
Therefore, before writing all data was copied to a local integer array dimensioned INTEGER*4, that
was equivalenced with a local integer array dimensioned INTEGER#*2. All other information had to
be copied to and from 2 byte integers.

The terminal I/O was converted to use XREIO in place of read(2) and write(2). Under HP-UX,
STATS0 reads from the “standard input”, writes to the “standard output”, and displays all error
messages to “standard error.” Terminal input is buffered with one-line buffers. Terminal output is
buffered like any other file under UNIX, with multiple lines in a buffer. The terminal output buffer
is flushed either when full, or else when a prompt is issued. Error output is unbuffered and is written
one byte at a time.

In order to simulate this for the HP 1000, T used an XREIO call for the terminal read. This mapping
was almost one-to-one as XREIO returns a single line. The terminal output was more difficult as I
couldn’t buffer more than one line and under UNIX, the newline character is used as a line delimiter
and it is produced by STATS80 at the end of every line. The output routines had to be modified to
detect a newline character to signify the end of the line and then output the line using an XREIO
call. If the output line was flushed without a newline; e.g., a prompt, then the control words had
to be set to the appropriate octal mask for generating this type of output. Standard error handling
was even more difficult as I wanted it to be unbuffered; e.g., a 50 byte error message would result
in 50 XREIO calls, each with a single byte.

File I/O was converted to use the FMP library. The open(2) was replaced by FMPOPEN, close(2)
was replaced by FMPCLOSE, read(2) and write(2) were replaced by FMPREAD and FMPWRITE,

PORT/HP-UX vs. Native Mode Migration 2

respectively. The binary I/O had to do its own record spanning, something not necessary under
UNIX. All of these routines had to handle the newlines; stripping them on output and adding them
on input.

File positioning is done by record than by byte; therefore, changes had to be made to accommodate
this.

2.2.1 Sample Routines

The following routine, sysred, is the STATS0 routine to read from any file or device into a buffer.
The HP-UX version of this routine is:

integer function sysred (fildes,buffer,nbytes)

] (read -- system dependent)
' -----------------------------------
*
* STAT80: An Interactive Statistical Package
*
| Copyright (C) 1985 Statware -- All Rights Reserved
*
] Proprietary Software: The contents of this routine shall
K not be disclosed or made available, or any portion thereof
* in any form whatsoever to any persom other than the author
L] without prior written approval of the author.
*
' -----------------------------------
3
| Read nbytes into buffer(*) from file descriptor: fildes (may be
* a unit number on some machines).
*
* @(#) sysred.r 1.3 11/4/86 09:34:39
*
b e T S
$ALIAS read = ’read’ (¥val,%ref,¥val)
3
3 external references (function,subroutine,common)
*
s external refs read
3
b LI T T T T T S e
*
s external functions and subroutines
*

integer read
b L e T T T T ot U
3
* non-common variables
3

integer fildes, buffer(1), nbytes
*

return{read(fildes,buffer,nbytes));
end

For UNIX systems, all that sysred does is provide a wrapper around the system routine, read(2)!.
The HP 1000 version of sysred is as follows:

FTH7X,J
$CDs OK

1 Actually it isn’t quite as simple as this because additional code is required to process a read that is interrupted.

PORT/HP-UX vs. Native Mode Migration 3

$ALIAS krputo, EMA

integer function sysred (fildes,buffer,nbytes,nrecsz)

3 (read -- system dependent)
fo = m - m = e = e mmeeemmee - aem——--=—=
2
] STAT80: An Interactive Statistical Package
2
| 2 Copyright (C) 1985 Statware -- All Rights Reserved
2
$ Proprietary Software: The contents of this routine shall
not be disclosed or made available, or any portion thereof
2 in any form whatsoever to any person other than the author
2 without prior written approval of the author.
2
- - - — = e e e e m e - - - - - e mme. e - - - - - - a e a= .-
2
2 Read nbytes into buffer(«) from file descriptor: fildes (may be
] a unit number on some machines).
2
2 ©(#) sysred.r 1.2 5/15/86 16:47:24
4
' -----------------------------------
4
$ external references (function,subroutine,common)
4
4 external refs fmpread, xreio
4
e = e m mm e e e e e e e aeaece e m==-=—=-
4
$ external functions and subroutines
4
integer«2 fmpread
. T T
4
$ non-common variables
4
integer fildes, buffer(1), nbytes, nrecsz
ema fildes, buffer, nbytes, nrecsz
integers2 klen, kerror, kctrl(2), nr
integer=2 ia, kbuff(256)
integer«4 1buff(128)
logical btest
4
equivalence (kbuff(1),1lbuff(1));
4
include files.h
include iounits.h
include memglob.h
include ascii.h
4
kfp = fildes;
nr = minO(nbytes,nrecsz);
nr = minO(nr,512);
if (xfp == stdin) {
kctrl(1l) = termlu;
kctrl(2) = 400B;
nr = -nr;
call xreio(1i,kctrl,kbuff,nr);
call abreg(ia,klen);
if (klen <= 0) {
if (btest(ia,?)) # eof

klen = -1;
}
if (klen > 0) {

ne = (klen + 3) / 4;

PORT/HP-UX vs. Native Mode Migration

for (j=1; j<=nw; j=j+1)
buffer(j) = 1buff(j);
}
} else {
klen = fmpread(fildcb(1,kfp) ,kerror,kbuff,nr);
if (kerror != 0) {
klen = ~1;
} else {
nv = (xlen + 3) / 4;
for (j =1; j <=nw; j =3+ 1)
buffer(j) = lbuff(j);
}
}
if (xlen < 0) {
nc = 0;
} elee {
nc = klen + 1;
call krputo(ASCLF,buffer,nc);
}
return(nc);
end

An additional argument is necessary as the HP 1000 file system is based on records, to that the
record size to read must also be known. Special processing is necessary to handle terminal input,
end-of-file checking, copying to the EMA buffer, the INTEGER*2 external references, etc. Also note
that after the record is read, a trailing newline character is inserted.

The following routine, syswrt, is the STAT80 routine to write to any file or device from a buffer.
The HP-UX version of this routine is:

integer function syswrt (fildes,buffer,nbytes)

] (vrite -- system dependent)
B = = = e et e e e e e m et e m e am e e m e .. mam—m--- = -
t
$ STAT80: An Interactive Statistical Package
t
] Copyright (C) 1985 Statware -- All Rights Reserved
t
$ Proprietary Softvare: The contents of this routine shall
t not be disclosed or made available, or any portion thereof
t in any form whatsoever to any person other than the author
t without prior written approval of the author.
t
b I e e T T e
t
Vrite nbytes of buffer(») to file descriptor: fildes (may be
$ a unit number on some machines).
t
0(#) sysert.r 1.2 5/15/86 16:48:16
t
- - = = = ek m m e e . m .t m e m e E e .eme.me. e == .. e m = e- -
t
] external references (function,subroutine,common)
t
t external refs write
t
$- — - - m e e e e e e e e e e e e e e e e e m e . m— - - - -
$ALIAS write = ’write’ (¥val,¥ref,¥val)
t
t external functions and subroutines
t
integer write
#- - - m m e e e e e e e e e e e e e m e e e e e e e - -

PORT/HP-UX vs. Native Mode Migration 5

* non-common variables
*

integer fildes, buffer(i), nbytes
*

return(write(fildes,buffer,nbytes));
end

For UNIX systems, all that syswrt does is provide a wrapper around the system routine, write(2).
The HP 1000 version of syswrt is as follows:

FTIN7X,J

$CDS OF

$ALIAS krgeto, EMA

integer function sysert (fildes,buffer,nbytes)
(write -- system dependent)

STATB0: An Interactive Statistical Package

Copyright (C) 1985 Statvare -- All Rights Reserved
Proprietary Software: The contents of this routine shall
not be disclosed or made available, or any portion thereof

in any form shatsoever to any person other than the author
without prior written approval of the author.

Vrite nbytes of buffer(#) to file descriptor: fildes (may be
a unit number on some machines).

e(#) sysvrt.r 1.2 5/15/86 16:48:16

external references (function,subroutine,common)

external refs fmpurite, xreio, abreg
E 3
external functions and subroutines
E 3
integer+2 fmperite
' -----------------------------------
E 3
* non-common variables
E 3
integer fildes, buffer(1), nbytes
ema fildes, buffer, nbytes
integer+2 kctrl(2), kerror, nb, klen
integer+2 ia, kbuff(256)
integer«4 1buff(128)
E 3
equivalence (kbuff(1),1buff(1));
E 3

include iounits.h
include files.h
include filunits.h
include ascii.h
E
kfp = fildes;
kc = krgeto(buffer,nbytes);

PORT/HP-UX vs. Native Mode Migration 6

if (kfp == bakfp || kfp == stderr) { # terminal output
kctrl(1l) = termlu;
if (kc == ASCLF) { # newline
kctrl(2) = 0;
nb = nbytes - 1;
} else {
kctrl(2) = 3000B;
nb = nbytes;
}
kv = (nb + 3) / 4;
kv = minO(kw,128);
for (j =1; j<=kuw; j=3j+1)
1buff(j) = butfer(j);
nb = -nb;
if (kfp == stderr)
kctrl(2) = kctrl(2) + 40000B;
call xreio(2i,kctrl,kbuff,nb);
call abreg(ia,klen);
} else {
if (kc == ASCLF)
nb = nbytes - 1;
else
nb = nbytes;
kv = (nb + 3) / 4;
for (j =1; j <=kw; j=3j +1)
1buff(j) = buffer(j);
klen = fmpwrite(£fildcb(1,kfp) ,kerror,kbuff,nb);
if (kerror != 0)
klen = -1;
}
if (klen <= 0)
nc = 0;
else
nc = klen;
return(nc);
end

The HP 1000 version requires special processing to handle terminal output, especially if a trailing
newline isn’t there. Error output is also handled differently. Before writing the buffer must be copied
from EMA into a local buffer that is equivalenced to an INTEGER*2 buffer. If a newline is in the
buffer, it must be stripped before writing. Only a single record is written with the HP 1000 version
of syswri.

2.3 Command Line Arguments

Command line arguments under HP-UX are retrieved from FORTRAN by the use of either the
getarg(3F) library routine or the Fin_getarg FORTRAN library call depending upon which HP-UX
system is used. The UNIX operating system hands the program the arguments one at a time. For
the HP 1000, the EXEC 14 system call was made to recover the command string that scheduled the
program. This command string was parsed into separated arguments. Unlike UNIX, the recovery
of the command string must be done before 1/0 is attempted; otherwise, it will fail.

The following is a listing of the subroutine, args, for the HP 9000 Series 550 to extract the command
line arguments.

subroutine args(argc,argv)
* (return command line arguments, UNIX style)

PORT/HP-UX vs. Native Mode Migration 7

STATB0: An Interactive Statistical Package
*
] Copyright (C) 1985 Statware -- All Rights Reserved
*
] Proprietary Softvare: The contents of this routine shall
not be disclosed or made available, or any portion thereof
#* in any form whatsocever to any person other than the author
E vithout prior written approval of the author.
2
‘ -----------------------------------
*
2 ¢(#) args.r 1.2 5/21/86 09:25:35
2
$ALIAS getarg = ’Ftn_getarg’ (%ref,iref, Yref)
*
integer getarg
character+40 argv(0:19)
integer argc
2
argc = 0;

la = getarg(argc,argv(argc),40);
while (la > O &k argc < 19) {

argc = argc + 1;

la = getarg(argc,argv(argc),40);
}
return;
end

The UNIX operating system numbers command line arguments beginning with 0. The 0*» argument
is the program name, and so on. The tricky part is if UNIX reports that argc = 2, then only one
argument was specified to the program. If the C programming language is used, then argument
extraction is much easier; e.g.,

main(argc,argv)
int argc;
char *argv[];

{

The HP 1000 version of args requires more processing as the operating system doesn’t do anything
except return the command line. Note that STAT80 ignores the first argument (program name).

FTNTX,J

$INCLUDE alias.inc

$CDS 0N

subroutine args(argc,argv)

(return command line arguments, UNIX style)

STATB0: An Interactive Statistical Package
Copyright (C) 1986 Statware -- All Rights Reserved

Proprietary Software: The contents of this routine shall
not be disclosed or made available, or any portion thereof
in any form whatsoever to any person other than the author
without prior written approval of the author.

PORT/HP-UX vs. Native Mode Migration 8

2 @(#) args.r 1.2 5/21/86 09:25:35

3
integer getarg
character#40 argv(0:5)
integer argc
integer+2 kbuff(128)
integer+4 1buff(64)
integer+2 ia, ib

3
equivalence (kbuff(1),lbuff(1))

3

include ascii.h

3

argc = 1;
call exec(14i,1i,kbuff,-256i);
call abreg(ia,ib);
if (ia > 0)
return;
nb = ib;
kntc = 0;
mrkl = Q;
for (j=1; j<=mnb; j=3+1){
kchar = krgeto(lbuff,j);
if (kchar == ASCSPACE || kchar == ASCCOMMA)
kntc = kntc + 1;
if (kntc == 2) {
mrkl = j + 1;
break;
}
}
if (mrkl <= Q)
return;
repeat {
mrkr = nb;
for (j = mrkl; j <=mb; j = j + 1) {
kchar = krgeto(lbuff,j);
if (kchar == ASCSPACE || kchar == ASCCOMMA) {
mrkr = j - 1;
break;
}
}
1s = mrkr - mrkl + i;
argv(arge) = ? 7;
call kritoc(argv(argc),1buff,mrkl,ls);
argc = argc + 1;
mrkl = mrkr + 2;
} until (mrkl > nb || arge > §);
return;
end

2.4 Program Scheduling

STAT80 allows a program to be scheduled “with wait.” This task is relatively easy for both UNIX
and the HP 1000. The system(3) call was used for UNIX and the FMPRUNPROGRAM call was
used for the HP 1000. However, error handling differs between the systems is respect to the realm
of possible program scheduling errors.

The following is a portion of code for HP-UX program scheduling. Note the use of the $ALIAS
directive.

subroutine cmdii4(redo,errflg)

PORT/HP-UX vs. Native Mode Migration 9

 J (run command -- id 114 hp-ux version)
$ALTAS system = ’system’ (¥ref)

integer system

kerror = system(runstr(1:lens)//char(0));

if (kerror >= 0) # no error
errflg = .false.;

return;

end

The HP 1000 version of this routine is almost identical, except that the FMPRUNPROGRAM
external is used rather than system(3).

FTN7X,J
$INCLUDE alias.inc
$CDS 0¥
$EMA /880cb6/
subroutine cmd114(redo,errflg)
E (run command -- id 114 hp 1000 version)

character»128 runstr

character*64 runnam
character*30 errstr
integer*2 prams(5), kerror, fmprunprogram

kerror = fmprunprogram(runstr(1:lens),prams,runnam);
if (kerror < 0) { # error
call fmperror(kerror,errstr);
call perrc{(’?? run: Y%=&n’,errstr);
return;
}
errflg = .false.;
return;
end

2.5 Date and Time

Under UNIX the date and time are retrieved using the time(2) and localtime(3C) system calls. For
the HP 1000, the date and time are retrieved using the EXEC 11 system call. The information
returned from the EXEC 11 system call is completely different from the UNIX localtime(3C) call
and requires more processing; e.g., conversion from day of year to a month and day.

The following routine, gttme, is used by STAT80 on HP-UX to retrieve the date and time informa-
tion. All of the parameters are passed by reference to simplify calling this routine by FORTRAN.

#include <time.h>

void gtime(month,day,year,hour,min,sec)
int *month, *day, *year, *hour, *min, #sec;
{

struct tm *mtime, *localtime();

long clock;

clock = time((long *) 0);
mtime = localtime(&clock);

PORT/HP-UX vs. Native Mode Migration 10

smonth = mtime->tm_mon + 1;
*day = mtime->tm_mday;
*year = mtime->tm_year;
shour = mtime->tm_hour;
*min = mtime->tm_min;

*gec = mtime->tm_gec;
return;

2.6 Character and Bit Primitives

STAT80 makes use of a number of character and bit handling primitives for low level packing,
unpacking, comparison, and move operations. For UNIX machines, there are usually done in “C”
as it handles byte operations efficiently. For the HP 1000, I used the MIL-STD-1753 extensions
to the ANSI 77 standard, in particular, the bit primitives. These primitives handle AND, OR,
NOT, and bit shifting operations. They are not nearly as efficient as byte operations but are easily
implemented. All of these used hexadecimal masks specified in DATA statements.

The character primitives most heavily used by STAT80 are krgeto and krputo, for getting and putting
ASCII ordinates from a packed string, respectively. The HP-UX version of krgeto is written in C
and is small and fast.

/* krgeto -- get character ordinate */
krgeto(text,npos)

char =*text;

int *npos;

{

return(text[*npos-1]);
}

The HP 1000 version of krgeto makes use of bit masking and shifting to extract the ordinates?.

FTN7X,E,J
$CDS ox
integer function krgeto (text,npoe)
*
integer char
integer kvord, maskl, mod
integer npos, text(1)
*
data mask1/z’000000£f?/
*

char = 0;

if (npos > 0) {
kvord = (npos + 4 - 1)/4;
nshl = mod(npos-1,4)*8 - 24;
char = ishft(text(kword),nshl);
char = iand(char,maski);

}

return(char) ;

end

Putting an ASCII ordinate into a packed string is just as easy as extracting it when in the C
programming language; however, it is more difficult when only using bit primitives. The HP-UX
version of krputo is:

2This could be done faster by using assembly code.

PORT/HP-UX vs. Native Mode Migration 11

/* krputo -- put character ordinate »/

void krputo(ord,text,npos)
char stext;
int *npos, ®ord;
{
text[+npos-1] = +ord;

}

The HP 1000 version of krputo is as follows:

FTH7X,E,J

$CDS 0N
subroutine krputo (ord,text,npos)

3
integer ord, mask2, npos, nror
integer kvord, maskl, mask3, mod
integer source, target, text(1)

3
data mask1/z’000000ff’/, mask3/z’ff££££007/

3

if (npos > 0) {
kvord = (npos + 3)/4;
nror = 24 - 8+mod(npos-1,4);
mask2 = not (ishft(maskl,nror));
source = ishft(ord,nror);

target iand (text(kword) ,mask2);
text(kword) = ior(target,source);
}
return;
end

2.7 Other Externals

There were other system dependent routines that had to be converted, replaced, or modified to
provide the equivalent function on the HP 1000. These dealt with retrieving the user name, working
directory {and setting the working directory), checking if the standard output is a terminal, etc.

2.8 Data Segment

The most severe problem encountered when porting STAT80 to the HP 1000 was the limitation
on the size of the data segment. STAT80 is designed for optimal performance on virtual memory
computer systems and uses VMA on the HP 1000. However, this is at a cost of 3 pages of the data
segment. STATS80 is loaded as a CDS program to reduce the size of the data segment; however,
when all of the system dependent changes were made, the size of the data segment would have been
about 80 pages. I had a long way to go to reduce this so that STAT80 would run as a VMA program.

I tracked the extremely large data segment down to one problem; function and subroutine arguments
passed by value are protected by placing them into the static portion of the data segment rather
than into a code segment. This protection means that if the called routine modifies a “read-only”
argument, the program will not fail. Therefore, for every integer or real passed as a constant,
4 bytes of static memory were lost®. The worst problem was with character strings, particularly
error messages. STAT80 has over 1600 error message strings that appear as a subroutine argument.
A program was written to locate error message subroutine calls and strip the strings from the code

3STATS0 is compiled with the FTN7X “J” option for 4 byte integers by default.

PORT/HP-UX vs. Native Mode Migration 12

into a type 2 file, and replace the string with an integer constant that is the record number in the
type 2 file of the error message. The entire error message handling was rewritten to extract the error
strings from a type 2 file. This reduced the size of the data segment to approximately 48 pages.

In addition to the error messages, STAT80 has its own I/O library that uses a conversion string
similar to the “C” programming language. Thus there were many more strings in the code. Placing
these strings in a type 2 file wasn’t viable because file access is much too slow for the regular cutput.
The only solution would be to get the FTN7X compiler to store the strings in the code segment.

I had two choices, use assembly code to store the strings into the code and then copy them into the
data segment for processing, or else generate the code inline necessary to load them from the code
segment. I chose the latter. The code is rather gruesome; however, it only uses more code, not data
and since STATB80 is loaded CDS, the tradeoff was fine. For example, the following is some code
before the translation:

call prtfi(stdout,fplog,’Valid cases = ¥6d&n’,numok)

This was translated to:

iqhbuf(1) = 4hvali
iqhbuf(2) = 4hd ca
ighbuf(3) = 4hses
iqhdbuf(4) = 4h= %6

ighbuf(S) = 3hdkn
call prtfi(stdout,fplog,cqhbuf(1:19),numok)

At the beginning of the routine the following code was generated:

integer ighbuf (20)
character*80 cqhbuf
equivalence (ighbuf(1),cqhbuf)

This is anything but portable, but it causes the compiler to store the string (only when in Hollerith) in
the code segment. The code generated is actually a series of loads from the code segment into a local
data array. The speed is as good or better than calling an external routine. The equivalence used
is extremely non-portable and almost guaranteed not to work on most machines due to alignment
problems. However, this did the trick for STAT80 and all of the code was processed in this way.

The result is that a program just of 90,000 lines of code under HP-UX suddenly became a program
over 120,000 lines of code on the HP 1000.

3 PORT/HP-UX

After having to do all of the aforementioned changes to STAT80 to port it to the HP 1000, I had
serious doubts about that code ever working on a machine other than an HP 1000. I knew that this
would be a good test of the PORT/HP-UX environment because if this code worked, then most
anything should work.

3.1 Migration Analysis

Before you write your tapes and begin a migration, take the time to run HP’s migration analysis
program, MAU. This program will analyze your code for HP 1000 system dependencies, especially

PORT/HP-UX vs. Native Mode Migration 13

in the area of calls to the system, DGL and AGP, IMAGE/1000, and DS/1000-IV. MAU will flag
source lines with possible migration problems. The flagged lines will have one or more warning
messages as follows:

MAU 0 This call is fully emulated.

MAU 1 This call is not emulated.

MAU 2 This call is fully emulated but might suffer from a performance degradation.

MAU 3 Certain options or parameters in this call may or may not be emulated.

MAU 4 This call is fully emulated but might have a slightly different interpretation on HP-UX.

MAU 5 This call exists on both RTE-A and RTE-6/VM but only complies to the functionality of
RTE-A.

3.2 Loading the Files

I used the HP 1000 tape program, TF, with the “X” option to write the STATS80 files. The “X”
option causes TF to write type 4 files in the UNIX tar(5) format. This tape is then read using
tar(1) on the HP-UX machine. This works quite well except that TF will not convert type 3 files to
the tar format. The PORT/HP-UX environment has a utility program, fmpupd(1), which is used
to convert between HP-UX and FMP files.

Unlike FMP files on the HP 1000, a file under HP-UX has no extra information associated with
it. In order to support FMP files under PORT/HP-UX, HP has devised a scheme that utilizes a
“companion file” in a parallel directory that contains the information on file type, record length,
security code, creation time, exclusive access flag, record count, end-of-file position, etc. These
companion files are quite small and the parallel directory in which they reside is named .fmp. This
naming convention keeps the directory name from appearing in directory listings. For example, if you
have an FMP file called /DAVE/MYFILE, then it will have a companion file called /DAVE/ . £mp/MYFILE.

The fmpupd program handles the creation of these companion files. Now there is a tape handling
program, rietar(1) that is designed to read and write FMP files in the TF tape format®.

STATS80 uses two ASCII type 2 files and two binary, type 4 files. The type 2 files were converted
using the fmpupd program. Note that when converting type 2 files, you have to make sure to
specify the record length, etc., otherwise it will not work at all. The type 2 files are accessed via
FMPSETPOSITION and FMPREAD as they were generated on the HP 1000. I didn’t worry about
extents and there were no problems. I don’t know how extents are handled under PORT/HP-UX,
or if all files are considered to have only one extent. Nevertheless, I left the “X” option in the
FMPOPEN call so that all extents would be read.

The binary files were re-created under PORT/HP-UX using our utility program, MAKTBL. This
program reads an ASCII grammar file for STAT80 and then produces a binary file containing the
parse tables for the grammar. The second binary file is a site installation file and is generated the
first time STAT80 is run. All of these files are handled with FMP calls.

In April of 1986, I had quite a bit more work to move all of the files into the FMP directory structure
from the HP-UX file structure. This is mainly because the rietar program wasn’t available yet. Now
this process should be painless. However, I must give one caution, HP-UX file names are limited
to 14 characters whereas HP 1000 CI file names may be much longer. If this is the case on your

4The TF tape format is really just a modified tar format. Tar can perform a file extraction from any TF tape.

PORT/HP-UX vs. Native Mode Migration 14

system, I suggest that you perform the file renaming on the HP 1000 before going to HP-UX as you
might save yourself a lot of grief.

3.3 FTNTX

Once everything was loaded, it was time to begin compiling the code so see what would happen.
Before compilation, I ran the migration aid, fincvt. This is a shell script that scans FTN7X FOR-
TRAN files and performs various automatic conversions to PORT/HP-UX. It can convert FTN7X
statements, compiler directives, and the FTN7X control line. This was to comment out the CDS,
ALIAS, and EMA directives as well as convert the FTN7X control line. It has a mode that allows it
to perform “unsafe” conversions as well as “safe” conversions. I didn’t allow it to touch any “unsafe”
conversions. This all ran quite smoothly.

PORT/HP-UX provides a FORTRAN 77 compiler script, fin7z(1), that simplifies compiling pro-
grams from an HP 1000. This script correctly specifies the external types for all PORT/HP-UX
system calls. When moving code to HP-UX using the PORT/HP-UX system, you definitely want
to use this script.

The compilation took awhile, but remember that this is April 1986, long before a production version
of the compiler was available. But lo and behold, everything compiled successfully.

3.4 Building the Executable

After getting everything compiled, it was time to try and load STAT80. Also use the fin7z script for
this as it will specify the appropriate PORT/HP-UX libraries. Well, it loaded correctly and when I
ran it—it died a horrible death with segmentation violations, core dumps, and other typical UNIX
diagnostics.

A segmentation violation usually means that you have walked on code somewhere. The other typical
UNIX fatal error for programs is “bus error” which usually means that you referenced too far into
an array or some type of bounds error. Nevertheless, my optimism got to me as I didn’t compile
the program with the debug option. Make sure that you do this on the first try, otherwise, you
might end up doing it anyway. On the bright side, I had just gotten to the migration center and I
had scheduled a whole week so I couldn’t do everything the first two days. Besides, this gave me a
chance to work with the debugger, zdb(1).

The debugger on the HP 9000 Series 300 and 500 is typical UNIX, line oriented and so on. However,
the zdb debugger was a real treat as it combines the windowing of the HP 1000 DEBUG program
with all of the features of the UNIX debugger. The result is a real nice debugging environment that
utilizes three windows. The top of the screen is a window into the current source file, the bottom
of the screen is where XDB commands are entered and the program input and output goes, and
the middle of the screen is a line in inverse video that indicates the current file, procedure, and line
number. Within the source window, a “>” points to the current location.

I spent the better part of two days in the debugger, displaying trashed values and a lot more,
but still with no clue as to what was happening. So when all else fails, I sat down and read the
PORT/HP-UX documentation, carefully this time®.

And there it was, a USER ERROR. STAT80 assumes that integers will have 4 bytes and used
the “FTN7X,J” header on the HP 1000 to make sure of it. However, the ftn7z script generates

5 Again, because this port took place long before the first machine was ever shipped, documentation was changing
on a daily basis, especially the PORT/HP-UX documentation.

PORT/HP-UX vs. Native Mode Migration 15

the $SHORT compiler directive so apparently the fincvt script doesn’t completely work with the
fin7z script. I should have caught this much earlier. Anyway, another half a day compiling and
then it linked and ran right away—and everything appeared to work. So another caution, read
the documentation for PORT/HP-UX carefully before starting any migration. It will save some
frustration.

One thing I noticed immediately about the executable was its size—it was huge. The size of
STATS80 on the HP 9000 Series 550 is approximately 1.5 Mb, but on the Series 840 it was almost
5 Mb. Once again, the fin7z script was the culprit. It specifies the “—K” option to the FORTRAN 77
compiler which means to save all local data values in the static data area rather than dynamically
allocate them on the stack. STAT80 has about 650 subroutines and functions and that adds up to
a lot of local data. The HP 1000 compiler directive, $CDS ON, should be enough to flag the fin7z
script to suppress the “—K” option. Compiling without this option made the executable a more
respectable size, but still quite large. I was told that this was due to the emulation library causing
“the world” to be loaded with the program, and wouldn’t be a problem when the machine was
released. I didn’t check it further, because the release version of STAT80 on the Series 840 was done
in native mode.

3.5 Compatibility with HP-UX

The PORT/HP-UX environment is really a closed world. The FMP files can only be accessed
correctly using the FMP library. A regular FORTRAN OPEN statement will not work correctly for
an FMP file and neither will FORTRAN I/O statements. Furthermore, the FMP library routines
cannot be used with regular HP-UX files. Any data in HP-UX files must first be converted using
the fmpupd program before processing.

3.6 Performance

The next step was to do some comparisons between the HP 1000 STAT80 and the PORT/HP-
UX version. The standard benchmark I use to compare different versions of STAT80 is a simple
procedure written in STAT80’s internal proc language that causes STAT80 to execute approximately
5600 commands. This is roughly equivalent to an extremely large command file. An unloaded
HP 1000 A900 runs this procedure in 80 seconds. The PORT/HP-UX version of STAT80 ran it in
20 seconds, a full four times faster than the A900. This benchmark is good as a compute intensive
benchmark for integer and floating-point operations as well as some character handling; however, it
does not test I/O in any way.

The 1/O under PORT/HP-UX seemed slow, especially output to the terminal. Some I/O degrada-
tion should be expected as there are three layers of library routines between the program and the
kernel; e.g., the FMPWRITE routine calls routines from the level 3 library, which in turn calls the
level 2 library. There is also probably a lot of overhead to performing the FMP file operations rather
than just blasting a stream of bytes as would normally be done under UNIX.

4 Native Mode

In October of 1986, I did a second conversion of STAT80 to the Series 840; this time in native mode.
I wrote a tape using tar on our HP 9000 Series 550 that was easily unloaded on the Series 840.
The source code for STATS0 is written in Ratfor and the ratfor(1) preprocessor is supplied with

PORT/HP-UX vs. Native Mode Migration 16

all HP-UX computer systems. Rather than use the HP-UX ratfor I brought my own version and
installed it on the Series 840 in about an hour.

The only code that had to be changed dealt with retrieving arguments from the command line;
everything else was consistent with the Series 550. All of the HP-UX computer systems use the
IEEE floating-point format; therefore, no constants need to be changed between the Series 300,
Series 500, and Series 800 machines. Furthermore, every binary file I have tested, with integer
and/or floating-point values, has worked perfectly on all HP-UX machines.

Even though the conversion in native mode was rather smooth, I still took about 2 weeks to complete
the conversion because this was to be the released version of STAT80 and it required more profiling
and testing. Statware has developed a validation suite for STATS80 that is used on all conversions®
before they are released for shipping.

4.1 Compatibility with PORT/HP-UX

Unfortunately, there is almost no compatibility between the native version STAT80 and the PORT/HP-
UX STATS80. Only ASCII files are interchangeable and these still must be converted back and forth
using the fmpupd program. There is no compatibility between the binary data files.

4.2 Performance

Next I used the same STAT80 procedure for benchmarking the native mode version. It was blind-
ingly fast—only 8 seconds versus the 20 seconds for the PORT/HP-UX and 80 seconds for the
HP 1000 A900. For comparison purposes, the following table lists results for several different ma-
chines running this benchmark (rounded up to the second).

| STAT80 Performance Benchmarks j

Machine | System Benchmark
HP 1000 | A900 80 seconds
HP 9000 { 320 26 seconds
HP 9000 | 550 40 seconds
HP 9000 | 840 (PORT/HP-UX) | 20 seconds
HP 9000 | 840 (native) 8 seconds

VAX 8600 (VMS) 11 seconds
Harris H1000 12 seconds
IBM 4381-13 (VM/CMS) | 13 seconds

The HP 9000 Series 840 in native mode was the fastest machine tested and this version of STATS0
was built without compiler optimization enabled. With optimization, it should be even faster.

5 Summary

Both the HP 1000 and HP 9000 Series 550 versions of STAT80 were converted to the HP 9000
Series 840 with a minimal amount of effort. I expected the native mode conversion to be easy;
however, I really never thought that the HP 1000 conversion would work—and I was pleasantly
surprised.

8The validation suite was not run on the PORT /HP-UX version of STATS0.

PORT/HP-UX vs. Native Mode Migration 17

The only changes to the HP 1000 version of STAT80 to get it running under the PORT/HP-
UX environment was the setting of several machine constants, mostly dealing with the storage of
floating-point values. Otherwise, no changes were necessary to migrate it to the Series 840.

The test I wasn’t able to do was a conversion from the HP 1000 version of STAT80 to native mode.
Since the internal design of STAT80 favors UNIX this would really be the same as the Series 550 to
Series 840 conversion, but with a lot more work. What I learned is just what HP has been saying,
the PORT/HP-UX facility will allow HP 1000 programs to be quickly migrated to the Series 840
and still achieve better performance than the HP 1000 A9007. There are two key requirements we
used when migrating to HP-UX;

1. having the same applications on the new machine be able to run the same data so that there
is no serious down time due to conversions, and

2. achieving better performance.
The PORT/HP-UX environment allows most HP 1000 users to make a smooth transition to the HP-

UX community. The final goal should be a transition to native mode for portability and performance
criteria.

TSTATS80isn't a real-time program; therefore, these benchmarks should not be applied to real-time situations.

PORT/HP-UX vs. Native Mode Migration 18

A Table Driven Plot Program for Radar Data

Donald Leslie
Raytheon
PO Box B
White Sands, NM 88002

In ion
This plot program is designed to support the analysis of radar instrumentation data.

A Quick Look data reduction program already existed at the time that design was begun. This program
performs no analysis functions. The reduction program reads a message from a data tape and then decodes
and prints it. The only selection is by message type and interval (i.e. time range).

It is necessary that a user be able to set limits on any parameter in the data. For example the following may
be required :

- Range is 0, 30 km.

- Azimuth is 6000, 1000 mils (Note : 6400 mils = 360 deg)
- Only inbound targets (negative range rate)

- Only targets flagged as jammers

Three shapes of plots were required : rectangular, polar and circular. The purchasable plot software that was
considered did not easily do other than rectangular plots. In addition a pre-processor would still be required to
filter the data.

An additional requirement was that the user interface be as simple as possible, to allow the program to be
run by a data clerk or an analyst who did not know the physcial layout of the data.

It was decided that each message type would be described by a disc file. The file contains the mnemonic for
the message and the field names and their type. The program reads these files at initialization,

In my environment there are two kinds of data, track data and non-track data. Track data has an identifier
field whereby records can be associated. All records with the same identifier are displayed as connected
points. Non-track data is displayed as discrete points. The program allows only one track message type per
plot. A number of non-track sources are allowed. Non-track data can be plotted along with track data or
alone,

The program consists of three phases :

1) User interface
2) Sorting and filtering of data
3) Plotting the data

Hardware / Software Environment

The program runs on a HP1000F computer running RTE/6. EMA is used and currently requires a partition
of 154 pages. AGP is used to do the graphics calls. The following devices are currently supported.

- 7550 plotter

- 7475 plotter (incomplete)

- 2623 terminal

- 2390 terminal

- 2648 terminal

- 256x printer

Plot Program for Radar Data 1001

User Interface

User input is requested via menus. The first menu requests what and how to plot. The second requests the
message types to be plotted. Then for each message selected a menu will be displayed requesting the fields
to be plotted and the fields for filtering the data. A sample session is given at the end of this paper.

The program is designed to be driven from tables. For each message type there is a disc file which describes
the data. A file has the following format :

mnemonic

field name;, field typej i=1,number of parameters
The initialization function of the program reads these files and builds tables to process the data. For
example the AO801 (track file) and the CO10B (scan message) yield the tables below.

Defined_Src Source_symb

A0801 at
C010B sc
Prm_Nam

fn, fn, tn, tfa, mg, rdot, az, el, azd, tq, lid, tsrc, sdsre, flg...
Prm_B_L

b.b1,1,b ,b ,b,bb ,bsl,sl ,sl ,sl ..

Defined_Src contains the message names.

Source_Symb contains the mnemonics used in the menus.

Prm_Nam contains the names of the fields in the message. The names are in order of their position in the
data.

Prm_B_L contains the bound types for the fields, where ‘b’ is an arithmetic bound, ' is a list of arithmetic
values and 'sl' is a list of character strings.

Describing data this way has several advantages. If a message is changed the menu does not have to be
updated, only its file description. Also the user does not have to know where the field is located in the
message. Data for a plot is likely to contain a number of message types. A field may be at a different
location for each type of data.

The two fields shown as ‘fn’ in Prm_Nam do not appear in the data. They are place holders for values
computed from other arithmetic fields. It is possible to write functions in reverse polish to compute the
value for plotting. For example :

To plot the azimuth error of a source known to be at 100 mils, one could enter az,100,- .

To plot the rms value of azimuth and elevation, one could enter az, **, el, **, +, sqrt.

The operators +, -, *, /, **, sqrt, min, max, log10 are currently supported.

On completion of the selection process a set of tables is created which is used by the next phases. They
contain the locations in the definition tables of the symbolic parameters entered by the user.

For example the user has requested the A0801 track file as well as the D2 raw data. The plot is to be polar
(Range vs. Azimuth). For the A0801 data, track source and range rate are specified as filter parameters.
The allowed track sources have the mnemonics 'sd’ and 'cw'. Range rate is specified to restrict the plot to
only inbound targets.

Plot Program for Radar Data 2

This results in the following tables :

Selected_Src S_Offset Num_Prm T_Off
A0801 1 4 3
D2 6 2

Selected_Pmm P_Offset Flg_Vec
Rng 5 Lea
Az 7
Tsrc 12 { for A0O801 }
Rdot 6
Rng 3 { for D2 }
Az 4

Prm_List Limit_Type Prm_Bnd B_vec Sl_vec
Rng d b -9999,-9999
Az S b 4800,1600
Tsrc S sl sd,cw
Rdot S b -999.0

S_Offset contains the indicies in Defined_Src for the message type.
P_Offset contains the indicies in Prm_Name for the parameters.

After the tables are built the users choices are displayed. This allows the user to validate the selections. At
this point one can proceed to the sorting process or return to the selection menus.

Sorting and Filtering

This phase reads the file and validates the messages read. The process is best illustrated by the pseudo code
below.

Do While (.not. Eof)
Read a record
Get the record type and time
If (current scan is in scan bounds) Then
If (message time is in time bounds) Then
If (type is selected .or. type is scan msg) Then
Split record into component fields
If (all flags specified are in the message) Then
If (all fields specified are within bounds) Then
Message is valid
Endif
Endif
Endif
Endif
Endif
End Do

Valid messages are moved into an EMA file. To simplify the plot function the data in EMA is chained.
Non-track data messages are chained by message type. Track data messages are chained by track number.
This allows all messages with the same track to be plotied quickly. All scan messages are also chained
together for plotting.

If track data is selected, a list of all track numbers found is displayed at the end of sort process. The user is
allowed to select some or all of the tracks.

Plot Program for Radar Data 3

Plotting the Data

At the completion of sorting, the data is plotted. How the data is displayed is dependent on the shape
selected. There are four possible shapes selectable : circular, polar, rectangular and xy.

CIRCULAR POLAR
Y Y2

T

RECTANGULAR XY

Y1 Y2

TIME OR SCAN X

There are two paper sizes and orientations for a plot.

3> 11"x 17"
4->81/2"x11"

X->Long axis along X axis
Y->Long axis along Y axis { only for 7550 plotter }

LONG X

OZor
<

The following is true for all plot formats.
- Track data is plotted as connected points. The end points are labeled with the track number.
- Non-track data is displayed as discrete points.
- A title is displayed at the top of the plot.

In a rectangular plot one or two parameters may be selected. The data plotted and the y-axis labels are
shown in one color. The x-axis is time or scan.

Plot Program for Radar Data 4

An xy plot is one parameter against another.

A polar plot is always that of 3200 mils/180 deg. If a track source is present in the data the user has two
options. The pen color is either selected according to track source or is a random sequence of the track
numbers.

In a circular plot the first parameter specified is used as a magnitude. The second is used as a rotation. The
rotation is generated by dividing the value at a point by the range of the parameter.

When the plot is complete a replot menu is displayed. There are four choices possible.

The user can exit the program. One can replot with the same or different Lu but no other changes. The plot
limits or plot format can be changed.Since the data has been moved into EMA according to the selection
process, the limits can only be further restricted. Increasing the limits will not provide more data.
Reselecting limits or format returns the user to the selection menus. The choices made for the previous
plot will be displayed in the menus. Lastly a new file can be requested. This allows a new file to be read and
sorted.

mmar

This program has proven very useful in performing analysis of radar data. It should also be useful in other
environments. A copy of the source is available on the swap tape for this conference. The following items
were specific to my environment and would have to be changed :

- special processing for scan messages

- the handling of launcher data

- default value for range on tracks with jammer data
- FPS-16 range radar processing

- processing of azimuth in mils

Plot Program for Radar Data 5

POLAR PLOT - RANGE = 0,70 KM. AZ. = 4800, 1600 MILS LONG Y AXIS

{

88 ?
|

|

~
-

10 10

(034

(o3 ot

o€

~— e

SIXY X 9NOT STIW 0097 ‘008y = HLNWIZY

‘WX 070 = 39NVH - 107d HYV0d

AND RADAR EVENTS

ELEVATION ERROR RAW DATA (EL, CONSTANT, -)

(o]

S

.
-

o cam L
e

-~
’3'

Trerva. ...

wasy @ m—

T

.
5

R 2

-~
i I L TR,

L

o

@on

mo

-or

-o

mwor

50

40

30

20

10

-10

-20

-30

-40

o

-50

An Example of r Men

PLOT SETUP...
VERSION 2.0

Press ENTER when done
Press TAB for next field

FILENAME : OLLIST
RECTANGULAR, POLAR,CIRCULAR, XY (R/P/C/XY): P
SCAN/TIME/NONE (S/T/N): T
LOW (ST): HIGH(S/T): _____
PAPER SIZE (3/4) AND LONG AXIS (X/Y): 3X
PLOTTER LU : 36
EXIT (YN): N

The following menu is displayed next :

Press ENTER when done

Press TAB for next field

Track source :
ADP track file, CWAR track file, PAR track file, SDP air picture
HPI D1
(AT,CT,PT,SAD1) : AT
Non-Track Source (s) :
CWAR return file, CWAR TDL raw,CWAR DSP,PAR clutter map
PAR retumn file, FPS-16 (channel 1/2), HPI D2
(CR,CTR,DS,CMPRF1,F2D2L1):
MAX OF 4 TRACK/NON-TRACK SOURCES MAY BE ENTERED

Flags (F)

The following menu is then displayed since AT (A0801) was selected as a source :

Press ENTER when done
Press TAB for next field
A0801

Axes can be (RNG,RDOT,AZ,EL,AZD,TQ)
Limits can be Static or Dynamic (S/D)

Y1 axisRNG Y1 Limit D
Y2 axis AZ Y2 Limit S

Plot Program for Radar Data 9

RNG RDOT AZ EL AZD : RDOT
TQ LID TSRC SDSRC

FOL LEA J JH JT

Tracks labeled with (TN, TFA) : IN

fnY() :
Y2 :

The following are then displayed to request limits :

SPECIFY LIMITS FOR AZ
Y low limit is : 4800
Y high limit is : 1600 { Defaults for Polar }

SPECIFY LIMITS FOR RDOT
Y low limit is : -999
Y high limitis : 0

For each source, the following summary is displayed for the selections made :

Reselect: N
NUM_SRCS: 1
Source: A0801 NUM-PRM'S : 3
FLAGS : LEA
--flters: limits
RNG 0
0 { 0,0 since range is dynamic }
AZ 43800
1600
RDOT -99%
0

If at this point changes need to be made, set RESELECT = "Y' . This returns the user to the first menu.

Once the program searches the data file and extracts the information requested, it will then display all Track
Numbers found and request the users requirements. i.e.

The following tracks were found
1 15 24 36 102:

A0801 - Tracks - Some,All ? S/A

If S is entered the following will be requested :

> Number of tracks 7 :
Track number :

Track number will be repeated for the number of tracks specified.

Plot Program for Radar Data 10

A Suite of System Generation Tools

Christopher Nelson
General Foods Corporation
250 North Street
White Plains, NY 10625

For most system managers, operating system generation is done once in a
while with trepidation. The complexity of an answer file makes errors
likely. Even an answer file that *gens’ may have mistakes in it that prevent
system boot-up or, worse, corrupt the system beyond use.

Hewlett-Packard supplies the basic utilitiess (RTAGN, BUILD, CSYS,
INSTALL, etc.) and makes recommendations on procedure (such as ‘backup
the existing system before generating a new one’). However, there are no
standard tools that give the system manager high confidence in the safety
and success of his new system generation.

In managing a development system, I have been required to re-gen
frequently to test new devices or software sub-systems. This frequency has
led to boredom and a measure of carelessness. To keep myself from making
dangerous mistakes, 1 developed tools and techniques that help automate,
debug, and verify system generation, installation, and start-up. This paper
discusses these techniques and tools and the environment for which they
were designed.

1002

1 Introduction

Several terms may need clarification. LOCALIZATION refers to the
adaptation of a known-good answer file, the PRIMARY, to fit the
immediate local need. GENERATION sometimes refers to the entire
process of getting a new system up and running but as used here will
usually refer to the actual execution of the generator against an answer file.
INSTALLATION is the process of putting the new system files into a
bootable area of the disk (or other media). BACK-UP will refer not only
to actually copying a system to a removable media but also to having disk
resident fall backs.

2 Environment

The tools described here were developed for RTE-A starting at the A.85
revision. They take full advantage of IF/THEN/ELSE/FI and other CI
programming constructs. The system is booted from a FMGR boot
cartridge, LU 17, which is named BT. The rest of the system is located on
CI volumes. Critical directories (/PROGRAMS/, /SYSTEM/, etc.) are all
located on one volume called the SYSTEM VOLUME. Operating system
relocatables are found in /RELOCS/RTEA/; VC+ files and special RPL’s
required for NS have been merged into this directory. Product relocatables
(DS, NS, PCIF) are stored under their own global directories as shipped
from HP. System generation files and tools are located in
/SYSTEM/GENERATION/.

Two sets of System, Snap, and Boot Command files reside on the boot
cartridge. One set references WELCOMEI.CMD and starts up a simple
system with only the system console enabled. The other set references
WELCOME2.CMD to start up a fully operational system,; this is the default.

3 Localization

Localization is perhaps the most complicated part of creating a new system
generation. While it is certainly possible to manually edit an answer file to
support a new device or sub-system, it can be extremely tedious to do so.
The process can be automated in two steps. First, an answer file that
includes more than you need can be marked with keywords that allow for
an automated search. Second, a command file can be built that ‘knows’ the
relationships between the keyworded parts of the answer file.

Listing 1 is an excerpt from an answer file with keywords added to allow
for the automatic localization of disk model. For example, PRI7946
indicates that the primary disk is a model 7946. Notice that two separate
parts of the answer file, the Table Generation Phase and the Node List
section, must be modified; this is the type of thing that makes manual
localization difficult. Listing 2 is an excerpt of LOCALIZE.UTL, a
command file that knows how to use the disk keywords to install the correct
model. LOCALIZE.UTL is usually scheduled by another command file
which will be discussed later.

System Generation Tools -2-

Listing 1 - Excerpt from keyworded answer file

* WP-IB #1 - Discs and magnetic tape select code = 27b
1FT,RTEA/X!D'37,SC:27B

: BUS CONTROLLER LU HP-IB address 36
DVT, , ,LU39,T0:2000,DT:778, TX:0,DX:1,DP:1:368,PR:0 Lo

7946/12/14 Cs-80 Disc HP-IB address 0
Ly 17-23

*

*

*

* Note: The default values for all but the driver parameters

* are the same for all CS-80 disks. Rather than include three

* sets of DVT's (one each for 7946, 7912 and 7914) the default

* for 7946, 7912 and 7914) the default values for smallest disk
* that will accommodate the LU are referenced and all driver

* parameters are given explicitly.

A R R RN RN RN R NN NN N NN RN NN RN RN RN RN RN RN N NN AN
*

*-PRI7946 DVT,RTEA/XDD*33,M7945_CF:0,LU:17,DP:1:0:0:0:0:0, -
*-PRI7T946 DP:6:400:48:0

Note: Disk cache for CS/80 cartridge tape at LU 24 is
between LUs 17 and 18. It takes & tracks, 288 blocks.

LR B I B N

*-PRI7946 DVT,RTEA/%DD*33,M7945 CF:0,LU:18,DP:1:0:0:0:0:19488, -
*-PRI7946 DP:6:1358:48:0

*-PRI7946 DVT,RTEA/%DD*33,M7945 CF:0,LU:19,DP:1:0:0:0:1:19136, -
*-PRI7946 DP:6:190:48:0

*-PRI7946 DVT,RTEA/%DD*33,M7945 CF:0,LU:20,DP:1:0:0:0:1:28256,
*-PRI7946 DP:6:334:48:0

*-PRI7946 DVT,RTEA/%DD*33 ,M7945 CF:0,LU:21,DP:1:0:0:0:1:44288,
*-PRIT946 DP:6:2229:48:0

Use ONLY with 7912 or 7914 ('Star out' if you have 7946).
-PRI7912 DVT,RTEA/%DD*33,M7912_LF:0,LU:22,DP:1:0:0:0:3:20208, -
-PRI7T912 DP:6:821:48:0

Use ONLY with 7914 ('Star out' if you have 7946 or 7912).
-PR17914 DVT,RTEA/XDD*33,M7914 LF:0,LU:23,DP:1:0:0:0:3:59648, -
-PRI7914 DP:6:5413:48:0 -

Use ONLY with 7958 ('Star out! if you have 7946/12/14).
PRI7958 DVT,RTEA/4DD*33,M7958 CF:0,LU:23,DP:1:0:0:0:3:59648, -
-PRI7958 DP:6:4376:48:0

Compatible cartridge tape cache (7946/12/14) HP-IB address 0
LU 24

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
D
D

VT,RTEA/XDD*33,MTAPE, LU: 24 ,DP: 1:0:400b: 100000b, - -
P:4:0:19200:0:0:0

*

*

* For all disks

*-PRI7946 NODE,17,18,19,20,21, -
* For 7912/14/58

*-PRI7912 22, -

* For 7914

*-PRI7914 23, -

* For 7858

*-PRI7958 23, -

* For all disks (CTD)

24

-8- System Generation Tools

Listing 2 - Excerpt from localization utility

Primary disk is built of incremental LU's. Larger disks require
* volumes from smaller disks.
IF 1S $1 = 'PRI7946'; THEN
EDIT SANS,'SE AS OF|1 $ x/*-PRI7T946 //q|ER'
RETURN
FI
IF IS $1 = 'PRI7912'; THEN
EDIT $ANS,'SE AS OF|1 $ x/*-PRI7?946 //q|ER’
EDIT $ANS,'SE AS OF|1 $ x/*-PRI7912 //q|ER!
RETURN
FI
IF IS $1 = 'PRI7914'; THEN
EDIT $ANS,'SE AS OF|1 $ x/*-PRI7946 //q|ER!
EDIT $ANS,'SE AS OF|1 $ x/*-PRI7912 //qIER'
EDIT $ANS,'SE AS OF|1 $ x/*-PRI7?914 //q|ER"
RETURN
FI
IF 1S $1 = 'PRI7958'; THEN
EDIT $ANS,'SE AS OF|1 $ x/*-PRI7?946 //q|ER’
EDIT SANS,'SE AS 0F|1 $ x/*-PRI7912 //qlER'
EDIT $ANS,'SE AS OF|1 $ x/*-PRI?958 //q|ER’
RETURN
FI
IF IS $1 = 'PRI7937'; THEN
EDIT $ANS,'SE AS OF|1 $ x/*-PRI7?946 //q|ER’®
EDIT $ANS,'SE AS OF|1 $ x/*-PRI7912 //q|ER!
EDIT $ANS,'SE AS 0F|1 $ x/*-PRI7937 //q|ER'
RETURN
FI

There are several ways in which keywords may be used. In the simplest
case, a device or sub-system is independent of all others. Here,
LOCALIZE.UTL would simply change all occurance of ‘“*-keyword °’ in the
answer file to the null string.

The second possibility is that one device or sub-system includes another, for
example disk models with incremental space. In this case, as shown above,
LOCALIZE.UTL accepts the keyword for the largest device or sub-system
and knows to bring in the rest.

The other cases involve combinatorics and dependencies. For example, NS
requires XMB only for a model 900 CPU. In these cases, there are multiple
keywords per line in the answer file and LOCALIZE treats the keywords as
independent.

The ultimate step in automating the localization process is to build a
command file that brings all local systems and devices into the answer file
and performs appropriate file manipulations. Listing 3 shows a command
file that does just that.

System Generation Tools -4 -

LOCALIZE.CMD accepts the name of a system to be localized as its first
parameter. This system name is the root name of the data file which is
input to the localization procedure, the generation answer file which is
output from the localization procedure, and the system, snap and list files
that are output from the generation procedure. These files are distinguished
by their file type extensions (.DAT, .ANS, .SYS, .SNP, and .GLST
respectively). The localization data file contains a list of keywords and
optional comments to which LOCALIZE.CMD will apply LOCALIZE.UTL;
Listing 4 is a sample.

Referring to Listing 3, LOCALIZE.CMD does several things besides
applying LOCALIZE.UTL to the primary for each keyword. First, it
checks to see if a system name has been specified. (The CI variable $NULL
has been set to the null string in the systems global login command file with
"SET NULL =") If no system has been specified, an error message is
printed and the command file terminates. Next, if a system has been
specified, LOCALIZE checks to see if its data file exists. (For the rest of
the paper, LOCALIZE will mean LOCALIZE.CMD unless otherwise
specified.) If the data file does not exist, an error message is printed and
the command file terminates.

If the system data file exists, LOCALIZE checks to see if a system answer
already exists. If one does, it backs the file up by renaming it. If the
system answer file does not exist (or after it has been backed up),
PRIMARY.ANS is copied so it may be edited to produce the new system
answer file. LOCALIZE.UTL is edited to reflect the name of the system to
be processed.

Not having to edit an answer file would be of small use if one had to
review the whole thing to see what it included. The next step in
LOCALIZE addresses this need; the localization data file is merged into the
system answer file and turned into comments.

APPLY is a utility to apply a program or command file to a list of
arguments listed in a file.l It is used to allow LOCALIZE.UTL to process
each keyword in the system data file.

1 The first argument is the name of the program or command file (process) to be
APPLY’d. The second argument is the name of the file to be processed. The
third argument is a switch that tells APPLY if the process is a command
(TRansfer) file. APPLY reads one line at a time from the input file and appends
it to the process name. If the process is a program, the resultant string is passed
to FMPRunProgram directly. If the process is a command file, the string is first
prefixed with "CIL,".

-6- System Generation Tools

Listing 3 - Localization Command File

e i e ke e W e 3 ek e v e Al i b o ke b e okl v e ok e ok e Rl b e vk ol vl ok ol e A e ol ol ook ok e ol e e b S e e e

* File: /SYSTEM/GENERAT]ION/LOCALIZE.CMD <870521.1240>
* cCommand file to localize PRIMARY.ANS

* Tell Localize.utl which file to process
IF IS $1 = SNULL; THEN
ECHO
ECHO 'A data file must be specified.'
ECHO
RETURN
ELSE
IF DL,$1.DAT,,0; THEN
EDIT Localize.utl,'f/$2.ANS/|k|-1| set ANS = '$1'.ANS|ER'

ELSE
ECHO
ECHO 'Error specifying data file.!
ECHO
RETURN
FI
F1
Weeuceeaacesnonancaasnsescacsonomannsmmseaseassnoacnnsasveoanaaamnanansns

* Save answer file if it exists
IF DL,$1.ANS,,0; THEN
C0,$1.ANS,$1_ans.bak,d

* Copy PRIMARY into specified answer file
IF IS $2 = SNULL; THEN

CO,PRIMARY .ANS,$1.ANS,d
ELSE

CO $2,81.ANS,d

* Change file name in new answer file
EDIT $1.ANS,1 $ f/PRIHARY.ANS/|X/PRIHARY.ANS/$1.ANS/|ER

* Merge the data file into the answer file as documentation
SET MARK = 'KA|+|KB|-' ;* Mark lines to merge between

SET CMNT = 'SE RE 0N|SE AS OF |:A+1 :B-1 X/{["$1*}/* &1/
EDIT S1.ANS,f/.DAT/|$HARK|m S1.DAT|SCHNT|ER

UNSET MARK

UNSET CMNT

* Bring in each local feature listed in $1.DAT
APPLY localize.utl $1.DAT,TR

* Restore localize.utl
EDIT localize.utl,'f/'$11.ANS/|k]|-1] set ANS = $2.ANS|[ER'

* Tell the user LOCALIZE is done
ECHO

ECHO $1'.ANS localized.!

ECHO

System Generation Tools -6-

Table 1 - Answer File Localization Keywords

Category Keyword Description
RPL 400 Model 400 CPU
600 Model 600 CPU
700 Model 700 CPU
900 Model 900 CPU
System Console CON_MUX System console on multiplexer
Interface CON_ ASYNC System console on 12005
Primary Disk PRI12480 Integral disk as primary disk
PRI7912 7912 as primary disk
PRI7958 7958 as primary disk
PRI7946 7946 as primary disk
PRI7937 7937 as primary disk
PRI7914 7914 as primary disk
Secondary Disk SEC7914 7914 as secondary disk
SEC7946 7946 as secondary disk
SEC7912 7912 as secondary disk
SEC7937 7937 as secondary disk
SEC7958 7958 as secondary disk
Reel-to-reel Tape LU8_7970 Model 7970E tape drive
LU8 7974 Model 7974/8 tape drive
System Printer LU6_ HPIB System printer on HP-IB
Interface LU6_MUX System printer on multiplexer
System Printer LU6_2563 Model 2563 system printer
Model LU6 2932 Model 2932/4 system printer
Auxiliary Printer LU2_ HPIB Auxiliary printer on HP-IB
Interface ,» LU2_MUX Auxiliary printer on multiplexer
Auxiliary Printer LU2_ 2563 Model 2563 auxiliary printer
Model ' LU2 LASER" Laser printer as auxiliary printer
LU2_ 2932 Model 2932/4 auxiliary printer
Plotter interface PLT_HPIB System printer on HP-IB
PLT_MUX System plotter on multiplexer
HP System DS Distributed Systems
Communication DS2 Distributed Systems with 2 links
NS Network Services
Foreign System RJE Remote Job Entry

communication

Systemn Generation Tools

Next LOCALIZE.UTL is restored to its original state so it may be used
independently if desired. Finally, the user is told that the localization
process is complete.

It is important to note that because keywords are processed one at a time,
LOCALIZE will not catch things like not specifying any disk or specifying
two printers or interfaces for the system printer. These will come out later
in the generation or installation procedures.

Listing 4 - Sample localization data file
900 A900 CPU
pri79i4 7914 as primary disk
sec7937 7937 as secondary disk
con_mux System Console on Mux
Lus_hpib System printer on HP-IB
lué_2563 Model 2563 printer
plt_hpib Plotter on HP-1B
ab Allen-Bradley interface
ds DS/1000

4 Generation

The generation procedure is rather straight forward. Listing 5 is a
command file, GEN, that makes it just a little bit easier in three ways.
First, it automatically deletes existing system, snap, and generation list files.
This is safe since the list file can be recreated from the answer file
LOCALIZE backed up, and the system and snap files exist on the boot
cartridge.

Second, GEN takes a system name as its first argument. (This is the same
system name passed to LOCALIZE and later to the installation procedure.)
One obvious use of this system name is to maintain generation information
for slave nodes on a master node.

Finally, GEN takes a directory name as an optional second argument. If
specified, this argument is the parent directory of the RTE-A relocatables.
This allows multiple revisions of RTE-A to be maintained on the disk for
support of other systems or during upgrade. The default directory for
RTE-A relocatables changes from release to release to coincide with the
current revision,

System Generation Tools -8-

Listing 5 - Generation command file

AREAREEAEEEENNEERENEAANEAERAEERENTRAARERTREEREARARREEEAN R AR NN AR E

File: /SYSTEM/GENERATION/GEN.CMD <870327.0853>

Command file to run RTeA system GeNeration (RTAGN)
Chris Nelson, CPC

History:
Changed LIST file to @.GLST so that 'pu d.lst.e' does not
purge it.
Changed order of $1 and $2. $2 defaults to /relocs_4*1

Usage:
$1 is the root-name of the answer file to process. If $2 is
not given, an error is returned.

$2 is the root directory for system and HP product
sub-directories. If $2 is not given, /relocs 4*1 is used as the
default.

This command file uses the following CI variables. They are UNSET
at the end of the command file.

% % % % % % % % % % % % % % % % X X* T F T E NN

swd save working directory

rd root directory for relocatables
* Remember current working directory.
SET swd = $WD
SET NULL =

»

* $1 may specify the prefix for the answer, system, snap, and list
* files. If not specified, it defaults to GFS_nn.
* Build the file names based on $1 or default.
IF IS $1 = SNULL; THEN
ECHO
ECHO 'System name must be specified.'
ECHO 'Available systems:!®

DL,a.ANS
RETURN
ELSE
SET ans = $1.ans
SET sys = $1.sys
SET snp = $1.snp
SET lst = $1.glst
Fl
W mcccceacunccconnnessesoacnonsocsccaccnnassnsanaanconranereacsannnnonas

* $2 may specify the root directory for system and product
* relocatables to be used. If it is null then use /relocs_4*1 as
* default
IF IS $2 = SNULL; THEN
set rd = '/RELOCS_4*1'
ELSE
set rd = $2
Fl

-9- System Generation Tools

Listing 5 continued

* Check to see that the root directory for the relocatables
* exists. If it does not then abort.
IF DL,$rd,,0; THEN
W $rd
ELSE
ECHO
ECHO 'No such directory: '$rd'. Generation not attempted.'
ECHO
UNSET rd
UNSET swd
RETURN

* purge existing list, system and snap files
IF DL,$swd/$lst,,0; THEN
PU $swd/$lst
FI
IF DL,$swd/$sys,,0; THEN
PU $swd/$sys
FI
IF DL,$swd/$snp,,0; THEN
PU $swd/$snp

* Run the generator with reference to the original working directory
rtagn $swd/$ans $swd/Slst $swd/$sys $swd/$snp

* Return to the starting directory and UNSET CI variables
wd $swd

UNSET swd

UNSET rd

* Tell the user we're done
ECHO
ECHO ' System generation complete.'

ECHO
*

5 Installation

Installation is the first stage at which one might corrupt the existing
bootable system. One may prevent this by backing up the existing system
in a form that may be restored ‘off-line’ but this is time consuming. On a
production system, one cannot afford the downtime to perform the backup.
On a development system, one would rather get on with the test.

An alternative to an off-line backup is to not overwrite the existing
bootable system. This is accomplished by installing the new system to the
boot cartridge as a second set of system and snap files referenced by a
second boot command file. Once proven, the new system may be installed

System Generation Tools -10 -

over the old default. If a problem is encountered booting the new system,
the default system may be booted and another attempt made at generating a
new system.

T_INSTL accepts a system name and installs the corresponding system and
snap files on the boot cartridge for test as T SYS and T_SNP. These are
the files referenced by T_BOOT, the test boot command file. If the test
system boots, D _INSTL is used to install the test system over the old
default in D_SYS and D_SNP, these are the files referenced by SYSTEM,
the default boot command file.

Listing 6 - Test installation command file

whddhdrdddddrdddrdddrddddrdrdddrdrrdrrrdrdrdrddr bbb rdddrdrdr b rdddrd bbb ddd

* File: /SYSTEM/GENERATION/T_INSTL.CMD <830401.1411>
*

* Transfer file to install a new system for test

SET NULL =
* If no parameter is passed, default file names
IF IS $1 = SNULL; THEN
ECHO
ECHO ' System name must be specified.'
ECHO
RETURN
ELSE
SET ANS =
SET SYS = $1.SYS
SET SNP = $1.SNP

* Copy the system file to the boot cartridge

CO $SYS T_SYS::8T D

IF IS $SRETURN1 <> 0; THEN
ECHO 'Copy error 'SRETURN1' at stage one, install aborted normally.®
RETURN

* Copy the snap file to the boot cartridge

CO $SNP T_SNP::BT D

IF IS SRETURN1 <> O;THEN
ECHO 'Copy error 'SRETURN1' at stage two, install aborted abnormally.’®
RETURN

W e mmcccmmccemaacceans N4t e eeemcemmeatectct e e et s st e,

* Copy the answer file to the boot cartridge

CO $ANS T_ANS::BT D

IF IS $SRETURN1 <> 0;THEN
ECHO 'Copy error 'SRETURN1' at stage three, install aborted abnormally.®
RETURN

ELSE
ECHO
ECHO * Installation successful. Re-boot with 'X%bdc27t_boot' to use.'
ECHO

Fl

- 11 - System Generation Tools

Listing 7 - MEMSYS.CMD

Rhdhkhdhhhddhhdhddddhddddddrddrdddrddddddddiddddddddddddiddddddddddidd

File: /SYSTEM/MEMORY/MEMSYS.CMD «<870330.1022>
CI command file to build a memory based system.

This commend file uses $1.SYS and $1.SNP in the /SYSTEM/
GENERATION/ directory to create $1.MEM in the /SYSTEM/MEMORY/
directory.

$1 is the root name of the .SYS and .SNP files to be used

to build the memory based system. BUILD.IN is copied to BUILD.UTL
and edited to reference these files. The HP utility program
BUILD is run with BUILD.UTL as input. BUILD.UTL is purged as

part of the cleanup.

* % % % % * ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

870330 CLN

*

* Ppurge old memory based system file if it exists.
IF DL,$1.MEM,,0; THEN

ECHO ' Purging old binary file.'

PU $1.MEM

* Copy BUILD.IN to BUILD.UTL and edit to reference $1 files.
CO,BUILD.IN,BUILD.UTL,d
EDIT BUILD.UTL,'SE AS OF|1 $ x/?2/'$1'/|ER!

* Tell the user what to do.

ECHO

ECHO

ECHO 'MEMSYS done.'

ECHO

IF DL,$1.MEM, ,0; THEN
ECHO 'Use CSYS to copy the system to tape for later use.'
ECHO ‘Purge '$1'_MEM after use to save disk space.’

ELSE
ECHO 'Could not create memory based system file. There may '
ECHO 'not be enough disk space. Purge extraneous file and '
ECHO 'try again.!

FI

ECHO

6 Backup and recovery

A two stage system installation procedure reduces or eliminates the need for
an off-line backup during generation. However, a major revision warrants
an off-line backup, and there is still the occasional disk crash or file
deletion to be dealt with. If one can boot the system, one can restore

System Generation Tools -12 -

applications and data. However, if the system itself is corrupted, an
off-line backup is the only alternative. This backup is in two forms: a
bootable memory based system on tape, and an ASAVE of the boot
cartridge and system volume. These can be combined on one 600° CTD
which can be kept in a safe place away from the system.

Listing 7 shows MEMSYS.CMD, a command file which accepts a system
name (as used in Localization, Generation and Test Installation) and creates
a memory based system file. This memory based system assumes a
minimum of 512K memory available and provides ASAVE, ARSTR, and
other utilities. CSYS is used to copy this file to CTD with ASAVE
delimiters. Finally, ASAVE is used to append a copy of the boot cartridge
and system volume to the tape. With some variation, this procedure can be
used to ship a generation for a new system.

To recover a crashed system, the ASAVE CTD is placed in the drive and
the memory based system is booted off of it. At the memory system
prompt, ARSTR can be run to restore the boot cartridge and/or the system
volume. The system can then be booted from disk and application programs
or data restored from file based (TF, FST) backups.

7 Welcome file structures

Two welcome files are resident on the system. WELCOMEL.CMD sets the
system time and configures the system console; this is the minimum start-up
processing necessary to make any use of the system. T_BOOT schedules CI
as START with WELCOMEI as the welcome file. In this way, the system
manager may log onto the console and test the new generation. This file is
also useful for booting a nearly idle system for complete backups.

WELCOME2.CMD is used to start-up a fully functioning system;
WELCOMEIL.CMD is called to set the time and enable the console, then
software sub-systems are started, other devices are configured, and user
terminals are enabled. (By referencing WELCOMEL to set the time and
enable the console, potential conflicts resulting from changing WELCOMEI
but not WELCOME?2 are eliminated.) The default boot command file,
SYSTEM, schedules CI as START with WELCOME2 as the welcome file.

8 Sample Session

The preceding sections have discussed the tool suite roughly in the order
they would be used to modify a system generation. This section will narrate
the steps to add a second disk drive using the tools. Assume that the system
has been created using the tools, the localization data file is named
LOCAL.DAT, and that PRIMARY.ANS is current, and a 7937 disk drive is
to be added as a secondary disk drive.

-13 - System Generation Tools

Step 1. Edit LOCAL.DAT and add a line with SEC7937 as the keyword.
Step 2. Execute LOCALIZE with ‘localize,local’.

Step 3. Execute GEN with ‘gen,local’.

Step 4. Execute T INSTAL with ‘t_instal,local’.

Step 5. Reboot specifying T_BOOT as the boot command file.2

Step 6. Attempt to mount volumes on new disk. Initialize them if
necessary.

Step 7. Modify the welcome file to mount the new volumes automatically.
Step 8. Execute D_INSTL with ‘d__instl’.

Step 9. Reboot specifying with the default boot command file.

9 Conclusions

The preceding section shows the addition of a disk drive with minimal
effort and no need for off-line backups. The entire process could be
completed in well under an hour. This can be contrasted with other
recommended procedures which would take several hours at best. Among
the factors contributing to this increased efficiency are starting with a
known-good answer file, automating most of the tedious editing and file
manipulation, and eliminating the need for an off-line backup in most
cases.

Opportunities to extend this tool set include automatic updating of the boot
command and welcome files, a localize command to merge in locally created
answer file segments, speeding up the localize utility by implementing it in
a compiled language, and automating backup tape construction. Hopefully,
the files that make up this tool set will be available on the swap tape. It
should be easy to add keywords to your own answer file and use them with
it.

2 Sometime before the next step, the new HP-IB card is put in the SPU cage
with sele(:)ct code 26b and the disk is cabled to it and configured for HP-1B
address 0.

System Generation Tools - 14 -

RELATIONAL VIEW OF IMAGE WITH REAL ZIP
Stephen R Carter

Eyring Research, Inc.
1450 West 820 North
Provo, Utah 84601

INTRODUCTION.
Consider the following:

A quality engineer determines the interaction of
two critical quality measurements.

A process engineer launches an investigation to
determine the actual impact of several process
conditions on product quality.

A product engineer is zeroing in on a way to
shorten total in-process time.

Another quality engineer questions the accuracy
of test methods used during production.

Each of these scenarios has a common thread -- the need for
current, valid manufacturing information in an accessible
form. 1Indeed, the information explosion of the 1980's has
taught us all that information is worthless if it can not
be made available in an integrated form.

Typically (and currently at many plant sites), manufac-
turing information is available as handwritten reports or,
worse yet, boxes of computer generated printouts. Indeed,
this author has seen abandoned offices four feet deep in
paper containing wvaluable manufacturing information. The
approved method of access? Hip waders and a green visor.

PURPOSE OF PAPER.

Hewlett Packard has provided the Imagel database as a tool
on its technical computer series for the organization of
plant information. Even with Image, however, several
obstacles exist to hinder the ready integration and utili-
zation of this information. Traditionally, the information

lImage is a registered trademark of Hewlett-Packard

Interex 1987 (July 16, 1987) 1003 ERI Document No. 100-1095
Relational View of Image With Real Zip

required will be spread over several computer systems
throughout the plant, each system being managed by a dif-
ferent plant department. For example, quality standards
and testing information is controlled by the Quality
department while process standards and process conditions
are controlled by the Process department. And so it goes
through materials, production, waste, conversion, etc.

The purpose of this paper is to describe a method (using
PRESTO, a product available from Eyring Research, Inc.)
whereby a disjoint set of Image databases may be integrated
into a single relational view. This integration method may
be applied to multiple databases residing either on a
single system or over a DS or NS network, or a combination
of single and networked databases. The vehicle for this
description will be a presentation of several case studies.
The case studies are as follows:

* Case #1: Product quality is observed to be cyclic
daily. 1Is there a difference in product quality
between lead operators?

* Case #2: Certain process conditions are suspected of
contributing more to gquality variations than
previously thought. Conduct a study to determine
the product quality contribution of certain
process variables.

* Case #3: Determine cost effective ways of shortening
total in-process production time.

* Case #4: PRESTO is interfaced to the HP product
QDM/10002.
* Case #5: A manufacturing database is expanded due to

natural plant and product growth.

BRIEF DESCRIPTION OF PRESTO.

PRESTO is the name of a family of software products avail-
able from Eyring Research, Inc. Highlights of the product
include:

* Extremely fast data extraction. Bench marks have
shown PRESTO to perform 5 to 10 times faster than
Query and 2 times faster than QDM/1000. Sophisticated

2QDM/1000 is a registered trademark of Hewlett-Packard

Interex 1987 (July 16, 1987) 2 ERI Document No. 100-1095
Relational View of Image With Real Zip

extraction path optimization methods employed by
PRESTO have reduced the extraction time for a custom
program using traditional Image access from 4.5
minutes to 20 seconds.

* Integration of Image databases into a single rela-
tional view. Integration may include a single data-
base with multiple data sets, multiple databases, or
multiple databases over a DS or NS network.

* Active database access. PRESTO can extract data while
the data acquisition system is placing data in the
Image database.

* Friendly ad hoc user interface. A data dictionary
provides friendly user interface with databases. On-
line help and full on-line access to PRESTO manuals.

* The PRESTO data dictionary allows pseudo fields,
modification of 1Image field attributes, and user
defined field and data set names.

* Extracted data may be converted for statistical analy-
sis (STAT/10003, MINITAB, STAT/80), graphic reports
(GRAFIT), printed reports (user prograns, PRESTO
Report), Spreadsheets (LOTUS 123), user programs,
external systems, etc.

* PRESTO supports data archival without shutting down
the database.

GENERAL COMMENTS CONCERNING THE CASE STUDIES

PRESTO is installed in a wide variety of environments. End
user environments include chemical batch, moving web,
meteroclogical, and waste control. One PRESTO OEM is in-
tegrating PRESTO into a medical 1lab system. The case
studies, however, will be concerned more with the manufac-
turing environment. Examples include both the use of
private databases and product databases such as QDM/1000.

3STAT 1000 is a trademark of Eyring Research, Inc.
STAT 80 is a trademark of Statware, Inc.

GRAFIT is a trademark of Graphicus, Inc.

MINITAB is a,trademark of Joiner Associates
LOTUS 123 is a trademark of Lotus Corporation

Interex 1987 (July 16, 1987) 3 ERI Document No. 100-1095
Relational View of Image With Real Zip

Case Stupy #1

* Statement: Product quality is observed to be cyclic
daily. Is there a difference in product quality
between lead operators?

* Resolution: The investigating engineer was faced with
the task of extracting relevant information from
several department databases maintained on separ-
ate (though networked) machines. PRESTO obtained
the initial study data from the distributed
database and made it ready for statistical analy-
sis within 10 minutes.

For the purpose of this discussion, we will consider the
example database as depicted in Figure 1. The actual data-
base from which the case study was extracted is much more
comprehensive and is being updated with plant information
at a rate of between 15,000 and 20,000 records per day.

Batch Data Waste Data Quality Data
Product 1D Product ID Product 1D
Product Batch No. Product Batch No. Product Batch No.
Operator ID Equipment ID Test Equipment ID
Batch Start Date Waste Cause Code QC Operator 1D
Batch Start Time Waste Amount Test 1D
Batch End Date Waste Units Test Result
Batch End Time - etc. - Test Units
Equipment ID - ete. -

- etc. -
* 1 record/batch * 1 record/cause * 1 record/test

T T I 1

Figure 1 - Example Database for Case Study #1

The example database consists of three relations (data
sets): 1) Batch Data (containing information pertaining to
a unique instance of production), 2) Waste Data (containing
information relating to waste at each step of the process),
and 3) Quality Data (containing information on each quality

Interex 1987 (July 16, 1987) 4 ERI Document No. 100-1095
Relational View of Image With Real Zip

test performed at each step of the process. Note: in the
example database, testing is performed via statistical sam-

pling).

The relationship of each data set is depicted by the arrows
between the different data sets. For each Batch there may
be from 1 to many occurrences of records in Waste and/or
Quality. Note that the common field between each data set
is Product ID and Product Batch No.

The several steps utilized by the investigating engineer
are very similar to those used in a relational model
because of the relational view that PRESTO imposes on the
Image database. These steps are as follows:

Step 1: Determine the information to be gathered. 1In a
relational model we would "define the target relation." 1In
this case, the target relation is:

Operator ID
Product ID
Product Batch No.
Waste Cause Code
Waste Amount
Test ID

Test Results

In the case under study, the investigating engineer desires
to determine the statistical difference in product quality
between lead operators. Oonly lead operator ID's are car-
ried in the database; thus the inclusion of Operator 1ID
will partition the rest of the relation by that factor.

To identify the quality information, Product ID, Product
Batch No., Test ID; and Test Results are also included in
the target relation. As an afterthought, the engineer has
also included Waste Cause Code and Waste Amount to further
determine any correlation between lead operator and waste.

Step 2: Determine the relations containing the target
information. Figure 2 shows the location of each field.

Interex 1987 (July 16, 1987) 5 ERI Document No. 100-1095
Relational View of Image With Real Zip

Batch Data Waste Data Quality Data
Product ID Product 1D Product ID
Product Batch No. Product Batch No. Product Batch No.
Operator ID Equipment ID Test Equipment ID
Batch Start Date Maste Cause Code QC Operator ID
Batch Start Time Maste Amount Test 1D
Batch End Date Waste Units Test Result
Batch End Time - etc. - Test Units
Equipment 1D - etc. -

- etc. -
* 1 record/batch * 1 record/cause * 1 record/test

Figure 2 - Target Information

Step 3: Declare relationship 1links. In the case under
study, Product Batch No. is always unique. Thus, the link
between each relation is Product Batch No. (see Figure 3).
If plant operation was such that Product Batch No. was
unique only within product 1line, the 1link between each
relation would have been both Product ID and Product Batch
No.
Step 4: Declare study restrictions. The restriction
declarations were as follows:

Batch Start Date GT 1 Jan 1987
AND
LE 1 Apr 1987

AND

Product ID EQ MZ4231X
AND

Test ID EQ CD004

Note that the 1linking field (Product Batch No.) was not
referenced in the restriction declarations. PRESTO will
form a set of valid Product Batch No.s from the smallest
relation (in this case, Batch Data) and then link across to
the other, larger, relations (Waste Data and Quality Data).

Interex 1987 (July 16, 1987) 6 ERI Document No. 100-1095
Relational View of Image With Real Zip

Batch Data Waste Data Quality Data
Product ID Product ID Product ID
Product Batch No. Product Batch No. Product Batch No.
Operator ID Equipment ID Test Equipment ID
Batch Start Date Waste Cause Code QC Operator ID
Batch Start Time Waste Amount Test ID
Batch End Date Waste Units Test Result
Batch End Time - etc. - Test Units
Equipment ID - etc. -

- etc. -

* 1 record/batch

* 1 record/cause

* 1 record/test

Figure 3 - Relationship Links

Step 5:
tion.

Declare fields of study to form the target rela-

Figure 4 shows the various fields selected.

Batch Data Waste Data Quality Data
Product ID Product ID Product ID
Product Batch No. Product Batch No. Product Batch No.
Operator ID Equipment ID Test Equipment ID
Batch Start Date Waste Cause Code QC Operator 1D
Batch Start Time Waste Amount Test ID
Batch End Date Waste Units Test Result
Batch End Time - etc. - Test Units
Equipment ID - etc. -

- etc. -

* 1 record/batch

* 1 record/cause

* 1 record/test

Figure 4 - Fields Selected for Target Relation

Interex 1987 (July 16, 1987) 7 ERI Document No. 100-1095
Relational View of Image With Real Zip

Step 6: Perform extraction. PRESTO provides several meth-
ods for performing the indicated data extraction. OEMs
will find that PRESTO can be quickly integrated into their
systens. PRESTO is constructed such that a well-defined
interface exists to provide a clear line between OEM soft-
ware and PRESTO.

End users may extract the information in foreground (PRESTO
will display the progress of the extraction as it
proceeds), immediate background (PRESTO will provide a
complete status of the extraction upon request), or time
scheduled background (again a complete status is avail-
able). The time scheduled option provides the user with
the capability to define extractions and reports that run
hourly, daily, weekly, monthly, etc.

Step 7: Convert extracted data. Once the information has
been extracted and the target relation created, it may be
converted to any of the following formats:

Statistical Spreadsheet External System
STAT/1000 LOTUS 123
MINITAB Graphics
STAT 80 User Program? GRAFIT
ATA Plot®

PRESTO Report

Note that new conversions are easily added to the PRESTO
structure.

Case Study #1 Conclusion: Though the information required
by the investigating engineer was provided and main-
tained by several departments within the plant (in the
actual case, the data was located on several computers
across a network), the final target relation was
available for statistical analysis (in this case
STAT/1000) in a matter of 10 minutes from a distribu-
ted database totaling over 1.2 gigabytes.

4pRESTO is an open system; the definition of the
target relation file is readily available so that the
results of the extraction may be passed to a user program
or external system for further processing.

S5ATA Plot is a trademark of Automated Technology
Associates. ATA Plot is listed here to show that prelimi-
nary investigations necessary to create a conversion func-
tion to support ATA Plot's data formats have been completed.

Interex 1987 (July 16, 1987) 8 ERI Document No. 100-1095
Relational View of Image With Real Zip

Case Stupy #2

* Statement: Certain process conditions are suspected of
contributing more to quality variations than
previously thought. Conduct a study to determine the
product gquality contribution of certain process vari-
ables.

* Resolution: A full investigation of both historical data
and planned investigations was completed within one
week, detailing the interactive impact of the suspect
process variables on gquality.

Figure 5 depicts the database example used for this case
study. Though the example databases are being kept simple
for the purpose of this discussion, the actual databases
referenced by the case studies address entire plant
environments.

Batch Data Process Data Quality Data
Product ID Product 1D Product 1D
Product Batch No. Product Batch No. Product Batch No.
Operator ID Equipment ID Test Equipment ID
Batch Start Date Process Variable QC Operator 1D
Batch Start Time Name Test ID
Batch End Date PV High Value Test Result
Batch End Time PV Std. Deviation Test Units
Equipment 1D PV Average Value - etc. -

- etc. - - etc. -
* 1 record/batch * 1 record/PV * 1 record/test

1 I T T

Figure 5 - Example Database for Case Study #2

The example database consists of three data sets (rela-
tions): 1) Batch Data (containing information pertaining to
a unique instance of production), 2) Process Data (contain-
ing data acquired from the monitoring of process condi-
tions), and 3) Quality Data (containing information on each
quality test performed at each step of the process. Note:

Interex 1987 (July 16, 1987) 9 ERI Document No. 100-1095
Relational View of Image With Real Zip

in the example database, testing is performed via statisti-
cal sampling).

The relationship of each data set is depicted by the arrows
between the different data sets. For each Batch, there may
be from 1 to many occurrences of records in Process and/or
Quality. Note that the common field between each data set
is Product ID and Product Batch No.

The steps used to realize the solution are as follows:

Step 1: Determine the information to be gathered. The
target relation defined by the investigating engineer was:

Product ID

Product Batch No.
Operator ID

Equipment ID

Process Variable Name
PV High Value

PV Low Value

PV Standard Deviation
PV Average Value

Test Equipment ID

QC Operator ID

Test 1ID

Test Result

Test Units

The study requires that the contribution of equipment and
operator variance be properly handled before the actual
impact of the suspect process variables can be determined.
Hence, the investigating engineer created a target relation
that preserved the necessary relationships.

Step 2: Determine the relations containing the target
information. Figure 6 shows the location of each field.

Step 3: Declare relationship links. 1In contrast to Case
Study #1, Product Batch No. is not unique between product
classification. Therefore, Product ID is required as the

link between each relation.

Interex 1987 (July 16, 1987) 10 ERI Document No. 100-1095
Relational View of Image With Real Zip

Batch Data Process Data Quality Data
Product 1D Product ID Product 1D

Product Batch No. Product Batch No. Product Batch No.
Operator ID Equipment ID Test Equipment ID
Batch Start Date Process Variable QC Operator ID
Batch Start Time Name Test 1D

Batch End Date PV High value Test Result

Batch End Time

Equipment 1D
- etc. -

* 1 record/batch

PV Std. Deviation
PV Average Value
- etc. -

* 1 record/PV

Test Units
- etc. -

* 1 record/test

Figure 6 - Target

Information for

Case Study #2

Step 4:

Declare study

Product ID
AND

restriction

Batch Start Date

AND

Process Variable Name

REJECT Process Data

S.

EQ

GT
AND
LT

EQ
OR
EQ
OR
EQ
OR
EQ

XYZ123

1 Apr 1986
1 Feb 1987
Upper Oven
Lower Oven
Upper Oven

Lower Oven

Temp
Temp
Humidity

Humidity

The REJECT clause of the restriction is necessary to precl-
ude data from the process data relation from being included
if there is no matching entry in the quality data relation.
Since quality measurements follow a statistical sampling
there will be many entries in process data which
have no matching entries in quality data.

program,

Step 5:

Declare fields of study for the target relation.
Figure 7 shows the various fields selected.

Interex 1987 (July 16, 1987)
Relational View of Image With Real Zip

11

ERI Document No.

100- 1095

Batch Data Process Data Quality Data

Product 1D Product 1D Product ID
Product Batch No. Product Batch Mo. Product Batch No.
Operator ID Equipment ID Test Equipment ID
Batch Start Date Process Variable QaC Operator 1D
Batch Start Time Name Test ID
Batch End Date PV High Value Test Result
Batch End Time PV Std. Deviation Test Units
Equipment 1D PV Average Value - etc. -

- etc. - - etc. -
* 1 record/batch * 1 record/PV * 1 record/test

Figure 7 - Target Information for Case Study #2

Step 6: Perform extraction. The various methods avail-
able to the user for this step are explained in Step 6 of
Case Study #1.

Step 7: Convert extracted data. The various methods
available to the use for this step are explained in Step 7
of Case Study #1.

Case Study #2 Conclusion: The investigating engineer
used several statistical tools on the extracted data
(via the STAT/1000 conversion) to determine the con-
tribution of equipment and operator variation. The
actual contribution was then determined and a full
technical presentation prepared using the statistical,
graphic, and tabular reporting available through con-
version capabilities of PRESTO.

Case Stupy #3.

* Statement: Determine cost effective means of shortening
total in-process production time.

* Resolution: This investigation was conducted over the
span of several months. The steps followed were
generally those described in case studies #1 and #2.
The end result was several well-documented changes to
production methods resulting in decreased production
time and reduced in-process inventory.

Interex 1987 (July 16, 1987) 12 ERI Document No. 100-1095
Relational View of Image With Real Zip

An example database is depicted in Figure 8. This case
study will not detail each step of the investigation
because of the many iterations of the solution method. The
strength of this case study is the capability provided by
PRESTO to answer ad hoc questions. During the investiga-
tion process, many additional questions will arise from the
answers to other questions. Creative problem solving is
greatly enhanced by the rapid answering of each creative
question.

Batch Data Process Data Quality Data Alarm Data
Product 1D Product 1D Product iD Product 1D
Product Batch No. Product Batch No. Product Batch No. Product Batch No.
Operator ID Equipment 1D Test Equipment ID Equipment ID
Batch Start Date Process variable QC Operator ID Process Variable
Batch Start Time Name Test ID Name
Batch End Date PV High value Test Result PV Extreme Value
Batch End Time PV Std. Deviation Test Units Alarm Date
Equipment 1D PV Average Value - etc. - Alarm Time

- etc. - - etc. - - etc. -
* 1 record/batch * 1 record/PV * 1 record/test * 1 record/batch

Figure 8 - Example Database for Case Study #3

The investigating engineer proceeded with the study by
gathering information, making small changes, and evaluating
the changes by noting variations in the way data was repor-
ted to the manufacturing database. Of particular interest
was the Alarm Data. The engineer used this relation as an
indicator of the effect of the changes. If more alarms
were noted in the particular area changed, the change was
reversed and a corresponding downward variation in Alarms
was watched for.

* Case Study #3 Conclusion: An iterative investigation was
conducted by evaluating small, meaningful changes
which accumulated to produce the result sought.

Interex 1987 (July 16, 1987) 13 ERI Document No. 100-1095
Relational View of Image With Real Zip

Case Stupny #4

* Statement: PRESTO is interfaced to the HP product
QDM/1000.

* Resolution: Presto may be easily interfaced to the HP
product QDM/1000 with a resulting two times reduction
in the time to produce reports and graphs.

The Data Dictionary inherent in PRESTO builds the first
draft of the dicticnary for a new database by interrogating
the Image root file and defining the default attributes of
each database field. The Dictionary facility then allows
the user to alter the structures to better define the data-
base as a set of relations. This redefinition provides the
following functions:

* Marking a relation for denied access

* Marking a field for denied access

* Creating pseudo fields by concatenating fields or
splitting fields

* Supplying meaningful names to each data item and rela-
tion

The particular case example required one hour to define a
user friendly data dictionary view of the QDM/1000 Image
database. This definition was then transported to a manu-
facturing site using QDM/1000. Within 15 minutes of the
loading of PRESTO on the host system, reports and histogram
graphs were being produced which duplicated the reports and
graphs delivered by QDM/1000 but in half the time.

Case Study #4 Conclusion: PRESTO was used on a commercially
available Image database to produce reports and graphs
in half the time required by the application software
delivered with the database.

Case Stupy #5

* Statement: A manufacturing database is expanded to a dis-
tributed database due to natural plant and product
growth.

* Resolution: Users experienced two hours down time; then

business resumed as usual.

The ﬁatural increase of market demand for product and the
need for plant growth resulted in an increase in the data

Interex 1987 (July 16, 1987) 14 ERI Document No. 100-1095
Relational View of Image With Real Zip

being gathered by the plant data system. This situation
caused the database to become much larger and the incoming
data traffic to saturate the data communication lines and
the ability for Image to add the data to the manufacturing
database.

Figure 9 describes the system "before" the change to remedy

the problem. The solution chosen was to distribute the
manufacturing database across two machines and to use a
network (DS or NS) to 1link the two machines. PRESTO's

ability to operate across a network was a major considera-
tion in the decision.

Host

Computer
Cell Cell P Cell
Controller|| Controller Controller
Plant Environment
Process Process - .. Process
Control Control Control
(KP2250) (Modicon) (TI, etc.)

Figure 9 - Example System "Before Image", Case Study #5

Figure 10 shows that the host computer was replicated. The
database was split between the two machines to provide
additional bandwidth for both Image-to-disk and the com-
munication lines. The network link between the two host
systems provided for communication when PRESTO was extract-
ing data from both databases.

Interex 1987 (July 16, 1987) 15 ERI Document No. 100-1095
Relational View of Image With Real Zip

Host Host
Computer Computer

Cell Cell R Cell
Controller|| Controller Control ler

Plant Environment

Process Process - e . Process
Control Control Control
(HP2250) (Modicon) (T1, etc.)

Figure 10 - Example System "After Image", Case Study #5

The planning and hardware installation required months of

work. Careful installation of additional communication
lines, new hardware, and testing was accomplished before
the actual conversion to the new system. The actual

accomplishments of the last few days of the conversion were
as follows:

* The PRESTO data dictionary was copied to the new host
computer and the dictionary was modified on both
hosts to indicate the new geography of the data-
base. Time to complete: 10 minutes.

* The day before the actual conversion a full archive of
the data to be moved to the new system was made
on-line without interrupting plant operation.

* The day of conversion required two hours of down time

to stabilize the database (an archive of the last

Interex 1987 (July 16, 1987) 16 ERI Document No. 100-1095
Relational View of Image With Real Zip

few hours of data was made at this time) and to
move communication lines and move some terminals
to the new host. Communication software was then
reconfigured to cause data from certain areas of
the plant to be communicated to the new host
rather than the o0ld host.

* The system was then restarted and data began flowing
into the new distributed database. A PRESTO
"restore function" of the archived data was
started on the new host. Because of the PRESTO
data dictionary, the users saw no difference in
operation. PRESTO got the data from the
appropriate databases without user intervention.
The restore required approximately two days. At
the end of the restore, the data moved to the new
host was purged from the old host database.

Case Study #5 Conclusion: A major reconfiguration of the
plant data system and manufacturing database was
accomplished with only two hours of planned down time.
The net effect on the users was an increase in
processing power with no retraining.

CONCLUSION.

The proper application of manufacturing data has become one
of the most powerful tools available to modern industries.
As costs have increased, it has become increasingly impor-
tant to reduce inventories, waste, and in-process time.
Effective reduction programs require carefully researched
and executed plans to minimize impact upon plant opera-
tions.

The method of Image database integration discussed in this
paper is an off-the-shelf solution. It provides a rela-
tional view of diverse Image databases on single systems or
networked systems. The speed and flexibility of data ex-
traction provides investigating engineers with a tool to
conduct investigations in a fraction of the time tradition-
ally required.

PRESTO has been successfully used by major manufacturing
companies to provide access to the information necessary to
produce and execute these plans. PRESTO has proven cost
effective because of the flexible and comprehensive access
tools provided to users for the interrogation of manufac-
turing/ databases. PRESTO also assists in the management of
those databases.

Interex 1987 (July 16, 1987) 17 ERI Document No. 100-1095
Relational View of Image With Real Zip

Implementing a Centralized Plotting and Slide Generation
Facility for Hewlett-Packard Computers

A. Reeves, N. Stass, and R. Wood
Telesat Canada
333 River Road
Ottawa Ontario
Canada K1L 8B9

Abstract

Sharing expensive peripheral equipment among computers is one method of
optimizing the use of the peripherals. At Telesat, we have previously
used this scheme to centralize the printing requirements of several
HP1000 computers and an IBM mainframe on an HP2680A laser printer. We
have now expanded our system to support a centralized graphics plotting
and slide generation facility, using the HP7550A plotter (with automatic
paper feed) and the HP7510A color film recorder.

This paper discusses the hardware and software details of our
implementation, the fitting of an third party graphics package to the
system (Graphic User Systems Inc. GRAFIT/1000), and some of the pitfalls
we encountered. Also, our future plans for the graphics facility will
be outlined.

Introduction

Telesat is the national domestic satellite communications company of

Canada. Headquartered in Ottawa, Telesat also provides international
satellite communications engineering consulting, and sells satellite
flight dynamics software and orbital tracking services. Technical

computing resources at Telesat consist of many varied Hewlett-Packard
computers: HPl1O0O E-series, F-series, A600s, and A900s; HP150 PCs; HP
Vectra PCs; and a recently acquired HP840 Spectrum system. As well, the
business computing groups have an IBM 4381 mainframe and a variety of
IBM-compatible PCs.

Over the past four years the need at Telesat for high-quality paper
drawings and slides has increased dramatically. Part of these needs
stem from purely internal requirements, but many of the drawings and
slides are developed for customer documentation, business proposals, and
business presentations. The production of these drawings and slides was
becoming an expensive and time-consuming procedure; it was becoming
obvious that a better system would have to be devised. When
Hewlett-Packard announced the release of the HP7510A film recorder
Telesat was immediately interested. However, the cost of the HP7510A
was high enough to discourage the company from buying large quantities

Implementing a Centralized Plotting and Slide Generation
Facility for Hewlett-Packard Computers

1004

of the machines. To get the benefits of a single HP7510A, it was
decided to integrate the film recorder into the centralized spooling
system.

The Telesat centralized spooling system concept has been discussed in a
previous paper presented at the 1984 INTEREX conference by R. J.
Meldrum. (See "Centralized Printing Using An HP2680 Laser Printer",
Proceedings of the 1984 INTEREX Conference.) The major points of the
system will be briefly restated here.

The centralized spooling system was created by Telesat so that the
printing requirements of the HP1000 systems could be handled by one high
speed HP2680A laser printer. Originally designed to handle printing for
five 2117F computers, the system now accommodates six 2117Fs, two A900
computers, a Spectrum 840 computer, and (by tape transfer) certain print
jobs from the IBM mainframe. (See Figure 1.) The controller for the
centralized spooling system is an A900 computer, dubbed the Peripheral
Management Computer (or PMC), which uses an HP2680A printer driver

developed by HP as a special product. The HP1000 computers are
connected to the PMC by high speed data links developed by Telesat,
using parallel interface cards. DS/1000 was not used, since it was

deemed to be too heavy a system resource user. Since the Spectrum is a
very recently acquired product, it is presently conmnected to the PMC via
serial MUX cards at both ends. The Spectrum uses a "dumb" printer model
for the communications link, and places markers in its output to specify
certain control operations to the PMC.

In order to facilitate the centralized spooling concept, the RTE-6
spooling system was both modified and enhanced to provide extra features
and functions. The RTE-A spooling system was simply enhanced with a set
of "overlays" that assist in programmatic opening and closing of spool
files. (See Appendix A.) The fact that we have the source code for
RTE-6 and RTE-A made these enhancements much easier. At this time, the
Spectrum’s UNIX system is being used in an "as-delivered" state, but
with the dumb communication link mentioned above.

The PMC has its own special spooling system that is completely
independent of the standard RTE-A spooling system. (The present PMC
spooling system is displayed in Figure 2.) It actually is more
reminiscent of the RTE-6 spooling system, in that there is a central
spool controller (TSMP, similar to SMP), a control file (TPLCON, similar
to SPLCON), and various output controllers (TPRIN, T2687, 17510, and
17550, similar to SPOUT.) TPRIN handles output to the HP2680A laser
printer while a recent addition, T2687, handles output to a remote
Laserjet printer in another building. As well, there is an interactive
program that is used by the operators for spool routing and control, as
well as for spooling system initialization (TASK, similar to GASP).
17510, 17550, and PLOT will be described later in the paper.

The central spooling system has now been operative for nearly four

Implementing a Centralized Plotting and Slide Generation
Facility for Hewlett-Packard Computers

2

years, and although it was more complex to develop than originally
anticipated, it has been a very reliable and productive system. (In
fact, the wusage of the HP2680A printer has greatly exceeded
expectations.) Therefore, it seemed a natural step to enhance the
central spooling system by adding an HP7510A film recorder and an
HP7550A plotter. (Since many people do not have access to a plotter,
the addition of the high speed HP7550A plotter to the central plotting
system would be a boon to our users.) By adding the HP7510A and the
HP7550A to the PMC most of Telesat’s HP technical computers would have
access to the devices, and yet costs could be kept down by requiring
only a few (instead of many) graphics devices. This is exactly what we
wanted; flexibility at a reasonable cost.

Implementation

Before the installation of the plotter and film recorder could be done,
it was necessary to analyze present graphics requirements on the
HP1000s, and then decide how to make the graphics tools work with the
central plotting system. The major graphics tool used on the Telesat
HP1000s is an RTE-6 program called DRAW, whose function (as suggested by
the name) is to generate drawings on HP graphics terminals, and then to
output the drawings to plotters attached directly to the graphics
terminals. DRAW was developed in-house by Ron Costanzo, Manager of
Systems Software. Loosely patterned on BRUNO (a drawing program in the
Contributed Software Library), DRAW is based upon HP's DGL package. It
therefore seemed that the most logical approach to integrating DRAW and
other standard DGL-based graphics tools would be to develop a DGL link
to the central spooling system. :

After some consideration, it was decided that a 'set of DGL "stubs" would

be developed on RTE-6. These stubs would have the same names as the
real DGL routines, but would connect into the central spooling system
rather than perform the usual DGL functions. As well, a set of extra

"DGL look-alike" routines would be developed to provide functions for
color control on the HP7510A film recorder, paper size choice on the
HP7550A plotter, spool control, and so on. (See Appendix B.) The
expectation was that this method would keep spool files to a reasonable
size, and allow for greater flexibility in processing the spool file at
the PMC. In addition, programs could use the central plotting system
with minimal changes. For reasons that will become clearer later in
this paper, this scheme has been dubbed "emulation mode”.

After considerable development work, the implementation of this scheme
was installed in late 1986 on the RTE-6 systems. Rather than detail the
actual development of the scheme, a simplified outline will be given of
what happens when an RTE-6 program is loaded with the DGL stubs, the
production of a graphics spool file, and the interpretation of the
graphics spool by the PMC. (Refer to Figures 3 and 2.)

Implementing a Centralized Plotting and Slide Generation
Facility for Hewlett-Packard Computers

3

D

2)

3)

4)

All the DGL stubs (including the DGL "look-alikes") are contained in
a library called $87550.LIB::LIBRARIES. In order for a program or
program segment to use the central plotting system, a user merely
need search $S7550 instead of the standard DGL library DO0O047 when
LINKing the program.

When the program is run, the stub ZBEGN (initialize DGL system) is
called to create a spool output file. ZBEGN in turn calls entry
ZRECI. (ZRECI 1is one entry into a subroutine called ZREC. Other
entry points are ZRECC and ZRECT, which will be discussed below.)
The following actions now occur:
i) ZRECI calls a standard Telesat routine, TSPLO, to
open a permanent non-list spool file. TSPLO returns
the name of the spool file. The main point of this
step is to create a uniquely named spool file on the
desired spooling area. The spool is then closed and
re-opened as a normal FMP file via a FmpOpen
request. Strictly speaking, at this point the output
file is no longer a spool file. However, for
consistency this paper will continue to refer to it
as a spool file.
ii) A dummy record 1 of 252 bytes is written into the
file.
iii) The string "BEGN" 1is entered in a data buffer
internal to the ZREC subroutine, indicating that the
ZBEGN call has been made. As well, a DGL
initialization flag is set locally in ZREC.
iv) A return is made back through ZRECI and ZBEGN to the
user's program.

When the stub ZDINT (initialize graphics device) call is made, it in
turn calls entry ZRECC. The following actions occur:

i) The DGL initialization flag is checked to ensure that
the ZBEGN call has been made.

ii) A device initialization flag is set locally in ZREC
to indicate that a ZDINT call has been made.

iii) The string "DINT" is entered in the internal data
buffer along with the value of ZDINT's passed
parameters.

iv) Device control information concerning the destination
device (film recorder or plotter) and device
configuration 1is initialized internally in ZREC.
(The destination device is specified by replacing the
device LU in the ZDINT call with ASCII FI {film} or
PL {plotter}. This is the only case where a stub DGL
routine has a slightly different calling sequence
from the standard DGL routine.)

All further stub DGL calls except for ZDEND or ZEND in turn call
entry ZRECC to enter the DGL call in the internal data buffer,

Implementing a Centralized Plotting and Slide Generation
Facility for Hewlett-Packard Computers

4

5)

6)

provided the DGL initialization flag and the device initialization
flag are set. The entry consists of recording the name of the DGL
call in the file minus the leading "Z", followed by any parameters.
For example, calling the stub DGL routine ZWIND with parameters 0.,
240., 0., and 180. would result in the following entry in the data
buffer:

In Buffer Meaning
53511B Wl
47104B ND
0B 0.0
OB

74000B 240.0
20B
OB 0.0
OB

55000B 180.0
20B

When the data buffer reaches a maximum of 1280 bytes, the buffer is
written to the spool file as one record, and the buffer is cleared.
The choice of 1280 bytes was made in order to accommodate the
largest possible stub DGL request, which in this implementation is a
polygon set with a maximum of 125 vertices.

Certain DGL look-alike calls are not stored in the data buffer, but
affect the device control information which is kept internally in
ZREC.

When the stub ZDEND call is made, the call is stored in the data
buffer and the device initialization flag is cleared.

When the stub ZEND is called, it in turn calls entry ZRECT. The
following actions now occur, providing the DGL initialization flag
is set:

i) The DGL initialization flag is cleared.

ii) The call is stored in the internal data buffer.

iii) Any remaining information in the data buffer is
written out to the spool file.

iv) The file is closed with an FmpClose call.

v) The file is now re-opened as a Type 1 file in update
mode. The device control information in ZREC is
written into record 1 of the spool file, and the
file is again closed.

vi) Routine TSPLO is called to ready the spool file for
transmission to the PMC. At this point, the spool
file status is changed from "save" status to "purge"
status, meaning that the spool system will
automatically purge the spool file after
transmission to the PMC.

Implementing a Centralized Plotting and Slide Generation
Facility for Hewlett-Packard Computers

5

vii) Telesat routine EVC is called to specify the output
LU on the PMC: LU 10 for the HP7510A film recorder,
or LU 50 for the HP7550A plotter.

viii) Routine TSPLC is called to queue the spool file for
transmission to the PMC. The spooling system now
transmits the spool file to the PMC.

ix) A return is made to the user’'s program.

7) When the spool file is received at the PMC, program TSMP recognizes
that the spool file is destined for the film recorder or plotter.
The file 1is entered in the spool queue, but is put on "hold"

status. The computer room operators can now use a utility program,
PLOT, to 1list the spools waiting to go to the film recorder and
plotter, and the output requirements of each file. (For example, a

spool file for the film recorder may require Polaroid film instead
of 35mm film.)

8) The operators will make any changes necessary to the film pack of
the HP7510A film recorder, or the pen carousel and paper pack of the
HP7550A plotter. When the appropriate device is ready to receive
the spool file, the operators release the spool file.

9) When the spool file comes to the top of the list of released spools
waiting to plot, program 17550 (for the HP7550A plotter) or program
17510 (for the HP7510A film recorder) interprets the contents of the
spool. The following actions occur:

i) Any necessary control information in record 1 of the
spool is sent to the device.

ii) Starting at record 2, the name of each DGL routine is
picked wup. The routine 1is identified, and the
appropriate number of parameters are retrieved from
the spool. The real DGL routine is then called by
17550 or 17510. (These two programs are loaded with
an indexed version of HP’s D0047 DGL library.)

iii) When the spool contents have been completely
consumed, a signal is sent to the spooling system

indicating that the process has completed. The
spooling system removes the spool from the active
list.

A word should be added here concerning the selection of colors on the
film recorder and plotter. It is possible for user programs to specify
each and every color or pen to be used on the devices. However, this is
not usually done. For the film recorder, eight standard palettes
(numbered 1 through 8) have been pre-defined in the system. Each
palette has eight color/linewidth combinations, and a background color.
Under most circumstances, user programs merely specify which pre-defined
palette to use. For the plotter, a standard pen pack has been defined.
This pen pack has the same color/linewidth combinations as palette 7 for

Implementing a Centralized Plotting and Slide Generation
Facility for Hewlett-Packard Computers

6

the film recorder. Under most circumstances, user programs merely
default to the standard pen pack.

The first program to be converted to use the central plotting system was
DRAW. Ron Costanzo performed this reasonably straight-forward
modification. Since DRAW is a segmented program, Mr. Costanzo simply
extended the output choice menu to include a central plotting feature
(including plot or film choice), and then added another program segment
that (at LINK time) is loaded with the stub DGL library. DRAW was used
to help debug and fine-tune the new central plotting system.

Fine-tuning the system took a little longer than expected, partly
because of the unfamiliar nature of the HP7510A film recorder (since
Telesat had one of the first HP7510As in Canada, even the local HP
service ‘engineers were unfamiliar with the device), and partly because
of unexpected glitches. The most annoying glitch that had to be dealt
with was interference between the HP7510A and the HP7550A, which were on
the same HPIB interface. Apparently, the HP7510A at times virtually
takes over the HPIB bus. If the HP7550A is also running, then the
plotter slows down considerably or even stops. Several times a
situation developed where the plotter stopped with its pen down, which
left blotches on the drawing paper. At first, this problem was handled
by instructing the computer room operators to release spool files to
either the HP7510A or the HP7550A, but not both at the same time. The
problem has now been fixed permanently by putting the two devices on
separate HPIB interfaces. (We did try using a MUX card interface, but
had problems with this setup. It was later discovered that HP’'s DGL
does not support any device connected to a MUX card.)

Since DRAW, other internally-developed graphics programs have been
adapted to use the central plotting system, with successful results.

Adaptation of Third Party Graphics Packages

So far, only one third party package has been adapted to our central
plotting system, Graphic User Systems’ (or Graphicus) GRAFIT/1000
graphing system. GRAFIT has been used at Telesat for some time now, and
has proved to be a very wuseful program that has found many
applications. Though the central plotting system was not developed with
third party packages in mind, we decided to try to add GRAFIT to central
plotting.

For those unfamiliar with the GRAFIT package, it consists of several
cooperating programs. From our experience with the package, we have
deduced the following: the core program, GRAFIT, does most of the
work. However, actual graphics output is done by a set of graphics
output handler programs. When the user requests that a graph be drawn
on his terminal or a specified output device, GRAFIT uses tables (set up
by the user) to determine which output program to use. GRAFIT then

Implementing a Centralized Plotting and Slide Generation
Facility for Hewlett-Packard Computers

7

schedules the output handler, and passes it two class numbers. One
class is used for input into the handler; the other class is used by
GRAFIT to receive replies from the handler. GRAFIT proceeds to pass
data to the output handler through the handler’s input class. When
GRAFIT has sent all the necessary data to the output handler, GRAFIT
finishes by sending a termination request to the handler. The handler
then terminates, and the two classes are released.

At first, it was thought that it would be easy to adapt GRAFIT to use
the central plotting system: all that would be necessary would be to
load a special output handler using the stub DGL library instead of the
standard DGL library. However, we quickly discovered that this didn't
work. After some investigation, and discussion with Graphicus, it
turned out that Graphicus had modified some of the HP DGL routines to
perform functions that standard DGL will not support. Although various
combinations of Graphicus routines and our routines were tried, GRAFIT
would not always produce a graph successfully at the PMC.

Rather than continuing in this fruitless fashion, it was decided to
modify the central plotting system. The "emulation mode" scheme was
retained for in-house graphics packages, but we added a system that
captures the output of standard DGL packages in a spool file, and then
sends that spool file down to the PMC for interpretation. This scheme
has been dubbed "verbatim mode". Verbatim mode was implemented by
constructing a special version of the ZREC subroutine, and has the
following features:

1) Only one initialization flag 1s used. This flag shows only that
ZRECI has been called.

2) The spool file opened by ZREC is always linked to session LU 6,
unlike emulation mode where any available session LU 1is wused.
Therefore, the HP ZDINT call in the device program must specify LU 6
when performing device initialization.

3) The choice of paper or film is specified by the call to ZRECI. (In
emulation mode, the choice of paper or film is specified in the call
to ZDINT.)

4) A flag is set in the spool file record 1 to indicate that the spool
is a verbatim spool, not an emulation spool.

Verbatim mode does have four drawbacks over emulation mode: first,
spool files are much bulkier. Second, certain dynamic control
operations cannot be done in verbatim mode. For example, film recorder
pen colors cannot be changed dynamically. Third, if errors occur an
emulation spool file can be listed and visually checked for content.
This is just about impossible with a verbatim spool file. Finally,
certain ZOESC (send hardware dependent escape sequences to device) calls
can have unpredictable results. For instance, on the HP7550A plotter a

7Z0ESC call can be made to replot a graph a given number of times.
However, if the internal buffer of the HP7550A overflows, then this
replot request will not work properly.

Implementing a Centralized Plotting and Slide Generation
Facility for Hewlett-Packard Computers

8

The addition of GRAFIT to the central plotting system was completed

using verbatim mode, after some trial and error. The GRAFIT central
plotting system has the following major features in its layout (see
Figure 4):

1) GRAFIT has been set up with special transfer files (CENTRALIL,

2)

3)

CENTRAL2, CENTRAL4, CENTRALS5, CENTRAL8) to send a graph to the
central plotting system. The user executes one of these transfer
files, in GRAFIT, to start the central plotting procedure. (The
number following each transfer file refers to the pre-defined film
recorder palette being used. CENTRAL8, for example, uses palette
8. For reasons of color contrast, palettes 3, 6, and 7 are not used
with GRAFIT.)

The transfer file specifies an output device configuration table,
which in turn specifies one of five dummy output handlers (GRSPL1,
GRSPL2, GRSPL4, GRSPL5, GRSPL8). Each handler is essentially the
same; the only difference is that each handler specifies its own
unique set of pen colors and widths. For example, GRSPL8 specifies
the following pen colors for the HP7510A and the HP7550A:

Pen # Pen Color HP7510A Line Width HP7550A Pen Width

1 Basic 16 .3 mm
2 Red 16 .3 mm
3 Blue 16 .3 mm
4 Green 16 .3 mm
5 Yellow 16 .3 mm
6 Violet 16 .3 mm
7 Basic 32 .7 mm
8 Blue 32 .7 mm

(Color "basic" is white for the film recorder, black
for the plotter.)

In order to co-ordinate GRAFIT with the device hardware, the device
configuration table for the specified GRSPL program has the same
pen-color-linewidth definitions as the GRSPL program. This method
is used because it is one way of coordinating the colors that GRAFIT
thinks are available to the colors the central plotting system will
actually use.

The appropriate GRSPL module is scheduled by GRAFIT. GRSPL
retrieves the two class numbers passed by GRAFIT, and prompts the
user for information concerning the output media (35mm film,
Polaroid film, paper, or transparency). GRSPL then calls ZRECI,
which in turn opens a spool file connected to session LU 6. As
well, GRSPL schedules and sends a lock request to GNUMB. This
program is simply a resource controller, and prevents spool control
synchronization difficulties when the user 1is attempting many
sequential accesses to the central plotting system.

Implementing a Centralized Plotting and Slide Generation
Facility for Hewlett-Packard Computers

9

4) GRSPL then schedules with wait the standard Graphicus HP7550A device
handler, G7550, passing the two class numbers to G7550 in the
schedule string. Since the GRSPL device configuration table has
been set up to specify LU 6 as the device LU, G7550 starts writing
HP-GL material (HP's low level graphics language) to session LU 6,
which is presently directed to a spool file.

5) Upon completion of the graph, G7550 terminates and GRAFIT
continues. GRSPL then calls ZRECT to close the spool file, and
sends an unlock request to GNUMB. GRSPL now terminates.

6) The spool file arrives at the PMC. When it is handled by
17510/17550, these programs will identify the spool as being a
verbatim file. Control information in record 1 is used to condition
the appropriate destination device; all data from record 2 on is
simply read and sent straight to the device.

Using verbatim mode, GRAFIT now works correctly with the central
plotting system, and is capable of producing some very impressive
slides. Depending on one's choice of palette, up to eight colors can be
used in the graph.

FUTURE PLANS

Although the central plotting system has performed very well since
installation, there is still some work to do on it. Despite the fact
the central plotting feature is only six months old, the HP7550A plotter
is already overworked. To rectify this situation, another HP7550A will
soon be added to the PMC.

As well, the central plotting system was first developed for our RTE-6
systems. These systems are being phased out, though, and so some of the
Telesat graphics packages, as well as GRAFIT/1000, are being transported
to RTE-A. At the time of the writing of this paper (June 1987) the
RTE-A spooling system is being adapted to handle the central plotting
function. Because of the similarities between RTE-6 and RTE-A, this
task has been fairly straightforward.

However, our ultimate goal is to start shifting more graphics utilities
and engineering processing on to our new Spectrum 840 machine. (The
Spectrum was purchased for the specific purpose of replacing our older
RTE-6 systems.) Since RTE and UNIX are completely different, it is
expected that adapting UNIX to support central plotting will be a
difficult task, but a task we are optimistic can be accomplished.

CONCLUSIONS

Our experience with central plotting has been positive. The
installation was successful, and central plotting is popular with the
HP1000 users. As expected, developing unique systems like this with

Implementing a Centralized Plotting and Slide Generation
Facility for Hewlett-Packard Computers

10

newly released equipment brought the wusual development headaches:
unforeseen HPIB bus conflicts, DGL bugs, ambiguous manuals, and
undocumented equipment "features" to name a few. Despite these problems
we feel that the time invested to develop the software to support
central plotting has been worthwhile in terms of the return.

Implementing a Centralized Plotting and Slide Generation
Facility for Hewlett-Packard Computers

11

Appendix A

Spooling additions and enhancements to RTE-6

Subroutines:

TSPLO Friendly 1library subroutine to open a spool file.
(Schedules #PROP to do the work.)

TSPLC Friendly 1library subroutine to close a spool file.
(Schedules #PROP to do the work.)

EVC Library subroutine to change attributes of spool files
destined for the Peripheral Management Computer (PMC).
EVC can specify multiple print copies, the PMC destination
LU, the laser printer environment, and other items.
(Schedules EV to do the work.)

PLBCI Print a banner title page.

SPFNM Return the name of a spool file given the LU.

SPLU Return the LU of a spool file given the file name.

Programs:

#PROP Program to provide a friendly spooling interface between
Telesat programs and SMP. #PROP also adds leading and
trailing banners to spool files when requested.

EV Receives requests from subroutine EVC.

SMP HP's SMP program, but modified to support the central
spooling system.

PROUT Replacement for HP's SPOUT program; controls the
transmission of spool files to the PMC.

FJOB Fake job module. JOB has been removed on most of
Telesat's RTE-6 systems; the purpose of this fake is to
keep GASP and SMP happy.

OPN Interactive program to open spool file to session LU 6.

TASK Interactive program to find the status of spool files
residing on the Peripheral Management Computer (PMC).

CFS Interactive program to close a spool file in any session.

Spooling additions to RTE-A

Subroutines:

TSPLO Friendly 1library subroutine to open a spool file.
(Schedules $PROP to do the work.)

TSPLC Friendly 1library subroutine to close a spool file.
(Schedules $PROP to do the work.)

EVC Library subroutine to change attributes of spool files
destined for the Peripheral Management Computer (PMC).
EVC can specify multiple print copies, the PMC destination
LU, the laser printer environment, and other items.
(Schedules EV to do the work.)

SPLNM Return the name of a spool file given the LU.

Implementing a Centralized Plotting and Slide Generation

Facility for Hewlett-Packard Computers

12

Spooling Additions to RTE-A (continued)

Programs:
$PROP

EV
OUTPT

OPN
TASK

KILSP

Program to provide a friendly spooling interface between
Telesat programs and SMP. $PROP also adds leading and
trailing banners to spool files when requested.

Receives requests from subroutine EVC.

Replacement for HP's OUTPT program; controls the
transmission of spool files to the PMC.

Interactive program to open spool file to LU 6.

Interactive program to find the status of spool files
residing on the Peripheral Management Computer (PMC).
Interactive program to kill any spool file.

Implementing a Centralized Plotting and Slide Generation

Facility for Hewlett-Packard Computers

13

Appendix B

DGL stubs Action at the PMC

ZASPK Redefine the aspect ratio of the virtual co-ordinate system.

ZBEGN Initialize the DGL system.

ZCOLR Set the color attribute for line primitives except polygon
interior fill.

2CS1zZ Set the character size attribute for hardware text.

ZDEND Disable the enabled graphics display device.

ZDINT Enable a graphics display device.

ZDLIM Define the logical display limits of the graphics device.

ZDPST Define the polygon style of an entry in the polygon style
table.

ZDRAW Draw a line from the starting position to the world coordinate
specified.

ZEND Terminate the DGL system.

ZLSTL Set the linestyle attribute.

ZMARK Display a marker symbol at the current position.

ZMCUR Make the picture current.

ZMOVE Set the starting position to the world coordinate position
specified.

ZNEWF Perform a new-frame-action on the graphics display.

ZOESC Perform a device-dependent escape function on the graphics
display device.

ZPGDD Display a polygon set in a device-dependent manner.

ZPGDI Display a polygon set in a device-independent manner.

ZPICL Set the color attribute for polygon interior fill.

ZPILS Set the linestyle attribute for polygon interior fill.

ZPOLY Draw a connected line sequence starting at the specified point.

ZPSTL Set the polygon style for polygon sets.

ZTEXT Output graphics text to the graphics device.

ZVIEW Set the boundaries of the viewport in the virtual coordinate
system,

ZWIND Define the boundaries of the window.

DGL

Look-alikes Action at the PMC

ZDEFC

ZDEFP

ZESCT

Define a color to be used by the HP7510A film recorder in terms
of the red-green-blue components and the pen width.

Define a palette of eight colors to be used by the HP7510A film
recorder in terms of the red-blue-green components and pen
widths, plus the background color.

Change the size of the buffers in the HP7550A plotter.

Implementing a Centralized Plotting and Slide Generation
Facility for Hewlett-Packard Computers

14

ZNAME
ZPALT

ZPAPR
ZPENS

Underlying

Routines

ZRECC
ZRECD
ZRECI
ZRECP
ZRECT

Store the user’'s name or identification tag in the spool
file for output return.

Select a color palette for the HP7510A film recorder from
one of the eight standard palettes.

Set the paper or film type and size.

Select the eight pen types, widths, and colors for the
HP7550A plotter.

Action

Store DGL stub calls in the spool file.

Return the device code from the spool file.

Create a spool file for output to the PMC.

Return the paper/film type and size from the spool file.
Flush the spool file buffer, write out record 1, and close
the spool file.

Implementing a Centralized Plotting and Slide Generation

Facility for Hewlett-Packard Computers

15

RICWASISE

wajsAg bujjoodg |psyus) ayj

0+8 1 24nbi4
winJ}oadg
Jajulid uapuoday (PeppD 8q 03)
oluesD wildy J93uldd 433301d J431301d
sjowey VOLGLdH VO89CdH VOSSLdAH VOSSZdH
‘-@. [
sojydoin
»®
buissesolg d LBCY
Jayndwo:
Bupiesu)buz ucmEWmu,uum Ats]
|oseydusd)
ur QNd
FEYITLY]
O =aes O 4
D)DQ
b |]
u 3}
! D
vV NdO 3 a
jueswdo|eae(
swpoey
¢V NdO 9 NdO € NdO ¥ NdO ¢ NdO ¢ NdO 1 NdO
juswdoleasq §280Q030Q ‘ seinN juawdojaaeq £9JWwDUAg abouoyg Bujssedodd

V-3 jlowsg sojydoug 9-31y b4 030Q Buuesujbul

woaysAg bujjoodg
ONd)

deyndwo) juswasboupp |pisyduag

Z @4nbi4

seoiAep Jndino o

!

Jo|pupy Jo|puDy JojpubH Je|pupy
J9upg 40pi020y wii4 J0R0id 4ojuld Jesr]
a8 VOISZdH VOSSLdH V089ZdH
£89¢CL 0LSLl OGS/l NI¥dL
Poss of [oods Penpeyos _o_mtawcﬁa
J01pupy
jo4juod pup Bupojuow |oodg 101d
sjeenbes |0.3u00 |o0dg
disL o
poes joods |pieues
joquoo
ol loods | ey [0lu0d |oods ASvL
loods] ol | NOOIdL
pasos oiy joods Pe iohtuon toods

RIOWAS/SR

NOJIdL 0} sppo puo
sjoods Bujwoou; seaeoey

XNOWd/OIONd

|

sjoods Bujwoou}

mol4 190 9ms ¢ @unbid 0 2RL

.50[nNpeYyos,, subew ,,'yos,,

r—-—_ - ------—-—-- " 71
SWd O} ol pues diS s n_OMn_*A|_.r_om O1dSL Al_m__oo
weyshs 1 uonoupsep |
Bujoods st -
&__28 - ong eBuoge /3= Tges -~ 9N < gios

UOISSIWISUDJ} [
70j onenb _ ANS =55~ n_OMn_%A|_.com O.Emhl|_m=oo

| pi029s O} UDIIM i
UO[3DULIOJU] [0J3UOCD

x&ﬁ sp peuedo e|y

pesop ejy

sumdw 304_

uadodwi4 ml_.ﬂ

980[0dW 4 s 107 55— ON3Z

\

pu3 190

OIMAWS o= O0FUZ <5 55 XXXXZ

USUM PJODOL 8||0o

{100 194

I
l
[
l
[
!
i
l
[
[
[
I
|

naoo 4 b—_Jdul

pouedo ej

uadpdw 4 mﬁﬂ
/ _

peso[o o)y joods dS <=5 dOdd# -_.c_om 01dSL *gjp5

|
Seusde o joods NS <o dO¥d# <rgag- O1dSL=gyp5— 103YZ <gp5- NOIEZ

!
| HOS 194,

|
!
|
|
I
I
_
!
!
I
!
!
!
!
|
f
|
!
!
!
!
|
|
I
I
[

RIOVAS/SIN

WoysAS Buillold [pJIusD oy} Ul QOO L/LIJVNO 40 osn
4 94nbi4

81VH4IN3O
GIVHIN3ID
YIVYINID
CIVH1IN3O
LIVYIN3O

weisks Buyoid [psued
ybnoayy o)y pues o} ey
J9supJy dn 9|0 Jesn

9|} Joods
0} 19~dH M

ol |00ds
980|o/uedg

0GG/O sempeys X1dSe0 sompeos 114vd9

j8enbed
92UN08eJ HO0jUN/»O07

gNNNO

Je|puby ndno o} 11JyNo wody bydg

Elements of Good Graphing Techniques

Geralyn Clucas
Dan Schober

Graphicus
160 Saratoga Ave. Suite 32
Santa Clara, CA 95051

Abstract

What constitutes a ”"good graph”? When a graph is designed, quantitative and quali-
tative data are encoded into a pictorial representation. Inspection of graphs involves the
visual/cognitive decoding of the graphically encoded data. A good graph exploits this vi-
sual/cognitive decoding process to communicate data quickly, thoroughly and effectively.
Knowledge of the graphical perception process facilitates the design of good graphs.

This paper will give general strategies for designing good graphs which are relevant for all
areas of science, technology and business. Suggestions regarding effective use of labeling,
symbols, legends, scaling, tick marks, and reference lines will be presented. Examples
will be given to show how areas, densities, distance, and graph layout affect perception
and interpretation of graphs. Comparisons of good and bad graphical techniques and a
discussion of how each might lead to different conclusions about the data will be presented.

Introduction

Graphs are employed to consolidate information, exhibit relationships, uncover hidden facts
and summarize conclusions. Most importantly, graphs are utilized to communicate ideas.
Without careful attention to graphic design, a graph may fail to communicate the pertinent
ideas, or worse, may lead to incorrect conclusions.

Considering the proliferation of graphics hardware and software, there has been little em-
phasis in business or scientific literature on strategies for graphic design. Furthermore,
most articles on the subject present practical guidelines which merely reflect personal taste.
While graphic design emphasizes an aesthetic component, perceptual considerations are
at least equally important. Furthermore, the characteristics and expectations of the audi-
ence deserve equal consideration. General strategies for designing graphs shall be presented
based on research findings in perceptual science and principles of graphics design. These
strategies include the role of audience expectations in graphical perception. From these
general strategies, specific guidelines for graphic elements are presented.

1005

Perception Studies

W. Cleveland [2] theorized that certain elementary graphical-perceptual tasks are used to
decode information from graphs, and that some of these tasks are performed more accurately
than others. Weber’s Law [1] for instance, suggests that judgments of position are more
accurate than length judgments. S. S. Stevens [6] performed numerous empirical studies of
basic perceptual tasks to formulate Stevens’ Power Law. Stevens’ Law suggests that length
judgments are less subject to bias than area and volume judgments.

Cleveland conducted several experiments which attempted to order the accuracy of the
graphic perceptual tasks for judgment of magnitude. The findings of his experimentation
resulted in the following ordering of these tasks by accuracy:

1. Position along a comimon scale

2. Position along identical, nonaligned scales

3. Length

4. Angle — slope

5. Area

6. Volume
Cleveland’s research also indicated that distance between graphical elements as well as
detectability of these elements are also key factors influencing graphical perception. Specif-
ically, greater distance between graphical elements decreases the ability to decode the values

of the elements. Obviously, graphical elements which are not easily detectable (i. e. due to
crowding) cannot be decoded easily, if at all.

The implications of these studies suggest the following guidelines for graphical design:

¢ Insure that graphical elements are detectable.
e Minimize distance between related graphical elements.
e Choose graphs which utilize judgments of length and position.

¢ Use additional visual cues when area judgments are necessary (e. g. pie charts).

Principles of Graphic Art Design

The growing body of literature on graphical design borrows licavily from graphic arts design
principles. While perceptual science stresses issues of detectability in graphical design,
graphic arts stresses aesthetic concerns. Not only must graphs be easily decoded, they
must he pleasing to the eye.

Graphic arts principles [3] which apply to graphical design are as follows:

o Strive for simplicity. Avoid distracting, unnecessary elements. Every element of a
graph must be justifiable.

Maintain unity. Each graphical component must contribute to a unified whole.

Emphasize only the intended elements. Emphasis must not destroy the unity of the
chart.

Promote balance of graphical elements in graph.

Practical Concerns

The theoretical principles of graph design must be considered within the context of practical
applications. Different guidelines apply in different situations. These situational factors may
be categorized by the intent of the graph, method of presentation of the graph, and the
expectations of the audience.

Statistical literature emphasizes choosing the best graphical method for the type of data
presented. Choice of graphical technique also depends on the intention of the graph. For
instance, pie charts are used to compare parts of a whole, bar charts are useful for compar-
isons, and curve charts frequently are used for time series graphing.

Business literature on the use of effective graphics propose different guidelines depending
on how the graphs are utilized. For instance, graphs presented in documents are often
subject to reproduction and/or reduction. With these constraints, one should choose dif-
ferent linestyles or fill patterns to distinguish data sets within a plot rather than color.
Furthermore, all elements of printed graphs must be legible after reduction. Graphs used
for publication are usually more formally constructed so as to conform to publication stan-
dards. Printed graphs may include more complexity than graphs used in presentations since
readers will have more time for examination. Conversely, graphs prepared for projection
at presentations must be simple enough to interpret at a glance. All graphs designed for a
given presentation should maintain a consistent design format. Good contrast is especially
essential if graphs are presented as slides. Color and informal graph layout may be used in
presentations.

Characteristics of the audience must also be taken into consideration when designing graph-
ics. The complexity level of each graph must take into account the knowledge level of the
audience. Communication is more effective when graphs utilize the perceptual /cognitive
habits of the target audience. For instance, Westerners typically read from top left to
bottom right. Sorting groups in bar charts takes advantage of the left to right scanning.
Horizontal bar charts are usually preferable to vertical bar charts since audiences often as-
sociate time comparisons with vertical bar charts. However, vertical bar charts effectively
represent data which is expected to vary "up and down”, such as temperature. Viewers
expect that multiple plots on one page sharing the same dependent and independent data

will have identical scales. Using different scales on one or both axes in this case is very
misleading. Color usage should exploit users’ expectations. Profit/loss charts should use
red to indicate "in the red”.

Humans perceive objects in space in terms of distance from self; close objects are in the
foreground while farther objects are hidden behind foreground objects. Graphs should
be constructed similarly to conform to the adage "no two objects occupy the same space”.
Allowing prominent graphical elements to hide rather than intersect less important graphical
elements provides the illusion of depth as well as emphasis of foreground elements.

The following practical concerns must be included in the graphic design strategy:

o Choose the correct graph for the situation.
o Consider the medium of presentation when designing graphs.
e Conform to the audience’s expectations.

o Insure that important graphical elements hide less important elements.

Design of Graphical Elements

The strategies previously discussed will now be applied to generate specific guidelines for
generating good graphs. These guidelines address the implementation of specific graphic
elements as well as their integration into the completed graph once the choice of graph type
(e. g. pie chart vs. bar chart, etc.) has been made.

Labeling

Few graphs successfully communicate solely with pictures. Text is used to focus attention
immediately on the topic of the data as well as to label the data. Due to the important role
played by text in graphs, labels should always be prominently featured.

Any text on a graph deserves prominence over other graphical elements. Graphical promi-
nence is achieved by placing the emphasized element in the foreground of the graph. There-
fore, text should always be blanked against other graphical elements. Blanking refers to the
assurance that prominent graphical elements are not intersected by other elements, thus pro-
moting the illusion that the promiunent elements are in the foreground of the graph hiding
the less important background elements. Figure 2 provides an example of text blanking.

Cleveland [2] emphasized the role of distance in graphical perception, specifically stating
that related data should be placed in close proximity. One implication of this principle
is that data clements should be labeled directly on the graph rather than on a legend.
Other graphics experts agree with this guideline [3], although not universally [5]. Figure 1
illustrates the conventional use of legends with curve charts. A more natural placement of
the labels in this plot is next to each curve, blanked against the background, as in Figure 2.
Pie chart slices could be labeled next to each slice. Since area is not an effective indicator of

value [6], pie charts should be labeled with the data labels and values. Figure 3 illustrates
the standard use of a legend with a pie chart, while Figure 4 illustrates more effective
labeling of the values and data types directly next to the pie slices in a pie chart.

Output High Current
vs. Supply Voltage
2.2
— - Tm0C _ |-
2.0 TA-ZS'C -~
—— Ty=70°C s
1.8 — Z
< s
E 1
X
2
1.4
1.2
10
12 13 14 15 16 17 18
Vss (VO“’S)
Figure 1: Curve Chart with Legend
Output High Current
vs. Supply Voltage
22
- -
20 -
s
e
- 18 7
=L
E s t —
Ta=25C ,-'.
l§ 14 !...' /
TA-7W
1.2
1.0
12 13 14 15 16 17 18
Vs (Volts)

Figure 2: Curve Chart with Blanked Text Labels

Copolymer Composition

E= Plasticizer
Low Densl
B Powpmpyilgw

High Densi
5 B otrens.

Figure 3: Pie Chart with Legend

Copolymer Composition
High Denaity

Piasticizer
18.5%

I’So\v Density
zg%pxropylene

Figure 4: Pie Chart with Values Labeled

Whenever labeling data directly produces a cluttered graph, legends are the better alter-
native. The legend should be placed in balance with other elements of the graph without
obscuring the data.

Certain text characteristics may be utilized to produce more effective graphs. The text
font should be a simple sans serif font. The sans serif style (characterized by absence of
stylistic details) is easier on the eye, and reproduces better than more ornate text styles.
Text should be presented in mixed upper and lower case. The contrast between mixed-case
text results in more readable text. Text should be placed so that it may be read without
turning the chart (or the head). This implies that all text (even the Y axis name) should be
upright and parallel to the horizontal axis. Placement of the Y axis name should also take
into consideration the audience; business graphics typically place the Y axis name upright
at the upper left corner of the graph, while scientific graphics place the label perpendicular
to the Y axis. The perpendicular placement of the Y axis label is also preferable to upright
placement when the label is long.

Labels should never be redundant. Extraneous labeling produces clutter and de-emphasizes
other important features of the graph. For instance, if the X axis data is specified in the
title, it need not be redefined on the axis.

Other guidelines are relevant for text-only graphs. Text should be presented flush-left rather
than centered or flush right. Flush left works best since the leftmost position is used as an
anchor, enabling the eye to track across each line and return to the same starting position.
Full justification is not as effective since variable word spacing is less readable than fixed
word spacing. Text items should consist of few short phrases or keywords per graph (no
more than 6 per page). One text font and no more than two faces (e. g. basic face and italic
or basic face and bold) should be used for all graphs in one paper or presentation.

Scaling

Choice of scales on the X and Y axes is critical for providing a clear, undistorted summary
of the data. For instance, data with very little fluctuation may appear quite variable by
choosing a very small scaling interval. Another example involves comparing several plots
with the same dependent and independent variables. All plots which are compared in this
manner should use identical X and Y scales. Figure 5 illustrates how using different scales
for this type of comparison might lead to the wrong conclusions. Figure 6 shows the correct
way of presenting comparisons of this nature.

Scales should be chosen which best represent the data ranges. Log scales for one or both
axes should be chosen when the data follows a logarithmic trend. The base of the log should
be naturally easy to interpret, such as 2 or 10. Similarly, the non-log scale intervals and
labels should be rounded to easily interpreted values, such as 0, 10, 20, rather than 0, 7, 14.

An oft-ignored scaling issue involves the representation of discontinuity in the axes and/or
data. Breaks in either axis should be graphically represented; otherwise, viewers of the
graph might erroneously use distance cues to discern difference in magnitude. A good
example of this error is illustrated in Figure 7; the distance on the X axis between —oo and
-7 is not a meaningful indication of the magnitude difference between those data values on
the graph. Figure 8 calls attention to this illusion by emphasizing the break in the X axis
and the data curves.

Mean Temperature

Mean Temperature

Spring Summer
80 as
5 80
70 75
65 70 L
L | 1 1 1 1
1965 1970 1975 1980 1985 1965 1970 1975 1980 1985
Figure 5: Misleading Use of Scales: Multiple Plots
Mean Temperature Mean Temperature
Spring Summer
85 85
80+ 80
75+ 75+
70 - 70+
1 | 1 H i 1
1965 1970 1975 1980 1985 1965 1970 1975 1980 1985

Figure 6: Correct Scaling for Multiple Plots

Analog Competition
of Hormone Binding

IAA association, cpm
~
g 8

8 & 8

log concentration

Figure 7: Misleading Use of Discontinuous X Axis

Analog Competition
of Hormone Binding

g 8

IAA assoclation, cpm
(-3
3

8 &

] i 1
- -7 -6 -5 -4
log concentration

Figure 8: Correct Indication of Break in X Axis

Another potential source of distortion involves missing data values. Generally, connected
curve charts with missing data values are presented as continuous curves in spite of the
discontinuity. The absence of data data values should be emphasized if the absence is im-
portant or if the absence somehow distorts the implications of the graph. For instance, if
the absent value would generally reflect an unrepresentative value on the graph, its absence
should be emphasized. Missing data values are typically emphasized by breaking the con-
tinuous curve at the discontinuous point (thereby creating 2 curves with the same linestyle)
as illustrated in Figure 9.

Sales
Millions of dollars
500
m -
300 b
200
100 |

JAN MAR MAY JuL SEP NOV

Figure 9: Representation of Missing Data Values

Tick Marks and Reference Lines

Tick marks facilitate interpolation of the exact data values represented in the graph. Inef-
fective use of tick marks may create clutter and confusion.

Good graphs have only as many tick marks as are necessary for interpretation of the data.
Publication quality graphs place tick marks either completely inside or outside the graph
frame rather than crossing the frame. Inside placement of ticks serves to focus attention
within the plot frame. However, bar charts or graphs with filled areas bordering either
axis should use outside placement of ticks so that the ticks do not obscure the data area.
Tick mark labels should naturally describe the data values (e. g. month labels rather than
numbers should be used to describe monthly data). Finally, when the graph size must be
reduced for publication, the graph designer must insure that the tick marks and labels are
legible after reduction.

10

Grid lines are used instead of tick marks when data values must be interpreted more exactly.
In this case, grid lines should never clutter the graph. Grid lines should be de-emphasized
with respect to the data, axes and labels. Therefore, grid lines should be hidden behind
other graphic elements in a less noticeable linestyle (e. g. thinner or dotted). Under no
circumstances should grid lines obscure the graph by appearing ”in front” of the data.
Grids are often used in conjunction with log scales since the unequal spacing between tick
intervals interferes with visual tracking across the graph.

Tick marks on both sides of the graph provide a good compromise between the use of grids
and use of tick marks. This scheme produces a less cluttered graph than a comparable plot
with grid lines, but does not provide the ease of interpolation provided by grids.

Use of Color

Color is primarily used to differentiate and emphasize elements in a graph. Color may
be used quite effectively in presentation graphics, but should be avoided when the graphs
must be reproduced in black in white for publication. Colors should be chosen carefully to
maximize their utility.

Colors may be used to distinguish between data types in curves, bar and pie charts. One
may combine the use of different linestyle and color for each data curve in a plot. Color
and fill styles on bar and pie charts, however, should be used interchangeably to minimize
distraction. One should limit the number of colors used in a graph to a maximum of five.

Color provides emphasis when used sparingly. The use of black and white graphs with one
color used for emphasis is simple and surprisingly effective. Text-only graphs should always
have a maximum of three colors, one background color, one primary text color, and one
text color used for emphasis. The same color should be used for emphasis for all graphs in
a report or presentation.

Color may be used with graph position to order data categories. The darkest color on
stacked bar charts should be reserved for the bar representing the most important category
in order to lend informal emphasis. Also, the most important category should be placed
closest to the axis so that the eye is drawn to the base of the plot by graph position and
color, and then proceeds outward from the base to the less important data elements.

Color choice should be guided by symbolism, utility, aesthetics, and avoidance of optical
illusions. Using blue as a background color in sales presentations takes advantage of the
symbolic association of blue with authority. Pure saturated colors are good for emphasis in
text and for use with data lines in curve graphs, but should be avoided when representing
data in bar and pie charts. Brightly colored areas focus undue attention to the colors at the
expense of the more important graph elements, and often invoke unpleasant after-images.
Graph designers should avoid placing complementary colors next to each other in a graph
(e. g. blue and yellow) to avoid the optical illusion of a wavering line at their border. Colors
should be chosen such that they blend well in the graph, yet provide enough contrast to be
distinguishable.

11

Fill Styles

Fill styles are used to distinguish or emphasize data areas on a graph. Fill styles should be

used instead of color for distinguishing areas on a graph slated for black and white repro-
duction. Since fill patterns are not as easily detected as color, the graph design process must
carefully take into account the presentation medium. Reduction of graphs for documents
may render fill patterns less detectable. Similarly, projection of graphs might affect the
ability to distinguish between similar fill patterns in close proximity.

When different fill styles are placed in close proximity, the eye is usually drawn to the most
dense pattern. This optical tendency may be exploited to emphasize the more important
elements of the graph. For instance, stacked bar charts should be ordered by importance
from the axis outward and should also vary in fill style from dense to light. Matching dense
patterns with large pie slices, however, throws a pie chart out of balance. Instead, large pie
slices should be matched with large, less dense fill patterns, while smaller slices use smaller,
more dense fill styles.

The fill patterns nsed in a graph should be simple and few. Attention should be given to the
ordering of fill styles to promote differentiability between classes and avoid optical illusions.
For instance, placing fill styles with lines which go in opposite directions next to each other
produces the illusion of motion (see Figure 10). Fill patterns should progress from solid,
to shaded, to hatched, to half-hatched. If more fill styles are needed, the patterns may be
extended by using different linestyles. Since the progression is from dark to light, the fill
patterns should be varied in order to maximize contrast. Figure 11 illustrates the effective
use of fill styles in a stacked bar chart.

Sales
Millions of dollars

XX 1986
£ZZ7 1985

400 |
300 |
200 -
100 -
EP ocT

JuL AUG S

\
\
\
\
\
\
\

DEC

Figure 10: Fill Pattern Creating Optical [llusion

Total Fees by Areq,
As Percent of Total

AV V)] gx=

80% - 4 /] 4 oIm ws AnGELES

70% - T

60% |- 7//// //A ////// ///; -

50% |- -

40X I “

30% [~ -

20% r 1
10X 1

ox

Fiscal Quarters, 1982

I'igure 11: Effective Use of [ill Patterns

Graph Layout

The overriding principle guiding the design of good graphs is simplicity. Each graphic
element must be justifiable and necessary to convey the desired message. This principle
also applies to the presentation of several classes or types of data on one graph. The graph
designer should avoid using more than five curves per curve chart or six slices per pie chart
whenever possible.

Emphasis is another important component of graph layout. Internal emphasis of important
graphical elements may be achieved using blanking. Text blanking is desirable so that the
explanatory labels are not obscured. Symbol blanking is another desirable feature which
promotes detectability of the data elements. Figure 12 shows a typical curve chart, and
Figure 13 illustrates how the same data presentation is improved by creative use of labeling
and symbol blanking.

Graph placement may be used to emphasize important graphical elements. The most im-
portant class in a stacked bar chart should be placed nearest to the X axis for vertical bar
charts, or nearest to the Y axis for horizontal bar charts, with the other classes following in
descending order of importance. Combining this placement scheme with the use of fill styles
or color increasing from dark to light provides a most effective presentation. Emphasis of
one slice of a pie chart may be achieved quite dramatically by "taking a slice” of the pie.
Slice exploding achieves this effect.

13

Reaction Time, sec

Environmental Conditions and Reaction Time

1 1 1 L 1 1 1 i
10 20 30 40 50 60 70 80
Hlumination, candelas

Figure 12: Typical Curve Chart

Reaction TIme, sec

Environmental Conditlons and Reaction Time

13F
12
M"r
10

& 0 N O
T

lllumination, candelas

Figure 13: Curve Chart Using Symbol Blanking

14

Good graphs are well-balanced and convey a sense of unity. Imbalance may be corrected
by clever use of text; there is no rule, for instance, that titles must be centered above the
graph. Using a border around the graph lends a sense of unity to the graph, while using
the axes frame further focuses attention on the data.

Continuity of design should be used for all graphs in one document or presentation. The
same colors, fill styles, linestyles, and symbols should be used consistently for all graphs, as
well as text font, placement on page (vertical or horizontal), and background color.

Summary

Good graphs are produced only through careful and critical planning, with special consid-
eration given to the intention of the graph, characteristics of the audience and the medium
of presentation. Use of these guidelines combined with concern with situational constraints
and careful choice of graph type will facilitate design and implementation of good graphs.

All figures in this paper were generated using the Grafit software package on an HP9000/320
computer running HP-UX. Grafit is a commercially available interactive graphing package
developed by Graphicus. Grafit generates publication-quality graphs on HP computers
running HP-UX and RTE-A for business, technical and scientific applications. This package
provides all the necessary graphical elements and options previously outlined for producing
quality graphics.

References

[1] Baird, J. C. and Noma, E. 1978. Psychophysical Analysis of Visual Space. New York:
John Wiley & Sons.

[2] Cleveland, W. S. 1985. The Elements of Graphing Date. Monterey, CA: Wadsworth.

[3] Matkowski, B. S. 1983. Steps to Effective Business Graphics. San Diego, CA: Hewlett-
Packard.

[4] Mathews, E. 1986. ”Graphics That Count”, Proceedings of the National Computer
Graphics Association, 1:83-95. Fairfax, VA: National Computer Graphics Association.

[5] Rawlins, M. G. 1986. ”Getting More Out of Your Graphics Software and Hardware In-
vestment”, Proceedings of the National Computer Graphics Association, 1:34-68. Fairfax,
VA: National Computer Graphics Association.

[6] Stevens, S. S. (1975). Psychophysics. New York: John Wiley & Sons.

15

Graphical Techniques in Data Analysis
Bill Carson

Graphicus
160 Saratoga Ave. Suite 32
Santa Clara, CA 95051

Introduction

Graphically portraying data provides a clearer and more penetrative understanding of
data. It tends to show data sets as a whole, allowing us to quickly summarize the general
behavior as well as studying detail. Up until now, books on graphical techniques were
either too incomplete, stopping at a histogram or pie chart, or were too technical and not
readily available in computer programs. Furthermore, many graphical techniques were just
appearing in statistical journals and thus were not readily accessible to the statistically
unsophisticated data analyst.

With the recent rapid proliferation of graphics hardware accompanied by a steady devel-
opment of software this is no longer the case. Therefore, this paper will give an overview
of various old, but not widely known, and new methods of graphically portraying data.
The graphical techniques presented will be relevant in all areas of science and technology.
Techniques for graphically exploring labeled data, distributions, two-way tables, and rela-
tionships between variables will be presented. Advanced techniques in regression analysis,
analysis of variance, time series, and multivariate analysis will also be touched on.

Graphically Exploring Data

There is no statistical tool that is as powerful as a well-chosen graph when we want to
understand the basic characteristics of a set of data. In short, we need to understand the
distribution of the set of data values such as where they lie along the measurement axis
and what kind of patterns they form., This often means asking additional questions. Are
any of the observations outliers, that is, values that seem to lie too far from the majority?
Are there repeated values? What is the density or relative concentration of observations
in various intervals along the measurément scale? Is the data symmetrically distributed?
What kind of relationships exist between the observations?

One way to represent a set of data is to present the data in a table. Many questions can be
answered by carefully studying a table, especially if the data has been ordered. In a sense,
a table contains all the answers, because apart from possible rounding, it presents all of the
data.

However, many distributional questions are difficult to answer just from peering at a table.
Plots of the data can be far more revealing, even though it may be harder to read exact

1006

data values from a plot. In the following sections we will show some graphical techniques
that can be used to explore shapes and patterns of a set of data.

Labeled Data

The analyst often needs to display measurements of a quantitative variable in which each
variable has a label associated with it. The most common way to do this has been with a
pie or bar chart. These techniques are widely used and understood by nontechnical people,
however, each has some drawbacks.

Peugot 604 S|
Voivo 260
BMwW 3201
Audl 5000

Datsun 810
Volks Dasher
Volk Scirocco

Audi Fox
Datsun 200-SX
Toyota Celica

Honda Accord

Toyota Corona

Volk Rabbit(d)

Foreign Car Prices (1979)

Datsun 510
Volk Rabbit
Datsun 210
Honda Civie
Flat Strada
Mazda Gle
Renault Le Car
Subaru

Toyota Corofic

| | |
8000 9000

Price ($)

| 1
12000 15000

Figure 1: Dot Chart

The major drawback with a pie chart is that it can be very difficult to make angle judge-
ments. This leads to difficulty in interpreting the relative sizes of each slice in the pie,
especially if most of the slices are about the same size. The major drawback with a bar

chart is that it requires a meaningful baseline if the length and area of the bar is to be
meaningful. Since a meaningful baseline value is usually zero the bars waste space and
degrade the resolution of the values if the values are large.

A graphical technique that is used without these drawbacks is called a dot chart. Each data
value is represented on the chart by a dot and is plotted in order from smallest to largest.
Each dot is connected with its label by a dotted line. This method allows the analyst to
make judgments along a common scale rather than angle judgements. Data that can be
portrayed in a pie chart can always be portrayed in a dot chart.

When there is a zero on the scale of a dot chart then the dotted lines can end at the data
dots. The dotted lines should go across the graph when the baseline value has no particular
meaning. The reason for this is that when the dotted lines stop at the data dots there are
two aspects to the plot — the lengths of the dotted lines and the relative positions of the
data dots along the common scale. This gives the visual appearence of a bar chart. However
if the baseline has no meaning then the lengths have no meaning. By making the dotted
lines go across the graph the portions between the left vertical scale line and the data dots
are visually de-emphasized.

Figure 1 shows a dot chart of the prices of 22 foreign cars in 1979. The chart shows that
17 of the cars have prices ranging from just over $3,000 to just over $6,000. The last 5 cars
then increase rapidly to over $12,000.

Single Distribution

When the analyst needs to get a visual impression of the distribution then a histogram is
commonly used. The problem with a histogram is that the visual impression depends on
the fairly arbitrary choice of the number and placement of the intervals. When a histogram
is made, the interval width of the histogram is generally greater than the data inaccuracy
interval, so accuracy is lost. As we decrease the interval width of the histogram, the accuracy
increases but the appearence becomes more ragged.

The stem-and-leaf diagram is a compact way of recording the data. Instead of having a
separate table listing the data and a histogram to show the distribution, the stem-and-leaf
diagram combines both sources of information into one plot. This can be important for
reports and published papers where data is presented and analyzed.

The diagram is used in much the same way as the histogram. It gives the analyst information
about the symmetry and skewness of a distribution. Figure 2 shows a stem-and-leaf diagram
for the prices of 74 car models sold in 1979. Each value on the left of the colen represents the
price in thousands. Each value on the right represents hundreds. The diagram shows that
most of the car prices range from $3,300 to $6,800. The prices that occur most frequently
are $4,500 (5 times), $4,200 (4 times), and $4,700 (4 times).

Car Prices (1979)

Valid Cases = 74

Lower Quartile = 4245.5
Median = 5091.5
Upper Quartile = 6322.5

§
a

Price ($1000)

: 33778889
: 000111222234445555566777789
: 01 %§§g477888999

-nN

QEUN=CODNOONLW
at\l—b—‘N
NN

=2 U=NNNNNNON®

b h eoh e b ek
0o o

0

o

Figure 2: Stem-and-Leaf Diagram

Comparing Distributions

While the techniques described above are usually good for looking at one distribution of
data they are relatively poor when trying to compare more than one but similar distribu-
tions. Two simple but not as commonly used techniques are the percentile comparison plot
and the boz plot.

When distributions are compared, the goal is usually to rank the categories according to
how much each has of the variable being measured. The most effective way to investigate
which of the two distributions has more is to compare the corresponding percentiles. The
percentile comparison plot graphs the percentiles of one distribution against the correspond-
ing percentiles of the other distribution. The advantage of a plot like this is that not all the
data has to be plotted to characterize the differences between the two distributions. Data
distributions can be complicated, and when they are, the percentile comparison plot can
reveal just how complicated it is.

Figure 3 shows a percentile comparison plot where the payoffs from the 1976 New Jersey
lottery are plotted against the payoffs from the 1981 New Jersey lottery. Typically, the
percentiles that are plotted are 1,2,...,5; 10,20,...90; and 95,96,...,99. If the distributions

4

are similar then the points should lie near the 45 degree reference line. From the plot, the
analyst can conclude that the two distributions are similar when the payoff is small but they
are very different when the payoff is large. The 1976 lottery seems to have higher payoffs
more frequently.

New Jersey Lottery Comparison

8

od

Lottery Payoff (1981)
N L3
8 3
T]
o
o

1 1 1
4] 200 400 600 800
Lottery Payoff (1976)

Figure 3: Percentile Comparison Plot

While the percentile comparison plot is a good way of looking at all the data there are stages
in the analysis procedure where it is useful to summarize the distribution. The bozplot gives
a quick impression of the locality, spread, and skewness of a distribution. In the boxplot the
upper and lower quartiles of the data are portrayed by the top and bottom of the rectangle
and the median is portrayed by a horizontal line segment within the rectangle. The lines
that extend from the ends of the box show how stretched the tails of the distribution are.
The individual values outside the lines give the analyst an opportunity to consider the
question of outliers.

Figure 4 shows a boxplot for the payoffs of the New Jersey lottery in 1976, 1977, and 1981.
From the plot the analyst can see that the median payoff for each lotteries is about the
same but the spread of the payoffs are different. There were more high payoffs during the
1976 lottery than either the 1977 or 1981 lottery.

Boxplots have many strengths. For one, it can show the symmetry of a distribution. If the
distribution is symmetric then the median cuts the box in half, the upper and lower lines
are about the same length, and the outside values at the top and bottom, if any are about
equal in number and symmetrically placed. Another strength is to be able to compare
distributions by comparing corresponding percentiles.

New Jersey Lottery

Payoff ($)
§ 8 588¢8 88
¥
E »

%!

1 1 1
1976 1977 1981
Payoff Years

8

(=]
]

Figure 4: Boxplot with Notches

In applications where comparing locations is important box plots can be drawn with notches
in their sides to help guide our assessment of relative location. A suitable informal inter-
pretation of the plot with notches is that if the notches for any two boxes do not overlap
then the analyst can regard it as stong evidence a difference in their medians exists at the
.05 level. The notches provide an approximate 95% test of the null hypothesis that the true
medians are equal. In Figure 4, each of the notches overlaps with each other leading the
analyst to conclude that there is no difference in there locations.

The advantage of this plot is that the it is a useful guide for comparing median levels even
when the requirements for the hypothesis test are not strictly met — which is very frequently
the case. However, the analyst should be careful when comparing more than two sets of
data because the notches are not adjusted to take into account that several hypothesis tests
are being carried out simultaneously. This is the so-called "multiple comparison” problem.

v

Technical adjustments are possible, but generally unnecessary, as long as the notched box
plots are used informally.

Two-way Tables

Often the relationship between two categorical variables is represented in a two-way fre-
quency table. Each cell of the table contains the number of observations, and row, column,
and total percentages. The problem with looking for a relationship from a table like this is
that it is difficult to pick out densities from the numbers in the table.

Car Repair Record

Excellent

+
x*

Average [+ +) * *

Repair Record (1978)

Fair |- * b

Poor - ° b

1 i 1 ['}
Poor Fair Average Good Excellent
Repair Record (1977)

Figure 5: Scatterplot with Sunflowers

Typically, the most powerful way to look at a relationship between two quantitative variables
is with a scatter plot. The scatter plot can also be used to look at the relationship between
two categorical variables. The scatter plot for two categorical variables has one inadequacy:
there is a large number of overplotting of points because of the discrete data. Each plotted
point on the scatter plot could represent more than one point in the table which would
mislead the analyst about the density of the data in different regions.

One solution to the overlap problem is to take the number of points in each cell and portray
the counts by symbols called sunflowers. A single dot is a count of 1, a dot with two line

segments is a count of 2, a dot with three line segments is a count of 3, and so forth. Figure
5 shows a scatterplot with the repair record rating of 74 car models in 1977 against the
repair record rating of the same 74 car models in 1978. Since the ratings are on a scale of
1 to 5 there were only a few places to plot 74 points. The plot shows the highest density of
points along the 45 degree line. The analyst concludes that the ratings usually stayed the
same from 1977 to 1978. The most frequent combination was ’average, average’ (19 times)
and since there are more points above the line than below then the ratings that did change
from 1977 to 1978 were for the better.

Sunflowers, since they provide the analyst with a portrayal of counts of points in different
regions of the plot, are a type of two-dimensional histograin. Thus their use extends beyond
portraying overlap to any situation in which seeing count information is helpful.

Relationships Between Two Variables

Scatter plots are often used to judge whether there is a dependence between two quantitative

variables. This might not always be an easy judgement to make from the scatter plot if a
large number of points are plotted. Often a line is drawn through the points to represent
the dependence between the variables. The classical method for fitting a line to the data
is to use polynomials, usually straight lines or quadratics. The problem with polynomials,
even those with degrees higher than 2, is that they are neither flexible nor local. What
happens on the extreme right of the scatter plot can very much affect the fitted values at
the extreme left. Also, polynomials have difficulty following patterns on scatter plots with
abrupt changes in the curvature. A better "smoothing” procedure needs to be used.

By smoothing we mean computing and plotting another set of points. A smoothing tech-
nique, called lowess (locally-weighted scatterplot smoother), gives the analyst an accurate
impression of whether the data is linear or non-linear. Lowess has a robustness feature in
which, after a first smoothing is done, outliers are identified and then downweighted in a
second smoothing. Figure 6 shows a scatterplot with the miles-per-gallon of 74 car models
in 1979 against the price of the cars. The fitted line shows that the higher priced cars don’t
get very good mileage but the lower priced cars range across all the mileage figures. This
shows that the relationship between these two variables is definitely not linear.

The amount of smoothness is controlled by a parameter that ranges from 0 to 1. The
closer this parameter is set to 1 the straighter the line through the points. The closer
this parameter is to 0 the more the curve goes through the individual points. In most
applications this parameter is usually set between .5 and .8.

Mileage by Car Prices (1979)

16000 =]

14000 -

12000 -

Price ($)

10 15 20 25 30 35 40 45
Mileage (mpg)

Figure 6: Scatterplot with Locally Weighted Smoothing

Another technique that gives the analyst summary information from a scatter plot is to
superimpose a rangefinder boz plot on the graph. This plot is particularly helpful in the
exploratory stages of an analysis when the analyst is on the lookout for unusual values and
combinations of values.

The rangefinder box plot contains precisely the same information as the box plots described
in the previous section. The two central line segments intersect at the cross-median values.
Figure 7 shows that the median car model is about $5,000 and gets 20 miles to the gallon.
The vertical line segments cover the interquartile range of the price and the horizontal line
segments cover the interquartile range of the mileage. The length of these lines correspond
to the size of the box in a typical box plot. The plot shows that two-thirds of the cars range
between $4,200 to $6,500 and 18 to 25 miles per gallon. The lower and upper lines (both
vertical and horizontal) correspond to where the whiskers of a typical box plot end. Here
the plot shows that almost all the cars are within 12 to 35 miles per gallon range but that
many of the cars fall outside the $3,500 to $9,000 price range.

Mileage by Car Prices (1979)
16000 |- o
o
14000 ° 8
12000 |- ° o [}
~ 10000 - °
» o o
N —_—
® 8000 o =]
o % o4
a 6000 | O0g° °
[} eog'g*_e_*o l (o]
8o 8 o
4000 ° o
8 8 o °) o
2000 |
o -
1 1] 1 1 1 [
10 15 20 25 30 35 40 45
Mileage (mpg)

Figure 7: Scatterplot with a Boxplot

Relationship Between Three Variables

When the third variable on the scatterplot takes on only discrete values then the plotted
points can be replaced by multiple letters or symbols. One advantage of the letters is that
it is easy to remember the groups that they represent. The disadvantage is that they do not
provide high visual discrimination with each other. Using symbols such as circles, squares,
and triangles all filled and unfilled provide a better visual picture.

When the third variable on the scatterplot is on a continuous scale then the plotted points
can be replaced by the size of a plotted symbol (with some conveniently chosen largest and
smallest size). The diameter of the circle is drawn so it is proportional to its size. Figure
8 shows the weight of 74 car models against length. Miles-per-gallon is encoded in the size
of the circle, with the large circle denoting high mileage. Generally speaking, the analyst
can conclude that the longer and heavier cars get poor milage while the shorter and lighter
cars get good mileage.

Usually, an unfilled circle is the best symbol to use because they can tolerate substantial
overlap and still maintain their individuality.

10

American Car Size by Mileage

240 |
230 | ¢

220 | go® °

210

Length (in)
2 8
O
(@)
0
O
O

150
140

i 1 [L 1 1 ;| 1
1500 2000 2500 3000 3500 4000 4500 5000
Weight (Ibs)

Figure 8: Scatterplot with a Third Variable

Relationship Between Four or More Variables

Science and technology would be far simpler if data always stayed in two or three dimensions

since there are a wealth of plotting techniques for portraying data. Unfortunately, data
can live in four, five or any number of dimensions. How is the analyst to graph them
to understand the complex relationships? How does the analyst peer into four or five-
dimensional space and see the configuration of points?

One simple method to look at multi-dimensional data is creating a scatter plot matriz. The
idea behind the scatter plot matrix is to arrange the graphs so that every two variables in
a matrix has shared scales. This means that the analyst can visually scan a row or column
and see one variable graphed against all other variables. This makes it easy to track an
interesting point or group of points from plot to plot. Figure 9 shows four variables plotted
against each other. The tick labels correspond to the minimum and maximum values for
that plot. The point of interest, the small car with the high mileage, is denoted with a box
around it. The corresponding point is then highlighted in the other plots. It is found that
this car is short, light, gets good milage, and is inexpensive.

11

»
=

Mileage (mpg)

-
N

£

Weight (ibs)

3
]

Length (In)
g

>
[

US & Foreign Car Characteristics

Price ($)

[
Mileage (mpg)

Weight (ibs)

Figure 9: Pairwise Scatterplot

12

When it is important to identify relationships between observations instead of between
variables then the variables can be portrayed simultaneously in the plotting symbol. One
such method is called a profile plot. A profile symbol is created for each observation in
the data set. The profile consists of all the variables plotted in the "favorable” direction
across a line that represents the average. For example, "high” mileage would be considered
favorable whereas "high” price would not. The price variable would need to be multiplied
by -1 before being plotted.

The purpose of this technique is two-fold. First, the analyst should be interested in profiles
that have most of their points above (below) the center line. Figure 10 shows profiles for
20 foreign cars from 1979. The profile for the Volkswagon Scirocco is interesting because
all the points but one (Trunk Space) is below average.

Secondly, the analyst can look for pairs or groups of symbols with similar shapes. Alter-
natively, the analyst may want to identify observations that are very different from the
rest. From Figure 10 it can be seen that the Volkswagen Scirocco and Dasher have similar

Foreign Car Profiles (1979)

Var Nome
V{[a)

Dotsun 510 Mazda Gl Toyota Corona

Audi Fox Datsun 810 Renault Le Car Vﬁk Rabbit

Fial Stroda Subaru Volk Robbit(d)

Dotsun 200—SX Honde Accord Toyota Celico Volk ﬁlmco

Datsun 210 Honda Civic Toyota Corolla Voks Dosher

]
-t

Audi

§

Bi‘m Circle
splacement
Gear Ratio

N=O DR IBUL LN
=
2
3
*

prourey

=L i biE

£

Figure 10: Profile Plot

Graphical Techniques in Regression

It is good practice to look closely at the raw data to get as much insight as possible before
carrying out a multiple regression analysis. The objective is to discover any interesting
relationships, unusual behavior, and exceptional points that can help guide the choice of
models and fitting procedures. It is especially important for the analyst to become familiar
with the raw data because the analyst is likely to fit the regression with a computer program
that is blind to many anomalies in the data.

There are many questions to answer: Are there any outliers? Do variances appear constant?
Do functional relationships look linear or curved? Would transformations help? Are there
repeated values in some of the variables? Does the data cluster in interesting ways? Answers
to some of these questions can be solved by using the scatter plot methods talked about in

13

the previous sections to see possible relationships between variables. Two other methods
will be described here. The first will use residual plots to study how well the regression
model fits a given set of data. The second, for situations in which a number of potential
explanatory variables are available, is to guide the choice of a small and effective subset of
variables for inclusion in the model.

Residuals

Residual analysis is of vital importance in any regression analysis. Residual plots are used
for identifying any undetected tendencies in the data, as well as outliers and fluctuations in
the variance of the dependent variable. In all residual plots the pattern that indicates an
adequate model and well-behaved data is a horizontal band of points with constant vertical
scatter.

Because the interpretation of the residual plot is very subjective a smooth curve, such as
the one described in a previous section, could be drawn through the points that might show
some systematic pattern. If the smooth curve is nearly horizontal and close to the baseline
then random scatter of the residuals can be assumed. Figure 11 shows the residuals from
a regression analysis that estimated the daily amount of evaporation from the soil. The
residuals where computed from the 4 variables that composed the fitted regression line,

The plot of the residuals shows that regression fit works well for low values of soil evap-
oration but shows a curving trend at the higher values. This curvature suggests that a
transformation of the explanatory variable(s) may be needed or that some of the variables
could be dropped from the model.

Variable Selection

A meaningful regression analysis requires a high correlation of each of the explanatory
variables 21, z, ..., z, with the dependent variable y, while at the same time having a low
correlation with each of the other explanatory variables. Explanatory variables that are
very linearly dependent are termed collinear. This leads to unstable regression coefficients
being computed and erroneous inferences about the model being made.

A graphical method called a ridge trace can be used to eliminate the variables that might
be causing the multicollinearity. Estimators of the standardized regression coefficients are
computed for different ridge parameters in the interval (0,1). Each estimator is then plotted
against various values of the ridge parameter.

14

Daily Evaporation with Residuals

Residuals
(=)
T

0 10 20 30 40 50 60
Daily Evaporation

Figure 11: Residual Plot

The variable selection is done by examining the ridge traces on the graph. The rules for
elimination are :

1. Eliminate variables whose coefficients are small (usually less than .2). Since the
method is applied to standardized data, the magnitude of the various coeffients are
directly comparable.

2. Eliminate variables with unstable coefficents that do not hold their predicting power,
that is unstable coefficents that tend to zero.

3. Eliminate variables with unstable coefficents where the coefficent changes sign.

The variables remaining from the original set are used to form the regression equation.

Figure 12 shows 10 varibles that where used to form the regression equation. Using the rules
stated above, wind, mazh, minat, and mazat would be eliminated under rule 1, minh under
rule 2, and minst under rule 3. The four remaining variables, maxst, avat, avh, and avst
would compose the regression. This can be verified by doing a backward stepwise regression
procedure.

15

Variable Selection for Daily Evaporation

Standardized Beta Estimate
bln <'» L rlq o N » @ @ =

i
T

6 a1 2 3 4 5 6 7 8 9 1
Ridge Parameter

Figure 12: Ridge Trace

It should be noted that the variable selection procedure is a mixture of art and science, and
should be performed with care and caution. It must be emphasized that variable selection
should not be performed mechanically as an end in itself, but rather as an exploration
into the structure of the data. The explorer should be guided by a combination of theory,
intuition, and common sense.

Graphical Techniques in Analysis of Variance

The aim of analysis of variance is to determine whether the means of several populations
differ from one another. The different populations are usually associated with different
treatments which are carried out independently of one another on some experimental units.
Two commonly asked questions are: Where is the difference between the treatments coming
from? Is there a significant interaction present? These two questions can be answered
graphically with the pairwise comparison plot and the interaction plot.

Pairwise Comparisons

It is often desirable to isolate the sources responsible for a significant treatment effect.
There are a number of tests that are avaliable in computer programs to help the analyst

16

determine the sources. These tests include Newman-Kuels test, Duncan’s test, Tukey’s
test, and Scheffe’s test. Each of these tests has their advantages and disadvantages and the
choice of which test to use will be left to the analyst.

A graphical method for determining whether a significant difference is present between
treatments is to plot the ordered means on a plot. Next, compute the critical range between
treatments from one of the tests listed above and draw a perpendicular line through each
point such that the center of each line goes through the mean. Last, draw a horizontal line
to the right border of the plot from the top of each interval. Any pair of treatments for
which the intervals are not joined by a common horizontal line, differ significantly.

For example, the analyst has completed an experiment of how the use of 4 different drugs
controls the increase in systolic blood pressure. The ANOVA table shows a significant
difference between the drugs, but where? Figure 13 shows that Drug 3 and 4 is significantly
different from Drug 1 and 2 because the horizontal lines from 3 and 4 don’t cross the vertical
lines of 1 and 2.

Pairwise Comparison between Drugs

8

8

N
o
]

10+

Mean Increase in Syst. Blood Pres.

1 1 [] 1
Drug 3 Drug 4 Drug 2 Drug 1
Drug Type

Figure 13: Pairwise Comparison Plot

17

Interactions

When the analyst finds that an interaction is present (by looking at the ANOVA table)
it is usually a good idea to plot the results of the experiment. The interaction plot has
the dependent variable along the y-axis, one independent variable along the x-axis, and a
curve drawn for each level of the second independent variable. The shape or form of the
interaction will become apparent. An interaction will be revealed by nonparallel or crossing
curves for the variable plotted within the body of the plot.

Figure 14 shows a significant interaction effect because the difference between Seed I and
Seed 2 at the medium level of fertilizer is not the same as at the other two levels. The two
lines would be parallel if the interaction wasn’t significant.

Fertilizer by Seed Type Interaction
20
—O0— Seed 1
—O— Seed 2
o BF
>
x
-
G 16 |
R
2
> s}
c
o
]
=
120
10k
L [1
Low Medium High
Level of Fertilizer

Figure 14: Interaction Plot

Graphical Techniques in Time Series

A time series is a special case of the broader dependent-independent variable category,
where in this case, time is the independent variable. One important property of most time
series is that for each time point of the data there is only a single value of the dependent
variable; there are no repeat measurements. Futhermore, most time series are measured at

18

equally spaced or nearly equally-spaced points in time.

There are a number of ways to graph a time series. A line graph is appropriate when the
time series is smooth or when the interest is in the shape of the series instead of individual
values. A vertical line graph is appropriate when it is important to see individual values,
when the analyst needs to see short-term fluctuations, and when the time series has a large
number of values.

Seasonal Decomposition

A seasonal decomposition plot uses two line graphs and two vertical line graphs to show the
breakdown of the time series into components. The breakdown consists of trend, seasonal,

US Housing Starts (1966 — 1974)

" NI

1968 1067 1988 1068 |m' 1 1w 1973 1974 1w
ar

Figure 15: Seasonal Decomposition Plot

and irregular components. The sum of these three components is equal to the original series.

19

The decomposition is robust to outliers, helps to choose a transformation for the data that
assists in the decomposition, and can be adjusted for calendar effects.

The line graph is used to plot the full time series and trend components since it is only
important to see the shape. Figure 15 shows the number of housing starts from 1966 to
1974. The trend is reasonably constant until a sharp drop starts in 1973. The vertical line
graph is used to plot the seasonal and irregular components since it is important to assess
behavior over short periods of time. Figure 15 shows that the seasonal fluctuations are
reasonably constant from year to year while the irregular component (or noise) is a random
scatter, as it should be.

Seasonal Subseries

A seasonal subseries plot is used to study the behavior of a seasonal time series or the
seasonal component from the seasonal decomposition plot. This plot is most often used to
look at the behavior of a time series for each month graphed for successive years. However,
it could be used for any two spans of time (day and week, week and month, etc.).

US Housing Starts (1966 — 1974)

1.5 p

1k lm

"
“HIAHHHH
| by

Seasonal Fluctuation
o
T

-15F
1 — I'I'L‘T“

1 1] 1 1 1 1 1 (] 1 1 1
Jon Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Figure 16: Seasonal Subseries Plot

For each monthy series, the mean of the values is portrayed by a horizontal line. Figure

20

16 shows that not many housing starts are done in the January, Febuary, and December
months as compared to other months of the year. The yearly values of each of the monthly
subseries are portrayed by the ends of the vertical lines. From Figure 16 the months of
March, May, July, and August show an increase in housing starts from 1966 to 1974. The
months January, April, and September thru December shows a decrease in housing starts.
Therefore, this graph allows an assessment of both the overall monthly pattern as well as
the overall yearly pattern of the data.

Summary

The intent of this paper was to show graphical techniques for the most commonly occuring
types of data in all areas of science and technology. For that reason, each of the techniques
presented could not be explored in detail and many specialized methods had to be omitted.
The reader should refer to the references listed for a more detailed discussion.

The graphs in this paper were generated using the Statit and Grafit software packages
from Graphicus on an HP9000/320 computer running HP-UX. These packages are currently
available on the Hewlett Packard technical computers running HP-UX and RTE-A. Statit,a
general purpose statistics package, was used to prepare the data, perform the computations
(some of which were very computer intensive), and send the plotting commands through
an interface to Grafit. Grafit, a general purpose graphing package, took the commands and
output the graphs on a LaserJet Plus printer. Each of the graphs were generated using
simple commands available in Statit. These commands have many options that allow the
graph to be customized to the specifications of the analyst.

REFERENCES
Becketti, S. and Gould, W. (1987). A Note on Rangefinder Box Plots.

The American Statistican 41(2): 149.

Chambers, J.M., Cleveland, W.S., Kleiner, B. and Tukey, P.A. (1983).
Graphical Methods for Data Analysis. Belmont, CA: Wadsworth.

Chatterjee, S. and Price, B. (1977). Regression Analysis by Ezample.
New York, NY: Wiley. [Chapter 8].

Cleveland, W.S. and McGill, R. (1984). The Many Faces of a Scatterplot.
Journal of the American Statistical Association 79: 807-822.

Cleveland, W.S. (1985). The Elements of Graphing Data.
Monterey, CA : Wadsworth

Du Toit, S.H.C., Steyn, A.G.W., and Stumpf, R.H. (1986).
Graphical Ezploratory Data Analysis. New York, NY: Springer-Verlag.

21

HP1000 A-SERIES CRASH DUMP ANALYZER

Russ Scadina
Hewlett-Packard Co.
1266 Kifer Road
Sunnyvale, CA 9L086

Introduction

System crashes (the CPU has halted or is looping in a meaningless
fashion) have long haunted the customer and the manufacturer of the
system. There is so much data to analyze; so much in-depth knowledge
of the operating system required; so much understanding of assembly
language needed. These prerequisites for analysis and troubleshooting
dictate that a system expert be consulted. The question is which
tools may be utilized prior to calling the expert in? The crash dump
analyzer is one such tool which automatically and comprehensively
diagnoses the state of the c¢rashed system in a fast and thorough
manner.

History

Historically, the analysis of an HP RTE system that had crashed was
traumatic at best. Typically, hardware was swapped first starting
with the CPU. After this effort failed to fix ’the problem’, the next
step was to perhaps minimize system activity to see if ’that’ worked
or, at least, decreased the frequency of crashes. Since many
customers run their system in a production environment, this approach
was costly or impossible. Perhaps then a system expert would sit down
in front of the ’front panel’ and ’look’ at some registers and memory
locations. Unless it was his lucky day, he would find nothing wrong
and provide the old ’try something different (regen?) and see if it
goes away’ trick. Eventually, assuming this was a widespread problem,
someone somewhere tripped across a data corruption or some such thing
and the race was on to solve the ’elusive bug’. The culprit was
detected by creating patches or using logic analyzers to trace
computer activity leading up to the condition that caused the crash.

About a decade ago an engineer at HP decided that if a crash dump
(moving memory contents to a medium) could be performed and restored
onto a healthy system that a system expert could analyze the system
that crashed while allowing the customer to restart and use his
system. The tool that evolved was called CMML (later CMM6 and then
CMMA). This program is still in use and has utility as an on-line
memory access or crashed system access tool. What it doesn’t do is
automatically analyze the system - that is left up to the user to do
step by step (a little more efficiently than via the front panel).

What was still needed was a tool to ’look’ automatically at memory and
determine what state the operating system and its data structures were

HP1000 A-Serie= ¢ -ash Dump Analyzer
1008

in. This is where the HP1000 RTE-A Series Crash Dump Analyzer (called
ACDA) came in. It automatically determines the integrity of the data
structures in the system (as a result of or leading up to the
crash!!).

What is still needed is a tool that might point to the culprit that
caused the crash. This analysis is still left up to the system expert
but ACDA is a definite step in the right direction.

The rest of this paper describes ACDA.

ACDA
ACDA ties several troubleshooting techniques together to assist in the
early stages of analysis of the cause of a crashed system. It
performs:

- a systematic search of system lists and data structures to determine
their validity.

- a reconstruction of the structure of System Available Memory (SAM)
to determine if SAM corruption has occurred.

- a reconstruction of the state of every program in the system so the
user may quickly survey (WHZAT style) their state at the time of the
crash.

ACDA takes as input the SNAP file and crash dump from the VCP to
analyze the entire system and then provides easy access to all of the
dumped physical memory. ACDA also provides tutorial assistance and
ease of troubleshooting by annotating some data structures and
displaying the source of the data, e.g., the label of the head of a
list.

The major data structures that ACDA analyzes for gaps, overlap and
inconsistencies are the memory descriptors, program state 1lists, IO
tables and SAM. The memory descriptors are analyzed to ensure program
partitions are valid and program state lists are traversed to ensure
they’re intact. The DVIs, IFTs and IO control blocks are traversed to
ensure proper linkage between them and SAM. SAM is completely
reconstructed from the DVIs, Class table, session table, runstrings
and free memory to ensure SAM is consistent.

After analysis, ACDA provides easy access to any map or mapped entity.
This means that the user may easily view the system map, a user
program (including code or data), a mapped driver or operating system
module, SAM or any other physical memory. Memory displays show the
assembly, octal, decimal and ASCII equivalent of each memory word.
When displaying ID segments, DVTs and IFTs, the contents are displayed
with annotations to explain the bit patterns of each word so the user
need not refer to a manual to extract bit fields from the table.

HP1000 A-Series Crash Dump Analyzer

2

ACDA also provides a WHZAT type feature +to display the state of all
programs in the system for rapid assessment of which programs were
running at the time of the crash. A 1list of system module entry
points may also be displayed to determine (without a generation
listing) where each module resides.

Keep in mind that ACDA does not uncover the offending code that led to
the failure. What ACDA does do is: 1) detect the error condition
’after it has occurred’ 2) sllow the user to key on a failure, e.g., a
modified table location or a list that is corrupted, so that a logic
analyzer or troubleshooting traps may be used to catch the corruption
in action during a subsequent system failure 3) rapidly assess if
anything seems amiss in the system and U4) document patterns of
failures to determine if multiple crashes have the same scenario,
e.g., a corrupted SAM location.

The following represents a typical display when ACDA is first
executed. The sizes of various system resources are shown, for
example the size of SAM. If these or any of the analysis routines,
e.g., Anaylyzing Memory Descriptors, uncover an error, a message is
displayed and the user may then use various ACDA commands to determine
the nature of the problem.

RTE-A Crash Dump Analyzer 01/19/87
Your Snap Filename is /DUMPS/SNAP.SNP
Your Crashed System Filename is /DUMPS/SYS.DUMP
Your SYSTEM (crash dump) file is for an:
RTE-A System - rev code 2540 $OPSY = -53
The system physical memory size dumped was 3072 k words
There are 32763 words of SAM ($SAM#) starting at page 58 ($SAMP)
The Driver/OS partition starts at logical address 34000
and consumes 3 logical pages
There are 105 ID Segments ($ID#)
The ID Segments start at addr 63220 ($IDA) and 46 words long ($IDSZ)
The maximum LU number is 131 ($LUT#)
There are 79 DVTs ($DVT#)
The DVIs start at addr 42000 ($DVTA) and are 25 words long ($DVSZ)
There are 11 IFTs ($IFT#)
The IFTs start at addr 60650 ($IFTA) and are 9 words long ($IFSZ)
There are 100 class numbers ($CLTA,I)
Analyzing Memory Descriptors
Analyzing System Available Memory
SAM analysis error encountered !!!
Analyzing Program Lists
Command (/e to terminate)?

HP1000 A-Series Crash Dump Analyzer

3

Notice that an error in analyzing SAM has been detected. The user
would then do an Analyze command which will highlight the exact
failure as part of displaying various data structures and lists. The
following is part of a sample display of the Analyze command:

Analyzing Memory Descriptors
First partition page (octal) =173
Traversing MD Adjacency list from $MEM

wdo wdl wd?2 wd3 wdl wd5S wdb

id/ prio/ prev next
start prev next adj adj
Addr #pgs page free stat free ptr ptr
75417 24 173 67402 100000 62 0 T4607
75676 3. 5T75 17510& 100000 75624 .75660 0

Traversing Free MD list from $FREM

wdo wdl wd?2 wd3 wdl wdS wd6

btl5=1 prev next
start prev next adj adj
Addr #pgs page free stat free ptr ptr

Tu4Th2 21 651 174616 © 75577 74562 74751

T4616 iO 551 175570 100000 7&%&2 75320 TL6TT
Analyzing System Available Memory

Traversing SAM free block list from SAM address 1
Address Length Next Block

3 4 41

41 13 437

53725 180& 57610

57610 8310 7777

Traversing SAM runstrings from SAM address 2
WD1 wWD2 WwD3 WDlL. ..

SAM next ID seg

Address link addr #chars string

31 0 66332 10 RU,PROG

Scanning IO request blocks off DVT(2)s and Spool Nodes off DVT(25)s
Scanning DVT 79

HP1000 A-Series Crash Dump Analyzer
L

Scanning DVT 1
SAM analysis error encountered !!!

Scanning Session ID Tables for UDSPs off word 19
Scanning Session Table 1

Scanning Session Table 9

Scanning Class Table (word 1) for class completion blocks
Scanning Class Table for Class # 1

Scanning Class Table for Class # 100

SAM is allocated as follows:
Addr Size Allocated by/for

3 4 Free Memory Block
7 26 Run String for ID# 36
41 19 Free Memory Block
56 16 IO Request off DVT# 1

SAM overlap detected !!!!

T6 167 Class Completion of Class Number T1

Analyzing Program Lists
$TM (Time Suspend) List traversal: No ID segments in the list
$CL (Class IO Suspend) List traversal:
The ID segments in the list are -
ID# 5
ID# 38

Notice the flow of activity: the Memory Descriptors are scanned while
displaying their contents and significance; next, the data structures
which use SAM, namely free SAM blocks, runstrings, IO requests, spool
nodes, session blocks and class table are analyzed to create an image
of SAM to determine its integrity. In this case scanning DVT 1
indicates a failure produced in SAM. The subsequent SAM allocation
display shows that the IO block off of DVT 1 overlaps a free memory
block which starts at address U1l and continues to address 6U4. This
discovery would ’point’ the system expert towards surveillance of DVT
1 and its associated driver.

HP1000 A-Series Crash Dump Analyzer
5

The system expert may now want to luok at the DVT to determine its
contents (state). ACDA, on command, will display the DVT, with
annotation, and its parameter and extension areas. The following is a
sample:

Description of DVI 1
wd addr contents description
1 42000 177777 DVT not linked off any list
2 42001 o program priority queuing of IO requests
No Requests queued off this DVT
3 42002 42002 No DVT in the Node list is busy
Circular node list points to DVI 1

21 42024 2000 There are{is) 2 driver parameters
There are(is) 0 extension words
22 42025 © Address of extension area
23 42026 © Driver is not partitioned
24 42027 0 No IO requests queued
Default Language number in use is 0
25 42030 0 There are no spool nodes off this DVT
DVT Parameter Area
addr contents decimal ascii
42031 1 1
42032 2 2

Perhaps the system expert wants to explore further by displaying the
contents of an IFT. This would be displayed as follows:

Description of IFT 1
wd addr contents description
1 60650 177777 Timeout list linkage
2 60651 0 Timeout clock
3 60652 100000 FIFO queuing of DVTs
No DVT queued off this IFT
4 60653 L0000 Interface driver entry address
5 60654 L42000 This IFT is currently associated with DVT 1
6 60655 24050 Status: Interface is available
Interface Type is 50 (Parallel)
Interface Select Code is 50

9 60660 0 Map set NOT been allocated for the interface
Map Set Allocated to the IF driver is 0
IFT Extension Area

addr contents decimal ascii
60661 0)
60671 0 0

HP1000 A-Series Crash Dump Analyzer
6

The system expert may want to determine the state of a program. A
WHZAT type display may be seen as follows:

ID# Address Occupant Session State

1 63220 D.RTR/ 0 SYSTEM dormant

1é 6h7ih SETUP/ 32 SEéSIN IO.suspended

23 6526h PROG1/ © SYéTEM cléss suspended on CL# 76
Sé 703i6 CcI / 38 SEESOT wait suspended

Then a further display of an ID segment contents:

Description of ID Segment # 1
wd addr contents description
1 63220 66176 list linkage

7 63226 1 program priority

8 63227 2007 primary entry point

9 63230 22357 point of suspension
10 63231 177627 A-reg at point of suspension
11 63232 63221 B-reg at point of suspension

16 63237 100000 program is in memory
run-string is NOT in memory
break is NOT pending on this program
program does NOT access system common
ID segment NOT deallocated when prog terminates
program has NOT locked DS resources
program is NOT memory locked by an EXEC 22
program status is dormant

46 63275 O Coing privileged nesting counter

ACDA has a fair amount of capabilities not discussed here but one last
one is noteworthy - the ability to 1list memory logically. For
example, if the user wants to access SAM, the S 246 3 command would
display SAM location 2U6 for three locations as follows:

addr contents macro decimal ascii
246 20455 XOR 455 8493 -
247 20526 XOR 526 8534 v
250 41422 ADA 1422 17170 ¢C

HP1000 A-Series Crash Dump Analyzer
7

A mapped driver, operating system module or a user map may also be
displayed logically while EMA or any physical memory not normally
mapped (such as a PTE) may be viewed physically.

Conclusion

ACDA has been widely used to pinpoint and categorize system failures
by Hewlett Packard’s DSD/AMSO technical marketing, R&D labs and field.
In approximately one Yyear of existence, ACDA has saved an
extraordinary amount of hours in analyzing systems; has resolved many
system problems and has determined that many system ’hangs’ were
programming errors, e.g., resource contention lockups. Users of ACDA
have found it easy to use while learning about system internals. As
mentioned before, the next step is to create a tool to diagnose the
reason for a system failure. This would nearly automate the
troubleshooting of crashed systems.

Implementing Hiih—LeveI Control Structures
Using MACRO/1000 Macros

Nick Seidenman
McDonnell Douglas Payment Systems Company
2092 Gaither Road
Rockville, Maryland 20850

ABSTRACT

The intent of this paper is to show how control structures such as IF-THEN-ELSE
and WHILE loops are translated from high-level languages like C and FORTRAN
to machine language. To demonstrate these translations, MACRO/1000 macros will
be constructed which provide several control structures for HP-1000 assembly
language programs.

1. INTRODUCTION

(This section may be skipped if the reader is already familiar with
macro processing.)

It is safe to say that the great majority of programs written for the HP-1000 are
written in Ftn7x (HP FORTRAN-77 with extensions). A significant, albeit smaller
share, however, are written in assembly language. Assembly languages in general
allow the programmer to have complete control over the instructions used to
accomplish a given task. This advantage is cited by many as the primary reason
for choosing assembly over a high-level language. Greater control implies less "fat"
due to unneeded code which might have otherwise been included by a compiler.

On the other hand, the number of lines of assembly source code will almost always
exceed the amount of higher-level source code, making assembly harder to read
and harder still to maintain. Since assembly instructions are simpler in nature
than, say, FORTRAN instructions, it takes more of them to accomplish the same
task. In many cases, groups of instructions in assembly are repeated with minor
changes to suit the particular instantiation. Such repetition can be found in the
.ENTR calling sequence (the standardized calling sequence used to pass arguments
and a return address to a subroutine).

For example, the subroutine call
CALL SUB1 (ARG1l, ARG2, 3)

in FORTRAN would become

JSB SUB1 ; Jump Subroutine Instruction.
DEF *+4 ; Ret Addr (Here + 4 words).
DEF ARGl ; Address of ARG1.

DEF ARG2 ; Address of ARG2.

DEF %Dl ; Address of constant.

1009

Such repetition opens the door for mistakes which would rarely, if ever, occur in a
high-level language. Note that in the CALL statement above no return address is
supplied; the compiler computes the symbolic return address and emits the proper
source statements. Miscalculating the return address is not an uncommon mistake
when programming in assembly. Furthermore, if another argument were added to
the CALL statement, the compiler would still compute the correct return address.
If written in assembly, however, the programmer would need to remember to
change the return address by hand. Forgetting to do so is also a common error.
With these disadvantages in mind, the concept of macro processing was introduced
to assemblers.

Simply stated, a macro is a character string, which when processed by a macro
processor will be replaced with another string. The idea is to use a relatively short
string (which we will henceforth call a label) as the macro, which will be replaced
by a longer string. Alternatively, a macro may be used to represent a string which
will appear many times in a body of text (such as source code or a document), but
may be subject to change at a later time. By changing the definition of the macro,
the string can effectively changed throughout the text. We call the replacement of
a macro label with its defined string a macro expansion or, more simply, an
expansion.

To further illustrate the use of macros, suppose we want to use the same value
each time we declare a storage area in memory. We could just use this value in
each BSS (static storage allocation) pseudo-op. But what if we later decide that we
need more storage in each of these areas? We could go through the code with a
text editor, changing each occurance of the BSS value. This works fine as long as
we change every occurance. This is not only time-consuming, but it is also very
easy to miss one.

Suppose, instead, we define a macro with the label ARRAYSIZE and set its value
to "100". Then in each BSS statement we declare the array to be ARRAYSIZE
words long. The macro processor will expand all occurrences of ARRAYSIZE to
100, performing all the tedious work for us! Now, if we need to change the size of
the arrays, we merely change the defined value of ARRAYSIZE - once. We are
guaranteed that all of the array declarations will be the correct size when the code
is processed by the macro processor.

A macro expansion may result in the generation of several lines of text. Moreover,
macros may take arguments that will be included in the expanded text. As an
example, consider the case in which we define a macro to replace the .ENTR
calling sequence described above with a single line CALL macro. The code written
by the programmer might look something like this:

CALL SUB1,ARG1,ARG2,=D3

(Note the constant definition, =D3.) The macro would be defined to expand in
such a way that its first argument would be used in the JSB instruction, and the
remaining arguments would be used in the DEF pseudo-ops as shown above. To
reiterate, the expanded macro would appear as follows:

Implementing High-Level Control Structures Using MACRO/1000 Macros
2

JSB SUBl

DEF *+4
DEF ARGl
DEF ARG2
DEF =D3

(The assembler will take care of allocating and initializing the data area for the
constant.)

There are several advantages to using a macro this way. First, the repetition is
eliminated since the CALL macro may be invoked many times. Second, fewer lines
of code need be written by the programmer, thus saving valuable development
time. Finally, the details of how SUBI1 is invoked are hidden from the
programmer. If this code were to be rewritten for a different computer, only the
macro would need to be changed (assuming of course that a macro-assembler
existed on the target machine). This directly contradicts the conventional wisdom
that all assembly programs are non-transportable!

Before moving on to the next section it should be pointed out that the syntax
conventions used thus far are not by any means generalized. Whereas the
arguments supplied to the hitherto fictitious CALL macro are delimited by
commas, other macro processors use syntax which is quite different. The C macro
preprocessor, for example, uses notation which allows a macro with arguments to
look just like any other function (the functor is followed by the arguments
enclosed in parentheses). The syntax used is, however, very similar to that used by
MACRO/1000.

(This next section may be skipped if the reader is already familiar with
MACRO/ 1000 macros.)

2. MACRO/1000 Macros: The Basics

Before we can begin developing the high-level control structures promised above,
we must first become aquainted with the elements of the MACRO/1000 language
itself. There are basically two types of macros in MACRO/1000; Assembly Time
Variables or ATV’s, and procedure macros.

2.1 Assembly Time Variables (ATV)

ATV’s are used to symbolically define constants which will be used during the
assembly pass(es). ATV’s consist of a label and a value to which the label will
refer. Labels can be up to 16 characters in length must begin with an ampersand
(&) character. Note that the label "&" is illegal. There are a number of predefined
ATV’s called system ATV’s which begin with "&.". These can be used to provide
global information to user macros and will be discussed in greater detail below.

Implementing High-Level Control Structures Using MACRO/1000 Macros
3

ATV’s may be either local or global. The differences between local and global
visibility will be better understood once we have looked at procedure macros. For
now we need to be aware of this only because of the different pseudo-ops used to
declare ATV’s. Local ATV’s are declared with the ILOCAL or CLOCAL pseudo-
ops; and global ATV’s are declared with the IGLOBAL or CGLOBAL pseudo-ops.

ATV’s come in two flavors; integer and character. The distinction between the two
is made when they are first declared. To declare an integer ATV, the IGLOBAL
or ILOCAL pseudo-op is used. For example, the integer ATV "errCount" is defined
by the statement

&errCount IGLOBAL 0

All subsequent references to &errCount will expand to the current integer value of
&errCount. Note that the syntax is exactly the same when declaring a local ATV.

The preceding example demonstrated the definition of a scalar or single-value
ATV. ATV’s may also be defined as vectors or arrays of values. Thus

&Cstack[20] IGLOBAL 90,0,0,0,0,0,0,0,0,0,[10]0

declares an array ATV with twenty elements, and initializes the array elements to
zero. This example also demonstrates the two methods by which ATV’s may be
initialized. Note the use of square braces toward the right side of the declaration.
This notation ([10]0) will initialize the next 10 elements of the array to zero.

Character ATV’s are similarly defined using the CLOCAL and CGLOBAL pseudo-
ops. All character strings are treated as arrays of characters, thus the declaration
of a character ATV must be that of an array. The following example defines a
character ATV 20 characters in length and initializes it to the string "a character
ATV".

&identity[1,20] CLOCAL ‘a character ATV'

The thing to note in this example is the second argument in the label field. The
first argument indicates how many ATV’s are declared. The second states the
length of each element in the array. The above example, then, defines a Character
ATY called &identity with one element twenty characters in length.

Some final points before we move on to procedure macros; integer ATV
declarations may also have a size argument but the only value which makes sense
is 1. Character ATV declarations may specify 0 for the number of elements. This
is the same as specifying 1. Specifying 0 for the number of integer ATV elements
will be rejected by the MACRO/1000 macro processor.

Implementing High-Level Control Structures Using MACRO/1000 Macros
4

2.2 Procedure Macros

Procedure macros assign labels and pass arguments to source code fragments. The
procedure macros are then replaced in the source code by these fragments before
being processed by the assembler. Procedure macros consist of a name statement
and a body. The name statement declares a label field name, the name by which
the macro is referenced, and an optional list of arguments to be passed to the
macro. The body consists of the macros, pseudo-ops, machine instructions and
ATYV’s which will be used when the macro is referenced.

In an earlier section we introduced the CALL macro. We shall now look at how
such a macro is defined. It will be assumed, for the sake of simplicity, that the
CALL macro always takes three arguments. We begin by telling MACRO/1000 that
we wish to declare a macro. This is done using the MACRO pseudo-op in the
opcode field of the source code. The next line is the name statement. This will be
defined with formal arguments &label for the label field, &argl, &arg2, &arg3 for
the arguments, &sub for the name of the subroutine to JSB to, and CALL for the
name field. The resulting name statement looks like this:

MACRO
&label CALL &sub, &argl, &arg2, &arg3

We now build the body of the macro. First comes the JSB instruction followed by
the return address.

&label JSB &sub
DEF *+4

When the macro is invoked, the &label and &sub ATV’s will be replaced by the
actual values supplied. We next fill in the DEF’s for the arguments.

DEF &argl
DEF &arg2
DEF &arg3

The macro definition is completed with the ENDMAC pseudo-op. The complete
macro definition looks like this:

MACRO
&label CALL &sub, &argl, &argz2, &arg3
DEF *+4
DEF &argl
DEF &arg2
DEF &arg3
ENDMAC

Notice that no ATV declarations are necessary for the formal macro arguments.
These are managed by the macro processor. When the macro is invoked in a source
statement, the actual arguments supplied in the source line will replace the formal
arguments represented by the ATV’s,

Implementing High-Level Control Structures Using MACRO/1000 Macros
5

2.3 CONDITIONAL ASSEMBLY

One will notice right away that this macro is somewhat inflexible in that it always
takes three arguments. It would be more useful if the macro could accept any
number of arguments and produce the appropriate source statements. The number
of DEF’s to be generated will be based upon a certain condition, namely the
number of arguments present in the macro invocation at assembly-time. This
introduces the concept of conditional assembly. MACRO/1000 provides several
pseudo-ops for conditional assembly which can cause inclusion or exclusion of
source lines, or repetition of source lines.

The first conditional assembly pseudo-op we will use is called AIF. AIF and its
companion AELSEIF take arguments which comprise relational expressions. The
terms in each of these expressions is evaluated for a zero or non-zero value. If the
value is zero, the relation is false. Otherwise, the relation is true. Below is a brief
example of how the AIF pseudo-op works.

AIF 4-4

LDA =DO

JMP NEXT
AELSEIF &LAST="'"

LDA =D1

&LAST CSET 'ONE'

AELSE

STA NEXT
AENDIF

The preceding example demonstrates several ways in which assembly may be
altered by the AIF structure. Note that the results may be emission of code and/or
change or declaration of macros. We will now use the AIF structure in the CALL
macro such that it will accept a variable number of arguments.

Before we can change our CALL macro, we need to have a way to determine the
number of DEF statements and the return address before we begin expanding the
macro into source statements. We can do this by using one of the aforementioned
system ATV’s called & PCOUNT. Upon invocation of a macro, & PCOUNT is set
to the number of arguments actually passed to the macro.

The new CALL macro definition begins much the same as the old. The only
difference is that five formal arguments are declared. This will be the maximum
number of arguments that will ever be accepted by the macro.

MACRO
&label CALL &sub, &argl, &arg2, &arg3, &arg4, &arg5
&label JSB &sub

Implementing High-Level Control Structures Using MACRO/1000 Macros
6

The next thing we need to do is determine the return address, or at least the
symbolic expression for the return address. We do this by using the & PCOUNT
system ATV. We know that the return address will be equal to the address of the
word following the JSB instruction (where we will store the return address) plus
the number of arguments in the call plus one. Thus, the next line in the macro
becomes

DEF '#*4'&.PCOUNT
Next we use an AIF block of the form
AIF &.PCOUNT>({n}
DEF &arg{n+1}
AENDIF

where n is a number from 0 through 4, for each formal argument declared in the
name statement. The macro body for this portion of the macro looks like this:

AIF &.PCOUNT>1

DEF &argl
AENDIF
AIF &.PCOUNT>2
DEF &arg2
AENDIF
ATF &.PCOUNT>3
DEF &arg3
AENDIF
ATIF &.PCOUNT>4
DEF &arg4
AENDIF
ATF &.PCOUNT>5
DEF &arg5
AENDIF

Implementing High-Level Control Structures Using MACRO/1000 Macros
7

We finish the definition with the ENDMAC pseudo-op. The complete CALL macro
definition looks like this:

MACRO
&label CALL &sub, &argl, &arg2, &arg3, &arg4, &args
&label JSB &sub

DEF '*+'&.PCOUNT

AIF &.PCOUNT>O

DEF &argl
AENDIF
AIF &.PCOUNT>1
DEF &arg2
AENDIF
AIF &.PCOUNT>2
DEF &arg3
AENDIF
AIF &.PCOUNT>3
DEF &arg4
AENDIF
AIF &.PCOUNT>4
DEF &arg5s
AENDIF
ENDMAC

Now if we invoke the macro with anywhere from zero to five arguments, the
proper code will be generated for the given number of arguments. Take, for
example, the statement

STEP1 CALL EXEC,READ, INLU, INBUF,=D-80

This will expand into the following code:

STEP1 JSB EXEC
DEF *+5
DEF READ
DEF INLU
DEF INBUF
DEF =D-80

If we were to decide that the macro should handle more than five arguments, we
would simply add the appropriate number of formal arguments to the name
statement, and add the same number of AIF blocks before the ENDMAC statement.

Implementing High-Level Control Structures Using MACRO/1000 Macros
8

Let’s look at one more example. Since we have a CALL macro, why not have a
SUBROUTINE macro. This macro will generate the .ENTR overhead code
required of subroutines that conform to the .ENTR calling convention. This means
that the SUBROUTINE macro will have to generate a labelled NOP for each of the
actual arguments supplied in the invocation. Once again we will take advantage of
the system ATV & PCOUNT. Here is the SUBROUTINE macro definition.

&pl

&p2

&p3

&p4

&p5

&subName

MACRO

SUBROUTINE &subName, &p1l, &p2, &p3, &p4, &p5

AIF &.PCOUNT>O
NOP

AENDIF

AIF &.PCOUNT>1
NOP

AENDIF

AIF &.PCOUNT>2
NOP

AENDIF

AIF &.PCOUNT>3
NOP

AENDIF

AIF &.PCOUNT>4
NOP

AENDIF

NOP

EXT .ENTR

JSB .ENTR

DEF '#*-'&.PCOUNT'-1'

ENDMAC

Now we can use the SUBROUTINE macro to begin the body of subroutines
callable with the CALL macro. Try the above macro with the invocation

SUBROUTINE ERMSG, ERCOD, ERSTR.

This should expand into the following code fragment:

ERCOD
ERSTR
ERMSG

NOP
NOP
NOP
JSB .ENTR
DEF #*-3-1

Implementing High-Level Control Structures Using MACRO/1000 Macros

9

3. THE FINITE STATE MACHINE

The macro processor can be thought of as a machine that can occupy any one of a
finite number of states. At the most basic level, there are only two states: we shall
call these P for pass-through, and T for translate. In the P state the machine
accepts input and emits it as output, unchanged. When in the T state, however,
input undergoes transformation of one kind or another. Instructions understood by
the machine while in T state allow us to describe these transformations. These
instructions constitute a language which we will call Ty Our goal is to construct a
language, Ty, in which we define the desired control structures using Ty as our
basis.

The elements of Ty and T; can be grouped into three categories: initiation,
continuation, and completion. Initiation elements cause transition from one state
into another. They also cause information about the current state to be saved
before the transition to the new state is made. Continuation elements effect the
transformations made while in the current state. Completion elements perform the
transformations required prior to exiting the current state. They are also
responsible for restoring the information about the previous state which was saved
by an initiating element. A complete set of elements will consist of one and only
one initiating element, one and only one completion element, and an unspecified
number of continuation elements. Such a set comprises an activation of T. Just
as transitions may be made between states, transitions are likewise made between
activations. By treating transitions between activations the same way we treat
state transitions, we can nest elements of T,. Since the terms activation and state
are interchangeable, we will refer to activations as derived states. Whereas we
previously spoke of transitions between T and P, we can now be more specific and
say that a transition is made between states within T, and between these derived
states and P.

It does not take a great stretch of the imagination to see that, in the context of our
discussion, Ty is the set of assembler pseudo-ops which control the macro pre-pass
of MACRO/1000. T,. then, is the language the constituents of which are the topic
of this paper.

3.1 SUPPORTING DATA STRUCTURES

In order to be able to make transitions through a state to other states, and then
backtrack the way we came, we must have a way of saving the information
pertinent to the state we are leaving, and restoring this information when we
return. This is analogous to leaving a trail of bread crumbs in order to find one’s
way back out of a maze. The central data structure used in these types of
operations is a Last-In-First-Out (LIFO) stack or, simply, a stack. In reentrant
subroutine calls a stack is used to save the current context or activation of a
subroutine, and to pass arguments to the called subroutine. In finite state
machines, the stack is used to save information about the current state of the
machine. As we shall see below, our IF-ELSEIF-ELSE-ENDIF structure is a
complete set, and will behave as a single activation even though it is implemented
with several separate macros. This is accomplished by saving the context of the
current control structure on a stack that we will implement with IGLOBAL and
CGLOBAL macro ATV arrays (stacks) and scalars (stack pointers).

Implementing High-Level Control Structures Using MACRO/1000 Macros
10

A (usually) scalar datum, called the stack pointer, is used to indicate the location
of the top of the stack. This is the next location at which data may be stored.
There are two operations applied to stacks, with which most programmers are
familiar. The push operation will store data on the top of the stack and update
the stack pointer. The pop operation takes the topmost data off of the stack and
updates the stack pointer. Since the stack is generally considered to be a linear
arrangement of contiguous storage cells, the stack pointer updates are usually
nothing more than increment and decrement operations.

The update operations should obey a few rules. First, if the stack pointer is
incremented before putting new data on the stack, it should be decremented after
popping data. The convention used will also depend on whether the stack grows
from low memory to high, or vice versa. The stacks implemented below grow from
higher locations to lower ones. A predecrement - postincrement convention is used
for the stack pointer updates. When a stack is popped, the stack pointer is first
decremented, then data are taken from the location(s) indicated. A push operation
will store the data where directed by the stack pointer, followed by an increment
of the stack pointer. By following this convention, we always know that the stack
pointer points to the next available location to which data may be stored.

Now that we have a way to save information about a control structure for use by
the constituent macros, we turn to the problem of deciding exactly what
information we need to save. The first datum we need to save is the point at
which we will exit the structure. For a structure like IF-ELSEIF-ELSE-ENDIF we
also need to save the location of the beginning of the code for next condition to
check (i.e. the next ELSEIF or ELSE). The following example illustrates the use of
these data.

IF conditionl
actionl
ELSEIF condition2
action2
ELSE
action3
ENDIF

When the IF macro is invoked, code will be generated which will evaluate
conditionl. 1If condition] evaluates to a true condition, the actionl code will be
executed. The macro must also generate code to jump around the actionl code in
the event conditionl proves false. The simplest way of doing this is to have the
macros generate their own unique labels. Of the four macros in this structure,
only the IF and ENDIF macros know deterministically what control macros came
before and will come after them. Since the IF macro is always used first, it is in
the unique position of deciding what the label for the ENDIF macro will be. The
IF, ELSEIF, and ELSE macros will also be able to decide what the label for the
next macro in the structure will be. Note that this decision can be made regardless
of the fact that at the time of their invocation, the macros will have no knowledge
of which other macros in the structure will follow.

Implementing High-Level Control Structures Using MACRO/1000 Macros
11

The ability to generate these labels depends on two things. First, we need to have
a way to pass the generated label to the macro which will use it. The stack works
very nicely for this. We also need to have a way to generate unique labels. There
are two ways to approach this problem. We could declare a global integer ATV
which will be incremented each time we use it. If, however, we forgot to
increment it, we would run the risk of generating non-unique labels. A second
method is to use another system ATV called "&.Q". &.Q will guarantee a unique
number between 1 and 32767 each time it is used. The macro processor takes
responsibility for updating &.Q’s value, taking this bit of tedium away from the
programmer. This latter solution is, in fact, the one which shall be used.

At this point we have determined at least two pieces of information which need to
be saved on the stack; a label which will be used to reference the end of the
control structure, and a label which will be used to reference the next macro in the
control structure other than the structure terminator macro (e.g., ENDIF). These
data will be called &endPoint and &stLevel, respectively.

A third datum used to describe the current structure type is included for the
purpose of forcing macro usage to adhere to structured programming principals.
To see how this works, consider the code fragment

IF conditionl
WHILE condition2
(code body)
ELSETIF condition2
(code body)
ENDWHILE
ENDIF

We do not want our macros to allow this kind of code which is at best ambiguous,
and at worst sloppy. By having the structure terminator macro check to see which
structure is being terminated we can disallow code like the example above. This
information will be found in the ATV called &stType. To facilitate searches in
the stack for the start of a frame, &stType will always be negative. The reason
for such searches will become apparent when we discuss the SWITCH structure,
below.

It has not yet been decided whether the three data will be integer or character in
type. It is highly desirable to make them all of one type or the other since mixing
types would require us to maintain and coordinate two separate stacks. In an
earlier paragraph it was stated that the uniqueness of the labels would be
guaranteed by using the &.Q system ATV. Since this is integer, and since it is the
only part of the labels which needs to change, the ATV’s used for control structure
context will also be integer. The labels themselves will take on the forms

L. &stLevel
for intermediate macros such as ELSEIF and ELSE, and
L. &endPoint.Z

for terminator macros like ENDIF.

Implementing High-Level Control Structures Using MACRO/1000 Macros
12

The context described by &endPoint, &stLevel, and &stType are collectively called
a frame in the stack. Another, more general term sometimes used is activation
record. At any given time, for each frame in the stack the stack pointer (called
&RSP) will point to the location containing &stType. &RSP+1 will be the location
of the current &stLevel value, and &RSP+2 will indicate the current &endPoint
value. &RSP is always incremented by three. If not, the stack would become "out
of sync".

Since one of the reasons for using macros is to avoid needless repetition of source
statements on the part of the programmer, two macros are defined which will do
all of the pushing and popping of the stack. These are called CMPUSH and
CMPOP, respectively. CMPOP takes no arguments; it merely restores context to its
state prior to the last CMPUSH macro call. CMPUSH takes a single argument
which it uses to set the new &stType value after pushing the current &stType on
the stack.

4. IF-ELSEIF-ELSE-ENDIF

Now that the groundwork has been done we can examine the mechanics of the
control structures themselves. The IF-ELSEIF-ELSE-ENDIF structure was chosen
for this paper because of its relative simplicity. The general form of both the IF
and ELSEIF macros is

IF operand l,relop{ . operand2].

The only difference between the IF and ELSEIF macros is the name, and the fact
that the ELSEIF macro will be referenced by an &stLevel label.

Operand 1 and operand?2 are labels which point to the values to be compared. Legal
operands include labels to DEF pseudo-ops, and constant declarations such as =D10.
One could also specify a number such as 33 as an operand. This would, however,
reference memory location 33 and, since this location is in the base page, such a
reference would cause a memory protect (MP) violation. The same would happen
if a label that was EQU’d (as opposed to DEF’d) to some value were used.

Relop can be one of a set of relational operators. Being able to test for conditions
of equality ("=" or EQ), inequality ("<>" or NE) are two requisites which
immediately come to mind. Table 1 shows the complete list of relational operators
which are supported.

Implementing High-Level Control Structures Using MACRO/1000 Macros
13

Table 1. IF-ELSEIF-ELSE-ENDIF Relational Operators

=,==,EQ equality

<>,!=,NE inequality

>,GT greater than

<,LT less than

>=,GE greater than or equal to

<=,LE less than or equal to

!,NOT logical complement

AND logical conjunction (true if opl
and op2 are both non-zero)

|],OR logical or

The logical complement operator (! or NOT) takes only one argument. This is why
operand?2 is shown as optional above.

In order to avoid duplicating definitions in the IF and ELSEIF macros, that part
of the macro which generates the code for a given test will be found in a separate
macro called EVALUATE. IF and ELSEIF will simply decide how many
arguments there are and set up the required context information. They then both
invoke EVALUATE to do the rest of the work.

The IF macro itself is actually very short. It first invokes CMPUSH passing the
string 'IF’. Next, the global ATV &cmError is checked to see if an error occurred
during the CMPUSH call, such as a a stack overflow (no room left on stack).
Assuming no error occurred, IF then checks to see if a label was supplied in the IF
invocation. If so, an EQU is generated with the supplied label. Finally,
EVALUATE is called with the arguments originally passed to IF. If an error was
generated during the CMPUSH call, the error count is incremented and no code is
generated. The entire IF macro is listed below.

MACRO
&label IF &opl, &relOp, &op2
CMPUSH 'IF!

AIF :NOT:&cmError
AIF &label <> '!

&label EQU =*
AENDIF
EVALUATE &opl, &relOp, &op2
AELSE
&cmError ISET O
AENDIF
ENDMAC

Note the use of the macro operator ":NOT:". An expression in a conditional
assembly structure such as AIF will be evaluated and tested to see if it is zero or
non-zero. If it is zero, the condition is false. By applying the :NOT: operator, the
expression will evaluate to the logical opposite. In the first AIF statement, the
ATY &cmError is tested to see if it is :NOT:0.

Implementing High-Level Control Structures Using MACRO/1000 Macros
14

There are several assembly-time operators that are available to the MACRO/1000
programmer. Among these are the :AND: operator and the :OR: operator which
will be used in the EVALUATE macro. Other operators include :EQ:;, :NE:, :GT;,
:LT:, :GE:, and :LE:.. Understand that these operators are meaningful only to the
macro assembler as it processes the control structures used in conditional assembly,
such as AIF, and AWHILE. In terms of the languages discussed above, all of these
are elements of Ty .

As was said earlier, The ELSEIF macro differs in only one respect (other than the
name) from the IF macro. The ELSEIF will, in addition to a user supplied label,
generate an EQU for a label created using the current value of &stLevel. This is
done because EVALUATE will generate statements to test the condition supplied to
IF or another (earlier) ELSEIF. But it will also generate code that will cause a
jump to the next location to execute should the run-time condition fail. Consider
the following example:

IF testval,==,=D0
LDA nextval

ELSEIF testval,==,=D1
LDA preval

This will generate the following code fragment:

LDA testval <

CPA =DO < Generated by
RSS < IF macro
JMP L.1 <
LDA nextval
JMP L.2.2 <

L.1 EQU * <
LDA testval < Generated by
CPA =D1 < ELSEIF macro
RSS <
JMP L.3 <

LDA preval

The IF macro in the example has set the value of &stLevel to 1. ELSEIF picks up
this value and uses it to generate the L.1 label referenced by the JMP L.1 statement
produced by the IF macro.

The ELSE macro takes no arguments. It simply generates another &stLevel label
that can be referenced by the last IF or ELSEIF along with any label the
programmer may have supplied. The ENDIF macro can generate up to three labels.
Two of them, the &stLevel label and the &endPoint label, are always produced.
The third is an optional, programmer-specified label. ENDIF also pops the context
stack using CMPOP so that the context prior to the invocation of the IF structure
can be restored. One of the things that is checked when the stack is popped is to
see if the &stType ATV is set to the correct structure type. If it is not, an error
message is generated. This check is provided in order to alert the programmer to
structure violations such as the one shown earlier.

Implementing High-Level Control Structures Using MACRO/1000 Macros
15

4.1 IF Example

The following is a complete example of all the IF-block macros and the code

generated thereby.

JMPTBL

IF TABLESIZE,EQ,=D-1

LDA
INA
JMP
ELSEIF
JMP
ELSEIF
LDA
ADA

=STABLE

ea

TABLESIZE,EQ,ZERO
NOTABLE

TABLESIZE, LT, MAXTABLE
=STABLE

JMPINDEX

JMP @A
ELSE

JMP
ENDIF

JMPTBL

generates (assuming &stLevel is initially set to 2 and &endPoint is set to 1)

LDA TABLESIZE
CPA =D-1
RSS
JMP L.2
INA
JMP Q@A
JMP L.1.Z
JMPTBL EQU *
L.2 EQU *
LDA TABLESIZE
CPA ZERO
RSS
JMP L.3
JMP NOTABLE
JMP L.1.Z
L.3 EQU *
LDA TABLESIZE
CPA MAXTABLE
JMP L.4
CMA, INA
ADA MAXTABLE
SSA,RSS
JMP L.4
LDA =STABLE
ADA JMPINDEX
JMP @A
L.4 EQU *
JMP JMPTBL
JMP L.5
L.5 EQU *
L.1.2 EQU *

Implementing High-Level Control Structures Using MACRO/1000 Macros
16

5. SWITCH-CASE-DEFAULT-ENDSWITCH

The IF-block control structure is relatively simple in that only the continuation
and completion labels need to be preserved across macro invocations. The
SWITCH-block construct requires this information along with several additional
data. The SWITCH-block implemented here were patterned after the switch control
structure found in the C programming language. The switch statement in C takes a
single argument or expression which evaluates to an object of type int (integer).
Each subsequent case statement compares the switch argument with its own
argument. If the two arguments are equal, execution continues at that point uniil
either a break statement is encountered, or the end of the switch structure is
reached. One peculiarity of the C switch statement is that several case statements
may be executed as long as no intervening break statements are encountered. For
example

switch (c)
{ case 'a':
printf ("alpha"):
case 'b':
printf ("bet");
break;
case 'c':
printf(“soup");
}

will print "alphabet" if the variable ¢ is equal to the ASCII value for lowercase a.
On the other hand, if ¢ is equal to the character ’b’, only the string "bet" will be
printed. This is because the break statement will cause an exit to be taken from
the switch block. When ¢ is set to ’c’, the string "soup" is printed and the switch
block is exited. The macros used to emulate this control structure in MACRO/1000
will have exactly the same functionality. The only difference will be one of
semantics. Whereas the C switch uses "{}" pairs to begin and end a switch block,
the MACRO/1000 macros will begin a SWITCH block with the SWITCH macro and
end it with the ENDSWITCH (or ENDSW) macro. Thus, SWITCH is an initiating
eclement, CASE, BREAK and DEFAULT are continuation elements, and
ENDSWITCH is the completion element. Note that the colon (¢) will not be used to
terminate CASE macros.

SWITCH does the usual initiation work, along with generating an "EQU *" for a
user-supplied label, if one is provided. It then emits a "IJMP L. &endPoint" line
which will cause execution to be transferred to the beginning of the jump table.
The definition for SWITCH is whown below.

MACRO
SWITCH &X
CMPUSH 'SWITCH® ; Save context.
AIF :NOT:&cmError ; Problem?
&CSP ISET &CSP-1 ; Nope.
&RSP ISET &RSP-2

Implementing High-Level Control Structures Using MACRO/1000 Macros
17

AIF &RSP<=0 ; Rstack Ovf?
&RSP ISET &RSP+2
& . ERROR ISET &.ERROR+1
AELSEIF &CSP<=0 ; Cstack Ovf?
&CSP ISET &CSP+1
&RSP ISET &RSP+2
& . ERROR ISET &.ERROR+1
AELSE ; Emit code.
&Cstack[&CSP] CSET &x
&Rstack[&RSP] ISET &caseCount
&Rstack[&RSP+1] ISET &default
&caseCount ISET O
&default ISET O
JMP 'L.'&endPoint'.Z+1!
AENDIF
AELSE
&cmError ISET O
AENDIF
ENDMAC

Aside from the error checking instructions, one will notice that an additional
stack, &Cstack, has been introduced. This stack is used to save the test (&x) and
CASE values until later, when invocation of the ENDSWITCH macro will cause a
jump table to be generated. We will discuss the jump table further when we come
to the ENDSWITCH macro. Furthermore, the IGLOBAL &default is pushed on the
&Rstack and then set to zero. The purpose of this ATV is to let the SWITCH
structure know whether or not a DEFAULT macro has been invoked within this
activation. If a DEFAULT macro has been invoked, no more CASE macros will be
allowed.

The CASE macro emits zero words of machine instructions. The only code emitted
is an "EQU *" for a user-supplied label (if present), and an "EQU *' for the
&stLevel label. The rest of the CASE macro definition handles stack errors, and
saves the CASE value on the &Cstack. Here is the CASE macro:

MACRO
&label CASE &test

AIF &label<>!'!
&label EQU *

AENDIF
&CSP ISET &CSP-1 ; Push Context
&RSP ISET &RSP-1

AIF &CSP<=0 ; Cstack Ovf?
&CSP ISET &CSP+1
& . ERROR ISET &.ERROR+1

AELSEIF &RSP<=0 ; Rstack oOvf?
&CSP ISET &CSP+1
&RSP ISET &RSP+1
& . ERROR ISET &.ERROR+1

AELSEIF &default ; CASE aftr DEFAULT?
& . ERROR ISET &.ERROR+1
&CSP ISET &CSP+1

Implementing High-Level Control Structures Using MACRO/1000 Macros
18

&RSP ISET &RSP+1

AELSE ;7 None of the above.
&Cstack[&CSP] CSET &test
&Rstack[&RSP] ISET &stlevel
&caseCount ISET &caseCount+1l
'L. '&stLevel EQU *
&stlevel ISET &.Q
AENDIF
ENDMAC

Notice the use of the system macro &.Q. Also note that since no executable code is
generated, it is possible for execution to "fall" right through the CASE label into
the succeeding code. The last AELSEIF handles the case wherein a DEFAULT
macro has been invoked earlier in this same activation.

The BREAK macro will cause code to be generated that will transfer execution to
the end of the current control structure. This includes SWITCH and several other
control structures not described in this paper (e.g.,, WHILE and FOR loops). It
simply searches backward through the &Rstack until it finds an &stType indicator.
These are not hard to find since they are always negative and other stack objects
are always non-negative.

MACRO
BREAK
&outPoint ILOCAL &RSP
AWHILE (&outPoint<&MAXR) :AND: \
(&Rstack[&outPoint]>0)
&outPoint ISET &outPoint+l
AENDWHILE

AIF (&outPoint<&MAXR) :AND: \
(&Rstack[&outPoint]<0)

&outPoint ISET &outPoint+2
&outPoint ISET &Rstack[&outPoint]
JMP 'L.'&outPoint'.z’
AELSE
JMP 'L.‘'&endPoint'.z?
AENDIF
ENDMAC

The BREAK macro introduces a new Tq element (i.e., MACRO/1000 pseudo-op):
the AWHILE instruction. It is while executing this loop that the BREAK macro
searches for the beginning of the current control structure. It is noteworthy that
MACRO/1000 has a REPEAT instruction which will loop a specified number of
times.

The DEFAULT macro is very similar to the CASE macro and, thus will not be
shown here. There are two differences between DEFAULT and CASE: DEFAULT
sets the &default ATV to 1 to indicate the occurance of a DEFAULT macro within
this activation, and since the DEFAULT macro takes no argument, no case value is
pushed onto the &Cstack.

Implementing High-Level Control Structures Using MACRO/1000 Macros
19

The real work for this structure is done by the ENDSWITCH macro, the primary
job of which is to build the jump table., Like the other macros, ENDSWITCH emits
an "EQU *" for a user-supplied label. It then emits

L. &stLevel EQU *

to satisfy any earlier reference which may have been made. Next, it emits a JMP
instruction with an address equal to the location of the end of the table plus one.
This is followed by

L. &endPoint EQU *
which was referenced by the SWITCH macro.

The final section of ENDSWITCH creates the jump table. This table consists of
one two-line entry for each CASE macro invoked within this activation. These
entries are of the form

CPA &Cstack[&count]
JMP L.&Rstack[&count].

Recall that the &Cstack contains the case values supplied as the argument for
CASE macros within the current activation. A count is kept of the number of
CASE invocations. This count is then used to compute the depth within the
&Cstack and &Rstack to which the array index ATV &count must be set. The
CASE count is also used as the repetition number for a REPEAT loop within
which the actual jump table is generated. Finally, a jump instruction to the
location of the (possibly nil) DEFAULT code is generated, followed by a label
marking the end of the structure. Of course, ENDSWITCH’s dying act, like any
good completion element, is to restore the previous state of T. Here then is the
definition for ENDSWITCH:

MACRO
&label ENDSWITCH
AIF &label<>'! : User label?
&label EQU =*
AENDIF
. *
o Point to beginning of CASE values in &Cstack
. and CASE labels in &Rstack.
*
&LP1 ILOCAL &CSP+&caseCount
&LP2 ILOCAL &RSP+&caseCount
AIF &stType<>=2 : Type ok?
& . ERROR ISET &.ERROR+1
AELSE
*

. Generate JMP to skip over table when finished
. with CASE or DEFAULT code body.
. %

'L.'&stLlevel EQU *

Implementing High-Level Control Structures Using MACRO/1000 Macros
20

&jmpTableLen ILOCAL (&caseCount-
&default+1) *2+&default
'L.'&endPoint’'. 2’ JMP '*+'&jmpTablelen
o Load up the test value from SWITCH macro.
LDA &Cstack[&LP1]

* Generate the jump table.

AWHILE &LP1>&CSP
&LP1 ISET &LP1-1
&LP2 ISET &LP2-1
AIF (&LP1=&CSP) :AND:
(&default)
JMP 'L.'&Rstack[&LP2]
AELSE

CPA &Cstack[&LP1]
JMP 'L.'&Rstack[&LP2]
AENDIF

AENDWHILE
*

% Restore last state's context.
*

&RSP ISET &RSP+&caseCount
&CSP ISET &CSP+&caseCount+l
&caseCount ISET &Rstack[&RSP]
&RSP ISET &RSP+1
&default ISET &Rstack[&RSP]
&RSP ISET &RSP+1

AENDIF

CMPOP

ENDMAC

(Lines beginning with ".*" will not appear in the emitted code.)

Before moving on to an example, it would be worthwhile to examine an alternate
method for implementing this structure. This method uses a discontiguous jump
table. That is, pieces of the jump table are imbedded in the body of the code,
rather than placed, in one piece, at the end of the code body. The SWITCH macro
would generate a LDA for the test value. Each CASE macro would generate code
which looks like this:

RSS

L. &stLevel CPA &caseValue
RSS

&stlLevel ISET &.Q

JMP L.&stlLevel

Implementing High-Level Control Structures Using MACRO/1000 Macros
21

The same "fall-through" functionality is found here as is provided by the first
method. The main problem with this method, however, is that it requires four
words of memory for each CASE macro. The chosen method uses only two words
per CASE plus three additional words for the overall structure. For small SWITCH
structures the difference is trivial. Most applications, however, typically use
several CASES in a SWITCH. The second method does offer the advantage that no
&Cstack is required, nor are the CASE count and additional storage cells in
&Rstack. It has the further advantage that the code generated looks less
convoluted than code generated using the first method. But since it was stated at
the beginning of this paper that assembly is usually chosen for its ability to
facilitate the generation of lean code, the first method became the method of
choice.

5.1 SWITCH Example

We conclude this section with an example using the SWITCH structure. To
demonstrate the recursive nature of T1 this example will contain a SWITCH within
a SWITCH. Since MACRO/1000 is case insensitive, the example has been wriiten
in lower case letters.

switch =D5
case =Dé6
call exec,=d1, ,babc
break
case =D5
switch abc
case df
jmp endit
break
case =d4
call fnl1,=d2,abc
break
endswitch
jmp endit
default
lda =D4
endswitch

In the expanded rendition of the preceeding program segment, lines beginning with
** are included for reference only.

*% switch '=p5"!
JMP L.2.Z2+1
*% case '=De6!
L.2 EQU *
*k call'exec','=d1’',, 'abc!
JSB exec
DEF *+3+1
DEF =dil
DEC O

Implementing High-Level Control Structures Using MACRO/1000 Macros
22

DEF abc
*k break

JMP L.2.2Z
*k case '=D5'
L.3 EQU *
*k switch 'abc!

JMP L.8.Z+1
** case 'cdf'
L.8 EQU *
jmp endit
*k break
JMP L.8.2
* % case '=d4d4'
L.9 EQU *
*k call 'exec','=d2','abc’
JSB exec

DEF *+8+1
DEF =d2
DEF abc

*k break
JMP L.8.Z

%k endswitch

L.11 EQU *

L.8.2 JMP *+6
LDA abc
CPA cdf
JMP L.8
CPA =d4
JMP L.9
jmp endit

*% default

L.6 EQU *
lda =D4

*% endswitch

L.16 EQU *

L.2.2 JMP *+7
LDA =D5
CPA =Dé6
JMP L.2
CPA =D5
JMP L.3
JMP L.6

Implementing High-Level Control Structures Using MACRO/1000 Macros
23

6. CONCLUSION

Although this paper is somewhat lengthy, we have only begun to scratch the
surface of the theory and practice of compiler design and construction. Compilers,
for instance, would not ordinarily emit assembly language source code. Instead, a
compiler would typically produce some sort of binary relocatable or absolute code.
Moreover, compilers are capable of parsing expressions, usually supplied in infix
form, and generating code which, when executed by the target machine, evaluates
the expressions.

The reader should, however, have gained a better understanding of how high-level

language compilers work. Such an understanding will ultimately lead to better
programs.

7. BIBLIOGRAPHY

MACRO/1000 Reference Manual Copyright (c) 1986, Hewlett/Packard
Company

Brian Kernighan, Dennis Ritchie; The C Programming Language
Copyright (c) 1978 Bell Telephone Laboratories, Incorporated

Alfred V. Aho, Jeffrey D. Ullman; Principles of Compiler Design
Copyright (c) 1977 by Bell Telephone Laboratories, Incorporated

Implementing High-Level Control Structures Using MACRO/1000 Macros
24

Using the HPCRT Library
Alan Tibbetts
Hewlett-Packard Co.
1266 Kifer Road
Sunnyvale CA

With the introduction of the Compatible Serial Drivers at Rev. 4.11, HP
also introduced a new utility library called HPCRT.LIB. Although the
primary purpose of this library is to provide routines needed by the new
drivers, it also serves as a convenient gathering place for an assortment
of routines that are generally useful when developing interactive programs,
especially those that use the features of Hewlett-Packard CRT's.

The library can be divided into four classes:
--- routines specific to the compatibility drivers
--- routines that are useful for CRT I/0

--- a mini-formatter especially suited to systems programming
--- miscellaneous routines

The talk will also describe the use of the mini-formatter and the process
of adding a new format.

1010

Some Advanced Software Techniques
Paul Schumann
E-Systems, Inc.

P. O. Box 1056 CBN 101
Greenville, TX 75401

Introduction

Over the many years I have worked with the various revisions of RTE, I have
developed a small collection of tools and techniques now employed in my
own programming. This paper is intended to discuss these techniques, and to
describe some uses of the tools which are either already in or will soon be
added to the Contributed Software Library:
1) IMRel: How Disassembly can add Advanced Capabilities to your code
2) Making it Smaller: A Formatter that uses the Resident System
Routines
3) Keeping it Small: A Segmentation Alternative to MLS or CDS
4) Making it Faster: Data-structure Exploitation with Manual EMA-
mapping
5) Avoiding the “Watered Effect” with “Data-Hiding” and “Strong-

Typing”
IMRel: How Disassembly can add Advanced Capabilities to your code

IMRel (Inverse Macroassembler for Relocatable files) is a two-pass
disassembler for relocatable files; since I recently extended it to handle
absolute (type-7) files it also somewhat misnamed. During the first pass it
looks for all memory references and builds a symbol-table in EMA; during the
second pass it decodes all instructions, providing pseudo-labels where
appropriate and using entry-point, external, and debug labels if they are
available (which seems like a very good reason for always compiling or
assembling with the debug option on). IMRel’s predecessor at E-Systems was
a program called RELIX, a descendant of RELIA, which was part of the CSL
many years ago. RELIX became unusable for two reasons:

1) ClIfile-space was added to the system and,

2) Debug records were added to relocatable files.
I decided to build the “ultimate” disassembler with one goal in mind: “If it is
in the relocatable code, I want to tell you about it.” I would like to think I
succeeded. I am introducing it in this way because IMRel (along with
KERMIT) will serve a variety of purposes in the remainder of this paper.

Just before the first version IMRel was completed, one of my co-workers
approached me with a problem: some FTN7X code was required on an
RTE-4B system and some of the FTN7X intrinsic routines for bit
manipulation were missing from the system library. After extracting the
appropriate routines from the RTE-6 system, and disassembling them, my co-
worker went away happy. This was IMRel’s first use (even in an incomplete

Some Advanced Software Techniques
1011

condition) and the time I took to build IMRel was immediately justified. As a
side note, if you need a program to perform module extraction from a library,
ask your SE for a copy of RELIB, the relocatable-library manager. It is a part of
the SE Service Kit (SSK), which I understand may soon be added to the CSL

IMRel has proven useful in two different pursuits. As the title of this section
implies, if a given system routine provides a service you like and would like
to add it to your code, or if it perhaps has some small side-effect you don’t
like, IMRel can provide you with a MACRO source to that routine, to use as
you see fit. (NOTE - it should come as no great surprise that you cannot
expect support from Hewlett-Packard for any code you might modify in this
manner, so BE CAREFUL!) The other usefulness of IMRel is as a tool to gain
a greater understanding of any code in the system; it has helped me to find
and fix some system bugs.

KERMIT has been a major beneficiary of IMRel’s services. Here are several of

its “advanced capabilities” which are a result of a disassembly of some system

routines:

1) Dissassembly of a routine from HPCRT.LIB, a new library which
supports the 12040 “D” multiplexer showed me how to identify an
LU using the new firmware. HPCrtSSRCDriver (HPCrt Special
Status Read Compatible Driver) is a routine which tells its caller
whether the given LU will accept a special status read; if it does, the
caller can readily determine which interface- or device-drivers are
being employed. Since KERMIT must be able to run on systems
which may lack that library, I incorporated a part of this routine into
KERMIT directly.
2) As some of you may already know, KERMIT-CX, a derivative of my

KERMIT, comes free with CONNECT, a product of Don Wright and
ICT. Don had to make some changes to my KERMIT in order to
integrate it into his product, and in examining his changes, I found
that T had never even considered what happens as the KERMIT
server logs its session off, when ENQ/ACK protocol was in effect as
KERMIT started. In the case of my KERMIT, since it tries to restore
the mux configuration when it shuts down, log-off messages would
need to time out before the session would actually go away.
KERMIT-CX got around the problem by leaving ENQ/ACK off. After
disassembling CLGOF in RTE-A, and with a little help from my
Hewlett-Packard SE in the form of a listing of LOGOF for RTE-6, I
was able to solve the problem. KERMIT now performs a completely
“silent” log-off under either RTE-6 or RTE-A, and it doesn’t need to
leave a “dirty” mux configuration.

In the area of finding and fixing bugs, KERMIT has been a beneficiary once
again. A major change to KERMIT as of revision 1.99 was transportability.
The original reason for KERMIT's lack of transportability was the manner in
which it determined whether an LU was on a mux port. Since I was

Some Advanced Software Techniques
2

performing this operation differently now, as a part of determining whether
the (A-series) mux was a “D” revision, I thought I would have no problems. I
was surprised when KERMIT still had transportability problems under RTE-6.
After a great deal of effort, I determined that a system routine, WhoLockedLu,
was causing the problem. I call this routine inside of the SetLine routine to
find out what program is using a given LU if KERMIT cannot get an LU lock.
WhoLockedLu looks in the Device Reference Table word 3 for a given LU to
get the resource-number of the lock, which is then used as an index into the
resource-number table to get the ID-segment number of the locker, which
then leads to the name of the locking program. Disassembly of
WhoLockedLu showed a non-transportable reference into the system in order
to find the location of the resource-number table

Salias /rntab/ = ‘SRNTB', NoAllocate
common /rntab/rntab
integer*2 rntab, AddressOf

<other code>
RnTabAd = AddressOf (rntab)

The corrected code, which you will find in K6SUBS, is

Salias /rntab/ = '$SRTB', NoAllocate
Salias xla = '.XLA', Direct
common /rntab/rntab
integer*2 rntab, xla

<other code>
RnTabAd = xla(rntab)

The actual problem was this: LINK will not set the “transportable” bit in a
program unless [not a complete list!] it is extended background and makes all
of its system references through the entry-points inside the “VCTR” module
(which you must relocate first when you generate a system. $RNTB is not in
the VCTR module, but $$RTB is. I reported this to the Phone-In Consulting
people, expecting it to be handled as an enhancement request, but I'm pleased
to report that they are handling it as a bug.

Making it Smaller: A Formatter that uses the Resident System Routines

In the May/June (1987) issue of TC Interface, Bill Hassell, the "HP 1000 Guru,”
wrote a very interesting article called “Q-SUBS.” In it, he enlightens us on a
set of formatting routines which have been available in the CSL for four
years, were incorporated into %DECAR at RTE revision 4.0, and which will
soon be documented in the Relocatable Library Reference Manual. The entire
article is very interesting, and I highly recommend it, but the introduction to
Q-SUBS is of major interest here; it is a brief history of “The Formatter” and
why so many of us tend to avoid it. I have received permission from Mr.
Hassell to use parts of his article in the discussion which follows.

Some Advanced Software Techniques
3

The ANSI standard for a Fortran formatter requires that it be able to accept
and perform a run-time format, that is, formatting based on information
which becomes defined as a program runs, rather than the “usual” formatting
instructions which were defined when the program was written and
compiled. A formatter which complies with the standard must be able to
perform any kind of formatting all of the time, which requires typically 2.5K
words; a program which prints the word “test” on the user’s terminal and has
a compiled size of 25 words will require 5 pages (including the base page) to
run. Note that in addition to building the ASCII representation of the data,
the Formatter is also responsible for the system I1/O calls; this will also be
required of any limited-function formatter replacement.

KERMIT was not going to be a segmented program, and I knew as the job
began that I would probably not have space for “the formatter;” I decided, like
so many before me, to build my own set of formatter routines, but with a
difference. My formatter would exploit the system routines I was already
directly or indirectly using within KERMIT:

1) Since KERMIT is primarily concerned with file-transfers over a
terminal connection, the system I/O calls (EXEC-style) were already
available,

2) KERMIT was already set to use some fairly small string routines
(.5ST and .SSTC) for building and parsing packets, so they were
available anyway, and

3) the user would be able to perform masked file searches; these
routines perform conversions using IntToDecimal and
DecimalTolnt.

The first version of “tpFM” (terminal print-line formatter) appeared in
KERMIT consisting of three relatively small routines. The capabilities of this
formatter include character-strings and integer*2 or integer*4 numbers.
Number formatting permits left-justified numbers, and blank- or zero-filled
right-justified numbers. In IMRel, additional capabilities were required, so
the “fmXx” routines were born:

fmReset: clears the print-buffer

fmTab: pads spaces to the specified column

fmStr: appends character strings to the print buffer

fmI4: formats integer*2 or integer*4 numbers in decimal or octal
rust: performs zero- and blank-fill right-justification

(fmH4) formats integer*2 or integer*4 numbers in hexadecimal

I had anticipated the need for hex formatting in IMRel, but I never used it;
fmH4 can be found in a commented-out form, but it has been tested, so if you
need it, enjoy! The Fortran source for the largest of these routines (rJust) fits
nicely on a single page at six lines per inch, including comments and a
labeled-common area, they are obviously fairly small.

Both mini-formatters exhibit a calling hierarchy which I will illustrate using
the IMRel formatter. The number formatters convert their data to ASCII

Some Advanced Software Techniques
4

using DintToDecimal or DintToOctal (except hex formatting), and then call
rust. rJust performs any justification requested or fills the resulting string
with stars if the number is larger than the field would permit. What is
important is that the result of the number-formatting operation is a string,
which is appended to the print buffer using fmStr, just like any other
“normal” call to fmStr. The fmXx routines build strings into the print-line
buffer, and separate calls within IMRel copy the entire buffer to a device to for
listing and the major portion of the same print-line buffer to a file in order to
build the source file.

The tpFm routines in KERMIT work in a slightly different manner. All calls
require a text string as the first parameter; if that string ends with an
underscore, the line will be held for more formatting calls. A call which has a
string ending with anything else will still result in the requested formatting
operation, and then the line will be output to the user’s terminal. Once
terminal output is performed, the print-line buffer is automatically cleared
for re-use. This sequence of operations was quite sufficient for the relatively
simple formatting requirements of KERMIT.

Keeping it Small: A Segmentation Alternative to MLS or CDS

In the previous section, I noted that KERMIT was not originally a segmented
program. In addition to a few bug-fixes, I wanted to add a “run” command,
and I anticipated some future improvements as well. I was already out of
space, so what could I do? I required compatibility with both RTE-6 and RTE-
A in any solution I used, and I wanted the minimum number of code
differences between the versions for each system. I thought about the
similarities between RTE-A's CDS and RTE-6's MLS, but since you cannot use
DEBUG/1000 on MLS code, and since at that time, CDS and DEBUG were not
behaving well together, I determined that these were not applicable. My only
solution seemed to be “traditional” manual segmentation, and the existing
organization of KERMIT didn’t seem to lend itself well to that.

The “traditional” method of manual segmentation assumes that you have a
series of sequential processes to perform, few or no large loops, and localized
branching. In other words, if the program became too large, you could cut it
into a few relatively independent pieces, with a small main program to tie
them together. The main program starts the first processing segment, the first
segment would call in the second segment when needed, the second segment
would replace itself with the third, and so on. The segmenting method found
in the Adventure program is similar to this; the game is initialized in the first
segment, and then play processing shifts constantly between the second and
third segments. Even Adventure is somewhat unusual, however, because
the second and third segments together form a very large loop; the
connection between the two segments is fairly complicated as a result.

Some Advanced Software Techniques
5

It was clear that KERMIT would not lend itself well to this sort of treatment.
The theme of KERMIT is a central control (the command-processor module
or the server module) and a number of subroutines which perform the
needed operations. The only logical divisions seemed to be:

1) Command-processing, and all of the command-parsing routines

2) File-masking, which brought in a lot of system-library routines

3) Packet-I/O, with the packet-building and -parsing code.
What I needed was a method which would allow me to build overlays of
subroutines. The main would would need to know which subroutines were
in which segments, but it would still have all of its calls in place.

Fortunately, Link came to the rescue. Unlike LOADR, Link “remembers”
where a given module appears in a relocatable file, such as after a type-5
(segment) program. Even if the main needs to use a given routine, if it
appears positionally after a segment module, that routine will relocate in the
segment, and the main will link to the routine’s address; of course, the main
must insure that the appropriate segment has been loaded before it calls a
segment-resident subroutine. One possible problem occurs when subroutines
call other subroutines: you must insure that there are no cross-segment calls,
because the return addresses will get lost in the overlaid segment, even if you
arrange for the overlaid segment to be called back in. Therefore, some
routines could not be made segment-resident; they had to be in the non-
overlaid (“main”) code. My first cut at this type of segmentation was fairly
successful at accomplishing my goals; everything worked, but the linkage to
the file-masking code was unnecessarily complicated. The 1.99 revision of
KERMIT has removed this complexity.

For those who may still be using a revision of RTE for which there is no Link,
this segmentation method is still available. A long time ago, LOADR
required that all external references from the main had to be satisfied during
the relocation of the main or the first segment, but this hasn’t been the case
for many years. LOADR can also support subroutines in segments, but the
loading mechanism is more complicated than with Link. Given a main,
main subroutines, and three segments, each with subroutines, the following
loading sequence is effective:

1) Relocate file #1 consisting of the main, its subroutines, and the
segment-1 program. As LOADR encounters the segment-1 program,
it will attempt to satisfy all undefined externals from the main and
its subroutines from the system or user-defined libraries, and then it
will relocate the first segment.

2) Relocate file #2 consisting of the subroutines belonging to segment-1
and the segment-2 program. When LOADR encounters the
segment-2 program, any undefined externals from the first segment
will be satisfied from libraries as usual, and then the second segment
will begin relocation.

3) The relocation of file #3 proceeds as in the second step; the third file
consists of the subroutines to be loaded in the second segment,

Some Advanced Software Techniques
6

followed by the segment-3 program. Any undefined externals from
the second segment will be satisfied from user or system libraries.

4) The last file to be relocated consists of the subroutines to be located in
the third segment. Any remaining external references from the
third segment would be satisfied by the system and user-defined
libraries as the end command was given, and the load would be
complete.

Making it Faster: Data-structure Exploitation with Manual EMA-mapping

During the 1986 Interex conference in Detroit, Bill Gibbons gave us a talk on
“system” programming in Fortran. He made a very brief mention about
Extended Memory Arrays (EMAs) and mapping, and how a careful
programmer could arrange to reduce the overhead associated with EMAs to
nearly nothing. I had a performance problem in IMRel which I wanted to
solve, and this appeared to be the path to the solution.

First, though, for those who may be newer at this, a little refresher. EMAs
and the working-set portion of VMAs are implemented by setting aside two
or more pages of the user’s data space as a “window” into the physical
memory of the EMA or the VMA working-set. As the user references data in
the V/EMA, hardware sets this window, or “mapping-segment” (MSEG) so
that the addressed data is “visible” (mapped), plus the page following the
addressed data. Consider the following fragment:

do i=1,128 'Move 128 elements
Lclval (i) = EMAVal (i) !from EMA to local
End Do

Except for the first reference, remapping of the MSEG should not be required,
regardless of the actual types of the arrays involved (integer, real, complex, or
whatever), but the compiler will generate code so that each reference to the
array EMAVal will remap the MSEG! If we know where the MSEG is, and if
we know which part of the EMA is mapped at any given time, we can
dramatically reduce the overhead by removing the extra remapping
operations.

So how do we use this information? IMRel defines a 12-word symbol table
entry as follows:

Words Contents

1-8 Symbol-name (up to 16 characters)

9-10 Symbol-address (offset within a given relocatable space)

11 Symbol-identifier (gives symbol's relocatable space and origin)

12 Symbol-flags (gives symbol type and other information)
In order to simplify the access method as much as possible, I elected to map
three pages of symbol-table space at any given time (3 pages = 256 symbols);
this also made the conversion of a symbol-number to its EMA location quite
simple, using a = ibits(n,8,8) * 3; for a given symbol-

Some Advanced Software Techniques
7

number “n”, “a” in the above yields the first page-number of the 3-page space
containing symbol-number n. IMRel has three routines which manage the
entire symbol-table:

D

2)
3)

SALIAS

*

Notes:
1)

2)

3)

4)

Maplt converts a symbol-number to an EMA page-number and offset
within the MSEG (as above), and maps the appropriate EMA pages
via a call to MMAP:

call MMAP (<start-page>,<number of pages>)

Note that MMAP always maps an extra page,
PutSym copies a 12-word symbol-table record into the EMA, and
GetSym copies a 12-word symbol-table record from the EMA.

/MSEG/ = 29696 !See note 1
Subroutine PutSym(n, rec)
,Put symbol into EMA

common /MSEG/ MSEG !See note 1
integer*2 MSEG(0:3071) !See note 1
integer*2 n,rec(*) !See note 2
integer*2 a,MapIt !See note 3
a = MapIt (n) !See note 3

call MoveWords (rec,MSEG(a),SymSiz) !See note 4
return
end

The MSEG must be exactly three pages. If it is smaller, we would
have to handle page-crossings in two different places in a symbol; if
it is larger, the origin of the MSEG will be somewhere else, and the
MMAP call (inside of MapIt) wouldn’t map enough pages. Since
Maplt returns an offset within the MSEG, we must index the MSEG
starting at zero.

These lines limit the size of the symbol-table to 32767 symbols (I
don’t allow negative symbol-numbers); the definition of the local
array as an array is not strictly necessary.

The call to Maplt converts the symbol-number “n” into information
for MMAP (if needed) and an offset into the MSEG, returned as
Maplt’s value.

MoveWords can copy the data directly from the “local” (never-
mapped) space to the EMA (via a “locally-mapped” MSEG array).
The only required difference between the above and the GetSym
routine is that GetSym reverses the positions of the first two
parameters to MoveWords!

Some Advanced Software Techniques
8

The EMA overhead actually decreases over the traditional “automatic
mapping” method as the amount of contiguous data to be manually mapped
increases. It is the access to IMRel’s symbol-table which I wanted to improve,
and manually mapping the EMA reduced to 33% the amount of time
required to decode a given file! If I should need to increase the size of a
symbol-table entry at some later time, I would probably go to 16 words (even if
it wastes some space) so that the conversion of a symbol-number to an EMA
offset is still quick and easy.

Avoiding the “Waterbed Effect” with “Data-Hiding” and “Strong-Typing”

We at E-Systems have given a name to that property of some programs for
which a bug-fix in one spot invariably results in another bug in some other
spot; sometimes the new bug is even worse than the one just fixed. We call it
the “waterbed effect” after the property of that piece of furniture to rise in
some place other than where you press on it. With rare exception, programs
exhibiting this behavior have:

1) Very large modules and very few subroutines

2) Implicit typing, or “implicit integer a-z” typing

3) No labeled commons, or one very large labeled (or unlabeled)

common

By now, most of us already recognize the need for modular design of our
programs, so I won’t dwell on the first point. Suffice it to say that a well-
tested subroutine is not likely to misbehave. But beyond modularity, there
are a few methods I will describe which can help to reduce the waterbed effect
in a program.

It has been said that Niklaus Wirth, the father of the Pascal language, never
had to program for a living, else he would have arranged for variables to be
useable without declaring them first, as in the implicit typing rules of Fortran.
I am a poor typist, but even the best ones occasionally have typographical
errors, and “strong-typing” rules as found in Pascal provide the nearest thing
to a spelling-checker that I have found so far. By adding implicit none to the
top of each and every module, Fortran becomes a relatively strongly-typed
language too; the only things you don’t need to declare are the intrinsic
functions. With implicit none, Fortran warns me about the untyped
variables, which could be typographical errors, a missing include statement, a
missing declaration, or some other error. Since I also never use dimension in
my code, preferring to explicitly type and dimension a variable all in one step,

eg.,
integer*2 array(250),1i,3,k,parms{5)

Fortran also warns me about any attempts to redefine a variable I have
already declared in a labeled common. This type of error can be frustrating to

Some Advanced Software Techniques
9

try to find at run-time; having Fortran find them for me as I compile makes
the job much easier by removing a whole class of possible mistakes.

In Kernigan and Plauger’s Software Tools, you can read about the concept of
“data-hiding.” Stated simply, ”A piece of software cannot easily change the
values of variables to which it has no access.” Ignoring the lack of memory
protection between pieces of the same program from each other under RTE,
and assuming that all array indices stay within their bounds, the concept
holds up well in practice. One must first segregate groups of variables into
functional areas, like main controls, file controls, communications,
debugging aids, formatting, and so on, as labeled commons. By setting up
each labeled-common area as its own include-file, you can ”hide” the
unneeded information from a given routine (as opposed to placing all of the
labeled-common areas into a single include file). Then, by only including the
functional groups needed by a given routine, you can be more assured that a
file-handling routine with no need for communications will not be able to
accidently alter a communications parameter, and vice-versa. Some of the
beneficial side-effects of smaller, separately-includable labeled-common areas
include

1) Ease of documentation: redundant comments (you do comment
your include-files, don’t you?) can be eliminated by only listing the
includes in the block data routine.

2) Automatic maintenance of storage order: if you need to change the
common, you only need to re-compile the program once you are
done.

3) Easier alteration of a variable’s data-type: you are not allowed to
equivalence an integer array and a string to each other in a
subroutine if either is passed as a formal parameter, but if an array is
in a common, you could even equivalence it to two different
character formats, if desired.

4) Faster compiles: the time needed to compile the routine is reduced,
since the compiler needs to keep up with fewer symbols. Large
commons clutter up the symbol-table with things that would never
be used.

5) Easier to debug: a large number of symbols can prevent DEBUG/1000
from debugging your program due to a symbol-table overflow; by
only including the variables a routine needs, the likelihood of this
condition is dramatically reduced.

I present the following as an example of the utility of data-hiding efforts. In
May of 1987, I suddenly found myself with a need for an absolute
disassembler. Looking in the CSL index, then in Plus/1000 (its predecessor),
and then in LOCUS (now we're really going back...) I could not find what I
needed. Even though it would take (I thought) some time, my only choice
seemed to be the extension of IMRel’s capabilities to include type-7 files; the
effort was actually complete in one hour!

Some Advanced Software Techniques
10

IMAGE/1000: SECRETS HP NEVER TOLD YOU

A, Marvin MclInnis
Consultant
5250 W. 94th Terrace. #114
Prairie Village, KS 66207

INTRODUCTION

IMAGE/1000 (92069x) is an eXcellent product which has beconme
something of a stepchild since the introduction of IMAGE/1000-II
(92081x), but the "old” IMAGE is still the better choice for many
applications.

This presentation is directed to system managers, analysts, and
programmers who, like the author, do not have access to IMAGE source
code but want to get the best possible performance from the product.
We will present at least a dozen techniques, developed over ten years,
which allow users to surmount some of the apparent limitations of
IMAGE and to significantly improve its performance in real-world
applications. We will emphasize the benefits which can be achieved by
adopting a requester/server structure for IMAGE programs. We will
also discuss possible future extensions to these techniques, as well
as the obstacles to successfully implementing them.

Most of the techniques presented here are supported by HP, but some
are not; at least two performance improvements can be realized with no
programming whatsoever! While many of these techniques were
originally developed under RTE-4B and RTE-6, this presentation will
presume an RTE-A environment. Utility programs to support some of the
techniques described are available on the 1987 HP1000 Users
Conference swap tape or from the author.

DATA BASE FUNDAMENTALS
At the most fundamental level, a data base can be defined as as a
technique or structure for storing data to facilitate the retrieval of
that data. Period. In practice, a computer data base system usually
includes software to create a data base, to store data in it and
retrieve data from it, and to perform routine maintenance operations.

There are four primary benefits which should accrue from implementing
a data base on a computer system:

1) Rapid random-access retrieval of data.
2) Flexible access to data.
3) Improved data integrity.

IMAGE/1000: Secrets HP Never Told You
1012

4) Standardization of the programming environment.

Note that economy of storage and small program size are NOT among the
benefits of data base. Indeed, it has been suggested that computer
manufacturers write data base software in order to sell more discs!
(Does anyone remember the reason Intel originally developed the
microprocessor? It was because they were in the semiconductor
MEMORY business!)

IMAGE/ 1000 FUNDAMENTALS

The original HP IMAGE/1000 (92063x ... IMAGE/1000-07), was introduced
late in 1976. A modified network-model data base, IMAGE pretty well
satisfied our four criteria and was a real step forward for HP,
despite severe limitations under RTE-2 and RTE-3. This product was
superseded by the "old" IMAGE/1000 and is no longer sold by HP.

The "old" IMAGE/1000 (92069x) evolved from the original and was
introduced at about the same time as RTE-4B. The enhanced file
system under RTE-4B, using double word integers, at last allowed
really large IMAGE data bases, although RTE-L, RTE-XL., and RTE-A.l
retained the earlier limits. Speed, data integrity, and the
programmatic interface were all improved as well. While "old" IMAGE is
still listed by HP as an "active" software product, it suffers from
rather poor support and is for all practical purposes a "mature"
product.

Finally, IMAGE/1000-1I1 (92081x) was introduced in 1983, shortly after
the introduction of the hierarchical file structure of RTE-A. While
still evolutionary, IMAGE-II was a totally new product (with a price to
match). Significant differences of IMAGE-II were its use of a central
data base server program and extensive recovery facilities for
enhanced data integrity.

Unfortunately, IMAGE-II has been plagued with "features" and
performance problems which apparently still persist four years after
its introduction. But despite these problems, IMAGE-II is by far the
better choice if you are less concerned about performance than you
are about data integrity facilities and HP support.

In this presentation we will limit ourselves to the "old" IMAGE/1000.
The "old" IMAGE is still an excellent product, and there is a lot we can
do to overcome its limitations and shortcomings.

AN IMAGE WISH LIST

In the limited time and space available, we are going to present a
handful of successful techniques we have used with a number of large
and very active IMAGE data bases. Let's start with with an IMAGE wish
list.

IMAGE/1000: Secrets HP Never Told You
2.

First, we would like to be able to overcome some of the IMAGE linits,
especially under RTE-A:

- We need to be able to accommodate any number of users
at a time, certainly more than 8!

- We would like to be able to create and maintain data
bases under RTE—-A as large as under RTE-6.

Second, we need to improve the security of IMAGE:

- We need to be able to perform more secure DBPUTs,
DBUPDs, and DBDELs in a multi-user environment,

- We need to be able to maintain the structural integrity
of the data base under all conditions .

Third, we would like to explore ways to improve the performance of
IMAGE. We would like to obtain maximum improvement possible, with a
minimum of programming and complexity. Some techniques we might
examine are:

— Obtaining useful performance data

- Optimizing IMAGE's use of the FMGR file system

— Using multiple disc drives and interfaces

- Minimizing disc overhead

- Performing faster serial reads

- Performing faster chained reads

BUILDING A LARGE DATA BASE UNDER RTE-A

According to the HP literature, you cannot build large IMAGE data
bases under RTE-A. The published limits are:

- Total data base size 800 Mb
- Maximum data set size 4 Mb
- Maximum data entries per data set 32,767

Besides being inconsistent, these limits would come as a surprise to
some of my clients, one of whom has an RTE-A IMAGE data base of 348
Mb, with a single data set larger than 200 megabytes, several data sets
with more than 200,000 entries each (one has 870,000 entries), and
more than 40 simultaneous users! Putting it as politely as possible,

IMAGE/1000: Secrets HP Never Told You
3

these limits are pure bull dust! HP just never got around to finishing
FMGR, its libraries, and its utilities when RTE—-A superseded RTE-A.l.

The IMAGE library routines and most of the FMGR library routines work
just fine. The only problems are FMGR itself, and the ECREA library
routine. DBDS, the schema processor, can‘t build a large data base
because ECREA will not create an extended file of specified size.

There are two solutions:

1) You can run DBDS on an RTE-6 system and then use FC
to move the empty data sets to your RTE-A system. Be
sure to specify the “L" option for the copy so that FC
will do its own FMGR directory access rather than
calling the ECREA routine.

2) Create the IMAGE root file with DBDS, using the options
ROOT, NOSET, and TABLE. Then run our utility MDBDS (on
the swap tape) for each data set in the data base, using
the data set specifications contained in the DBDS list
output.

MDBDS manages to create the large FMGR files by calling
ECREA with SIZE(1) = -1 and then truncating the file to
the desired size with ECLOS (which works correctly).
Here is a sample code fragment:

SIZE (L) = ~1
CALL ECREA(LCE,ERR ,NAME ,SIZE,2,5ECU,CRN,DCES , IRTM)
ITRUN = (IRTN/S 23 - SET_SIZE

CALL ECLOS(DCE,ERR , ITRLM)

After creating the data sets, MDBDS also initializes
them just like DBDS does. But since MDBDS uses large
data control blocks it is faster. Believe it or not, this
works every time! There are also other reasons to use
MDBDS, which we will cover later.

Whichever method you use, you will soon discover that the RTE-A FMGR
doesn't know about extended files. D.RTR works correctly, so the FMGR
"PK" command will work, but the "CO" command will corrupt your data
sets. Whenever you move extended FMGR files on an RTE-A system, you
MUST use the FC utility, using its "L" option. Curiously, the "DL"
command works correctly, but you will get an ominous FMG-001 error if
you use the "LI" command on an extended file; trust me, you can just
ignore it! Our utility program DBCHK (on the swap tape) will allow you
to examine records of extended files.

WARNING: Large data sets created this way are not supported by HP,
although we think they should be. We have, however, been using these
techniques successfully since the introduction of RTE-A in 1983.

IMAGE/1000: Secrets HP Never Told You
- 4 -

DATA INTEGRITY ISSUES WITH IMAGE

The integrity of a network model data base (including IMAGE) can be
breached in two basic ways: 1) corruption of the structure of the data
base, and 2) corruption of data record contents. Note that data base
integrity issues in IMAGE are always concerned with writes to the data
base (the DBPUTs, DBUPDs, and DBDELs), since those are the operations
which modify its data and/or structure.

Corruption of the data base structure is always a very serious event
and, when this kind of damage is detected, all data base activity should
be stopped immediately until it has been repaired. The primary
symptoms of a corrupt data base structure are broken chains: either 1)
chains which are incomplete (links are missing) or 2) two chains which
contain the same link. In IMAGE, broken chains are usually the result
of either a system halt or a program abort.

There is little you can do to protect IMAGE from a system halt, but here
are a few suggestions:

— Adopt a good backup plan and follow it religiously!

- Locate the system console where it cannot be rebooted by
ordinary users.

- Locate the CPU and disc in a low-traffic area which is
kept clean and well ventilated; a separate room is ideal.
Cables should be carefully routed and tied. Clean
filters once a month.

- Invest in a good quality uninterruptible power supply
(UPS) for the CPU, discs, and CRT terminals. If you do
not power your terminals from the UPS, and especially if
you use block mode, you should always design your
programs survive a multiple CRT lobotomy.

— Keep your CE (and anyone else with a screwdriver) away
from the system unless there is a known hardware
problem and the data base is closed. If you are on a
maintenance contract with HP, you should insist that your
CE know how to safely shut down YOUR system.

The DBCOP and RECOV modules of IMAGE provide fair protection of the
data base structure after a program abort, but only if you remember to
run RECOV! Of course, you can avoid aborts in critical areas of code
if your programs have been carefully designed and coded, include
extensive error checking, and have been thoroughly debugged in an
actual production environment.

You can achieve additional protection against program aborts or system

IMAGE/1000: Secrets HP Never Told You
. 5 i

halts by performing only “soft" deletes from user programs. This
requires that you define a single word (or two character) flag field in
each manual master or detail data set. Then, rather than doing DBDELs
in your programs, perform DBUPDs to set the flag field to a unique
"delete" value. The data base structure will be protected, since the
DBUPD does not modify the chain structure. Actually deleting the
flagged records can be accomplished by & batch process as part of your
backup procedure or at some other non-critical time.

PROTECTING DATA RECORD INTEGRITY

If IMAGE has an Achilles' Heel, it is the difficulty of maintaining the
integrity of data record contents when performing DBPUTs, DBUPDs, and
DBDELs in a multi-user environment. And the culprit here is not IMAGE
itself, but the FMGR file system's data control block (DCB) buffering
scheme.

The essence of the problem is that FMGR's DCB buffering does not
provide a reliable way to force physical reads from disc. When your
program calls DBGET., the record is moved to your buffer from the DCB;
there is no way to determine whether or not a physical disc read was
performed.

For example, a record can be modified by a program, and the change
posted to the disc, but another program’'s DCBs may not reflect the
update. Consider the following scenario:

1) Program A and Program B read the same record from the
data base and each modifies its own copy.

2) Program A locks the data base, re-reads the record.,
checks it for changes since the first read, calls DBUPD,
and unlocks the data base. Note that DBUPD does post
the DCB contents to disc.

3) Program B now locks the data base and re-reads the
record, but this read is from the DCB (not the disc!) and
it returns the original data. Program B now checks the
record, calls DBUPD, and unlocks the data base.

4) The data base on disc now reflects Program B's update.
Program A's update has been lost. Even worse, if
Program A re-reads the updated record it will get its
own update data and not what is now on disc!

The "official" workaround is to call DBCLOS for each of the data sets
which will be affected by the DBPUT or DBUPD before performing the
operation:

1) Read the record (into program buffer A) and modify it
{(into program buffer B).

IMAGE/1000: Secrets HP Never Told You
6

2) Lock the data base and call DBCLOS for each data set
which will be affected.

3) Re-read the record (into program buffer C), which will
re-open the data set (and its DCB) and cause a physical
dtsc read.

4) Check the record for any changes from the original read.
S) Call DBPUT or DBUPD.
6) Unlock the data base.

Of course, all of the data set closes and re-opens will vastly increase
the time required for a simple DBPUT or DBUPD. And even this doesn't
guarantee data record integrity; we have observed mysterious cases
of duplicate DBPUTs and incorrect DBUPDs even with this technique.

A BETTER SOLUTION

More than ten years ago, HP encountered a similar problem when the
FMGR was added to RTE: maintaining the integrity of the disc directory
structure in a multi-program environment. The solution, which is still
in use in RTE-A today, was to separate the directory manager (D.RTR)
from the rest of the FMGR file system.

The FMGR file system and the program D.RTR are an excellent example
of a '"requester/server" software structure. User programs {(and,
usually. RTE processes) never access the disc directories themselves,
but through “calls" to D.RTR. The user programs (and RTE) are
"requesters" and D.RTR is a "server.,"

There are several advantages to this structure:

A single server can service any number of requesters,
through request queues maintained by RTE.

- The server automatically guarantees data consistency
among all requester processes.

- The server can be very carefully coded for maximum
efficiency and extensive error handling.

- The requester/server relationship provides a safe and
uniform programming environment for users.

- Critical code exists only in the server, rather than being
duplicated in each program, thus enhancing security and
conserving valuable user program space.

IMAGE/1000: Secrets HP Never Told You
7

- Critical data structures (disc directories, for example)
are isolated from direct access by poorly coded user
programs.

There are, of course, some disadvantages to the requester/server
structure. Probably the biggest disadvantage is that all requester
calls are queued through a single server, which becomes the small end
of the funnel. A secondary problem with the technique is that a server
abort affects all of its requesters, which can have severe
consequences. But overall, for most applications the advantages far
outweigh the disadvantages.

AN IMAGE SERVER

We developed and began using a requester/server structure for our
IMAGE programs in 1979, primarily to overcome two problems:

1) The 8-user limit imposed by the FMGR file system.

2) The problem of data record integrity with DBPUT,
DBUPD, and DBDEL.

HP actually showed us the way in an IMAGE sales brochure from the late
1970s entitled (we think) "IMAGE/1000 Performance Brief."
Unfortunately, our copy of this seminal brochure has been lost and HP
couldn't find one for us to include in this presentation. The program
structure described in HP's brochure and adapted by us consists of a
single data base server (which we named MSDBA) and any number of user
programs. Communication between the user programs and MSDBA uses
Class 1/0 and Resource Number locking.

Our program MSDBA, which is coded for maximum efficiency and includes
extensive error handling in addition to IMAGE's, performs five basic
functions:

1) At startup: initialize and open the data base. Place
"public” Class and Resource Numbers in a system common
area.

2) Perform integrity checks on the data base and report its
status.

3) Receive IMAGE transactions from requester programs,
perform the desired operation, and return the results,

4) Maintain data base activity statistics for integrity
checking and performance evaluation.

5) At shutdown: carefully close the data base, release

Class and Resource Numbers, and flag system common.

IMAGE/1000: Secrets HP Never Told You
8

MSDBA is compact (19 pages, including buffer space) and fast, and
includes most of the tricks and techniques described in this
presentation. MSDBA consists of a main segment and two overlays: the
first overlay contains the IMAGE DBOPN and DBCLS calls, as well as the
open/close integrity checking and error reporting code, and the second
overlay contains the code for interprocess communications, handling
IMAGE requests, error checking, and generation of activity statistics.
With this partitioning, overlay loads are required only at startup and
shutdown, and we don't waste space by keeping DBOPN and DBCLS in
memory all the time.

Since all DBPUTs and DBUPDs to the data base are through MSDBA, and
since MSDBA has only one set of DCBs, we avoid the overhead of
repeatedly closing data sets and there is never a problem maintaining
the integrity of data record contents. Note that we only do "soft"
deletes, as described earlier.

Even though MSDBA is normally the only program accessing the data
base, we still open the data base with IMODE = 1. We have measured
less than 10% overhead on writes to the data base using the shared
mode rather than an exclusive open, and the shared mode allows
simultaneous access by QUERY (be careful now!) whenever necessary.

IMAGE REQUESTER LINKAGE

Requester programs are coded to call our own linkage routines rather
than calling IMAGE library routines directly. These linkage routines
are quite compact (less than one page total), yielding MUCH smaller
programs than with the IMAGE routines. As stated earlier, coordination
and communication between requester programs and MSDBA is via Class
170 and Resource Number locking:

1) The requester program gets the "public® Class and
Resource Numbers from system common, and also obtains
a "private" class number from RTE for MSDBA's reply.

2) The requester linkage routine formats the request
buffer and then attempts to lock the Resource Number
(global lock, queued, with wait).

3) When the RN lock is granted, the requester does a Class
Write/Read of the request buffer using the "public"
Class Number, and immediately issues a Class Get
request on its own "private" Class Number to await
MSDBA's reply.

4) MSDBA, which has been suspended by a Class Get on the
"public" Class Number, receives the request buffer and
immediately unlocks the Resource Number. (The RN
coordination ensures that only one request buffer can
be in SAM at any given time.)

IMAGE/1000: Secrets HP Never Told You
- 9 -

S) MSDBA performs the requested operation on the data
base (using standard IMAGE calls), does a Class
Write/Read of the results using the requesters
"private" Class Number, and immediately issues another
Class Get against the "public" Class Number.

6) The Class Get previously issued by the requester
against its “private" Class Number completes, and the
linkage routine passes the data from MSDBA back to the
requester program,

As you can see, requests to MSDBA are efficiently overlapped even
though only one request buffer at a time is present in SAM, and since
most IMAGE calls involve disc access, there is plenty of CPU time
available to manage the Class 1/0 request overhead.

IMAGE REQUESTER/SERVER RESULTS

You really have to try this requester/server technique to realize just
how powerful and efficient it is! By far the most significant
achievement is that any number of user programs can access the data
base simultaneously, while maintaining the same data base integrity as
if there were only a single program. And as a bonus, programs are much
smaller and somewhat easier to maintain.

It is also worth noting that everything we have described so far about
our IMAGE requester/server is legal and fully supported by HP. If you
don't try any of our other IMAGE tricks, try this one!

We have been using this technique on various real-world systems,
under RTE-4, RTE-6, RTE-A.l, and RTE-A, since 1979 with excellent
results. Our client with the 348 Mb RTE-A IMAGE data base on an A600
system has been running our IMAGE server since 1982, This is a very
active production system (the client has NO technical staff), with
typically forty CRT terminals accessing the data base at any given
time. In the five year life of this system we have experienced a total
of ONE broken chain incident, caused by a supervisor who panicked and
pressed the “BREAK" key before shutting down the data base. (Our
IMAGE server's own integrity checks caught the error on restart, and we
were able to carefully patch the broken chains in about two hours. Yes,
they DID have a good backup, but a reload on this system would have
taken more than ten days!)

Programs using a simple IMAGE requester/server may be somewhat
faster or slower than programs coded with direct IMAGE calls. The
bottom line is that you probably won't see much performance difference
using a requester/server structure. While a small number of programs
may run slightly faster, DCB and/or disc directory thrashing may slow
the server when a large number of requester programs are active.
Balanced against that, there may be less swapping overhead since

IMAGE/1000: Secrets HP Never Told You
10

requesters are smaller than equivalent "plain IMAGE" programs. And, of
course, without the server you couldn't have more than eight programs
accessing the data base anyway!

We have even experimented with multiple servers, based on techniques
used successfully on Tandem Computers systems. While multiple
servers should be faster, even with just one CPU, the performance
improvements we observed weren't worth the other problems we created
(those pesky DCBs again!).

But stick with us! We have developed a number of other techniques to
speed your IMAGE application, and they are particularly effective in a
requester/server environment.

INCREASING IMAGE PERFORMANCE

As noted earlier, rapid random retrieval of data is one of the primary
reasons to use a data base. For the record, we really aren't too
concerned with the speed of writes to the data base. Data published
by Tandem Computers, covering a wide range of computer systems and
applications, indicates that in a data base there are typically 20 reads
performed for each write. Thus, when we talk about increasing the
performance of an IMAGE data base, we need to expend most of our
efforts to decrease the read (DBFND, DBGET) times.

As with most data base systems, physical access to the data base on
disc is the most important factor in determining IMAGE performance.
While a faster CPU will help a little, speeding up IMAGE is primarily a
matter of reducing disc access times.

When we examine the speed of HP discs (and almost all other discs) we
find that seek time (moving the heads from track to track) is the most
significant variable. The potential for improvement is significant: we
once encountered an application in which we more than DOUBLED the
throughput by simply rearranging the physical allocation of disc space.
If we can reduce head motion we can speed up IMAGE, it's that simple!

Reduced head motion is one of the primary reasons that IMAGE can be
faster than IMAGE-II. The older FMGR file system allows you to control
where your data sets physically reside on disc, and data sets created
with DBDS or MDBDS are guaranteed to occupy contiguous disc tracks.
With the newer hierarchical file system it is difficult to control the
physical location of files, and IMAGE-II data sets will typically be
fragmented and scattered all over the disc.

As you will see, most of our proven techniques for improving IMAGE
performance either reduce the frequency of physical disc accesses or
attempt to minimize disc head motion:

- Placing the data base on its own disc drive and/or
interface.

IMAGE/1000: Secrets HP Never Told You
._11_

- Reducing directory thrashing by increasing the number of
data control blocks (DCBs) IMAGE builds in your program.

- Intelligently selecting the physical location of data
sets on the disc.

- Performing serial reads outside of IMAGE, using large
DCBs.

- Performing smarter chained reads.
USING A SEPARATE DISC DRIVE FOR YOUR DATA BASE

In our experience, allocating a separate disc drive and interface to the
IMAGE data base will result in substantial performance improvements.

Placing your IMAGE data base on a separate disc drive will almost
always yield a good speed improvement. Not only is head motion
reduced because it is no longer shared with other system activities,
but seeks on your IMAGE disc can occur concurrently with seeks on the
other system disc(s).

The MAC discs and controllers can transfer data to and/or from two disc
drives simultaneously, at slightly reduced transfer rates. But while
more than one CS$/80 disc drive can be connected to a single HPIB disc
interface card on A-Series systems, the interface can handle only one
disc data transfer at a time. Adding a separate HPIB interface for
your IMAGE disc drive will allow full-speed transfers concurrent with
I1/0 to other discs.

These improvements are significant enough that we almost always
recommend both a separate disc drive and interface for your data base
on busy RTE~A systems. Your users will notice the difference!

ELIMINATING DIRECTORY THRASHING

We have always had problems with directory thrashing in IMAGE, and they
became worse when we began using our server.,

When a program opens an IMAGE data base, the DBOPN routine builds a
number of data control blocks in free memory space at the end of your
program. DBOPN builds these DCBs with a 256 word (2 block) buffer, and
the number of DCBs created is equal to the largest path count in the
data base plus one, up to a maximum of sixteen DCBs per data base.
Since IMAGE uses the standard FMGR file system routines, access to a
data set will always involve one of these DCBs. Unfortunately, if the
number of DCBs built by DBOPN is less than the number of data sets in
your data base, the DCBs will have to be "recycled" each time your
program needs to access a data set not currently open.

IMAGE/1000: Secrets HP Never Told You
-12_

This arrangement would probably be satisfactory if all programs were
like QUERY, but production IMAGE programs seldom are. The result is a
lot of disc directory thrashing as data sets are repeatedly opened,
closed, and opened again. Throughout the history of IMAGE, HP has
employed several algorithms for recycling DCBs but the basic problem
remains: data set opens and closes are high overhead functions in RTE
(lots of calls to D.RTR and disc seeks to the directory), and they slow
down your IMAGE application. And worst of all, the overhead grows
geometrically as data base activity increases.

Clearly, what we need is more DCBs (ideally one DCB per data set),
rather than a better recycling algorithm. Repeated requests to HP over
several years for 1) a fix, 2) a workaround, 3) an enhancement, and
finally 4) access to IMAGE source code to fix it ourselves were to no
avail,

Finally the solution dawned: we just trick IMAGE into building more
DCBs. AND IT IS SO SIMPLE!!! Even better, there are at least two ways
to do it, and one of them is fully supported by HP and requires no
programming at all!

Trick #1: Use dummy data set declarations in the schema -

Since IMAGE builds DCBs based on largest path count, all we need to do
is to modify our schema and add dummy data sets which will result in a
path count equal to the number of DCBs we want minus one! As an IMAGE
data base can have up to 50 data sets and most real world data bases
have far fewer than that, there should be plenty of spares to use.

Here is a sample schema addition to obtain (n + 1) DCBs:
ITEMS: DCBFIX, X& (1,1);
SETS: NAME OCBEEY::12, Aj

ENTRY : DCBFIX ()
CAFACITY: 1L

NAME : ODCBl::12, i
ENTRY : OCBFIX (LCEEEY! ;
CAFACITY: 1;

NAME : pce2::13, Ds
ENTRY : DCBFIX (DCREEY) ;

CAFACITY: 1;

NAME = OCEm::12, Li;
ENTRY : OCBFIX (QCBEEY) ;
CAFACITY: 13

IMAGE/1000: Secrets HP Never Told You
_13..

Remember that you can get up to 16 DCBs this way, no more. Be sure to
place your dummy ITEM and SET declarations AFTER all other "real"
declarations, so that the existing ITEM and SET numbers won't be
changed. This trick does the job, takes up minimal space, and is HP
supported. And if you aren't concerned about what HP thinks, you don't
even have to build the "trick" data sets as long as your programs never
reference them,

Trick #2: Patch the root file -
WARNING: This trick is not HP supported.

After discovering trick #1, an examination of the IMAGE root file
disclosed an even simpler way to get more DCBS. There it is in word 4
of the root file: the number of DCBs for DBOPN to build!

All you have to do is patch word 4 of the root file to the number of
DCBs you want. (I wonder what happens if you use try a number greater
than 16 ... we've never tried it) You can use CMMA or write your own
6-line FORTRAN program., but please shut down your data base and back
up the root file first!!

Besides being easier, patching the root file is really a better solution
than trick #1 since it doesn't create any extraneous data sets and can
be performed on an existing data base without having to do a reload.
We have used this technique successfully on several very busy data
bases and have observed a measurable improvement in the speed of our
servers each time, with no problems whatsoever.

Of course, with either method you should size up your IMAGE programs
(or your server), using LINK's "SZ2" command, to increase the free space
available for the DCBs. 1It's neat to do a "DL" of the data base
cartridge and see all of the data sets open at once. Try it yourself.
We think you'll like it. And we think HP should support it.

PHYSICAL ARRANGEMENT OF YOUR DATA SETS

DBDS creates your IMAGE data sets in the order in which they are
declared in your schema, which is logical enough. But the default order
is almost certainly not the best arrangement from the standpoint of
minimizing disc head motion.

Think about your application. You probably have a few primary data
sets which are accessed very frequently, and a number of secondary
data sets which are accessed only occasionally (e.g.., comment or
annotation records). If one of your secondary data sets lies between
two very active sets, you are wasting valuable time every time the
disc heads seek across your secondary set.

As an example, our client's 348 Mb RTE-A data base includes a 223 Mb
secondary data set containing compressed text data. For a long time we

IMAGE/1000: Secrets HP Never Told You
14.

left this huge data set where DBDS would have created it, in the
physical middle of the data base with some very active data sets on
either side. It doesn't take a genius to realize how much disc time we
were wasting. But simply rearranging the data sets resulted in a big
improvement.

This is one reason our utility MDBDS (on the swap tape) is written to
build only one data set at a time: to allow you to choose the
arrangement of your data sets. But how can you determine the best
arrangement? There are two ways.

The simplest and easiest method is TLAR (“that looks about right"),
based on your understanding of the data base and the nature of the
data base transactions in your application. The general rules are:

- The location of large data sets is more critical than
small ones.

- Locate what you expect to be the most frequently
accessed data sets near each other.

- Try to locate detail data sets near their related master
sets containing the most frequently used keys.

- Locate large data sets away from the more active
areas.

- Locate less active data sets (especially large ones) at
the "edges" of the disc cartridge.

A more sophisticated optimization method is to let your programs
generate data set activity statistics for you. You can code each
program to include a simple one dimensional table of accesses to each
data set and store that data to a file when it closes the data base. A
slightly more complex method is to maintain a two dimensional table of
previous data set accessed vs. current data set being accessed,
yielding not only set access frequency data but also "from/to" data on
the frequency of seeks (head motion!) between data sets. Of course,
this technique becomes much more practical if you are using a single
data base server.

Large, very active data bases will benefit most from disc optimization,
but you will see improvements in almost any application. Try it; it's
worth the effort!

PERFORMING YOUR OWN SERIAL READS

IMAGE serial reads (DBGETs with IMODE = 2 or 3) are among the worst
system hogs known to HP users. If you have a large data base, doing
your own serial reads will be much faster than IMAGE and will inflict
less performance degradation on other users of the system.

IMAGE/1000: Secrets HP Never Told You
15

Although IMAGE serial reads tend to be both disc and CPU intensive, the
use of 256-word DCB buffers is the primary problem. 256 words is a
good DCB buffer size for chained or directed reads, which tend to be
random, but it is way too small for most serial reads.

Fortunately, since IMAGE data sets are implemented as FMGR type 2
files, we can safely perform our own serial reads on them using FMGR
calls. And if we use large DCB buffers when we open the data sets, we
can perform our serijal reads with far fewer physical disc accesses
than IMAGE requires.

The general procedure is:

1) Open the data set file (using a large DCB buffer), save
the first 16 words of the DCB, close the file, and
restore the first 16 words to the DCB.

2) Lower our priority to be polite.

3) Read the file until we find a record of interest.
4) Reset our priority to its original value.

5) Re-read the record of interest using DBGET.

The data returned by our own reads will will consist of the IMAGE media
record concatenated with the full data record. The media record is
documented in the IMAGE manual, and you can get the sizes of the media
records in your data base from your DBDS listing. EQUIVALENCE
statements in your FORTRAN programs will allow you to painlessly
reference any desired data item in the record.

Here is a rather generalized code example (no error checking!):

¥ lpen file, save LR, close file, and restore LCH
IMODE = 1
CALL OFENMC(IDCE,IERR,IDESET,IMODE,ISECU,ICK, INCES)
CALL MoveWords (IDCE,IBUF ,1£)
CALL ECLOS((ILCE
CaLL MoveWords (IBUF,IDCE, 1£)
* Set starting point of read
NUM = ISTART
* Lower owr priority
FRI = GETFR{) ! get program priority
100 CALL SETFR(FRI + 20) ' set lower priority
* Ferform owr own zerial read until gqualified record found
200 CALL EREADR(IDCE, TERR,IBUF ,IL ,LEN,NUIM)

IF(LEN .EG&. —1) THEN ' end of file
CALL SETFR (PRI ' treset priority)
GO TO s

IMAGE/1000: Secrets HP Never Told You
16

ELSE IF(IBUF (1) .EQ. Q) THEN ! empty record
NUM = NUM + 1

GO TO 200

ELSE IF(record test) THEN ' qualified record
CALL SETFR(FRI) ! (reset priority)
GO TO =200

ELSE ' mot qualified
NUM = NUM + 1
GO TO 200

ENDIF

* Re-read selected record with IMAGE
200 IMODE = 4

LIST = 2HEe

IARG = NUM

CALL DBGET{IRASE ,IDRSET,IMODE,ISTAT ,LIST,IEUF ,IARG}

IF{record test) THEN ' record we want
GO TO yyy

ELSE ' don‘t want this are
NUM = NUM + 1 ' continue the search
GO TO 100

ENDIF

The old "save the DCB" trick which we used here is definitely not
supported by HP, but we have been using it successfully since 1976!
And it is completely safe as long as it is used only to read a data
set. (This powerful technique can also be used in a lot of other ways,
not all of them as safe as this.) The main reason we use it here is to
avoid using valuable disc directory entries.

CGETPR and SETPR are our own routines to get and set our program's
priority. Since SETPR calls the RTE library routine IXPUT, it may or
may not be supported depending on whether or not IXPUT is documented
in this year's manuals.

A natural question is "How big should the DCB buffer be?" In general,
based on our own testing on real-world systems, disc throughput will
generally increase logarithmically with the size of the DCB buffer. And
as the size of the DCB buffer increases, a program will slowly
metamorphosi_ze from a disc hog to a CPU hog! (That's why we drop the
program’s priority while doing our own serial read.) We recommend a
DCB buffer size of 8, 12, 16, or 24 blocks (1024 to 3072 words). If you
have more buffer space available, try it. Remember that the actual
buffer size you use should be 1) a multiple of 128 word blocks, and 2)
an even divisor of the file size; any extra will be wasted. As a
corollary, avoid file sizes which are a prime number of blocks or, in
the case of IMAGE data sets, two times a prime.

Finally, after finding a record with your own serial read, always
perform a directed DBGET (IMODE = 4) to re-read it. This will return
you to a pure (HP supported) IMACE environment and ensure that IMAGE's
internal structures point to the record you think they do!

IMAGE/1000: Secrets HP Never Told You
17

If you frequently perform IMAGE serial reads, and particularly if you
have a large data base, try these techniques. You WILL see an
improvement in performance, and your users will notice it too!

PERFORMING MORE EFFICIENT CHAINED READS

The chained record structure of IMAGE is a central characteristic of
the network data base model. While the chained data structure can be
very powerful, there is relatively little a user can do to improve the
speed of chained reads since they tend to result in semi-random disc
seeks. The techniques used to speed up serial reads won't work, but
here are a few other suggestions which can speed up IMAGE chained
reads for you:

Use backward chained reads -

When you perform a DBPUT, the new record is inserted at the foot of the
related chains unless a chain is defined as sorted. A normal (forward)
chained read (DBGET with IMODE = 5) begins at the head of the chain and
works toward to the foot, while a backward chained read (IMODE = 6)
begins at the foot. Since most applications reference recent data much
more frequently than older data, the backward chained read will tend to
be faster at finding the records you want to retrieve.

Always use the shortest chain -

If you have more than one key item value, always do a DBFND on each
key item and then perform your chained read using the shortest chain
path. It sounds simple, but this can produce good performance
improvements with large data bases, although the programming can get a
little messy at times.

Use compound keys -

As your data base grows, the chains for non—-unique keys will tend to
get longer and longer, and the searches slower and slower. Compound
keys can be obtained by concatenating key data values with some simple
variable which changes slowly. Using these compound keys instead of
just the data value will tend to produce several short chains instead
of one very long one. For example, if your data base spans several
years and it is reasonable to search it a year at a time, a compound
key consisting of a key data value concatenated with a two digit year
will yield more reasonable chain lengths and considerably faster
searches.

Rearrange data sets —
Arrange data sets so that the most frequently used master data set is
located on disc adjacent to its related detail set. If a master data set

has two related detail sets, consider putting it between them. This can

IMAGE/1000: Secrets HP Never Told You
..18_

result in a slight speed improvement, especially when chains are short.
POSSIBLE FUTURE PERFORMANCE IMPROVEMENTS

We hope we have described at least one technique in this presentation
which you will find useful. But there is still considerable room for
future IMAGE improvements. Below are a few ideas to ponder; I'd like
to see YOUR enhancement presented at next year's conference!

Disc cache -

The most attractive potential performance enhancement we have looked
at but have not tested is the use of a disc cache. And the route HP has
taken with IMAGE-II, a separate data base cache, would be even better.
(I can't imagine what a pig IMAGE-II would be without the cache!)

A disc cache can provide substantial improvement in speed just where
we need it: in systems where there are lots of disc reads. A disc cache
can exist either in software (a CPU resident cache) or in the disc
controller hardware/firmware. Typically, a disc controller resident
cache will be far less flexible than a software cache, although it will
have the advantage of minimal CPU overhead.

Note that the cache option for the 7933/35 discs isn't any good for
IMAGE applications unless you spend all of your time doing serial
reads (or batch processing on a 3000 system). The cache option for the
7936/37 discs may do a much better job for IMAGE applications.

Some things to look for in a software cache for IMAGE are:
- User-selectable cache size.
- True write—-through operation, to protect data integrity.

~ Capability for IMAGE-only operation rather than for all
disc accesses, or the capability to maintain separate
caches for each disc volume. This would make the best
use of the CS/80 disc controllers and minimize the
contention between IMAGE and non—-IMAGE disc accesses.

- A replacement algorithm based on "“popularity” as well
as "aging" criteria. If replacement is based on aging
alone, a single serial read can flush the entire cache.

We don't know whether HP will ever offer a disc cache which will be
useful with IMAGE, but we hope that we will soon see a good quality
software-based cache offered by a good quality third-party vendor.

Has anybody tried this already? We'd like to hear from you.

IMAGE/1000: Secrets HP Never Told You
19

Multiple servers -

We briefly mentioned earlier that we had tried multiple servers with
only limited success. We still think that two or three synchronized
servers for a single data base could yield a worthwhile improvement in
IMAGE speed, since their disc waits and CPU usage would tend to become
interleaved.

We have yet to overcome the same old problem of DCB buffering and
data record integrity. The multiple servers we have tested worked well
enough except for this one problem, but we discontinued testing because
we were doing it on a live system and didn't want to damage the client's
data base.

We still think this idea is worth pursuing. Are there any volunteers out
there?

Requester/server communications without Class 1/0 -

We have always wondered how much overhead we incur using Class 1/0
for communication between our requesters and our server. Certainly,
letting HP sell our clients an A900 would end our worrying about such
things ... or would it?

The "Generic Software Bus" described by Frank Smith, John Campbell, and
Brian Unger in their article in the March/April 1987 issue of Interex's
"TC Interface" could be just the kind of solution we're talking about,
but we haven't had time to look into it. How about somebody else giving
it a try~?

ACKNOWLEDGEMENTS

I would like to acknowledge the contribution of my former partner,
Judith Skinner, who originally developed our IMAGE server design and
collaborated on some of the other techniques I have described in this
presentation. Besides being a prolific and innovative software
designer, Ms. Skinner is one of the unsung heroes of the early years
of the HP1000 International Users Group, prior to the formation of
Interex. We all owe her our thanks.

Finally, I would like to thank my clients, whose IMAGE applications were
the reasons that most of the techniques described here were developed.
It is their loyal patronage over more than a decade that has made this
presentation possible.

IMAGE/1000: Secrets HP Never Told You
20

A DATABASE MANAGEMENT SUBSYSTEM FOR IMAGE/1000

Paul F. Gerwitz
Patrick C. Klier
Management Services Division
Eastman Kodak Company
1669 Lake Avenue
Rochester, NY 14650

INTRODUCTION

Hewlett-Packard’'s IMAGE/1000 product has been successfully utilized in
many manufacturing applications in the Eastman Kodak Company. During
the implementation of one large manufacturing application, IMAGE/1000
was extended to provide needed additional functionality and efficiencies
through the development of a software package called the Data Base
Manager (DBM).

The manufacturing application consisted of a network of 35 HP/1000
E-series systems which provided process monitoring and control, data
collection, quality and product tracking functions. The major software
components were RTE-6/vm, IMAGE/1000 and DS/1000-IV. The application
design requirements included:

1. Data collected via sensors, programmable controllers or by operator
input, must be stored on the local system for some fixed length
of time.

2. Collected data will be summarized and forwarded to other systems
in the network.

3. Data must be accessable from anywhere in the network with reasonable
response time and be transparent to the user.

4. Critical data must be backed up without stopping the application.

5. The database related application programs should be designed to
execute on any system in the network.

6. The database subsystem must not adversely affect the overall
performance of the systems.

This paper will present the functions and structure of the DBM, how it
is integrated into an application, detailed discussion of DBM Internals,
and performance characteristics.

1013 A Database Management

Copyright Eastman Kodak Company, 1987

DBM FUNCTIONS

The DBM subsystem includes the following features:

1.

Transparent Access

Application programs access the subsystem by calling IMAGE
intrinsics. Programs are then loaded with either IMAGE libraries
or DBM libraries. These libraries result in less code being
appended to the program. In addition, the location of the database
being accessed is unknown to the application, since the Database
open uses a logical database name.

. Remote Database Access

Remote access is also transparent to the user and is implemented
using the DS/1000-IV Program-to-Program capability. Additional
error processing and message sequence numbering capability is
built-in to improve the reliability of the communications.

. Request Queuing

Request queuing allows requests from remote nodes to be maintained
in a queue until they can be processed by the local DBM subsystem.
This prevents requests from being rejected when they cannot be
immediately processed.

. Automatic Request Timeout

The timeout capability provides remote request timeouts when an
applications remote request has been sent, but no error or status
information was returned within a given time window. This prevents
application programs from waiting indefinitely for a response from
a remote system or when some error condition has occurred on the
remote node.

. Automatic Database Backup

The backup capability provides functions to improve the recoverability
of data in the event of a system or program failure. Backup is
implemented by maintaining an exact duplicate of the primary
database, either on the local or a remote system, and is accomplished
in parallel with updates to the primary database.

. Remote Database Locking

Remote database locking under DBM is more reliable than the
equivalent capability under IMAGE. It provides both the intrinsic
level of locking as well as a 'cooperative locking' capability
for programs that require more strict control of a given database.

Database Copy and Compare Utilities

These utilities are primarily used to maintain the integrity of
backup databases, but may be used outside of the DBM subsystem as
well.

-2- A Database Management

The

DBM SOFTWARE STRUCTURE

Data Base Manager subsystem consists of user interface subroutine

libraries and subsystem programs. Below are some definitions and a
brief description of the programs and libraries.

DBMC

Local Node: The computer system on which a database application
program resides and executes.

Remote Node: Any computer system logically connected to the local
node by communication facilities.

Originating Node: The node from which a database request is initiated.

Primary Database: The database that may be accessed by applications
executing locally or remotely.

Secondary Database (backup database): A database that is an exact
copy of a primary database. The secondary may also be accessed in
read-only mode by application programs on the node local to the
secondary.

The DBM program processes all requests for databases under its
control on its local node. Any number of DBM programs may reside
on a single node. Each DBMxx program (cloned copy) controls up to
4 physical databases, which may be any combination of local primaries
and read-only secondaries. DBM opens each database in shared
read/write mode, thus allowing non-DBM applications access to the
database (i.e., read-only report writing applications).

The Database Manager Controller manages a set of tables that contain
the current state of the DBM subsystem on its node as well as
resource and class numbers for application programs to access
databases under DBM control.

DMOPR The DBM Operator Program provides the interactive access to the

RDBM

DMSL

DBM subsystem. Its functions include initialization, modification,
display of current subsystem status, recovery from program aborts
and shutdown functions on the local node.

The Remote Database Manager is responsible for sending requests
for databases located on remote nodes. It will communicate the
request to the remote node, using DS/1000-IV software where the
request can be processed by the DBMxx clone that is responsible
for the database. There may be many RDBMx clones on a local node,
controlling access for up to 4 remote databases each.

The Database Manager Slave program is the general DS/1000 slave or
receiver program for the DBM subsystem. All requests from remote

-3- A Database Management

DBREM

DMBK

DMTO

DMCMP

DMCPY

DMTM

nodes are processed through DMSL and consist of either 1) Database
access requests from RDBM's, 2) Return status information from a
DBM at another node to an application on the local node, 3) Backup
requests from remote nodes, 4) Backup error status messages from
remote nodes in the event of a backup failure or 5) initial handling
of lock requests from remote nodes. DMSL routes each request to
the appropriate processing program on its local system or in the
case of remote lock requests begins the processing internally.

The program provides auxiliary functions to the DBM subsystem on
local node. Any remote access to a local database will have status
or actual data to return to the requesting application. DBREM
functions as a DS/1000-IV master for sending of this data or status
information, communicating with a corresponding DMSL program on
the originating node.

The Data Management Queuing program will queue class I/0 requests
to a disc track to minimize the usage of SAM on a system. It is
most useful when a DBMxx program cannot process remote requests as
fast as they are received or when System Available Memory (SAM) is
temporarily unavailable for requests. It is also used to queue
data buffers being returned to an originating node by DBREM.

The DBM Backup program is used to send backup requests sent by the
DBM that controls the primary database, passing these requests to
the remote node where the backup database resides. The controlling
DBM at the remote node then processes and completes the request to
the backup database. It also has a queue of held backup requests
in case the secondary node is down.

DMTO implements the remote timeout capability. It also monitors
the local and remote cooperative locks that have been issued by
application programs.

The UPDBM program provides the timing intervals to DMTO. DMTO
waits to be scheduled by UPDBM at the predetermined intervals set
at subsystem initialization.

The DBM Compare program compares two databases for equivalency.
The program can process databases on remote nodes and can be executed
from any node in the network.

The DBM Copy program is used to copy all files of a database to
those of a database with an equivalent schema. The source and
destination databases may reside on the same node or different
nodes, and the program can be executed on any node in the network.

The DBM Track Manager manages a pseudo ’'Track Pool’ on RTE-A systems
for use by DBMC and DMQU. The program uses a file created on the

-4 - A Database Management

scratch FMGR cartridge and does direct EXEC read and writes to the
tracks allocated to the file.

DBLIB The DB Library provides intercept routines for DMLIB. When called,
the routine takes the parameters that were passed in and calls the
appropriate routine from DMLIB.

DMLIB The DM Library provides the interface for an application program
to access databases under DBM control. The user does not call the
routines in this library directly, but uses the intercept routines
in DBLIB at load time.

WRITING APPLICATION PROGRAMS

When writing application programs to access databases, IMAGE intrinsics
are used. The program is then loaded with either the IMAGE libraries or
the DBM libraries. This ’'transparent access’ capability relieves the
programmer of determining the environment the program will run under.
When executing under the DBM subsystem, intrinsic calls are intercepted
by the DBM library subroutines appended to the program. These subroutines
perform the functions of interfacing to the subsystem as well as managing
the database 'run table’ for the program. The run table contains the root
file information (item and set names and numbers, privileges), the DCB
area for each Data Set to be opened and a buffer where data is stored for
reading and writing to the datasets. Application program run tables under
DBM are smaller than what would be required by IMAGE. The IMAGE run tables
are kept in the DBMxx clone for each database that is open. The interface
between the application program and the library code, and the relative
size differences, can be represented as shown in Figure 1.

-5- A Database Management

FIGURE 1

Call DBOPN (...) ~ Cali DBOPN (... .

DBM Ver. DBOPN
IMAGE Ver DBOPN ‘ |
~ OMOPN)

{no image/FMP Code

IMAGE/FMP (— Abbrev Hun Table

Subroutine
Code

! The DBM version of
| DBOPN simply passes
g’ user parameters to
i DMOPN
| Standard The DMOPN routine
g IMAGE interfaces to the
Aun Table DBM subsystem

DBM SYSTEM INTEGRATION

In order to put a database under control of the DBM Subsystem, the user
must create a Database Manager Definition (DMD) file. This is typically
created by the system manager using EDIT. The DMD file relates a physical
database name with a logical name, which will be used by the application
program in the DBOPN call as well as specifying other characteristics of
the subsystem for a given node. The format and several examples of the
DMD file are found in Appendix A. The database must have been already
created using the IMAGE DBDS utility. Initialization of the DBM subsystem
is accomplished using the DMOPR program and may be done during system
bootup or by a user at a terminal, see Figure 3. DMOPR begins by allocating
a class number and sending it to DBMC via an EXEC schedule call. DBMC
will then suspend on that class number waiting for DMOPR to complete the
initialization. While DBMC is waiting on the class get, applications are
prevented from opening databases. DMOPR then reads the DMD file and builds
the configuration tables internally based on the DMD records. It will

-6- A Database Management

SJajing O/ ssel]

Bulnpayog wedboud

5355303y eje(] < >

0.LNd

1SNO

HENO

(0)
waa

W3H80

NBOANG

@ A0eJ4) 18qo|9

aonyezifeniiu] — € HINDIA

Yoed} [eqo|g

34 ONO

clone the appropriate DBM and RDBM programs according to the '03' DBM/RDBM
Descriptor Records, as well as allocating a class number and resource
number for each. As each Database Descriptor Record (04) record is read
from the DMD file, the physical database name is put in a buffer. When
all these records are read, DMOPR schedules each DBM/RDBM clone, passing
their class and resource numbers in the schedule call, and then sends the
database names for each via class I/0. The UPDBM/DMTO Init Records are
then decoded and the UPDBM program is started, passing the timing values
to it in the schedule call. When all the DMD records are processed, the
configuration tables are written to the disc track and a class buffer is
passed to DBMC, indicating that the initialization is complete.

The DBM and RDBM clones are scheduled by DMOPR and given their class and
resource numbers. The DBM clone will retrieve the database names from
the class queue, open each database, and then wait for requests from
applications on its class number. The RDBM clone will initialize itself
and then wait for application requests sent on its class number. Any
errors encountered during this process will be passed back to DMOPR via
class I/0.

DBM SYSTEM OPERATION
LOCAL ACCESS

Local access under DBM provides the capability most often found in most
systems. The process of opening a database, reading a record from a
dataset and then closing the database is described below. Refer to the
left side of Figure 4.

1. The user calls DBOPN to open the database. The database name is a
logical name previously defined in the DMD file. The DMOPN subroutine
is entered and a request is sent to DBMC to obtain the class and
resource numbers of the DBM clone that is assigned to the physical
database that is to be opened. DBMC will also mark the database as
being opened to that application program.

2. The program attempts to lock the DBM's resource number. If the lock
is successful, the open request is sent via class I/0 to the DBM
clone program which will process the request and return the run
table information needed by the program on a class number assigned
to the program. The DBM clone then unlocks the resource number so
that other requests can be processed.

3. The application code retrieves the returned status information and
builds the local run table in the free space of the program. The
DBM routines then return the status information to the application
program code.

4. The application program calls DBGET which enters DMGET. The request

-8- A Database Management

o 0ea @ NSNG MEND

_ _ : ¥0841 18Q0I9 (&_

N8Q

P | v b
» | - |
S T

a i !

H
¥oR4 (g0l A I I S _ L -~ —3{Boig

AENT

I

'028

-

dn3yoeg yYjim [eo0] pue [e00T — ¥ HANOIA

is validated against the run table list for the item names supplied
in the call. If there is an error, the routines return immediately.
If the item/set names are valid, a class buffer is built and a
resource number lock is attempted to the DBM clone. When the lock
is granted, the class buffer is sent to the DBM clone.

5. The DBM clone receives the request and processes it, passing the
data back on the application program’s class number. The data is
received and passed back to the application program code.

6. The DBCLS call causes notification to DBMC to close the database
and delete the entry in its tables. No additional requests are sent
to the DBM clone program.

AUTOMATIC DATABASE BACKUP

One of the unique capabilities of the DBM subsystem is the automatic
database backup function. Backup is defined as maintaining a mirror image
copy of the primary database in another location. In most systems the
backup database resides on a different node than the primary database,
but could reside on another disc LU or even another physical disc on the
same system. The backup function ensures that changes to the primary
database (due to DBPUT, DBUPD, DBDEL) are performed on the backup database
as well. The backup processing operates in parallel with the primary
processing so that applications are not left waiting for a request to
complete. It is also completely transparent to the application program.
The processing for the backup capability is shown in Figure 4.

1. Upon the receipt of a DBPUT, DBDEL or DBUPD request from an application
program, the DBM program forwards the request to the DMBK program
to be sent to the node where the backup database resides. The DBM
then processes the request to the primary database. The DBM will
then wait with its resource number locked until a status is returned
from DMBK indicating whether the backup request was successfully
sent to the remote node. If the request was successfully sent, a
class buffer is returned to DBM so that it may complete its processing.
If an error did occur, such as a DS error or a Program-to-Program
Reject, the request is forwarded to DMQU to be stored, and a completion
status is returned to the DBM program so that it can complete the
request to the application. Every 30 seconds DMBK will check the
status of the remote node and reprocess the backup request stored
in the disk queue until it is successful or until the queue is full.
If the queue does become full, all backup requests to that node are
flushed and DBMC is notified that the backup is down.

2. On the backup node, the request is received by DMSL and sent to the
backup DBM via the DMQU program. When the request is forwarded to
the DBM clone that controls the backup database, the request sequence
number is checked, and if the request was received out of sequence,

-10- A Database Management

Adounid el —] |-~
m e T
L8 Ll
e " nowa ana - —— - ad
e m :
i |

§§900V 2j0mady — ¢ HIYNDIA

the backup is set down. If the sequence number is correct, the
request is processed and the status is saved locally; no status is
returned to the primary node. If the sequence error occurs, it will
send back a response to the primary DBM upon receipt of the next
backup request.

REMOTE ACCESS

Access to remote databases is similar to that of local request, except
that the database is not physically located on the same node as the
application. This access is transparent to the application program through
the use of a logical database name. The processing of remote requests is
described below, see Figure 5.

1. The open request causes a schedule of DBMC to obtain the class and
resource numbers for the RDBM clone associated with the logical
database specified by the application program. The request is then
sent to the RDBM after locking its resource number. Subsequent
requests are sent directly to the RDBM clone.

2. RDBM sends the request to the DMSL at the remote node where the
physical database resides. The DMSL picks up the request and forwards
it directly to the DBM clone or queues it DMQU if the DBM is busy.

3. The request is processed by the DBM program and the results are sent
via DMQU to the DBREM program, which communicates them to the DMSL
at the originating node.

4. The DMSL at the originating node forwards the results of the request
back to the application program via a its assigned class number.

When processing remote requests, the DMIO program is used to monitor the
progress of each request and will timeout requests that take too long.
This timeout capability prevents applications from waiting indefinitely
for the completion of requests. When the request is sent to the remote
node, DMTO is notified and puts an entry into its table. When the request
is completed and the status is returned, the local DMSL will notify DMTO
that the remote request is complete and to remove the table entry. If a
request does not complete within the timeout window, the application is
sent a timeout error. When the reply buffer finally arrives, an error is
logged, and and the data discarded. The timeout values are initially
provided at initialization through the DMD file, but can be adjusted by
rescheduling UPDBM.

DATABASE_LOCKING

The locking and unlocking of databases by remote application programs
presents some serious concerns which must be addressed in the network
environment. Since all locks apply to the entire database, all other

-12- A Database Management

application programs are prevented from modifying a database whenever an
application program has a true lock on that database. If the application
should abort before unlocking the database (or 'forget’ to unlock it),
all updates will be locked out until the problem is corrected by manual
intervention. Thus, a problem at one node in a network may adversely
affect many other nodes in the network.

True remote locking also affects the response time of programs performing
database updates, since a lock request may have to wait for a remote
program to unlock the database. Any program priority considerations at
the remote node and DS overhead will increase the wait time. If numerous
programs in the network are competing for updates, response times may
degrade quickly. Programs which must execute within a predefined time
window (such as those involved with machine control or data acquisition)
may encounter serious timing problems.

The standard HP IMAGE interface always implements true locking for all
local and remote accesses. This is necessary, since each program physically
accesses the data sets, and dataset chain conflicts would occur if multiple
programs attempted to add or delete records at the same time. Since the
DBM subsystem restricts all updates to a database to a single DBMxx program,
(which has a permanent ’'true’ lock on the database), this conflict can
never occur, and true application locks are not required to maintain
integrity of the data set chains.

For database access under DBM subsystem control, database locking is
implemented by locking a resource number associated with the logical
database name. Each node which accesses a given database will have its
own local resource number for controlling both locking and unlocking.
This restricts update access to no more than one program per node, but
programs at different nodes cannot lock each other out using the standard
lock and unlock calls, (programs on the same node ALWAYS cooperate, but
programs on separate nodes do not). Since local resource number locks
are used, the lock will be released if a program aborts and other programs
at that node may now be granted the lock. This method prevents problems
at one node from permanently ’'locking out’ other programs within the
network. It does, however, allow certain undesirable conflicts to occur.
Remote cooperative locking, as described below, was implemented to resolve
those conflicts.

COOPERATIVE LOCKING

True application locking could be achieved under the DBM subsystem if all
programs implemented cooperative locking. This case is highly undesirable
because of the additional system overhead incurred and delays resulting
from waiting for remote database unlocking. The concept of cooperative
locking where needed allows potential conflicts to be avoided while
minimizing overhead costs.

-13- A Database Management

Cooperative locking means that cooperating programs may actually lock each
other out of accessing a specified database, even though the programs
reside on separate nodes. Programs from other nodes which are not
cooperating may continue to perform updates to the database as is currently
possible.

True application locking of a database accessed via the DBM subsystem is
seldom if ever necessary. Many modifications which may be made to a
database will never conflict with other modifications. Cooperative locking
should be used whenever possible conflicts may occur. The following are
examples of database modifications and descriptions of when cooperative
locking is or is not needed:

1. DBLCK-DBPUT-DBUNL
Since this sequence allocates a new record from the free record
chain, no prior information is needed and no conflicts between
programs can arise. This sequence should NEVER need cooperative
locking.

2. DBLCK-DBGET-DBDEL-DBUNL
DBGET - DBLCK - DBDEL - DBUNL
This sequence for a detail data set does not need a lock IF this
program is the only program in the network which may delete this
record (The second form of this sequence is improper unless this
condition is true.) This is because a record of a detail data set
will never be relocated. For a manual master data set, however, a
record may move if it is a synonym entry and the associated primary
entry is deleted. This sequence for a manual master data set should
therefore use cooperative locking unless this program is the ONLY
program which may delete any entries from that data set.

3. DBLCK-DBGET-DBUPD-DBUNL

Cooperative locking is needed for this case UNLESS the data being
updated will never be updated by another program in the network
(although updates by other programs to fields not specified for this
call are acceptable) and the record will not be deleted during the
execution of this sequence. Design considerations sometimes result
in these conditions being true. For those situations where conflicts
may occur, cooperative locking should be used to eliminate any
conflicts.

IMPLEMENTATION OF COOPERATIVE LOCKING

The implementation of remote cooperative locking is achieved by using the
DMTO program to keep track of the locks for its node. When a request is
received from a remote node that includes a lock, DMSL notifies DMTO,
which records information in a table entry and attempts to obtain the
lock, returning the status of the lock to DMSL. If the lock was successful,
the request is forwarded to the DBM program managing the database and

-14- A Database Management

processed. If the lock in not successful, DMSL sends the request to the
DMQU with a special 'HOLD’ status until the lock can be obtained.

As DMTO scans the tables, it also checks for locks that are taking longer
than expected. It will check with the DBMC program at the originating
node to be sure the program is still running. If a lock is kept too long,
it will release the lock automatically and the remote application program
will be accessing the database in a unlocked fashion. When a program
sends an unlock request, the entry is deleted from the DMTO tables and
other lock requests are processed.

UTILITY FUNCTIONS

The DBM has several utility functions to aid in using the backup capability,
for comparing two databases and copying one database to another. DMCMP
can be run in the background to compare two equivalent databases, and the
databases remain accessable during the compare. Databases are equivalent
if they are identical except for the root file and dataset names, security
codes and cartridge reference numbers. The item lists, dataset record
formats and dataset capacities must be identical. The utility can be
executed on any node, even if the databases are not local. If the comparison
shows the databases to be different, the DMCPY program can be used to copy
the primary database to the secondary to restore the equivalency. The
databases involved in the copy must be closed, but the remainder of the
subsystem continues to run. The copy operation takes from 10 to 30 minutes
depending on the size and fullness of the database. It does not copy the
IMAGE records individually, but opens the dataset as a Type 1 file and
copies in 512-word blocks.

PERFORMANCE

When analyzing the performance of the DBM subsystem, the overriding
consideration was to ensure that the subsystem did not adversely affect
the performance of a given system. The subsystem was not designed to
compete with IMAGE, but to provide added functionality without sacrificing
reasonable system and network performance. That goal was met, with
favorable results.

The performance measurements were made using a file driven program acquired
from HP serving as a pseudo application program. This program executes
a test procedure (defined by the user) which is contained in an ASCII
file. Each command in the file specifies a given IMAGE operation (OPEN,
CLOSE, GET, PUT, etc.) and the item names and data values for a given
database. A test database was defined with a mix of master and detail
datasets and item relationships that are typical of the application
databases found in the network. The program was executed against this
database, and timing and error status information was obtained. The
initial testing proved valuable by providing status information about the
subsystem’s behavior, which in turn allowed some further tuning and

-15- A Database Management

refinement of the code

When the timing data was analyzed, the DBM did not appear to significantly
affect the overall performance of the system. In fact, for some operations
(DBOPN and DBLCK) the DBM performed them faster (see Figure 6). The
largest difference, about 3 to 1, occurs when opening a database. This
can be accounted for, since IMAGE is physically opening the dataset files
and incurring high overhead due to the file system. Since the DBM clone
programs have already opened the database files at initialization, much
of this overhead is eliminated for application programs using the DBM.
The difference in timing for DBLCK is also a function of the file systenm,
as IMAGE locks a database by locking the root file, while the DBM simply
locks a resource number for that database. The DBINF calls are not included
in the analysis because they are processed within the application subroutine
code and do not interact with the operating system.

FIGURE 6

IMAGE vs DBM Average Time
500
450
= 400 |
0
s 3s0f
2 0} 2 mee
,§
Y 250f XY oam
E
F 200}
&
g 150
|
< 100 E§E§
50t N
AN AN ANm N __ O
DEL FND GET LCK PUT UNL UPD
Image Calls

-16- A Database Management

FIGURE 6 Continued

20!)OMAGE vs DBM Open/Close Times

::::: 7/ z:::e
e

=] ¥

Performance comparisons between DBM and Remote IMAGE have not yet been
made. We feel that the performance differences between Remote IMAGE and
DBM will not be significant, since both are implemented in a similar
fashion. 1If any differences exist, the DBM would take slightly longer to
process requests, due to the remote queuing and multiple programs involved
in handling the requests.

An additional consideration in the area of performance is the amount of
library code that is needed in applications programs. Recall that
application programs loaded with DBM require far less subroutine code and
also a smaller run table. Typical savings range from 5 to 10 pages in
code space and 1 to 3 pages for run table, depending on the database being
accessed. These savings add up to making the job of segmentation and
implementation of programs simpler and more reliable.

THE FUTURE OF DBM

Currently the subsystem is implemented in two networks. The subsystem
will execute under RTE-6/vm with complete functionality. Applications
programs can execute on RTE-A as long as the database resides on an RTE-6/vm
system. Several additional changes must be made to enable the entire
subsystem to execute on RTE-A, namely the Disc Queuing Program (DMQU).

-17- A Database Management

There was also some consideration given to porting the subsystem to run
under IMAGE-II. This was ruled out due to the difficulty in integrating
DBM functionality with that offered in IMAGE-II. The central monitor,
DBMON, replicates some of the functionality provided by the DBM program.
There is concern that the logging capabilities could significantly affect
performance as well. The DBM could continue to be a viable subsystem, if
IMAGE/1000 was enhanced to provide new file system support and other
relevant enhancements such as dataset locking.

CONCLUSION

The Data Base Manager subsystem provides several extensions to IMAGE/1000
that improve the efficency and reliability of manufacturing applications.
These include:

1. Transparent access to applications programs by providing interface
libraries and logical database names.

2. Less appended code for application programs thus reducing the memory
requirements when executing the programs.

3. A more robust remote access capability transparent to the application
program including timeout processing for remote requests.

4. Queuing of remote requests to minimize errors being returned to
application programs, thus using the system resources more effectively.

5. Automatic database backup for all update-type accesses to the primary
database.

6. Database compare and copy utilities to ensure reliability of the backup
databases.

7. Database locking capabilities that exceed those offered through IMAGE.

8. Configuration and control of the subsystem that are independent of the
application programs running under DBM.

9. No significant impact on performance on systems where the DBM is running.
ACKNOWLEDGEMENTS

The authors would like to acknowledge and thank Don Richards and Paul R.
Gerwitz, Sr. for the many hours and countless effort that the expended to
design and implement the DBM subsystem. Their dedication to excellence
during the entire life of the DBM project is born out in the quality of
the software and the huge impact it has had on the success of the applications
where it is used.

-18- A Database Management

APPENDIX A

Database Manager Definition (DMD) File

TYPE Record Type Description

(8

02

03

04

Title and
user text

user text

ID record.

is appropriate comments or title information.

Comment record.

user text

DBM/RDBM Program Descriptor record.

nn status

nn

status

partition

size

partition size

is the DBM/RDBM clone Program ID. For DBM's this is a
two-character numeric to get DBMOl, DBMO2,etc. For RDBM's
use a one-character letter to get RDBMA, RDBMB, etc.

is a numeric status/option code. Must be '0l’ to clone
and initialize the RDBM or DBM program.

is a numeric partition number to which this DBM or RDBM
program is to be assigned. If zero, no assignment is made
and the program will use any partitions which are big enough.

is the program size for this DBMxx or RDBMx. If zero, the
size of the DBM or RDBM will be used. The size determines
the space available for IMAGE RUN tables and application
request buffers.

Database Descriptor record.
ldbname dbstat pnode pdbnamr nn bnode bdbnamr

ldbname

dbstat

pnode

pdbnamr

is the logical database name (6 char).

is a numeric database open status.

1 Open as primary database (no backup)

2 Open as backup database (read-only local)
17 Open as primary database (backup enabled)
is the node number for the primary database.
(8224 [2 blanks] or -1 if local)

is the namr of the primary database (20 char max). For

-19- A Database Management

local databases this is the local IMAGE/1000 namr including
security code and cartridge reference. In the case of a
remote database, this is the logical database name and
there must be a corresponding DMD entry at the remote node.
NOTE: If this is a backup database for a primary database
at this node or another node, the database namr is still
specified as a ’'primary’ database to the DBM which has it
open. It may be accessed by application programs in a
‘read-only’ state.

bnode is the node number for the backup database. NOTE: This
parameter and those that follow are not specified for
databases accessed via RDBM’s or for backup (’'read-only’)
databases. (-1 if local node).

bdbnamr is the namr of the backup database (20 char max).

05 Equivalent Database Descriptor record.
ldbname dbstat edbname nn

edbname is the name of the logical database (6 char) to which the
specified logical database (ldbname) is to be equivalenced.
All references to this database (ldbname) will be directed
to the equivalent database (edbname). All application
program open entries will be listed under the logical
database name specified by the program.

06 UPDBM and DMTO initialization record.
scanfreq dslim oplim locklim

scanfreq 1is the time in seconds between scans of the DMTO internal
table. Default is 5.

dslim is the time in seconds after which DMTO tests to see if
the DS link is still up. Default is 45.

oplim is the time in seconds after which a remote request is
"timed out." Default is 300.

locklim is the time in seconds for a cooperative lock check (schedules
DBMC at node having DB lock to check if application is
still active). Default is 15.

EXAMPLE

Refering to figure 2, consider the following example. The database
structure can be viewed as follows with the corresponding DMD file entries.
This example shows several different kinds of entries both, remote and
backup.

-20- A Database Management

FIGURE 2

Node 1001 Node 1002
DBMO1 l
T 1
Primary A ‘ 1
Loner DB ’\\
AN
\
DBMO2 ‘ DBMO1
[—] N
Backup 2 ! Primary B
i’ « 4+ Backup 1
N (
ADBMA
J/ Primary-Backup
Primery B [/ | Remote Access |

-21- A Database Management

DMD FILE

DATABASE DEFINITION FILE NODE 1001 <870901.1558>
erkokok ok ok ok ok ok ok ook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ke ok kok ke ke ke kb ko ko ko ok
SPECIFY DBM/RDBM PROGRAMS

01 01 13 19

02 01 14 18

A 01 15 00

SPECIFY DATA BASES

>PRIMA 1 8224 >PRIMA:DB:DB; 01 1002 >BACK1:DB:DB

>LONER 1 8224 >LONER:DB:DB; Ol -1 >LONER

>BACK2 2 8224 >BACK2:DB:DB; 02

>REMOT 1 1002 >PRIMB:DB:DB; A

TIMING VALUES

10 60 300 60

DATABASE DEFINITION FILE FOR NODE 1002 <870901.1558>

Fokekokdekokokokokokkeokodkokkkekokkok ke ke k ke kk ok ok ok ok k ke k ok ke ok kk Kk ok kkkkkkkkkkkk
SPECIFY DBM/RDBM PROGRAMS

01 01 00 00

SPECIFY DATA BASES

>PRIMB 1 8224 >PRIMB:DB:DB; 01 1001 >BACK2:DB:DB
>BACK1 2 8224 >BACKL:DB:DB; 01

>EQVDB 1 >PRIMB 01

TIMING VALUES

10 60 300 60

-22- A Database Management

A Data Analysis Environment for HP 1000 Computers [1]
William D. Drotning

Thermophysical Properties Division 1824
Sandia National Laboratories
P. 0. Box 5800
Albuquerque, NM 87185

ABSTRACT

An examination of data analysis programs used on our Hewlett-Packard [2]
1000 system showed that many programs used a large fraction of code and
programming effort to accomplish common tasks, such as file access and
creation, data retrieval and storage, and the like. A clear need
existed for a comprehensive, well-structured enviromment which would
consolidate many previously-separated functions in a consistent, robust,
easy-to-use format. Program DATA was written to accomplish a wide
variety of tasks related to analysis of data stored in File Manager
files on Hewlett-Packard HP 1000 minicomputer systems. As a data
analysis tool, DATA provides a number of mathematical analysis and data
manipulation functions. Flexible file structures, on both input and
output, are allowed. An editor is included which allows DATA to serve
as a binary file editor for data; search routines based on numeric,
rather than string, values are incorporated. Also included are
graphical plotting of data and functions, cursor selection of specific
data regions, and other graphics features. DATA also serves as a shell
operating system, with direct interface to the RTE operating system.
Commonly-used file management functions are incorporated or enhanced for
operator convenience. DATA is both command- and softkey-driven, with
on-line help facilities and extensive error-checking. Finally, DATA
serves as a common framework for future expansion with additional
libraries or user-defined functions.

INTRODUCTION
In our laboratory, a number of instruments for measuring various
thermophysical properties of materials are connected to a central HP

1000 minicomputer system. Typically, data are collected from the
instruments in the multitasking enviromment and stored in disc files for
subsequent analysis. These acquired and stored data may consist of a

single vector of time-sequential dependent <variables, such as a
time-varying voltage signal, or multiple vectors of data from multiple
sources. Depending on the device and the acquisition program,
individual data records are acquired and stored in a variety of forms,
from raw data (typically voltage) all the way to fully-analyzed data,
such as specific heat versus temperature. A significant portion of the
effort in the laboratory is spent on data reduction, analysis, and
presentation.

Over time, the staff have written software as required to perform the
various data reduction and analysis functions. In a typical reduction
or analysis program, a data file is opened, records are read into the
program, some analysis or reduction scheme operates on the data, and

A Data Analysis Environment ... 1014

frequently, an analyzed or reduced data file is created for storage to
disc. As a result of this evolution, a large number of very similar
programs have been developed, and program maintenance has become an
increasing difficulty. Even finding the right program on the system
became a problem, and depending on the programmer, each analysis program
operated a bit differently. Yet, a subtantial amount of the code in
these programs is duplicated. A clear need existed for a comprehensive,
well-structured environment which would consolidate many of these
previously-separated functions 1into a consistent, robust, easy-to-use,
single program format. In addition to reducing the number of programs
to maintain, support and use, this wuniversal approach has the potential
of solving a headache of data file maintenance. With separate programs,
the output of one analysis was frequently used as the input to another
program, and the large number of temporary or intermediate data files
created to pipe data from one application to the next can grow very
rapidly. With a single, unified program, one could eliminate the need
to store all the temporary data, saving an analyzed file only after all
operations have been completed.

Program DATA was designed to accomplish a wide variety of tasks related
to analysis of scientific data stored in files on Hewlett-Packard HP
1000 minicomputer systems. As a data analysis tool, DATA provides a
number of often-used mathematical analysis and data manipulation
functions. Flexible file structures, on both input and output, are
allowed. An editor is included which allows DATA to serve as a binary
file editor for data; search routines based on numeric, rather than
string, values are incorporated. Graphical plotting of data and
functions, cursor selection of specific data regions, and other graphics
features are also 1included. DATA also serves as a shell operating
system, with direct interface to the RTE operating system.
Commonly-used file management functions are incorporated or enhanced for
operator convenience. DATA 1is both command and menu (softkey) driven,
and on-line help facilities are included. Finally, DATA serves as a
common framework for future expansion, such as incorporation of the IMSL
library or additional user-defined functions.

PRINCIPLE OF OPERATION

Data manipulation and processing is done through the use of four large
internal arrays. In general, these arrays are used as input x and y
arrays (where x and y refer to independent and dependent variables,
respectively), and output x and y arrays; however, these arrays may also
be used as 1interim working arrays in some applications. Once an input
file is specified, the input and output arrays are filled with data from
the input file, according to the current specifications for the input
file structure and format. The input file is closed, and subsequent
operations on the data occur on the arrays, not on the original input
file, which remains intact. Unless otherwise indicated, all data
processing, editing, and manipulation operations are done to the output
arrays. To save the data currently stored in the output arrays, the
operator must specify an output file, optionally define output header
records, and actively write the array data into the file. The operator
may also specify logging of the screen output in order to save a record
of a particular analysis.

A Data Analysis Environment ... 2

PROGRAM DESIGN

Program DATA was written as a main and several segments. Large internal
data arrays are stored in EMA. For the majority of functions used in
our laboratory, data records in files consist of an independent and a
dependent variable, so that two data vectors can describe a file. When
DATA is initiated, the current terminal softkey definitions are saved
and subsequently written back to the terminal when a DATA session is
finished. The relatively small main program is used primarily to
process input commands. Each input command is stored in a circular list
which provides a historical record of the command entries. Following
case folding and parsing, the command is interpreted, and the
appropriate segment is called to accomplish the specified function. The
command processor distinguishes numeric from alphabetic commands;
numeric commands are used to designate a particular data record, much
like in EDIT/1000, while the latter define functions in DATA.
Alphabetic commands consist of up to four characters, and, depending on
the function, additional parameters.

Once a function is selected and the appropriate segment is loaded, a
variety of input techniques were used in DATA. Rather than rigidly
adhering to a fixed technique, we have used different techniques which
we have found to be convenient and appropriate to the particular
application. 1In some cases, blockmode entry of protected screen forms
is used. A few applications prompt the user for input through a
sequential series of questions, but wherever appropriate, user entry is
done through defined softkeys. This is a favored approach in many
cases, since it allows the user to see (rather than remember) the
available options, and eliminates the tedious task of answering a lot of
default questions. Softkeys work especially well for toggling logical
switches and allowing the user to control the decision sequence.

DATA provides an on-line help facility in a "standard HP" manner: two
question marks give an entire list of available commands, while two
question marks followed by a specific command Ggives selective
information for that command. A separately-maintained ASCII file
contains the help information.

A number of "attributes" are maintained by DATA which may be viewed or
modified by the user. These values are maintained in common blocks, and
essentially define logical switches which control program flow through
DATA, or define tolerances used by DATA, such as an equality tolerance
for comparison of real values.

ENVIRONMENT

DATA is written in FIN4X as a main, several segments, and a library of
subprograms. Source code is approximately 9000 lines, and the loaded
program requires 26 pages, plus EMA. The current configuration of DATA
allows 1its use on RTE systems which employ FMGR file and directory
structures. Interactive terminals require an interface through a type
05 driver, and must be 1in the 262x or 264x families, capable of
programmable screen, format, and softkey functions. Graphics terminals
must be of the 2623A or 2627A types to use DATA's graphics functions.

A Data Analysis Environment ... 3

DATA is used extensively on HP150 Touchscreen personal computers, either
directly linked at 19.2 kbaud to the HP 1000 while emulating a 2623A
terminal, or operated as personal computers and ported to the HP 1000
through the Reflection terminal emulation software [3]. EMA is employed
for improved performance during array manipulations. Graphics/1000-I1
DGL software is used for the graphics routines.

DATA FORMAT

The format of input and output data files is flexible, and is controlled
by user-definition through a screen form, shown in Fig. 1. Data in

disc files may be accessed in either ASCII or binary form. For ASCII
output, the user may specify a specific FORTRAN-legal format.

File Format (DIM = 1500)

Input File

Ascii/Binary: Data format:

Number of header records (40a2): 1
Number of records between header and data:| O

Data Record
Format Key

1 - (i)
2 - (y)
3- i,y
4 - (x,y)
Output File
Ascii/Binary: Data format:
ASCII format: | (LPEL2.5,4X, 1PEL2.5)

Number of header records (AOAZ):

Fig. 1. Screen form for data file format definition, command 'FORM'.

FUNCTIONAL GROUPS
The commands within DATA may be divided into the following functional
groups:

DATA Configuration. This set of commands is used to set or
interrogate the current configuration of the program. Included here
are commands to alter the input or output file structure, declare
input and output files, and display current file characteristics. A
list of operator commands which have been entered is maintained for
viewing. A number of DATA switches may be queried or set through the
use of attributes.

A Data Analysis Environment ... 4

Help. On-line help for each command, and a comprehensive list of
currently available commands, is available interactively in DATA.

Graphics. A graphics system is available for CRT plotting of data and
functions, as well as fits to the data, lines, and text labels. The
graphics commands are softkey-selectable, and many of the commands
allow interactive cursor control for input. Figs. 2 and 3 show the
available softkey selections in the graphics section. Although
scaling is done automatically, many scaling and tic mark choices may
be changed by the wuser. Labels and 1lines may be added to provide
additional information on hardcopy output. The graphics output is not
meant to replace high quality presentation graphics, but only to
provide fast CRT plots with some capabilities for line drawing and
annotation.

Lo
MATN MENU (data)
Graph Cursor Scale Plot Line Label Erase EXIT
Options Functns Functns Functns Functns Functns Functns
Lo next figure
CANCEL | |* Horiz Change * NO Marker *Connect| |more. .. DONE
=X Screen GRID = 1
INIT Change Major MajorTic Tic DONE
GRAPH1CS Origin TicCount| |Spacing Size
Current| |[Move to Set Fit Set Fit Setlnteg||SetInteg DONE
Location| | (x,y) Low X High X Low X High X
Cursor Cursor Cursor Cursor Horiz Vert Default DONE
Low X High X Low Y High Y Axis Axis
to
DAY Y
HENU
CANCEL Linetype Ghoose Choose * PLOT Marker * NOT Go
=1 IndxRang| X Limits Output = 1 Connectd
SET RANG ALL Return
IndxRang IndxRang||Indices
Set Use Fit Use Int||* Use Return
X Limits X Limits||X Limits All X

Fig. 2. Graphics softkey selection tree

A Data Analysis Environment ... 5

to
MAIN

from MAIN MENU MENY
Linetype||VertLine| [HorzLine From Cursor Cursor Cursor DONE
-2 @X - @Y - A to B Start @Xx ey
Horiz Vert Slant TextSize Text DONE
Axis Axis OFF -1
ERASE RESET ERASE Erase Erase ERASE DONE
All GRAPH LastData Block Line FIT
CANCEL Cursor Cursor DONE
LowrLeft Upper Rt
VertLine| |HorzLine From Cursor Cursor Cursor DONE
@X = @Y = A to B Start @Xx ey

Fig. 3. Graphics softkey selection tree, cont’d.

File Management. A number of FMGR commands, plus enhancements and
additions, are available which duplicate routine FMGR functions for
the convenience of the user of DATA.

System Commands. RTE system time and WHZAT functions are included as
commands in DATA, along with the capability for running RTE programs
from DATA or passing commands directly from DATA to the RTE operating
system.

Internal Array Information. Once data is entered into DATA from a
file or interactive operation, processing and manipulation of values
are done through internal arrays. A number of commands are available
for investigating the current values in these arrays.

Data Processing. The primary array manipulation and mathematical
analysis functions are 1included in this group. Least-squares
polynomial fitting of data, digital filtering, numerical
differentiation, statistical analysis, sorts, and searches are among
the available functions.

Editor. An editor is available, with a command structure and set
similar to EDIT/1000, for editing wvalues 1in the internal output
arrays. Thus, DATA can function as a binary data editor.

A Data Analysis Environment ... 6

COMMANDS BY FUNCTIONAL GROUP

Commands are entered following the DATA prompt "(data)"; each command
must be followed by a carriage return. Lower or upper case may be used.
Commands consist of wup to four ASCII characters. (The use of integers
or a simple carriage return are exceptions.) Some commands require
additional parameters, separated by commas from the primary command.
Other commands allow optional parameters or commands, also separated by
commas. Filenames use the standard FMGR namr structure, with parameters
separated by colons. Some commands invoke labelled softkey functions
for additional menu-based operator interaction. Improper entries are
reported to the user without serious effect on the DATA session, and
extensive error-reporting is used throughout.

DATA Configuration.
ARRY -- Show number of values in input and output buffers
CNFG -- Show buffer dimension and directory limitations
DATA -- Same as ARRY
EDIT -- Set edit mode
EX -- Exit DATA
FILE -- Shows current input and output file information
FORM -- File format selection and display
HEAD -- Display/change output file header.
HIST -- Show history of commands (last 22 entered)
IFIL -- Specify input file

LOG -- Set logging attribute

LU -- Display user terminal LU and EQT

ocC -- Set default output cartridge

OFIL -- Specify output file

SE -- Set DATA attributes

SHOW -- Show current DATA attributes

VERS -- Software version and source timestamps

File Management.

co -- Copy a file

DL -- FMGR directory listings
MV -- Move a file

PU -- Purge a file

RN -- Rename a file

WRIT -- Write data from output buffer to output file

System Commands.

CLX -- Extended cartridge listing
LU -- Display user’s terminal LU, EQT, and LU type
RU -- Run program from RTE or FMGR
SY -- Access to RTE system commands
TI -- Display RTE system time
WH -- WHZAT
Graphics.
GR -- Graphics system (see Figs. 2 and 3)

A Data Analysis Environment ... 7

Internal Array

Information.

Same as LI (with one exception)

List specified input and/or output buffer values
Same as LI

List pending line

Show pending line location in data buffer

Data Processing.

AVRG -- Averages and statistics on output buffer

BACK -- Polynomial background subtraction .from output

DRV3 -- Derivative (3 point Lagrangian interpolation)

FILL -- Fill data buffers

FLIP -- Flip (X,Y) output array to (Y,X)

FIM -- File mathematics

I=0 -- Replace input buffer data with output buffer data

INT -- Numerical integration (trapezoidal rule)

LINT -- Linear interpolation of buffers

MATH -- Math manipulation on data buffers

O=1 -- Replace output buffer data with input buffer data

POL -- Polynomial curve fitting (least-squares)

POLY -- Polynomial curve fitting (same as POL)

SM3 -- Smoothing routine, using 3 points

SNGL -- Convert output buffers to a single-valued function

SORT -- Sort (numerical) data buffers

SRCH -- Search for numeric values in data buffers

STEP -- Find/remove a step in output buffer

SUB -- Choose subset for new output buffers

Y -- Estimate y value from x and polynomial fit

Editor.

o -- Change pending line

I -- Insert a line before pending line

K -- Kill pending line

L -- List from pending line

N -- Display number of pending line

P -- Display pending line

R -- Replace pending line

w -- Location of pending line in buffers

n -- Make line n the pending line

-n -- Make pending line backwards n lines from current
{cr} -- Make next line the pending line (forward 1)
{space)} -- Insert a line after pending line

$ " -- Make last line the pending line (bottom)

" -- Make prior line the pending line (backward 1)

- -- Make prior line the pending line (backward 1)

. -- Make next line the pending line (forward 1)

/ -- Make next line the pending line (forward 1)

Help.

7?7 -- List of legal commands

??,{attribute} -- Description of attributes (see SHOW)

?7?, {command} -- Help for command

A Data Analysis Environment ... 8

ATTRIBUTES

Several attributes are maintained by DATA for a variety of functions.
The current attribute values may be examined with SHOW, and they may be
changed with the SE command:

--The ALPH (logical) attribute is used to control alphabetical sorting
used by the DL commands.

--The APLT (logical) attribute is used to control automatic plotting of
polynomial fits as they are generated by POLY.

--The DX attribute is a real value used to define a differential x value
for the interpolation done by LINT.

--The EQ attribute is a real value wused to define the tolerance allowed
for "equality" tests between real values.

--ERAS 1is a logical attribute used in conjunction with the APLT
attribute by POL to determine whether, during auto-plotting of
polynomial fits, the currently-plotted fit should be erased prior to
plotting of the new fit.

--ORDR is a logical attribute used by POL to control numerical ordering
of the output data following a polynomial fit.

--OVER is a logical attribute used by OFIL to control whether existing
files may be overwritten when an output file is specified.

--RANG consists of two integer attributes which define the index range
of the output buffers to be used by a number of commands (LINT, POL,
INT, SM3, DRV3, AVRG and STEP). The index corresponds to the data
record number, or the array subscript.

SUMMARY

Program DATA has been used successfully by our staff to accomplish a
variety of data analysis functions in a comprehensive, easy-to-use,
unified format. Additional information about the program may be found
in Ref. 4.

REFERENCES
1. This work performed at Sandia National Laboratories supported by the
U. S. Dept. of Energy under Contract Number DE-AC04-76-DP00789.

2. Reference to a particular product or company implies neither a
recommendation nor an endorsement by Sandia National Laboratories or
the U. S. Department of Energy, nor a lack of suitable substitutes.

3. "Reflection" software supplied by Walker Richer & Quinn, 1Inc.
Seattle, WA.

4., W. D. Drotning, "DATA: A Comprehensive Data Analysis Environment
for HP1000 Computers," SAND87-0369, Sandia National Laboratories,
Albuquerque, NM, March, 1987, Available from: National Technical
Information Service, U.S. Dept. of Commerce, 5285 Port Royal Road,
Springfield, VA 22161.

A Data Analysis Environment ... 9

HP 1000/MEF to HP 9000/500 Interface
Tony Jones
Hewlett-Packard Company
2 Choke Cherry Road
Rockville, MD 20850

Introduction

In the past, data communication between an HP 1000/MEF
computer and an HP 9000/500 computer required an A-Series
HP 1000 which communicated via Distributed Systems (DS) to
the HP 1000/MEF and via Network Services (NS) to the HP
9000. NOW, there is an interface which provides a direct
connection between the HP 1000/MEF and the HP 9000.

This interface provides a high-speed data link between an
HP 1000/MEF computer and up to two HP 9000/500 (HP-UX)
computers over HP-IB. The hardware required consists of
standard HP-IB cards on each of the computers. The software
consists of two parts: a subroutine library on the HP 1000
and a receiver program on each of the HP 9000s.

The HP 1000 subroutine library provides the ability to open
communications to one or both of the HP 9000s, check
communication status, send buffers of data, and close
communications to one or both of the HP 9000s. The receiver
program allows the user to choose an HP-IB interface, store
buffers in files or pass them to another program for further
processing.

Some of the interface features include:

- Protocol driven for automatic error detection and retries

- ASCII or Binary data transfer

- Data transfer from an HP 1000/MEF to up to two
HP 9000/500s for redundancy

-~ HP 9000 Remote Process Execution from an HP 1000

- HP 1000 to HP 9000 File Copy program

- Support of HP-IB extenders for increased distance

The interface can allow for more distributed on-line
processing. For example, one can use the HP 1000 as a real-
time front end processor for the HP 9000s or the HP 9000 can
offload the HP 1000. The interface can also replace lower
speed data transfer via RS-232C or the need to transfer data
via magnetic tape.

This software is available for purchase from the Hewlett-
Packard Baltimore Washington Area Application Project
Center. For further information, contact Ed Magin, Project
Manager, at (301) 258-2282.

HP 1000/MEF to HP 9000/500 1015

Description

The software interface makes possible high-speed data
transfer between an HP 1000/MEF computer and up to two HP
9000/500 (HP-UX) computers over HP-IB. The software consists
of three parts: a subroutine library on the HP 1000, a
receiver program on each of the HP 9000s, and a set of
utility programs which provide file transfer capability.

Benefits

There now exists a lower cost solution for data transfer
between an HP 1000/MEF and HP 9000/500s. Previously, the
recommended solution was to use an A-Series HP 1000 as a
front end between the two sets of machines:

Before
DS NS
HP 1000/MEF HP 1000/A
Now!
HP-1B

HP 1000/MEF HP 9000/500

The transfer rate is > 60 Kbytes/sec (with protocol).

What does it replace?

Lower speed communication via RS-232C. It is no longer
necessary to use terminal emulators for data transfer or be
concerned about binary data transfer. This software
supports binary or ASCII transfer. Application programmers
can use the HP 1000 subroutine library and put their effort
on writing the application.

It also replaces data transfer by magnetic tape. It is no

longer necessary to make a tape on one system and move the
tape to another system.

Features include:

- HP 1000 subroutine library for integration into user
applications

HP 1000/MEF to HP 9000/500 2

- Protocol driven for automatic error detection and retries
- ASCII or Binary data transfer

- Data transfer between one HP 1000/MEF and up to two HP
9000/500s for redundancy

- HP 9000 Remote Process Execution from an HP 1000

- One-way Process to Process Communication

- Can be used with HP-IB extenders for increased distance
- HP 1000 to HP 9000 File copy utility program

- Can be integrated with DS/1000-IV to provide a more
complete networking solution

Figure 1 is a possible system configuration for redundancy
applications. There are two sets of redundant HP 1000
systems. The HP 1000s communicate with each other via DS.
Each of the HP 1000s have a single connection to both of the
HP 9000s. It is the responsiblity of the interface software
to transfer identical data to both HP 9000s. There can also
be multiple HP-IB cards in each of the computers which leads
to flexible configurations. An HP 1000 application can
communicate via multiple interfaces. An HP 9000 receiver
program exists for each HP-IB card. Each of the HP 9000s
have four HP-IB cards while each of the HP 1000s have one
HP-IB. If one of the HP 9000 receiver programs aborts, then
the data will still arrive at the other HP 9000.

Bp-ibl

t

Ds

—T hp-1b2
HP 1000/MEF

|
HP 9000/500

hp-ib3 ?

hoie HP 1600/ MEF

Figure 1: Sample configuration with data redundancy

HP 1000/MEF to HP 9000/500 3

Figure 2 is a simple configuration for data transfer from an
HP 1000 to an HP 9000. In this mode, a user can send data,
or do ASCII or binary file transfers. This method of file
transfer is much faster than RS-232C connections. For
example, transferring a 120K byte binary file to an HP 9000
takes 2 to 5 seconds. The same file requires at least 2
minutes at 9600 baud. If there are two HP-IB cards in the
HP 9000, an application can write data to two separate files
with one operation.

HP 1000/MEF [|< > HP 9000/500

Figure 2: Single HP 1000 to HP 9000 connection

Start-up
HP 9000

The user can choose to have the "receive" programs started
at system boot, or a general user can execute the programs.
The former case 1is the preferred method because the
interface could be looked at as a system resource and the HP
1000 can always access the link. Once the program begins
proper execution, it will continue to run until the system
is shut down or someone kills the process.

Ssystem file set-up to run program at system boot

This procedure describes how to set up certain system
files to automatically run the "receive" program at
system boot time. This method considers protecting
the HP-UX Operating System from unauthorized use,
especially when a general user on the HP 1000 opens a
file for storing data. This method is effective for
other applications.

HP 1000/MEF to HP 9000/500 4

Overall, this technique is based on the systenm
automatically 1logging in a general user in order to
process a ".profile" script file that contains the
runstring for the "receive" program. In addition, the
last line in the ".profile" script file is a command
sequence to 1log out. The following information
describes how to implement this technique:

a) Add a user on the HP-UX Operating Systenm.

b) Create a ".profile" file in that user's home
directory. The contents of the ".profile" file must
consist of the command sequence for running the
"receive" program. In addition, the command sequence
must be preceded by the "nohup" command to prevent
the '"receive" program from terminating when the auto
log-out occurs.

Here's a sample copy of a ".profile" file that runs
two T'"receive" programs that redirect any error
diagnostic messages to files, and then automatically
logs out.

nohup receive /dev/hpibl 2>errorié
nohup receive /dev/hpib2 2>error2&
exec login

C) Write-protect the ".profile" by using the "chmod"

command. For example, suppose ".profile" is
contained in a user's home directory named,
"/users/hpl000"; issue the following two command

sequences ('#' is superuser prompt):

cd /users/hpl000
chmod 755 .profile

d) Modify the "/etc/rc" script file to add a command
sequence that can automatically log in the user that
you have set-up in step a. Make sure that this
command sequence is placed within the block of code
that is executed only at system boot time.

For example, suppose you have added a user whose
login name is "hpl000"; add the following command
sequence in the "/etc/rc" script file:

exec login hpl000

HP 1000/MEF to HP 9000/500 5

Running Program/sStopping Program

There are two alternative methods for running the "receive"
process. One way is to let the system start the process at
system boot time. The other method is to allow any gdeneral
user to start the process by issuing a certain command
sequence.

If you elect to have the "receive" process run at system
boot time, then perform the procedure described in the

previous section. After completing the installation
procedure, the "receive" process runs automatically when the
system is powered up, and when the reboot command,

"/etc/stopsys -r", is run.
In this case, however, only the superuser can terminate the
"receive" process. To do this, you must determine the
process-id (PID) used for the "kill" command. For example:
To determine the PID, type:
ps -ef
To terminate the "receive" process:

kill <PID>

To allow any general user to start the "receive" progranm,
issue the following command sequence ('$' is user prompt):

$ [nohup] receive /dev/hp-ib [>output] [2>error] [&]

where:
- nohup prevents the "receive" program from
terminating when you log out. For more detailed

information, read Section 1 of the HP-UX Reference
Manual. This argument is optional.

- /dev/hp-ib 1is the device file for the HP-IB
interface. This argument is mandatory.

- >output - Stores data read into a file named
"output". This argument is optional.

- 2>error - Stores error diagnostic messages into a
file named, "error". This argument is optional.

- & - Runs the "receive" process in background. This
is optional.

HP 1000/MEF to HP 9000/500 6

OR
$ [nohup] receive /dev/hp-ib [|program] [2>error] [&]
where:
nohup is same as above.
receive is same as above.
/dev/hp-ib is same as above.

2>error is same as above.

|program - Sends data to another program that
1s running concurrently with the "receive"
program.

& is same as above.

Here are some sample illustrations on how to start the
"receive" program:

To run the "receive" program that accepts the filename from
the HP 1000, redirects any error diagnostic messages to a
file, and runs in the background, type the following command
sequence:

$ receive /dev/hp-ib 2>error &
To run the "receive" program that redirects both the output
data and any error diagnostic messages to separate files as
a background task, type the following command sequence:

$ receive >output 2>error &
To run the "receive" program that sends the output data to
another program, redirects any error diagnostic messages to
a file and then to logout, type the following command
sequence:

$ nohup receive 2>error | program &

If you run the "receive" program without using the "nohup"
command, there are two alternative ways to terminate the

progran. One way is to use the "kill" command described
previously. The other technique is to enter the <break>
key.

HP 1000/MEF to HP 9000/500 7

Designating output File

To store the output data into a file specified by the
HP 1000, and to generate any error diagnostic messages to
the terminal screen, issue the following command sequence:

$ receive /dev/hp-ib

However, if the HP 1000 system doesn't pass a filename to
the "receive" program, then the output data will be
generated to the terminal screen, as well as any error
diagnostic messages.

To store the output data into a file specified by the
HP 9000 user, and to generate any error diagnostic messages
to the terminal screen, use the HP-UX I/0 redirection
feature. For example, issue the following command sequence:

$ receive /dev/hp-ib >output-filename

However, if the HP 1000 system passes a filename despite the
fact that the HP 9000 user has already specified output
redirection, then the filename passed by the HP 1000 systenm
takes precedence.

To send the output data to another program and generate any
error diagnostic messages to the terminal screen, use the
HP-UX piping feature. For example, issue the following
command sequence:

$ receive /dev/hp-ib | program
However, if the HP 1000 system passes a filename, then it
overrides the piping to a program. As a result, that

program continues to wait for input and then terminates when
the "receive" program terminates.

HP 9000 Remote Process Execution from an HP 1000

An application program can execute a process on the HP 9000
by sending commands to a "shell" program. This method
requires that the "receive" program be started with a pipe
to a "shell":

$ receive /dev/hp-ib | sh

In order to execute a command, the application must send a
data buffer containing a command terminated with a line feed

HP 1000/MEF to HP 9000/500 8

character (ASCII 10). For example, the HP 1000 application
program could send a package of data and then start a
process which would generate a statistical report.

HP 1000

The HP 59310B HP-IB card should be configured as the system
controller with HP-IB address 0 (factory settings). The
system generation for the HP-IB card must be set up as
subchannel 0 for direct I/O. Refer to "The HP-IB in HP 1000
Computer Systems" for further details on configuration and
installation of the HP-IB cards.

The HP 37203A or HP 37204A HP-IB extenders may be used to
extend the distance between computers.
Checking the system:

The "ShowHpibLus" program will show any logical unit numbers
(LU) and equipment table numbers (EQT) which are assigned to

HP-IB cards with subchannel zero. One must use an LU
assigned to an HP-IB card because the subroutine library
uses direct addressing for HP-IB communication. If there

are no valid LUs, then one must do a system generation to
add them. Refer to "RTE Driver DVA37 For HP 59310B
Interface Bus" in order to add LUs and the HP-IB device
driver to the systen. Use "ShowHpibLus" to verify the
available HP-IB LUs.

Setting up the session switch table:

Set up your session switch table (SST) such that a session
Lu points to one of the HP-IB card Lu's listed by
ShowHpibLus. The application program will pass the session
Lu to the subroutine library. One can automate the setup of
the HP-IB card Lu by storing the Lu commands in the WELCOM
startup file.

Setting the device timeout:

The subroutine library requires setting the device timeout
before use. Use the Eqt listed by "ShowHpibLus" ('CIxx' is
the user prompt and xx is the session number):

CIxx> to <EQT> 1000 Timeout of 10 seconds

HP 1000/MEF to HP 9000/500 9

Calling routines

The general procedure for communicating with the HP 9000 (s)
is:

Open communications to the HP 9000 (s)

Do while there are buffers to send
Send buffer to the HP 9000(s)

End do

Close communications to the HP 9000 (s)

Routine Description
OpenCommunications Connect to HP 9000
SendBuffer/sendEMABuffer Send data
Communicationstatus Check last connection
CloseCommunications Disconnect from HP 9000

Figure 3: HP 1000 interface routines

Status codes are returned to indicate whether the requested
operation was successful or not. The subroutines try at
least three times to complete a requested operation before
reporting an error condition.

This section describes how to call the user level library
routines. Variables which are underlined are returned to
the user program.

Opencommunications

This routine opens communication line(s) to the HP 9000(s).
The call has the following form:

OpenCommunications (Address, Files, Status)

Type Name Element (Range)

Integer#*2 Address(4) [1] Number of HP 9000
addresses (1..2)

] HP-IB card Lu (1..255)

3] HP 9000 address #1 (1..30)
] HP 9000 address #2 (1..30)

file name #1

Character*64 Files(2) [1]
(2] file name #2

HP 1000/MEF to HP 9000/500 10

Integer*2 Status(2) [1] Error for address #1
[2] Error for address #2
0 -> No error

SendBuffer

This routine sends a data buffer to the HP 9000(s).
The call has the following form:

SendBuffer (Buffer, Length, Status)

Type Name Element (Range)
Integer*2 Buffer (N) [1..3] Reserved for protocol
Do not use.
[4..N-1] User data area
[N] Reserved for protocol

Integer*?2 Length Length of User data + 3
Integer*2 Status(2) [1] Error for address #1

[2] Error for address #2
0 -> No error

Note:
The first three words of the buffer are reserved for
protocol-dependent information. This is to prevent
unnecessary copying of the data buffer. One can use an

EQUIVALENCE statement to simplify accessing the data buffer:

Integer*2 Max Maximum data buffer size

Parameter (Max = X) X is dependent on space
available to the program in
the system environment.

Integer*2 DataBuffer (Max) ! Use this for your data
Integer*2 Buffer (Max+4)
Equivalence (DataBuffer(l), Buffer(4))

Length varies according to the variable length data buffers.

HP 1000/MEF to HP 9000/500 11

SendEMABuffer

This routine 1is identical to the SendBuffer subroutine
except the buffer resides in EMA. This would allow sending
larger buffers if the use of EMA is desired. The call has
the following form:

SendEMABuffer (Buffer, Length, Status)

Note:
One can determine the maximum buffer length per transfer by
calling the EIOSZ system routine. Refer to "“RTE-6/VM
Programmer's Reference Manual® for details on EMA
programming.

CommunicationStatus

This routine returns whether or not communication is open to
an HP 9000. The call has the following form:

CommunicationStatus (Address, Status)

Type Name Element (Range)
Integer*2 Address HP 9000 address (1..30)
Integer*2 Status = 0 -> Communication open

<> 0 -> Communication not open

CloseCommunications

This routine closes communication line(s) to the HP 9000(s).
The call has the following form:

CloseCommunications (Address, Status)

Type Name Element (Range)

Integer*2 Address(4) [1] Number of HP 9000
addresses (1..2)

] HP-IB card Lu (1..255)

3] HP 9000 address #1 (1..30)
] HP 9000 address #2 (1..30)

Error for address #1

Integer*2 Status(2) [1]
[2] Error for address #2

HP 1000/MEF to HP 9000/500 12

ConfigTimeOut

This routine changes the time-out values used in sending and
receiving information to and from the HP 9000(s). The call
has the following form:

ConfigTimeOut (TransTime, ReceiveTime)

Type Name Seconds (Range)

Integersz TransTime Transmit data time (0..327)

Integer*2 ReceiveTime Receive data time (0..327)
Note:

The recommended times are 10 seconds. Requesting a time-out
of 0 means that the HP 1000 will wait indefinitely for the
HP 9000(s). This is not a recommended mode of operation.

ReportHPIBErr

This routine displays a descriptive error message based on
an error number. The call follows the following form:

ReportHPIBErr (Error)

Type Name Status (Range)
integer*2 Error Error number (0..12)
Note:

ReportHPIBErr will accept the status number returned by the
subroutine library. This can be helpful during the
development phase.

HP 1000/MEF to HP 9000/500 13

Error Recovery

HP 9000
Table of Error Conditions

The errors generated by the "receive" program fit into three
categories. The first type is based on generating an error
diagnostic message to the terminal screen followed by
program termination. The second type is based on generating
an error diagnostic message to the terminal screen with the
program continuing to execute. The third type is based on
sending a response PDU packet to the HP 1000 program with
the HP 9000 program continuing to execute.

The folloWing information is a table that shows all errors
that will cause the HP 9000 program to terminate:

Error Message Returned From

error...incorrect usage of this program MAIN
correct usage is: receive {devicename}

opening the HPIB interface failed: errno=n MAIN
HPIB self-test FAILED: errno=n MAIN

failed to enable EOI mode: errno=n MAIN

The following information is a table that shows all errors
generated to the terminal screen, by default. However,
these errors will not cause the program to terminate:

Error Message Returned From
error occurred while waiting to listen MAIN
read error: errno = n MAIN
out-of Sync Error: Re-syncing MAIN
{filename } is busy: errno=n MAIN
error occurred while waiting to talk SEND
error on sending response: errno=n SEND

HP 1000/MEF to HP 9000/500 14

The following information shows the errors passed to the
HP 1000 program:

Error Number Returned From Meaning
1 MAIN Protocol Violation
2 MAIN File Access Problem
3 MAIN Bad Sequence Number
Note:
Refer to the manual entry for the command, "errno",

contained in Section 2 of the HP-UX Reference Manual to
obtain more detailed information on those errors that
generate a message of the form:

errno=n

where: n is some integer value.

HP 1000/MEF to HP 9000/500 15

HP 1000
Table of Error Conditions

The subroutine library will return various status numbers
based on the result of a user request. One can use the
ReportHPIBErr routine to display the message corresponding
to the status. The following table contains the error
numbers, which routines can return them, and their meanings:

Legend of abbreviations for library subroutines:
O -> OpenCommunications
B -> SendBuffer/SendEMABuffer
S -> CommunicationStatus
C -> CloseCommunications
All -> Any of the above

Error Returned Meaning
Number From

0 All ok

1 OBC Bad checksum after N attempts

2 OBC Time-out on sending information

3 OBC Time-out on receiving response

4 OBC Unrecoverable error on HP 9000

5 BS Communication line not open

6 B Bad sequence number detected at HP 9000
7 (o] Communication line already open

8 o HP-IB card already in use or invalid Lu
9 OBC Unrecoverable error on HP 1000
10 OBC HP 9000 caused a protocol violation
11 OBC Bad parameter passed by user
12 o No more room for information (addresses)

The following messages may be displayed if errors are
detected during HP 1000 - HP 9000 communication:

Message Cause

HPIBACCESS: Xluex error detected Improper system set up

HPIBACCESSE: VMAIO error detected SendEMABuffer error
Note:

"Unrecoverable error..." means that the application program

must start the general calling sequence over again.

HP 1000/MEF to HP 9000/500 16

Special Considerations

General

Other devices on HP-IB interface:

The only devices that should be on the HP-IB interface are
the HP 1000 and the HP 9000(s).

HP-IB extenders:

The HP-IB extenders cause a slower data transfer than a
direct connection. The data on the HP-IB interface always
moves at the speed of the slowest device.

HP 9000
Multiple I/O Redirections to Same File:

If multiple copies of the "receive" program redirect the
output (">") to the same file, then the data from each
program will overlap in the same file. At the operating
system level, the capability of 1locking files is not
implemented. However, to bypass this limitation, the output
filename must be passed from the HP 1000 since file 1locking
capability has been implemented programmatically.

HP 1000
Timeouts:

The time-out settings control how long the HP 1000 will wait
for the HP 9000(s) and the amount of time there will be

between retries. One must also consider HP 9000 system
loading. The time-out must be long enough such that the HP
9000(s) has time to complete the task. Never set the time-

outs to zero because the HP 1000 program will hang if there
is ever a problem on the HP 9000(s).

The user must set the time-out for the HP-IB card eqt before
running the program if the send-time-out and receive-time-
out are the same values since the subroutine library only
sets the time-out if the values are different.

HP 1000/MEF to HP 9000/500 17

OpenCommunications:

Once the application program has opened communications to
the HP 9000s, another request to open communications does

not lose the connection. This feature is useful if an
HP 1000 error was detected when trying to connect to the
HP 9000s. The HP 1000 error would most likely be caused by

the wuser aborting an application program and restarting it
without restarting the receiver programs.

Buffer sizes:

It requires 1less protocol overhead to transfer one large
buffer than it takes to transfer many small buffers.

EMA vs. Non-EMA buffers:

It takes longer to access EMA buffers vs. non-EMA buffers
due to the overhead of mapping routines.

User buffer lengths larger than maximum transfer size:

The user must consider that the subroutine library requires
a buffer with the first three words and last word reserved

for protocol usage. If the length of the user data is
larger than the maximum transfer length, then it will be
necessary to make multiple calls to
SendBuffer/SendEMABuffer. If the user chooses to send the

buffer by passing multiple sub-buffers starting at different
indices, then plan to preserve the first three 1locations
before the indexed sub-buffer location and one location past
the end of the sub-buffer.

CloseCommunications and HP 1000 error:

CloseCommunications will try to close any requested (valid)
HP-IB address whether or not the connection has been
established. This allows one to close a connection to the
HP 9000(s) if a previous program left it open.

HP 1000/MEF to HP 9000/500 18

Technical Description

Protocol Data Units (PDU)

The general method for communicating between the HP 1000 and
the HP 9000(s) is via Protocol Data Units (PDU). A PDU
consists of 16 bit unsigned integers. This implies that
this 1is a word- (vs. byte~-) oriented protocol. The PDUs
have the following format:

Each PDU has an identifier (id), information related to the
specific PDU and a checksum. The checksum is an unsigned
16-bit sum of all 16-bit words in the PDU. The checksum
calculation ignores any carries.

The HP 9000(s) acknowledges each PDU from the HP 1000 with
either an ACK or a NACK PDU. The following section
describes the various PDUs:

REQ

OpenCommunications uses the request (REQ) PDU to pass a file
nane. If the file name is blank, the data will be written
to the file or pipe specified in the start-up command on the
HP 9000.

The id for a REQ PDU is a 1.

The sequence number (seq #) is used to identify a data PDU
which has been sent more than once. The HP 9000(s) will
accept a data packet and discard any successive data packets
which have the same sequence number.

The length of the filename, in words, 1is stored in the Len
field. A file name with an odd number of characters must be
padded with a blank.

HP 1000/MEF to HP 9000/500 19

DATA

SendBuffer/SendEMABuffer uses the DATA PDU to pass data
buffers.

The id for a DATA PDU is 2.
The Seq # is modulo 8 (0..7).
The Len is the length of the user data in words.

The data portion contains the user data portion of the buffer
passed by SendBuffer/SendEMABuffer.

ACK

The ACK PDU is used to acknowledge the checksum of the
received packet.

The id for the ACK PDU is 3.
The error field (one word) contains any errors which may
have occurred. The HP 9000 uses this field to return the

status of an operation or the detection of a perceived
protocol violation.

NACK
The NACK PDU is used if the PDU checksum does not match the
calculated checksum.

| 4 | 0 | checksum | Checksum = 4

The id for the NACK PDU is 4.

HP 1000/MEF to HP 9000/500 20

EOT
CloseCommunications uses the EOT PDU to close the file on
the HP 9000.

| 5 | 0 | checksum | Checksum = 5

The id for the EOT PDU is 5.

Using the Send9000 example program:

Note: The user must set the time-out for the HP-IB card eqt
before running the program if the send time-out and receive
time-out are the same values. The subroutine library only
sets the time-out if the values are different.

Program with parameter usage:

CIxx> Send9000,PackCount,AskFile, STimeOut,RTimeOut, HP9KAddAr

Parameter descriptions:

PackCount = number of buffers to send
Default: 1 buffer

AskFile <> 0 --> Ask for file name for first HP 9000

Default: testfile First HP 9000
Default: testfile2 Second HP 9000
STimeOut = Time-out for sending a PDU (seconds)

Default: 10 seconds

RTimeOut = Time-out for receiving a PDU (seconds)
Default: 10 seconds

HP9KAddr <> 0 --> Ask for: HP-IB card 1lu
Number of HP 9000s (2 max)
HP 9000 address 1
HP 9000 address 2
Buffer length (10000 max)

HP 1000/MEF to HP 9000/500 21

Default: 45 HP-IB card 1lu
1 HP 9000
28 HP 9000 address 1
26 HP 9000 address 2
10000 word buffers

There is very little error checking for user entries.
Examples:
To run the program in default mode:

Send9000

To send data to two HP 9000s:
Send9000,1,1,10,15,1
Description:

Send one buffer (automatically generated)
Ask for file name for the first HP 9000
Wait up to 10 seconds for sending a PDU
Wait up to 15 seconds for receiving a PDU
Ask for HP-IB card lu number
Ask for number of HP 9000s
For each HP 9000 (2 max.)

Ask for HP 9000 HP-IB address
Ask for buffer size in words (10000 max.)

Refer to Appendix A for the "Send9000" program source
listing.

Conclusion

The HP 1000/MEF to HP 9000/500 interface provides a lower
cost solution to reliable, high-speed data transfer.
Application programmers can continue to concentrate on the
application and spend 1less time being concerned about
interfacing the computers. Applications can be more
distributed for on-line processing needs.

HP 1000/MEF to HP 9000/500 22

Appendix A: Sample Data/File Transfer Program

This program is made up of three parts: initialization and data
transfer, ASCII file transfer, and binary file transfer.

program send9000
* (c) Hewlett-Packard Company, 1986

khhkhhkhkhkhkhhkhkhhhhhhhhhhkhhhhhhhhhhdddhhhhhddddddddkdddikikkik

* F Series version <870413.0948>

*

* This version uses direct I/0. The lu is 45 and the addresses are 28 & 26.%*

* If compiled with debug (d), one will get a dot (.) for each data buffer.

*
*

Program usage: SEND9000,PackCount,AskFile,SndTimeout,RecTimeout, HP9KAddr*

*

*

*

* PackCount = number of packets

* AskFile <> 0 --> Ask for file name

* sndTimeout & RecTimeout are in seconds

* HP9KAddr <> 0 --> Ask for HP-IB lu, HP 9000 addrs & Buff size
*
*

kkhkhkhkhkhkhkkhhkhkhkhkhkhkhkhhkhhhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhdhhhdhdhdddhhhkhhhhhhhhkhkhkhkhkkhkhkhkhkhkhi

** Added character buffer for commands from console
** Added file transfer. Note: file is transferred as type 1 (Filter it).
** Added ascii file transfer. Note: each record is terminated with a \n.

This program makes use of the HPIB communication routines:

OpenCommunications
SendBuffer
Communicationstatus
CloseCommunications
configTimeout
ReportHPIBErr

aoaooaoaao0000a0

implicit none
Include HP9000def.inc

integer+*2 address (MaxHP9000+2) ! HP 9000 addr info

anoaoaoaao0a0a0an
+
[}
[}
I
|
}
|
|
|
|
[}
|
[}
t
[}
]
I
t
]
t
]
)
|
|
|
|
|
i
|
+

character*64 files(MaxHP9000) ! file names for each HP9000
%nteger*z status (MaxHP9000) ! result codes for each HP9000
integer*2 dlen ! length of the data buffer

Ak kA A A AR A AR R AR AR A AR KRR A A AR AR A Ak ok ko kA kA kA ko kkkkkkhkhkkkkkkkkkhkkkkkkkkk

* Change dlen to appropriate data length *
kkkkkhkkkhkhkhhhkhhkkkhkhhkhkhkhdhkhhhkhxhhhkkhkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

parameter (dlen = 10000) ! Length of data
integer+*2 buffer(dlen+4) ! Full buffer including protocol

HP 1000/MEF to HP 9000/500 23

*
*
*
*
*
*
*

integer*2 databuff (dlen) ! True data portion of buffer

** Added charbuff and TrimLen
character*80 charbuff ! character buffer
integer*2 TrimLen ! TrimLen function

** Added HP 1000 filename for file transfer
character*64 HP10OOFile HP 1000 source file
integer*2 MaxLength Buffer length for read
parameter (MaxLength = 128*(dlen/128)) ! 128 word blocks
logical*2 AsciiMode ! File transfer method

integer#*2 len length of data transferred

]
integer#*2 BusLu ! HPIB card logical unit
integer#*2 HP9000Count ! Number of HP9000s
integer+*2 HP9000addr (MaxHP9000) ! HPIB addresses for each HP9000
integer#*2 i scratch
integer+*2 scratch

Number of buffers to send
RMPAR parameters

Send timeout in seconds
Receive timeout in seconds

n
Integer*2 PacketCount
Integer*2 Parms (5)
Integer*2 TransTime
Integer*2 ReceiveTime

index for elapsed time

Time function

Elapsed time at major events
temp value for differences

Flag used in retrying OpenComn. ..

Integer*2 TimeIndex
Integer*4 ElapsedTime
Integer*4 Timer (100)
Integer+*4 T

Logical RetryNeeded

khkdkkhhkhhhkhkhhhhkhkhhhkhhhkhhkhkhkhhhkhhhkkhkhhhhhkhkkhhhkhhkhkkhhkhkhhhhkhhhhhhhkhkhhkhkhhhkhkhkkkk

* Line up the data so that it is placed after the protocol information *
khkkkhhhkhkhkhkhkhkhhkhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhkhhhhhhhkhkhhkhkhkhhhhhhkhhhhhhhhkhkhhhhhkhhkhkhhkhhkhkhkk
* Equivalence (Buffer(4), databuff)

**x* Added charbuff
Equivalence (Buffer(4), databuff, charbuff)

khkdkdkdkhdkdhhhhkhhhhhkhkhkhkhhhkhhhkhkhkhhhhhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhkxkxk

* Change the BusLu to the appropriate HPIB card LU.
ddkhkkdkhkhkhkhhkhkhkdkhkhkhhhkhkhhhhhkhkhhhkhhhhhhhkhhhhhhhhhdhhhhkhhhhhhkhhhhhhhkhkhkhkhkhkhkhhkhkk
Data BusLu/45/ ! Lu for the HPIB card. Modify...
Data PacketCount/1/
c Get the number of packets from the user
Call RMPAR (Parms) ! Get packet count

if (Parms(l) .gt. O) PacketCount = parms(1)

c
c Open communication to HP9000s
c file names
c

files(l) = 'testfile!

if (Parms(2) .gt. 0) then
c Get file name

write (1,*) 'Enter filename [<cr>=none] _'

HP 1000/MEF to HP 9000/500 24

read (1,'(a)') files(1)
endif

files(2) = 'testfile2'

c Set up the timeouts
if (parms(3) .gt. 0) TransTime = parms(3)
if (parms(4) .gt. 0) ReceiveTime = parms(4)
if (TransTime .ne. 0 .AND. ReceiveTime .ne. 0) then
Call ConfigTimeout (TransTime, ReceiveTime)
endif

c Set the HPIB addresses
hpg9000addr (1) 28
hp9000addr (2) 26

I

len = dlen

HP9000Count = 1
c Get the number of HP9000s and addresses if applicable
if (parms(5) .gt. 0) then
write (1,*) 'HP-IB card Lu = _'
read (1,*) BusLu
write (1,%) 'How many HP9000s? ‘'
read (1,*) i
HP9000Count = i
do i = 1, HP9000Count
write (1,*) 'HP9000Addr(',i,') = !
read (1,*) n
HP9000Addr(i) = n
enddo
write (1,*) 'Buffer size (words) = _!
read (1,*) n
if (n .gt. 0) len = n
endif

address (1) = HP9000Count
address(2) buslu
address(3) hp9000addr (1)
address(4) = hp9000addr(2)

* Start up the timer
call ResetTimer
timeindex = 1

Timer (timeindex) = ElapsedTime ()
timeindex = timeindex + 1

c Try multiple opens to put HP9000s in starting state (state A)
i=o0
RetryNeeded = .true.
do while (i .l1t. 2 .AND. RetryNeeded)
RetryNeeded = .false.
call OpenCommunications (address, files, status)

do n = 1, HP9000Count

HP 1000/MEF to HP 9000/500 25

if (status(n) .eq. HP1000ERR) RetryNeeded = .true.
enddo
i=1+1
enddo

Timer(timeindex) = ElapsedTime ()
timeindex = timeindex + 1

write (1,*) 'Statuses are: ', (status(i), i=1,HP9000Count)
do i = 1, HP9000OCount
if (status(i) .ne. 0) then
write (1,*) ‘Error on OpenCommunications to ', i , *
write (1,*) status(i)
call ReportHPIBErr (status(i))

endif
enddo
c
c Send some data
c
do i =1, len
databuff(i) = i ! Portion of buffer
enddo
c Initialize status in case of no addresses open
do i = 1, HP900OCount
status (i) = NOTOPEN
enddo
c
c The buffer length must be for the full buffer.
c Offset 3 words to account for protocol information.
c
Timer(timeindex) = ElapsedTime ()
timeindex = timeindex + 1
c
c Send some data buffers
c
do n = 1, PacketCount
call SendBuffer (buffer, len + 3, status)
do 1 = 1, HP9000Count
if (status(i) .ne. 0) then
write (1,*) 'Error on SendBuffer to ', i , ' !
write (1,*) status(i)
call ReportHPIBErr (status(i))
else
d write (1,%) '._ !
endif
enddo
d do i =1, len
4 databuff (i) = databuff(i) + 1
d enddo
enddo
4 write (1,*) ' !

HP 1000/MEF to HP 9000/500 26

Timer (timeindex) = ElapsedTime ()
timeindex = timeindex + 1

Check communication

0

do i = 1, HP9000Count
call CommunicationStatus (address(i+2), status(i)) ! offset to add

write (1,*) 'Communication status to ', i, ' is_ !
if (status(i) .eq. 0) then
write (1,*) ' open'
else
write (1,%*) ' closed'
Call ReportHPIBErr (status(i))
endif
enddo

Timer (timeindex) = ElapsedTime ()
timeindex = timeindex + 1

Shut down communication (and close the HP9000 files)

[e e NN¢e]

call CloseCommunications (address, status)

do i = 1, HP900OCount
if (status(i) .ne. 0) then
write (1,*) 'Error on CloseCommunications to ', i, !
write (1,*) status(i)
Call ReportHPIBErr (status(i))
endif
enddo

Show the times

O

Timer(timeindex) = ElapsedTime ()

write (1,%) 'Milliseconds’

t=0

do i = 1, timeindex
write (1,500) i, Timer(i), Timer(i)-t

500 format ('Timer(',i3,') =',i8,' Diff =',i8)

t = timer(i)

enddo

c Timer(4) - Timer(3) is time to send buffers
t = Timer(4) - Timer(3) ! milliseconds
write (1,*) 1000.0*PacketCount*len*2/t, ' Bytes/second'
write (1,*) 'Done with HPIB communications test'

*% Added ability to send commands to the HP 9000

charbuff(l1:1) = 'N'
write (1,*) 'Do you want to send commands? [n] _'
read (1,'(a)') charbuff

HP 1000/MEF to HP 9000/500 27

call Casefold (charbuff)

550 Continue
if (charbuff(l:1) .ne. 'N') then

c Get commands from the user until done (/e)
c Use the first address for sending commands
address (1) = 1
files(l) = * ¢

call OpenCommunications (address, files, status)
Call ReportHPIBErr (status(1l))
if (status(l) .eqg. 0) then

write (1,*) 'Enter /e to exit.'

write (1,*) 'Command: _'

read (1,'(a)’') charbuff

do while (charbuff(l:2) .ne. '/e')

c Force an even number of characters
len = TrimLen (charbuff)
c Append a <LF> to line (keeping an even # chars)

len = TrimLen (charbuff)
if (mod (len, 2) .eq. 0) then
c even number of chars. Append a space
len = len + 1
charbuff(len:len) = ' !
endif
len = len + 1

charbuff(len:len) = char(10) ! <LF>
c At this point, len is aways even. Change to words
len = len/2

Call sendBuffer (buffer, 1len + 3, status)
Call ReportHPIBErr (status(1l))

write (1,*) 'Command: _'
read (1,'(a)') charbuff
enddo
Call CloseCommunications (address, status)
Call ReportHPIBErr (status(l))
endif

endif

** Added ability to send files to the HP 9000
charbuff(1:1) = 'N'
write (1,*) 'Do you want to send a file? (n] !
read (1,'(a)') charbuff
call Casefold (charbuff)
if (charbuff(l:1) .eq. 'Y') then

c Get commands from the user until done (/e)
c Use the first address for sending commands
address (1) =1
files(1) = *+
charbuff = ' !

write (1,*) 'Enter /e to exit, /c to return to commands.'
write (1,*) ‘*HP 1000 file: _!'

HP 1000/MEF to HP 9000/500 28

read (1,'(a)') charbuff
if (charbuff(l:2) .eq. '/c') goto 550
do while (charbuff(l:2) .ne. '/e')
HP100OFile = '
HP1000File = charbuff(1:64)
Call CaseFold (HP100OFile)

charbuff(1:1) = 'A!

write (1,%*) 'Ascii or Binary Data [a]: _°
read (1,'(a)') charbuff

Call CaseFold (charbuff)

if (charbuff(l:1) .eq. ' ') charbuff(l:1) = ‘A’
if (charbuff(l:1) .eq. 'A') then
asciimode = .true.
else ! Binary data transfer
asciimode = .false.
endif

write (1,*) 'HP 9000 file: _°
read (1,'(a)') files(1l)

if (asciimode) then
Call SendAsciiFile(address, HP1000File, files, buffer,

+ MaxLength, status)
else
Call SendFile (address, HP1000File, files, buffer,
+ MaxLength, status)
endif
charbuff = ' !

write (1,*) 'HP 1000 file: !
read (1,'(a)') charbuff
if (charbuff(l:2) .eq. '/c') goto 550
600 enddo
endif

END

kkkkhdkkdkdkdkhkkdkkkhkkkhkhhkhhkokhhkhkhhkkhhkkhkhhhhkkkhkkkhhhkhhkhhhkhhhhhkhhhhhhhdk

Subroutine SendAsciiFile (address, Srcfile, DstFiles, dcb,

+ MaxLength, status)
* (c) Hewlett-Packard Company, 1986
c Description <870413.0948>
c This routine copies a file to the HP 9000. SendAsciiFile
c copies the file over and appends a new line character at the
c end of each line.
c Declarations

implicit none

integer+*2 address(*) ! HP 9000 addresses
character* (*) Srcfile(¥*) ! HP 1000 file name
character* (*) Dstfiles(*) ! HP 9000 file names
integer*2 dcb(*) ! Large dcb for read
integer*2 MaxLength ! Read length
integer#*2 status (*) ! Return status

HP 1000/MEF to HP 9000/500 29

c Assume lines will be no longer than 1024 bytes so that we can
c still stuff a space and a new line character (\n) on the end.
c The protocol requires 3 words in front of the buffer and 1 word
c behind the buffer.
integer*2 buffer(517) { PDU buffer: 512 + 4 + 1 wds
integer*2 wbuffer(512) ! word buffer
character*1024 cbhuffer ! character buffer
Equivalence (buffer(4), wbuffer, cbuffer)
integer*2 err ! Fmp Err
integer*2 errl ! Fmp Err
integer*2 len ! Read length
integer*2 FmpRead ! Function
integer+*2 FmpRewind ! Function
integer+*2 dlen ! dcb length
parameter (dlen = 10000) ! dlen = 16 + 128n
integer*2 maxbytes
parameter (maxbytes = 1024)
c code
c Try to open the HP 1000 file.

Call FmpOpen (dcb, err, SrcFile,

if (err .ge. O

) then ! File

err = FmpRewind (dcb, errl)
if (err .1t. 0) stop

c Try to connect to HP 9000
Call OpenCommunications (address, Dstfiles, status)

if (status

.eq. 0) then

c Copy the file

err = 0

Do while (err .ge. 0)

len

if (err .ge. 0 .AND. len .ne.

= FmpRead (dcb, err, wbuf

Append the <LF>

If (mod (len, 2) .eq. O
len = len + 1
cbuffer(len:len) = ' !

Endif

len = len + 1

cbuffer(len:len) = char(10

Change len to words

len = len/2

Call sendBuffer (buffer,
if (status .ne. 0) then

Call ReportHPIBErr (s
err = -1 ! Forc
endif

elseif (err .1lt. 0 .AND. err

Call FmpReportError (err,

endif

Enddo

HP 1000/MEF to HP 9000/500 30

'‘ros', dlen/128)

exists

fer, MAXBYTES)
-1) then

) then

) ! <LF or \n>

len+3, status)

tatus)
e exit

.ne. -12) then
SrcFile)

c Clean up
Call CloseCommunications (address, status)
Call ReportHPIBErr (status)
Call FmpClose (dcb, err)

else ! Error on OpenCommunications
Call ReportHPIBErr (status)
endif
else ! Error on FmpOpen
Call FmpReportError (err, SrcFile)
endif

return
end

khkhkhkkhkhkhkhkhhkhkhkhhkhhkhkhkhhkhkhhkhkhdhhkhkhhkhhkhkhkhhkhkhkhkhkhkhkhkkhkhkhkhhkkhkkhkhkhkhkkhkhkkkhkkkkkkkkk

Subroutine SendFile (address, Srcfile, DstFiles, buffer,

+ MaxLength, status)
* (c) Hewlett-Packard Company, 1986
c Description <870413.0948>
c This routine copies a file to the HP 9000. SendFile
c copies the file over as type 1. This implies that
c the user must put an ASCII file through a filter
c to convert it to an appropriate file on the target
c system.
c Declarations
implicit none
integer#*2 address (*) ! HP 9000 addresses
character* (*) Srcfile(*) ! HP 1000 file name
character* (*) Dstfiles(*) ! HP 9000 file names
integer#*2 buffer (*) ! PDU buffer
integer#*2 MaxLength ! Read length
integer#*2 status (*) ! Return status
integer#*2 dcb(16) ! File dcb
integer*2 err ! Fmp Err
integer+*2 len ! Read length
integer*2 FmpRead ! Function
c code
c Try to open the HP 1000 file as type 1 for unbuffered read.
Call FmpOpen (dcb, err, SrcFile, 'rosxf', 1)
if (err .ge. 0) then ! File exists
Call FmpSetPosition (dcb, err, 0, -1J)
c Try to connect to HP 9000
Call OpenCommunications (address, Dstfiles, status)
if (status .eq. 0) then
c Copy the file

err = 0

Do while (err .ge. 0)
len = FmpRead (dcb, err, buffer(4), MaxLength)
if (err .ge. 0 .AND. len .ne. -1) then

HP 1000/MEF to HP 9000/500 31

Call SendBuffer (buffer, len+3, status)
if (status .ne. 0) then
Call ReportHPIBErr (status)
err = -1 ! Force exit
endif
elseif (err .lt. 0 .AND. err .ne. -12) then
Call FmpReportError (err, SrcFile)
endif
Enddo

c Clean up
Call CloseCommunications (address, status)
Call ReportHPIBErr (status)
Call FmpClose (dcb, err)

else ! Error on OpenCommunications
Call ReportHPIBErr (status)
endif
else ! Error on FmpOpen
Call FmpReportError (err, SrcFile)
endif

return
end

HP 1000/MEF to HP 9000/500 32

Developing A Complex Engineering Test Database

Ann D. McCormick
INTELSAT
International Telecommunications Satellite Corporation
2250 E. Imperial Highway, Suite 750
E1 Segundo, CA 90245

I. Introduction

The use of database methodology has been well established in business
computing for many years. During the pioneering days of computer
development the business community quickly saw that databases could be
used to reduce a large but well-defined set of facts to a table of
numbers or, in recent years, a chart in an astonishingly small amount
of time. The database structure imposed an order on information
already rigidly defined. For example, a credit card company would
have a database of cardholders containing name, address, place of
business, credit references, account number, current balance, past due
balance and so on. This database would not be significantly different
from a bank's database of outstanding Tloans or a manufacturer's
database of clients. Even allowing for differences from country to
country, such things as name, account number, and outstanding balance
are sufficiently universal in function that detailed software packages
can be written and marketed to accommodate a large audience.

The engineering computing community has not been as fortunate as our
brothers 1in the business world. There is very Tlittle uniformity
between different engineering test databases, largely because the
nature of the testing varies. An engineering database, for the
purpose of this paper, may be defined as a collection of measurements
made during the testing of an object. The object may be as simple as
a can opener or as complex as a manned space vehicle. The collection
of measurements may be fairly easy to define (how many ways can you
test a can opener?) or be open-ended when the item being tested is a
complex one-of-a-kind item.

I will be describing here the principles INTELSAT learned from
designing, developing, and maintaining a complex test database for the
INTELSAT6 telecommunications satellite. For this project we were
dealing with test data from six spacecraft, each with twelve
subsystems containing over 170 electronic units. At this writing,
over 110,000 test data files have been generated, using a total of
2490Mb disc storage. To process and analyze this data more than 400
applications programs were written over four years. There were times
that it seemed we were trying to number the sands on the beach. But
with much perseverance we managed to develop a successful database
that is regularly used by the engineering staff.

Developing A Complex Engineering Test Database
1016

II. Defining the Test Database

To define the scope of a test database you must first have an
understanding of what objects will be tested and how they will be
tested. Some of the questions you must ask are:

1. How many types of units and how many of each type will be
tested?

2. Are the units related or unrelated?

3. What is the likelihood of design changes that will effect
the testing process?

4, How many measurements will be taken during a typical unit
test?

5. Will all the test measurements be useful historically?

The quantity and type of units being tested gives the first factor in
the database sizing. Once you have a contract or a blueprint with the
unit descriptions you can physically count how many objects you will
be testing. However, this is not always as easy as it may seem.
Will all the items that look like "units" to the programmer have their
data stored? What about data taken at other test sites? How many
spare units will be tested? These questions must be answered early
in the design phase with the help of Engineering. Then take the
answers to these questions, assume "worst-case" conditions and then
add five percent.

The question of relation between units gives an indication of whether
you logically have two or more actual databases to design. If you are
dealing with test data from two different automobiles you can
reasonably expect to maintain two distinct databases. However, keep
in mind any similar components between the units. The two cars may
have very different suspension systems but virtually identical brakes.
In any statistical analysis of the brakes, you can be assured that at
some point Engineering is going to want to look at data from both
cars. Thus the two "distinct" databases logically intersect in the
braking system. It would be advisable to keep the internal format of
the braking system data in the two databases compatible.

Design changes are impossible to predict, except to say that they will
certainly happen. Avoid designing your database or its software
around a peculiarity of the data. For example, at one point in the
INTELSAT6 satellite project there was serious discussion about adding
one or more antennas to the spacecraft. This would have had
potentially disastrous to some of our software and data files because
we had designed software around a specific number of antennas. Be
constantly on the Tookout for values used in the software that should
be coded as a parameter rather than a constant.

Developing A Complex Engineering Test Database
2

Sizing the number of data points you expect to receive can be
straightforward if you have previous experience with similar test
data. First get an accurate count of the amount of test data from the
similar unit. Be sure to allow for retests in your counting. Then
take this figure and multiply by a complexity factor appropriate to
the design differences between the two units. If Unit A has 15% more
test points than Unit B, then Unit A will probably generate 15% more
data than Unit B. If, on the other hand, you have no previous test
database to use for comparison you are forced to make a manual count
of number of measurements per test per unit. Since this is a less
reliable method I recommend rounding up all your figures to allow for
errors,

The final question is probably the most difficult one to answer. Do
you really need all the data available? Not all test data needs to be
stored on a computer. Most data that measures a "yes/no" condition
does not merit being included in a test database. There is not much
you can do, for example, with the answer to the question "Did the unit
o] " :
temperature exceed 100 F? If no one cares what the precise
temperature was, provided it did not exceed some limit, then the test
result has no use beyond the immediate need of deciding whether the
test passed or failed. Some data is also too complex to store
digitally and make any meaningful computations. It may be necessary
to examine the waveform output of a unit during test but if you do not
expect to compare one unit's waveform to another or do any statistical
analysis on the waveforms then the digital storage of this information
is not really useful.

ITI. Selling "New Technology" to a Skeptical World

During the design phase of your database you will begin to identify
pockets of skepticism and hesitancy among your data collectors, target
users, and even your management. Whenever there is a potential change
to "the way we've always done it" on the horizon you are guaranteed to
find a large spectrum of responses. Here are a few of the gems I have
encountered:

"I'11 never use the computer."

"I just want to push a button and get a plot. If it is more
complicated than that, I just won't remember it."

"I'm not sure the development cost is worth the effort. No one
will use the system when it's done, anyway."

"But I like writing the numbers in my log book. It forces me to
look at the data."

In the normal population of engineering test database users there is a
high percentage of these users who have had some programming
experience, usually with BASIC and usually on an overworked university

Developing A Complex Engineering Test Database
3

computer that would swallow their batch jobs and sometime later
(perhaps hours later) spit out a sheet or two of cryptic messages in
some obscure lanqguage for which the Rosetta Stone has not yet been
discovered. This basis for their experience with computers usually
puts them in one of two categories: Those That Do and Those That
Don't.

Those That Do

Do find that the computer can be a positive challenge.
Do want to learn something about how it works.

* Do want it to help them with their job.

Those That Don't

Don't really want to talk to you about how they can use your
database.

* Don't want a CRT installed in their area because that might
mean they will have to use it.

Don't think you can possibly automate what they have been
doing quite well, thank you, with paper and pencil.

You, the systems analyst/designer, must deal with these varied
reactions. Every system needs its champion and you're elected to fill
that position. This part of your job may not show up on any task
schedule but it is critical to the success or failure of any test
database, regardless of size or complexity. The finest database
system in the world is worthless if it is not being used. The
following are some guidelines to help ensure your system will be used:

1. Learn something about the job of the user or the data
collector. Find ways to make your database work for him
instead of against him.

2. Refuse to take the role of The Enemy, even if they do their
best to cast you in that role. When you are faced with what
seems like unreasonable resistance to automation, consider
the possibility that you are dealing with "techno-phobia".
Try to work privately with that individual or group to
overcome this.

Developing A Complex Engineering Test Database

3. Keep communications open with everyone. Publish software or
database changes well 1in advance of their implementation.
Make sure that everyone knows you're willing to listen to
suggestions or constructive criticisms.

4. Avoid falling into a "fortress mentality". A fortress wall
not only keeps out the petty annoyances but prevents you
from seeing the danger signals that could help you to avert
disaster.

IV. Collecting Valid Data

Now that you know what test data is available, you must develop your
data collection network. First you must identify all your data
point-of-entry locations. Next you must determine the acceptable
methods of data entry. Finally you must define your means of data
validation and entry into the database.

The point-of-entry into your database should be as close to the
testing as possible. The ideal situation is the digital storage of
data during automated testing. Once the bugs are removed from the
test software, you should get reliable, accurate data. The next best
alternative is to have the test conductor enter the data into your
collection via a series of menus or prompts immediately after the
test. This method has the advantage that the test conductor can
filter out the more glaring errors in the data. The least desirable
point of data entry is to have the entry done by a data clerk who is
not familiar with the test. Unfamiliarity with the data compounds the
problem of getting numbers from a piece of paper, through a fallible
interpreter, and into the computer.

The method of data entry can be as varied as the type of computer
equipment you have to work with. A direct reading of the test
equipment is always the best method. When this is not available, a
variety of bar code readers, magnetic strip readers, and CRTs are
available. Whatever input device you purchase, make sure that it can

be made as wuser-friendly as possible. There is nothing more
frustrating than attempting to store data and getting the cryptic and
very unfriendly message "Data Storage Failed!" Also be cautious about

purchasing devices that have just been put on the market. You could
find yourself debugging their hardware design while struggling to get
your data collection working. If the data entry process is too
frustrating your data collection people can become uncooperative to
the point of abandoning further attempt to use the system.

The validation of data should be done as the data is being entered
into the database. This allows for feedback to the entry point and
possible immediate correction. In writing validation software the
cardinal rule fis:

Developing A Complex Engineering Test Database

NEVER, NEVER ASSUME THAT DATA IS CORRECT

I believe that this principle cannot be overstressed. Numbers can be
transposed or in the wrong position, test equipment can be turned off
or not working, magnetic strips can be deGaussed, and time clocks can
be set incorrectly. If there is any area where Murphy's Law can
sabotage your database, this is it. The contents of your database
must have a high rate of reliability or your end-users will not have
the confidence in the outputs they receive. We have found that the
amount of questionable data must be somewhere below 2% to ensure a
reasonable confidence in the database. When confidence is low, usage
(your ultimate measure of success) is also Tow.

Validation is accomplished by comparing each value with its known
expected range. If the serial number is a four digit ASCII value,
don't accept "003 " or " 2". Either make the data correction
yourself (being careful not to introduce further error) or demand the
data be reentered. If the value, such as a part number, has a
discrete set of possible values, keep an up-to-date table in your
software of these values and refuse anything that doesn't match. If
you know that your data retrieval software will expect a value to be
left justified or all capitals, make those corrections now. Even the
test values can be filtered for valid information. If you know, for
example, that a voltage can never exceed 120V without destroying the
unit under test then it is safe to reject a value of 290.5V as an
error. Be very conservative, however, about altering the test
measurements. If significant portions of the data are being
"corrected" your users' confidence in the system will drop.

In some cases, validation may not be possible. If the nature of the
test is such that the outcome is unpredictable, as is possible with
prototype testing, you will not be able to filter out errors
programatically. In this case it may be necessary to have human
intervention in the validation process to avoid interspersing good
data with bad data. But be sure that this post-test validation is
done very soon (within 24 hours at most) after the test is complete.
If the validation takes place later than that you increase the risk of
validation errors.

V. Helping the User to Define His Output Requirements

In helping your database users to define with you what the output
requirements are for the test data system, you must recognize that you
are filling the role of ambassador between the two worlds of the user
and the programmer. To do this you must have a working grasp of the
problems and needs of both sides. If your users are spacecraft
engineers, as mine are, you must understand such things as what a
space simulation test is and how it is accomplished. You must learn
enough of the user's jargon that his descriptions of the reports or
plots he needs don't leave you scratching your head. You must then be
able to translate these user needs into a software design.

Developing A Complex Engineering Test Database
6

Do not expect the user to come up with a perfect, never-to-be-changed
specification the first time around. This is almost impossible to do.
Rather plan for a "controlled evolution" approach to software
development. This method can be illustrated in the following example:

Week 1 -- The programmer approaches the user about specifying how
he wants to display data from Test A. The user pulls
out some handwritten charts and says "Make it Took like
this."

Week 2 -- The programmer returns to the user and says he doesn't
have data for part of the chart. The user says "Oh,
you just take the Tog of Column 2 and divide it by
Column 3 unless the data was taken during thermal
cycling."

Week 3 -- The programmer shows the user the automated version of
his chart. The user is surprised and pleased but asks
if he can get the chart matrix inverted as he had never
liked the format he had been using.

Week 4 -- The user checks to see if the programmer has the matrix
inverted yet. He then says, "Can you give me a plot of
Column 3 for all the data we have so far? Can it be
ready by next Tuesday?" The programmer grits his teeth
and replies that he can't get it ready by then but he
will see about making the plots.

Week 6 -~ With the matrix now inverted and the plotting software
underway, the programmer wisely asks if the user has
any other data he wants plotted. After some discussion
they find several ways plotting software could be used
to good advantage.

Week 9 -- The user stops by the programmer's office and asks if
he could have an option on the chart to display only
values outside a user-defined 1imit. The programmer
replies in the affirmative but wishes he had mentioned
this in Week 2.

The point I am trying to make is that in the beginning the user
doesn't really know what he wants automated and how it should Tlook.
In some cases he may have a time consuming manual method, such as
plotting points pulled from a stack of tables, that prohibits him from
doing some of the more sophisticated things he might really be able to
use. In other cases, he may never have bothered to look at the data
in detail. It's your job to encourage him to view the database
computer as a powerful tool that can help him do his job better than
ever before, Guide his thinking by educating him to what the computer
can and cannot do well for him.

Developing A Complex Engineering Test Database

VI. Writing Applications Software That Will be Used

The first rule of applications software display is keep the user
informed. Never leave him guessing what the program is working on.
If you are searching through 5,000 records, periodically post to the
CRT a message similar to "program: SEARCHING RECORD xxx of 5000". If
your program runs into a resource problem that cannot be easily worked
around (e.g., not enough disc space), tell the user in English what
the problem is and what can be done to correct it. An informed user
is a happy user.

A corollary to the rule of keeping the user informed is to keep the
screen readable. Once you have finished debugging your program, be
sure to remove your debug print statements from the executable code.
If you use cursor addressing, confirm that you are not overwriting
part of one message with another. Watch out for important messages
that roll off the edge of the screen or are overwritten 0.5 seconds
after they appear. A program that is viewed by the user as
indecipherable or mysterious in its operation will probably not be
used except under duress. Show that you take pride in your work by
presenting professional looking output format.

Avoid forcing the use of 1long sequences or obscure codes to run
applications programs. Most users do not want to memorize strings of
numbers. Numbers may be quite acceptable for program-to-program
communication, but they are deadly when used for people-to-program
communication. A minor lapse of memory or eye-hand coordination can
result in a totally different function being performed from the one
the user wanted. To solve this I suggest a combination of soft keys
and menus in your applications programs. The soft keys allow the user
to move from one function to another with the push of a finger. The
use of menus permits controlled entry of data values. It is worth
pointing out that one of the reasons for the meteoric rise of the
popularity of person computers is their heavy reliance on function
keys and menus.

Finally, be sensitive to the user's need for fast response. The
proverb "time is money" is especially true in the testing environment.
If you user cannot get his answer in 15 seconds or less, he will
probably not want to wait around for the system to respond. If this
happens to you, explore the possibility of optional batch processing.
Consider also upgrading your system's memory or disc power. The cost
of additional memory is cheap compared to time wasted waiting for a
CPU-bound system to respond.

VII. Keeping It A1l Working
Once the data collection and retrieval software is written, the

unglamorous job of database maintenance begins. To avoid having your
software fall out of step with the testing process you need at least

Developing A Complex Engineering Test Database

one person who is responsible for the health of the database. This
champion of the database must be aggressive in his efforts to keep the
database up-to-date and on-line. To be effective he must be able to:

1. Monitor the accuracy of the data. An unreliable database is
a useless database.

2. Be informed of changes to the testing process that impacts
the database. Make sure that the database is always
current.

3. Ensure that hardware problems, such as a chronically bad data
line, are dealt with swiftly.

4. Monitor the performance of the system and make appropriate
system or hardware changes to improve response time.

5. Contact potential new users and give them a positive first
impression of the system.

6. Identify changes and enhancements that will improve the
database efficiency and pass these on to the programming
staff.

VIII. Conclusion

Developing a complex engineering test database is a process that
begins when the unit to be tested is still on the drawing board and
doesn't end until after the last unit passes the last test. The
database must be designed to allow for the variability of the testing
process. The concept of a test database must be sold to both users
and management as a desirable and achievable goal. Test data must be
collected with a high degree of reliability. Display software should
be friendly and tailored to the user's needs. These goals may seem
like The Impossible Dream, but they are achievable. With careful
planning and sustained efforts you can have a test database that is
successful in the eyes of your management, your users, and yourself.

Developing A Complex Engineering Test Database
9

Manufacturing National Account Products
Improve Manufacturers’ Productivity
Philip J. Christ
Hewlett-Packard Company
1266 Kifer Road
Sunnyvale, CA 94086

I. Introduction

For years, Hewlett-Packard (HP) has been involved in factory
automation, as a manufacturer and user of computers and
instrumentation. The company 1is also a major supplier of
computer-based automation systems to its manufacturing
customers, with sales of these systems estimated at $900
million in 1986.

Through its own manufacturing experience, HP has developed a
"think big, but start small" philosophy about factory
automation. It recommends this same philosophy to its
manufacturing customers. With this philosophy, the
manufacturer starts with an overall plan, then looks for
opportunities to install individual "islands of automation",
such as Cell Controllers or Material Handling systems, using
this plan. The manufacturer begins with opportunities
offering the greatest potential returns. Once installed, the
systems are analyzed for their effectiveness and fine-tuned.
An important by-product is that the manufacturer learns more
about the manufacturing process. The manufacturer then moves
on to the next set of opportunities. Ultimately, the
"islands" are linked together in an integrated manufacturing
system.

Computer Integrated Manufacturing (CIM) has been
characterized in many different ways. Frequently used are
hierarchical models showing various 1levels of automation.
Figure 1 (left hand side) shows one such hierarchy. The
hierarchy shows a completely integrated system. This is the
end goal of the stepwise automation strategy, where the Cell
Controllers and Area Managers individually represent
"islands" to be integrated. Another useful way of looking at
CIM 1is by considering the applications manufacturers perform
at the different 1levels of the hierarchy. These are
superimposed on the right hand part of Figure 1. The focus
of this discussion will be applications at the Cell
Controller and Area Manager levels of the hierarchy. Key
applications in Cell Control and Area Management are shown in
Figure 2.

Manufacturing National 1017

Central to HP's manufacturing automation strategy are third
party Value-Added Business partners, which are the
distribution channel for a major portion of HP's sales to
manufacturers. These companies provide the software and
services needed to provide solutions, using HP's standard
computers, instrumentation systems and software, that meet
individual customer requirements.

II. National Account Program

HP's Manufacturing National Account Program represents a
select group of qualified Value-Added Businesses that provide
software solutions and services addressing a broad range of
Cell Control and Area Management applications. By partnering
with its National Accounts, HP is able to provide a more
complete solution to meet the specific needs of the
manufacturing customer. Currently there are six National
Account products that address the following Cell Control and
Area Management applications:

Assembly Monitoring and Control

Quality Monitoring and Control

Continuous/Batch Process Monitoring and Control
Factory Data Collection

Material Handling

00000

Hewlett-Packard intends to expand the National Account
Program to incorporate other Cell Control and Area Management
applications. The six existing National Account products
will be briefly described:

STARNET from Denniston & Denniston is a cCell Control
solution, primarily for discrete manufacturing processes,
with powerful networking capabilities that supports a wide
range of front ends. The networking capabilities allow the
user to view an entire networked system as a single
manufacturing process.

Monitrol from Hilco Technologies is a low-cost Cell Control
solution with interfaces to a range of programmable
controllers and instruments. The product provides real-time
data to the process operator, allowing improvement of product
gquality and productivity at the process level. Monitrol is
commonly used in batch process and discrete packaging
applications., The solution is easily configured by a
non-computer knowledgeable user.

Manufacturing National - 4 -

The Dispatcher system from Logisticon is a family of
integrated material management systems designed to provide
real-time control of material movement and efficient
utilization of personnel and equipment resources.

ROM from Automated Technology Associates .is a real-time
Statistical Process Control (SPC) software package. RQM is a
scalable set of applications ranging from low-end engineering
analysis, to mid-range SPC, to high-end Statistical Process
Analysis. RQM has been 1linked with STARNET to form a
combined Cell Control/SPC solution. RQM is particularly
effective in high speed discrete manufacturing applications.

AIM from Biles & Associates is a Supervisory Control solution

for continuous and batch processes. AIM supports a wide
range of front-ends, with emphasis on distributed process
control systems and programmable controllers. The solution

has full historian capabilities and process graphics.

CAPTURE from Industrial Computer Corporation is a Factory
Data Collection solution for applications including Work 1In
Process tracking, product tracking, and 1labor tracking.
CAPTURE utilizes a variety of automatic data gathering
devices, including a broad range of bar code readers.

Several application examples will be described, illustrating
how manufacturers have implemented National Account products
in their facilities and the kinds of benefits they have
received.

IITI. Application Examples
A. STARNET at Eastman Kodak

Eastman Kodak competes in a number of markets which require
products incorporating sophisticated electronic assemblies.
Examples are new camera systems, photocopiers, film
processors, medical products, business and professional
products. Further, increasing consumer interest in video
photography will demand an even greater dependence on
electronics in the future. Kodak's response to this need has
been to create its own electronic assembly capacity.

Manufacturing National -5 =

In 1981 the company decided it needed the most advanced
electronic manufacturing capabilities available. A new
facility was proposed utilizing surface-mount electronic
assembly techniques, which were selected for technological
reasons. The technology permits a component density up to
5-7 times that of standard leaded, through-hole technology on
the same size board. It promotes the maximum utilization of
circuit board "real estate" or, alternatively, additional
miniaturization of product design. It also provides certain
electrical advantages, such as faster circuitry and lower
noise.

Included in the design of the proposed facility was an
automation system. Kodak made a basic decision not to try to
implement a completely integrated manufacturing system all at
once, based on the desire to provide engineers and operating
people with in-depth experience and knowledge of the process
and all its nuances before turning it over entirely to
machine control. The facility designers decided to
concentrate on a process monitoring and quality feedback
system, leaving control automation to a later date. The
system was designed to permit product defects to be isolated
quickly, thereby preventing the loss or expensive repair of
large numbers of high-cost assemblies.

In essence, Kodak was taking the first "step" towards CIM.
The capability to make the transition to a more complete
factory automation system has been carefully built into the
process monitoring and quality feedback system.

Process Monitoring System

The process monitoring system is comprised of an HP 1000 A900
computer running STARNET software from Denniston & Denniston,
two HP 3497 data acquisition front ends and two HP 9000
desktop computers to collect the process data. It was
important that the system be able to integrate ten different
machines from six different suppliers into a homogeneous
information system. The machines were connected to the HP
9000s either directly via RS=232 1links or through the HP
3497s. One of the key contributions of the STARNET software
is its device-independence which gives users the needed
capability to view the entire facility as an integrated
system.

STARNET is responsible for monitoring all the datapoints of
the process, collecting the data in real time, and passing
the process information to one or more terminals located
throughout the facility, where engineers can view reduced

Manufacturing National -6 -

data on process control charts. The system also provides
technicians with an overall facility display, which visually
alarms technicians if a data point on a machine goes out of
specification.

Quality Feedback System

As circuit boards come off the assembly line, they proceed to
one of four inspection stations, each of which 1is equipped
with an HP Touchscreen terminal. Kodak found the Touchscreen
particularly effective in helping users learn how to use the
system with minimal training. Product design data fed into
the HP 1000 is displayed on the Touchscreen monitor as a
pictorial representation of the assembled board, with an
indicator box for potential solder and placement faults.
Should the technician detect a board defect, he touches the
displayed component matching the one he has found defective,
bringing a red dot onto the screen at that point, signifying
the component is being inspected. He then touches the fault
type 1listed in the fault box. This information is then
entered into the HP 1000 and stored in the quality database.
The system provides engineers with a count of the number of
boards inspected and presents a current defect rate in parts
per million.

Downloading Machine Programs

Product design data being fed to the Touchscreen inspection
station monitors comes from the division's Computer-aided
Design system, a Digital Equipment VAX, which stores board
design data. Via HP's NS/VAX link, HP provides Kodak the
ability to download CAD data not only to the inspection
stations, but to some of the assembly machines as well. For
example, Kodak uses the link to provide a first-cut program
to the placement machines. Kodak designers have determined
such factors as optimum board travel and have written
programs for the HP 1000 which enable it to convert CAD data
into part placement programs.

Results

o Fast start-up. Once the assembly equipment was selected,
installed and wired for data acquisition and the system
design was completed, two engineers and a part-time
programmer had the initial versions of the process
monitoring and quality systems in place and operating in 2
weeks.

Manufacturing National -7 -

o Reduced defects. The process had typical defect rates of
1200 ppm when the system was first installed. After 4
months the process demonstrated rates less than 100 ppm.

o Improved product design. With one customer's product,
inspectors found that two components which were
experiencing repeated solder-bridging faults were spaced
too closely. The process engineer recommended moving the
parts several thousandths further apart. Defects on the
next lot were reduced from 2700 ppm to 250 ppm.

B. The Dispatcher System at Raytheon Co.

The Electromagnetic Systems Division (ESD) of Raytheon Co.
manufacturers electronic counter-measures equipment for
jamming hostile radar. These products are used chiefly on
military ships and aircraft. Because ESD's customer is the
United States government, the plant's record keeping and
inventory practices must conform to government requirements.
To streamline its response to these requirements and to
better supply assembly operations, ESD reconfigured its
storeroom for subassembly components.

Material Handling System

Today, in addition to conventional shelving, the storeroom
has four new carousels with automatic, mechanical extractors.
Totes of parts move between the carousels and four
workstations on a special belt conveyor (transporter). These
storage-and-retrieval transactions and all other storeroom
operations are computer controlled using The Dispatcher
System software from Logisticon, Inc.

The storeroom that houses the storage system performs the
following functions:

o Kitting--collection of components for subassemblies into
kits for assembly operations.
o Filling orders for spare and replacement parts.
Supplying missing items to assembly areas when kits are
"short" items.
Replacing any failed or damaged items for the assembly
areas.
o Maintaining inventory records in strict accordance with
government procurement practices.

(o]

(o]

Manufacturing National -8 -

Work Flow

When components arrive in the storeroom, they are segregated
into small items and bulk items. From that time until the
parts go to assembly, the storeroom computer tracks both the
small and the bulk items in real-time with tHe The Dispatcher
System software.

Following inspection, the storeroom computer assigns shelf
locations to bulk items, which then are stored manually.
Small items are delivered to workstations for storage in the
carousels.

All totes in the carousels are captive to the system. Each
is a standard size, but is divided by corrugated containers
into multiple storage locations.

To store parts in the carousels, an operator at one of the
four workstations determines the container size needed and
uses the station's computer terminal to request a tote with
an empty container that size. The system then automatically
delivers a tote.

Affixed to each tote 1is a unique bar code. When a tote
arrives, the storeroom computer requests the operator to scan
the code to verify that the tote 1is the correct one.
Following this verification, the computer visually shows the
operator where in the tote to place the parts to be stored.

After the parts are placed in the designated location, the
operator communicates to the computer that the transaction is
completed and releases the tote to the transporter for return
to storage.

When kits are picked, the kits usually contain both large and
small parts, requiring that both the carousels and the
shelves be accessed to make up a kit. This means that The
Dispatcher System must sequence both picks from the shelves
and picks from the carousels. Then it must instruct
operators so that the two collections are combined correctly
for delivery to assembly.

Each of the four workstations can hold two totes in queue.

This feature helps bring about the productivity gains
mentioned by Raytheon management.

Manufacturing National -9 -

Computer System

Each carousel 1is controlled by its own programmable
controller (PLC). The facility's IBM mainframe computer
downloads requests for materials to the storeroom computer,
an HP 9000. Storage and retrieval commands are downloaded
from the storeroom computer to the PLCs. The PLCs, in return
transmit transaction data to the storeroom computer for use
in determining subsequent transactions and for inventory

record keeping. The storeroom computer maintains inventory
records based on data supplied manually from the terminals
and automatically from the PICs. It generates

commands--store, retrieve, pick, place, verify, etc.--based
on local conditions and pre-programmed procedures as well as
real-time requirements in assembly. There is a data 1link
between the storeroom and the facility mainframe computer.
Both computers maintain inventory records for the storeroom.
The storeroom computer's records are based on part numbers
and locations. The facility computer uses part numbers and
dollar values. The two sets of data are reconciled weekly.

Results

o Effective space utilization. The carousels, the
transporter and the computer system use less than 25 % of
the storeroom's floor space.

o Increased productivity. Estimated to be 60% higher, this
is mentioned by nearly every manager whose operations are
affected by the systen.

o Better inventory control. Parts are tracked in real time
with an accuracy of 97.84%, compared to accuracies as low
as 85% before installing the system.

o Reduced materials cost. This 1is due to the tighter
materials control possible with the system.

o Better physical security. Because storage in the carousels
is random, no one--except the computer--knows the specific
locations of parts.

o Efficient cost transfers for residual materials. This 1is
where some of the biggest savings take place. Residual
materials originally assigned to one contract can be
transferred to another contract without physically moving
them.

Manufacturing National - 10 -

C. Monitrol at a Metals Processor

One of the largest mineral separation mills in the world is
located in rural central Missouri. The company maintains a
small maintenance staff with the nearest 1local support
approximately 150 miles away. The mill process was manually
controlled. Because of the 1long time constant of the
process, results of operator adjustments could not ble
determined for 2 to 3 hours. This was compounded by the wide
variability in the mineral content of the mined rock. VYields
from the process were inconsistent and low. Operators were
using excessive amounts of expensive chemical reagents to
maximize leaching of the desired minerals from the rock.
Downtime was excessive. Process engineers had no way of
accurately tracking downtime or operator performance.

Process Monitoring and Control System

Two HP 9000 computers were installed with Monitrol software

in a "Hot Backup" configuration. The computers were
interfaced to an existing PLC. The PLC controlled 1levels,
flows and variable speed pumps. The compositions of all

major streams were monitored by an in-line X-Ray analyzer.
Data from the analyzer was used to optimize control of the
reagent flows. Monitrol, operating on the analysis data with
control algorithms, downloaded computed setpoints to the PLC.
The PLC controlled the speed of variable speed pumps based on
the computed setpoints, adjusting the flow of the reagents.

All operator alarms are logged and operator-entered failure

data are archived for maintenance records. Production and
downtime reports are generated automatically at the end of
each shift. Daily, weekly and monthly summaries are

maintained by the system.
Results

o Increased yields and reduced reagent usage. Resulted in a
payback of approximately 9 months for the system.

o 100% uptime. 1In over 2 yearé of operation.
o Acceptance of system by operators. Minimal training was
required. Configurations changes, based on newly acquired

knowledge, were supported by existing personnel who had no
prior experience with computer control systems.

Manufacturing National - 11 -

o Minimal changeover time. Installation and start-up was
accomplished in less than one week, after which the user
fully supported the system.

IV. Summary

Hewlett-Packard's Manufacturing National Account Progranm
represents a select group of Software Suppliers providing
solutions on HP systems for a number of factory automation
applications. These products can be used as the basic
building blocks for a manufacturer's CIM strategy. By
implementing solutions one step at a time, manufacturers can
realize significant improvements in productivity and product
quality and, in doing this, learn much about the

manufacturing process itself. Examples have been given of
the kinds of gains several manufacturers have realized by
taking the first step towards CIM. These successes are

expected to ultimately contribute to more effective
implementations of integrated factory automation systems.

Manufacturing National - 12 -

A REAL-TIME MINI-COMPUTER SYSTEM FOR AUTOMATING RADIOLABELED XENOBIOTIC
DISPOSITION STUDIES
K. S. Burchette, J. D. deBethizy, T. G. Ashby, T. J. Hellard,
and M. B. Johnson. R. J. Reynolds Tobacco Company,
Bowman Gray Technical Center, Winston-Salem, NC 27102

INTRODUCTION

One of the primary activities of the Pharmacokinetics Group of the
Toxicology Division of the Research and Development Department of R. J.
Reynolds Tobacco Company is performing radiolabeled xenobiotic
disposition studies. A disposition study is used to determine how a
compound, upon exposure to an animal, becomes distributed throughout the
animal’s body. A typical metabolic caging system for the animals and the
types of samples that are collected during disposition studies are shown
in Figure 1. Each animal is treated with a radiolabeled analog of the
compound so that the parent compound and the resulting metabolites can
be monitored as the chemicals are distributed to the tissues and
eliminated in the excreta. If this is done for samples taken at a number
of time intervals, a pharmacokinetic analysis of the disposition of the
chemical and its metabolites can be achieved.

Disposition studies require the collection and analysis of a large
number of samples. This is both labor-intensive and routine. Therefore a
computerized system was needed to facilitate writing the protocol,
collecting the samples, analyzing the samples for radioactivity,
reporting the data, and storing the data for future retrieval and
further analysis. In addition, this system would voluntarily meet
Federal Drug Administration Good Laboratory Practices guidelines for
computer systems. Such an all-inclusive system was not commercially
available. Therefore, the Information Systems Data Acquisition Group of
the Technical Services Division of R. J. Reynolds Tobacco Company
designed and implemented a system for conducting xenobiotic disposition
studies.

Copyr. 1987. R. J. Reynolds Tobacco Company. A1l rights reserved. The
computer software system described in this paper is the exclusive
property of R. J. Reynolds Tobacco Company and may