FNIT\IR BE X

Sponsored by

INTEREIX

The International

Association of

Hewlett-Packard

Computer Users

HP Users

Conference

August

¥ 5-8, 1991

San Diego

PROCEEDINGS

RTE, HP-UX,
Workstations

{xi\%"
&
0

@
Q}CQ the Wave of\}g
@)

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Computer
Museum

The International Association of Hewlett-Packard Computer Users

INTEREX

PROCEEDINGS

of the

1991 INTEREX HP Users Conference

RTE, HP-UX, Workstations

San Diego, California
August 5-8, 1991

Introduction

This volume of the Proceedings of the INTEREX 1991 North American
Conference was printed from camera-ready copy prepared by the authors. It
contains papers dealing with RTE and with the HP1000 in general and all papers
dealing with HP-UX and the HP9000 computers. It also contains papers dealing
with the migration of applications from one type of computer or operating system
to another.

Because HP-UX has been growing in popularity amongst business users, there
are many papers reflecting such use. All papers related to HP-UX have been
included here for convenient reference by the reader. This system may not be
followed in the future. Papers relating to workstations are included here, since
these are small Unix-based systems. At the time of this conference HP’s Apollo
division produced the Apollo line of workstations and papers relating to those
systems are also included in this volume.

Papers were numbered as they were received and in order to present them at
_the conference in logical groupings the numbers are not necessarily consecutive.
The numbers should be considered to be simply reference numbers.

Because the tutorials represent up-to-the-minute information and require much
more work than a paper to prepare, it is not always possible for them to be included
in the Proceedings.

Thanks go to the authors who met the submission requirements and had their
papers in by the deadlines. Thanks also to the members of the paper review
committee who read the abstracts and offered criticism and advice to both the
authors and the editor.

F. Stephen Gauss R Arthur Gentry
U. S. Naval Observatory Gentry and Associates
Washington, D.C. Excelsior Springs, Missouri

10 June 1991

Index by Paper Number

1003 T: A Package For Programming Across Systems
J. Sansdrap, J. Matton - Universite Catholique de Louvain

1007 Adding an X-window User Interface to an HP 1000 Application
Robert Combs - Combs International

1008 Using RTE System Library Routines To Control Automated Program Execution
Wendy King - US Naval Observatory

1009 HP 1000 DS and NS Over MUX Ports

Don Wright - Interactive Computer Technology

1010 DownLoading From The HP 1000 To Factory Floor Machines
Bill Donze - Reliance Electric

1011 DISKMAIL Interprocess Message System
Don Wright - Interactive Computer Technology

1012 HP Softbench-Link/1000: A State of the Art CASE Environment For The HP 1000
Hilary Feier - Hewlett-Packard Co.

1013 The A990 Virtual Control Panel "VCP*, Why and What
Alan Tibbetts - Hewlett-Packard Co.\Consultant

1014 Using and Controlling Dialup Modems for Remote Data Acquisition
Wendy King - US Naval Observatory

1021 HP 1000 Networking Strategy and Future Directions
Lynn Rodoni - Hewlett-Packard Co.

1022 BSD IPC on the HP 1000
Ramesh Radhakrishnan - Hewlett-Packard Co.

2001 Distributed Computing GUI's and the OSF/MOTIF
Mark Brown - Workstation Systems Group

2003 Identifying CIM Opportunities Using Structured Analysis Models
Wayne Asp - Hewlett-Packard Co.

Beyond Interprocess C ications: Strategies for Linking MPE-XL and HP-UX

Frank Leong - Hewlett-Packard Co. Applications

2005 SCSI: The Disk Interface of Choice on HP Workstations
Scott May - Hewlett-Packard Co.

2007 Referential Integrity in ALLBASE/SQL
Amelia Carlson - Hewlett-Packard Co.

2009 LAN Manag New Challenges and Choices
Russ McBrien - Hewlett-Packard Co.

2010 Troubleshooting LANs
Sam Sudaranam - Hewlett-Packard Co.

2011 Overview of Capacity Planning UX/VE/XL Systems
Rick Bowers, et al - Hewlett-Packard Co.
2014 The Impact of Emerging Fast Networking Standards on Document Image Management
Maura McNulty - Hewlett-Packard Co. & Distribution
2015 Enterprise-Wide Messaging in Open Systems
Debra Thompson -

2016 HP VUE, Intellig in a Graphical User Interface
Charlie Fernandez - Hewlett-Packard Co.

2017 Core Dump Analysis
Mark DiPasquale - Hewlett-Packard Co.

2018 Network and System Management Effectiveness: The Graphical Edge

Reid Shay - Hewlett-Packard Co.

Index b m

2019 FORTRAN 90: The New Standard
Maureen Hoffert - Hewlett-Packard Co.

2020 Multivendor Terminal Connectivity with HP’s Family of DTCs
Jean-Luc Meyer - Hewlett-Packard Co.

2022 SNMP, Open Systems, and Open Networks: The State of the Union
Joe Grim - Hewlett-Packard Co.

2024 Business Intelligence
Garry Orsolini - Hewlett-Packard

2026 Using a RDBMS To Represent Engineering Designs
Phil Waldea - Hewlett-Packard Co.

2027 Making Data Integration Easy
John Hall - Hewlett-Packard Co.

2028 Backup Strategy For HP-UX Systems
Reiner Lomb - Hewlett-Packard Co.

2029 Open Systems Customer Projects
Wolfram Fischer - Hewlett-Packard Co.

2030 Providing Low-Priced X-Windows Networking Environments
Mark Teter - Hewlett-Packard Co.

2031 Developing Client-Server Applications
Scott Safe - Hewlett-Packard Co.

2032 Integrating NetWare and HP Systems
Dan Williams - Hewlett-Packard Co.

2033 Distributed Fault Tolerance
Joe Eyre, Dave Bromley - Hewlett-Packard Co.

2034 Tutorial Structured Software Project Management
Gottfried Bertram - Hewlett-Packard Co.

2035 Improving HP-UX for OLTP
Roland Luk - Hewlett-Packard Co.

2036 Troubleshooting FORTRAN on Multiple Platforms
Helen Morimoto - Hewlett-Packard Co.

2037 Integration and Analysis of Manufacturing Data
John Williams, Jerry Akers - Hewlett-Packard Co.

2038 Tutorial Publishing For Paper and OnLine
Wesley Cheng - Hewlett-Packard Co.

2040 OSF: Open Systems Through an Open Process
Rod Johnson - OSF

2041 OSF/1: The HP Perspective
To be announced -

2043 OSF: Distributed Computing Environment "DCE": The HP Perspective
To be announced -

2044 OSF: Distributed Management Environment "DME": The HP Perspective
To be announced -

2045 OSF’s/Architecture Neutral Distribution Format
Rod Johnson - OSF

2053 What is a Systems Administrator, Anyway?
James Langan, Kathleen Sagunsky - J.B. Langan & Associates, Inc.

2055 A Novel Client/Server Network Service Developed Using NetIPC HP 3000/9000

Dennis Harvey - Applied Biosystems, Inc.

Index Paper

2057 Rapid Development of Client/Server Applications
Stephan Stephansen - GenGold

2059 Magnetic Media Certification System-MMCS
Warren Webber, Cheteyl Dodd - AGS Genasys Corp.
2062 The Integrated Workstation, A Real Time Data Aquisition, Analysis and Display
Thomas Treadway - Lawrence Livermore National Labs System
2067 Pollit: System’s Administrator Tool to Monitor a Heterogeneous Network
Najib Nadi, Thomas Savarese - Department of Mathematical Sciences

2068 ENGINFO - The Data Management Solution
K. Kannikeswaran, et al - College of Engineering

2070 Introduction to Unix Part 1
To be announced -

2071 Introduction to Unix Part 2
To be announced -

2072 WA-6 The Multi-Language Approach to UNIX Cc ial Application Develop
Colin Bodell - Micro Focus

2074 Performance Management in a Distributed Computing Environment
Dave Glover - Hewlett-Packard

2075 A Talking Computer That Monitors Remote Computers
Tony Jones - Hewlett-Packard Co.

2077 Client/Server Cookbook: A Recipe For Success
Debra Thompson - Hewlett-Packard Co.

2078 Integration of the Telephony and Data Processing Industries
John Pickett - Hewlett-Packard Co.

2079 Tutorial Open Systems Networking In a Multi-Vendor Environment
Steve Oppenheim - Hewlett-Packard Co.

2080 UNIX Productivity Software and Support for Business Teams: Using the Power of
Robert Brosseau - Applix, Inc. Groupware

2082 Networking LaserROM for Multiple Users
Bill Hassell - Hewlett-Packard Co.

2083 The Real Story About HP PowerPatch!
To be announced -

8021 Migrating To Client/Server
George Ferguson - Hewlett-Packard Co.
8052 Migrating A Turn-Key, Real-Time Test System From An HP 1000 (RTE) To An
James Langan, Kathleen Sagunsky - J.B. Langan & Associates, Inc. HP 9000 (HP-UX) Platform
8058 Making A Square Peg Fit Into A Round Hole
Robert Hersh, Warren Weber - AGS Genasys Corp.

8064 UNIX For The MPE Programmer
Michsael Barrat - Eldec Corp.

8065 Migrating From HP 260 to HP 9000 Migraine or Not?
Pasi Riihilahti, Olli Lammi - Raha-automaathyhdistys (Ray)

8066 MPE to UNIX - Will I Need an RDBMS
Gloria Weld - Software Explained

8073 From MPE to UNIX and Back Again: Life with Open Systems
Gary Lowell - Allegro Consultants, Inc.

8081 Applications Migration Between UNIX Platforms

Andy Feibus - need company & address info. for Art

Asp, Wayne

2003, Hewlett-Packard Co.

Barrat, Michael
8064, Eldec Corp.
Bertram, Gottfried

2034, Hewlett-Packard Co.

Index h
Identifying CIM Opportunities Using Structured Analysis Models
UNIX For The MPE Programmer

Tutorial Structured Software Project Management

Bodell, Colin WA-6 The Multi-Language Approach to UNIX Commercial Application Development

2072, Micro Focus
Bowers, Rick, et al

2011, Hewlett-Packard Co.

Brosseau, Robert
2080, Applix, Inc.
Brown, Mark

2001, Workstation Systems Group

Carlson, Amelia

2007, Hewlett-Packard Co.

Cheng, Wesley

2038, Hewlett-Packard Co.

Combs, Robert
1007, Combs International
DiPasquale, Mark

2017, Hewlett-Packard Co.

Donze, Bill
1010, Reliance Electric
Eyre, Joe, Bromley, Dave

2033, Hewlett-Packard Co.

Feibus, Andy
8081
Feier, Hilary

1012, Hewlett-Packard Co.

Ferguson, George

8021, Hewlett-Packard Co.

Femnandez, Charlie

2016, Hewlett-Packard Co.

Fischer, Wolfram

2029, Hewlett-Packard Co.

Glover, Dave
2074, Hewlett-Packard
Grim, Joe

2022, Hewlett-Packard Co.

Hall, John

2027, Hewlett-Packard Co.

Harvey, Dennis

Hassell, Bill

2076, Hewlett-Packard Co.
Hersh, Robert, Weber, Warren

8058, AGS Genasys Corp.

Overview of Capacity Planning UX/VE/XL Systems

UNIX Productivity Software and Support for Business Teams: Using the Power of

Groupware
Distributed Computing GUI’s and the OSF/MOTIF

Referential Integrity in ALLBASE/SQL

Tutorial Publishing For Paper and OnLine

Adding an X-window User Interface to an HP 1000 Application
Core Dump Analysis

DownLoading From The HP 1000 To Factory Floor Machines
Distributed Fault Tolerance

Applications Migration Between UNIX Platforms

HP Softbench-Link/1000: A State of the Art CASE Environment For
The HP 1000

Migrating To Client/Server

HP VUE, Intelligence in a Graphical User Interface

Open Systems Customer Projects

Performance Management in a Distributed Computing Environment
SNMP, Open Systems, and Open Networks: The State of the Union

Making Data Integration Easy

A Novel Client/Server Network Service Developed Using NetIPC HP 3000/9000
2055, Applied Biosystems, Inc.

Getting The Most Out Of LaserRom

Making A Square Peg Fit Into A Round Hole

ndex hor

Hoffert, Maureen FORTRAN 90: The New Standard
2019, Hewlett-Packard Co.

Johnson, Rod OSF’s/Architecture Neutral Distribution Format
2045, OSF

Johnson, Rod OSF: Open Systems Through an Open Process
2040, OSF

Jones, Tony A Talking Computer That Monitors Remote Computers
2075, Hewlett-Packard Co.

Kannikeswaran, K., et al ENGINFO - The Data Management Solution
2068, College of Engineering

King, Wendy Using RTE System Library Routines To Control A d Program E
1008, US Naval Observatory

King, Weady Using and Controlling Dialup Modems for Remote Data Acquisition

1014, US Naval Observatory
Langan, James, Sagunsky, Kathleen Migrating A Tum-Key, Real-Time Test System From An HP 1000 To An

8052, J.B. Langan & Associates, Inc. HP 9000 Platform

Langan, James, Sagunsky, Kathleen What is a Systems Administrator, Anyway?
2053, J.B. Langan & Associates, Inc.

Leong, Frank Beyond Interprocess C ications: Strategies for Linking MPE-XL and HP-UX
2004, Hewlett-Packard Co. Applications

Lomb, Reiner Backup Strategy For HP-UX Systems
2028, Hewlett-Packard Co.

Lowell, Gary From MPE to UNIX and Back Again: Life with Open Systems
8073, Allegro Consultants, Inc.

Luk, Roland Improving HP-UX for OLTP
2035, Hewlett-Packard Co.

May, Scott SCSI: The Disk Interface of Choice on HP Workstations
2005, Hewlett-Packard Co.

McBrien, Russ LAN Manag New Challenges and Choices
2009, Hewlett-Packard Co.
McNulty, Maura The Impact of Emerging Fast Networking Standards on D Image Manag,
2014, Hewlett-Packard Co. & Distribution
Meyer, Jean-Luc Multivendor Terminal Connectivity with HP's Family of DTCs
2020, Hewlett-Packard Co.

Morimoto, Helen Troubleshooting FORTRAN on Multiple Platforms
2036, Hewlett-Packard Co.

Nadi, Najib, Savarese, Thomas Pollit: System’s Administrator Tool to Monitor a Heterogeneous Network
2067, Department of Mathematical Sciences

Oppenheim, Steve Tutorial Open Systems Networking In a Multi-Vendor Environment
2079, Hewlett-Packard Co.

Orsolini, Garry Business Intelligence
2024, Hewlett-Packard

Pickett, John Integration of the Telephony and Data Processing Industries
2078, Hewlett-Packard Co.

Radhakrishnan, Ramesh BSD IPC on the HP 1000
1022, Hewlett-Packard Co.

Riihilahti, Pasi, Lammi, Olli Mignating From HP 260 to HP 9000 Migraine or Not?

8065, Raha-automaathyhdistys (Ray)

Index by Author

Rodoni, Lynn HP 1000 Networking Strategy and Future Directions
1021, Hewlett-Packard Co.

Safe, Scott Developing Client-Server Applications
2031, Hewlett-Packard Co.

Sansdrap, J., Matton, J. T: A Package For Programming Across Systems
1003, Universite Catholique de Louvain

Shay, Reid Network and System Management Effectiveness: The Graphical Edge
2018, Hewlett-Packard Co.

Stephansen, Stephan Rapid Development of Client/Server Applications
2057, GenGold

Sudaranam, Sam Troubleshooting LANs
2010, Hewlett-Packard Co.

Teter, Mark Providing Low-Priced X-Windows Networking Environments
2030, Hewlett-Packard Co.

Thompson, Debra Enterprise-Wide Messaging in Open Systems
2015, Hewlett-Packard Co.

Thompson, Debra Client/Server Cookbook: A Recipe For Success
2077, Hewlett-Packard Co.

Tibbetts, Alan The A990 Virtual Control Panel "VCP", Why and What
1013, Hewlett-Packard Co.\Consultant

Treadway, Thomas The Integrated Workstation, A Real Time Data Aquisition, Analysis and Display
2062, Lawrence Livermore National Labs System

Walden, Phil Using a RDBMS To Represent Engineering Designs
2026, Hewlett-Packard Co.

Webber, Warren, Dodd, Cheteyl Magnetic Media Certification System-MMCS
2059, AGS Genasys Corp.

Weld, Gloria MPE to UNIX - Will I Need an RDBMS
8066, Software Explained

Williams, Dan Integrating NetWare and HP Systems
2032, Hewlett-Packard Co.

Williams, John, Akers, Jerry Integration and Analysis of Manufacturing Data
2037, Hewlett-Packard Co.

Wright, Don HP 1000 DS and NS Over MUX Ports
1009, L ive Comp Technology

Wright, Don DISKMAIL Interprocess Message System
1011, L ive Computer Technology

announced, To be Introduction to Unix Part 1
2070

announced, To be Introduction to Unix Part 2
2071

announced, To be OSF/1: The HP Perspective
2041

announced, To be OSF: Distributed Computing Environment "DCE": The HP Perspective
2043

announced, To be OSF: Distributed Management Environment "DME": The HP Perspective
2044

announced, To be The Real Story About HP PowerPatch!

2083

vi

Index by Category

RTE

1003 T: A Package For Programming Across Systems
J. Sansdrap, J. Matton - Universite Catholique de Louvain

1007 Adding an X-window User Interface to an HP 1000 Application
Robert Combs - Combs International

1008 Using RTE System Library Routines To Control Automated Program Execution
Wendy King - US Naval Observatory

1009 HP 1000 DS and NS Over MUX Ports
Don Wright - Interactive Computer Technology

1010 DownLoading From The HP 1000 To Factory Floor Machines
Bill Donze - Reliance Electric

1011 DISKMAIL Interprocess Message System
Don Wright - Interactive Computer Technology

1012 HP Softbench-Link/1000: A State of the Art CASE Environment For The HP 1000
Hilary Feier - Hewlett-Packard Co.

1013 The A990 Virtual Control Panel *VCP*, Why and What
Alan Tibbetts - Hewlett-Packard Co.\Consultant

1014 Using and Controlling Dialup Modems for Remote Data Acquisition
Wendy King - US Naval Observatory

1021 HP 1000 Networking Strategy and Future Directions
Lynn Rodoni - Hewlett-Packard Co.

1022 BSD IPC oa the HP 1000
Ramesh Radhakrishnan - Hewlett-Packard Co.

HP-UX

2001 Distributed Computing GUI’s and the OSF/MOTIF
Mark Brown - Workstation Systems Group

2003 Identifying CIM Opportunities Using Structured Analysis Models
Wayne Asp - Hewlett-Packard Co.
2004 Beyond Interprocess C« ications: Strategies for Linking MPE-XL and HP-UX
Frank Leong - Hewlett-Packard Co. Applications
2005 SCSI: The Disk Interface of Choice on HP Workstations
Scott May - Hewlett-Packard Co.

2007 Referential Integrity in ALLBASE/SQL
Amelia Carlson - Hewlett-Packard Co.

2009 LAN Manag New Challenges and Choices
Russ McBrien - Hewlett-Packard Co.

2010 Troubleshooting LANs
Sam Sudaranam - Hewlett-Packard Co.

2011 Overview of Capacity Planning UX/VE/XL Systems
Rick Bowers, et al - Hewlett-Packard Co.

2014 The Impact of Emerging Fast Networking Standards on Document Image Management
Maura McNulty - Hewlett-Packard Co. & Distribution

2015 Enterprise-Wide Messaging in Open Systems

Debra Thompson - Hewlett-Packard Co.

vii

Index by Category

2016 HP VUE, Intelligence in a Graphical User Interface
Charlie Fernandez - Hewlett-Packard Co.

2017 Core Dump Analysis
Mark DiPasquale - Hewlett-Packard Co.

2018 Network and System Management Effectiveness: The Graphical Edge
Reid Shay - Hewlett-Packard Co.

2019 FORTRAN 90: The New Standard
Maureen Hoffert - Hewlett-Packard Co.

2020 Multivendor Terminal Connectivity with HP’s Family of DTCs
Jean-Luc Meyer - Hewlett-Packard Co.

2022 SNMP, Open Systems, and Open Networks: The State of the Union
Joe Grim - Hewlett-Packard Co.

2024 Business Intelligence
Garry Orsolini - Hewlett-Packard

2026 Using a RDBMS To Represent Engineering Designs
Phil Walden - Hewlett-Packard Co.

2027 Making Data Integration Easy
John Hall - Hewlett-Packard Co.

2028 Backup Strategy For HP-UX Systems
Reiner Lomb - Hewlett-Packard Co.

2029 Open Systems Customer Projects
Wolfram Fischer - Hewlett-Packard Co.

2030 Providing Low-Priced X-Windows Networking Environments
Mark Teter - Hewlett-Packard Co.

2031 Developing Client-Server Applications
Scott Safe - Hewlett-Packard Co.

2032 Integrating NetWare and HP Systems
Dan Williams - Hewlett-Packard Co.

2033 Distributed Fault Tolerance
Joe Eyre, Dave Bromley - Hewlett-Packard Co.

2035 Improving HP-UX for OLTP
Roland Luk - Hewlett-Packard Co.

2036 Troubleshooting FORTRAN on Multiple Platforms
Helen Morimoto - Hewlett-Packard Co.

2037 Integration and Analysis of Manufacturing Data
John Williams, Jerry Akers - Hewlett-Packard Co.

2040 OSF: Open Systems Through an Open Process
Rod Johnson - OSF

2041 OSF/1: The HP Perspective
To be announced

2043 OSF: Distributed Computing Environment *DCE®: The HP Perspective
To be announced

2044 OSF: Distributed Management Environment "DME*®: The HP Perspective
To be announced

2045 OSF’s/Architecture Neutral Distribution Format
Rod Johnson - OSF

2053 What is a Systems Administrator, Anyway?

James Langan, Kathleen Sagunsky - J.B. Langan & Associates, Inc.

viii

Index by Category

2055 A Novel Client/Server Network Service Developed Using NetIPC HP 3000/9000
Dennis Harvey - Applied Biosystems, Inc.

2057 Rapid Development of Client/Server Applications
Stephan Stephansen - GenGold

2059 Magnetic Media Certification System-MMCS
Warren Webber, Cheteyl Dodd - AGS Genasys Corp.
2062 The Integrated Workstation, A Real Time Data Aquisition, Analysis and Display
Thomas Treadway - Lawrence Livermore National Labs System
2067 Pollit: System’s Administrator Tool to Monitor 8 Heterogeneous Network
Najib Nadi, Thomas Savarese - Department of Mathematical Sciences

2068 ENGINFO - The Data Management Solution
K. Kannikeswaran, et al - College of Engineering

2072 WA-6 The Multi-Language Approach to UNIX C ercial Application Develop
Colin Bodell - Micro Focus

2074 Performance Management in 8 Distributed Computing Environment
Dave Glover - Hewlett-Packard

2075 A Talking Computer That Monitors Remote Computers
Tony Jones - Hewlett-Packard Co.

2076 Getting The Most Out Of LaserRom
Bill Hassell - Hewlett-Packard Co.

2077 Client/Server Cookbook: A Recipe For Success
Debra Thompson - Hewlett-Packard Co.

2078 Integration of the Telephony and Data Processing Industries
John Pickett - Hewlett-Packard Co.

2080 UNIX Productivity Software and Support for Business Teams: Using the Power of
Robert Brosseau - Applix, Inc. Groupware
2082 Networking LaserROM for Muitiple Users

Bill Hassell - Hewlett-Packard Co.
2083 The Real Story About HP PowerPatch!
To be announced
MIGRATION
8021 Migrating To Client/Server
George Ferguson - Hewlett-Packard Co.
8052 Migrating A Turn-Key, Real-Time Test System From An HP 1000 (RTE) To An
James Langan, Kathleen Sagunsky - J.B. Langan & Associates, Inc. HP 9000 (HP-UX) Platform
8058 Making A Square Peg Fit Into A Round Hole
Robert Hersh, Warren Weber - AGS Genasys Corp.

8064 UNIX For The MPE Programmer
Michael Barrat - Eldec Corp.

8065 Migrating From HP 260 to HP 9000 Migraine or Not?
Pasi Riihilahti, Olli Lammi - Raha-automaathyhdistys (Ray)

8066 MPE to UNIX - Will I Need an RDBMS
Gloria Weld - Software Explained

8073 From MPE to UNIX and Back Again: Life with Open Systems
Gary Lowell - Allegro Consultants, Inc.

8081 Applications Migration Between UNIX Platforms

Andy Feibus - need company & address info. for Art

2034

Gottfried Bertram - Hewlett-Packard Co.

2038
Wesley Cheng - Hewlett-Packard Co.
2070
To be announced -
2071
To be announced -
2079

Steve Oppenheim -~ Hewlett-Packard Co.

Index by Category
TUTORIALS
Tutorial Structured Software Project Management
Tutorial Publishing For Paper and OnLine
Introduction to Unix Part 1
Introduction to Unix Part 2

Tutorial Open Systems Networking In a Multi-Vendor Environment

Paper Number : 1003
T : A PACKAGE FOR PROGRAMMING ACROSS SYSTEMS
Jacques Sansdrap, Jean-Louis Matton

University of Louvain, Avenue Hippocrate 55/5560, 1200 Brussels, Belgium
Phone: 32/2/7645561 Fax: 32/27645569

ABSTRACT

"T" is an original package allowing the easy writing and running of "super programs”
composed of several programs distributed on a networked system. Thanks to the "T"
package, each of these programs, which may provide high level function (such as editing
the content of a data base, conducting a dialogue with a user, producing a report,
managing a graphic system, etc...) can be seen as equivalent to subroutines of a classical
program. These programs, working on different computers, are linked through
parameters given to the "T" package and thus could be relocated from a system to
another as required for efficiency with local availability of data and resources.

Another key feature of T is its implementation on the RTE-A and on HP-UX. Other
systems (MS-DOS, ...) could also be involved. The modularity of these programs
promotes the team working. The T package will be available as contributed software.

INTRODUCTION

The hardware that money can buy is now a hundred times more powerful than 20 years
ago. By contrast there as been at most a tenfold bettering of the productivity of the
software building people and the cost of manpower has increased.

Of course a lot of computer cycles and "core” memory words can now be wasted without
any appreciable degradation for the user.

Of course there are now a lot of "off the shelf” software for many common use like text
editing or spreadsheet computation.

But often this is not the best fit possible and often it means that the users have to learn
the computer ways rather than do their primary job. It also means that often a computer

T: A Package For Programming Across Systems
1003-1

"just happens” to be there without any plan for the future and much work is needed later
to integrate this system in a more general and more efficient system. Thus there is a
need to augment the productivity of the programmers to cope with new fields of
application and to have a faster response to the user’s requests and to the evolving
technology. It is also important to avoid being drowned in the maintenance of mature
applications.

These goals could be achieved by merging the works of several programmers in a tool-
kit of re-usable software modules.

Most components of a new application would be found already made in the tool-kit. If
a tool is updated the effect of this update is immediately applicable to all applications
using it.

This type of method already exists: it is implemented in the fourth-generation languages
(4GL) and in the applications of the software engineering (SE).

The 4GL however lacks some flexibility: basically it always produce the same program
with varying options. The SE products are probably efficient in the context of a
software house where the job environment of the programmers can be controlled.

The environment in a medical research institution coupled to an university hospital is
quite different. There, you will find a number of small highly independent teams.
Nearly all teams have at least one PC but there are also powerful computer systems.
Often there is only a small number of persons that are programming as a professional
activity or as a side activity. The need to integrate all these installations is easy enough
to understand, but the means and ways are hard to come by.

This is why we have devised the T package to be able to mix the work of different
programmers on different machines.

EXAMPLE
Here follows an example to help to understand what T really is. To fully develop this

example we have to use some terms that are going to be defined later: so you may wish
to come back here after reading the end of the paper.

T: A Package For Programming Across Systems
1003-2

An application running on a RTE-A let a user select from a file directory some file
containing digitized signals. The terminal could show alternatively a list of file name or
a graphic representation of the signals in a selected file. The user could ask for a
printout of the graphics if a peculiarity of the signals is observed.

Once the user has make his/her choice, some computation is done on the file and the
results are displayed on the terminal.

The user accepts or rejects these results. If they are accepted, they are stored in a data-
base for later statistical analysis.

The following programs are used on the RTE-A for this application:

- the T server,

- the main client (APPLIC) that implements this application by scheduling all other
clients and performing the computation,

- the terminal manager subcontractor (TERM),

- a client (DIR) that scans a directory for files matching some mask and reports the
file names through a window of the terminal by TERM,

- a client (VSIG) that draws the signals contained in a file with a graphic library
which end point is usually TERM; the set-up of the graphic could be modified
through parameters entered in windows managed by the alphanumeric side of
TERM,

- a subcontractor client (PLOT) that could temporarily replace the graphic side of
TERM so that the output of VSIG is on a plotter,

- a data-base manager client (DB) that is an interface to an IMAGE-II data-base,

- a storage subcontractor client (STORE) that adapts the results produced by
APPLIC to the structure requested by DB.

The user does not perceive that this number of programs are at work for him/her.

Only APPLIC is specific to this application (it is a rather small program); all other

programs have some use in other applications.

Now there is a second RTE-A system used for data acquisition. Let us name the first
system HARYV and the new one LUC. There is a NS-1000 connection between the two
systems.

A user of HARV could need the same application for signals stored on LUC. A simple
change of configuration is needed and no new software:

T: A Package For Programming Across Systems
1003-3

- on HARYV (where the user is):
- T server,
- TERM,
- PLOT,
- DB,
- STORE;
- on LUC (where the data is):
- T server (used in slave mode),
- APPLIC,
- DIR,
- VSIG.

Later an HP-UX (9000/835) system named CARD is connected to the LAN. The SQL
data-base and a statistical package on this system are preferred to the IMAGE-II data-
base and to home-made statistical programs.
There is also a new LaserJet-III on this system that is faster for graphic production than
the old plotter on HARV.
The configuration is then:
- on HARV (where the user still is):

- T server,

- TERM,

- STORE;
- on LUC (where the data is):

- APPLIC,

- DIR,

- VSIG;
- on CARD (all programs are new):

- T server (used in slave mode),

- DB (to SQL),

- PLOT (to LaserJet).

Now the user is tired of the graphic terminal and wants a PC as everybody else. There
is a LAN card on this PC and it runs with MS-DOS and WINDOWS 3.0. It is
connected to the LAN. More users are now fluent in UNIX than in RTE: CARD

T: A Package For Programming Across Systems
1003-4

becomes the usual logon machine.
The configuration is then:
- HARY is only used when the data is stored there;
- on LUC (where the data is in this case):
- T server (used in slave mode),
- APPLIC,
- DIR,
- VSIG,
- STORE;
- on CARD (no new program):
- T server,
- DB,
- PLOT,
- on the PC (new program):
- TERM (alphanumeric and graphic interface to WINDOWS).

How would it be realized without T? That is difficult to say. The current RTE-A user
is more knowledgeable that the user of another system so the "point and click” interface
implemented by DIR and TERM would not initially be seen as required. This would
have discouraged some potential users.

When the data from LUC would need to be accessed one would have to use one of the
tools offered by the network system: TELNET for remote terminal connection, TRFAS
for remote access to data files or RDBA for remote data-base access. All these tools
suffer from a discouraging slow performance and from other limitations as well (no
block mode for TELNET in the current software release). One would probably have to
re-write the application to circumvent these problems. This application would probably
be implemented as a monolithic program designed by one programmer with few parts
easily re-usable for other applications. The user could probably not be isolated from the
idiosyncrasies of each system and of the tools that move the data from place to place.
The arrival of the HP-UX system would probably mean a complete porting of the
application to the HP-9000, the RTE-A would be discarded and the users would have to
be re-trained.

The application would once more have to be re-designed to use a GUI (PC or
workstation) rather than a graphic terminal.

T: A Package For Programming Across Systems
1003-5

A programmer would have to spend most of his/her work time to follow the evolution
for this application in this short time. Any change that the user should ask would be
hard to accommodate. A new application, even looking very similar to the previous one,
would benefit only from the experience accumulated by the programmer and not from
modules shared with the programmer’s colleagues.

The user should have to learn as many ways to interact with the system as there are
applications.

GUIDELINES

Data and the modules that process it should preferably be encapsulated together so that
a change in the structure of the data only needs a localized software modification.

An application written with this tool-kit should be able to get the data or other resources
on several systems if needs be.

The access, low-level processing and management of resources like data files or
peripherals

should be done by local modules on its system of origin.

An application should need a minimum of modification if one of the computer is replaced
by another type of machine or if the data is moved.

The communication between processors should not be fixed on one defined standard: at
the present time there are so many standards and variations of them that it would not
have been possible to find a common ground for all computers of various make, age and
size we have.

The protocol of communication should be simple to implement over any networking
standard available between each pair of machines.

The amount of data that has to transit through the networks should be minimized so that
the time penalty should not be too visible to the user.

The modules should be independent programs rather than relocatable libraries. It is
easier to assure that any required housckeeping is performed. The program could be
more easily debugged than a relocatable module that has to be embedded in a program.
When some maintenance has been done on a relocatable module all the programs using
it have to be re-compiled or at least re-linked; there are tools to automate this task but

T: A Package For Programming Across Systems
1003-6

it could not be convenient to disturb too many applications at the same time.
A module under the form of an independent program could be easier to replace. It also
give more freedom to its designer.

T: A SOCIETY OF PROGRAMS

A working T society is composed of several client programs distributed over various
systems and of a "go-between” T server program. A client politely waits for the answer
when it has sent a query to another client. Thus the T server listens only to one client
at a time and there is a stack of dialogues.

The messages are strings of up to 200 ASCII characters. Each client designer has to
define and publish the form and content of messages that his/her program accept and
send back. There is no problem of variable data representation with this type of
transmission. There are other mechanisms to send greater amounts of structured data
to some special clients (explained later): the subcontractors.

A client program can send to T requests other than the transmission of messages. Each
client of T is usually scheduled on request from another client. A client to schedule is
referred to by a symbolic name. T finds in its environment (following some search path)
a client description file for this name. This file supplies the method of communication
to use with the new client and its localization.

The nature of a request that a client sends to T is identified by the first 16 bits word of
the request (each request has a minimum length of two 16 bits words).

There are some number of categories of request: a category is identified by the quotient
of the code word divided by 100. The requests in the category 0 concern the basic
working of T and of its link with the client: closing, scheduling another client, sending
a query or an answer to another client...

The other categories are of a more general nature and very few of them are actually
implemented by T (writing or reading on the terminal,...). A client can elect to be a
subcontractor for one or more of these categories of request: it stops then to be
addressed like an ordinary client but receives from T all requests of these categories
coming from any client. A subcontract for a category can be overlaid by a later

T: A Package For Programming Across Systems
1003-7

subcontract from another client: the first subcontract will be re-instated at the closing of
the last subcontractor. '

T LINKS

The links between T and its clients could all be of a different type: the routing and
translation are done by T. When a client and T are on the same machine, a local method
of program-to-program communication is used (class I/O on RTE; bidirectional pipe on
HP-UX). Any applicable networking method could be used when a client is on another
machine than its T server (TCP/IP, NS-1000, BSD sockets). It would even be possible
to link two computers by their serial ports if no other means were available.

Each link is a stream of 16 bits words: this is easily supported on the byte stream that
is transmitted by network protocols and is more efficient on machines (like HP-1000)
that have a penalty for byte addressing.

There are subroutines to put or get any type of data on this stream. The communication
is of the half-duplex type with buffered or immediate transmission at the choice of the
sender: a message of any length could be build element by element in the communication
buffer before it is sent. There are subroutines to transmit to T any of the requests it
accepts so that the programmer has not to care for the protocol. Some of theses
subroutines are in a library that could be adapted as fit for the language and the
processor but does not depend on the type of the link. In contrast, the other subroutines
are specific to some link. This last group does not represent an extensive programming
effort: the subroutines needed to implement the link by bidirectional pipes for HP-UX
is contained in a C source module of 400 lines; for the class /O link of RTE-A it is a
500 lines FORTRAN module.

CLIENT-TO-CLIENT DIALOGUE

At the very beginning of the life of each client there should be an "Open T" call to
initialize the communication link. This returns also a run-string received from T: it is
the first message. A client should never try to retrieve its arguments in another way.

Just before ending its life the client should call a "Close T" subroutine that sends a
parting message to whoever launched it and close the communication link. These two

T: A Package For Programming Across Systems
1003-8

calls in the program and the presence of a client descriptor file pointing to this program
are all that is needed to qualify a program as a T client. A set of subroutines will have
to be selected at the link-editing time as appropriate for the method of communication
with T.

If a client program is aborted, T detects that its link is down and abort itself ; each client
detecting that its server has disappeared has the opportunity to do an orderly shut-down.

A client that is open for T is referred to by a client number. One could ask to T the
number of a client with a known name, if it is open and free for a dialogue (not in the
client stack or a subcontractor).

T-TO-SUBCONTRACTOR DIALOGUE

A subcontractor client starts its life as any other client and could take part in a dialogue
while setting-up its environment.

When it is ready to enter its role, it sends to T an array containing the number of the
categories of request it is ready to take charge of and an answer message to send back
to its scheduler. Its life as client able to take part in a dialogue is then ended.

What the subcontractor receives then from T are no more messages but the raw request
codes sent by some client. T is just a relay and does not knows anything about the
structure of the request. The subcontractor has to compute the length of the data
associated with the request and asks to T for this amount of data. This could be as long
as needed and could be buffered by the transmission mechanism. The structure of the
data is specific to the request and is known to the requester and to the subcontractor.
There could be in the request an indication of the data representation in use where the
client is: the subcontractor could have to do some translation.

The subcontractor could send back as much data as needed to the client but first the
amount of data has to be indicated to T.

When a request has been fully processed, the subcontractor send a "cut” command to T
to let it take back the control of the communication with the client.

T: A Package For Programming Across Systems
1003-9

There is some specific request type that has to be reserved to mean an order for the
subcontractor to leave the scene.

The subcontractor then performs its last duties and sends T a request to close the link
before termination.

This re-instate any subcontractor previously defined for the affected categories.

An ordinary client could ask T the name of the client (if any) that is registered as
subcontractor for a request type.

LIBRARY IMPLEMENTATION THROUGH T

A subcontractor usually manages some complex functions like driving a display or
accessing a data-base. The designer of the subcontractor writes a library of stub routines
that package the parameters they are called with into requests to T and indirectly to the
subcontractor. Several subcontractors could be prepared for the same stub routines. A
client may select some working mode by scheduling one or the other subcontractor.
This is typically how a graphic workstation system is configured.

T is still in development and at the moment this paper is written (April 1991) only 3
subcontracting client programs with the matching stub libraries have been written: a
printout manager, a terminal manager with form library and graphics library and a
storage manager.

The printout manager is implemented for the RTE-A in FORTRAN and for the HP-UX
in C. It is elementary because it has been mainly used for tests but is routinely used for
remote printing.

The terminal manager is written in FORTRAN for the RTE-A only and put the terminal
in block mode. The question is still open if it will be implemented for HP-UX by using
curses(3x) or blmode(3c).

The form library is nearly identical to the X-FORM package (IUG meeting, Brussels
1989).

The graphic library is modeled on the DGL of Graphics/1000-II. This is sufficient for
the type of applications we are developing and should be simple to emulate with Starbase

T: A Package For Programming Across Systems
1003-10

graphics on HP-UX and with any graphic library on a PC under MS-DOS.

The storage manager implements a structured billboard where a client could store some

data that could be retrieved in full or by extract by other clients.

The main use will be for data-base access:

- a client is responsible for any access to a data-base. It does any referential
constraint check that is needed and perform any processing attached to some data.
It gives a declaration of the structure of its data to the storage manager and
updates the content of this structure.

- all other clients that need this data gets it from the storage manager. Some
clients could ask to the data-base client to update this data before getting it.
Others clients could be designed to process simply what is currently in storage.

- a client could put a mask or model of data in the structure before sending a
selection request message to the data-base client.

The stub library sends to the storage manager an indication of the data coding in usage

where the client is. The storage manager translates data as required.

The storage manager is currently implemented on the RTE-A, converts the floating point

data between HP-1000 representation and IEEE representation and takes care of the word

alignment limitations of HP-PA. Its stub library exists for RTE-A and HP-UX.

ENSLAVED T

If several clients of T are on the same remote system it could be wasteful to open several
communication links through a network. T could then be configured to schedule an
enslaved copy of itself on the remote system. The remote clients would then in fact be
local clients of the enslaved T.

The enslaved T and its clients would be running in a session and with an environment
appropriate to the user.

Here is how it is done:

- A T program could schedule another remote T as another client with the
appropriate link method. Currently this method is through an Ethernet LAN and
the Internet daemon INETD that is available with HP-UX and NS-1000 on the
RTE-A.

T: A Package For Programming Across Systems
1003-11

- The remote T starts a session on the logon account and with the password
specified by the master T. An appropriate environment is built from the
indications in a special session initialization file.

- The master T gives then a slaving request to the remote T.

- Thereafter the slave T receives only requests to open and close local links to
clients, to relay the transmission of data to/from these clients and to stop to be
a slave (immediately followed by an order to close the link with the master which
terminates the session).

When T has a slave T, any scheduling of a client using the enslaved T type of link to
a host with the same name is transformed into a request to the slave for scheduling a
local client.

The enslaved T is released when the last of its clients is closed. T could have several
simultaneously active slaves.

IMPLEMENTATION

The first implementation of T has been done on RTE-A in FORTRAN and has been used
for a few applications on a single system or on two systems linked by a LAN and
NS-1000.

The basic client library and the link subroutines for NS-3000 (NetIPC) have then been

written in FORTRAN for HP-UX. There has been two uses of this software:

- an HP-UX client to test the access to an RTE-A data-base through the storage
manager;

- an HP-UX client for printing on a LaserJet connected to an HP-1000.

A two man-week work has been needed for these tasks.

Then the link subroutines for bidirectional pipes and the T server have been written in
C for HP-UX. The T server uses the BSD socket for LAN access rather than NetIPC
so it should be directly portable to other UNIX machines. About one man-month has
been needed.

T: A Package For Programming Across Systems
1003-12

The client link subroutines are currently developed for a PC under MS-DOS. This
software is written in C with the NetIPC subroutines of HP OfficeShare. As MS-DOS
does not do multi-tasking there will never be a T server for this type of machine
(excepted with add-on software like MS-WINDOWS).

As a client can use a remote T server to talk with remote clients, there is no need to wait
until the whole of the T package is implemented on a machine to start developing
software using T on this machine. In some cases a T client could also be used as an
interface to commercial software.

So we are confident that T could be quickly ported to other machines as needed if the
tools for software development and some connection hardware are available.

CONCLUSION

At the moment this paper is written, we do not yet know if T will be successful in its
function of teaming the work of the programmers. But we have received some
encouraging support.

There is a general trend in the computer world toward standards and heavy systems.
At some time in the future, all computers should use the same operating system (UNIX-
like), any program could communicate with any other thanks to systems like HP’s
NewWave or HP Sockets, each programming language would have compatible extensions
for object oriented programming (OOP), all data-base management systems (DBMS)
would be SQL compatible with OOP extensions, each user would be able to use a
graphical user interface (GUI) and distributed computing would be the norm. While
waiting for all theses promises to be realized, T is a light, viable, alternative.

T: A Package For Programming Across Systems
1003-13

Paper # 1007
Adding an X-window User Interface to an HP1000 Application

Bob Combs
Combs International, Inc.
886 Belmont Avenue, Suite 3
North Haledon, NJ 07508
(201) 427-9292

Abstract

Users are now expecting applications to be run from X servers. A windowed
terminal does provide some nice benefits, but what about true real-time
applications? They can’t just be ported to UNIX. There is a reason why RTE is still
around! This paper reviews the design of a real-time application and how it has
been restructured to take advantage of networks and an X interface, while still
retaining its real-time (RTE) components.

1, Introduction

We have a package which performs data acquisition and control named MAXS +.
This product has been around for about seven years, mnning exclusively on the
HP1000 series of computers. MAXS + is a real-time software package which is used
in facti)ry automation, facility management, laboratory automation, and pilot plant
control.

The typical system scans analog and digital points using various data acquisition
boxes, and processes this data each scan. The scan processing must take priority
over background functions such as reports and user requests. This real-time
demand is what the HP1000 was designed to handle.

The draw back of using the HP1000 is that it lacks windows and has a limited
graphical capability by today’s standards. Enter UNIX and X-windows. Fortunately
the HP1000 does have an Ethernet interface and can communicate with a UNIX
system.

UNIX does not currently have true real-time response. After several years of
propaganda to the contrary, HP is finally willing to sheepishly admit that HP-UX
1sn’t really real-time. UNIX’s priority scheduling algorithm, lack of a preemptable
kernel, and non-deterministic context switching leave it quite lacking in the real-
time department.

Keeping these points in mind, how do provide a system with a Graphical User
Interface (GUI) (i.e. X-windows) and still be able to process data in rea.ll-)time? The
answer we came up with was a hybrid approach. That is, keep the real-time
scanning and processing on the HP1000, an(P connect a UNIX box via Ethernet to
provide the X-window user interface.

Adding an X-window User Interface to an HP1000 Application 1007-1

2, Original HP1000 System Layout

The standard version of MAXS+ uses an HP1000 for all tasks: real-time scan
processing and user interface. The real-time scan processing consists of modules
which perform input/output with the data acquisition box (often called the front
end), a master scan processor, and a trend buifer management module. Refer to
figure 1. for the original module layout.

The user interface consists of many modules, each of which is a screen application
command. The screen modules are called from a command shell module which
regulates the CRT screen.

The heart of all information in the MAXS+ system is a collection of tables which
are memory resident in Shared Extended Memory Array (SHEMA). The SHEMA
tables contain all of the current real-time values of the various variables in the
system, and all configuration information. Memory resident tables allow the system
to be much faster than if this information were kept on disc or other secondary
storage.

One of the great benefits MAXS+ has is the ability to change virtually any portion
of its configuration while on-line, having no effect on the other portions of the
MAXS+ system. This flexibility allows real-time processes to continue while
portions are being configured "on the fly".

USER

/

User Modul
1
Table to file r—@
Backup Module Shared
Memory
{SHEMA]} —-)I Long-term |
Tables
SHEMA M
Backup File
History
I Log Files
Process Front End
¥0)| DataAcquisition Real-Time
Signals Module Scan
Proccssor

figure 1. Stand-alone system module layout

Adding an X-window User Interface to an HP1000 Application 1007-2

2.1. Real-Time Modules

There may be multiple front end modules on the system which gather input
readings, placing them in SHEMA tables, and take outputs from the tables and
send them to the front end. Many front end devices work direct;f' in engineerix:ﬁ
units these days. Either way, the front ends are responsible for all analog/digit
input/output with the real world. The communication with the various front
ends may be RS-232, HP-IB, or even LAN.

The master scan processor processes the signals after all front ends have
performed their I/O. There are nine different variable types, but each signal has
certain stages it must go through: conversion, type dependent processing,
discrimination, clamping, and alarm checking. After the processing is complete,
trend updating is initiated, and finally data logging.

2.2. History Logging

The data logging is kept in three file types; short-term, hourly, and daily results.
The short-term is perhaps a misnomer since it really means all data and events;
which ma¥l or may not be wanted for long term archiving. The prime reason for
keeping the data in these three file types is to allow users to quickly access
different picture sizes of data. For example, a user may look at short-term data
to see the last 8 hours worth of data, but may access the daily file to get a picture
of the last year’s worth of values. A year’s worth of short-term data would take a
much longer time to scan, even with today’s faster discs, than daily values,
Therefore these three history file types allow a user to select the detail level
desired and spent less time waiting for results.

The short-term data is written to disc by SHLOG. Both the hourly and daily
results are written by LOLOG.

2.3. User Interface

The user interface utilizes the HP1000 CRT screen as if it were three separate
windows. They aren’t true windows, but are treated as separate areas by the
various user modules. As you can imagine, this was quite a trick since the
HP1000 is really only a half-duplex connection.

The top line of the screen is reserved for the exclusive use of an alarm banner
module which displays various status states of different components of the
system, such as alarms or stalled front ends. The alarm banner line (top line) is
written to the terminal’s graphic plane to alleviate some screen interactions.

The bottom two lines of the screen are reserved for the command window. All
command prompts and error messages are displayed in this window,

The middle screen area (lines 2-22) is utilized for forms with unprotected fields,
periodically refreshing data displays, or graphic displays. All of the screen form
displays were created with our own screen product, QFORM. We tailored
certain aspects of QFORM to allow easier integration into this window-like
environment,

The segregation of these three areas has resulted in a very usable interface, but
was somewhat difficult to program.

Adding an X-window User Interface to an HP1000 Application 1007-3

3. Identification of Areas of Change

There were several pieces of information that lead to the decision to distribute
MAXS+. One of the critical ones was that HP had begun to remove the preemption
points in HP-UX and would be elinﬁnatin&)gll of them by HP-UX 8.0. Add this to
the fact that HP was no longer touting 9 (800’5 as a real-time replacement for
RTE. It was obvious to everyone that was not an RTE system. If MAXS+
were to have a X user interface, the solution would have to be a hybrid one, with
both an RTE and a UNIX system.

Once the decision had been made to break apart the functions of MAXS+, we had
to determine how to do it easily yet retain the features we wanted. The HP1000
should remain virtually hidden from the user, and require minimal support to keep
it running. We had decided the end goal system should have the following features:
s Real-time scanning should remain on the RTE system.

All user interactions should be moved to the UI?’IX X terminal.
History log files should be written to the UNIX system.
Real-time configuration information should remain on RTE.
Report setups should be moved to UNIX.
An X terminal should be able to redirect to different RTE systems.
An RTE system should be capable of handling multiple X users from different
UNIX systems.

Therefore, all user interface modules were moved to UNIX, and given an X look
and feel. A linkage between the RTE SHEMA tables and programs, to the X
programs was developed. The table backup and real-time scan processing would
remain untouched. History logging (SHLSG and LOLOG) must transmit their
records to a UNIX system designated for history storage.

Note that while it was useful to allow muﬂ}%ﬂe MAXS+ /RTE systems to talk to
multiple MAXS + /UNIX X users, each RTE would have to send its history to a
specific UNIX system. Also, the history system should eventually allow mul}\i})le
MAXS+/RTE systems to send their history data to the same MAXS+/UNIX
system.

USER

10

HP1000 -
RTE
Pracess Data
Ifo 21 Acquisition
Signals Unit

figure 2. Stand-alone system

Adding an X-window User Interface to an HP1000 Application 1007-4

4. Distributed System Layout .
Fortunately, MAXS+ had been written using a high degree of subroutines, with
lower level functions focused into few routines. While there were a few exceptions
to this, for the most part it allowed functions such as table data access, variable
searching, and history writing to be broken and "piped" over to the HP-UX system.
Refer to figure 3. for the new system layout.

X
USER X Clients
FITEITTITY / History
Log Files
HP-UX
————————————— lan —— =
RATE [_com] [nist_com|
S i |
Table to file -
Backup Module
Shared
Memory
(SHEMA)
Tables
SHEMA
Backup File —@
Process Front End
110)| DataAcquisition Real-Time
Signals Module Scan
Processor

Adding an X-window User Interface to an HP1000 Application

figure 3. Distributed system module layout

4.1. Overview of Distributed System

As figure 3. shows, the SHEMA tables and real-time functions were left
untouched on the RTE system. The user interface and history logging functions
were moved to the HP-UX system by writing communication modules that
carried requests from one system to the other and returned with the data or a
response check. The configuration is based upon NS/ARPA services on TCP/IP
using Ethernet for the locafirea network (LAN).

Im'tia.lli'1 the communication functions were written using NetIPC calls, which
locks the UNIX system into being an HP-UX system only. However, we were
able to obtain a Beta Release copy of Berkeley (BSD) Sockets for the HP1000
and have since upgraded the communications programs on the two ends to BSD.
This means that a user can now use any standard X system that supports X,
Motif, and BSD Sockets.

There are two sets of communications programs due to the directions of initial

requests between the two machines. History is sent to the UNIX machine, but
user module data requests are sent to RTE.

1007-5

User interface programs initiate requests to read tables and place records back
in them from the UNIX system to the RTE system. The RTE user
communications module (COM) is the receiver who waits on the socket for a
connection request from an X user UNIX system. Requests from the UNIX user
interface modules are sent via messages to the UNIX communication module
(MAXS_COM) which connects with COM on the RTE system and then honors
the requests, sending the responses back to the calling module, again via
messages. Each request opens a connection, performs its business, and then
closes the connection so that another module or system can access the RTE
COM module.

History is written from the RTE system to a specific UNIX system which is
waiting for the connection requests. The HIST COM module on the UNIX
system waits on a socket looking for history records to relay to the history
modules. The RTE module (HSEND) transfers the short-term or long file
requests to HIST COM. Again each request opens the connection, performs its
business, and then closes the request. The history functions did not break quite
as easily as the user interface modules did; some of the processing must remain
on the RTE system, while the file writing functions had to transfer to the UNIX
system. The RTE side of the short-term and long-term history modules had to
account for possible link trouble. Therefore a certain amount of buffering or
spooling was designed into HSEND. However, the amount of spooling is limited
and is only intended to give the operator time to correct the problem.

4.2. Interoperability

Interoperability is a buzz word these days for an application that is distributed
over multiple computers on the same network. The user is able to perform any
of the functions from virtually any point in the network. This is basically what
the X window system has provided the MAXS+ application. There are a few
points that need to be underscored here, to understand how this was achieved.

First, the RTE node name the X window user interface talks to is set in an
environment variable. Commands are available to reset the environment
variable to another RTE node. This directs all user communication to a specific
MAXS+ /1000 node. Also, since the node is in an environment variable, each
user on a UNIX system may direct their command requests to different MAXS +
nodes. Record locking is handled at the RTE node so that full resource sharing
between multiple X users may take place.

Second, history archiving is directed to a UNIX node by setting that node’s name
on the RTE system side. X users may access the hlsm?; les on the UNIX
system using the X client/server arrangement. That is, the history clients are run
on the UNIX system that actually contains the history files. It isn’t just
interoperability that we gain here; its speed of execution too, since history access
is generally disc intensive. Note that an added benefit is that UNIX, with its disc
caching, is inherently designed to efficiently process transactions like history
access.

Finally, the X user interface module COM has been added to the system in such
a way that it does not preclude using the stand-alone RTE MAXS+ user
interface. A user may still work from an RTE RS-232 terminal if they desire.
One interesting item here is that with HP’s new 2627 emulator window, GFoX,
one could open a telnet window under GFoX onto the RTE system and run the

Adding an X-window User Interface to an HP1000 Appiication 1007-6

MAXS+ interface, if desired. While this would limit some of the X user
interface features, such as multiple windows simultaneously, it would allow a
user to open a window onto older MAXS+ systems that have not yet been
upgraded to handle the X user interface communications.

The target system is represented simply in figure 4. and a more typical extended

system in figure 5.
O wox |

3133333y

LAN
Process Data
o Acquisition HP1000
RTE
Signals Unit

figure 4. A simple X system

Q) |

Files
313113y 33333333y

TIINIINY
I

o

LAN
Process Data Dota

0)| Acquisition |7 H':Tllém = Acquisition Hl;rnEou
Signals Unit Unlt

figure 5. A typical X system

Adding an X-window User Interface to an HP1000 Application 1007-7

4.3. User X forms

The MAXS+ application has a user interface with several dozen screen form
programs. This code accounts for at least 70% of the code written for MAXS +.
It would have been unrealistic to rewrite all of that code in X calls; not to
mention that X is much more complex to program than serial HP-CRT calls
require, Recall that we used our own screen forms library subroutines, QFORM,
for the screen form manipulation. We developed a new product which has
exactly the same subroutines and calling sequences, but performs these functions
in X. We call this new product Xfrm (X-form). Xfrm allowed us to quickly and
easily move the RTE screen application modules to UNIX with virtually no
modifications. This saved many man-months of coding and debugging. Plus, we
had a new software tool to offer for sale.

5. Communications Modules

While the communications modules were initially written usini HP’s NetIPC calls,
we quickly converted the communications modules to using Berkeley (BSD) sockets.
The prime benefit to using BSD sockets is that the X user interface could reside on
virtually any UNIX platform, whereas using NetIPC calls would limit the interface
to using only an HP platform. We felt that our customers would be happier knowing
they could connect their non-HP systems into their HP systems and still access the
MAXS+ functionality on the HP1000. Note that they would still be restricted to
using the RTE system for their real-time functions, but this is not so much a
restriction as it is a feature set they are provided.

The communication modules were written in FORTRAN on the RTE system and in
C on the HP-UX system. These are, of course, the natural languages used on the
two machines by most of us. The BSD socket routines were written for C
pro%rammers originally, and HP kept their call sequences on the HP1000 identical
to the call sequences in UNIX. This was a good decision, but it does create some
interesting stumbling blocks for the FORTRAN programmer, particularly on the
HP1000. "The basic problems arise out of FOR attempting to address C
structures in BSD utility routines.

5.1. AFORTRAN BSD socket module.
The following FORTRAN excerpt is from the HP1000 BSD socket program
COM:

FINT7

$CDS ON

PROGRAM COM(3,60)

J,CI1 MAXS+ <910531,2030>

COM - process received LAN requests from UNIX

This program processes requests from the X user interface
modules. Requests come across the LAN with the 1st word
indicating the command type. Additional words are data
for the specific r st. The 1st word of each returned
buffer is reserved for error returns.
910514 - switch from HP sockets to BSD sockets
startup sequence:

RP,COM

XQ,COM

IMPLICIT NONE
INCLUDE /NS$1000/INCLUDE/SOCKET .FTNI

INTEGER*2 BUFLEN
PARAMETER (BUFLEN=512)

Adding an X-window User Interface to an HP1000 Application 1007-8

INTEGER*2 :EDRLEN

INTEGER*2
INTEGER*2 BACKLOG
CHARACTER*80 CERRMSG
INTEGER*2 DLEN
INTEGER*4 FLAGS
INTEGER™ IBUFR(BUFLEN)
INTEGER™.
INTEGER* IERRMSG(40)
INTEGER* INDEX
INTEGER*4 10 _RESULT
INTEGER*2 IRESULT(2)
INTEGER*4 JLEN
INTEGER*2
INTEGER™, LEN
INTEGER™. MAXS_COM(5)
INTEGER* NSG
INTEGERY, OFFSET
INTEGER™, PROTO
INTEGER* R
INTEGER™. REQUEST
INTEGER* RTN_LENGTH
INTEGER®, S
INTEGER™, S0
INTEGER™, SERVPTR
INTEGER™. SH
INTEGER™ S0
INTEGER™. SO_TYPE
INTEGER* TRTMLEN

* -- functions
INTEGER*2 1FBRK

* -- trick buffer for indirect resolution of pointers
* -- (since the BSD socket routines are C compatible)
SALIAS /IEI/ =0
COMMON /ME /NEH(O 1)
INTEGER*2

EQUIVALENCE (CERRMSG,] ERRMSG)
EQUIVALENCE CRESULT, [RESULT)

EQUIVALENCE (IBUFR(1),REQUEST)

* -- gervice name (note termination by NULL byte)
DATA MAXS_COM/‘'maxs_com’,0/

CALL DTACH

* -- create a cnll socket
AF = AF_I
SO _TYPE = SOCK
PROTO = lPPROTU
SO = SOCKET(AF 50 TVPE ,PROTO)
IF (SD .EQ. -) TREN
CERRMSG="COM: Unable to create a call socket.'
E Dl%om el
N

*-- bind the socket to the service name
SERWTR-GetservBEﬂune(ByteAdrof(HAxs €0oM,0),0)
IF(SERVPTR .EQ

CERRMSG='COM: service name not found®
GO TO 999

ENDIF
SIN_FAMILY = AF_INET
SIN_PORT = MEM(ZERVPTR+2)
ADDRLEN = 16 | note: IP adrs is jgnored
B = BIND(SD AddressOf(SOCKADDR IN), ADDRLEN)
1F(B .EQ. -1) THEN
CERRMSG='COM: Unable to bind socket!
GO TO 999
ENDIF

* -- set up listen queue
BACKLN =3
L = LISTEN(SD,BACKLOG)
IF(L .EQ. -1) THEN
CERRMSG = 'COM: listen rejected’
T0 999

Adding an X-window User Interface to an HP1000 Application 1007-9

* -- await remote connection request
100 CONTINUE
ADDRLEN = 16
?FZAACEEP“?? Aﬁressof(SOCKADDR _IN), AddressOf(ADDRLEN))
SH = sHUYDOHN(SD 2)
CERRMSG="COM: sccept failed*
GO 10 999

* -- fetch input message
200 lF(IFBRK() NE.O) THEN
= SHUTDOWN(A, 2)
SH SHUTDOWN(SD, 2)
CERRMSG="COM: break detected, shutdown'
NDI‘F;O 10 9%
E

LEN = BUFLEN * 2
FLAGS = 0
R = RECV(A, ByteAerf(lBUFR 0), LEN, FLAGS)
IF(R .EQ. -1) T
SH = SHUTD(HN(A 2)
Go To 100
ENDIF

* - Nou rocess the command r
(1000 1100 1200, 1300 1400 1500,1600, 1700, 1800 1900,
2100,2200, 2300, 2400, 2500, 2600, 2700, 2800 2900,
3000 3100 »3200,33003, 180FRC1}

*--1{legal request code
1BUFR(1) = -1
RTN_LENGTH = 2j
GO To 9000

* -+ 1st Request

1000 CONTINUE
Go'16 9000

* -- 2nd R st

eques
1100 CONTINUE
010 9000

* -~ etc.

* -- Send reply to caller
* -~ RIN LENGTH is number of return bytea
9000 CORTI
DLEN = R'I’N LENGTH
FLAGS = 0 ~
OFFSET = 0
S = SEND(A, ByteAerf(lBUFR OFFSET), DLEN, FLAGS)
IF(S .EQ. -1) HEN
CERRMSG = 'COM: Unable to send packet to 9000*
GO TO 999

ENDIF

*--go await another request
GOTO 200

*--ERROR TERMINATION
999 IF(CERRMSG.NE.' ') THEN
CALL SYCON(IERRMSG, - TRIMLEN(CERRMSG))
ENDIF

CERRMSG = 'COM terminated’
CALL SYCON(IERRMSG,-11)
END

Note that the common buffer MEM, in the above listing, is referenced against
address 0, and starts with index zero. This is because its sole purpose is to allow
the resolution of addresses from pointers. FORTRAN programmers aren't used
to dealing with the concept of pointers; its a C concept. But since BSD socket
routines are C compatible, they include pointers.

Adding an X-window User interface to an HP1000 Application 1007-10

Resolving pointers is further complicated by the fact that the HP1000 is a word
addressing machine, whereas C is generally used on byte addressing machines.
The C on the HP1000 uses word addresses, except for character variables for
which it uses character addressing. Character addresses must be divided by 2
before using as a word address in memory. Fortunately, we can assume that C
aligns character strings on a word boundary.

Examine these cgieces of HP’s BSD include files:
/* excerpt from HP*s /NS1000/INCLUDE/NETDB.H file */

struct servent {

char *s_name; /* official service name */
char **3 aliases; /* alias list */

int s_port; /* port # */

char *s_proto; /* protocol to use */

C excerpt from HP's /NS1000/INCLUDE/SOCKET.FTNI file

INTEGER SERVENT(4)

INTEGER S NAME,S ALIASES,S PORT,S_PROTO
EQUIVALENCE (SERVERT(1),S_NARE
EQUIVALENCE (SERVENT(2),S_ALIASES)
EQUIVALENCE (SERVENT(3),S"PORT)
EQUIVALENCE (SERVENT(4),S_PROTO)

These are both definitions of the same service structure; one for C and one for
FORTRAN. The service pointer and the contents of its array are all integers.
Some of the values are pointers to character arrays or arrays of character
pointers. However, to see this, you must compare the C version of the structure
to the FORTRAN array.

A pointer to an integer value, such as the port number, is resolved by

I = MEM (SERVPTR + k)
where 'K’ is some constant offset beyond the pointer, where the value is sitting.
Therefore, fetching SIN_PORT becomes

PORT = MEM (SERVPTR + 2)

If we use the service pointer to fetch the first two characters of the protocol
name,

PROTO = MEM (MEM (SERVPIR + 3) / 2)
This is because the pointer plus 3 points to the S_PROTO value, which is a
character address of the protocol name.

Fetching the first two characters of the first alias name,
NAME = MEM (MEM (MEM (SERVPTR + 1)) / 2)

6. Summary

The project to distribute the MAXS + apsv(lication between RTE systems and UNIX
systems provided our customers with the X interface they desired, and with the level
of distribution that all the industry is talking about. Tge salient features provided
are:
u Standard X-Window user interface

w Full interoperability (multiple hardware platform)
» BSD Sockets

= History on UNIX

= Xfrm product

Adding an X-window User Interface to an HP1000 Application 1007-11

The standard X interface allows users to open multiple windows for greater
functionality. Interoperability means a wider access to real-time information. Due
to the Berkeley sockets, intercommunication is able to span multiple vendors’
platforms.

Placing the history files on a UNIX system opens up history access for some easy
data pipelines into current data bases available under UNIX.

The Xfrm product didn’t just make the project easier, it provides a tool to allow

users to create their own custom application programs and incorporate them into
the total environment, as if they were an original part of the system.

Adding an X-window User Interface to an HP1000 Application 1007-12

1008
USING RTE SYSTEM LIBRARY ROUTINES TO
CONTROL AUTOMATED PROGRAM EXECUTION

Wendy King

U.S. Naval Observatory
Time Service Department
34th & Massachusetts Avenue, NW
Washington, DC 20392-5100
(202) 653-0486

INTRODUCTION

The U.S. Naval Observatory (USKRO) Time Service generates, maintains, and
improves the USNO reference time scale which is used to monitor and
control U.S. Air Force, Coast Guard, and Navy time-based navigation and
communication systems. It is also used by scientific personnel in
laboratories world-wide for time synchronization.

To accomplish this mission, two HP1000 A900s continuously collect data
from directly connected satellite receivers; take hourly time interval
measurements from 20 to 30 atomic clocks; collect timing data from 20
remote USNO data acquisition systems installed in Hawaii, Alaska, Norway,
and various points in between; and acquire data from several Earth
Stations. These data are processed and transferred to other systems on
the USNO LAN which either process the data further or disseminate it to
other users, outside agencies and organizations.

THE PROBLEM

For 1l years, we used an HP1000 F system running RTE IVB to collect and
process the data. Eventually, the application requirements exceeded the
capabilities of the F, and, in 1988, we installed the first HP1000 A900
and began the process of migration.

In the beginning, the new A900 ran quietly, doing what was asked with a
minimum of fuss. The collection and processing programs were slowly
migrated from the HP1000 F (RTE IVB) to the A900. Programs which needed
to be run automatically were scheduled at boot up from the welcome file
by a program which calculated their next run time based on the required
start and interval time. This was necessary to enable programs which ran
more often than once a day to survive an unscheduled re-boot. All the
programs ran in system session. However, as the list of automatic, time-
scheduled events grew, this strategy began to disintegrate. Six specific
problems emerged.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 1

First, there were silent, unobtrusive, and mysterious failures. A
scheduled printout did not appear. There was no indication of problems
with the process which produced it; it simply did not get to the printer.
Then, an automatic taping process failed. There were no clues as to why
TF hadn’'t run; it just did not make the tape. This was getting more
serious because that was a critical automated archive which was very
difficult to recover. Several weeks passed, during which users complained
that random pieces of time scheduled processes were mysteriously failing
to run. I was scrolling back the system console buffer one morning and
saw the following message:

Program already exists in another session: PRIN1

I called the Response Center. "This is the way it is supposed to be. The
system will not execute a program in system session 1f the same program
is already running in another session.” The mystery was solved but the
failures were Increasing as system usage Increased:

Program already exists in another session: CIX
Program already exists in another session: TF
Program already exists in another session: EDIT

Clearly, I needed to revise the strategy for running time-scheduled
processes if I wanted automated processes to co-exist with users on the
system,

Second, as more hourly automatic processes were added, some began to
overlap each other. When program #2 kicked In before program #1 was
finished, and program #2 changed the current working directory, program
#1 failed to find its files. Many of our automatic processes ran a copy
of CI and executed a command file. I did not want to begin a list of
things users could not use in their processes, such as the WD command.
Also, maintenance would be more complicated 1f the full path name for
every program and every file had to be used instead of switching the
working directory.

Third, the application programs themselves were in the system time list.
When users modified their automatic programs, they had to "off" them
before recompiling and relinking. General users do not have write
privilege to the /PROGRAMS directory. Therefore, they also had to ask the
system manager to install the revised program(s) 1in the /PROGRAMS
directory. The system manager had to re-schedule the program(s) to be
sure it was done correctly. During this software development stage, users
revised the code almost daily.

Fourth, if one application failed and went Interactive to the system
console, the pending read could cause a pile-up of programs that were I1/0
suspended. One such failure could multiply into many, and recovery could
take hours to accomplish. Even though running in batch mode, some RTE
utilities (including CI) insist on issuing a pending read to the log lu
when they fail to find a file or encounter some other problem. Setting
a short time out on the log terminal did not solve this problem
sufficlently.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 2

Fifth, after installing NS/ARPA, the "WH" output for system session
contained so many programs it was very difficult to find the user
applications to do a status check when there was a problem.

Sixth, the volume of output from the automatic applications filled the
system console buffer very quickly. Significant error messages mixed in
with normal application status messages disappeared from the terminal
before I knew there was a problem.

I needed to develop a strategy that would control and monitor the
automatic execution of application programs and processes in the following
way:

1) remove the automatic applications from the system session

2) separate automatic applications from each other

3) allow application programs to be run automatically without putting
the application programs themselves in the time list

4) redirect application output away from the system console

5) provide the capability to automatically kill them when necessary

6) provide control and maintenance tools that anyone could use to alter
the schedule in the absence of the system manager.

THE SOLUTION

The strategy which solves all the above problems includes the following
tools:

1) An ASCII file with the list of programs, start times, and intervals.

2) The programs in the list which schedule the actual applications.

3) A program which uses the list to schedule the programs.

4) A program which uses the list to re-schedule one or all of the
programs,

5) A program which uses the list to "off" one or all the of programs.

6) A command file which compiles, links, and schedules a "“list®
program.

1) - The List of What and When

The starting point is an ASCII (type 4) file called /SYSTEM/TIMLST.CMD
which contains the list of what should be run, how often and when. To
change the schedule, all that'’s needed is to edit the file and run the
program which re-schedules the specified program. An example of the file
appears in Appendix A. I kept the RTE format for the AT command for the
sake of user friendliness and simplicity. The file also includes editing
instructions to maintain the required format accepted by the programs
which use it.

2) - The Application Scheduler Programs

These are the programs specified in the What-When list. They are all
cloned from the template program in Appendix B. They all run in
programmatic session 260 with the system console as their log lu. When
executed, each one does the following:

Using RTE Sys Lib Routines to Control Program Execution
1008 - 3

- gets a unique session number from the system

- logs on a new programmatic session

- attaches itself to that session

- switches the log lu from the system console to another terminal

- schedules its application program without wait (XQ)

- attaches back to the main scheduler session 260

- switches the log lu back to the system console

- monitors the session it just created to log it off when all active
programs have completed, or when the time limit defined for that
process has been exceeded.

- returns the application’s session number to the system.

These are the programs which actually schedule the applications to run,
and monitor their sessions to be sure they are terminated and logged off
in a timely manner. This ensures that problems with one application do
not interfere with applications which follow.

3) - The Time List Controller/Monitor Program

The third part of the strategy is a program called SCHED. This program
is executed in background at boot-up from the welcome file. The source
listing for this program appears in Appendix C. SCHED logs on session 260
(I selected this number arbitrarily) if it does not already exist, then
attaches itself to session 260 and reads the What-When list. For each
program in the What-When list, SCHED checks for an ID segment.

If there is no ID segment, SCHED RP’'s the program, calculates the next run
time based on the start and interval time specified, and schedules the
program to run at the correct time.

If there is an ID segment for the program, SCHED checks the ID segment
time list bit. If it is set, the program is in the system time list and
nothing is done. If not, SCHED calculates the next run time for this
program based on the start and interval time, and restores the program to
the system time list by scheduling it to run at the correct time.

SCHED repeats the process hourly, restoring any programs which may have
accidentally been "off’d" or re-scheduling any programs which have been
removed from the system time list.

4 - The Re-scheduler: RESCHED

RESCHED, which re-schedules one specific program, is a clone of SCHED
which has been modified to accept a program name in the runstring, read
through the What-When list until that program is found, remove it from the
time list, re-calculate the next run time, and schedule it to run at the
new time. This program is used to change the time a process should be
run, or to add a new one to the system time list. The What-When list must
first be edited to include the new time or to add the new process. The
only routine used by RESCHED not used by the other programs is the Exec
12 call to remove a program from the time list by setting the time
interval parameter to zero. For example, "call exec(12,IRpName,0)".
This is used before re-scheduling the program at its new time.

Using RTE Sys Lib Routines to Control Program Execution
1008 - &4

5 - The Time List Killer: OFSCHED

When the equipment delivering data to the A900 fails or is shutdown, it
is necessary to "turn off" either the automatic collection and/or
processing of that data until it is restored. OFSCHED is a clone of
RESCHED which removes a program from the time list. OFSCHED accepts from
the runstring a specific program name or the key word "ALL". It uses Exec
12 to remove a program from the timelist, leaving it dormant in session
260. When this is done, the What-When list must be edited to put a "*"
in column 1 of the line for that program to prevent SCHED from restoring
the program on its next hourly time list check. If turning off all the
programs, it is easier to "OF SCHED" rather than edit every line in the
What-When file to prevent premature re-instatement of the time list.

For emergency termination, the easiest way to stop the execution of the
time list completely is to kill session 260. I created a command file
called "KillTimeList.cmd"™ which simply issues the KILLSES command. This
makes it easier for users to use as they almost never have to use the
KILLSES command and are unlikely to remember it. The file contains the
session 260 number so they don’'t even have to remember that. This file
also issues the "OF SCHED ID" command.

6 - The Scheduler Program Installer: INSTALL.CMD

This command file ensures that each scheduler program is linked as a
system utility and resides in the /PROGRAMS directory. It takes care of
removing the current version if this is not a new program. The file looks
like this:

if ftn7x $1.ftn O -
then
link $l.rel +su
of $1/260 id
co $l.run /programs/ DP
pu $l.rel
resched $1
fi

All scheduler programs are linked as system utilities so they can not
be cloned. This ensures that there can never be two copies running
at the same time.

THE RTE ROUTINES

All the routines are listed in Appendix D along with the location of their
manual documentation.

Solution requirements 1, 2, and 3:

- remove the automatic applications from the system session

- separate automatic applications from each other

- allow application programs to be run automatically without putting
the application programs themselves in the time list

w N =

Using RTE Sys Lib Routines to Control Program Execution
1008 - 5

These three requirements are met by the application scheduler programs
(Appendix B) using the following routines:

GetSn - allocates a unique session number

Clgon - logs on a programmatic session

Atach - attaches the caller to the specified session
Dtach - attaches the caller to system session

IdClr - sets a flag to kill the id segment on termination

To logon a programmatic session requires a valid account. I created an
account specifically for the automatic programs. The main time list
session 260 and all the temporary sessions for the applications use this
account.

The first three functions, GetSn, Clgon, and Atach, are simple and have
never failed me. If you look at how these routines are used in Appendix
B, you will note that I included provision to display the error if one
should occur, but do not terminate the process of scheduling the
application. The error display will allow me to trouble shoot if
necessary but the occurrence of an error with these routines should not
be allowed to prevent the execution of the automatic application.

Each separate application has its own scheduler. This allows each
application to run in its own unique session number, thus satisfying the
requirement that the applications be separated from each other.

The application scheduler first gets a unique session number with GetSn,
uses Clgon to log on a session using this number, then uses the Atach
routine to move itself into the new session just created. Neither
FmpRpProgram nor FmpRunProgram allow you to specify a session other than
the one in which you are currently executing. To get the application to
run in its own separate and unique session, the scheduler itself must be
running in the new session when it schedules the application. Once the
scheduler has kicked off the application(s), it uses Atach to move back
to its original session, leaving the application running by itself in the
new programmatic session. It then monitors the new session to log it off
as soon as the application is finished. This requires that the scheduler
always use "XQ" to run the application in the background.

Sometimes, while the scheduler program is running in the application
session, the time list monitor runs its hourly check of the time list, and
finding the scheduler missing from session 260, re-schedules it in 260.
To accommodate this occurrence, the scheduler checks the error after
attempting to attach back to session 260, and if an error has occurred,
it will use Dtach to move to system session, Exec 12 to remove itself from
the system time list, then IdClr to set a flag to kill its id segment when
it terminates. This enables the scheduler to remove itself from the
application session so it can still monitor and kill it appropriately
while avoiding the possibility that two scheduled copies of itself will
continue to exist. The fact that these programs are linked as system
utilities should prevent this, but I did not want to leave anything to
chance!

Using RTE Sys Lib Routines to Control Program Execution
1008 - 6

Solution Requirements 4 and 5:

4 - redirect application output away from the system console
5 - provide the capability to automatically kill them when necessary

These requirements are met by the following routines:

AtCrt - attaches a crt to a session

LuSes - returns the user table address
IxGet - returns the contents of an address
Clgof - logs off a session

RtnSn - deallocates a session number

The AtCrt routine puts the lu of a crt into word 29 of the caller’'s ID
segment. The manual implies that the program must first use the Atach
routine and must be a system utility. I did not find this to be true as
it worked for all my programs regardless of whether they were system
utilities or had used the Atach call. Anyway, the effect of using AtCrt
is that all output directed to "1" now goes to the system lu specified in
the AtCrt call. This satisfies the requirement to redirect all
application output to a terminal other than the system console. All
application programs scheduled with FmpRunProgram inherit the father’s
output lu, so the AtCrt is called before scheduling the application
program. The application program then uses the new lu for all its output.
The scheduler then resets its own output lu with a second call to AtCrt
so that any subsequent output from the scheduler program will appear on
the system console. This allows all users to write their status messages
to "1", and enables the system manager to control the actual location for
the output. Because each application has its own scheduler, different
applications can have their output directed to different locations.

LuSes, IxGet and Clgof satisfy the 5th solution requirement to be able to
kill the application session. Although the documentation for Clgof
implied that if I used the Option 0, it would logoff the session when
there were no ™active" programs, I found that in this case the term
"active" really meant RP'd. Any program used by the application which
terminates but remains dormant in the session is considered an "active"
program. So if you use Clgof with option 0, the logoff fails if any
program’s ID segment is not released when the program is finished.

LuSes and IxGet allows the scheduler to determine when no programs are
running so the log off can be accomplished as soon as the application has
truly finished. LuSes returns the address of the User Table for that
session, and IxGet returns the contents of an address, in this case word
13. Word 13 of the User Table contains a "Number of User Programs
Counter" which is incremented when programs are scheduled, and decremented
when they become dormant. Bit 15 is set only if there is a logoff program
or command file defined for this user. As this is not the case for the
automatic application account, I need only check for the value of this
word to be 0. As soon as this occurs, the scheduler logs off the session.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 7

Each of the applications can be expected to terminate within a specified
time limit. The MaxTime variable in the scheduler program represents the
maximum number of minutes allowed for the application. The scheduler uses
this predefined time limit to determine when to log off the session even
though programs are still running. In this way, an interactive CI prompt,
or a user program which has entered an infinite loop, can be terminated
so that subsequent programs can not get "piled"” up behind it. 1If the
session does exceed the time limit, a message is displayed to the system
console so that corrective action can be taken. The application scheduler
ends with the RtnSn routine which releases the session number back to the
system.

Solution requirement 6:

6 - provide control and maintenance tools that anyone can use to alter
the schedule in the absence of the system manager.

This last requirement is met by the SCHED, RESCHED, and OFSCHED programs
using Clgon, Atach, Dtach, IdGet, IxGet, FmpRpProgram, Exec 12 and ChngPr
(See Appendix C).

The first three have already been described as they are used in the
application scheduler programs. IdGet returns the address of the Id
segment of a specified program in a specified session. To verify the
existence of an Id segment for a scheduler program, SCHED uses IdGet with
the program name and the session number 260. If IdGet returns a O, there
is no Id Segment for. the program and it must be RP’d and re-scheduled.
If IdGet returns an address (anything other than 0), then I need to verify
that the program is actually in the system time list.

IdGet has a companion routine called IdInfo which returns information from
the Id Segment. However, on the A900, IdInfo does not differentiate
between the three possible dormant states. Therefore, SCHED uses IxGet
to return the contents of word 18 of the Id segment. Bit 12 of word 18
is the timelist bit. If it is set, the program is in the time list. If
not, SCHED re-schedules the program after calculating the next run time.

RESCHED is a clone of SCHED which accepts a program name from the
runstring, and after removing the specified program from the time list
with an EXEC 12, calculates the next run time and re-schedules the
program. This is used to change the time when something should be run.
Because it is run manually, and the system could be very busy, this
program increases its priority with a call to ChnPr. This ensures that
the re-scheduling of the program is done immediately. The Exec 12 routine
removes a program from the time list if the time interval parameter is set
to 0 (e.g., call Exec(l2,ProgName,0). ProgName must be the Rp name in a
3-word integer array.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 8

OFSCHED is the last of the three controller programs. This program
removes one or all the programs from the time list. This also uses the
Exec 12 to remove the program(s) from the time list. This has been very
useful during system restoration after a re-gen, when I needed to inhibit
the automatic processes. I can run it manually after boot-up, or put it
in the welcome file. To re-start everything, I just "XQ SCHED" to restore
the What-When programs to the system time list.

PITFALLS

System release 5.1 and 5.2 both have problems relating to what happens
when a CI command file terminates with "EX" if it was originally scheduled
with "XQ". When running in background, the EX command to CI results in
the total destruction of the session, even if other programs are still
running. Thus, a command file which issues a PRINT command and followed
by an EX will result in the session being terminated before the file
completes printing. The rule I use for ending CI command files is to
always specify "EX,B". The application scheduler always takes care of
logging off the session.

CONCLUSIONS

In the beginning, I wrote status messages from the scheduler programs to
the system console. I could see at a glance what had been run, at what
time, for how long, and in what sequence for the past several hours. Once
I was confident that the strategy and the code were working as intended,
I turned off the system console status displays. Now, the only output
sent to the system console is error messages. All the ongoing application
status messages are displayed on a second terminal reserved for that
purpose. Now, all system errors are immediately obvious. Output to the
system console is controlled by a logical flag in the scheduler programs.
If I need to turn it on again, I just edit the source file, changing the
flag to TRUE, and use the INSTALL.CMD file to install the new version in
the time list.

Now that our system is in place, and has been tested numerous times in
different situations, I can not imagine keeping this pair of A900s under
control without it. It is just one more example of the HP1000 RTE
flexibility and easy adaptability to user control requirements. I am sure
that I will continue to refine the system as new requirements occur. Any
new discoveries will be included in the paper presentation.

Using RTE Sys Lib Routines to Control Program Execution
1008 - 9

APPENDIX A

THE WHAT-WHEN LIST: /SYSTEM/TIMLST.CMD

This file
The first

is used by SCHED, RESCHED & OFSCHED to control the time list
four fields must conform to a specific format. Everything

to the right of the 4th field is ignored so you can put anything there
Specific format instructions are at the end of this file.

AT 00:00:01

% Ok X % b X % N N X N N ¥ % ¥ H H O ¥ ¥ X

format: **THERE MUST BE AT LEAST ONE SPACE BETWEEN FIELDS**

Required
column 1:

First
field

Second
field

Third
field
Fourth
field

Int What Run String executed: Application:

1H SCCLD ! ru /timesc/cldat.run CLOCK SCAN

1H SCDAS ! ru cicopy /das/calldas.cmd DIALOUT CALLS
1H SCMTR ! ru cicopy /dey/monitor.cmd FTP DATA TO 835
1H SCWDG ! ru /timesc/wchdg.run CLOCK WATCH DOG
24H SCCYR ! ru /sysprogs/chkyr.run CHECK YEAR
24H SCGPM ! ru cicopy /gps/gps_midnite.cmd MIDNITE GPS
24H SCHKP ! ru cicopy /hskp/hskp.cmd HOUSEKEEPING
24H SCBKP ! ru /mgr/backup/backup.run BACKUP

24H SCHLT ! ru /sysprogs/rboot.run BOOT SYSTEM
24H SCWMS ! ru cicopy /snoopy/ms.cmd PREPARE DATA
12H SCGPS ! ru cicopy /gps/gps_process.cmd PROCESS GPS

]
]
1
1
1
!
1

24H SCMCS ! ru cicopy /cksteer/ckstr.cmd CLOCK STEER
1
]
]
1
]
'
1

24H SCDAM ! ru cicopy /scham/scdam.cmd PROCESS DAS

24H SCLOP ! ru cicopy /hc/rdetn.cmd REDUCE LORAN
24H SCTTG ! ru cicopy /hc/wttg/udtv.cmd TV TIME UPDT
12H SCGPS ! ru cicopy /gps/gps_process.cmd PROCESS GPS

24H SCSID ! ru /sysprogs/iontr.run BREAK SID FILES
24H SCSAT ! ru cicopy /gps/gpsat.cmd MORE GPS PROCES
24H SCXPT ! ru cicopy /export/export.cmd FTP ->MATSAKIS

* for comment lines OR

blank if the whole line is blank OR

blank if the next four fields are correct (accidental
whole line shift to the right will be tolerated) OR
first character of the first field.

MUST be at least 1 ascii character; this is really a place
holder since the ”AT"” is used for user friendliness so the
line makes sense. You could put ZZ there and the program
will not care. The character must be printable.

NO spaces; the hour, minute, and second values MUST be
separated (delimited) by a ":"; the first number will be
interpreted as hour, the second as minute, the third as
second. Leading Os are not necessary for the program to
work. There must be at least one numeric digit; Omitted
fields default to O but do not omit minute if seconds is
not also 0.

NO SPACE BETWEEN THE INTERVAL NUMBER AND UNIT CHARACTER!
Lower case will be accepted

The name of the program; if no directory path is specified,
it will default to the /programs directory. The .RUN
extension is also not required.

Using RTE Sys Lib Routines to Control Program Execution

1008 - Appendix A

APPENDIX B

APPLICATION SCHEDULER PROGRAM TEMPLATE

FIN7X,L
PROGRAM SC<prog name>(), schedule <application description>
Ko e e mam e e e eemememeeemees-messeeemmecemmeceececeeeesescee——-
* Programmer: Wendy King
* Created: August 31,1990
* Revised: <910528.1758>
* Purpose: Template program; customize to fit application
* Create a unique programmatic session, attach to that
* session and run a program, then return to original
* session and log off the auto programmatic session when
* all active programs have completed.
Kewacoemaaaaceaccccansceesacecscarsearsscrsareecccccarrreereeroccaaneaerananax
implicit none
character*5 Progld ! name of this program
character*72 msg0(0:2) ! getsn errors
character*72 msgl(0:7) ! clgon errors
character*72 msg2(0:5) ! atach errors
character*72 msg3(0:2) ! clgof errors
character*5 RpName ! true program name
character*80 RunString(l) ! to schedule program
integer*2 StdOut,StartLu,SystemConsole,NProgs,1
integer*2 ITime(15),SesNum,error,0pt,Count,MaxTime
integer*2 BufLen,buffer(4),Parms(5), FmpRunProgram,StrLen
integer*2 Clgon,Clgof,GetSn,Atach,RtnSn,UsNum,TrimLen
integer*2 LuSes, IXGet ,Active_Progs,Usr1dTblAddr
logical Continue,ConsoleDisplay
R

* CUSTOMIZE THIS SECTION
* Replace the 5 x's with the 5-char name of this program

data Progld /' XxXxXxx'/

Replace "prog.run::dir" with the full path and program name to be run
Duplicate this line for each program to be scheduled; for run w/wait
use RU instead of XQ. Set NProgs to the number of programs to be run.
For additional runstrings, increase the array value in the declaration
and increment the aray value for each data statement.

* % % ok %

data RunString(l) /’'XQ,prog.run::dir,parameters if any’'/
data NProgs / 1/

* Replace n with a number which represents the Maximum number of
* minutes the process should take.

data MaxTime / n/

* replace n with the lu of the terminal where you want the
* application program output(s) to be displayed.

data StdOut /n/

Using RTE Sys Lib Routines to Control Program Execution
1008 Appendix B-1

* set ConsoleDisplay to false if you want only error messages on the
* system console; set it to true if you want progress/status messages
* on the system console.

data ConsoleDisplay /.false./

* DO NOT CHANGE ANYTHING FROM HERE ON.

data buffer /'AT',' /T’ ,'IM' ,'E '/ ! account & password
data BufLen / 7/ ! # chars in buffer
data Opt / 1/ ! clgof option

data Count / 0/ ! count log off trys
data SystemConsole / 1 / ! System Console lu
data Continue /.true./ ! flag for logoff loop

* Error messages for getsn
data msg0(0)(1:)/’' 0, No error.'/
data msg0(1)(1l:)/’'-1, Cannot get a session number.'/
data msg0(2)(1l:)/'-2, No more session numbers available.'/

* Error messages for clgon
data msgl(0)(1:)/’ O, No error.'/
data msgl(l)(1l:)/’'-1, Internal error, such as no class numbers,
> or logon not performed.’/
data msgl(2)(1:)/’'-2, No -2 error documented in the manual.'/
data msgl(3)(1:)/'-3, Too many sessions active.’/
data msgl(4)(1l:)/’'-4, No such user.’/
data msgl(5)(1l:)/’'-5, Bad or missing password.’/
data msgl(6)(1l:)/'-6, File is not valid user file.'/
data msgl(7)(1l:)/'-7, User configuration file already open.’'/

* Error messages for atach
data msg2(0)/’ 0, No error.'/
data msg2(l)/’'-1l, session number does not exist.’'/
data msg2(2)/'-2, specified program does not exist.’/
data msg2(3)/’-3, current session number does not exist.’/
data msg2(4)/'-4, must be superuser for action requested.’/
data msg2(5)/’'-5, program with same name already exists.'/

* Error messages for clgof
data msg3(0)(1:)/' (0) Log off completed: no error.'/
data msg3(1)(1l:)/' (-1) There are active programs; Option was 0.'/
data msg3(2)(1:)/’ (-2) Session already logged off.’'/

* Identify program and revision number; display time.

if(ConsoleDisplay) then
write(l, ' (/@) ') ce-mmmmm e m e et ee e m s '
call Ftime(ITime)
write(l,’'(a5,1x,15a2)')ProglId, ITime

endif

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix B-2

*

save the initial output log lu
call loglu(StartLu)

get a unique session #
error = GetSN(SesNum)
if(error.1t.0) then
Strlen = trimlen(msgO(-(error)))
write(l,*)Progld,’ GetSn: ‘,msg0O(-(error))(l:StrLen)
sesnum = 999
endif

logon TS/AUTO programmatic session to new session number

error = clgon(buffer,BuflLen,SesNum,error)
if(error.1t.0) then

StrLen = trimlen(msgl(-(error)))

write(l,*)Progld,’ Clgon: ’,msgl(-(error))(l:StrLen)
endif

atach to new AT/TIME session
error = atach(sesnum,error)
if(error.1t.0) then
StrLlen = trimlen(msg2(-(error)))
write(l,*)Progld,’ Atach: ’,msg2(-(error))(l:StrlLen)
endif

announce output destination

if(ConsoleDisplay) then
write(l,*)Progld,' Running in session number ’,UsNum()
do 1 = 1,NProgs
Strlen = trimlen(RunString(i))

write(l,*)Progld,’ ‘' ,RunString(i)(l:StrlLen)
enddo
write(l,*)Progld,’ Look for output on lu ‘,StdOut
endif

change the output lu to stdout
call AtCrt(StdOut)

display status message if standard output device is to be the
system console for this application and console display is turned
off, or i1f the standard output device is not the system console.

do { = 1,NProgs
StrLen = TrimLen(RunString(i))
1f((StdOut.ne.SystemConsole).or.
> (StdOut.eq.SystemConsole) .and. (.not.ConsoleDisplay)) the

write(l, (/@)) --cccmcom it e et '
call FTime(ITime)
write(l,’'(a5,1%,15a2)')Progld,ITime
write(l,*)Progld,’ ',RunString(i)(l:StrLen)

endif

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix B-3

error = FmpRunProgram(RunString(i)(1l:StrLen),Parms,RpName)
if(error.1t.0) then
write(l,*)Progld,’ FmpRunProgram ',RunString(i)(1l:StrLen)
write(l,*)Progld,’' FmpRunProgram Error: ’',Error
write(l,*)Progld,’ FmpRunProgram Errors: ', Parms
endif
enddo

* re-atach (return) to AT/TIME session 260

error = atach(260,error) ! try to Atach back to 260
call AtCrt(StartLu) ! switch output back to original
if(error.1t.0) then ! if error dtach to system session

StrLen = trimlen(msg2(-(error)))

write(l,*)Progld,’ atach: ’,msg2(-(error))(l:StrLen)
call Dtach(error)

if(error.1t.0)write(l,*)Progld,’ Dtach Error: ‘,error

call exec(12,0,0) ! remove me from the time list
call IdClr() ! set flag to kill my ID seg
else

if(ConsoleDisplay) then
write(l,*)Progld,’ Returned to session ',UsNum()

write(l,*)Progld,’ Waiting to logoff session ’,sesnum
endif

endif

* terminate the session after active programs have completed;
* if programs remain active past the Max time expected, logoff and

* kill all active programs (assume there is a problem with the
* application).

do while(continue)

UsrIdTblAddr = LuSes(SesNum) 1Get User Table address

if(UsrIdTblAddr.le.0) then tSession already logged off
continue = . false. tset flag to quit

else

Active Progs = IXGet(UsrldTblAddr + 12)! active progs count

if(Active Progs.eq.0) then 1Progs finished; logoff now
continue = .false. tset flag to quit

else tPrograms not finished;

if(count.eq.MaxTime) then
write(l,*)Progld,’ Exceeded ’',MaxTime,’' minute time limit.’
write(l,*)Progld,’ Killing session ’,SesNum
write(l,*)Progld,’ Check for errors or adjust time limit.’

ConsoleDisplay = .true. ! I do want the console to
continue = .false. { display clgof result

else
count = count + 1 ! increment counter;
call exec(12,0,3,0,-1) ! wait 1 minute; try again.

endif

endif
endif

enddo

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix B-4

error = clgof(SesNum,Opt,error) ! log off session

if(ConsoleDisplay) then
StrLen = trimlen(msg3(-(error)))
write(l,*)Progld,msg3(-(error))(l:StrLen)
call FTime(ITime)
write(l,'(a5,1x,15a2)’)Progld,ITime
endif

* return the session number to the system

error = RtnSn(SesNum)
if(error.eq.-1)write(l,*)Progld,’ RtnSn: -1’

end

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix B-5

APPENDIX C

TIMELIST MONITOR/CONTROLLER PROGRAM - SCHED

FIN7X,L

$FILES(0,1,25)
g
* Programmer: Wendy King

* Site: US Naval Observatory, Washington DC

* System: HP1000 A900 RTE 5.2

* Externals: RTE System and Fortran 77 intrinsics

* Purpose: Schedule and/or re-schedule Time Service programs

* which must be run automatically at certain intervals

* Last Revision <910530.1949>

PROGRAM SCHED(3,30), Restore programs to time list
implicit none

integer*2 NextHr, NextMin,NextSec,TmUnit,TmInt

integer*2 time(5),parms(5),IRpName(3),IMyNeme(3),TSLogon(4)
integer*2 IdSegAddr,TimeListBit, Mask,IdSegWordl8,IXGet,IdGet
integer*2 Trimlen,Session,Error,FileLu,Buflen,ios

integer*2 FmpRpProgram,UsNum,LogonLen,Clgon,SuperUser

character At#*2,Frequency*4,CRpName*5,CMyName*6,Start#*8
character ProgramName*64,InputFile*64
character CBuffer*80

equivalence (IMyName,CMyName)
equivalence (ProgramName(1:5),IRpName,CRpName)

data parms / 5*%0 /
data mask / 010000B /
data Session / 260 /
data TSLogon / 'AT','/T','IM','E ' /
data LogonLen /7 /
data InputFile / '/SYSTEM/TIMLST.CMD' /
data FileLu / 101 /
data Buflen / 80 /
if (SuperUser(UsNum()).eq.0) then
Write(l,*)'Sorry; You MUST be Super User.’
call exec(6,0,3)
endif
DO WHILE (.TRUE.) fcontinue indefinitely

*** if not running in system session, go there;
*** atach to TS session; create session first if necessary

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix C-1

1f(UsNum() .ne.0)Call dtach() ! sets loglu to system console
Call atach(Session,error) ! try attach to 260
if (error.ne.0) then !t if it fails, logon 260
error = clgon(TSLogon,LogonlLen,Session,error)
if (error.eq.0) call atach(Session,error) ! attach to 260
endif

%% Open the list of time scheduled programs

ios = -1
do while (ios.ne.0)
Open(FileLu,File~InputFile,Iostat=ios,Err=1)
1 if(ios.ne.0) call exec(12,0,2,0,-30)
enddo

file could be in
use; keep trying
to open the file
every 30 seconds

DO WHILE (Ios.ne.-1) while not EOF

Read(FileLu,Fmt='(a)’,Iostat=Ios,Err=998,6End=20)

> CBuffer(1l:)
if(trimlen(CBuffer).eq.0) goto 20 ! if blank read again
If(CBuffer(l:1).eq.’'*’) goto 20 ! comment; read again
READ(CBuffer(1l:),Fmt=%,Err=20,End=20) !

> At,Start,Frequency, ProgramName

* Check for current ID segment; if none, RpProgram and put in timelist;
* if RP fails, write error msg and go to next program; if there is an
* ID segment, check that it is in the timelist; if not, put it there,

* if it is, go do next program.

o g gy
IdSegAddr = IdGet(IRpName,Session) ! get ID Seg
if(IdSegAddr.eq.0) then ! if no ID seg

Error=FmpRpProgram(ProgramName ,CRpName, ‘P’ ,Error) ! try RP
if(Error.ne.0) then t if error
Write(l,*)'Sched: RP ' ,ProgramName(l:5) ! write msg
Write(l,*)’Sched: Error returned was ’,Error
goto 20 ! do next prog
endif
else
IdSegWordl8 = IXGet(IdSegAddr + 17) ! get Id Seg Word 18
TimeListBit = iand(mask,IdSegWordl8) ! mask off bit 12
if(TimelistBit.ne.0) goto 20 t if bit 12 set ok
endif t if not re-schedule
*kk Calculate the next runtime based on the interval (how often)
dkk and start time.

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix C-2

*%

20

998
999

Time schedule the program.
call exec(12,IRpName,TmUnit,TmInt,NextHr K NextMin,NextSec,0)

ENDDO
goto 999

Write(1l,*)'SCHED: TIMLST.CMD::SYSTEM READ FAILURE!!!’
close(FileLu)
call PName(IMyName)

if (CMyName(1:5).ne.'SCHED') then ! if true I am a clone;
call exec(6,0,3) ! kill me completely

endif

call dtach(error) ! move to system session

if(error.eq.-5) then ! if already exists in system
call exec(6,0,3) ! session, kill me completely

else

call exec(ll,time) ! get time now
if(Time(3).gt.40)Time(4)=Time(4)+1l ! if min>40 inc hour
Time(4) = mod(Time(4),HpD) ! mod hour/24
call exec(12,0,4,1,Time(4),45,0,0) ! sched next run
endif
ENDDO

END

Using RTE Sys Lib Routines to Control Program Execution
1008 - Appendix C-3

APPENDIX D

REFERENCE MANUAL DOCUMENTATION FOR RTE ROUTINES

HP1000 RELOCATABLE LIBRARIES MANUAL:

CHAPTER 5

IxGet returns the contents of an address
CHAPTER 6

UsNum returns the session number
SuperUser checks if user is super user
GetSn returns a unique session number
RtnSn releases a session number

Dtach moves caller into system session
AtCrt attaches a crt

Atach moves caller into a session
Clgon logs on a session

Clgof logs off a session

LuSes returns the user table address

HP1000 PROGRAMMERS REFERENCE MANUAL:

CHAPTER 5

IdClr sets flag to kill callers ID segment
ChngPr change the priority of a program
Exec 6 terminate a program

CHAPTER 6

Exec 11 returns the system time

Exec 12 schedules a program now or later
CHAPTER 7

IdGet returns the caller’s id segment address
PName returns the caller’s actual name
LogLu returns the lu of invoking terminal
CHAPTER 8

FmpRunProgram schedules a program (no RP needed)
FmpRpProgram restores a program ID segment

Using RTE Sys Lib Routines to Control Program Execution

1008 - Appendix D

HP 1000 DS and NS
over
MUX Ports

Donald A. Wright
Interactive Computer Technol
2069 Lake Eimo Avenue No
Lake Elmo, MN 55042 USA
612/770-3728

Abstract:

DS and NS on the HP 1000 are excellent network services. Many people do
not realize how robust these services are. They provide far more than NS
services on other systems, with such functions as transparent remote Image
Data Base access, and complete file transparency. But they can be
expensive.

In many applications, the cost of HP’s networking hardware is higher than the
cost of the DS or NS software to go with it. But every HP 1000 has MUXes,
and most have a spare port or two. MUXLINK is a collection of software
components which allow full DS and NS services between HP 1000's, using a
single MUX port on each computer in a connected pair.

The software emulates the HP HDLC cards and their drivers, so nearly all of the
functionality of DS and NS is supportable. Data transfer speeds are limited to
the speed of the MUX, so this mechanism is of value where DS/NS functions
are desirable but the highest performance is not required. MUXLINK is a
commercial product, but the author provides detailed design and internals
information. The paper discusses pseudo drivers working in close cooperation
wilth e%rotocol programs, the protocol itself, integration with HP’'s DS/NS, and
related issues.

Requirements:

The need is for a software mechanism providing DS/1000 and NS/1000
services over B, C, and D-MUX ports on both RTE-A and RTE-6/VM. The
drivers must appear to HP’s software to be HDLC drivers, so that DS/NS will
allow the full range of services supported by the HDLC cards. The system
should support all normal ND/DS requests, including those from the utili

programs DINIT, NSINIT, DSINF, NSINF, and DSMOD. A communications lin

should require only one MUX or OBIO port at each end, and network traffic
should not interfere with the use of other ports on the MUX. It should include a

HP 1000 DS and NS over MUX ports
Page 1009-1

complete error-detection and retry protocol.

The software should, if possible, include data compression. it would be
desirable to allow the use of the MUX ports as terminal ports when not in use
for DS/NS, and it will be helpful if normal DSINF and NSINF reports show
coherent information when used to query these special links.

Eventually, the software should support all of the special festures of the HDLC
cards, such as Remote VCP, Remote Program Download, and Forced Cold
Load. Autodial and inactivity disconnect will also be useful features.

Deslign Approaches:
Two different approaches to this problem were considered:

1) Write a ﬂ)ecial device driver for each type of MUX in both RTE-A and
RTE-6/VM, for a total of four drivers.

2) Write a pseudo driver for each operating system, closely linked with a
protocol program which communicates through normal MUX ports.

These approaches have very different sets of problems to face:
Four Drivers:

a; Large drivers are required, with lots of programming at the driver level.

b) There is a danger of being privieged too long while doing protocol
manipulations.

c) Data buffers must be outside the driver while the protocol work is done,
and there is no convenient place to put it.

Pseudo Driver and Protocol Program:

a; This approach cannot be as efficient as the other.
b alrlgsohcited remote messages and message collisions are harder to
itrate.

Deslgn Choice:

The pseudo driver approach was chosen. While efficiency will be somewhat
reduced, it was felt that this will not affect DS/NS speed at the relatively low
MUX data rates. It was also thought that this approach might actually be less
intrusive and have less impact on other applications, because most of the
protocol work can be done in a normal interruptible program. The drivers will
definitely be much smaller, and in RTE-6/VM it will normally be installable
without a system generation, using driver replacement. But the biggest
advantage is that most of the code can be written and debugged at the
program level rather than the driver level. This also improves the likiihood that
patches and updates can be installed at the program level without a system
generation.

HP 1000 DS and NS over MUX ports
Page 1009-2

This is a schematic diagram of the resulting design:

Schedule
MUXLINK r— MUXQUEUE
Pseudo T
Driver
Write LU Protocol
MUXIO Remote
— 66 I System
DS/NS W1 { U.=
MUX MUX
w / / %)
—— 66
U 2 HP
Read LU Driver

Protocol Requirements:

The protocol used between HP 1000 systems cannot actually be HDLC,
because that protocol is very compute intensive, requiring a dedicated
microprocessor. Instead, we must design a protocol which is much less
compute intensive but allows use of a wide variety of connections, at least
including direct connection or any lookalike (e.g. shorthaul modems), dialup
modems, commercial services such as DunsNet, Tymnet, and Telenet, plus
data switches and LANSs.

it should support all baud rates available on the MUXes, and must allow for
XON/XOFF data pacing. It need not support ENQ/ACK. it must be able to
use a 7-bit channel it necessary, and should provide at least run-length
encoding as a method of data compression. It must allow for the translation of
special characters which may be disallowed by one connection or another.

n 1)

When the link is idle, the four major components of the system are in the
following states: The Type-66 LU’s are idle, MUXIO is waiting on a class GET,
MUXQUEUE is dormant saving resources, and the MUX LU is in typeahead
mode with a class read on it (B, C-MUX) or enabled to schedule MUXQUEUE
when a character comes in (D-MUX).

Here is the sequence of events for a normal write:

1) The driver is entered by RTE with the directive to initiaste a DS/NS write
to the remote system.

2) The driver makes some cursory checks on the request and then
schedules MUXQUEUE, settingr a rewtlrtyh if MUXQUEUE is busy, and passes
an initiation sequence number along with its own DVT/EQT address.

3) MUXQUEUE determines where the schedule came from, validates it,

HP 1000 DS and NS over MUX ports
Page 1009-3

and passes it to MUXIO in a class write.

4) MUXIO wakes up from its GET, examines the request for legality, and
tells the driver it is complete by setting bits in the Type-66 LU’s EQT/IFT
and forcing an immediate driver timeout.

5) The driver is entered with a timeout directive, determines that the

request is complete, and takes a completion exit.
Note: In this case the driver actually completes the request before the data
is_transmitted to the remote system. This is unusual, but higher-level
DS/NS protocols protect against a lost message, and in fact this is exactly
how the HDLC drivers work as well.

6) MUXIO then converts the message’'s raw data into one or more
encoded 'frames’, complete with headers and checksums and in-stream
special characters to implement the protocol.

7) MUXIO fiushes the pending read on the MUX port and begins writing the
me?sagle to the remote computer, handshaking it over according to the
protocol.

A read follows this sequence:
1) The first incoming frame completes MUXIO's pending read on the MUX

port.

2) MUXIO wakes up from its GET and handshakes the rest of the message
across.

3; MUXIOQ converts the incoming frames back into a DS/NS message.

4) MUXIO schedules QUEUE (HP's DS/NS incoming-message program) with
deta{l)s about the incoming message, giving it the Type-66 Pseudo LU
number.

5) QUEUE places a class read on the Type-66 LU.

6) The Type-66.driver schedules MUXQUEUE.

7) MUXQUEUE informs MUXIO by way of a class write.

8) MUXIO goes privileged, finds the location of QUEUE's class buffer in
SAM, and cross-stores it right in. Then MUXIO sets flag bits in the LU’s
IFT/EQT and forces an immediate driver timeout.

9) The driver detects the completion by MUXIO and takes a completion
exit.

The sequences described above apply to all normal DS/NS requests.
However, there are some unusual requests that must be handled as well. The
most difficult of these is the Special Status Read. In this case, a program such
as DSINF issues a normal i/O request (not class 1/0) to the driver, and
expzcts to get 10 or 12 words of status or statistics information back from the

The drivers pass this request to MUXIO in the same fashion as all other
requests. MUXIO then locks itseif in memory, sets status bits in the IFT/EQT
to tell the driver that special action is required, and also places there the
absolute page address and the relative word offset of the Special Data in its
local map. The driver then maps the data directly into an alternate map and
cross-stores it to the requester’s buffer.

HP 1000 DS and NS over MUX ports
Page 10094

Efficlency:

While the sequences described above do seem complex compared with the
notion of performing all of the protocol and |/O directly in the driver, they take
advantage of the very facilities that the HP 1000 was designed to do well. In an
actual test, the Special Status Read, described above, was executed
repeatedly on a Type-66 Pseudo Driver LU from a test program, with a
1024-word buffer rather than 10 or 12 words. In both RTE-A and RTE-6/VM,
the test program was able to perform 100 reads per second, which is the
maximum possible number when timeouts are u to pace an event in the
sequence.

Protocol:
The following is an overview of the protocol which MUXLINK uses to encode
data, form packets, and transmit it on RS-232 circuits.

Port-to-Port:

1) An initialization negotiation tells each side the important properties of the
other, e.g. max read size.

2) When a channel is idle, C-MUX ports have a read posted and D-MUX
ports have program scheduling enabled. When one side wishes to initiate
transmission it just sends a packet to the other side.

3) Channel contention is always resolved in favor of the same side,
determined by the initialization negotiation.

4) A single message may be broken into two or more frames.

5) After the first frame, channel contention is resolved before additional
frames are sent.

6) Errors are detected by checksums and other protocol checks, and are
corrected by retries.

7) DS/NS messages are currently limited to 4096 words. The programs
written to implement this protocol may have such a limitation, but the
protocol itself can handle at least 1 megabyte in a single frame.

8) Multiple unacknowledged frames are also supported by the protocol,
though not necessarily by program implementations.

ncodi ing:

1) Run-length data compression for 8-bit data is performed as an integral
part of encoding, if enabled.

HP 1000 DS and NS over MUX ports
Page 1009-5

2)

For transmission on the maximum number of possible services, the
allowable encoded character set is configurable at startup. At the
minimum, it may be reduced to the 64 most common characters plus up to
8 reserved management ("special’) characters plus the carriage-return or
other EOL character.

3) The encoded data must fit on a 7-bit channel if necessary. This will be

4)

indicated in the initialization negotiation.

Message frames are sent as variable-length character strings terminated
by a hardware-recognizable EOL such as CR.

Initialization:

1)

2)

There are four message frames exchanged in the channel initialization
process, in this order:

1) Initialization Request

J) Initialization Response Data

K) Initialization Request Data

L) Round-Trip Time Interval message

Basic assumption: it doesn’t matter which side is pn'marg and which is
seﬁapdaw. That distinction is used later only to arbitrate channel
collisions.

3) When | start up | declare my side to be in an uninitialized state and begin

sending primary initialization request messages or invalid frames to the
other side at predetermined intervals.

4) When in the uninitialized state, | can recognize only two things: 1) Proper

5)

6)

7)

responses to my initialization sequence messages, or 2) The other side’s
primary initialization request. If an unexpected message is received before
the full 4-message exchange is complete, | will execute a random delay
and then read to see if a primary initialization request is present from the
other side. if so | will respond to that request; if not | will send another
primary initialization request myself.

Reception of a primary initialization request at any time will invalidate
previous initializations and will cause an Initialization response to be sent.
The only exception is the first message received after sending my own
initialization request.

! keep track of the time | sent an initialization response and the time |
received the acknowledgement. The length of that interval is sent back to
the grimary side in the round-trip time interval message. This information
will be used later to appropriately adjust timeout and retry intervals and
may be sanity checked in actual channe! use.

The side which sends the primary initiglization request which actually
succeeds is called the primary side.

HP 1000 DS and NS over MUX ports
Page 1009-6

Encoding Method 1:

This method employs bytewise run-length encoding, high-bit prefixing,
translation-table prefixing, and special-character translation. Except for special
handling of the high bit, it does not do any bitwise manipulation of the data. It
is used to encode the data in C or D frames.

Reserved ajspecial) characters are defined in the startup file. If they appear in
the original data with or without the high bit set they are translated to different
characters, so they never appear in the encoded output unless they really are
special characters. Allowable special characters are as follows: (mnemonics
represent single ASCII characters):

TTE - Translation Table Escape (single byte state change).

TIT - Translation Table Toggle. Change state and remain untii another
TITor TTE.

RLO - Precedes the data character for a run of minimum length.
RL1 - Precedes the data character for a run of minimum length +1.
RL2 - Precedes the data character for a run of minimum length +2.

RLC - Precedes the count character(s) for a counted run. The count
character(s) are Basic Digits, where the 4 LSB's of each digit indicate
the count (0-15) and the MSB indicates whether additional count digits
follow. The data character follows the last count character. There is
no limit to the number of count characters, so the length of a run is
limited only by the message or frame size.

HBE - High Bit Escape (single byte state change).

HBT - H::gh bit Toggle. Change state and remain until another HBT or
HBE. If HBT and HBE are not defined, an 8-bit channel must exist and
the high bit will never be prefixed but will be sent along with the data,
whether translated or not.

EOL - Reserved hardware-recognizable End of Line character, such as
Carriage Return. Must be translated to another character so that it
never apﬁears in the data stream either with or without High Bit set.
Must be the same for both sides.

A minimum length run is defined as a run of three identical characters if any of
RLO - RL2 are specified, otherwise four characters.

In addition to EOL, at least ONE special character must be specified, either
TTE or TTT. All others are optional, but their use may improve encoding
efficiency. HBE and/or HBT are required for transmitting data over a 7-bit
cprar)nel, and should not be used otherwise because they will reduce
efficiency.

HP 1000 DS and NS over MUX ports
Page 1009-7

Encoding/Decoding M :

7-BIT MODE: If either HBE or HBT is defined in the initialization data from the
transmitting side, the receiver uses the channel as if it were a 7-bit channel.
The high bit of all received characters is set to the current value of the High Bit
Mode, and changes in that mode will be allowed when HBE or HBT is seen.

8-BIT MODE: Neither HBE nor HBT has been defined. The 8th bit (bit 7) in
each character is taken literally. If the received character with high bit forced to
0 is a translated one of any kind, its actual received high bit is merged in with
the character resulting from the translation.

The transmitted byte stream is encoded so that the following two modes are
switched on and off in the receiver (decoder) by special characters found in the
byte stream. Both modes are initialized OFF before the first byte of each frame
is decoded:

TRANSLATION TABLE MODE: When off, received characters (except special
characters) are taken literally. When on, received characters are translated via
a 128-character lookup table provided by the neighbor side as part of
initialization. As an example, that table may translate ASCII control characters,
the EOL, and all special characters to something else. Translation Table Mode
is toggled by TTT and switched for one character only by TTE.

HIGH BIT MODE: If High Bit Mode is on, the 8th bit is ignored in received
characters and set true on all resulting characters whether translated or not.
High Bit Mode is toggled by HBT and switched for one character only by HBE.

Frames:

DS/NS messages are wrapped into one or more Protocol Frames, which
contain checksums and other crrotocol validation mechanisms. The design of
the frames themselves is beyond the scope of this paper.

Frame Types:

A = Ack

C = Continuation (preceded by D or C)
D = Data frame

H = Hang-up (disconnect physical line)
| = Initialization request

J = Initialization response data

K = Initialization request data

L = Round-Trip time interval

N = Nak
P = Poll message
S = Stop

HP 1000 DS and NS over MUX ports
Page 1009-8

Pseudo Drivers:

The Type-66 Pseudo Drivers IDI66 and DVPE6 are the key to the process.
Type-66 LU’s are generated in pairs, exactly as HP's ID*66 and DVAG6 drivers
are used. The first LU is normally used for writes, and the second for reads,
although there are some exceptions.

In RTE-A there is one IFT for each DVT pair, with a 20-word extension, and the
key information for both LU’s is kept in that IFT extension. In RTE-6/VM, one
EQT is generated with a 12-word extension and the other with none. The key
information for both is kept in the first EQT’s extension. This is important
because some DS/NS programs actually check the IFT/EQT extension length
of the drivers in order to confirm that the LU's are DS/NS LU’s.

As described above, most normal driver entry directives are handled by
gqssing the request on to MUXIO. These directives are handles right in the
river:

1) Abort. Several situations are handled. In RTE-6 this is important, but in
RTE-A the driver is unlikely to be entered with an abort directive because it
always exits with the HOLD bit set unless it completes the request.

2) CN 22B. Set timeout. This is the only user request that the driver
handles directly.

3) Continue. lllegal, treated the same as a timeout.

4) Timeout. This is handled differently depending upon the state of affairs.
In one case we may be retrying the schedule of MUXQUEUE. In another
MUXIO may have set completion bits and forced an immediate timeout. In
a third case, an actual timeout may have occurred and a timeout status is
reported by the driver.

5) Power Fail. The driver treats this the same as a timeout.

MUXQUEUE Program Design:

MUXQUEUE is a 3-page program which has a normal state of dormant, saving
resources. it has no need for and no access to the formatter or the file system.
It operates at a reasonably high priority (29) and performs all tasks
immediately, so it spends very little time executing. Its job is to sit and wait to
be scheduled by one of the following:

1) MUXQUEUE, which initially passes its own class number by way of a
schedule. In some circumstances MUXIO may also ask MUXQUEUE to be
its alarm clock to wake up MUXIO at a particular time.

2) MUXLINK, a management program, which may request MUXIO's class
number or tell MUXQUEUE to shut down.

3)A TyBle-Gs LU driver with a new request initiation.

4) A D-MUX driver with an unsolicited incoming message.

HP 1000 DS and NS over MUX ports
Page 1009-9

MUXIO Program Design:

MUXIO communicates almost exclusively through class 1/0, with no need for
or access to the file system. It operates at a modest priority of 50 and does all
of the protocol conversion. MUXIO rarely puts itself in the timelist. While it can
spend significant time executing, it still spends most of its time waiting on a
class GET. It can receive class I/0 messages from the following sources:

1) MUXLINK initializes MUXIO’s table of LU’'s and protocol specifications
through class writes.

2) MUXQUEUE reflects its schedule requests from MUX LU’'s and from
Type-66 Pseudo Driver LU'’s.

3) MUX LU’s complete 1/0 requests.

HP 1000 DS and NS over MUX ports
Page 1009-10

MUXLINK Program Design:

MUXLINK is used to control the MUXLINK system. It issues startup messages
to MUXIO based upon a startup command file, and allows other manipulations
of the system including shutdown. Here is a list of its commands:

MUXLINK Action Commands:

? [keéword] Request help for keyword

CN lu CW [pram] Issue control request to specified lu
DI Display local LU66 and TABL tables
ECHO on/off TRanster-file echo on or off

EX Exit MUXLINK program

HE }keyword] HElp, same as ?

LUGE Iuse Begin Defining Type-66 MUXLINK LU

MAXR maxwords Define maximum MUXIO class-read size
SD Shut Down MUXIO and MUXQUEUE now
SEND [LU/TA/MR/AL] [#/AL] * Send LU66, TABL, or MAXR to MUXIO
SHOW [LU/TA/ST/AL] [#/AL] Display MUXIO’s internal tables

SS Suspend Self (use GO to resume)

* % % %

ST Display current STatus (brief)

SuU * Start Up MUXLINK progs & send tables
TABL tbl * Begin Defining Encode Table

TR [filename/1] TRansfer to command file

TABLES

LUB6 Table Commands (need at least LU66, MUX, and TBL):

LUE6 ues * Begin Defining Type-66 MUXLINK LU
BAUD baudrate MUX port baudrate

BRG 0/1 C-MUX port baud rate gen

MUX lu MUX LU for pending LUE6

PORT 0-7 MUX Port number

TBL 14 Encode TABL used with pending LUE6
TOM ticks Reset timeout for specified MUX port
XON on/off Specify XON/XOFF for pending MUX
TABL Encode Table Commands:

TABL tbl * Begin Defining Encode Table

Ival itran #pairs Numeric Translation (? Numeric)

EOL ival itran EOL Character (default CR)

HBE ival itran High-Bit Escape character

HBT ival itran High-Bit Toggle character

RLO ival itran Runlength char, minimum runlength

RL1 ival itran Runlength char, minimum runlength + 1
RL2 ival itran Runlength char, minimum runlength + 2
BRLC ival itran Runlength char, counted length

TTE ival itran Translation Table Escape character
TIT ival itran Translation Table Toggle character

HP 1000 DS and NS over MUX ports
Page 1009-11

All numeric values entered in MUXLINK commands are interpreted as octal
values if they have a trailing 'B’, otherwise they are assumed to be decimal in all
cases.

Commands with an asterisk (*) before the description require superuser
capability. This includes any commands which are capable of modifying
MUXIO’s operating parameters.

Performance:

Extensive testing was done between an A400 running RTE-A 5.2 with DS/1000

and an E-Series running RTE-6/VM 5.2, also with DS/1000. Both systems had

C-MUXes, D-MUXes, and HDLC cards. In all tests there was no significant

giﬂl‘erence between Cand D-MUX test results, so those have been combined
elow.

960 aud: Effective rate in characters per second:

MUX HDLC

Uncompressible file 427

Type-6 file 648

Large relocatable ($BIGLB.LIB) 736

Large text file (CONNECT Manual) 770

19,200 Baud: Effective rate in characters per second:
MUX HDLC

Uncompressible file 585 725

Type-6 file 795 718

Large relocatable ($BIGLB.LIB) 1213 1823

Large text file (CONNECT Manual) 1252 1471

38,400 Baud: Effective rate in characters per second:
MUX HDLC

Uncompressible file 641

Type-6 file 846

Large relocatable ($BIGLB.LIB) 1347

Large text file (CONNECT Manual) 1400

230,000 Baud: Effective rate in characters per second:
MUX HDLC

Uncompressible file 1823

Type-6 file 1737

Large relocatable ($BIGLB.LIB) 8442

Large text file (CONNECT Manual) 7930

umm

The system described can handle DS/NS messages over MUX ports,
providing most DS/NS services at the full speed of the MUX.

HP 1000 DS and NS over MUX ports
Page 1009-12

DOWNLOADING FROM THE HP-1000
TO FACTORY FLOOR MACHINES

PAPER# 1010

Bill Donze
Reliance Electric Company
6065 Parkland Boulevard
Cleveland, Ohio 44124-8020
(216) 266-7619

1. ABSTRACT

The automated machine tools of today's factory are directed
by Computer Numerical Controls (CNC's) which accept ASCII
instructions to produce the desired machine motion. In the
past, most CNC's were equipped with punched paper tape read-
ers to input these instructions. The instructions were
generated by a remote computer connected via a modem to a
terminal and a tape punch located in the programmer's of-
fice. Although this method worked, it was subject to tele-
phone transmission problems, mechanical failures, and was
very time consuming. Reliance is installing HP-1000 A-Series
Systems and custom software at its plants to implement local
control of the shop. This paper describes the MACRO program
that downloads machine instructions from the local HP-1000
to the shop floor CNC's. Although this software is propri-
etary, the paper's in-depth discussion of the process will
provide sufficient information for implementation.

2. BACKGROUND

The instructions for a CNC must be created by a Parts
Programmer based on an engineering drawing of the part to be
produced. The task of conveying these instructions to the
CNC has evolved from a manual operation, through a remote
computer-assisted solution, to an efficient local computer-
assisted process.

In the original manual process, a Parts Programmer would
interpret an engineering drawing and write the needed CNC
instructions on paper. This can be likened to programming in
assembly language without the aid of a computer. The
instructions from the hand-written paper would then be typed
into a Tape Preparation machine producing a listing and a
punched paper tape. The paper tape and the listing then had
to be hand-carried to the CNC on the shop floor where the
paper tape would be read into the CNC's memory by a
mechanical tape reader. This process could take anywhere

Downloading From The HP-1000 To Factory Floor Machines
1010-1

from 4 to 40 hours for one part! Any problems such as human
error, tape punch failure, or tape reader failure could even
lengthen the process. Notice also that the Parts Programmer
had to walk to three different locations to complete the job
and considerable storage facilities were required to
maintain the listings and paper tapes for possible future
use.

In the next step in the evolution, several major changes
were introduced to the process in an effort to ease the
programming task. The addition of a mainframe computer, the
APT Processor (Automatically Programmed Tools) program and
machine-dependent Post Processor programs provide valuable
tools for the Parts Programmer. The APT Processor can be
thought of as a compiler which accepts a high level language
from the Parts Programmer to produce an intermediate meta-
language. The Post Processor then converts the meta-language
to CNC instructions. With this approach a part could be
programmed in 30 minutes to 8 hours. However, the problems
of tape storage, listing storage, and reader/punch failure
are still present. Furthermore, with the addition of a 300
baud modem and telephone 1line transmission, some new
problems have been added.

Note that in this approach there is a single host computer
which supports, in addition to factory floor operations,
other tasks such as payroll, work-in-process, inventory,
etc. The parts programmers from many plants must compete for
execution time as well as for modem access in some cases.

In the present process, the single remote computer has been
replaced by a local HP-1000 A-Series System at each plant,
removing the contention and modem/telephone transmission
problems. The APT and Post Processors from the remote
mainframe computer have been ported to the HP-1000. NCMGR (a
user interface and job management program) has been added to
maintain 1listings, punched tape images, and all other
pertinent information in database-managed disc files so
that the listing and tape storage problems are eliminated.
Finally, the tape punch and tape reader mechanical and
environmental problems have been eliminated with the
addition of the electronic transmission of the tape image
data. The data is moved directly from the HP-1000 computer
to the CNC by the program DLOAD, a process known as
downloading.

Part program creation is now possible in 10 minutes to 2
hours which translates to an annual savings of $80,000 to
$125,000 at each Reliance plant where this system is
installed. In addition, the parts programmer can now create
or modify a part entirely at his or her desk; the only
reason to go to the shop would be to observe the first run
of a new part if it was warranted. Any problems uncovered
during a test run can be corrected by the parts programmer
Downloading From The HP-1000 To Factory Floor Machines
1010-2

at the shop terminal since the same capabilities available
at an office terminal are also available in the shop.

3. THE HP-1000 HOST OPERATING SYSTEM

At present, HP-1000 Systems with downloading capabilities
are installed at eleven of Reliance's manufacturing plants
throughout the Eastern United States. The hardware and soft-
ware requirements of these systems are described in the

following sections.
3.1 Hardware Components

A typical HP-1000 A900 System which provides the platform
for downloading is shown in Figure-1.

HP-1000 A-900 LP
Lu: 6,51-57
2392A Lu:t 120058 120400 #1 CRT
(&2 T %% o o
PCH
Lu: 60-70
12009A 120400 #2 CRT
HPIB I/F 8-Chan Mux I/F
CRT
Lu: 70-77 CNC
12009A 12040C #3 I
HPIB I/F 8-Chan Mux I/F CNC
CNC
12007B
DS/HK-1K
(3to6Mb

Figure-1. Typical HP-1000 A900 System

All systems are very similar in configuration. Each has the
System Console on an ASIC card, the disc and mag tape on
separate HPIB cards, a DS/1000-IV dial-up modem link to the

Downloading From The HP-1000 To Factory Floor Machines
1010-3

Corporate HP-1000 System, and two or more 8-channel
multiplexer cards for the printer, punch, office terminals,
shop terminals, shop printers, and machine CNC's. Disc
capacities range from 404 Mb to 1212 Mb and additional disc
drives are interfaced using separate HPIB cards for improved
performance. A 7978B mag tape is used for faster system
backup time and is shared with the HP-3000 to offset the
cost. The DS/1000-IV modem link provides a cost effective
means of system maintenance and software upgrades from the
Corporate A900 System in Cleveland, Ohio.

The office terminals, system printer, backup tape punch for
the Parts Programmers, and the shop terminals for the
machine operators are interfaced using one or more Rev-D
8-channel multiplexers. The D revision is used to reduce the
table space in the system generation and to take advantage
of the more reliable operation. One or more Rev-C 8-channel
multiplexers are used to interface the machine-tool CNC's.
The Rev-D mux would be more desirable for the CNC's, but the
DLOAD program has not yet been upgraded for D-mux support.
The main obstacle is the difference in Xon/Xoff handling
between the Rev-C and Rev-D multiplexers. The Rev-C mux has
uni-directional Xon/Xoff protocol with the ability to force
an Xon state while the Rev-D mux has only bi-directional
Xon/Xoff control. Each of the 16 different supported
downloading protocols will have to be tested on-site with
the Rev-D mux to determine the effect of the Xon character
sent to the CNC when Xon/Xoff is enabled.

3.2 Software Components

The typical HP-1000 A900 System for downloading support
includes the standard HP software products: RTE-A, VC+,
IMAGE/1000-II, and DS/1000-IV. The only non-HP module
included in the system generation is the named common block
D_RVT, located in System Common, which is explained in more
detail below.

3.3 MUX Port Configuration

Each machine tool CNC controlled by DLOAD is interfaced to
the HP-1000 via a port on the 12040C 8-channel multiplexer.
The Mux is included in the system generation just as if it
were being used for interactive terminals as shown in
Figure-2.

Downloading From The HP-1000 To Factory Floor Machines
10104

* 12040C: 8-Channel Mux for Shop Machines. #2

* ===

*

IFT, /SOFTWARE/A92077/%IDMO0O, SC:33B,TX:20

w

DVT, /SOFTWARE/A92077/%DD*00,M26XX,LU: 60, TX:57,DP:1:20004B, -
DP:5:PR:OM:TX

DVT, /SOFTWARE /A92077/%DD*00,M26XX,LU:61,TX:57,DP:1:20004B, ~
DP:5:PR:OM:TX

DVT, /SOFTWARE/A92077 /%DD*00,M26XX,LU:62,TX:57,DP:1:20004B, -
DP:5:PR:OM:TX

DVT, /SOFTWARE/A92077/%DD*00,M26XX,LU:63,TX:57,DP:1:20004B, -
DP:5:PR:OM:TX

DVT, /SOFTWARE /A92077 /%DD*00,M26XX,LU:64,TX:57,DP:1:20004B, -
DP:5:PR:OM:TX

DVT, /SOFTWARE/A92077 /%DD*00,M26XX,LU:65,TX:57,DP:1:200048B, -
DP:5:PR:OM:TX

DVT, /SOFTWARE /A92077/%DD*00,M26XX,LU:66,TX:57,DP:1:20004B, -
DP:S:PR:OM:TX

DVT, /SOFTWARE/A92077 /%DD*00, M26XX,LU:67,TX:57,DP:1:20004B, -
DP:5:PR:OM:TX

Figure-2. System Generation for CNC Machine Ports

Each CNC machine tool port is further configured at bootup
time by a command file similar to the one shown in Figure-3.
This sets the port attributes which do not change during a
download such as the baud rate, stop bits, parity, etc.

* /CmdFiles/Mux2C_On.Cmd <910219.1523>
*

* Enable Mux #2: Shop Machines
*

* BULLRD Bracket Cell 7-bits, No Modem, Brg0, 1 Stop,

* Even Parity, No Eng/Ack, 2400 Baud
* No Dcl Trigger

CN 60 30B 043510B

CN 60 23B

CN 60 45B

0
CN 60 27B 0

* CSTEP DRILL Cell 7-bits, No Modem, Brgl, 1 Stop,

* Even Parity, No Eng/Ack, 2400 Baud
* No Dcl Trigger

CN 67 30B 053517B

CN 67 23B

CN 67 45B 0

CN 67 27B 0

w

Echo ™ Mux-2 Ready.
Return

Figure-3. CNC Port Initialization at Bootup

Downloading From The HP-1000 To Factory Floor Machines
1010-5

3.4 HP-1000 To CNC Wiring

The distance from the HP-1000 to the shop is always greater
than the RS-232C limitation of 50 feet. In some cases, small
line powered short-haul modems are used. These devices are
available in male or female 25-pin configurations with a
switch to swap pins 2 and 3, but they require +12V on pin
4,5,6 or 20. The short-hauls are connected by a shielded
cable with two twisted pairs for transmit and receive. In
other cases, 8,16 or 20 channel multiplexers are used which
require one cable with two twisted pairs from the HP-1000 to
the shop for each multiplexer pair. Since the distance from
the multiplexer to the CNC is also limited, some shop
layouts do not lend themselves to this approach.

Most modern CNC's have an RS-232C interface option which is
plug-compatible with the HP-1000 and no additional hardware
is needed. However, older CNC's may not have this interface
option or the cost of retro~fitting the CNC with the option
is prohibitive. For these CNC's, a small shop floor computer
such as the NUMERITRONIX 1501 is added between the HP-1000
and the CNC. This device has 1local edit, storage
capabilities, and a full keyboard with display. It functions
as a solid-state tape reader, but is rather expensive if the
edit and storage features are not needed. When only the
RS-232C interface is required, the much simpler and less
expensive RYBETT CAMSTORE unit is used.

4. THE DOWNLOAD PROCESS

A typical download operation is illustrated in Figure-4
using sequence numbers adjacent to the arrows to show the
sequential steps of a download.

The download process begins when the machine operator enters
a command on his CRT (1) which requests a download of a
certain part to a specific machine in his cell via the NCMGR
program. NCMGR allocates a class# (2) for the completion
response from DLOAD and then writes a start download request
on DLOAD's class# (3). DLOAD retrieves the start request
using a class get (4) and sends a 'Download Initiated'
message to the operator's CRT (5). A similar message is
written to the System Console (6) if DLOAD's logging feature
has been enabled. Next, DLOAD reads the tape image file
specified in the start request and sends each record to the
operator's CRT (7) and to the CNC (8). Steps (7) and (8) are
repeated until all of the tape data has been transmitted at
which point a 'Download Completed' message is sent to the
System Console (9), again if logging has been enabled.
Finally, DLOAD finishes the download by writing the download
completion status (10) to NCMGR's class#. All the time DLOAD
has been performing the download, NCMGR has been waiting for

Downloading From The HP-1000 To Factory Floor Machines
1010-6

a completion response from DLOAD via NCMGR's class# which
now completes (11). NCMGR finishes the download process by
reporting the success/failure result to the operator (12).

________________ ,

' CELL #1 !

2 | \

NCMGR ! !

CL#1 L 112, |

4—'—>

. CRT :

]]

' 1

’ 1

]]

! N/C !

MACH. |

10 3 TOOL I

|

N/C X

6.3 MACH. !

\ ToOoL '

]

1
DLOAD 456,789 [DLOAD's
PROGRAM ["\ CLASS#

I' ______________ ‘

! N/IC |

| MACH. I

l TOOL '

I X

|]

! ¢

NCMGR ' '

: CRT :

#2 [|

| :

' CELL #2 !

Figure-4. DLOAD Class I/0 Communications

A keypoint in the above process is that DLOAD receives all
download requests and performs all of its I/0 operations
using class I/0 via a single class#. This technique provides
I/0 without wait and thereby enables DLOAD to perform
asynchronous downloads to multiple CNC's at the same time.

Downloading From The HP-1000 To Factory Floor Machines
1010-7

. THE DLOAD PROGRAM

5.1 Features

The DLOAD program is configured at assembly time to handle
up to 5 concurrent downloads and an additional 15 pending
downloads in a wait queue. These two limits can be adjusted
by parameters in the source code.

DLOAD is designed to handle only Tape Image files which are
standard ASCII source files of type-3 or type-4. The tape
image records are not modified in any way and are merely
transmitted to the CNC with one exception. If the first
record in the tape image file begins with "PARTNO", then the
record is ignored and is not transmitted to the CNC. The
PARTNO record is required by NCMGR, but would be rejected by
the CNC.

During the download process, DLOAD will echo each Tape Image
file record to the machine operator's terminal as a visual
indication of progress. This echo is done such that each
line displayed overlays the previous one, i.e., the display
does not scroll.

The DLOAD program is a non-CDS program which is loaded with
access to System Labelled Common (LC) and as a System
Utility (SU) to prevent cloning. It is initiated at systenm
bootup in the WELCOME1.CMD file by the following command:

XQ,DLOAD [LogLu, ErrLu, DE, DebugLu]

LogLu specifies the device where download initiation,
completion, failure and abort messages will be printed.
LogLu may be in the range of 1 to 100. If not specified,
LogLu defaults to the System Console. Logging can be dis-
abled by specifying LogLu as =-1.

ErrLu specifies the device where error messages will be
printed. ErrLu may be in the range of 1 to 100. The default
is LogLu or the System Console if LogLu was specified as -1.
These messages can not be suppressed.

If the characters DE are specified, then the Debug Trace
feature will be enabled. This option will display the I/O
status, buffer length, lu# and mode variables returned when
the class Get in DLOAD's Control Section completes. If a
start download request was received, the contents of the
request are displayed. If a CNC read request has completed,
the input data buffer is displayed in octal bytes and ASCII.
For any CNC I/0 completion, the CNC Lu# and the continuation
address are displayed.

Downloading From The HP-1000 To Factory Floor Machines
1010-8

DebugLu specifies the device where Debug and Trace messades
will be printed. DebugLu may be in the range of 1 to 100.
The default is LogLu or the System Console if LogLu was
specified as -1.

5.2 Control Structures

To implement the asynchronous, multiple CNC downloads
described previously, DLOAD utilizes three controi
structures. An external table in System Common is used to
make its class# available to application programs which
desire to initiate a download and two internal tables are
used to manage all active downloads and all gueued download
requests.

5.2.1 Named System Common

Figure-5 shows the System Common table D_RVT used by DLOAD
to hold the global class# (word-2) that the user interface
program NCMGR uses to send download requests to DLOAD. This
table must be included in the system generation so that it
is global to the system.

MACRO, L
HED * RELIANCE VARIABLE TABLE * <910415.1509>
NAM D_RVT, 30 Reliance Variable Tbl ([MAC] *

ENT D_RVT
*
D_RVT NOP = 1: Spooler Class# (SPOLA).
NOP = 2: DLOAD'S Class# (NCMGR).
NOP = 3: ULOAD'S Class# (NCMGR).
BYT 0,0 = 4: Upper: Formats (1=A,2=E,3=AE)

* Lower: System Punch Lu#.

DEC 56 = 5: Lu#: System Plotter.
NOP = 6: Ds/1K-3K Class# (D3Mst).
NOP = 7: Ds/lK-3K Resource# (D3Mst).
NOP = 8: NCACS's Class#.
NOP = 9:
NOP = 10:
-
END

Figure-5. Named System Common Block D_RVT
5.2.2 The Active Table

This table contains an entry for each active download. The
number of downloads that can be active at any one time is
limited only by System Available Memory (SAM) and the number
of entries in the table which is set by an assembly time
parameter. The first two words of the Active Table contain
the negative number of entries in the table and the length
of each entry in words. The rest of the table consists of

Downloading From The HP-1000 To Factory Floor Machines
1010-9

repeated entries, each consisting of 182 words as shown in
Table-1.

WORD# CONTENTS POINTER
1 CNC System Lu# CURAD
2 User CRT System Lu# CRTLU
3 Requestor's Class# CLAS2
4 control Flag Bits CNTRL

5-36 Tape File Descriptor (32) FNAME
37 Continuation Address PHASE
38 Current Record# RECNO

39-182 | Fmp DCB (144) DCBAD

Table-1. Active Table Entry Format

A new entry in the Active Table is created when a start
download request is received, and removed when the download
completes.

The CNC System Lu# defines the machine CNC to be downloaded
and is also the key to finding the table entry. The User CRT
System Lu# defines the terminal from which this download was
initiated; it is used by DLOAD to send status and error
messages to the user. The Requestor's Class# is allocated by
the user interface program NCMGR and is used by DLOAD to
send the download completion status back to NCMGR. The Tape
File Descriptor provides the full filedescriptor of the disc
file containing the tape image data that 1is to be
downloaded. The Continuation Address is set initially to
the starting address of the specified protocol processor and
thereafter maintains the location where execution is to
resume when the current Class I/0 operation completes. The
Current Record# field keeps track of the number of records
that have been downloaded. The last 144 words of the entry
comprise an FMP Data Control Block (DCB) for reading the
tape image file. And finally, the Control Flag Bits are used
to control various internal conditions as shown in Table-2.

BIT# USAGE

0 PARTNO Skip Flag
1-12 unassigned

13 EOF "%" Record Detected
14 Abort-In-Progress Flag
15 Xon/Xoff Flag

Table-2. Control Flag Meanings

The first record in the tape image file is expected to begin
with the word PARTNO and the PARTNO Skip Flag enables
testing for this so that the record is not sent to the CNC.
After the first record, the flag is set to disable further
testing.

The "%$" character is found in some tape image files and
represents a rewind stop code to the CNC. There may be a """
preceding the tape data, terminating the tape data, or both.

Downloading From The HP-1000 To Factory Floor Machines
1010-10

DLOAD is only concerned with the terminating "%" and only
for certain protocols. The EOF "%" Flag is set when a
terminating "%" is detected and depending on the protocol,
the record may be ignored, sent to the CNC, or indicate an
end-of-file condition.

The Abort-In-Progress Flag is set when a download is aborted
and is used to ignore I/0 errors that may result.

The Xon/Xoff Flag is set whenever a protocol processor
enables the Xon/Xoff feature of the mux port. If a download
terminates abnormally, this flag is used to force the mux
port to a known initial condition of Xoff in preparation for
the next download.

5.2.3 The Wait Queue

Requests to start a new download which are received when the
Active Table is full are placed in the Wait Queue to be
activated as soon as an entry in the Active Table becomes
available. The number of entries in the Wait Queue is also
set by an assembly time parameter. The first two words of
the Wait Queue contain the negative number of entries in the
table and the length of each entry in words. The rest of the
table consists of repeated entries, each consisting of 36
words as shown in Table-3.

WORD# CONTENTS
1 CNC System Lu#
2 User CRT System Lu#
3 Requestor's Class#
4 Protocol Type Code
5-36 Tape File Descriptor (32)

Table-~3. Wait Queue Entry Format

Notice that the CNC System Lu# is stored in word-1 of both
the Wait Queue and the Active Table entries. In conjunction
with the number of entries and entry length, a single search
routine can be used to search either table. The search
routine is called at the beginning of each of the major
processing sections (START, STOP and IOCOM) to set up the
eight pointers shown in Table-1l. These pointers are then
used throughout all processors to reference the variables
for the specific download being handled.

The contents of a Wait Queue entry is simply a copy of all
of the information from the start download request. The
entry is created by a start download request from NCMGR when
the Active Table is full and is removed when a download
completes, moving the Wait Queue entry to the Active Table.

Downloading From The HP-1000 To Factory Floor Machines
1010-11

5.3 Program Overview

A simplified state diagram of DLOAD is shown in Figure-6.
With the exception of the ERRx state, each state is
explained in more detail in the following sections.

(8,

PROTO

Figure-6. DLOAD State Diagram

The state names are also labels in the various sections and
are referenced in the text and flowcharts of each section to
explain how DLOAD moves from state to state. Notice that
once DLOAD is invoked, it never terminates; it is either in
a Class Get suspension at PGET or executing one of the other
states.

Downloading From The HP-1000 To Factory Floor Machines
1010-12

5.4 Initialization Section

This section of DLOAD is executed only once when DLOAD is
first started and performs several initialization tasks.

First, the routine RMPAR is used to retrieve the runstring
argurents which are range-checked or defaulted and then used
to setup device 1lu#'s for logging, error reporting, and
debug displays.

Next, the routine DTACH is called to detach from any user
session in which DLOAD may have been invoked. When debugging
a new CNC protocol, it is often necessary to abort, modify,
and restart DLOAD several times and the DTACH call insures
the proper system environment without having to re-boot the
system.

The next task is to setup the global class# in the System
Common table D_RVT. If word-2 of D_RVT is non-zero, it means
that DLOAD has been re-started without a system re-boot, so
a call to CLRQ is made to flush and deallocate the old
class# from D _RVT. Another call to CLRQ allocates a fresh
class# for DLOAD which is then saved in D_RVT.

Word-1 of each entry in the two internal tables, the Active
Table and the Wait Queue, is now set to zero to indicate
that all of the entries are empty.

The last task of the initialization section is to display
the message:

/DLOAD: Rev-2.30 Ready on 4-23-91 16:30:02 PM

on the Log Device or the System Console.

5.5 Control Section

The Control Section begins at label PGET with a Class Get on
DLOAD's class# as shown in Figure-7. When DLOAD is not
executing, it is suspended on this Class Get waiting for an
entry to be placed on the class queue for its class#.
Entries are placed on this queue by NCMGR (start or stop
download regquest) or by the completion of a previous class
I/0 by DLOAD (CNC read, CNC write, CNC control, user CRT
write, or log/error write).

The purpose of the Control Section is to determine which one
of the above 7 request types has been received and to branch
to the section meant to handle that request.

Downloading From The HP-1000 To Factory Floor Machines
1010-13

(PGET)

EXEC1+100000B,CLASS#,
RQBUF,-80,LU,MODE,
RTN3,UV)

EXEC

Class Get

LU=uv
MODE = §

WRITELOG
OSTAT, RQLEN
LU, MOBE

WRITELOG
Class#, FileDesc,
Protocol Flag

DUMPREC
Display
Input Buffer

Yy - START

Start Download

CNC Write Completion

Y
I0COM

CNC Read Completion

I0COM

<

CNC Cntrl Completion

MODE = 6: User Crt Write Completion
MODE = 7: Log Dev Write Completion

Figure-7. Control Section Flowchart

Downloading From The HP-1000 To Factory Floor Machines

1010-14

Pget Jsb Exec Get w/suspend.
Def *+9
Def Rec2ln = No Abort.
Def DClasGet = Our Class#.
XRgBuf Def RgBuf = Buffer.
Def Mn80 = Buffer Len.
Def Lu = Rtnl.
Def Mode = Rtn2.
Def Rtn3 = Rtn3.
Def Uv = Uv.
Hlt 77B Fatal Error!
Sta Dstat Save Dvr Stats
Stb RglLen Save + #chars.

Figure-8. DLOAD's Class Get

Figure-8 shows the source code of the Class Get call from
which the returned variables LU, MODE, RTN3 and UV provide
the means of identifying the request. RTN3 is set by RTE and
identifies the original class call as a read or write/read
(1), a write (2), or a control (3) call. The LU, MODE, and
UV variables return the PRAM3, PRAM4 and UV arguments from
the original class read, write or write/read call shown
below.

CALL EXEC(ECODE,CNTWD,BUFR, BUFLN,PRAM3,PRAM4,CLASS[,UV]})

For each of these requests, PRAM3 is set to the Lu# and
PRAM4 is set to a number which identifies the type of
operation as shown in Table-4. The UV argument is not used
in this case.

Operation Ecode | Buffer Contents Bufr Len PRAM3 PRAM4
Start Download 20 1: User CRT Lu# 35 CNC Lu# 1
2: Class#

3: Protocol Flag
4-35: FileDesc

Stop Download 20 l: User CRT Lu# 1 CNC Lu# 2
CNC Write 18 l1-n: Data n CNC Lu# 3
CNC Read 17 1-n: Data n CNC Lu# 4
User CRT Write 18 l-n: Message n CRT Lu# [
Log/Err Write 18 l-n: Message n CRT Lu# 7

Table-4. DLOAD Class I/O Request Formats

This provides enough information to identify all requests
except the control request which has a format different from
all of the other class calls. The format of a class control
request is shown below in which DLOAD passes the CNC Lu# via
the UV argument.

CALL EXEC(19,CNTWD,PRAM1,CLASS[,PRAM2,PRAM3,PRAM4,UV])

When DLOAD receives a class control completion, RTN3 will
have a value of 3. DLOAD detects this special case and
stores UV into LU and sets MODE to 5. At this point, LU and
MODE have been set correctly for all received requests.

Downloading From The HP-1000 To Factory Floor Machines
1010-15

If the Debug/Trace feature is enabled, DLOAD will display
DSTAT, RQLEN, LU, and MODE from the Class Get. DSTAT and
RQLEN were set from the A and B registers when the Class Get
completed and contain the Driver Status and the length of
the data received, respectively. If this is a Start Download
Request, then the contents of NCMGR's request are displayed;
if this is a Class Read completion, then the input buffer is
displayed.

Finally, the Control Section branches to the START Section
(MODE=1), the STOP Section (MODE=2) or the IOCOM Section
(MODE=3,4,5). For User CRT, Log or Error write completions
(MODE=6,7), no processing is necessary so control goes back
to PGET.

5.6 Start Download Section

This section is entered at the label START (Figure-9) when a
Start Download Request (MODE=1) is received from NCMGR. The
CNC Lu# (LU) from the request is used to search the Active
Table for an entry with a matching lu#. If an entry is
found, then this is a restart and the message "Download
Aborted..." is logged, the previous tape file is closed, and
at label START1, the new request is moved to the Active
Table overlaying the previous entry.

If an entry was not found in the Active Table for LU, then
DLOAD checks if the Active Table is full. If it is not full,
then the request is moved to the Active Table entry at
START1.

If the Active Table is full, then DLOAD searches the Wait
Queue for LU. If an entry is found in the Wait Queue, then a
waiting download is being restarted; the new request is
moved to the Wait Queue entry overlaying the previous entry,
the message "Busy, Request Queued" is sent to the user, and
program control returns to PGET and awaits the next class
completion.

If the request LU is not found in the Wait Queue, then DLOAD
checks if the Wait Queue is full. If it is not full, the new
request is moved to the Wait Queue entry, the busy message
is sent to the user, and control returns to PGET. If the
Wait Queue is full, then the ERR1 processor sets the
completion status to 1 for a busy condition and goes to the
Termination Section (TERMS) where the status is sent back to
NCMGR.

Downloading From The HP-1000 To Factory Floor Machines
1010-16

{ START

Y

SEARCH
Active

Found

PRINT
“Download
Aborted”

Not Found

lN

FILECLOSE

CURAD,I = LU

Setup move

from RQBUF

Move 35 words

to Acitve Entry

CVTPROTO

Get Protocol

Processor Addr
Using Protocol #

PHASE,| =
Protocol Procsr

Start Address

o

Wait Queue

Not Found

CURAD,| =
LU

SEARCH Found

O

l

CNTRLI =0
RECNO,i =0

USERWRIT

"Download
Initiated”

INT
“Download

Started..”

Clear 16 words
of FMP DCB
starting at DCBAD

Move 35 words
from RQBUF to
CRTLU,I

USERWRIT
“Busy, Request
Queued”

FMPOPEN
Tape File

(10COM1)

Figure-9. Start Download Section Flowchart

1010-17

Downloading From The HP-1000 To Factory Floor Machines

The processing of a new download or a restarted download
request continues at label START1 where the request is moved
to an Active Table entry. The desired protocol is specified
in the request as a two digit ASCII string, so the routine
CVTPROTO is called to convert the string to an integer. This
integer number is then used as an index into the Protocol
Processor Table shown in Figure-10.

XProTbl Def *+1 Protocol Start Addresses.
Def P00.00 00: No Protocol.
Def P01.00 01: AB7360 Protocol.
Def P02.00 02: GN & FANUC Protocol.
Def P03.00 03: NUMERITRONICS "L" Protocol.
Def P04.00 04: CINCINNATI 850 Protocol.
Def P05.00 05: GE 1050 Protocol.
Def P06.00 06: NUMERITRONICS NB/NC-ASCII
Def P07.00 07: NUMERITRONICS "LE.
Def P08.00 08: K&T CNC Series D Cntl-RDC3.
Def P09.00 09: Cimpoint Fd1-500 Btr I/F.
Def P10.00 10: Dgv Rs-232 Btr I/F.
Def P11.00 11: Okuma OSP-5000L-G Proto.
Def P12.00 12: Cincy Grinder Protocol.
Def P13.00 13: NUMERITRONICS NB/NC-EIA
Def P14.00 14: Rybett Camstore 2 Proto.
Def P15.00 15: G&L 8000B Protc. "D" Mux
MaxPro Abs XProTbl-*+1 = (~) Max Proto #.

Figure-10. Protocol Processor Table

The starting address of the selected protocol processor is
extracted from the table and stored in the Active Table
entry at word-37 (PHASE,I). Next, the entry's Control Flags
in word-4 (CNTRL,I) and the Current Record# in word-38
(RECNO,I) are cleared. A download initiated message is now
sent to the user and to the log device. Finally, the first
16 words of the FMP Data Control Block (DCBAD,I) in the
entry are cleared, FMPOPEN is called to open the Tape Image
file, and program control passes to the I/O Completion
Section at label IOCOM1 to initiate the selected protocol
processor.

5.7 Stop Download Section

This section is entered at the label STOP (Figure-11) when a
Stop Download Request (MODE=2) is received from NCMGR. The
CNC Lu# (LU) from the request is used to search the Active
Table for an entry with a matching lu#. If an entry is not
found in the Active Table, then the Wait Queue is searched
in the same manner. If a Wait Queue entry is not found, then
the download to be stopped has already terminated, no action
is needed and the program returns to PGET in the Control
Section. If a Wait Queue entry is found, then the waiting
download request is aborted by setting word-1 of the entry
to zero to make the entry available. No messages are
displayed 1in this case since the download had not yet
started.
Downloading From The HP-1000 To Factory Floor Machines
1010-18

{ STOP)

PRINT
SEARCH "Download
aborted..* Xon/Xoff
Active Table Enabled?
Not Found y
FILECLOSE
SEARCH Not Found XONXOFF
Wait Queue Force Xon
State
Found
Set Abort-in-
Clear Entry Progress Flag XONXOFF
CURAD,I= 0 Disable Xon/Xoff

PGET ABORTIO TERMO

Figure-11. Stop Download Section Flowchart

If an entry was found in the Active Table, then an active
download is to be aborted. The message "Download Aborted..."
is printed on the log device and the tape file is closed.
Next, the Abort-In-Progress flag is set in the Active Entry
and the routine ABORTIO is called to cleanup all the pending
I/0 for this Lu. If Xon/Xoff had been enabled for this
download, then the routine XONXOFF is called to force an Xon
state to clear the Mux buffers and then a second call
disables Xon/Xoff for the CNC's port. Finally, the program
proceeds to the Termination Section (TERMO) to release the
Active Table entry for this download.

5.8 1/0 Completion Section

When the Class Get in the Control Section receives a CNC I/O
completion (MODE=3,4 or 5), execution is directed to this
section at the label IOCOM to continue an on-going download.
Also, the Start Download Section will come here to initiate
a new download by entering at the label IOCOM1.

As illustrated in Figure-12, the first task is to search the
Active Table for an entry matching the current CNC Lu# (LU).
If an Active Table entry is not found, it means that this is
an I/O completion for a download which has been aborted so

Downloading From The HP-1000 To Factory Floor Machines
1010-19

it can be ignored by returning to the Control Section
(PGET) .

(loCOoM —(1OCOM1

SEARCH

Not Found

Active Table

Found

WRITELOG
Display CNC Lu,
Contin Address

Abort in
Progress?

N Get Continuation
Address in A-Reg
A = PHASE,!

'

Figure-12. I/0 Completion Section Flowchart

Device
Errors?

If an Active Table entry is found, then the Control Flags
are checked to see if this download is being aborted. When a
download abort is initiated, there may be one or more class
I/0 operations to the CNC still pending. When these pending
I/0 requests eventually complete, they may have device
errors due to the abort. The Abort-In-Progress test will
bypass device error checking so that the abort operation is
guaranteed to finish successfully. During a normal download,
the Abort-In-Progress flag will be off and any device errors
will produce an error message and stop the download.

A successful CNC I/O completion continues or a new download
start request enters at label IOCOM1. If the Debug/Trace
feature is enabled, the CNC Lu# (CURAD, I) and the
continuation address (PHASE,I) from the Active Table entry
are displayed.

The final task of this section is to branch to the
continuation address specified in the Active Table entry
which will transfer program control to either the beginning
or somewhere in the middle of the selected protocol
processor. The continuation address is extracted from the
Active Table entry and put into the A-Register by the

Downloading From The HP-1000 To Factory Floor Machines
1010-20

instruction LDA PHASE,I. The branch is achieved by the
instruction JMP A,I which transfers control to the address
in the A-Register. This operation and the way the Protocol
Processor Section stores the continuation address in the
Active Table entry (see below) are the reasons DLOAD is
written in MACRO assembly language.

5.9 Protocol Processor Section

This section is different than the other sections in that it
consists of many separate routines which can be divided into
two groups. The first group consists of 16 routines which
implement the 16 currently supported protocols. The second
group is comprised of the support subroutines which the
protocol routines reference. The subroutines are explained
first to establish an understanding of the building blocks
for the protocol routines.

5.9.1 Subroutines

These subroutines can be separated into the categories of
CNC I/0 and Support. The CNC I/O0 subroutine functions and
names are shown in Table-5.

Subroutine Name Subroutine Function

CncRead Read from CNC {EXEC 17)
CnCWrite Write to CNC (EXEC 18)
XonXoff Enable/Disable Xon/Xoff (EXEC 19)
Readl Read 1 character from CNC

ReadAck Read 1 character; test for ACK
ReadDcl Read 1 character; test for DC1l
SendAck Send ACK character to CNC

SendDc2 Send DC2 character to CNC

SendDc3 Send DC3 character to CNC

SendDle Send DLE character to CNC

SendEot Send EOT character to CNC

SendRec Send data record to CNC

SendSrt Send "S™ character to CNC

Table-5. CNC I/0 Subroutines

The first three subroutines (CNCREAD, CNCWRITE and XONXOFF)
in the table are the only routines which issue class read,
write or control calls to the CNC. They are also unique in
that they are called by the standard JSB instruction, but
they never return to the caller via the standard JMP <sub>,I
instruction. Instead, these routines get the return address
from the subroutine entry point and save it in Active Table
entry in word-37 (PHASE,I) thus providing the continuation
address which is used by the I/O Completion Section to
resume the download when this class request completes. To
illustrate, the code for the CNCWRITE routine is shown in
Figure-13.

Downloading From The HP-1000 To Factory Floor Machines
1010-21

* SUBROUTINE TO WRITE A RECORD TO THE CNC.
*
* Call: (P-3) Cle/Cce Std Cr-Lf/NO Cr-Lf
* (P-2) Lda <+ # chars to write>
* (P-1) Ldb <Buffer Address>
* (P) Jsb CncWrite
* (P+1) **** DOES NOT RETURN ***#
*
* This routine saves its return address in PHASE,
* initiates the desired operation, and then goes
* to PGET to wait for completion. When the request
* completes, control will be directed to (P+l)
* uging PHASE.
*
CncWrite Nop
Stb CncWriteO save buffer address.
Clb, Sez Suppress Cr/Lf?
Ldb M2100 -Yes: Get Suppress bits.
Stb Cnc_Cwl+l Set Control Bits.
Cma, Ina Make # chars negative
Sta WriteLen and save.
Lda CncWrite Get return addr and
Sta Phase,I save in Tbl entry.
Lda Lu Get Cnc's Lu, set
Ior Bitl5 No Sst Map bit,
Sta Cnc_Cwl and save.
Jsb Xluex Class Write to CNC.
Def *+8
Def Rcl8n Class Write, No-Abort.

Def Cnc_Cwl
CncWriteO Def *
Def Writelen

A(Lu/Control Wd).
A(Data Buffer).
A(Buffer Length).

Def Lu

Def .3 = Mode (Cnc Write).
Def DClas = A(Our Class#).

Jmp Err2 -Rtn: Class I/O Errorl!
Jmp Pget -0k: Go wait.

Figure-13. CNCWRITE Subroutine

The balance of the subroutines in this category are short,
simple subroutines which read or write a single character
using the CNCREAD and CNCWRITE routines. An example is the
SENDEOT subroutine shown in Figure-14.

* SUBROUTINE TO SEND AN 'EOT' TO THE CNC.
*
* Call: (P-1) Cle/Cce Do/Don't append Cr/Lf.
* (P) Jsb SendEot
* (P+1) -Return-
*
SendEot Nop
Cla, Ina Set for 1 char.
Ldb XEot Get bufr addr of char.
Jsb CncWrite Send EOT char to Cnc.
Jmp SendEot, I -Return-
*
XEot Def *+1
Byt 4,0

Figure-14. SENDEOT Subroutine

Downloading From The HP-1000 To Factory Floor Machines
1010-22

The subroutines in the support category are shown below in
Table-6.

Subroutine Name Subroutine Function

EofTest Test if EOF "%" Flag Set
FileRead Read File Record/Echo to User
PctTest Test if Record is "% Record
Pct2Test Test if Record is "%" or "$%"
Sleep Time Suspend for 'n’' seconds

Table-6 Support Subroutines

These routines are rather straight-forward except for the
PCTTEST and EOFTEST routines. Because of the re-entrant
nature of the protocol processors, two routines are
necessary to check for and act upon the "%" record. The
first routine PCTTEST (or PCT2TEST) checks the current tape
file record for the "%" record and if found, sets the EOF
"§" Flag in the Active Table entry. Later, the EOFTEST
routine tests the flag since the "%" record is no longer in
the record buffer.

5.9.2 Protocol Processors

Since there is no standard in the industry for CNC to host
computer communications, a special handler usually must be
implemented for each CNC vendor. Sometimes even different
models from the same vendor require separate protocol
processors. Protocol Processor #0 is shown in Figure-15 and
illustrates the simplest protocol.

* 122222222222 2222222222222 222232222222222222221
* * NO PROTOCOL PROCESSOR *
* 122222222222 222222 222223223222 222322222222222)]
*
P00.00 Jsb FileRead Read Rec/Echo to user.
Jmp EoFnd -Rtn: EBof detected.

Cle Set for Std Cr-Lf.

Jsb SendRec Write Rec to Cnc.

Jmp P00.00 -Go get next record.

Figure-15. Protocol #0 Processor

This processor reads the next record from the Tape Image
file and echoes it to the operator's CRT using the FILEREAD
routine. It then sends the data record to the CNC using the
SENDREC routine. This read/write process continues until the
FILEREAD routine detects a physical end of file condition at
which time program control transfers to the Termination
Section (EOFND) to send the completion status back to NCMGR
and to release the Active Table entry. The SENDREC routine
sends the data to the CNC using the CNCWRITE routine which
does not return. After CNCWRITE has issued the class write
call, it goes to PGET and DLOAD suspends until the class
write completes. When the write completion occurs, the

Downloading From The HP-1000 To Factory Floor Machines
1010-23

control Section branches to IOCOM which in turn branches
into the SENDREC routine using the continuation address
(PHASE,I) from the Active Table entry.

All protocol processors have Protocol #0 as their core and
differ only in what is necessary before and after the data
records have been transmitted. This is illustrated by
Protocol #8 which is shown in Figure-16.

Before the data is transmitted, the READDC1 routine is used
to read characters from the CNC until a DCl1l is received.
Then the XONXOFF routine is called to enable Xon/Xoff pacing
by the MUX port. Next, the tape image records are sent to
the CNC by SENDREC until a physical end of file or a
terminating "%" record is detected.

w L2 22222222 222222222222 23222 2222222222 22222 2221
* * PROTOCOL #8: KT-CNC-Series D With RDC-3 *
- it o o o vir oir ok 9 oir o o o o oir o o oir o o o o o ol o o o o o o o ol o o ok o o o o o O o o
w
P08.00 Jsb ReadDcl Go read DCl char & verify.
Jmp P08.00 -No: Go read again.
Clb,Inb Set for Enable.
Jsb XonXoff Go Enable Xon/Xoff.
w
P08.01 Jsb FileRead Read Rec/Echo to user.
Jmp P08.02 -Rtn: Eof detected.
Jsb PctTest Test for Eof "%" Record
Cle set for std Ccr-Lf.
Jsb SendRec Write Rec to Cnc.
Jsb EofTest Was Eof "%" found?
Jmp P08.01 -No: Go get next record.
w
P08.02 Cce set for NO Cr-Lf.
Jsb SendEot Send Eot to Cnc.
Jsb Readl Go read Eot char, binary.
Clb Set for Disable.
Jsb XonXoff Go turn off Xon/Xoff.
Jmp EoFnd -Go to common Eof rtn.

Figure-16. Protocol #8 Processor

Lastly, an EOT character is sent to the CNC to signal end of
data, the CNC responds with an EOT as an acknowledgement,
and the Xon/Xoff pacing by the MUX port is disabled. Program
control then passes to EOFND in the Termination Section to
conclude the download.

5.10 End Of File/Termination Section

The purpose of this section is to terminate a completed or
an aborted download by closing the Tape Image file, sending
a completion status to NCMGR, and releasing the Active Table
entry as illustrated in Figure-17.

Downloading From The HP-1000 To Factory Floor Machines
1010-24

O

Clear Active Entry
EXEC

FILECLOSE Send Status CURAD,I = 0
to NCMGR

\

(EOFND) TERM
J
—

Not Found Search Wait

Queue
N for Entry
Found

PRINT
“Download
Completed...”

Y
l Copy CNC Lu
Ready Status to Active Entry
PGET -
A=0 Clear Wait Word-1

Setup move from
‘ TERMS ’ Wait Queue
Entry
‘ !
Set Status
STARTH
STATUS = A

Figure-17. End-Of-File/Termination Section Flowchart

All protocol processors conclude by branching to the label
EOFND in this section to complete a successful download. The
routine FILECLOSE is called to close the Tape Image file and
then the message "Download Completed..." is displayed on the
log device by PRINT. The A-Register is set to zero to
represent a success condition which will be sent to NCMGR at
TERM.

TERMS is also entered from the Start Download Section via
the ERR1 processor with the A-Register set to 1 when both
the Active Table and the Wait Queue are full. The A-Register
is simply stored in the variable STATUS to be sent to NCMGR.

The label TERM is entered from above or from the other error
processors which have already set STATUS to an appropriate
failure code. Next, the download completion status in the
variable STATUS is sent to the application program NCMGR
using a class write/read on NCMGR's class# contained in
word-3 (CLAS2,I) of the Active Table.

Downloading From The HP-1000 To Factory Floor Machines
1010-25

The possible completion status values and meanings are shown
below in Table-7. When NCMGR receives the status, it
displays a success, failure or busy message to the operator.

Condition STATUS
Success (EQOFND) 0
Busy (ERR1) 1
Driver Error (ERR3) 2
Device Down (ERR2) 3
I1/0 Error {ERR2) 4
Fmp Error (ERR4,ERRS) ~lerr

Table-7. DLOAD Completion Status

If the STATUS Jjust sent to NCMGR was 1, it means that the
Active Table and the Wait Queue were full. In this case,
there is no Active Table entry to be released so control
branches to PGET and awaits the next request; otherwise,
DLOAD continues at label TERMO.

TERMO is also entered from the Stop Download Section when
NCMGR has requested a download to be aborted. This part
releases the Active Table entry by setting the first word of
the entry to zero. Next, the Wait Queue is searched for any
waiting requests. If none are found, control returns to PGET
in the Control Section. If a Wait Queue entry is found, the
CNC Lu# from word-1 is copied to word-1 of the Active Table
entry just released. Finally, the balance of the Wait Queue
entry is setup to be moved to the Active Table entry and
control passes to the Start Download Section at label START1
to activate this waiting download.

6. FUTURE ENHANCEMENTS

The most pressing problem confronting the HP-1000 Systems at
Reliance's manufacturing facilities is the size of the RTE
Operating System caused by the use of Rev-C multiplexers for
CNC interfacing. One such plant has the hardware for 9 mux's
but only 8 of them can be included in the system generation.
Therefore, the first enhancement will be to modify all of
the protocol processors for Rev-D multiplexer compatibility.
A different solution to this problem could be to use a LAN
for CNC interfacing.

Another enhancement will be the use of the new Signal/Timer
facility of RTE to replace the timed suspension used in the
SLEEP routine to achieve delays. Some protocols require up
to 5 second delays during which all concurrent downloads are
suspended.

And finally, the distributed nature of today's computing
power will probably result in DLOAD being ported to a PC to
implement a Cell Controller concept with the HP-1000 or a
workstation as a file server.
Downloading From The HP-1000 To Factory Floor Machines
1010-26

7. CONCL N

DLOAD was originally written in May of 1983 and has changed
very little over the years with the exception of new
protocol handlers. It is a small part of the overall systen,
but has been a key component in achieving a more automated
and efficient shop floor operation.

Downloading From The HP-1000 To Factory Floor Machines
1010-27

DISKMAIL INTERPROCESS MESSAGE SYSTEM

Donald A. Wright
Interactive Computer Technol
2069 Lake EImo Avenue No|
Lake Elmo, MN 55042 USA
Tel: 612/770-3728

DISKMAIL is a memory- and disk-buffered interprocess message system for
the HP1000. It represents a substantial improvement over normal class I/O in
both functionality and ease of use, providing an elegant way for programs to
send data to each other.

Each mailbox has a pre-established ASCIl name, and may employ any combin-
ation of memory buffering and disk buffering. If both are used, the disk buffer
will begin to fill only when a preset memory queue limit is exceeded. All
message queues are FIFO, with any memory portion logically nearer the destin-
ation than any disk portion. Requests are also provided for priority messages,
purging a queue, changing buffer limits, examining limits and queue depths,
and many more functions.

Class 1/0O is used internally for memory buffering, and_variable-record-length
circular files of fixed size are used for disk buffenng. Disk-buffered messages
are nonvolatite.

DISKMAIL was developed as part of a warehouse management system and is
not a commercial product, nor has it been contributed to the INTEREX CSL.
This paper is offered as an example of a way of enhancing program-to-
program communications on the HP 1000 and other systems.

System Requirements:

These are some of the overall requirements for the message system:

1) The "Named" mailboxes are described by character variables up to 22 charac-
ters in length.

2) Messages may be both Memory and Disk buffered.

3) Configurable limits on both memory and disk, including zero space for
either or both.

4) Disk-buffered messages are non-volatile and automatically recovered.

5) Efficient disk usage:
a; Speed
b) Space

DiskMail Interprocess Message System
Page 1011-1

6) Messages always FIFO:
Sender —> Disk —> Memory —> Destination.

7) Exception: Priority messages always go to the front and are not subject
to memory limits.

8) P}'e Disk buffer is not to be used unless the allocated memory space is
unl,

9) The Disk buffer will not be used if it is currently empty, there is no allocat-
ed memory space, but the destination program is waiting to read.

10) Memory messages may be forced back to disk by a special request.
11) The entire FIFO (queue) may be purged with a single request.

12) Any program may write to any mailbox.

13) Any program may read from more than one mailbox.

14) Only one program may read from any one mailbox.

15) Use of the package will not attach FMP routines, or the Fortran format-
ter, or Image routines to the calling application.

16) There are no limitations on the nature of the data in a message. It must
be in an integer array when passed to the DiskMail subroutines.

17) The package does not distingush between message types, number the
messages, or perform any other tYpe of message management. These
things are done at the application level.

Design:

The system consists of four primary components: 1) A library of DiskMail

Application Subroutines callable by application programs; 2) A central

message management program (DQMGR); 3) an operator control program

ttrr:r0ugh which system management is done; and 4) Disk buffer files created for
is system.

The schematic drawing on the following page illustrates the software
implementation:

DiskMall Interprocess Message System
Page 1011-2

Schematic Drawing of Software System:

Application Disk
Program
#1 Buffer
Mail Library Files
DCONTROL
DQMGR
Operator
Control
Application Application
Program Program
#2 #3
Mail Library Mail Library

Ubrary of Application Subroutines:

The SENDMAIL and GETMAIL subroutines are described below to show just
how data is sent and received, and to show the options available to the caller:

SENDMAIL:

CALL SENDMAIL (CMDS, IBUF, LENGTH, MAILBOX [, QDEPTH])
(Optional QDEPTH)

FUNCTION: Send Class Malil to a named Mailbox.

SENDMAIL passes a specified number of bytes in an integer array from the
calling roI?ram to a mailbox. The message is sent directly to the mailbox via
class 1/O it a program is waiting for mail there. Otherwise it is sent to DQMGR
via EXEC 14, and that program decides whether to put it in the mailbox’s class
queue or buffer it out on disk. If no disk buffer file has been created for the
mailbox, and the memory queue depth limit would be exceeded by this
message, DQMGR will optionally instruct SENDMAIL to wait on a resource
number until the memory queue is reduced.

If the queue-depth limit for the specified MAILBOX is zero and there is no disk
buffer for the mailbox, then the actual queue depth is measured but not

DiskMall Interprocess Message System
Page 1011-3

compared with the limit, and locking is not done.
INPUTS - Formal parameters:

CMD - a character variable containing option characters. If neither is
supplied, a string containing at least one blank character is required:

'N’ - No-wait: SENDMAIL will not wait on the resource-number lock if there
is no disk buffer file and the class queue depth has been exceeded, but will
instead return with the QDEPTH parameter set to the 2's-complement
(negative) value of the current actual queue depth.

Note: ‘N’ has no effect if the mailbox does have a disk buffer file. If the file
becomes full an error is returned.

'P’ - Priority: The message is immediately sent to the FRONT of the
mailbox’s class (memory) queue. No queue-depth-limit checking is done.
This facility should be used with extreme care, as it puts messages out of
sequence and has the potential to lood SAM.

IBUF - an integer array containing the data to be sent.

GETMAIL:

CALL GETMAIL (CMDS, IBUF, LENMAX, LENACT [, TYPE [, STAT
[, MAILBOX)]))

(Optional TYPE, STAT, MAILBOX)
FUNCTION: Get a Mail Message from a Mailbox.

GETMAIL performs a Class GET to obtain one class message either from
the mailbox assigned to the calling program or from another specified mail-
box. If there is no message in memory, GETMAIL will request it from
DQMGR and optionally wait on a class GET for it.

INPUTS = Three formal parameters:

CMD - adcharacter variable containing option characters. Two are currently
defined:

'N’ - No-wait: Iif supplied, GETMAIL will not wait on the class GET if there is
no mail, but will always return immediately with or without mail. if ‘N’ is not
supplied, GETMAIL will return immediately with mail if at least one message
is there, else it will wait on the class GET until mail appears.

'S’ - Save-data: If supplied, an exact copy of the mail message will be
returned, but the oriiinal message will remain in the class queue so that a
subsequent GETMAIL request will return the same data. If not supplied,
the message is returned to the caller and deleted from the class queue.

DiskMall Interprocess Message System
Page 10114

LENMAX - An integer*2 value specifying the maximum number of
CHARACTERS that IBUF can accept.

MAILBOX - An ogtional character variable specifying the name of the
mailbox in which to look for a message. If MAILBOX is blank or not
supplied, the program’s own mailbox name (i.e. MAILBOX-PNAME) will be
used.

QUTPUTS = Four formal parameters:

IBUF - an INTEGER array which will receive the data. IBUF may be
equivalenced to a character variable.

LENACT - Integer*2. The actual number of CHARACTERS returned to
IBUF. The remainder of IBUF is undefined. If the 'N' option is set and
there is no mail, or if an error occurs, LENACT = 0. When a valid message
is received LENACT will always be greater than 0.

TYPE - an OPTIONAL integer*2 variable which retums the message type,
as follows:

0 = Standard mail from ancther program.
1 = Job Control Message.
2 = Data received from a device (logical unit).

STAT - an OPTIONAL integer*2 variable containing the A-register (status)
retl;rﬂ from the class GET. The value depends upon the TYPE parameter,
as follows:

0 or 1: Not significant if a valid message was returned. If the 'No-wait’
CMDS character was supplied, the actual A-register return is converted so
that STAT contains the positive number of still-pending device reads on all
LU’s for this mailbox (class) number.

2: Device status word (DVT word 6) of the device after the read completed.
Can be tested for s information as timeout, EOT found (cti-D), device
errors, etc. Driver dependent.

The following is a complete list of the subroutine calls available to an applica-
tion program:

GUTFORCEMAIL Force a Memory Queue to Disk
GUTGETMAIL Get a Message from Mailbox
GUTINQUIREMAIL Inquire About a Mailbox
GUTPURGEMAIL Purge Mail in a Mailbox
GUTRESETQLIM Reset Mailbox's Memory-Queue Limit
GUTSENDMAIL Send a Message to a Mailbox

DiskMail Interprocess Message System
Page 1011-5

DQMGR:

The bulk of the work in the DiskMail system is done by the DQMGR
(disk-queue manager) program. Most messages go through it, and it knows
about all messages.

DQMGR is norma&y dormant. Application programs sending or receiving disk
mail schedule DQMGR (queue schedule with or without wait), and receive back
a response via DQMGR's termination PRTN parameters and/or class 1/0.
DQMGR receives the mail messages via EXEC 14 and writes them either to
memory or disk, depending on the particular mailbox. A program requesting
mail checks its memory mailbox first and schedules DQMGR if there is none.

It accepts no run string and requests no operator input. Some control
functions are available using the DCONTROL program.

At startup it inventories 4DISKMAIL/BUFFERS looking for buffer files (type
3434) and keeps the results of that inventory in its own memory. There is no
other startup file. DQMGR always terminates saving resources except at shut-
down. Before terminating it always checks first for advisory messages in its
own class queue.

DQMGR maintains a push-down log file called /DISKMAIL/DQMGR.LOG. Al
startups, shutdowns, and other significant events including disk buffer errors
are logged there.

DCONTROL:

The DCONTROL program provides both diagnostic and maintenance func-
tions. It is used to analyze problems during installation or operation, and to set
or change DQMGR operational parameters while DQMGR is running.

Within its command list, DCONTROL allows use of every one of the GUTMAIL
subroutines. These permit sending and getting mail, opening and closing
buffer files, inquiring about a mailbox, and resetting its memory queue depth
limit. None of these operations require shutting down the DiskMail system.

DiskMall Interprocess Message System
Page 1011-6

This is the list of availabie DCONTROL commands:

CL [mbox] * Close Buffer File u%:erorppt OK?)
CR mbox [size] CReate a new Buffer File

ER integer Describe Integer Error Code

FO [mbox * FOrce Memory Queue to Disk
GM mbox]] [opts] * Get Mail from Mailbox

HE {[pram Interactive HEIp

IQ [mbox * InQuire About Mailbox Params

u %mbox ffile] [word] List the Buffer File

MF file * Specify Monitor Mode File

MM oné%ff * Switch Monitor Mode on/off

OP [mbox] * QOPen Buffer File

PU [mbox [or)ts] * PUrge Data in a Mailbox

RQ [mbox] [glim] * Reset Memory Queue-Depth Limit
RS [mbox * Reset a Mailbox’s Statistics

SD * Shut Down DQMGR (prompt OK?)
SE mailbox Set Default Mailbox Name

SH [mbox] [file] * SHow DQMGR Statistics

SM [mbox] [opts] [data] * Send Mail to Mailbox

SS SuSpend Self

ST [mbox] * Send STop Message to Mailbox

An asterisk (*) denotes a command which will usually require processsing
through DQMGR.

Where [mbox] is specified as an optional parameter, the default mailbox name
set previgusly by the SE command will used if none is supplied in this
command.

DISK BUFFER FILES:

Each named mailbox having a disk buffering capabilty has an associated
buffer file. These files are in the directory /DISKMAIL/BUFFERS/ and they
have the same names as the names of their associated mailboxes. They are
created using the DCONTROL program.

Buffer files are organized as circular fifos with variable-length records. The
records are in the same format as standard FMP files with minor additions.
The files are mpe-3434 to distinguish them from normal linear files. They are
not ‘open’ to the FMP system while DQMGR uses them - DQMGR opens them
once to determine necessary parameters and then closes them accesses
them directly with EXEC. They are fixed in size and never extended.

The idea is to build a circular file with intrinsic pointers to the beginning and end
of valid data. The pointers are essential e records themselves, with the
expected result that access will be faster than it would be if separate pointers
were kept on disk in another location. This file survives a system shutdown
with data and pointers intact. It is always possible to inventory the file by read-
ing contiguous records from both ends.

DiskMail Interprocess Message System
Page 1011-7

Variable-Record-Length Circular Files (see figure on following page):

1) Each record is bounded by length words, exactly like FMP records. The
length words are a character count rotated right 1 bit, the same as FMP
length words.

2) Message Flag. The first word of each record (what would be the first
data word for FMP records) is a flag. ASCH 'OK’ means the record is still
valid, ASCIl 'PU’ means it is part of the ‘purged zone', and ASCIl "’ means
it is empty but may have valid records on either side of it. The flag word
adds two more characters to the record size, beyond the actual length of
the message data.

3) A Message Attribute word. Word 2 of each message contains data
equivalent to class-buffer parameter UV. This is passed through trans-
parently in case it is needed at a later time for purposes of identifying a
message’s priority, or the sender’'s mailbox, or whatever. It adds 2 more
characters to the record size.

4) The first word of the file (word 0) is always the first length word of a
record, or EOF. This provides a guaranteed starting point for inventorying
the file at startup.

5) As records are written to the file they are added Iinearly exactly as they
would be added to a standard FMP file. A standard FMP 'EOF’ mark (-1) is
alwzﬁawritten after each successive record. A forward search from word O
will ys find an EOF mark.

6) As these records are used (read), they are marked ’purged’ by changing
the flag word to 'PU’, but are not actually deleted. The purged records
together form a contiguous "purged zone’.

7) When the file size would be exceeded by the addition of the next record,
a 'splice-record’ is created and the next data record is written in the purge
zone at word 0 of the file.

8) The splice-record is a dummy with these characteristics:

a. Its last length word is the last word of the file.
b. The flag word is ASCHl "--’.

9) Reoo_rgg are written into the purge zone until a new splice record is again
required.

10) A record with the ‘-’ flag can exist anywhere in the file as a placeholder
record. It is included in queue-depth calculations because it reduces the
space available in the file.

11) A record is kept of the amount of data in this buffer’'s memory queue.
When a new record written to disk plus all of the records in memory might
overwrite the trailing OK (unpurged) record, the write is not allowed and an

DiskMail Interprocess Message System
Page 10118

error is reported. Thus a flush of the memory queue to disk will always
succeed.

12) Startup inventory: When DQMGR starts up, it searches for all files on
DISKMAIL/BUFFERS with a type of 3434 and examines each one for the
ounds of the non-PU messages:

a. Beginning at word 0, scan forward until the EOF is found.

b. If the record at word O is non-PU, search backward until a 'PU’ record
or an illegal record length is found.

13) A new (empty) file is created by DCONTROL with the size specified by
the operator, an EOF mark (-1) in word O and in the last word of the file,
and directory information specifying that the EOF is in the last word of the
file (file is full).

Word New, empty file:
0
| EOF | Empty | EOF |

Word File with one valid record:

0

ILW|OK|AW|Data|LWIEOFI |EOF|
Word File with one purged record:

0

ILWlPU|AW|Data|LWIEOFI |EOF|
Word File with one purged and one valid record:

0

ILWlPU|Aﬂ Data |LW|LW|OK|AW| Data |LW|EOF| IEOFI

Circular files are normally designed with fixed-length records and with pointers
to the first and last valid records kept within the file somewhere, or even within
a management file somewhere else. Access to a record usually consists of a
read or write of the information itself, and then ancther write to update the
pointers.

The variable-length record files described above have some advantages over
these conventional files, and no disadvantages. Advantages are:

1) Variable-record-len fles can be significantly smaller for the same
number of records if the record size does vary signiticantly.

DiskMall Interprocess Message System
Page 1011-9

2) Access is actually faster, because the management information regard-
ing valid records is kept with the records themseives and not in a separate
location, thus reducing access time.

in all cases except the splice, access to the variable-record-length circular file
consists of one read followed by one write.

Tricky Parts:

Development of the DiskMail system was relatively straightforward. The design
employs normal, documented RTE functionality except in the one case where
DQMGR must determine the current depth of an existing class queue. In this
case some privileged code is required, to chase the class queue and count the
number of outstanding buffers and the total number of words of SAM required.
This is the subroutine which returns that information:

MACRO
NAM COMPLQUEUE 880107 ICT Scan Completed Class Queue

COMPLQUEUE finds the class number in the class table, then searches
that class number’s completed-class queue, counting any completed
buffers and the amount of SAM they use. It is called from Fortran
as follows:

* % % %

*

CALL COMPLQUEUE (CLASS, NUMBFS [, NUMWDS [, MAXBUF]])

* Where both parameters are INTEGER*2 values:

* CLASS is the class number in question.

* NUMBFS is the current number of completed class buffers (zero or

positive). INTEGER*2. If the class number is not in use or
the queue 1is corrupt, NUMBUF returns -1.

* %

NUMWDS is the total number of SAM words used by all completed
buffers in the queue, including header overhead. INTEGER*2.
If there are no completed buffers, NUMWDS = 0. This parameter
is optional.

* % o %

MAXBUF is the largest single buffer in the queue, including header
overhead. INTEGER*2, If NUMBFS = O, MAXBUF returns Word 1 of
the requested class entry. If bit 14 of that word is set, then
a program is waiting on a GET on the class number.

* % % %

*

Note that this subroutine is for RTE-A only. It first finds the
class number in the system map and, if the queue is not empty, it
* chases the list in the SAM map.

*

* COMPLQUEUE goes privileged while it executes so that the operating

DiskMail Interprocess Message System

Page 1011-10

* gystem will not change the queue while COMPLQUEUE is chasing it.
* It temporarily sets the DATA2 map to the SAM map while privileged.

EXT $CLTA,SLIBR, .ENTP,$LIBX, .SWMP, .LWD2
EXT .XLB1, .XLA2, .XLB2

ENT COMPLQUEUE

CLASSA NOP Entry parameter addresses
NUMBFA NOP
NUMWDA NOP
MAXBFA NOP
COMPLQUEUE NOP Entry to COMPLQUEUE
JSB SLIBR Shut down the op sys (go privileged)
NOP
JSB .ENTP Recover caller’s pram addresses
DEF CLASSA beginning here
* Save the current working map (WMAP), set the DATA2 map to 4 (SAM):

JSB .SWMP Save WMAP

DEF SAVEMAP Keep it here

JSB .LWD2 Reset DATA2 map

DEF =D& to SAM Map, number 4

* Preset all return variables (note: the optional ones point back to
* the A-register if not supplied):

* Find

CLB

STB @NUMBFA Set NUMBFS = 0, default
STE @NUMWDA Set NUMWDS = 0, default
STB @MAXBFA Set MAXBUF = 0, default

the class number in the table, error it it’s zero (not in use):
JSB .XLB1

DEF SCLTA B = address of class table

LDA @CLASSA A = class number from caller

AND =B377 Strip off just the classf index
ADB A B = address of our class number

JSB .XLB1

-DEF @B B = Word 1 of requested class entry
SZB,RSS If that word is zero,

JMP ERROR we have an error to report

SSB,RSS If the queue isn’t empty,

JMP FIRST go chase it
STB @MAXBFA Else make it the MAXBUF return value
JMP EXIT And leave

DiskMail Interprocess Message System

Page 1011-11

* Now chase the list, incrementing both variables for each buffer and
* testing for lost (something wrong with SAM linked list):

FIRST STB NEXLINK Save initial pointer into SAM

CHASE SSB If pending list word is negative, we
JMP EXIT are at the end of the list
ADB =D7 B - address of next buffer word 8
JSB .XLB2 B = buffer length including header
DEF @B
LDA B A=B

ADA @NUMWDA A = cumulative SAM utilization
STA @NUMWDA NUMWDS = cumulative SAM

LDA B A = buffer length again

CMA, INA A = - buffer length

ADA @MAXBFA A = largest so far - pending length
Ssa If A is negative, this one’s larger,

STB @MAXBFA so make it the largest

JSB .XLB2 B = next buffer’s list linkage wd
NEXLINK NOP Next becomes pending, B = new next

STB NEXLINK Save the link word

ISZ @NUMBFA Incrm NUMBFS counter & test for lost

JMP CHASE Not lost, go see if we’re done

* Error exit for unused class number or corrupted linked list:

ERROR CCA
STA @NUMBFA NUMBFS = -1, error flag

* Exit here after restoring the original DATA2 map:

EXIT LDA SAVEMAP A = original value of WMAP
RRR 10 Move DATA2 map number down 10 bits
AND =B37 Select just the 5 DATA2 map bits
JSB .LWD2 Load the DATA2 register
DEF A from the A-register

* Scram, using $LIBX:

LDA @NUMBFA A = NUMBFS on return

CLB

STB NUMWDA Reset optional pram pointers
STB MAXBFA for next call

JSB $LIBX

DEF COMPLQUEUE

* Local variable:

SAVEMAP NOP Value of WMAP upon entry
END

DiskMalil Interprocess Message System

Page 1011-12

SoftBench Link/1000 Encapsulation
A State of the Art CASE Environment for the HP1000

Hilary Feier
Hewlett-Packard
11000 Wolfe Road
Cupertino, Ca. 95014 M/S 42UN

Overview

SoftBench Link/1000 is an encapsulated tool that runs on SoftBench, therefore this paper will
first outline the components of SoftBench and the significance of SoftBench as a CASE
(Computer Aided Software Engineering) tool. It will then present a simple tour of SoftBench
Link/1000 Encapsulation from a user-level perspective. Finally, the components of
SoftBench Link/1000 Encapsulation will be discussed in further detail.

1. Introduction

In the past several years CASE has grown from a concept to an industry. Integration of tools,
such as the editor, compiler, and debugger, into a homogeneous, window-oriented
environment lead to a more productive and better quality software development
environment. With SoftBench, Hewlett-Packard provides HP-UX developers a software
development environment consisting of both an integrated set of program development tools
and a tool integration platform. SoftBench is embedded in a window-oriented environment,
based on the industry-standard X11 Window System with OSF/Motif appearance and
behavior. SoftBench consists of five tools which cover the construction, test, and maintenance
phases of software development (see Figure 1):

1. Development Manager manages all file oriented tasks (e.g. version control).
Execution of all other tools can be initiated from the DM as well.

2. Program Editor edits source files, load files, etc.

3. Program Builder activates compiler and linker using automatically generated
makefiles.

4. Program Debugger tests the execution behavior of a program.

5. Static Analyzer provides information regarding the structure of a program. (for
HP-UX only)

These tools communicate with each other via a Broadcast Message Server (BMS). This
allows for a task oriented and partly automated working environment in the
edit-compile-link-debug cycle.

1012-1 SoftBench Link/1000

Besides being a software development environment SoftBench is also a tool integration
platform. Due to the Broadcast Message Server, SoftBench is designed to integrate other
available software packages. For example, software analysis packages or documentation
packages could be integrated into SoftBench. Additionally, user written tools can be
integrated via the HP Encapsulator package.

SoftBench Link/1000 Encapsulation transparently integrates the HP1000 A-Series into the
SoftBench environment. SoftBench Link/1000 Encapsulation, in conjunction with
SoftBench, provides a core set of tools for RTE-A application construction, testing, and
maintenance. The programmer edits and administrates HP1000 source code on an HP9000
HP-UX platform with the standard SoftBench functionality. SoftBench Link/1000
Encapsulation provides the link to the HP1000 so that the architectural dependent tasks (such
as compile, link, and debug) are executed transparent to the user. For the first time the
HP1000 user can utilize standard techniques in software development such as revision
control, automatic generation and usage of makefiles, as well as tool communication
functions to automate tasks in the edit-compile-link-test cycle. With improved windowing
capability and a simple user interface, SoftBench Link/1000 Encapsulation results in
increased productivity and quality in the software development environment for the HP 1000
A-Series system.

SoftBench Link/1000 1012-2

Integration of RTE-A Systems into
a SoftBench Environment

User

I
A4

RCS

Development
Manager

Static
Analyzer

4
\ 4

A

4 v

Debugger

Builder Editor

. , HP9000
make HP-UX
| network services
4
Compiler HP1000
Debug/1000 RTE-A
Linker

Figure 1

1012-3 SoftBench Link/1000

I1. Using SoftBench Link/1000 Encapsulation

After SoftBench has already been installed on your HP9000 workstation, SoftBench
Link/1000 is ready to be installed. Installation of SoftBench Link/1000 software on your
HP-UX system fully integrates HP1000 RTE-A development tools into SoftBench.
Therefore, simply running SoftBench, after installing SoftBench Link/1000, allows the user to
access all HP1000 RTE-A utilities while maintaining the full functionality of SoftBench.

Connecting to the HP1000

As soon as a user starts a SoftBench session, the C_1k utility is started. The C_1k utility
transparently connects to the HP1000. RTE-A system configuration information is defined by
the user in the configuration file, SHOME/.SBL_conf. If this configuration file has not yet
been defined, for example the user is a first time SoftBench Link/1000 user, then a window
pops up and the SBL_config tool runs automatically, prompting the user for configuration
information. The required configuration information is:

* nodename of the RTE-A system

* account information for the user on the RTE-A system
(user-id,password)

* base directory on the HP-UX system

After this information is entered and the SBL_config tool is closed by the user, C_lk will
automatically try to make a connection to the specified nodename. C_1k pops up a window
that displays all messages being passed back and forth between the HP9000 and the HP1000.
This connection is maintained the entire time SoftBench Link/1000 runs, allowing the user to
constantly monitor input and output activity on the HP1000.

Moving Software from the HP1000 to the HP9000

Once the user has successfully connected to the HP1000 RTE-A machine, he is ready to set up
the development environment on the HP 9000 HP-UX machine. For already existing
development environments on the HP1000, SoftBench Link/1000 provides an update utility
(UPDATE) to transfer all the source and load files from the HP1000 RTE-A platform to the
HP9000 HP-UX platform while maintaining the directory structure. This window driven
utility offers a simple user interface to start the environment transfer.

SoltBench Link/1000 1012-4

Building RTE-A Software

After moving all the software over to the HP-UX platform the user can now take advantage of
the SoftBench application constructing environment. The build utility (BUILD) can be used
to build RTE-A software. Software builds take source code, include files, and any other
application specific information and compiles and links them to create executables. BUILD
will look for a makefile in the current directory and use that makefile to build the software. If
no makefile exists, a makefile can be automatically generated by holding down the
MAKEFILE menu button and choosing “create program” or “create library”, appropriately.
An additional window will pop up prompting the user to enter further information, such asthe
desired executable name, compiler options, load flags, etc. Once this information is entered
the makefile will be generated and the builder can be run to build the program or library.

If the library or program encountered errors during the build, the BUILD window will list all
of the error messages. By simply clicking on the error message, the file containing that error
will be opened by the SoftBench editor and the cursor will be positioned on the line
generating the error. The user can quickly fix the problem, save the file, and rebuild.

Debugging RTE-A Software Using SoftBench Link/1000

A successful build doesn’t always mean functional code. Logical errors and runtime errors
often occur in a program development environment. SoftBench Link/1000 provides window
driven functionality to remotely run Debug/1000 on a telnet window connected to the
HP1000. By pulling down the UTILITIES menu from the DM and clicking on one of the two
DEBUG options, “debugl” or “debug2”, the user can start the debugger.

Using Revision Control

Once the user’s software has been transferred to the HP9000 and makefiles have been
created, the user can check his source code into source control. SoftBench integrates the
standard HP-UX revision control utility, RCS, into a menu driven utility. From the
Development Manager the user can pull down the VERSION menu and “create initial
versions” for the software. Additional editing of these source files will require that these
modules be “checked out” of Source control. This will help maintain file integrity and
revision control by allowing only one user to have one version of the software checked out at
any one time. (For more information on revision control, RCS, see the RCS man page).

1012-5 SoftBench Link/1000

II1. Components of SoftBench Link/1000 Encapsulation
Tool Communication
Broadcast Message Server (BMS)

The Broadcast Message Server is the heart of SoftBench. On the HP9000 the SoftBench tools
communicate in a networked, heterogeneous environment via a broadcast communication
facility designed to support close communication of independent tools. Message requests
allow one tool to invoke the functionality of another tool. For example, when C_1k was
unable to connect to a remote HP1000 RTE-A host because no configuration information
had been set, a trigger was initiated to start the SBL_config utility. Notification messages
allow tools to define triggers which respond to events and initiate other actions. Triggers are
cause/effect relationships. They can be caused by system events, and in turn cause a
user-defined action to occur. In this manner, triggers link one or more tools together to
support a task or process.

RTE-A Remote Execution and File Transfer Daemons for HP1000 Communication

Using the SoftBench platform for RTE-A program development requires that some tasks be
activated on the RTE-A system (compiler, linker, debugger). These actions are initiated
through appropriate statements in the makefiles which are handled by the SoftBench Builder.
Remote command execution of RTE-A tools is implemented with a client-monitor concept
based on the telnet protocol. Results produced by RTE-A tasks will be copied to the local
SoftBench environment and output to the builder’s window. All HP1000 functions appear
completely transparent to the user. The necessary file transfer between HP-UX and RTE-A
systems is handled by a file transfer daemon based on the NS dscopy tool. From the users
point of view all architectural dependent actions are performed transparently and efficiently.

SoftBench Link/1000 1012-6

Development Manager (DM)

The Development Manager is the responsible tool for all file management actions as well as
for the activation of other SoftBench tools. The Development Manger has been enhanced by
SoftBench Link/1000 Encapsulation to include a Utilities menu that contains all HP1000
specific RTE-A programming tools, such as:

¢ programming language compilers (FTN7x, Macro/1000, C/1000),
o link,

+ Debug/1000, and

¢ library utilities (merge, lindx)

These tools, when invoked, will set up a connection to the HP1000 system and run the tools
remotely.

Additionally, the DM automatically alters the actions menu to list only possible actions on a
given RTE-A specific file type extension. For example an xocftn can only be edited and
compiled whereas an xoc.run can only be executed or debugged.

One of the most important tasks of the DM is the handling of the revision control system.
Revision control provides features like multiple revisions, audit trail, access control, efficient
storage, and flexible retrieval. RTE-A files, in addition to HP-UX files, can be checked in and
checked out from the DM, and then can be operated on by other SoftBench tools. This is an
important feature to the RTE-A developer since there is no Revision control on the HP1000.

Program Editor

The Program Editor is an easy-to-learn, programming language sensitive, mouse/menu based
standard SoftBench file editor. It automatically synchronizes file views. If a file is modified
by a tool in one window, the file is updated in the other windows where it is also being viewed.
1t will automatically adjust for programming language specific indentation requirements. The
editor is highly customizable (For example, different keyboard accelerators can be specified).

1012-7 SoftBench Link/1000

Program Builder

The Program Builder, based on the HP-UX utilities mkmf and make, automates the process
of compiling and linking an RTE-A program composed of many different source files. This
leadsto efficient builds: only the source files that have been modified are recompiled. The
dependency information required for efficient builds can be automatically generated with the
make makefile generator. SoftBench Link/1000 enhances the SoftBench make makefile
routine by providing an RTE-A makefile template that recognizes RTE-A specific suffixes,
compiler options, etc, therefore allowing for automatic makefile generation for HP1000
RTE-A applications. The resulting makefile contains all commands to either create a
program or a library for an HP1000 system. All architectural dependent actions (such as,
recognizing that a Fortran program must be compiled on the HP1000) are integrated into the
makefile and are performed transparently to the user.

When the makefile is executed all tasks for the program or library development are
performed automatically (compile/link or compile/merge/lindx). First, the source file is
transferred to the RTE-A system. Then the compiler (e.g. FTN7x) is started remotely from
the HP9000 on the HP1000 system. (All required file transfers and subsequent RTE-A tool
invocation are handled by the SoftBench Link/1000 daemons.) The resulting relocatable
remains physically on the HP1000 RTE-A system.

When creating a library, the compiled modules are merged into a library which is lindxd
afterwards. For the creation of a program the linker is invoked. The resulting executable is
also kept on the RTE-A system whereas on the HP9000 system a dummy executable and a
dummy relocatable are created in the user’s working directory to satisfy the HP-UX ‘make’
mechanism. This dummy executable can be invoked which then triggers the actual executable
on the HP1000 to either be run or debugged remotely, depending on how it was invoked.

Additionally, the program builder allows browsing on compiler errors and warning messages

in the related RTE-A source code files. This results in automated invocation of the SoftBench
editor which is positioned on the relevant line in the source file.

SoftBench Link/1000 1012-8

Program Debugger

The Debugger is invoked from the HP9000 but executed directly on the RTE-A system. This
utility can be run from the UTILITIES menu in the DM or by clicking on “debugl” or
“debug2” from the actions menu. When invoked, this utility automatically sets up a telnet
connection to the HP1000 RTE-A system and runs Debug/1000 on the specified executable.
(For more information on how Debug/1000 works, see the Symbolic Debug/1000 Reference
Manual, part no. 92860-90001.) Optionally, the user can choose the “debug2” menu option.
This allows for debugging in two windows. Two telnet connections are made to the HP1000
RTE-A system and output is redirected to the second window. In other words, one window will
display debug information while the other will display the output of the program. This is very
useful for debugging Graphics programs. These windows are configurable, therefore
allowing a GFoX! window to be used for Graphical display.

Static Analyzer

The Static Analyzer provides information regarding the structure of a program. It provides
cross-reference queries such as: “where declared,” ,“where defined,” “where used,” or
“where modified”. This tool is particularly valuable while maintaining code or porting
code. However, the generation of static information is a function of the HP-UX compiler.
Therefore, only HP1000 source code which can be compiled on an HP-UX systemn can be used
for static analysis.

1. GFoX is HP’s Graphics and Forms Terminal Emulator for X11.

1012-9 SoftBench Link/1000

Additional SoftBench Link/10600 Encapsulation Tools

To allow trouble-free interaction between the SoftBench development system on HP-UX and
the RTE-A target system, additional tools are provided which can be started from the
development manager.

RTE-A-Configuration (sbl_config)

The configuration file, SHOME/.SBL_conf, contains information necessary for command
and data exchange between the HP-UX and RTE-A systems. This information includes:

» HP1000 nodename, login, and password,
* base directory for the HP-UX system, and
« directory name for “make” template files.

These fields can be configured using the SBL_config utility. In addition to the above
information, DSCOPY and C_1k pipe information is contained in this file. (This information
is not configurable.)

C_1k Communication Server

The C_lk communication server controls all SoftBench Link/1000 communications
processes. It checks the configuration file, links the HP-UX system to the HP1000 by initiating
the dscopy daemon, and establishes a session on the HP1000. The connection must be
maintained throughout the development process since the dscopy daemon is started and
maintained by the C_1k utility. If this connection is closed then the pipe will be closed and all
subsequent file transfers will fail.

SoftBench Link/1000 1012-10

Environment Transfer and Source File Consistency Check (sbl_update)

If a user has an existing software project on the RTE-A system which he wants to maintain
under SoftBench Link/1000 Encapsulation, Y'PDATE (sbl_update) creates the necessary
directory hierarchy on the HP-UX system and copies all source and load files to their related
HP-UX directories. UPDATE will copy all files and subdirectories under a specified global
RTE-A directory, as defined by the context and base directories, to the HP-UX system.

The HP-UX Base Directory and the Context Directory

The base directory is set by the user using the SBL_config utility when he sets up his
development environment. All directories and files that correspond to the RTE-A system
must reside below the HP-UX base directory. The corresponding RTE-A directory is then
defined by the context directory. If the context directory is NOT set below the HP-UX base
directory then subsequent file transfers will fail.

When the context is correctly set below the HP-UX base directory, SoftBench Link/1000
interprets the context in the following manner:

It parses off the HP-UX base directory and sets the corresponding RTE-A global directory to
the next directory in the path.

For example, if the HP-UX base directory is set to /users/basedir and the context directory is

set to /users/basediriglobal, then the UPDATE utility will transfer all source andload files from
/global/@. @.s on the HP1000 to /users/basediriglobal/ on the HP9000. (See Figure 2)

1012-11 SoftBench Link/1000

HP-UX Base Directory: /users/basedir

Context: /users/basedir/global
BEFORE
HP-UX RTE-A
/users /global
. /sources /incl Aib
/basedir /other
/ ftn xx.finc ab.ftn
/global more xlod yy.finc cd.ftn
zz.finc Ib.mrg
AFTER
HP-UX RTE-A
/users /global
. /sources /incl flib
/basedir /other
/more xx.finc ab.ftn
/global xlfg:j yyfinc cd.ftn
zz.finc Ib.mrg
/sources /incl flib
xoocftn xx.finc ab.ftn
woclod Wfinc cdfin
zz.finc Ib.mrg
Figure 2
SoftBench Link/1000 1012-12

A second major function of UPDATE is the possibility to perform a source file consistency
check. As the user is working in two different file systems (HP-UX and RTE-A) it is useful to
check the consistency of all related directory information,; this tool checks the availability as
well as the content of related files in the two file systems. For example, this could be used ona
nightly basis to check that all files are consistent on both machines. If the files aren’t
consistent, it is likely that a file has been changed but the software hasn’t been rebuilt. Note
that if the developer makes changes directly on the RTE-A system and then rebuilds, the
changes will be overwritten. Therefore, it is recommended that all development take place on
your HP-UX system so as to not run into file consistency problems.

IV. SoftBench Link/1000 Encapsulation Configurability

In addition to the flexibility and functionality that SoftBench already provides, SoftBench
Link/1000 specific functionality is configurable as well. SoftBench Link/1000 has been
designed to be configurable to every individual program environment’s needs.

» All RTE-A specific utilities running on the HP1000 have configurable window
options. Beyond color schemes, this allows a user to substitute GFoX for an
HPTERM window if so desired.

e Accepted include file type extensions are configurable such that SoftBench
Link/1000 recognizes any RTE-A include file.

» RTE-A makefile templates are customizable. (Full understanding of make is
required, therefore this is recommended for advanced users only.)

* Alternate configuration files can be specified when running individual tools
allowing a user to access another development environment on the same
HP1000 (not under the local base directory) without reconfiguring.

For more information on how to customize the SoftBench Link/1000 Dev<lopment
Environment, see the SofiBench Link/1000 Encapsulation Reference Manual.

1012-13 SoftBench Link/1000

V. Summary

SoftBench Link/1000 Encapsulation integrates the HP1000 programming tools into the
SoftBench environment. In summary the following features are implemented:

integration of HP1000 systems via LAN into the standard SoftBench
environment.

source code administration under revision control resulting in safe
development and modification of source code and the possibility of restoring
previous software revisions.

automatic generation and usage of makefiles for the HP1000.
transparent use of RTE-A tools (FTN7x compiler, linker, Debug/1000 etc.)

debugging of blockmode applications (e.g. Graphics/1000) over the network in
a window oriented programming environment (in conjunction with GFoX).

automation of tasks during software development and testing.

common window-oriented user interface, based on the X11-standard, for all
tools in the software development system.

ease of extension and integration of other tools using the HP-Encapsulator

possibility to integrate software documentation tasks (e.g. integration of
HP-FrameMaker).

multi-window graphical user interface and integrated on-line help functions for
ease of learning.

highly configurable development environment.

These features optimize software development time and improve the quality of the software
development process.

Acknowledgements

T would like to thank the following people for their support and their help on this paper: Wolfgang Oskierski,
Scott Glover, Kristin Anderson, Doug Fisher, and Carolyn Krieg.

SoftBench Link/1000 1012-14

TITLE: How DSO Develops Software and Hardware

AUTHOR: Alan Tibbetts

Hewlett-Packard Co./Consultant

3498 Gibson Avenue

Santa Clara, CA 95051

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO, 1013

TITLE: Using and Controlling Dialup Modems for Remote

Data Acquisition

AUTHOR: Wendy King

US Naval Observatory; Time Service, Bldg. 78

34th & Massachusetts Avenue, NW

Washington, DC 20392-5100

202-653-0486

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 1014

TITLE: HP 1000 Networking Strategy and Future Directions

AUTHOR: Lynn Rodoni

Hewlett-Packard Co.

Cupertino, CA 95014

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO, 1021

BSD IPC ON THE HP1000
Ramesh Radhakrishnan
Hewilett-Packard Company
11000 Wolfe Road
Cupertino, Callfornla 95014

INTRODUCTION

In the early 1980s, DARPA (Defense Advanced Research Projects Agency) funded the
implementation of a protocal sulte to interconnect heterogeneous networks. This protocol sulte is
now widely known as the TCP/IP protocol sulte. One of the first implementations of the TCP/IP
protocol sulte appeared in the 4.1 BSD UNIX release. Network Interprocess communication
(often referred to as IPC) was made possible by providing a programmatic Interface called
sockets. The concept of sockets not only defines the data structure of a communication
endpoint but also the various operations that can be performed on k. The type of
communication endpoint provided is generically known as the application programmer Interface
(APl). Several APIs exist today, such as Berkeley Sockets (defined by the Berkeley Software
Distribution), TU (defined by AT&T) and XT! (defined by XOpen). In addition, there are several
proprietary APIs such as NetlPC provided by HP on all its platforms. Despite this plethora of
APIs, the Barkeley Sockets (henceforth used interchangeably with BSD sockets and BSD IPC)
interface dominates the TCP/IP world as the Interface of choice and Is generally regarded as the
de facto standard API for UNIX Interprocess communication.

NS-ARPA/1000 release 5.24 now offers BSD sockets along with NetlPC, as a network
interprocess communication interface on the HP1000. This not only reiterates HP’s committment
to standards (open or de facto), but with the imminent release of the C compiler on the HP1000,
network portability across HP platforms is a distinct possibility. With the addition of the BSD
socket interface to NS-ARPA/1000, interprocess communication among the HPS000, HP3000
and HP1000 using Berkeley sockets is now avallable. In general, BSD sockets on the HP1000
exhibit the same behaviour as that of BSD sockets on HP-UX 8.0. This paper will attempt to
clarify the differences wherever they arise. However, note that there may exist operating system
dependencies, such as the fork() call, that makes complete portablity a trifie more difficuit.

This paper describes the use of the Berkeley socket interface and the associated utility routines
on the HP1000. The next section of the paper will deal with the Berkeley Interprocess
Communication paradigm in detall. This s followed by a section devoted to Berkeley socket and
Pascal/FORTRAN Interface design Issues that are specific to HP1000. It is advisable that
Pascal/FORTRAN users skim over this section before perusing the next section. The
descriptions of the function calls are based on C language semantics. it is assumed that the
reader Is familiar with the syntax of the C language, especlally that dealing with pointers.

BSD INTERPROCESS COMMUNICATION

BSD IPC on the HP1000 1022-1

Overview

The Berkeley Interprocess communication model (henceforth, used interchangeably with
Berkeley IPC) is based on a client/server paradigm. The accompanying figure shows a typlcal
scenario for a connection orlented communication between two processes.

Client

Server

socket()

connect()

send()
recv()

shutdown()

Client and Server
establish communication
end-points

Server binds to a
well-known port address

Server indicates readiness
to accept connection
requests

Server waits for
connection requset

Client sends

connection request to
server

transfer

Close communication
endpoints

socket()

bind()

listen()

accept()

recv()
send()

shutdown()

Creating a communication endpoint

The basic entity for communication is a socket. A socket is a data structure that is associated
with a given process. Two processes may communicate by each creating a socket data
structure and then performing the necessary actions to establish a connection between the two
sockets. As a further leve! of abstraction, users will only deal with socket descriptors, which can
be regarded as a reference to a specific socket data structure. A socket I8 created and
assoclated with the calling process by the following call:

BSD IPC on the HP1000

1022-2

sd = socket(int domain,int type,int protocol);
int sd;

Domains: sd is the socket descriptor that should be used in all subsequent calls to reference
the socket that was created by the above call. Note that once a socket has been created with
the socket(} call, only BSD socket routines can be used on the socket created by this call. By
the same token, NetiPC routines can only be used on sockets created with the /PCCreate() call.

Now, In order for sockets created by two independent processes, perhaps on different machines,
to communicate with each other, a connection needs to be set up between them. To set up a
connection, there needs to be a way to name the sockets so that each one can refer to the
other. Again, names are generally translated into addresses. The space from which an address is
drawn Is called the domain and this Is the frst parameter to the socket() call. There are several
address domains (those with the AF_ prefix) defined in the include file <socketh> fie.
However, the only ones supported for NS_ARPA/1000 are:

AF_UNSPEC
AF_INET

Internally, AF_UNSPEC defaults to AF_INET domain. The AF_INET domain Is also known as the
Intemnet domain. In this domain, a socket address consists of an Internet address of 32 bits and
another 16 bit address called the port address. We will delve into this further when we talk about
binding a socket to a specific address.

Types: The second parameter specifies the type of socket created in the domain referred to by
the first parameter. This type really refers to the communication style. Although several
communication styles have been defined In the <socketh> header file (constants with the
SOCK_ prefix), the only one supported by NS-ARPA/1000 is the “stream” style represented by
the constant SOCK_STREAM. Stream communication implies that communication takes place
between two sockets who have already established a connection between themselves. It also
means that the communication Is full-duplex, and rellable. The data is received In sequence and
that no message boundaries are maintained. Thus, a recv() call at one end of the connection
may return data due to several send() calis at the other end of the connection, or only part of
the data from a single send() call because all the data has not yet been received or If there Isn't
enough buffer space on the receiving side for all the data. The protocol implementing such a
style Is responsible for retransmitting lost or error data, ensuring sequenced delivery of data and
returning error messages when a connection has been broken.

Protocols: The third parameter is the protocol family. Usually, there Is one protocol for each
socket type in each domain. A protocol is simply a set of rules that controls the transfer of data
between two sockets. in addltion, It also keeps track of the socket names or addresses, sets up
connections between sockets and cleans up resources after a connection is shut down. All the
constants starting with PF_ in the <socket.h> header file represent protocols. However, the
only ones supported by NS-ARPA /1000 are:

BSD IPC on the HP1000 10223

PF_UNSPEC
PF_INET

Usually, it is sufficient to specify the default protocol or PF_UNSPEC. The domain and type
parameters should be sufficient to provide the right protocol. For NS-ARPA/1000, since the only
acceptable values for domain and type are AF_INET and SOCK_STREAM respectively, the
underlying protocol provided by the system for interprocess communication is always TCP.

Binding a socket to an address

A socket is created without being bound to any specific port address. Until an address Is bound
to a socket, other processes have no way of referencing it and hence no connection can be set
up between it and any other socket. A connection in the Internet domain is ldentified by the
following quintuple:

<protocol,local IP address, local port address, remote IP address, remote port address>

This quintuple is unique over the entire Internet domain for all connections. The bind() call
allows a process to specify one half of this association, <protocol, local IP address, local port
address>. The connect() and accept() calls will complete the quintuple when a connection Is
established.

In the client/server paradigm of communication, it is essential that the server bind its socket to a
specific port address. It is usually not necessary for the client to bind Its socket to a specific port
address since the connect() call will automatically bind an address to the socket if used on an
unbound socket.

The bind system call is used as follows:

int bind (int sd, struct sockaddr_in *addr, int add:len);

The bind() call binds the socket, sd, to an address that is provided in the sockaddr_in structure.
addrien is the length in bytes of the relevant information in the sockaddr_in structure. This
structure Is declared in <in.h> and has the foliowing fields:

struct sockaddr_in {

short sin_family; /* address family */
u_short sin_port; /* port address */
struct in_addr sin_addr; /* host IP address */
char sin_zero[8]; /* unused */

}

sin_family should always be set to AF_INET. The sin_port field Is filled with the port address that
the socket is going to be bound to. This port address can either be hard coded Into the program
or can be obtained by programmatically accessing a network database file called /etc/services.

BSD IPC on the HP1000 10224

For ease of use and HP-UX compatibility, BSD IPC provides four network databases and a set of
utility routines to extract information from them. These databases and routines are discussed
below.

Berkeley network utility routines and databases : There are four BSD network database files
maintained by the network administrator. They are :

/etc/hosts
/etc/networks
/etc/protocols
/etc/services

/etc/hosts Is an ASCII file that contains information about the mapping of a hostname and its
aliases to its IP address. The IP address is in dotted decimal format. /etc/networks is an ASClI
file that maps the name of a network and its aliases to the IP network address. /etc/protocols is
an ASCII file that maps the name of a protocol and its aliases to its officlal Intemet number.
/etc/services is an ASCIl file that maps the name of a service and its aliases to the port that this
service is going to be listening on. There Is also a provision to specify the protocol that this
service uses.

Note that these are all static fies. The NS-ARPA/1000 library now contains several routines that
access the Information in these files. All these functions retum a pointer to a static structure
containing the requested information or a NULL on error. The memory for the structure is
allocated from the "C heap” via malloc(). C/Pascal/FORTRAN users will have to use the free()
routine (part of the C library) in order to reuse this memory.

The library routines do not attempt to contact any name servers. The lookup is purely static. The
file <netdb.h> contains the definitions of the structures returned by the routines and must be
included when using any of these routines.

Host name mapping: The Intemet name to IP address mapping is done by the routine
gethostbyname() whlle the reverse mapping is done by gethostbyaddr(). The database file for
these calls Is /etc/hosts. The hostent structure returned Is described below:

struct hostent {
char *h_name;
char **h_allases;
int h_addrtype;
Iint h_length;
char **h_addr_list;
}

h_name Is a pointer to an ASCIl string (terminated by a NULL character) that is the officlal name
of the host. h_allases Is a pointer to an array of pointers, each of which points to a character
string, that is an alias of this particular host. The last entry in the array of pointers is a NULL
pointer. This serves to Indicate the number of valld alias pointers. h_addrtype Is always
AF_INET, since NS-ARPA/1000 deals only with the Intemet domain. h_length is always 4. This
represents the number of bytes needed to represent a host address in the Intemet domain.

BSD IPC on the HP1000 10225

h_addr_Jist is a pointer to an array of pointers, each of which points to a 32 bit IP address. As in
h_aliases, this array Is ended by a NULL pointer to indicate the end of valid pointers to IP
addresses. There is a cruclal point to note here. Although the declaration indicates that the
array of pointers that h_addr_list points to Is an array of pointers to type char, they are really
pointers to type u_long on the HP1000. The 32 bit IP addresses themselves are guaranteed to
be word (16 bit) aligned. On most UNIX machines, this is not significant. However, because the
HP1000 is a word addressable machine, special care must be taken to extricate the 32 bit IP
address from this structure. As an example, if h is the pointer to a hostent structure returmed by
one of the calls above,then the code in C may be as follows:

u_long ipaddr;

/* First get the array pointer,

* h->h_addr_list

* Then dereference it to get the first char pointer.

* *h->h_addr_list

* Assuming this Is not NULL, cast It to a unsigned long
* integer, which is what the IP address really is !

* (u_long) *h->h_addr_list

* Then, dereference this pointer to get the 32 bit IP address
* * (u_long) *h_addr_list

*/

lpaddr = * (u_long) *h->h_addr_list;

Pascal/FORTRAN users will have to resort to similar machinations to obtain the 32 blt IP
address. In Pascal, It Is as follows:

cptr := h™.h_addr_list"; { get the char pointer }
i32ptr ;= cptr DIV 2; { The IP address Is guaranteed to be word aligned }
ipaddr : = i32ptr"; { derefernce pointer }

Similar routines exist called getnetbyname() and getnetbyaddr() to extract Information from the
networks database file called /etc/networks. The Information is returned in a structure called
netent, described below:

struct netent {
char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* network address type */
u_long n_net; /* network address */

}

The only notable item here Is that the n_net field is defined as u_jong on the HP1000 while It is
an int on the HP9000 machines.

Protocol names: For protocols, getprotobyname() and getprotobynumber() extract information
from the protocols database file called /etc/protocols. The information is returned In a structure

B8SD IPC on the HP1000 10226

called protoent, described below:

struct protoent {
char *p_name; /* officlal protocol name */
char **p_allases; /* allas list */
it p_proto; /* protocol number */

Service names: In the Intemet domaln, a service (or a server process) Is expected to wait on a
specific port address and employ a specific communication protocol. The only protocol NS-
ARPA/1000 supports currently is TCP. The database flle for service name lookups Is called
/etc/services and the routines that operate on It are getservbyname(), getservbyport. The
information Is retummed in a servent structure described below:

struct servent {
char *s_name; /* official service name */
char **s_aliases; /* allas list */
int s _port; /* port address */

) char *s_proto; /* protocol to use */

The port address that the server needs to bind ltseif to could be obtained by using the
getservbyname() call and extracting the information from the s_port field of the servent structure
that is returned.

There are two restrictions in the use of port addresses. Only a superuser can bind a socket to a
port address in the range 1-1023. Also, no two sockets may be bound to the same local port
address unless a setsockopt() with the SO_REUSEADDR option has been issued to the socket
prior to the bind() cail.

Establishing a connection

Connection establishment in a client/server model is assymmetrical. Both processes need to
follow a standard set of conventions before service may be rendered.

Server side: The server process first creates a socket and binds ltself to a well known (or at
least one that Is known to the client) port address. Then, it issues the /isten() call to enabie a
queue on the socket for incoming connections. If this were not done, then all connection
requests made to the server would be summarily rejected by TCP. Now, the server can walt for
connection requests via an accept() call or a select() call. The select() call Is covered in a later
section on muitiplexdng. The accept() call is defined below:

int accept{ int sd, struct sockaddr_In *addr, int *addrien);

When an incoming connection request Is accepted, a new socket descriptor is retumed from the

BSD IPC on the HP1000 1022-7

call. This new socket descriptor Is the one that the server should use for subsequent
communication with the client. A maximum of addrien bytes of the client’s socket address is
retumed in the ubiquitous sockaddr_in structure pointed to by addr.

If the socket Is in blocking mode, the accept() call will not return untl & connection Is avallable.
There is no way for NS-ARPA/1000 to screen Incoming connections. It is entirely upto the
server process to consider who the connection Is from and to close the connection if it's an
undesirable one. Using the select(} call, the server process can walt on more than one socket
for incoming connection requests.

Client side: The cllent process first creates a socket using the socket() call. It Is not necessary
that it bind itself to a specific port address. Once assured that the server process Is listening for
connection requests, the cllent process can inltiate a connection using the connect() call
described below:

Int connect(int sd, struct sockaddr_in *addr, int addrien);

On input, the sockaddr_in structure should contain information about the server socket with
whom the client wants to establish communication. Referring to the sockaddr_in structure
described eariler, the sin_port field should contain the port address that the server is listening on.
As for the server, this may be hard coded into the program or may be obtained by a call to
getservbyname(). In the latter case, it is essentlal that the /etc/services file on both the client
and the server contain commensurate information. The sin_addr field should contain the 32 bit IP
address of the server machine. Again, this |P address can be obtalned via the gethostbyname()
call or can be hard coded into the program. In addition, there are many utiity routines for
manipulating dotted decimal IP addresses. They are:

struct in_addr /net_addr(char *c);

char *inet_ntoa(struct In_addr /paddr);
u_long Inet_network(char *c);

struct in_addr /net_makeaddr(u_long net, u_long host);
u_long inet_netof(struct in_addr /paddr);
u_long inet_jnaof(struct In_addr ipaddr);

The In_addr structure is defined In </n.h> and Is the structure to use when dealing with Internet
IP addresses. The /net_addr() function takes a character string in dotted decimal notation and
retums the 32 bit IP address. /net_ntoa retums the complement. The other functions manipulate
the 32 bit IP address and retum some portion of it such as the network portion, the host
portion,etc.

BSD {PC on the HP1000 10228

The connect() call normally blocks until a connection is established or it times out. However, by
setting the socket to be non-blocking with a fcnt/() call, connect will retumn immediately with a
EINPROGRESS error. The client can proceed to do other things before walting on a select() call
for the connection to be completely established.

Data Transfer

Once a connection has been established, data can be exchanged between the two processes.
The connection Is full duplex and hence elther skle can send or recelve at the same time. Calls
are available for sending and recelving scalar as well as vectored data. Vectored data operations
are also known as scatter/gather operations. In order to send scalar data, the send() call is
used:

int send(int sd, char *byf, int buffen, u_long flags);

but Is the character pointer to the beginning of the data that is to be sent. bufien is the amount
of data, In bytes, to be sent starting from where buf points to. flags Is a 32 bit parameter that
does not have any options supported currently. The amount of data (Indicated by bufien) to be
sent Is independent of the socket buffer sizes. Each socket has a send buffer and a recelve
buffer. These represent the maximum amount of data that can be outstanding on the socket
These buffers are intermediate reposltories for data whose ultimate source and destination are
the user data space on the sending and recelving side respectively. Before a connection can be
established, the socket’s send and receive buffers can be modified by using the setsockopt()
call. Once a connection is established, however, the socket’s buffer sizes can only be examined
with the getsockopt() call, and cannot be modified. If the socket is in a blocking mode, the
send() cali will block untl all the data can be transferred from the user space into the socket
buffer space. By setting the socket in a non-blocking mode , via the fent/() call, the send() call
will retum as soon as it transfers as much data into the socket buffer as is currently possible.
Note that simply retuming from the send call does not imply that the data has already been
tranferred to the recelving side. It is merely in the socket buffer for now and It is the responsibility
of the undertying protocol (In this case, TCP) to ensure the smooth transfer of data to the other
skde of the connection.

Scalar data Is received using the recv call :

int recv(Int so, char *buf, int buflen, u_long flags);

buf i1s the starting user space address where data will be received. bufien indicates the
maximlum amount of data that the process wants to receive right now. The following flag is

supported currently:

BSD IPC on the HP1000 1022-9

MSG_PEEK

Normally, once data has been transferred to the user space as in the recv() call above, the
socket’s receive buffer is freed up by the amount received so that it can accept more data from
the sender. However, setting this flag enables the recv() call to transfer data to the user space
and yet retain the same data in the socket’s receive buffer. Thus, the next recv() call would
return the same data. The recv() function itself returns the amount of data that has been
transferred to the user space from a minimum of one byte to a maximum of bufien bytes. Note
that unlike NetlPC, there is no way to force the recv() call to wait for a specific amount of data
before returning.

Vectored data s sent and received using the following two calls:

Int sendmsg(Int sd, struct msghdr *msg, u_long flags);
Int recvmsg(Int sd, struct msghdr *msg, u_long flags);

The msghdr structure defines the starting addresses of where the data received on the socket
will be disbursed.

Blocking / Non-blocking

At any time of its existence, a socket can be set in blocking or non-blocking mode with the
fentl() call.

u_long fentl(int sd, int cmd, u_long flags);

The cmd parameter can be either F_SETFL or F_GETFL. All these constants are defined in
<fentLh>. The only flags parameter supported currently is O_NONBLOCK. F_GETFL can be
used to obtain the current values of the specified flag bits set In the flags parameter. The fcnt!
call itself returns the value of the flag bits in a 32 bit entity. If the optlon corresponding to ihe flag
bit is currently turned on for the socket, then this bit Is set in the retum value. The F_SETFL cmd
Is similarly used to control the setting of the socket options. By setting the socket In a non-
blocking mode, subsequent BSD socket calls will return a -1 with ermo set to EAGAIN if the
socket cannot service the call immediately. For example, assume the socket Is set in a non-
blocking mode and the process does a recv() call. If there Is no data on the socket’s recsive
buffer, then a -1 Is returned with errno set to EAGAIN indicating that the socket could not service
the request right away.

BSD IPC on the HP1000 1022-10

1/0 Multiplexing

One another important function provided enables the process to walt for events on muitiple
sockets. This function Is the select() call. Thus, Iif a process has many connections open, it can
walt for data on any of these sockets by using the select{) call. It is used as follows

int selectf int nfds, fd_set *rmap, fd_set *wmap, fd_set *emap, struct timeval *timeout);

fd_set and timeval are datatypes defined in <types.h>. fd_set Is a bitmask that represents the
socket descriptors that the select() call should walt for events on. The following utilitles are
provided for manipulating the bitmasks:

FD_ZERO(fd_set *bitmask) /* clear the bitmask */
FD_SET (int sd, fd_set *bitmask) /* set the bit for sd in bitmask */
FD_CLR (int sd, fd_set *bitmask) /* clear the bit for sd In bitmask*/
FD_ISSET(int sd, fd_set *bitmask) /* test the bit for sd in bitmask*/

These utilities are implemented as macros in C and as procedures for Pascal/FORTRAN. Use of
these is highly recommended for manipulating the bitmasks.

Let's step through an example here. sd7, sd2 and sd3 are three socket descriptors. sd7 Is a
socket that is connected to a remote socket and Is waliting for data. sd2 Is a socket on which
we have Initiated a non-blocking connect() and want to awalt confirmation of the connection
establishment. sd3 is a socket on which we want to accept incoming connection requests. So,
we want to walt for the following three events :

READABLE signal on socket sd1

WRITABLE signal on socket sd2

READABLE signal on socket sd3

Let rmap, wmap and emap be the bitmask structures for reading, writing and exceptional
respectively. They would be declared as:

fd_set rmap, wmap, emap
First, clear all the bitmaps.
FD_ZERO(&rmap);
FD_ZERO(&wmap);
FD_ZERO(&emap);
Set the readable signal for sd7 and sd3.

FD_SET(sd1,&rmap);

BSD IPC on the HP1000 1022-11

FD_SET(sd3,&rmap);
Set the writeable signal for sd2.
FD_SET(sd2,&wmap);

it is always advisable to set the exceptional signal on all the sockets just to be notified of
catastrophic events.

FD_SET(sd1,&emap);
FD_SET(sd2,&emap);
FD_SET(sd3,&emap);

Now, if the select() call Is Issued, it will wait untl one of the events that we have selected on
occurs.

ns = select(nfds,&rmap,&wmap,&emap,(struct timeval *) NULL)

nfds should be set to the maximum socket descriptor value that the select call should check for
events on. Thus, in our example, it should be set to the maximum of sd1, sd2 and sd3 before
the select() call. Notice that the timeval parameter is set to a NULL pointer. This requests the
select() call to block until an event has occured. Fields in the timeval structure can be set to
indicate a maximum time limit that the select() call would block while waiting for any of the
specified events to occur.

On a successful return, the three bitmasks will be modified to indicate which socket descriptors
have events recorded against them. The FD_ISSET call can be used to determine whether a
particular socket descriptor was selected.

Signals on an HP-UX system are slightly different in the sense that a process may “catch a
signal” in several different ways. With NS-ARPA/1000, the only way to be notified of events Is to
indicate through tha select() call above that a process is Interested in a particular set of events.
Also, on the HP-UX system, the exceptional signal is not set by the socket routines. Instead
when a broken connection is detected the HP-UX kernel sends a signal to the user process that
causes the process to die if it hasn't set up a signal handler. For NS-ARPA/1000, however,
exceptional signals are the only way to detect broken connectlons from a select() call.

Terminating the connection

A connectlon may be terminated by the shutdown() call. Since, TCP connections are full-duplex
in nature, shutdown(} may be used to terminate the receiving and sending sides of the
connection independently. Once a socket is shutdown for receive, then it cannot recelve any
more data from the peer socket. Similarly, f a socket has been shutdown for sends, then it
cannot send any more data to the peer. A socket can be completely shutdown by setting how
to 2 in the shutdown() call described below:

BSD IPC on the HP1000 1022-12

int shutdown(int sd, int how);

With how set to 2, the socket can neither send nor recelve data. In addition, the socket
descriptor sd Is rendered invalid and liable to be assoclated with another socket with a
subsequent socket() call. On the HP-UX system however, a shutdown() call does not release
the socket descriptor. Although nothing useful can be done with the socket descriptor once a
shutdown() with how = 2 Is done on It, the HP-UX process will still possess a valid descriptor
until a close() is performed on the socket descriptor.

Irrespective of the difference noted above, both NS-ARPA/1000 and the HPS000 provide the
graceful release mechanism when the shutdown() call is used on a socket descriptor. This
means that TCP wil try its best to ensure that all outstanding data in the pipeline between the
two peer sockets reach their respective destinations before the socket resources are released.
Thus, If a iocal socket does a send() and immediately follows it with a shutdown(), the TCP at
both the iocal and remote ends co-operate to dellver all the data to the remote peer before
indicating to the remote peer process that the local process has done a shutdown() and that
there won't be any more data.

Socket options

The setsockopt() and getsockopt()) functions enables setting and examining the socket's
characteristics (also known as options) respectively. These options may exist either at the socket
level or the protocol level. The functions are called as follows:

int setsockopt(int sd, int level, int optname, char *optval, int optien);
int getsockopt(int sd, int level, int optname, char *optval, int *optien);

Although optval Is of type (char *), In reality, it Is a polnter to a character array that contains the
value of the option but is not terminated by the conventional 0" character that terminates C-
style strings. optval needs to be appropriately recast (iIn most cases, to an /nf) in order to obtain
the value of the option.

There are two kinds of options: boolean and non-boolean. To set a boolean option, any non-zero
value in optval will suffice. To examine a boolean option, the getsockopt() call retums with a zero
value (the convenetional successful retumn) i the option is set and -1 K It is not set. The most
Important boolean option is the SO_REUSEADDR option. The use of this option enables a socket
to be bound to the same local port address as ancther socket. However, the underlying protocol
(TCP in this case) will ensure that only one of these sockets will be allowed to call listen()
successfully and this is enforced on a first-come first served basis. TCP will also ensure that
before a connection is set up, the quintuple of <protocol,local port address, local IP eddress,
remote port address, remote IP eddress> Is unique for each socket on the system.

BSD IPC on the HP1000 1022-13

For example, let sd7 be a socket that Is bound to local port address 10000. The
SO_REUSEADDR option must be set individually for sockets sd2 and sd3 to be bound to the
same local port address, 10000. f sd7 has already done a listen(), then the listen() call
performed on sd2 and sd3 will retum unsuccessfully. Now, let's say so2 establishes a
connection with peer process whose IP address and port address are 15.1.13.208 and 15000
respectively. If, sd3, does a connect() call specifying the remote IP address as 15.1.13.208 and
the remote port address as 15000, then the connect call will retum unsuccessfully with ermo set
to EADDRINUSE.

The most important non-boolean options are the SO_SNDBUF and SO_RCVBUF. The use of
these options controls the sizes of the send and receive buffer sizes of the socket. Although
these buffer sizes may be examined at any point, the setsockopt() call to change buffer slzes
may only be used prior to establishing a connection on the socket.

Miscellaneous

In addition to the functions described above there are several other calls such as the ntohs,
htons,etc. the use of which will ensure network porability across different piatforms. Also,
getsockname() and getpeername() can be used to obtain the local and peer socket address in
the sockaddr_jn structure .

HP1000 CONSIDERATIONS

The BSD socket interface Is supported only on the RTE-A systems and the programs using this
interface will have to be CDS. This section describes issues that a programmer has to contend
with on the HP1000 platform and the differences between using this interface in a
Pascal/FORTRAN environment and the C environment. The BSD socket interface has been
designed to conform to HP-UX usage and be as natural as possible for C users. Hence, users
of BSD sockets and its associated utilities should be aware of the following points when
programming in a non-C environment.

Byte and Word addressing: The HP1000 is a word oriented machine. Most UNIX machines,
inciuding the HP9000 series, are byte orlented. An example wil Blustrate the difference.
Consider the following C declarations:

char *c;
it *x;

Let us assume that ¢ is pointing to a character stored at address 2300 (decimal). Thus the value
of ¢ is 2300. Now, let's say we want to store this value in x also. One simple way might be,

x = (nt*) ¢
The (int *) casting operator converts a character pointer ¢ to an Iinteger pointer x. On UNIX
systems, we would expect the value stored in x to be 2300 also. However, on the HP1000, the

casting has the effect of storing the word aligned, word address of 2300 in x. In simple terms, the
value stored in x is (2300 DIV 2), since a word on the HP1000 is 2 bytes long. Thus, x would

BSD IPC on the HP1000 1022-14

contain the value, 1150. Even if ¢ were to contain the value 2301, the casting operation would
render x to contain 1150 (because of word alignment !). For C programmers, the casting
operator makes the transformation from byte to word addresses and vice-versa extremely simple
and transparent. Pascal/FORTRAN users have to use the following functions in order to obtain
the same effect.

AddressOf(parm : int) , which retumns the word address of parm.
ByteAdrOf(parm,offset : int) , which retumns the byte address of parm
modified by adding the value of offset to it.

The relevance of all this Is that in a C environment, the equivalent to passing a parameter "by
reference” Is to pass the address of the parameter. Since several BSD socket functions expect to
receive pointers and were implemented trying to maintain the portablility of C programs,
Pascal/FORTRAN users will have to make use of the above mentioned functions in order to
generate the appropriate pointers. In addition, programmers have to be extra careful in passing
the right kind of pointer to the BSD socket library routines, viz. byte or word pointers. In general,
when a parameter is typed as (char *) in the C declaration of a function, then Pascal/FORTRAN
users must use the ByteAdrOf() function. Other pointer types would use the AddressOf()
function.

Header files: All the Berkeley socket type declarations and constant definitions are provided In
separate header (also known as Include files) files for Pascal, FORTRAN and C users. The table
below lists the include flles for the different languages. The contents of the C header files mirror
that found on the HP-UX systems. Note that Pascal needs an additional include fie,
ext_calls.pas/, for the external function declarations because of the Pascal syntax.

[+ Pascal FORTRAN

types.h socket.pasi socket.ftni
socket.h ext_calls.pasi
fentl.h
in.h
netdb.h

All the Berkeley socket structures in Pascal are declared as variant records. One of the variant
records Iis a simple 16 bit type. This comes in handy when obtaining the word or character
address of the structure ltself. This Is necessary since the AddressOf() function Is declared as
accepting only an Int parameter. For example, consider the sockaddr_in structure:

TYPE
sockaddr_in = RECORD
CASE INTEGER OF

1: (int1 s int);
2: (sin_family : int;
sin_port :lint;

sin_addr : In_addr;
sin_zero : PACKED ARRAY [1..8] of CHAR);
END;

BSD IPC on the HP1000 1022-15

For getting the word address of the structure, the following function call is used. Let saddr be of
type sockaddr_in.

AddressOf (saddr.int1);

errno and erno return values: enmo is a global variable that is declared in the C library. It Is
referenced by including the header file <ermo.h>. On UNIX/C systems, any BSD socket system
call that returns an error puts the value of the error into errno and programs generally check the
value of this variable when trying to determine the type of eror encountered. For NS-
ARPA/1000, the symbolic errno values retumed by the BSD socket routines conform to those
defined in the include file, <ermo.h>, on the HP-UX systems.

String pointers: String pointers in C are pointers typed as (char *) which point to a character
string ended by a NULL character , which is "\0". Pascal/FORTRAN users must note that C-style
strings are different In character (pun intended) than the ones in their respective languages. BSD
socket routines on the HP1000 expect and return character pointers to C-style strings onfy, viz.
character arrays that are terminated by a "\0".

int / longint / u_long: The size of int on the HP1000 is 16 bits, while on the HP9000 systems, it
Is 32 bits. Parameters that are typed as /nt on the HP9000 systems, but which need to be 32 bits
long, such as the flags parameter on some BSD socket routines, are typed as /ongint or u_long.

malloc / free : Several of the BSD socket utility routines on the HP1000, such as
gethostbyname(), gethostbyaddr(), etc. return pointers to structures that are dynamically
allocated using a C library call, malloc(). in order to reclaim this space, use the free{) call In the
C library.

SUMMARY

The Berkeley socket Interface Is provided on the HP1000 as part of NS-ARPA/1000 at release
5.24. It is intended to be functionally equivalent to the one offered on the HP-UX platform release
8.0. By providing this functionality, network portabllity of programs across the different HP
platforms in now possible. In addition, use of this standardised interface promotes intervendor
connectivity to other systems using the same model for network interprocess communication.

REFERENCES
1. UNIX Network Programming, W. Richard Stevens
2. 4.3 BSD UNIX Operating System, Leffler et al.
3. An introductory 4.3 BSD Interprocess Communication Tutorial, Stuart Sechrest
4

. An Advanced 4.3BSD interprocess Communication Tutorlal, Leffler, Fabry, Joy, Lapsley,
Miller, Torek

BSD IPC on the HP1000 1022-16

TITLE: Distributed Computing GUI's and the OSF/MOTIF

AUTHOR: Mark Brown

Workstation Systems Group

SAS Campus Drive

Cary, NC 27512

(919) 677-8000

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 2001

Paper#: 2003

Identifying CIM Opportunities
Using Structured Analysis Models.

Wayne R. Asp
Hewlett-Packard Company
2025 West Larpenteur Avenue
St. Paul, Minnesota 56113

(612) 641-9601

Computer Integrated Manufacturing (CIM) is a term which has been grossly overused within
the manufacturing industries to generally indicate the application of information technologies
to some manufacturing problem(s). In most instances, these CIM automation opportunities
were evolved into point solutions, or islands of automation. These islands were, in many cases,
totally ignorant of other islands of automation which existed within the same manufacturing
facility -- sometimes within mere yards of one another. At best, these islands were able to
ghare only the most rudimentary information. The iglands were designed independently,
implemented independently, operated independently, and unfortunately, processed their
information independently. Most of these islands of automation have paid for themselves over
and over again, since they were installed in manufacturing areas which were ripe for
automation.

Now we are in the 1990’s. Most of those high payback CIM automation opportunities have
already been addressed with many islands of automation. The next obvious step is to tie the
islands of automation together. But why? What will tying the islands together do for the
manufacturing processes? How will it affect product quality? Profits? What should be tied

together first?

Of course. we should never automate just for the sake of automating. The application of
information technology should always be closely and clearly tied to the goals, ohjectives, and
plans of the organization. If not, why do it in the first place? The direction of the organization
must dictate the identification and prioritization of any CIM opportunities, and any
subsequent information technology solutions.

An Enterprise Wide CIM Framework

The best method to achieve this high level of CIM integration is to develop an enterprise wide
CIM framework. This framework serves two purposes. First, it provides the framework, or
blueprint, across the entire manufacturing enterprise for current and future technology
applications. This is important in that a comprehensive plan must be developed to integrate
not only current islands of automation, but also how future products, manufacturing systems,
and technologies will interact within the framework. Second, the framework must correlate
directly to the business practices and objectives of the organization. As such, the framework
must be flexible and easily adapted to the ever changing business environment.

Identifying CIM Opportunities
Using Structured Analysis Models.
2003-1

When setting long range CIM goals, strategies, and planning implementations, it is often very
difficult to identify, much less implement, a workable enterprise wide CIM framework.
However without such a framework, any solution implementation continues to be an island of
automation, unable to tie directly into the CIM infrastructure and ultimately to the
organization’s goals and objectives.

It often puzzles me why an organization would forge ahead with some CIM automation project
not directly tied to their long range goals and objectives. But it has happened time and time
again. Perhaps it is that the planning process in building this type of framework is too painful
or time consuming. However, thorough planning cannot be effectively accomplished after the
fact. Perhaps it is that the planning process is too expensive. However it is generally more
expensive to retrofit something after it has been built poorly. There is an aphorism which
states that "Plans may be useless, but the planning process is always indispensable”.
Planning is indeed the key to long term success.

Using Structured Analysis

Structured Analysis (SA) techniques can be used successfully to build and create an abstract
representation of the CIM framework. This representation can then be manipulated and
expanded to include existing islands of automation, and proposed information technology
solutions as the business goals and objectives change.

SA methodologies allow one to methodically decompose a system (in this case, a manufacturing
system) into many less complex component parts. Because these component parts are easier
for the human to comprehend, SA is ideal for describing most complex manufacturing systems.
One can easily examine the descriptions of the component parts to quickly ascertain the effects
of proposed changes within the system(s). The collection of these descriptions is called the
model, and congists of both textual and graphical representations of the part, or activities
within the system.

The easiest way to understand the role which SA techniques can play within a manufacturing
organization is to draw upon the analogy of constructing an office building. A construction
company would never dream of constructing a building until the architect provided finalized
plans and drawings. Yet, in the business world, material handling systems, manufacturing
gystems, information systems, etc. are regularly constructed and installed with the barest
minimum of in depth planning. In fact, many new installations are designed not on the
drawing board, but in real life trials and failures.

There are many SA techniques being practiced today. Among them are Structured Analysis
Design Technique (SADT), IDEF0, Yourdon Structured Design, Hierarchical Process Modeling
(HPM) and many, many others. Each technique has its own strengths, weaknesses, and
followers. Since the purpose of this paper is to describe the benefits of using SA, the analysis
of the applicability of a given technique for a given purpose is left as an exercise for the reader.
HPM will be used within this paper for purposes of discussion.

Identifying CIM Opportunities
Using Structured Analysis Models.
2003-2

A major contribution of SA technique applications is their ability to build consensus within the
organization regarding the actions or proposed actions of the model (system) under study. Most
techniques use an iterative process. First, initial data is gathered regarding plans and desires.
An initial model is then drafted and reviewed by a core committee of previously trained
personnel. Modifications are then made to the model and a new version is then published to a
wider review committee. This build/review/modify/publish cycle continues until all committee
members agree that the model is accurate. A final model is then published and distributed.
Although many opportunitiee might exist within the manufacturing organization for
automation, sometimes we are more limited by people’s attitudes than by opportunities. SA
model consensus building helps to address and change attitudes toward the implications of a
enterprise wide CIM framework.

HPM - A Structured Analysis Methodology

Hierarchical Process Modeling, or HPM for short, is a structured analysis methodology which
was developed by Hewlett Packard and is used both internally within the company and with
HP customers. HPM provides a graphical and textual notation for breaking down and
analyzing both simple and complex real world situations. An HPM model can easily be read
and understood by anyone, with a minimum of training. This means that an HPM model can
serve as the focal point for discussions as situations change or support systems are put into
place.

HPM was developed by the HP Corporate Manufacturing group to help document HP
manufacturing techniques and help leverage technologies throughout the company. In the mid
1980’s, HP investigated several structured analysis techniques and packages, but found none
that were flexible or thorough enough to meet the requirements. Combining several existing
techniques, such as DeMarko Structured Analysis and IDEF0, along with other ideas,
including TQC methodologies, HPM was developed by HP. HPM is still unique in the
marketplace, gathering the best of structured analysis techniques within one methodology.

HPM i8 a formal specification language and methodology for describing systems in terms of
integrated collections of processes. Processes are defined in terms of other processes
hierarchically. The methodology provides a structure which allows rapid breakdown of a
system into its component parts, each of which can in turn be analyzed and broken down
further, if required. It is these component parts (processes) which make the model extremely
readable and easy to comprehend at any level. The processes represent the fundamental
activities within the model. They are a controlled collection of actions which transform inputs
into outputs, using resources. Processes are related to other processes in three ways: by
Control, by Exchange, and by sharing Resource(s). One process may: command another
process to perform some action or assist some other process in performing its action (a Control
relationship); produce something which another process consumes (an Exchange relationship),
or provide some resource or service, such as access to a database or machine, which another
process requires (a Resource relationship). Ports are used to define the interfaces of processes.
Flows transfer entities, such as materials and information, between ports.

What is an HPM Model?

An HPM model can provide the in depth plans necessary to support both new and existing
manufacturing functions. The model can be tailored to any level of detail, from general
overview to extreme detail.

Identifying CIM Opportunities
Using Structured Analysis Models.
2003-3

Architectural plans are structured much the same as an HPM model. Many pages of drawings
are provided, but each one serves to identify different areas or features. The first page of the
plans show the overall building, the facade, the roof lines, etc. There are no design details
here, only a flavor of what the building will look like. This drawing is of use to anybody who
wants to know what the building will look like.

The next several pages of the plans show the floor layouts floor by floor. This includes where
the various rooms are located, how large they are, where the mechanical and electrical closets
are located, etc. These pages are of interest to prospective tenants, and also the construction
workers who must install the walls and doorways.

Following the floor layouts are the detailed room plans, one for each room. These plans show
where electrical and mechanical fixtures should be placed, what special features need to be
built or installed (like a water fountain or planter), and the finishing details of the room, like
trim work. The room plans are used by the tenants for specifying special finish details, and by
the construction workers who will complete the room.

The last part of an architectural plan set are the mechanical and electrical plans. These plans
rough out the heating and air conditioning duct work, the heating plant locations, and
electrical service locations and sizing. Generally, these plans do not contain all the detail
necessary to complete the installation. Some of the extreme detail work is planned and
executed by the construction workers themselves, working within the specification given in the
plans.

An HPM model is structured much like an architectural plan. The most basic component of a
model is called a process. A process performs some activity. A process takes inputs, processes
them, and creates some outputs. A process can contain other processes which define how it
works, much the same as the room plans, taken all together, make up a floor plan, and the
floor plans taken all together make up the building plan. It is processes that make the model
extremely readable and easy to comprehend at any level. The processes represent
fundamental actions within the model.

Synonymous with the mechanical/electrical plans are HPM flows, which model how entities
(like materials, orders, products, information, etc) move between processes. One process may
command another process to perform some action. This is called a control flow. A process may
produce some output which another process consumes as input. This is an exchange flow. Or a
process may provide a service, like a tool crib or a database. This is a resource flow. HPM
flows then can transfer control, exchange, and resource entities between processes.

Pages 5 and 6 present the highest level of an HPM factory model.

The final part of an HPM model is the term glossary. This is much like the material list for a
new building. It describes all the processes, flows, and other constructs used within the HPM
model.

Identifying CIM Opportunities
Using Structured Analysis Models.
20034

o] € |

Identifying CIM Opportunities
Using Structured Analysis Models.

[dial] 16864 ‘c Awa LA 1Py sonpay 0 30T
ES!Q (0) wlhikdon

ities

WO PWIO,UI JUBWAIYE MBY TUL Uagm DRITRAN UBN] S| SRIEIS JBPIO TUL JRPIO (RUBO
" wox u
0y vase Buf
mivudosdde o0 19 buniow;nuew 03
© wam BUOIY ‘BupmIvIAURW 03 1URS

JRMEITW Awa 1NO3T 02U; BUNTY WODIYIE LONIKOGI BUL O3 31 SDPE PUP 'JEDIO BUL JO PIICU

YR Bt UOIINPOLY WISAS BUI O3UY BRIRIUR PUT AINORS BULMIIRNUBE BU) KO PRAIBIES B £10PIC
788 13npoy oNpaLd

3 sdius ueus Jeddns ey ‘588
JewsBrure Li01usaun Su1 wOx 1900t BreyAN

- v seAmIns seyddng (RpeITM mEs UL

A3Mows LIDOW B3 Ko
anguIeD euL peddius puv pacnpasd usea
nus BUY 01 JSPU T SDURE JOINGHISRP SUL

PRAIBIBI €1 JOPIO UL USUM EMITIG SBDIO WP AUST
19 5) 9900 30npud Bu3 SRR DUT ‘Kamaws Buy

“umous wv 9003% 41860 K3 WDIEINC FUOTIOUN 01 SUORIRUC IWIDRGE OmL
LA YIWOoY SIPOIY

150205 Janpaiy SMIILAVIN BUL UM ARIEP BI0W U PIIOKIXE BIE 19AD0IE EU3 BUMINAUIS

03 DOER FRANOKRY 0INGUITID B3 01 PEAdE PUP DLIMIITNUB PHINPIYIS B 13APRId BUL “FUNIRW

MV WA Kaoes Bupnia wnuTe Su) A0 PEARIRS K|en: 19Bae wuL Aaioes Beumsenury

L1100 332 wngm 900 ue Suiigity 40 1jodmela jeav| UBlY Sy) 11uesaide. 1anPoLy SMPAL
20nposd worpeiy

@ 0'ta unaey

Without an architectural plan, a building site would be total chaos. 2x4’s might be used were
2x6’s should be for structural integrity. Roof supports might be constructed inadequately.
Electrical outlets and heating ducts are retrofitted, rather than built in. The electrical service
is underrated and must be beefed up later. A reputable contractor would never even dream of
building anything more complex than a shed without a complete set of building plans and
drawings.

Yet within the business world, literally billions of dollars are spent annually for business
ventures without more than a rough idea of what the facade and the roof lines look like. Time
and time again, projects grossly exceed their budgets and reduce their scopes because
inadequate planning was done up front. Many times, businesses simply do not want to spend
the money necessary up front to provide a complete plan. It matters not. They will spend the
money anyway after the project is "complete” to clean things up. Another common downfall is
that "we have done that before” 80 "we do not have to plan 8o much this time". However,
oftentimes the documentation for the previous project is missing, inadequate, or out of date.
HPM can help bridge the gap in all these instances by providing an analysis framework within
which the planning can successfully be accomplished and documented.

Constructing a CIM framework

A Structured Analysis methodology such as HPM can be used as a technique to build the
enterprise wide CIM framework. Through examination of this framework, the organization
can efficiently and effectively analyze the effects of future information automation projects and
identify CIM opportunities across the entire manufacturing enterprise. As such, the
framework serves as a highly effective communications tool, serving not to directly identify
and solve problems, but providing a focal point for discussions and decisions pertaining to CIM
automation issues.

As an example, walk into any manufacturing facility and ask for complete documentation on
their manufacturing process. In most instances, you will be provided with many binders of
printed, or formal documentation. However, if you were to walk out onto the manufacturing
floor and talk to the supervisor, you would find many informal mechanism at work which are
not documented. This presents two problems; first, in all likelihood these informal
mechanigms are not very efficient. How can they be improved if they are not documented? SA
techniques can be used to document them, Second, if they are not documented, how can any
CIM implementation or framework possibly succeed to the level expected. Again, SA
techniques can be used to capture the informal mechanism at work within the manufacturing
processes.

The Four Step Approach

Since each manufacturing enterprise is different, it is next to impossible to make specific
recommendations within this context. However, there is a basic four step approach to building
the CIM framework which can be presented. Naturally, these steps can be combined, modified,
or customized based upon the needs and timeframes of the manufacturing organization.

Identifying CIM Opportunities
Using Structured Analysis Models.
2003-7

The four step approach to putting together a CIM framework:

Benefits Analysis
Business Modeling
Solution Modeling
Implementation

* * * &

This four step approach reflects HP’s broad experience in tailoring advanced technology to the
individual needs of an organization. This has proven successful for a wide variety of industries
and applications.

Benefits Analysis

Benefits Analysis is a technique used to identify and prioritize high payoff opportunities that
are strategic to your organization. The process measures the benefits of implementing
information technology in these areas. Interviews are conducted with key personnel in the
organization to identify the "critical success factors” facing the enterprise. These factors are
then discussed with focus groups made up of the personnel within the organization who really
understand the area of concern. As the process continues, people within the organization
understand the obetacles that stand in the way of achieving these critical success factors and
what the enterprise must do to overcome these obstacles.

The outcome of the Benefits Analysis is sometimes referred to as breakthrough ohbjectives. The
ohjectives, or "critical success factors” provide a very high level map for the next steps in the
approach. This (hopefully) avoids the pitfall of addressing one aspect of the process, when the
real obstacles exist elsewhere within the process.

Business Modeling

The Benefits Analysis step identified the strategic areas to implement information technology.
The Business Modeling step documents and simplifies current business practices, both formal
and informal, to provide the most functional framework for information technology
application.

Business Modeling is an iterative process. First initial data is gathered regarding business
and manufacturing practices, desires, and system requirements. An initial model is then
drafted and reviewed by a core committee of previously trained personnel in the enterprise.
Modifications are made to the model and a new version is then published to a wider review
committee. This review/modify/publish cycle continues until all committee members agree
that the model is accurate. A final model is then published and becomes the basis for all
future requirements definitions and activities.

Using a SA technique such as HPM, which is predominantly graphical in nature, provides a
description of the plants processes, which is easy to understand by people not normally
familiar with structured analysis processes. It functions as the tool to bring all departments
into fundamental agreement with the overall CIM framework.

In many instances, a significant portion of the current business practices and requirements
may have already been done and documented using other techniques. This existing
documentation can generally be used and leveraged within the Business Modeling step.

Identifying CIM Opportunities
Using Structured Analysis Models.
2003-8

During the Business Modeling step, the objectives can be accomplished in two phases. Phase I
will create a high level business practices model which will document current manufacturing
processes and practices. This high level model, combined with the strategic objectives from the
Benefits Analysis, will provide strategic guidance for posesible information technology
implementations.

Phase II of Business Modeling will simplify and add a deeper level of detail to specifically
mmetedmmﬁthinthehmlﬂighlavdmodel.nhmdelmﬁdmamomdetaﬂed
understandmgofthepmeemthatmnkeupthem and forms the foundation of
any successful project. It describes WHAT a symmmustdotoaddmuspemﬁc
functionality. 'ﬁmphaaemtypxcallyexecmdovp(atwowfwrmonthhmeﬁ‘ame
mqunumudammmonandumemmmtpﬁtﬁomkeymm

p
SolutioryModeling

Once the Business Modeling step has provided the "road map” toward a successful CIM
framework and technology project, the elements of integrated software, hardware, and
peoplewam solutions can be identified. The Business model(s) will distinctly show the “tie
in" requirements necessary to integrate a particular technology solution in the overall
manufacturing framework.

Essentially, one can visually this process the same as using tracing paper. The original model
serves as the template to match. Each solution has it’s own trace, and is sequentially layered
over the original template. The "goodness of fit® of the trace determines the applicability of
the solution proposed to the model. This process helps to quickly pare down the number of
solutions under consideration to those which can match easily with the requirements
documented by the SA model.

‘While the actual process of identifying manufacturing solutions is certainly more difficult than
using tracing paper, the model framework does help to focus attention on the specific areas of
concern in a very structured and logical way that is easy to comprehend and evaluate.

Implementation

A formal project plan document is generally produced during the Implementation step which
incorporates the information developed during the first three steps outlined above along with
the specifics for implementing all elements of the framework. The project plan is the
controlling document which defines the technical and managerial project functions, activities
and tasks necessary to satisfy the requirements of the project. This plan requires detailed
involvement in the development, review, and approval process. The project plan is a living
document that requires modification as the project itself changes, but at the same time is
closely monitored and reviewed for adherence to targeted ohjectives.

After completion of the project plan, the projects and solutions identified begin to follow the
more traditional project implementation phases. Typically, these phases are practiced by the
engineering and/or MIS organizations, and generally consist of as many as eight sub-phases,

Identifying CIM Opportunities
Using Structured Analysis Models.
20039

The eight sub-phases that typically occur during project implementation are as follows:

Detailed Design
System Development
Integration and Test
Documentation
Traini

Site Installation
Warranty

Support

PRDONP LN

Most certainly, the Implementation step is where the benafits of building the enterprise wide
CIM framework are realized. The implementation must insure that each major functional
area of the Business model and Solutions model are properly addressed. This is best
accomplished by contracting professional project management services, effectively managing
subcontractors, and providing appropriate review meetings of the overall project status at
appropriate times.

Conclusion

It has been our experience that the Structured Analysis techniques and four step approach
presented herein provide a workable method for developing an enterprise wide CIM
framework. This is the key to successful integrated CIM projects. Only by utilizing an overall
methodology such as this for implementing and achieving long term goals and objectives can
an organization effectively combine the islands of automation into a single, workable
manufacturing entity.

No manufacturing process is stable. Continual improvements and changes are constantly
being made. SA models, therefore, become living entities. They are constantly being
improved and provide continual feedback into the methodology for continual improvements
within the manufacturing processes and CIM framework. Thus, CIM opportunities are
constantly being identified, evaluated, and implemented as the manufacturing processes
change, tying directly back into the CIM infrastructure and framework.

* The author wishes to thank Dan Lee, Allen Otte and George Subiti for their
contributions to this paper.

Paper #2004
Beyond Interprocess Communications:
Strategies for Linking MPE XL and HP-UX Applications

By
Frank Leong, Jr.

Software Engineering Systems Division
Hewlett-Packard Company
1266 Kifer road
Sunnyvale, California 94086
(408-746-5368)

Abstract

Increasingly, today’s corporate and manufacturing computing environments
require the integration of multiple applications running on heterogeneous plat-
forms in a distributed environment. Such an integration problem is complicat-
ed by the existence of previously written or purchased software which
cannot be easily modified. To fully address application integration, a strate-
gy for linking new and existing applications is needed.

This paper will first examine the current strategies available for linking appli-
cations on MPE XL and HP-UX systems, including file transfer, program to
program communications, remote process control, and remote procedure
calls. Next, a new strategy that goes beyond the breadth and depth of tradi-
tional interprocess communications elements is examined. This new strategy
involves the use of HP Software Integration Sockets.

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 1

1.0 Introduction

Information access, once considered a luxury, is now a key factor in the success of
any company. As the size of a company grows, so does the quantity, complexity,
and importance of the information flow. The ability to manage the quality and timeli-
ness of intra-company and inter-company information access ultimately translates di-
rectly into the ability to meet customer needs and therefore greatly affects the
bottom line.

At the center of information access are the computer and communications technolo-
gies that drive it. During this past decade, explosive growth has been seen in the
use of both Local Area and Wide Area Networks (LANs and WANs). No longer
are computers providing single point solutions within "islands of automation”. In-
stead, computers are linked together providing the POTENTIAL for global access
and control of information. Yet, in spite of the advances made in networking, this po-
tential remains largely untapped by many companies. Why is this so?

Much of the problem can be attributed to issues faced when trying to integrate soft-
ware applications. These applications can be viewed as the embodiment of the infor-
mation we are trying to access. The success or failure in dealing with application
integration issues will decide the degree to which global information access can be
achieved. This paper explores some of those issues, especially as it pertains to inte-
grating applications on HP-UX and MPE XL systems. Past and present strategies
for application integration are illustrated, and integration technologies reviewed. Fi-
nally, a solution involving the combined use of good methodologies and a new tool is
proposed.

2.0 Integration Strategies Vs. Technologies

In this paper, the term integration strategy will be used to refer to a particular plan
for attacking the software integration problem. This can involve the use of one or
more infegration technologies, which are implementations of software and typically
available as products. Integration strategies can also involve stated methodologies,
best practices, and company standards in developing integrated software systems.

3.0 A Review of Integration Strategies

To gain a better understanding of the integration dilemma, we need to examine its
origin and evolution. The following scenario is typical of what companies have en-
dured through in computerizing their information systems. It might not apply to
your particular situation, especially if your company is relatively new and has a
much shorter history of application development, but it does serve to expose some
common issues in application integration.

3.1 A Distribution System Scenarlo

The Ace Widget Company has been producing world class widgets for over 25
years. A key to their success has been the ability to respond quickly to customer or-
ders. Not only are their products superior, but Ace can fill an order faster than any

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 -2

of their competitors. Many people think Ace Widget's success has been due to inno-
vative designs and a manufacturing capability second to none. But George
Howard, the President of Ace, knows the real reason for their success can be attrib-
uted to a distribution system comprised of order-entry, shipping, and inventory sub-
systems. Things were not always this smooth, however, and a lot of obstacles had to
be overcome by the MIS department to reach this pinnacle. John Kramer, head of
MIS, remembers those dark days.

3.1.1 Stage 1: One Computer, One Company

It all began in 1974. John, fresh out of college, was assigned to tackle the problem of
tying the order-entry and shipping systems back into the inventory control system
resident on the company’s mainframe. John worked with a team of analysts and soft-
ware developers. The solution they came up with was hardly innovative, but it was
adequate and in keeping with other information system projects completed in the
past. Ace had only one computer, an old IBM workhorse. But that seemed adequate
for this small, but growing company. All operations were located in one large build-
ing. The software John’s team developed ran on the company’s sole computer. It re-
lied on two principle kinds of input --- punched cards and magtape. As orders came
in, they were manually entered on magtape or punched cards, one transaction at a
time. These inputs were then hand delivered and fed into the mainframe, which in
turn generated a shipping list and tracked the order. Once the shipping department
successfully shipped the product, another manual entry occurred on punched cards
or magtape. Finally, the company’s computer was updated with these hand deliv-
ered inputs to reflect the shipped products.

3.1.2 Stage 2: Islands of Automation

By 1978, Ace had outgrown its single computer approach. Customers were begin-
ning to complain about the long lead time between ordering the product they wanted
and the time it took to actually receive the produ... Even worse, some orders were
simply lost --- the result of mangled cards or bad spots on tape. None of this es-
caped the attention of George, who promptly sent a memo to the head of MIS urging
him to do something. Again, John was assigned to the project. His recommendation
was to distribute the computing among 3 systems. Hewlett Packard, a pioneer of dis-
tributed computing systems, was the logical choice. Two new HP3000 minicomput-
ers would be used: one dedicated to order entry and another to shipping. (See
Figure 1.) The company’s central computer would still handle inventory, but the
new minicomputers would off-load much of the record validation and other prepro-
cessing. The minicomputers were tied to the mainframe using modem lines. At the
end of each day, the order entry computer uploaded transactions to the mainframe.
Once the orders were processed, the shipping system received a download of trans-
actions from the central computer. The shipping system also uploaded shipping sta-
tus to the central computer. During the day, the three computers functioned
independently. The order entry manager and the shipping department manager
were ecstatic over the new system because of its ability to produce departmental re-
ports and provide information on demand.

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 -3

Shipping System

)
7L

Order Entry Sys

/3

==

Figure 1: Islands of Automation

3.1.3 Stage 3: Networks Have Arrived: No Computer Is an Island

By 1983, Ace had expanded its operations to include 5 sites scattered throughout
the country. The idea of departmental computing had propagated throughout the
company and there were at least two dozen such computer systems. The strategy
of each department having their own computer and using nightly modem uploads and
downloads to synchronize and share data had worked well. But now, everyone on
the information chain from top management, to department managers, and even op-
erators, wanted consolidated information to be more accessible and on a more timely
basis. Nightly updates were no longer sufficient to keep pace with the fleet footed
competition. Customers inquiring about their orders wanted up-to-date status. John
now managed a project to provide a networking backbone for the company’s two
dozen computers. They standardized on an IEEE802.3 network, with bridges and
routers to gain access to LANs in other cities. Now, instead of one day turn-around
times, information could be shared and accessed in a matter of seconds and minutes.

3.1.4 Stage 4: Honeymoon’s Over, Where's the info?

It was now 1988 and five years had elapsed since Ace first installed its computer net-
work. Ace was now a multi-national corporation with hundreds of computers, includ-
ing mainframes, minicomputers, workstations and PCs. Although networking had

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 4

provided such innovations as e-mail, network file access and file transfer, and graphi-
cal user interfaces like the X Window System, George’s dream of global informa-
tion utopia had not been realized. After spending a fortune on building and
maintaining a sophisticated networking system, the distribution system which had
begun years ago was still having difficulties expanding with the company. George
knew that without a responsive distribution system to keep his customers happy, his
company’s dominance in the marketplace would eventually evaporate. Acknowledg-
ing this possibility, George issued an ultimatum to the MIS department. John was
the logical choice to head up a task force to investigate what went wrong. He had
set up the distribution system 10 years ago, but had since moved on to managing the
networks group. He was eager to find out what had gone awry with his pet project.

John launched his investigation by interrogating employees from the order entry
and shipping departments. It was clear their workload and sophistication had in-
creased substantially and the system they were using had not kept pace with their
escalating needs. Shipping had updated their single HP3000 with a distributed sys-
tem involving several HP9000 workstations running HP-UX. (See figure 2.) Bar-
code scanners, weighing stations, and label printers were connected up to these
workstations. As boxes of widgets came through the shipping department, they
were identified using the barcode scanners. A workstation would then show the par-
cel’s shipping information on an X Window display. The weight of the parcel was au-
tomatically recorded and its postage computed. An operator viewing the shipping
information could override any of the defaults shown. Once correct, a shipping label
and postage were generated.

Next, John talked with the MIS group in charge of maintaining the distribution sys-
tem. In spite of all this new hardware, John found very little had been done to inte-
grate the order entry, shipping, and inventory control subsystems together beyond
what he had done 10 years ago! They were still using files to upload and download
information, only now the updates occurred twice a day instead of once. Part of the
problem was attributed to the complexity of maintaining existing software. Al-
though source code was available, the original developers had left long ago. No one
wanted to touch that code for fear it would bring everything to a grinding halt.

John’s recommendation was to completely revamp the system. He knew this would
be disruptive, but he saw little choice. The team assigned to perform the renovation
proceeded with caution, trying not to change existing software unless it was abso-
lutely deemed necessary. Various network access software, such as network inter-
process communications, remote procesre calls, network file access and transfer,
were examined and used where appropi.ate. After an exhaustive two year effort,
the renovation was complete. John was congratulated on his work and was ultimate-
ly promoted to head up all of MIS.

(Note: all names used in this story are strictly fictional. Only the resulting lessons
are real.)

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 -5

Phones

IBM Inventory R
System ﬁ‘/' :l

HP3000 Terminal
Order Entry
System

HP9000 HP9%000

Shipping Shipping

Station Station

Figure 2: A Distributed System

3.2 Issues in Integrating Application Software

Some of the problems encountered by the Ace Widgets Company might sound more
than vaguely familiar. Although this scenario involved an MIS system, it could easi-
ly have involved software integration in manufacturing, engineering, or other ar-
eas. Let us examine some of these issues:

3.2.1 Integration and Maintenance of Existing Software

When a typewriter or other piece of business equipment becomes obsolete and diffi-
cult to maintain, it can simply be replaced with new capital equipment. This is true
even for most computer hardware. But with existing software, it might not be desir-
able or even possible to replace it with new software. Software is more evolution-
ary than revolutionary in nature. A piece of software placed in service is likely to
remain in operation, untouched, or evolve through incremental changes. As in the
case of Ace Widgets, a company’s operations might be so highly dependent on a
piece of software that it can ill afford to change or replace it. The cost of retraining
personnel, along with the risk of disrupting operations, makes companies very wary
of change even when much superior software technology is available.

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 6

Rather than change or replace software, a decision is usually made to build systems
around existing software components. Now the problem becomes one of integrating
existing applications with newly written software. To complicate matters, the origi-
nal authors of the current software might have left the company long ago and the
new staff might be very resistant to making changes in the old code in order to inte-
grate new software. If the existing software had been developed by an outside third
party, source code might not even be available and the third party might no longer
be in business to make necessary changes . A company might overcome these ob-
stacles and have some success in developing an "integrated” system. However, as
in the case of Ace Widgets, this could result in a poorly or partially integrated sys-
tem. Despite the new technologies at Ace’s disposal, their Stage 3 solution amount-
ed to nothing more than simple, infrequent file transfer. It did not take advantage of
the potential provided by the new technologies because the staff was reluctant to
take on the task of revamping portions of the distribution system and learning new
technologies.

3.2.2 Obtalning and Maintaining Expertise

Expertise is required to maintain software as well as track ever changing software
technologies. The former determines to what extent a company’s base of existing
software can evolve. The latter provides the basis for incorporating new software
technologies and methodologies. Recruiting and keeping a qualified staff to deal
with software integration problems poses a challenge. In some cases, you might find
a staff exuberant about new technology but shuns even the thought of dealing with
old application software, also known as legacy softiware. In other cases, the staff
might be comprised of people who were the original developers of a software appli-
cation and are reluctant to change because they are unaware of or uncomfortable
with new technologies.

To lessen the impact of inevitable personnel changes, companies must find ways to
maintain expertise, and to acquire new expertise when new technology arises. Lat-
er in this paper, we will see how software tools, which encapsulate new integration
technology and promote the use of good methodologies, can be used to solve part of
the problem.

3.2.3 Changing Requirements and Growth

Application software is usually intimately tied to processes —- the way a company
does business. In the Ace Widgets example, software for the distribution system
embodied the processes used in the physical distribution system. Indeed, as a compa-
ny’s operations change and grow, so too must the underlying application software
systems that support it. The inability for application software to evolve can serious-
ly jeopardize the expansion of a company. Ace’s distribution system could not keep
pace with the increased demands placed upon it by a growing customer base. The
obstacle was inflexible legacy software components never designed for interopera-
bility with new software components.

Today, the availability of networking technology makes it attractive for companies
to adopt a strategy of incremental growth using a distributed architecture. Newly
developed applications can be distributed anywhere on the network, and new com-
puter nodes can be added whenever a company exceeds its computing capacity. Ac-

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 7

companying this incremental growth strategy should be an equally important soft-
ware integration strategy. Without such a gameplan, incremental growth can go
out of control, hampering the flow of information and the ultimate objective of global
information access.

3.24 Custom Solutions Vs. Standard Products

Custom solutions for software application integration can be a mixed blessing. On
one hand, you get exactly what you want. On the other hand, you might not really
know what you want. It could take several iterations of trial and error before you
converge on the right integration strategy for your company. It takes a keen under-
standing of your particular needs, both current and future, and an understanding of
technology and its application to those needs.

Custom solutions require significant investments of time and resources. (Ace Wid-
gets took two years to come up with an integrated software solution.) Not only are
there up front costs, but ongoing support costs. "Is what we developed adequate for
future needs?" "Is there adequate documentation?" "Who is supporting the integra-
tion software?” "Will it break with a new operating system release?” These are just
some of the questions company’s must face when dealing with custom solutions.

The alternative to building your own solution is using standard products. Unfortu-
nately, few standard products exist for integrating software applications. Those
that do exist do not address all the issues associated with integrating software. Giv-
en these realities, what is the right solution? The next section of this paper will look
at some emerging technologies that show promise.

3.2.5 Technology Alone Is Not Sufficient

Perhaps someday, linking together software applications will be as easy as linking to-
gether computer hardware in a LAN or WAN environment. Software will have
standard interfaces just as hardware currently does with ICs, backplanes, and net-
work access. Software purchased from one vendor will be able to easily be integrat-
ed with software from another vendor. Software integration tools and standards will
exist for developers wishing to create software with standard interfaces. For now,
those standard interfaces do not exist. A company can, however, adopt corporate
wide integration strategies that formalize software interfaces for the company,
make use of good methodologies, and use software integration tools as they become
available.

3.3 Linking HP-UX and MPE XL Applications

Part of the fictional Ace Widgets example was based on an actual order entry and
shipping system being implemented by a group within Hewlett Packard. The design
team investigated various ways of linking their shipping system, running on HP9000
workstations, to their ordering system which ran on an HP3000. They narrowed
their choices down. to two alternatives: (1) develop custom software using NetIPC
and Network File Transfer (NFT), (2) make use of a tool designed to help integrate
software applications, They chose the second alternative because of the following
reasons:

s Development effort and time required for a custom solution

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 8

= Resources required to support a custom solution

» Developing a custom integration tool detracted from their mainstream
activity

s Using an appropriate tool would encapsulate expertise and make im-
plementation easier

The integration tool they used, HP Software Integration Sockets, will be described
in the next section of this paper.

40 Emerging Integration Technologies

The previous section served to illustrate some past and present integration strate-
gies. These strategies evolved as newer technologies became available. In the ear-
ly days, integration involved hand delivered punched cards and magnetic tape.
Then modems became available to eliminate the inherent lack of reliability that hand
delivered media carried with it. Data communications technology culminated in the
development of LAN and WAN network technology. This naturally led to software
which provided access to network services, such as network file transfer and ac-
cess, network interprocess communications such as BSD Sockets and NetIPC, and
Remote Procedure Calls (RPC). (Please see Figure 3, "Evolution of Application In-
tegration Technologies™.)

The push for Open Systems and the pervasiveness of applications running in distribut-
ed environments with computers from multiple vendors has led to a need for newer
technologies that promote the integration of software applications. Not only do re-
motely located applications need to communicate, but often they reside on different
machine architectures and were written in different languages. The following repre-
sents some of the technologies helping to solve these integration problems.

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 -9

Ancient History

Hand carried tape, punched cards
Use of Modems

Advent of LAN Technology

Network File Transfer and Access
Program-to-Program Communications
Remote Procedure Calls

Integration Technologies
OSI,MAP/MMS,EDI
X
Network Message Queues
HP Sockets

Time

Figure 3: Evolution of Application Integration Technologies

4.1 Open Systems Interconnect

The International Standards Organization (ISO) has developed a seven layer Open
Systems Interconnect (OSI) protocol reference model to serve as a framework for
defining standards for linking together heterogeneous computers. Although ISO has
made great strides in defining standard protocols in layers 1 through 4, protocols in
layers 5 through 7 have progressed at a much slower pace. The complexity of un-
derstanding the upper layers of OSI has slowed its development as a pervasive tech-
nology. Few standards and products are actually based on a full ISO protocol
stack. Also, few people know how to create or interface to layer 7, the Application
Layer, of OSI. The OSI protocol stack serves as a good framework for defining
standards, hence spurring on the development of products which conform to OSI
standards. But it does not, in its current form, fully address application integration is-
sues. (For instance, how would someone use OSI to integrate the different software
pieces of the distribution system discussed in the Ace Widgets example?) Despite
its shortcomings, anyone involved in application integration should be aware of ISO
standards and monitor its progress. Two of the more relevant OSI standards are dis-
cussed below.

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 10

411 MAP/MMS

The Manufacturing Automation Protocol (MAP) is an implementation specification
that makes use of a subset of OSI standards. The Manufacturing Message Specifica-
tion (MMS) is an application layer service in an OSI/MAP stack. Together, these
protocols allow manufacturing application software to communicate with factory
floor devices such as PLCs, robots, and vision systems. It also allows some limited
communications among different computer nodes in a CIM (Computer Integrated
Manufacturing) hierarchy.

MAP and MMS are specifically peaked for manufacturing applications. It might not
be appropriate nor cost effective in other application integration situations. It also
does not solve the problem of integrating existing software not compliant with the
MAP/MMS protocol.

4.1.2 Electronic Data Interchange

Electronic Data Interchange (EDI) is an OSI application layer (layer 7) protocol
standard used for the electronic exchange of information between business part-
ners. Documents, which were once physically created for business transactions
such as purchase orders and billing, can be electronically transacted using EDI.
This results in faster, more reliable, and less costly transactions among business part-
ners.

EDI is used in inter-company communications. In a sense, it defines standard inter-
faces from which companies conforming to the standard can productively conduct
business with one another. It is not typically used for intra-company communica-
tions. In fact, EDI vendors do not recommend its use for intra-company communica-
tions because of its inherent store-and-forward/batch operation. EDI does not solve
the problem of integrating application software because it lacks the facility for real-
time communications between software and it requires adherence to the EDI for-
mats.

4.2 X Windows

X Windows was originally conceived of as part of a distributed computing project at
MIT. Since its commercial inception in 1986, it is quickly becoming a pervasive tech-
nology. X Windows is based on a client-server model, where the server provides a
windowed user interface display service to a locally or remotely located client appli-
cation. By making this logical separation between user interface and the main body
of the software application, clients scattered throughout a network can be accessed
by any vendor’s X display server with the right permission.

X Windows provides global access to information for users by allowing applications
running on multi-vendor platforms to be accessed from any display server. From an
X display server, a user could have multiple windows, each mapped to a different, re-
motely located client (e.g. one window for a spreadsheet application, one for a termi-
nal emulator, one for a database application, etc.). X Windows does not, however,
provide information access to software applications that need to share data.

Beyond JPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 11

4.3 Network Message Queues

A relatively new entry in integration technology is network message queues. This
takes the notion of UNIX message queues, which work on a single node, and ex-
pands upon it to operate in a distributed environment on many nodes. Network mes-
sage queues provide a robust messaging system among cooperating applications.
Communications can occur synchronously or asynchronously, as client-server, or as
peers.

Network message queues address some of the problems posed by software applica-
tion integration. It can be viewed as a basic building block for creating communica-
tion links between applications.

44 HP Software Integration Sockets

Introduced in 1990, HP Software Integration Sockets was specifically designed to
meet many of the needs faced in integrating application software. It includes the fol-
lowing design objectives:

» A solution to the problem of integrating existing, legacy applications

® A network message queue implementation that supports multiple kinds
of communication links among applications

» Support of incremental growth

s Support of Open Systems, making use of available standards and com-
mitted to evolving with emerging standards

s Heterogeneous operation, including support for multiple platforms and
multiple languages

= An easy to use, easy to learn interface which protects a company’s in-
vestment by encapsulating technologies, standards, and promotes the
use of good methodologies

» Data translation and manipulation capabilities to help integrate appli-
cations that were not written to communicate with each other

» Centralized administration of the integrated environment

The latest release of HP Sockets supports MPE XL as well as HP-UX. Experiences
by several internal HP sites have been extremely positive. Many have pointed out
that if a tool like HP Sockets had not been available, they would have had to develop
one themselves. One group estimated 8 months to develop an equivalent tool that
would have been much more narrowly focused, without HP Sockets’ data translation
and manipulation capability. With HP Sockets, they were able to reduce their inte-
gration time by a factor of 5.

5.0 Criteria For Robust Software Integration
There are many levels or stages to integrating software applications. If application

software is evolutionary in nature, then so is the process of integrating software ap-
plications. The level at which application software is integrated determines the de-

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 12

gree to which they can share access to information and function more effectively as
a whole than as separate parts. Figure 4 attempts to illustrate these stages of inte-
gration as concentric circles. The innermost circle represents the fundamental be-
ginnings of software integration. As we move outward, attributes of a more fully
integrated system of applications are seen. Each successive stage adds functional-
ity to the previous stage. A fully integrated system is represented by the outermost
circle.

Data Transport
Mechanisms

ystem Administration & Control Of
Integrated Domain

Common Ul

Figure 4: Stages of Software Integration

The emerging integration technologies surveyed in the last section provides us with
a glimpse at the direction software application integration is headed. Currently, no
single technology can solve all the problems. However, a set of criteria can be dis-
tilled from the strategies and technologies examined in this paper. Compare this to
your own integration needs when evaluating a particular integration tool or method-
ology to adopt for your company.

s Ability to integrate existing as well as new applications
s Ability to meet future as well as present needs

s Support of incremental growth

Adequate capacity for handling volume of data

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 13

a Adequate response time

s Promotes Open Systems
s Support of multiple, heterogeneous platforms
= Support of standards: OS], OSF, XOPEN, etc.

= Enforcement or promotion of standard interfaces, using consis-
tent methodology throughout the integration domain

s Quick learning curve and ease of use, especially considering the lev-
el of expertise in your development environment

= Highly maintainable, even considering staff turnover
s High level of reliability
» Robust support of different topologies:
= client/server
= master/slave
® peer-to-peer
Centralized administration and control

6.0 Conclusions

Software application integration will continue to be a challenge for many compa-
nies. Currently, no single technology can completely solve the problem. Even if
something works today, it may not be sufficient for future integration needs. The so-
lution lies in developing comprehensive software integration strategies, incorporat-
ing sound methodologies and integration tools which promote use of those
methodologies. This paper has examined the progress of software application inte-
gration strategies and technologies, including the use of HP Software Integration
Sockets for linking HP-UX and MPE XL applications. It suggests software integra-
tion is an evolutionary process with various stages or levels of integration. Finally,
a set of criteria for developing and evaluating integration systems was presented.

Beyond IPC: Strategies for Linking MPE-XL and HP-UX Applications 2004 - 14

SCSI: DISK INTERFACE OF CHOICE ON HP WORKSTATIONS
Scott B. May
Hewlett-Packard
19019 Pruneridge Ave.
Cupertino, CA 95014

Why SCSI?

The computer industry in general, and the workstation and PC markets in particular, has
been moving rapidly to standards-based systems. Open systems have many advantages. A
computer user who invests in standards-based hardware is not limited to the product
offerings or pricing policy of a single company, and assuers that his or her investment is
protected. Standards-based products are predicted to make up much of the workstation
market in the next few years. Microprocessors, graphical user interfaces, operating systems,
networks, disk interfaces, and graphics are all seeing significant standards-based
development. As standards in these areas become more defined, shrink-wrapped workstation
software will become closer to a reality.

Standards-based hardware is getting much attention, especially in the area of peripherals.
Users in the PC market have had plug-and-play hardware compatibility. The standards in the
PC arena have been set not by an ANSI committee, but by recognition of de-facto standards.
The IBM PC set the standard because it had such a large share of the market. Other
computer manufacturers utilized the bus architecture making the PC-XT bus the industry
standard architecture (ISA) bus. Many bought disks from Seagate, and soon ST-506 became
the de-facto standard interface for disk drives. Microsoft licensed MS-DOS, and it soon
became another de-facto standard.

The workstation market has evolved standards in quite a different way. Much of the
development of UNIX workstation standards has happened in committees of the American
National Standards Institute (ANSI), and in industry-wide committees like X-Open and Open
Software Foundation (OSF). The subject of this article, the Small Computer System
Interface (SCSI-1) was developed by an ANSI committe, and is defined by ANSI standard
X3.T31-1986. SCSI was developed using principles from Shugart Associates System
Interface (SASI), which was developed in the mid-seventies.

Hewlett-Packard has been a leader in the formulation and adoption of UNIX workstation
standards. This is one of the reasons that the SCSI interface is now standard on the HP 9000
Series 300 workstations. In addition, the HP-IB interface was perceived as a performance
limiter though in most cases it was not. Yet another reason for the adoptions of SCSI is that
it is well adapted to connect a variety of peripherals, like Rewritable Optical, Digital Audio
Tape, CD-ROM, and printers. The ability to connect all of the peripherals onto one
interface eliminates the need for multiple interfaces, thus saving slots for other uses and
minimizing cost. With SCSI, users can connect devices that HP currently chooses not to
offer, like Write Once, Read Many (WORM) optical and 8 MM tape.

2005-1

The SCSI interface is a high-level interface, as opposed to other interfaces like ST-506,
enhanced small disk interface (ESDI), IPI-2, and SMD, which are device-level interfaces.
Other high-level interfaces include Hewlett-Packard Interface Bus (HP-IB) and Hewlett-
Packard Fiber Link (HP-FL), and Intellegent Peripheral Interface-3 (IP1-3). The major
conceptual difference is that the disk controller hides many of the detailbads of disk operation
from the host computer. The computer does not have to manage the details of where the file
is physically located, and does not have to seperate header and trailer information from the
data. In addition, the controller presents the disk as one long string of logical blocks, hiding
bad tracks. A device-level interface forces the CPU to keep track of bad sectors.

The effect of a high level interface is that the computer is free to do other tasks because the
controller handles many details of disk I/O. Single-user, single-tasking machines cannot take
advantage of this feature because the computer is not able to go on until the data from the
disk arrives. However, a multi-tasking or multi-user computer can take advantage of the
higher availability of the CPU, leading to a significant performance improvement.

Time To Market

One of the features that makes SCSI so attractive to peripheral manufacturers is that an
embedded SCSI interface lets them bring a new product to market very quickly. For
instance, immagine that XYZ Company brings out a new WORM drive. If they do not use
an industry standard interface they are caught in a catch 22 situation: nobody will build the
host adapter because the volumes are so
low. There are no sales because there is no

Table I
way to use the product. XYZ Company
must convince another company to develop .
. SCS1 Bus Signals
host adapters for a variety of computers or
do it themselves. Instead, if XYZ company Signal Description
. . ACK (Acknowledge) Data on bus.
designs their own embedded SCSI controller ATN (Attention) Request for
and puts it on the mechanism, significantly meessage out phase. Initiator
less work is needed to integrate the new has message foc target.
rod . of BSY (Bsy) Target is Busy.
p uct into a computer system. course, c/D (Control/Data) Indicates
the computer would also require a SCSI whether bus carries control
- - . . messages oc dala.
dnver’compauble with the drive and vo (Input/Outpu) Indicates
operating system as well. Therefore, direction of data flow on the
peripheral manufacturers can speed their bus. VO is true when data
R . . goes from larget 10 initiator.
time to market by using the SCSI interface. MSG (Measage) Signals on the bus
are a message when this signal
is ssserted.
. . REQ (Request) Requests data on the
SCSI Bus Functionality bus.
RST (Reset) Hsrd reset of all

devices on the bus.

In order to understand the complexities of
the SCSI bus, including the differences

2005-2

between synchronous and asynchronous data transfer, it is important to have some
understanding of the different bus states, signals, and commands. Table I lists SCSI bus
signals. Table I lists SCSI bus states.

The commands listed in Appendix 1. are those supported by the HP 9754xS disk that is sold
on an OEM basis to other manufacturers. Note that many of the commands are described as
*vendor-unique”. All SCSI drives support many such commands. The vendor-unique
commands are mainly used for diagnostic purposes. Just because a drive uses vendor-unique
commands does not mean that it is incompatible with another vendor’s hardware. The fact is
that the implementation of the SCSI commands of the 9754xS were designed with vendor-
independence in mind. In most instances the operating system will never issue a vendor-
unique command.

Table II

Disk Transaction

SCS1 Bus States
The basic unit of disk operation is an I/O. State Description
What follows is a description of 2a typical &u' i N m- . ‘::f ‘::ﬂ': of 'hb: :.'i
disk I/0. This example holds true for any Free « tapot hae dimommncied aod will oo
SCSI device, not just disks. The I/O reselect.]
operation is initiated by the operating Comenand itnior iomies & command ke rend,
system of the computer, which for this Message In Torget will disconncct and then the bus
example happens to be HP-UX. Note will be free.

Message Out Lnitiator identifics itself to the target.

however, that many different operating
systems support SCSI peripherals, including
MS-DOS. The disk transaction begins with
a request

from the computer. The request may be for a file system block or for a virtual memory
page. This request is passed to the SCSI driver, along with data that the driver will use to
locate the data, including the device identifier. Then the driver goes through the
ARBITRATION and SELECTION process to gain control of the bus.

The disk responds with a MESSAGE QUT, and then receives an IDENTIFY message from
the host. The disk’s response to the IDENTIFY message indicates to the host whether the
disk supports disconnect/reconnect during the data phases, and also whether the disk supports
command queuing (Part of SCSI-2). The host driver then asserts the ATN signal to maintain
the MESSAGE OUT phase and determines whether the disk can support synchronous
transfer. Then the driver issues a command indicating whether it wants a read or a write.
Upon receiving this command, the disk sends disconnect and save data pointers to the host,
and then disconnects if it supports that option. At this point the bus is free to service other
devices. During this time the controller decodes the request and carries it out. When the
disk is finished or nearly finished loading data into the buffer, it asserts the RESELECT
signal, and transmits data from its buffer. Depending on the size of the disk buffer and the
amount of data requested, the disconnect/reconnect cycle may happen several times during an

2005-3

/0. When the transaction is complete, the STATUS message is sent to the host, and the
transfer is complete.

Comparisons

Single Ended vs. Differential

The
difference
between Single Ended vs Differential SCSI
single-ende
d and
differential 0C St cont

SCSI is in + or rew | :"}"'_"‘“
the A

electrical

OF Aep

. — Single Ended =
definition
o e ot N P e
signal nanbe
drivers. G Signal oot 0C Sigral rooebeed
Differential
SCSI uses + R —J— qu—
twice as + >_
many wires - =
as eond Tttt P —LT™ Ditferential
singie-ende s Lose conshive tu: Speed of Yenter
d SCSL In mma— |
single-ende DG Mgt sont
d, one wire s
of a pair is
used for
grounding

only, Figure 1

whereas

differential SCST uses the second wire to send the complement of the signal in the first wire.
In other words, as the first line goes high, the second line goes low. This has the effect of
decreasing electromagnetic emissions because the fields generated by the two wires tend to
cancel each other out, like a coaxial cable does. This gives a higher signal to noise ratio,
which allows faster clock speeds and longer cable lengths. Figure NNN

Synchronous vs. Asynchronous

Synchronous SCSI-1 is rated at 5 megabytes per second, whereas asynchronous is rated at
only about 1.5 to 3 Mbytes per second. Note that all commands and messages are

2005-4

transmitted at the asynchronous rate. Only
data can be processed in synchronous mode.
When a transfer is initiated by the host
computer, either device can issue a Target tnitiator
"synchronous data transfer request® (SDTR)
message. If either the initiator or target
fails to issue the message, the transfer DATA DATA DATA
defaults to asynchronous. Asynchronous - - -
means that for each 1 byte transfer, the
target sends an ACK signal and then waits Figure 2
for an REQ signal from the initiator before

more data is sent.

Asynchronous SCSI

—REQ-..-... REQ—p> —REQ------.- REQ—p —REQ ---.--- REQ—

4~ ACK— 4 ACK— 4 ACK—

Thus, the ACK/REQ handshake must happen for each byte of data transferred in
asynchronous mode. During a synchronous transmission, the target device does not wait for
the REQ signal between data transmissions. Instead, data is sent until a number of bytes,
determined by the REQ/ACK offset agreed upon at the initiation of synchronous transfer, has
been sent. During the transmission, the initiator continues to send ACK’s back to the target.
The target keeps track of them and knows that when the number of REQ’s matches the
number of ACK’s the transfer is complete. See Figures 2. and 3. for a graphical
description.

SCSI-1 vs. SCSI-2

The SCSI-1 interface is rated at up to 5 Synchronous SCSI

Mbytes per second for synchronous data

transmissions. The SCSI-2 definition Target Initiator
allows for data transmission at up to ten

megatransfers' per second (differential ~REQ— —REQ— ~REQ——REQ—H —REQ—P —REQ—H
cables only), giving differential SCSI-2 DATA DATA DATA DATA DATA DATA

transfer rates up to 320 megabits, or 40
Mbytes per second. There are two different
kinds of modifications to the SCSI-1 Figure 3
standard that allow the higher data rate.

€ AcK—

The first modification is called “fast". Fast SCSI-2 requires differential electronic drivers.
Single-ended electonics are not capable of the signal to noise ratio necessary to implement
fast SCSI-2. The clock speed of fast SCSI-2 is twice that of SCSI-1. Using the same eight
bit data path, fast SCSI-2 is capable of ten Mbytes per second. The cable length limit of
differential SCSI is 15 meters compared to 6 for single-ended.

' As will be explained, each transfer can be eight, sixteen, or thiryt-two bits wide.

2005-5

The second modification affecting transfer rate is "wide" SCSI. Wide SCSI-2 gives a data
path of either sixteen or thirty-two bits as opposed to the 8-bit path of SCSI-1. The space
required to connect the cable may preclude the use of wide SCSI on 2.5" and 3.5" disks.
By combining wide and fast, SCSI-2 can achieve a synchronous data transfer rate of 40
Mbytes per second.

Implications of SCSI-2

Most applications will not need a wide and fast SCSI-2 bus. Doubling the transfer rate of
the bus will not double the throughput of the I/O system. In a random disk transfer, the seek
and latency constitute a far larger chunk of time than the channel time. An average 5.25"
disk has an average seek plus latency of 24 milliseconds compared to less than four
milliseconds for an 8 KByte transfer. Even a 40 Mbyte per second chanel would not
necessarily decrease the four millisecond figure because it takes a substantial amount of time
to get the data from the disk surface once the heads are over the data.

For a standalone workstation, fast SCSI or even synchronous SCSI-1 provides more
bandwidth than a single or dual disk drive configuration can utilize. Very few 5.25" disks
used on workstations have a sustained UNIX file system transfer rate of greater than 2.0
Mbyte per second, even for large files.

Certain applications, however, could certainly benefit fron a wide and fast SCSI bus.
Examples include file servers with multiple disks, transaction processing again with multiple
disks, solid state disks, disk arrays, and processor-to-processor communication.

SCSI-2 has other features that differentiate it from SCSI-1 besides transfer rates. SCSI-1
allows only one outstanding command from an initiator to a target. Command queuing IN
SCSI-2 allows the host 1/0 driver to handle multiple requests. Command queuing allows up
to 256 requests to be outstanding from each initiator to each target. SCSI-2 has much more
"tightly defined electrical specifications. SCSI-1 electrical specifications are loose enough that
two devices that both meet the spec could not work together. SCSI-2 closes the gaps.

SCSI-1 vs. HP-IB

The two interfaces currently available on The HP 9000 Series 300 and 400 workstations are
HP-IB and SCSI-1. HP-IB is an interface based on IEEE-488 and is rated at a transfer rate
on 1 Mbyte per second. The Hewlett-Packard disks available for Series 300 workstations
include the Series 6000 Model 670H and Model 660S. The 670H uses HP-IB, while the
660S uses SCSI-1. In order to characterize ther performance differences between these two
disk drives, a series of benchmarks were executed.

The Khornerstone benchmark is owned by Workstation Labs, Inc, and the disk portion of the
test includes disk intensive tasks, such as reading and writing files both randomly and

2005-6

sequentially. As can be seen in Figure NNN, the Model 660S has a disk Khornerstone score
about twice that of the Model 670H. Figure NNN+1 shows the throughput of these two
disks for files of various sizes, both reading and copying (reading and writing).

The Model 660S and the Model 670H share the same disk mechanism and ESDI device-level
interface. The differences are:

- The firmware of the Model 660S has been tuned for HP-UX.
- The SCSI channel is much faster than HP-IB.

The net effect of these two changes is dramatic. Whether the tuning of the Model 660S’
firmware or the faster channel makes the biggest difference, the performance choice for HP
Series 300 workstations is clearly SCSI.

SCSI vs. ESDI

As previously stated, ESDI is a device-level interface. Many SCSI disk drives use ESDI as
the device-level interface under SCSI. The difference between SCSI and ESDI is that
whereas ESDI defines a device controller, SCSI defines an interface bus. Because SCSI has
more intelligence than ESDI, it has more overhead. SCSI does some of the work that the
central processor would do for an ESDI device. In some environments moving intellegence
from the CPU to the controller does little good. For example, PC’s often perform better
with an ESDI drive than with a SCSI drive, at least in a single drive configuration running a
single-tasking operating system (DOS). The reason is that the added overhead of decoding
the SCSI commands has a greater effect than the higher availability of the CPU. In the DOS
environment the CPU cannot work on other tasks in the background. However, when a
computer runs a multi-tasking operating system and uses multiple drives, SCSI will
outperform ESDI.

The SCSI standard allows a device to disconnect from the bus during long operations such as
formatting, seeking, and tape positioning. The added availability of the SCSI bus as a result
of the disconnect/reconnect feature gives SCSI an advantage over ESDI. Again, the
difference between the two is small for single drive configurations. However, when multiple
devices share the same bus, the throughput of the SCSI system is much greater than for the
ESDI system. Figure 4 shows the results of several sequetial write benchmarks that were
executed on an 80386-based PC. The sgnificance of the slide is not the relative performance
of the SCSI and ESDI drives tested. The significance of this data is what happens as more
disks are added. Notice that the throughput of the SCSI bus increases dramatically as more
disks are added. The ESDI channel also shows some improvement, but not nearly as much
as the SCSI channel.

In choosing between an ESDI interface and a SCSI interface, the main questions are these:

1) Will the computer be used in a single-user-single-task, single-user-multiple-task, or
multiple-user-multiple-task environment? As more processes and users access the disk(s),

2005-7

SCSI1 will
give better

performanc Performance Of ESDI VS. SCSI

;‘;'l‘)aln Configuration Tested
2) will 1 SCSI 2 SCSI 1 ESDI 2 ESDI
other types N 1 BB
of Ka‘ggoo per Second

peripherals
be used?
Many 90
different
types of

devices are 8o
available
that have o}
an
embedded
SCS1 60
interface.
It is 50 :
possible to Write

have an Test Confiquration: 80386-based PC running SCO Xanix

FSDI Source: MIPS Magazine, June 1989
interface on

a tape
drive, but ~ Figure 4

none are - .

available. On the other hand, many different vendors offer SCSI peripherals, including 8
MM tape, 4 MM tape, 1/4" tape, plotters, CD-ROM, rewritable optical,
write-once-read-many (WORM), solid-state disk, and even printers.

SCSI vs. IPI

One of the main differences between SCSI and IPI is that while SCSI is a peer-to-peer bus,
IPI is a master-slave bus. The IPI interface is really a hierarchy set of interfaces. IPI-0
defines a 16 bit parallel cable IPI-1 defines a communication protocol. Together IPI-1 and
IPI-2 define a device-level interface with the nearly the same characteristics as ESDI and the
SCSI hardware specification. IP1-3 defines a high level interface similar to full SCSI. Most
of the IPI systems sold connect to IBM mainframes.

IPI-2 has a transfer rate of ten Mbytes per second, the same as fast SCSI-2, making it a good

choice where fast 1/0 is needed. One of the drawbacks of using IPI-2 or 3 on a workstation
is that IPI disks tend to be much more expensive than SCSI disks because almost all of the

2005-8

IPI disks available are 8" or larger and are dual ported (they have two read and write heads).
In addition, no other peripherals are available that use the IPI interface. If other peripherals
like a tape drive are needed, another interface card must be purchased. Backup to tape
requires another interface. For some machines, this may not make a differennce. If the
machine in question happens to be a large file server, then putting a tape on the same
interface as the disks will probably cause a degradation in performance while the tape is
running.

On the other hand, a disk interface that cannot support tape is not a good choice for a
standalone workstation. A workstation on a Local Area Network (LAN), however, can
access a tape anywhere on the LAN regardless of its interface.

The IPI interface is best suited for large servers and mainframes. The high cost is justified
by very high throughput dual-ported eight inch disks. However, multiple smaller disks on a
SCSI-2 interface may give equal performance at a lower cost per Mbyte, especially in a
random server environment, where I/O’s per second are more important than Mbytes per
second. The larger number of spindles would allow concurrent seeks, which are very
important to performance in a random multi-user environment.

Summary

Standards are becoming more and more pervasive. The SCSI interface is becoming the
standard peripheral interface for Unix-based workstations. Many manufacturers produce
mechanisms with embedded SCSI controllers, and as the SCSI standard becomes more tightly
defined, incompatibilities among SCSI devices will decrease. SCSI is ideally suited to the
workstation environment for these reasons:

- Many different types of devices are being produced with an embedded SCSI
controller. Users who have a SCSI interface will be able to make use of them.

- The SCSI bus has high throughput. As wide and fast SCSI products become
available, the performance of multi-disk systems can be expected to improve.

- SCSI is better adapted to a multi-user environment than ESDI, yet is more cost
effective than IPI.

- By using embedded SCSI controllers, manufacturers can reduce the amount of
integration work needed to bring a product to market.

2005-9

Appendix 1.

SCSI Commands Supported By The HP 9754xS Disk

COMMAND

DESCRIPTION

ACCESS LOG

EXECUTE DATA

FORMAT UNIT

INQUIRY

INTERFACE CONTROL

MANAGE PRIMARY

MEDIA TEST

MODE SELECT

MODE SENSE

READ
(6-byte)
(10-byte)

Vendor-unique command. Requests Target to retrieve
information from its maintenance log.

Vendor-unique command. Executes special code downloaded
via the WRITE BUFFER command.

Formats Target media into Initiator addressable logic blocks.
Defect sources include P, D, and G lists (no C list). When
formatting, it is recommended that the Initiator not include a D
list (FMTDAT=0). However, if the Initiator does include a D
list, it must be in the physical sector or bytes from index
format. The Target uses an interleave of 1 regardless of the
value in Interleave field.

Requests Target to send parameter information to the Initiator.
Additional Vital Product Data (VPD) may be supplied if
requested by the Initiator.

Vendor-unique command. Enables ESDI commands to be sent
to the disk drive processor.

Vendor-unique command. Used to manage the primary defect
list (P list). This command can delete the current P list, install
a new P list, or append defects to the current P list.

Vendor-unique command. Used to test the integrity of the disk
media.

Enables Initiator to specify media, logical unit, or device
parameters to the Target.

Enables Target to report its media, logical unit, or device
parameters to Initiator.

Requests Target to transfer data to Initiator.

Relative Addressing not supported in extended
(10-byte) format (REL=0).

2005-10

READ BUFFER

READ CAPACITY

READ DEFECT DATA

READ HEADERS

READ FULL

REASSIGN BLOCKS

REFORMAT TRACK

RELEASE

REQUEST SENSE

RESERVE

REZERO UNIT

Used with WRITE BUFFER command to test the Target’s data
buffer. Recommend executing RESERVE command to
guarantee data integrity.

Enables Initiators to request information regarding the capacity
of a logical unit. Use of PMI bit supported. Relative
Addressing not supported (REL=0).

Requests Target to transfer media defect data to Initiator.
Target returns P, G, or P+G lists in physical sector or bytes
from index format.

Vendor-unique command. Requests Target to read all the
headers on the addressed track and return the requested number
of bytes of header information.

Vendor-unique command. Requests Target to return the header,
data field and ECC bytes of one physical sector.

Requests Target to reassign defective logical block to an area on
logical unit reserved for this purpose. It is recommended that
the defect list contain only one defect location per command.

Vendor-unique command. Formats a single track. If HS bit is
0, then it uses normal default header information. If the HS bit
is 1, the supplied header information is used for the track logical
address and flag bytes.

Release previously reserved logical units. Third-Party Release
supported. Extent Release not supported.

Requests Target to transfer sense data to the Initiator, including:
Sense Key (0-6,B,E), Additional Sense Code, Device Errors
(DERRORS), and Recommended Actions. The Bit Pointer and
Field Pointer fields are not used. Only the Extended Sense Data
format is supported.

Reserves logical units for use of Initiator. Unit and Third-Party
Reservations are supported. Extent Reservation are not
supported.

Requests Target to perform a recalibrate and then to seek to
logical address 0.

2005-11

SEEK

SEND DIAGNOSTIC

SPECIAL SEEK

START/STOP UNIT

TEST UNIT READY

VERIFY

WRITE
(6-byte)
(10-byte)

WRITE AND VERIFY

WRITE BUFFER

WRITE FULL

Requests Target to seek to a specified address. (6-byte)
Target returns GOOD status when seck is complete. (10-byte)

Requests Target to perform specified diagnostic tests. Self-test
is supported. If self-test fails, Check Condition status indicates
that results are available via REQUEST SENSE command.

Vendor-unique command. Requests Target to leave the disk
drive selected after execution of a seek. Allows for special
testing at the seck address.

Requests Target to enable or disable the logical unit for further
operations. Using the immediate bit on START is supported,
but not recommended.

Checks Target spindle for proper speed. Target returns GOOD
status if drive is up to speed.

Requests Target to verify the data written on the media by
performing a selectable ECC check or a byte compare. Relative
addressing not supported. (REL=0).

Requests Target to write the data transferred
by the Initiator to the media. Relative
Addressing supported in 6-byte format.
Relative Addressing not supported in extended
(10-byte) format (REL=0).

Requests Target to write the data transferred by the Initiator to
the media, then do an ECC verify of the data that was written.
Relative addressing not supported. (REL=0, BYTCK =0).

Used to test Target’s data buffer or download code. To avoid
possible data corruption, it is recommended that a RESERVE
command be executed prior to the WRITE BUFFER command.

Vendor-unique command. Requests Target to write one

complete physical sector, including header, data, and ECC
fields.

2005-12

Paper 2007
Referential Integrity in ALLBASE/SQL

Amelia Carlson
Hewlett-Packard Company
19111 Pruneridge Avenue

Cupertino CA 95014
(408) 725-8900
5/7/91

Abstract

Integrity constraints are restrictions placed upon tables in a database which limit the legal
values of columns in the tables. Two very important types of constraints are the unique
constraint and the referential constraint. A unique constraint is used to prevent duplicates in
columns, and referential constraints are used to control the values in a table based upon values
in another table (or other columns in the same table).

In the past, applications have enforced such constraints manually. ALLBASE/SQL introduces
this functionality to allow database designers to ensure that data integrity is never violated in
any application, and to inform applications of attempts to violate constraints.

This paper discusses a method of introducing integrity constraints into a database schema,
and shows the benefits this provides to the application writer. This paper targets database
designers and application developers.

introduction

In today’s applications, unique and referential constraints are being enforced in applications.
With ALLBASE/SQL Release E, these constraints can instead be placed in the database
schema and enforced by the database.

A unique constraint requires that each row has a unique value for the unique constraint
columns. It enforces the same uniqueness as a unique index does today. However, unique
constraints require that none of the unique key columns allow null values. This is to permit

a referential constraint to reference the unique constraint columns. Unique constraints are
refered to as keys; one unique constraint in a table can be the primary key, and the others are
candidate keys.

A referential constraint requires that the referencing columns in each row have matching
values in the referenced table's referenced columns. The referencing columns are columns in
the table which defines the referential constraint. The referenced columns are columns in
the table being referenced. The referenced columns must be unique constraint columns in a

Referential Integrity in ALLBASE/SQL Paper 2007 1

unique constraint in the referenced table. Referential constraints permit nulls to exist in the
referencing columns. If a referencing column contains a null value, then that row does not
reference any row of the referenced table. Referential constraints are refered to as foreign
keys.

Example Schema

This paper will introduce constraints using tables from the ALLBASE/SQL sample database.
The sample database comes with the ALLBASE/SQL product. On HP-UX, it is located in

/usr/lib/allbase/hpsql /sampledb. On MPE/XL, it is located in SAMPLEDB.SYS. The tables
that will be considered are listed with their columns. NOT NULL columns are listed as such.

u PurchDB.Parts (PartNumber NOT NULL, PartName, SalesPrice)

® PurchDB.Inventory (PartNumber NOT NULL, BinNumber NOT NULL, QtyOnHand,
LastCountDate, CountCycle, AdjustmentQty, ReorderQty, ReorderPoint)

® PurchDB.SupplyPrice (PartNumber NOT NULL, VendorNumber NOT NULL,
VendPartNumber NOT NULL, UnitPrice, DeliveryDays, DiscountQty)

® PurchDB.Vendors (VendorNumber NOT NULL, VendorName NOT NULL, ContactName,
PhoneNumber, VendorStreet NOT NULL, VendorCity NOT NULL, VendorState NOT
NULL, VendorZipCode NOT NULL, VendorRemarks)

& PurchDB.Orders (OrderNumber NOT NULL, VendorNumber, OrderDate)

s PurchDB.Orderltems (OrderNumber NOT NULL, ItemNumber NOT NULL,
VendPartNumber, PurchasePrice NOT NULL, OrderQty, ItemDueDate, ReceivedQty)

The indexes created on these tables are:

s UNIQUE INDEX PartNumlIndex ON PurchDB.Parts (PartNumber)

s CLUSTERING INDEX PartToNumIndex ON PurchDB.SupplyPrice (PartNumber)

u INDEX PartToVendIndex ON PurchDB.SupplyPrice (VendorNumber)

= UNIQUE INDEX VendPartindex ON PurchDB.SupplyPrice (VendPartNumber)

s UNIQUE INDEX VendorNumIndex ON PurchDB.Vendors (VendorNumber)

= UNIQUE CLUSTERING INDEX OrderNumIndex ON PurchDB.Orders (OrderNumber)
s INDEX OrderVendIlndex ON PurchDB.Orders (VendorNumber)

CLUSTERING INDEX OrderltemIndex ON PurchDB.Orderltems (OrderNumber)

s UNIQUE INDEX InvPartNumIndex ON PurchDB.Inventory (PartNumber)

This paper will show how to recognize the constraints enforced on these tables and how to
develop a schema including those constraints.

2 Paper 2007 Referential Integrity in ALLBASE/SQL

Application level constraint enforcement
There are three things to consider when examining an existing database for constraints.
= Unique indexes point toward possible unique constraints.

= Application programs may contain validation procedures for checking that user input
satisfies some conditions before placing it in the database. These checks may point to
unique or referential constraints.

@ Ad-hoc queries which are often performed may point to unique or referential constraints.

We will consider each of these in turn, with the goal of converting the database to use schema
defined constraints in place of existing indexes, application level constraint enforcement, or
implicit unenforced constraints.

Unique indexes

The columns in a unique index are a good candidate for a unique constraint. The creation of
a unique constraint means that the index can be eliminated; it is possible to create a unique
constraint with the CLUSTERED or HASH options, so that performance gained from the
unique index will not be lost with its transferral to being a unique constraint.

In order for a unique index to be transformed into a unique constraint, the database designer
must ensure that all columns in the unique index are declared NOT NULL, as all columns in a
unique constraint must be declared NOT NULL.

In our example, we see that several unique indexes exist:
m PartNumIndex

= VendPartIndex

= VendorNumIndex

= OrderNumIndex

» InvPartNumlIndex

Further, each column in each index was declared NOT NULL. We will thus have five unique
constraints in the PurchDB database, replacing the five unique indexes.

Since the referenced columns of referential constraints need to be unique constraint columns in
an existing unique constraint, other unique constraint may be identified later.

Application programs

Because there was no way to define referential constraints in the ALLBASE/SQL database
schema before ALLBASE/SQL Release E, constraints had to be enforced with user
applications. Typically, the database designer may have written up a list of requirements
which all application developers had to follow.

So, the application programs for accessing a given database may contain certain data
validation steps for checking that users’ data satisfies the database designer’s requirements.
We can examine the application programs, or, if available, the database designer’s list of
requirements, to look for unique or referential constraints.

A requirement for a unique constraint might be phrased in the list as “values
placed in PurchDB.Parts.PartNumber must be distinct” or “values placed in
PurchDB.Vendors.VendorNumber must not duplicate any existing value in

Referential Integrity in ALLBASE/SQL Paper 2007 3

PurchDB.Vendors.VendorNumber”. These two phrases suggest for our example that
a unique constraint should be placed on PurchDB.Parts.PartNumber and another on
PurchDB.Vendors.VendorNumber.

A requirement for a referential constraint might be phrased as “a value cannot be placed

in PurchDB.Order.VendorNumber without verifying that the value is a valid vendor
number”. Deciding whether a vendor number is valid may be stated (“valid vendor numbers
are those values in PurchDB.Vendors.VendorNumber™) or may be left to the application
developer to deduce. For our example, this would represent a referential constraint on
PurchDB.Order.VendorNumber, with PurchDB.Vendors.VendorNumber being the referenced
column. This requires that a unique constraint exist on PurchDB.Vendors.VendorNumber.

Other phrases in the database designer’s documentation that would suggest referential
constraints are:

1. Values cannot be removed from PurchDB.Parts.PartNumber without making sure that no
order or inventory currently includes that part number.

2. Values in PurchDB.Orderltems.VendPartNumber must identify existing vendor part
numbers. .

3. Values in PurchDB.Vendors.VendorNumber cannot be altered if there is any existing
pricing or order for that vendor.

These would map to several referential constraints.

The first item points to several referential constraints with PurchDB.Parts.PartNumber as

the referenced column. This is because the SupplyPrice and Inventory PartNumber columns
are based on the PartNumber value defined in the Parts table. The referencing column

in each case would be where PartNumber appears in the other tables, with one referential
constraint for each of PurchDB.Inventory.PartNumber and PurchDB.SupplyPrice.PartNumber
to PurchDB.Parts.PartNumber.

The second item points to a referential constraint from
PurchDB.Orderltems.VendPartNumber to PurchDB.SupplyPrice.VendPart Number.

We can identify the referenced column ejther from other information in the database
designer’s list, or by recognizing that we have defined PurchDB.SupplyPrice.VendPartNumber
as a likely unique constraint from examining the unique indexes.

The third item, similar to the first, points to several referential constraints with
PurchDB.Vendors.VendorNumber as the referenced column. The referencing constraints would
exist on each of PurchDB.SupplyPrice.VendorNumber and PurchDB.Orders.VendorNumber.

4 Paper 2007 Referential integrity in ALLBASE/SQL

The database designer’s requirements list may not always be available, however. In this

case, the application programs can be examined for validation checks of user data. If we
examine the sample programs, we find some validation checks. The ALLBASE/SQL sample
database C program cex9 (also available in Cobol as cobex3 and in Pascal as pasex9) contains
validation checks for Vendor data. Specifically, it contains the code segments shown in Figures
1 and 2.

int ValidateVendor() /+* Function that ensures vendor number is valid */
{
BeginTransaction();

printf("\n Validating VendorNumber");
EXEC SQL SELECT VendorNumber
INTO :VendorNumber
FROM PurchDB.Vendors
WHERE VendorNumber = :VendorNumber;

switch (eqlca.sqlcode) {

case OK: EndTransaction();
VendorOK = TRUE;
break;

case NotFound: EndTransaction();
printf£("\n No vendor has the VendorNumber you");
printf£("\n specified!");
VendorOK = FALSE;
break;

default: SQLStatusChaeck();
EndTransaction();
Vendor0OK = FALSE;

. break;
} /+ End switch #/
} /+* End ValidateVendor Function #/

Figure 1.
This code segment verifies that a given vendor exists when an order Is being created for that
vendor.

The code segment in Figure 1 shows that an order will not be created unless the vendor
number is found in the table PurchDB.Vendors. This can be represented with a referential
constraint from PurchDB.Orders.VendorNumber to PurchDB.Vendors.VendorNumber.

Referentlal Integrity in ALLBASE/SQL Paper 2007 5

int ValidatePart() /# Function that ensures vendor part number is valid #/
{

BeginTransaction();

printf("\n Validating VendPartNumber");
EXEC SQL SELECT VendPartNumber
INTO :PartSpecified
FROM PurchDB.SupplyPrice
WHERE VendorNumber = :VendorNumber
AND VendPartNumber = :PartSpecified;

switch (sqlca.sqlcode) {

case OK: EndTransaction();
PartOK = TRUE;
break;

case NotFound: EndTransaction();

printf("\n The vendor has no part with the number");
printf("\n you specified!");
PartOK = FALSE;
break;

default: SQLStatusCheck();
EndTransaction();
PartOK = FALSE;
break;

} /* End switch #/

} /* End ValidatePart Function =/

Figure 2.
This code segment verifies that a given vendor part number exists for a glven vendor when that
vendor part number is added to an order.

The code segment in Figure 2 shows that an item in an order will not be created unless

the vendor number and vendor part number are found in the table PurchDB.SupplyPrice.
This suggests a referential constraint from PurchDB.OrderItems.VendPartNumber to
PurchDB.SupplyPrice.VendPartNumber. Notice that there is no VendorNumber column in
Orderltems, so that column cannot be included in the referential constraint. (This type of
constraint, where values from two tables are combined to reference another value in another
table, cannot be fully represented via referential integrity; a more general integrity mechanism
such as the ANSI SQL3 draft TRIGGER feature is needed.) The referential constraint, then,
gives us a first approximation on the requirements that the vendor number and vendor part
number co-exist in the SupplyParts table.

Examining the database designer’s application requirements documentation and the existing
applications uncovers several referential constraints that can be represented in the database
schema.

6 Paper 2007 Referential Integrity in ALLBASE/SQL

Quexies

The database will also be subject to access through ad-hoc queries. These queries may further
show implicit constraints. We can examine these possibilities without a record of the ad-hoc
queries made on the database. A typical database will contain indexes created to improve the
access time of queries. These indexes point to common access paths. If we examine closely
the index columns, we can deduce the nature of the queries and of the constraints they might
assume.

These constraints might also be listed in a document written by the database designer as
constraints the data is expected to maintain, although they were not explicitly defined in the
schema.

We already examined the unique indexes in a previous section, to determine the unique
constraints. There are four other indexes on the example tables which are not unique.

These are

» PartToNumlIndex
n PartToVendIndex
» OrderVendIndex

n OrderltemIndex

The first index, PartToNumIndex, is on the PartNumber column of SupplyPrice. This
suggests that the PartNumber column is frequently accessed. Further, we know there is a
unique constraint on PurchDB.Parts.PartNumber. It is likely that some of the ad-hoc queries
are joins between these two tables on this column. A view included in the sample database,
PurchDB.Partlnfo, supports this idea. So, we would expect that the PartNumbers in
SupplyPrice are a subset of the PartNumbers in Parts. A referential constraint between these
two tables on these columns will enforce this constraint within the database. Because the
referential constraint creates a constraint index on the referencing columns, we will no longer
require the index PartToNumIndex. The syntax for creating constraints allows us to declare
the constraint index as CLUSTERING so that this attribute of the old index is not lost.

Similarly, PartToVendIndex suggests that the vendor numbers in SupplyPrice should

be a subset of those in Vendors. A referential constraint will enforce this condition

and replace the index PartToVendIndex. OrderVendIndex suggests a referential

constraint from PurchDB.Orders.VendorNumber to PurchDB.Vendors.VendorNumber.
OrderltemIndex suggests a referential constraint from PurchDB.Orderltems.OrderNumber to
PurchDB.Orders.OrderNumber.

Examining the typical ad-hoc queries through the indexes on the database has thus uncovered
several more referential constraints that we can represent in the database schema.

introducing constraints in the schema
These are the constraints we have found in examining a portion of the sample database:
» Unique constraints

o PurchDB.Parts.PartNumber

o PurchDB.SupplyPrice.VendPartNumber

o PurchDB.Vendors.VendorNumber

Referential Integrity in ALLBASE/SQL Paper 2007 7

o PurchDB.Orders.OrderNumber
o PurchDB.Inventory.Part Number

Referential constraints

o PurchDB.Inventory.PartNumber references PurchDB.Parts.PartNumber

© PurchDB.SupplyPrice.PartNumber references PurchDB.Parts.PartNumber

o PurchDB.SupplyPrice.VendorNumber references PurchDB.Vendors.VendorNumber
o PurchDB.Orders.VendorNumber references PurchDB.Vendors.VendorNumber

o PurchDB.Orderltems.VendPart Number references
PurchDB.SupplyPrice.VendPartNumber

o PurchDB.Orderltems.OrderNumber references PurchDB.Orders.OrderNumber

To define these constraints in the database and retain the original index CLUSTERING
characteristics, we would use these CREATE TABLE statements:

CREATE PUBLIC TABLE PurchDB.Parts

(PartNumber CHAR(16) NOT NULL
PRIMARY KEY CONSTRAINT PartNumPK,

PartName CHAR(30),

SalesPrice DECIMAL(10,2))

IN WarehFS;

CREATE PUBLIC TABLE PurchDB.Inventory
(PartNumber CHAR(16) NOT NULL
PRIMARY KEY CONSTRAINT PartNumPK
REFERENCES PurchDB.Parts (PartNumber)
CONSTRAINT InvToPartFK,

BinNumber SMALLINT NOT NULL,
QtyOnHand SMALLINT,
LastCountDate CHAR(8),
CountCycle SMALLINT,
AdjustmentQty SMALLINT,
ReorderQty SMALLINT,
ReorderPoint SMALLINT)
IN WarehFS;

CREATE PUBLIC TABLE PurchDB.Vendors

(VendorNumber INTEGER NOT NULL
PRIMARY KEY CONSTRAINT VendorNumPK,

VendorName CHAR(30) NOT NULL,

ContactName CHAR(30),

PhoneNumber CHAR(1S5),

VendorStreet CHAR(30) NOT NULL,

VendorCity CHAR(20) NOT NULL,

VendorState CHAR(2) NOT NULL,

VendorZipCode CHAR(10) NOT NULL,

VendorRemarks VARCHAR(60))

IN PurchFS;

8 Paper 2007 Referential Integrity in ALLBASE/SQL

CREATE PUBLIC TABLE PurchDB.SupplyPrice
(PartNumber CHAR(16) NOT NULL
REFERENCES PurchDB.Parts (PartNumber)
CONSTRAINT PartToNumFK,
VendorNumber INTEGER NOT NULL
REFERENCES PurchDB.Vendors (VendorNumber)
CONSTRAINT PartToVendFK,

VendPartNumber CHAR(16) NOT NULL
PRIMARY KEY CONSTRAINT VendPartNumPK,
UnitPrice DECIMAL(10,2),
DeliveryDays SMALLINT,
DiscountQty SMALLINT)
CLUSTERING ON CONSTRAINT PartToNumFK
IN Purchfs;

CREATE PUBLIC TABLE PurchDB.0Orders

(OrderNumber INTEGER NOT NULL
PRIMARY KEY CONSTRAINT OrderNumPX,
VendorNumber INTEGER

REFERENCES PurchDB.Vendors (VendorNumber)
CONSTRAINT OrderVendFK,

OrderDate CHAR(8))
CLUSTERING ON CONSTRAINT OrderNumPK
IN OrderFs;

CREATE PUBLIC TABLE PurchDB.0Orderltems
(0rderNumber INTEGER NOT NULL
REFERENCES PurchDB.0rders (OrderNumber)
CONSTRAINT OrderltemFK,
ItenNumber INTEGER NOT NULL,
VendPartNumber CHAR(16),
PurchasePrice DECIMAL(10,2) NOT NULL,

OrderQty SMALLINT,
ItemDueDate CHAR(8),
ReceivedQty SMALLINT)

CLUSTERING ON CONSTRAINT OrderItemFK
IN OrderFs;

Since each of these constraints causes the creation of a constraint index, the original

indexes created on these tables are now superfluous. We have made the constraint indexes
CLUSTERING wherever the original index on that column was clustering. The constraints
have been given names similar to the names of the indexes they replace; our convention is to
use the suffix PK for primary keys and FK for foreign keys.

Referential Integrity in ALLBASE/SQL Paper 2007 9

Effects of constraints on applications

Other constraints may suggest themselves. For example, PurchDB.Orderltems does not have a
primary key defined. However, we must trade off the creation of a constraint with its impact.
Do we wish to have a primary key on PurchDB.Orderltems? Do we wish to pay the overhead
of the constraint index this would entail? Since no unique index was originally created on this
table, the answer to these questions appears to be “no.”

Now that we have created the schema with the desired constraints, we can take advantage of
the constraints in application programs. The statements affected by the creation of constraints
are INSERT, UPDATE, and DELETE.

INSERT

When an INSERT is performed on a table containing a unique constraint, that action may
violate the uniqueness of the constraint. Such inserts are not permitted by the constraint.

When an INSERT is performed on the referencing table of a referential constraint, it requires
that the referenced table contain the value being inserted into the referencing table. This is
because the referencing row will reference the row that matches it in the referenced table. If
no such row exists, the insert will not be permitted by the constraint.

When an INSERT is performed on the referenced table of a referential constraint, the
referential constraint cannot be violated. This action creates a new row in the referenced table
that will not yet be referenced by any row in the referencing table. Thus, INSERTs into the
referenced table cannot violate referential constraints.

UPDATE

When an UPDATE is performed on a table containing a unique constraint, the final result
must leave all rows unique on the unique constraint columns. If it does not, the update will
not be permitted by the constraint.

When an UPDATE is performed on the referencing table of a referental constraint, it requires
that the referenced table contain the modified values in the referencing table. This is because
the referencing rows will no longer reference the rows containing their old values, but will
reference rows containing their new values. If no such rows exist, the update will not be
permitted by the constraint.

When an UPDATE is performed on the referenced table of a referential constraint, if it
changes values in the referenced columns, then the rows whose values change cannot be
referenced by any row in the referencing table. Such an update would cause the referencing
rows to no longer have a row to reference, so it would not be permitted by the constraint.

DELETE

When a DELETE is performed on a table containing a unique constraint, the unique
constraint cannot be violated. This action removes rows from the table, and thus cannot
create a duplicate row. Thus, DELETESs cannot violate unique constraints.

When a DELETE is performed on the referencing table of a referental constraint, the
referential constraint cannot be violated. A DELETE removes rows from the table, and thus
cannot create a new row in the referencing table that needs to match a row in the referenced
table. Thus, DELETEs {rom the referencing table cannot violate referential constraints.

10 Paper 2007 Referential Integrity in ALLBASE/SQL

When a DELETE is performed on the referenced table of a referential constraint, then the
rows deleted cannot be referenced by any row in the referencing table. Such a delete would
cause the referencing rows to no longer have a row to reference, so it would not be permitted
by the constraint.

Conclusion

In Codd’s twelve rules for relational databases, rule 10, “Integrity Independence,” requires
referential integrity. Up to now in ALLBASE/SQL, such integrity has had to be managed by
the applications. Beginning with Release E, ALLBASE/SQL now provides the features of
referential integrity at the database level.

Providing unique and referential constraints in the schema definition language centralizes
constraint definition to give greater application reliability and reduced development and
maintenance costs.

The examples presented in this paper have shown how to determine the constraints in existing
databases. These methods and more traditional database modeling techniques such as the
entity-relationship model can be used to determine the constraints that should be enforced in
a database schema.

Other constraints, such as check constraints on tables and views and general integrity
constraints like SQL3 triggers, will further enrich the database schema language in future
releases of ALLBASE/SQL.

Bibliography
ALLBASE/SQL Reference Manual
ALLBASE/SQL C Application Programming Guide

Batini, C., Lenserini, M., and Navathe, S.B., “Comparison of Methodologies for Database
Schema Integration,” ACM Computing Surveys, Vol. 18, No. 4, Dec 1986, pp. 323—364.

Codd, E. F., “Is your DBMS really relational?” ComputerWorld, 14 Oct 85.
Codd, E. F., “Does your DBMS run by the rules? ComputerWorld, 21 Oct 85.

Melton, Jim (editor), ISO ANSI Working Draft Database Language SQLS, X3H2-91-55, Mar
91.

Referential Integrity in ALLBASE/SQL Paper 2007 11

Paper # 2009

LAN Management; New Challenges and Choices
Russ McBrien
Hewlett Packard
100 Mayfield Ave.
Mt. View CA, 94043
408-691-5692

Changing Support Requirements

During the 1980s, mainframes and minicomputers were used for the "mission-critical’ and
important corporate applications. They were supported primarily by centralized MIS departments
with a great deal of concentrated expertise. People came to expect certain levels of up-time and
performance from the systems and applications on which their businesses depended.

In general, the following rule applied: the larger the system, the more critical the application and
the more comprehensive the support.

We at HP call this system-evel support. It is a set of expectations for performance and up-time for
the entire system. It stretches from user to CPU to networks, even telecommunication lines. And it
supports the business functions which directly affect revenue and decision-making.

By contrast, PCs, workstations and the LANS that connect them grew up in a decentralized fashion
They were purchased by individual departments in companies and usually run by an administrator
or other PC /workstation "enthuslast” who had other job responsibliities besides looking after the
computers.

Desktop PCs tended to support office functions such as word processing or spreadsheets. But
they were rarely involved In critical dally business operations. Departmental resources were
sufficient to deal with routine software, hardware and basic network administration tasks.

Workstations tended to be purchased by technical or engineering departments. Frequently there
were departmental “technical gurus® who tinkered with the newest software and hardware, and
took care of the networks, especilally while they were relatively small and local.

In general, the network management and support needs of these PC and workstation LANs were
satisfied with a fairly basic level of support. Centralized MIS departments were not interested or
did not have time to deal with local issues.

This began to change in the late 1980s. The industry began to experience important new
developments in the local area network arena. These developments are changing expectations
about local area networks and network management for the 1990s.

PCs and workstatlons are being linked into larger and larger local area networks at an accelerating
rate. PC and workstation LANS are not only growing, but they are growing in importance in the
nature of the tasks they perform in corporations, pushing into more important and “mission-critical*
applications. ’

2008-1

More and more companies are "down-sizing" specific applications by taking them off mainframes
and minicomputers, and running them on local area networks. Frequently these are client-server
environments where the desktop PC links via the LAN to a server (PC, mini, or mainframe) that
performs the “back-end" of computation intensive, database or communication applications.
These applications are frequently mission-critical. They are the revenue producing applications on
which a business depends for its operations; examples Include: telemarketing, financial trading,
insurance underwrlting, or customer service.

Today the size of the CPU is not the only indicator of customer requirements for network
management. As a result, managers must expect system-lgvel support for LANS. With mission

critical applications the buslness depends on system-level performance and up-time.
LANSs Bring New Support Challenges

Studies show that LAN up-time today is well below that of minis and shared systems. An Infonetics
study (1989) showed that the average network goes down over 23 times a year (twice a month)
and stays down for 5 hours . An average campus-wide LAN s disabled 6 percent of the time. It is
estimated that an average U.S. corporation loses approximately $3.5 million annually due to LAN
downtime.

LANSs frequently just evolved, rather than being designed and planned from scratch. Departments
went out and bought a wide variety of equipment and software, and LANSs just sprang up. LANs
involve users who have an active role in the LAN's performance and up-time. Because of the
traditional end-user independence assoclated with PCs and workstations, LAN administrators have
to work closely with the individual end users to support them. For example, equipment moves or
additions to the network involve users. Even when users just move their equipment around on
their desks, they can bring a network down. User errors and carelessness (e.g., forgetting
passwords, trashing files, disconnecting cables, printer parameter changes) also add to the
network management burden.

Most departments are unprepared to deal with the more complex network management issues.
Usually there is no established infrastructure for network support. LAN faults are often difficult to
fix because LANSs are dispersed throughout the company. When the local administrator is
inexperienced and the centralized MIS department is overworked and thousands of miles away,
the result is costly downtime and/or costly travel to fix network problems.

The Alternatives

Companies facing up to the growing need to deal with LANs effectively have several alternatives
for network management:

Companies can perform alf their network management in-house.
This provides the benefit of complete control over the management of the network and may
provide a percelved level of independence. It can also become a large and costly commitment,

involving the training of MIS and user departments. It means establishing procedures and setting
up dedicated personnel and providing network support tools at local and remote locations.

2009-2

A Gartner Group study shows that one dedicated full time person is required for every 40 nodes of
users (one for every 150 if not supporting applications). Typical salaries of such people range
between $25K and $50K per year.

Companies can out-source, or turn over their LANs to an external, third party to manage.

The benefits include worry-free network management and direct cost control. But other things
may become concerns including: cost-effectiveness, ioss of control over important areas of the
company’s business; the reputation and viability of the support provider; intemal personnel and
union concemns about eliminating jobs.

More and more companies are finding the answer in a balanced solution that is a gombination of
Internal and external support.But how do you find this right mix .

As a first step companies need to perform a step by step assessment of LAN management
requirements and the expense, both hard dollar costs and "soft” factors. To make an informed
decision about network management, companies must look at the following areas and perform a
rigorous cost-benefit analysis:

o WHAT functions must be performed to support the LAN environment.
o WHERE the support resources should reside.
o WHO will provide the support.

It is important that these questlons are addressed In this order.

WHAT?

This illustration breaks out the departmental portion of an integrated LAN. These same functions
could be applied to a much broader network application.

LAN Admensiration :faz':m Adminstratve Support | User Responsiities
Server PC C tousers| C
Dish management Suppor TS HW/SW inveniony Problem diagnosis
Penipheral configuration | Communcation Support contract admin.| info sharng
Server configuration Escalation process SW license admn. Foliow LAN rues
SW upgrades Ongong PC opt. HW/SW ordeting Teainng
Capacily planming New PC seiup Product champs
Setver backuphac. OA purchase plan Chent backup
Secunly PC serwnces Private file
Config. document Cheat sheel management
User backupirec. Usot Uamng
Pubhc User

management

Admen. document

A complete list of required support functions comes from exhaustive attention to the following
three areas:

o Technology
Standards
Tools
Vendors

o Users
Dynamic, changing needs.
Perpetual program review.
On-golng, open communications.

o Business Control Needs
Purchase Control
Inventory Control
Security Considerations
(Data and Physical)
Disaster Recovery

Past experiences shows that companies tend to do a reasonable job of understanding the needed
care and feeding of network technoloqy but, are weaker at identifying the user needs and business
requirements.

WHERE?

Support functions can be performed at departmental, campus or corporate levels. Network
managers must determine at which level the system support functions are most effectively
performed.

For most companles the direct and indirect costs of decentralized support are becoming
intolerable. As a result | have seen a strong trend toward centralized support. This makes a lot of
sense in that it leverages the scarce skllis, tools and knowledge required for complex LAN
management.

For example: A department of 30 users added a LAN using in-house, departmental support. The
LAN required 100 hours of set-up and 26 hours of planning at an internal cost of $18,500. In
addition an average of 85 hours per month is required for operations. In a project postmortem it
was determined that large economies of scale could be realized by managing all LANs on a site-
wide basis to leverage resources.

WHO?
In most cases, organizations implementing network capabilities attempt to reuse existing support

resources for the new complex environment. Simitar to navigating the seas without a compass,
this is a very costly mistake.

For example: While a departmental secretary may grow Into the role of "looking after” the LAN and
handle setting up new users or granting file access rights, he/she is not tralned or prepared for full
scale trouble-shooting, security, back-up or recovery on larger LANs. In the case of enterprise-
wide networks, the centralized techniclan may be thousands of miles away - resulting in costly
downtime, travel and repairs.

In-house/Departmental Network Support Personnel

The arguments for In house departmental staff are compelling. First is the famillarity in-house staff
have with the network. And MIS managers typically have the valuable large system expertise now
required to manage complex desktop computing environments. Second is the immediate
availabllity of internal staff during regular operating hours. Finally there is the strong motivation of
Internal staff to maintain the network at its peak.

These benefits must be balanced against the high start-up and tralning costs associated with
Internal staff. Additionally, qualified people are becoming scarce. There may not be sufficient
qualified personnel to meet all needs.

Total Outsourcing

The opposite to complete internal support is complete outsourcing of support. Outsourcing has
delivered real financial benefits to some firms. It allows them to concentrate on their main business
and devote their energies on staying competitive. It also provides these firms with the latest In
support technology without a large up-front investment.

But complete outsourcing does not guarantee cost effectiveness ; especially for companies with
large investments in tools and other network resources. Also, It is often too expensive for many
small organizations and might be seen as something of a security risk for companies that have
mission-critical applications on their networks.

Successful organizations will be those who carefully measure their in-house/departmental
capabilities against their business objectives before implementing a network support strategy.

ASSESS THE REAL COSTS

Once an organization has evaluated the What, Where and Who of LAN support, it must assess —
and really understand — the real costs. To find the right mix of support you must look at the cost
of in-house versus vendor-provided support - taking into account both the "hard® and "soft” costs
of internal support.

HARD COSTS
To achieve high quality internal support you must pay the price for high quality personnel. First are
the high start up costs. These come In the form of training and recrulting.. In one typical

departmenta! LAN implementation, a Network Planner, a Network Administrator and a Techniclan
were trained with total fees equaling $36,400.

2009-5

On-going costs are assoclated with salaries and benefits required by trained personnel and their
continuing education requirements. The foliowing are average annual personnel costs (Fully
loaded, includes benefits, overhead, etc.):

Data Communications Manager $100,000 - $150,000
Network Planner $90,000 - $120,000

Network Administrator $90,000 - $120,000
Technician $70,000 - $100,000

These are based upon an informal survey of Industry saiarles, using an index of 1.5 to determine
loaded values.

With self support you must also add in the cost of LAN management equipment and tools, both
remote and local, which can be high (e.g., $25K to $30K for protocol analyzer tools.) Typically
departments do not have the expertise or the resources for these sophisticated network
management tools.

A recent study by Nolan, Norton & Co. (Computerworld - 11/12/90) provides some real world
numbers for annual PC LAN cost projections. Hardware and Software purchase costs account for
30% of an organizations annua! LAN expenditures. The other 70% consists of training, support,
communications, etc.

To really understand the significance of these figures, one company used In the study over-shot
their annual LAN budget by $8.0 million. $4.0 million had been allocated for equipment without any
consideration for user and management needs.

SOFT COSTS

Next look at the 'Soft Factors’ involved in LAN support. This includes the availabllity of intemnal
staff for network management activities and internal tumover as network management experts are
recruited away (even within the same company.) Look at the users and the applications they use;
determine what uptime and performance is required; include lost revenue, productivity and
opportunity costs in the calculations.

Calculate the cost of downtime. A study conducted by the market research firm infonetics, found
that LANSs function properly 94 percent of the time. The other 6 percent - downtime - can cost a
large corporation millions in losses each year. For example, a large HP customer recently saved
over one million dollars per year by raising their LAN avallability number by 1 percent (from 95 to
96 percent). Consider how important your applications are and the cost of network downtime
becomes very real.

Finally look at economies of scale: a support provider can pass on the saving achleved from the
economies of scale associated with handling LAN management (n many different sites. Large
vendors like HP already provide support from dispersed field locations around the world. Look for
areas where you have low economies of scale. These are good opportunities for out-sourced
support.

A firm must look closely at Its business strategy and make a decision where to focus its information
systems resources. Some companies decide that they must focus elsewhere, and let experts
handle the specialized areas of network management; others decide that developing such
expertise in-house is a part of thelr competitive advantage and worth the Investment.

THE RIGHT MIX

99 percent of organizations with LANs are not prepared to address all of their support needs
through elther a total In-house or outsourced support solution.

In order to achieve optimized networks, companies must find a more realistic, balanced support
solution that includes the right mix of in-house and extemal support.

For example: One HP customer with PC LANs linked to minicomputers at muitiple sites has
selected a support mix in which the internal staff handles problems that are easlly resolved in less
than an hour. More difficult problems are outsourced to HP. This avolids tieing up the staff in
lengthy trouble-shooting activities.

Finding the right mix requires on-going analysis of an organization’s business objectives and “real”
network costs. Because of this, the most important component of most support program is the
network manager. She or he Is the single point of contact within the organization to oversee
planning and communication activities. This person is responsible for continually assessing the
“What, Where and Who" of system level network support in order to ensure maximum
departmental productivity and efficlency. It's a tough job that it is only getting more complex.
indicators of Success

In reviewing many service arrangement | have notlced several common success factors. These
exist across Industries and are associated with successful system level network support programs.

o Understanding the What/Where/Who of the network management.
o On-going analysis of the support functions.

[Clear employee and management communication.

o Clear expectations on performance and costs.

[} An understanding of the scope of external se_rvbes.

0 Interaction between internal and external support components.

o Clearly defined internal staff roles.

] Support plans based on medium to long-term strategies - not short-term needs.

2009-7

LANs Are Changing, You Need to be Prepared

Today, LANs address important business needs and are becoming more complex. It can take up
to 35 different vendors to implement a single eight node network. Companies that want to be
successful with distributed LAN applications must work with their vendors to look closely at the
alternatives for LAN management. LAN management technology and products are only a part of
the picture.

Businesses must select the support solution that will help thelr business grow in the face of rapid
change and build on existing investments. There is no right or wrong answer — depending on
company needs, cost-effective support can fall anywhere on a spectrum from self-sufficiency to
vendor-reliance.

Troubleshooting LANs

Sam Sudarsanam
Applications Support Division
ewlett-Packard Company
100 Mayfield Avenue
Mountain View, CA 94043 USA

Introduction

Today, many businesses are using personal computers (PCs) and engineerin,

workstations to process data. Most often the data processing is done in a Locaﬁ
Area Networking (LAN) environment. Increasingly, iANS are being recognized as
a strategic resource for business operations. E-mail, Electronic Data Interchange
§EDI), and distributed databases are some of the essential LAN-based applications
or businesses, and it is very important to optimize the network performance. In
order to accomplish this strategic function, the network manager requires
alljapropriate skills and tools to operate and maintain a LAN. This palper focuses on
the common PC and workstation LAN problems and specific tools that can be
helpful for effective network management.

Real Story

On May 13 1986, the London Stock Exchange in England crashed. This crash is
commonly known as "Black Thursday.” It was not the normal stock exchange crash
that people associate with stock exchanges. Instead it was a PC Local Area Network
crash. Just before the crash, a PC was installed to support more than 30,000
transactions per day on the options market. On "Black Thursday" all the
transactions were lost. The cause of this crash is still a mystery and no one was able
identify the :ﬁccific reason for the crash. Today, this PC has been replaced by
a larger Ethernet local area network. is real story illustrates both the

vulnerability of a LAN and the dependency of the businesses on LAN for major data
processing activity.

LAN Downtime

In 1989 Infonetics, Inc. did a study on the costs associated with LAN downtime.
According to this study an average network goes down totally or partially about 23
times a year. Each time, the network is down for about five hours. 'lyaking into
consideration the lost productivity of the business, the study reported that on the
average, the companies lose $3.48 million a year. Based on the study and their own
data, Infonetics, Inc. has determined the average cost per hour of network downtime
to be $30,000. Obviously it is very important to ke};gl the LAN running as smoothly
as possible to keep the business activities alive. is means that the responsible
network man_ﬁlers must be ready and able to detect and rectify problems whenever
they occur. e network managers need to be skilled and they need to follow a
sequence of diagnostic procedures that will help isolate and correct the LAN

Troubleshooting LANs
2010-1

problems. By following the procedures and asking a few questions, a network
manager can narrow the scope of the investigation. In some situations, by using
some of these procedures in a proactive manner some future LAN problems can be
avoided. The followini rocedures can isolate the causes of current problems and
help prevent future problems.

Define the problem: This grocedure may appear to be an obvious step but it is the
first step to isolate the problem. Most often users of a network report that they are
not able to communicate from their computer. To define the users problem, the
network manager needs to ask a few specific questions, e.g., what the nature of the
problem is and when exactlﬁ the problem has occurred.. The information gathered
can either help recognize the cause of the problem or provide a basis for further
problem isolation efforts.

Identify the symptoms: In a complex LAN environment a thorough examination of
a the symptoms may provide the required information to isolate the problem.
Determining the symptoms by identifying the occurrence of the problem -- whether
the problem is occurring on a random or recurring basis. The network manager
needs :(o correlate the symptoms to the hardware or software component of the
network.

Use hardware indicators: Most LAN hardware components are equipped with a set
of alert lights (indicators). Most of the time, noting whether a light 1s on or off can
be an indicator.

Use built-in diagnostics: Most LAN devices contain built-in diagnostics that can be
used to isolate tproblems. Some of these diagnostics range from a self test to
different types of loopback tests.

Know the interface requirements: The key to identifying interface problems is to
understand the interface requirements in a LAN. l-gor example, a PC or a
workstation may be connected to a twisted pair hub with a RJ-45 modular plug. The
net\y;)rlé manager needs to make sure that the interface incompatibilities can be
rectified.

Examine event reports: Some of the LAN components are equipped with software
utilities that generate reports. These reports can provide valuable information on
the exact problem -- when it occurred and what was the nature of the problem.

Currently there are a variety of tools available to network managers to troubleshoot
LANs. Some tools help monitor an over all LAN on a daily basis and some of the
tools help in isolating specific media, devices, or application problems.

Common Problems

There are four types of problems that commonly bother network managers:
hardware problems, addressing problems, configuration problems, and network
congestion.

In LANs most of the problems are caused by faults in the physical media: the cables
and interface connectors.

Troubleshooting LANs
2010-2

The following are some of the Hewlett-Packard Company tools that are very
valuable to network managers to troubleshoot LAN problems.

4 P r

; HP 4972A
server client
. PC

Figure 1

The HP 4972A is a protocol analyzer for IEEE 802.3 and StarLAN local area
networks. The analyzer captures and displays frames integral to communications
between networked systems and devices. Messages can also be transmitted in order
to test system responses, identify active stations, or simulate heavy loaded network
conditions. The HP 4972A resolves problems ?uickly and provides fundamental
information for optimizing networked systems. Its many powerful features can be
used to

* Resolve communication problems and verify solutions.

* Identify addressing problems and system incompatibilities.

* Analyze the behavior and performance of networked systems.
* Fully test products prior to network installation.

In order to check for errors on the LAN, the HP 4972A performance analysis
arﬂplication can be used by the network managers. The following summary
information is displayed on the HP 4972A.

Troubleshooting LLANs
2010-3

NETWORK SUMMARY

38 Apr 81 16:21:58

Ut:lization and Throughput Frame Parameters

(from siart)
Current Average Paak Average Size 183 bytes
B ettt Maximum Size 1,514 pytes
0.05 9.27 34.52 % Minimum Size 60 bytes
s rad 3,425 kbits/e Total Frames 474,010
8 17 429 frma/s Total Bytes 9.248E+7
———— Crrors and Collisions
Bad FCS/Misalign Runte Jabbers Collisions
Total Count ']]] 7
Average (from start) O.BOOE+D 0.000E+9 0.000E+0 1.477E-5 Cnt/frm
Peat. 0.000£+0 Q.000E+0 0.000E+0 6.887E-2 Cnt/frm
Network = 10 Mbps Traftic generator = 9 X
Figure 2

The display in Figure 2 shows the number of bad Frame Check Sequence (FCS) and
number of collisions. It also shows valuable information on network utilization,
throughput, and frame parameters, such as average size of the frame and total
frames. Note that the healthy LANs do have some of the errors occasionally. The
collisions that are shown in the disglay are not errors but, they are part of LAN
operations (Ethernet and IEEE 802.3 LAN).

The HP 4972A protocol analyzer has several other features that would help address
hard\l.vare problems, network addressing problems, and network congestion
problems.

HP 4 nP Distri i m

The HP 4990S LanProbe Distributed Analysis System provides continuous
q_ll'_leventive network management information without the presence of an operator.

is system will give the network manager immediate, up-to-the-minute information
about the state of the network on an on-going basis. A distributed monitoring
system such as HP LanProbe complements the HP 4972A protocol analyzer.

The HP LanProbe distributed system enables a network manager to monitor all
critical aspects of a remote or local Ethernet LAN. Completely independent of
network equipment or protocols, the HP LanProbe system monitors, tests, and
diagr}llgses every aspect of the network and presents the findings in clear color
graphics.

The system consists of one or morg HP LanProbe segment monitors and ProbeView ™
software running under Microsoft® Windows.

Troubleshooting LANs
20

_RRAR A
=y 1

R
B-

A
ol

| 3
-EF.!—-

ProboV¥iow 20

The LanProbe systess
oconfiguration.
Figure 3

The LanProbe segment monitor (HP 4991) attaches to the end of an Ethernet
segment and monitors all trafficc. Network data relating to the segment is
transferred to a workstation running ProbeView via RS-232-C interface, an
Ethernet adapter, or a modem connection. HP ProbeView software, which runs on
a PC/AT-class workstation, presents network information in graphical displays.

Figure 4 shows the segment map drawn by ProbeView identifies and displays
devices that are active on the monitored segment.

Troubleshooting LANs
201 0-;"'8

ProbeView - Lab LanProbe Number § {Segment 1:Mgs] - CONNECTED
le Edit Windows Prebelink Jools &um QOptions Help
P —— — —

Csobis Test
k Awts:

| | [oneshot] [Cominesus] | | Opiesble O 30 Min © 10 Mis O30 |

| Resuic [0t 12 17:16:28 Cable OK.

Segment Map

LanPebe (0) Jowider's PC(7) Lanie's PC[8) Shals PC (8 Susarve’s PC(5) Towaels PC Y Ans's PC 8}

bed O b] 0O L

HPOSCSI6 N0 Jamin's PCNI0] HPO7GESS 10] WebrDigAABTIA 0] Esic’s PCOI0) Dan's PC (Y

0O [0 1 fed el

Figure 4

The HP 4992A NodeLocator option attaches to the opposite end of the cable from
the HP 4991A LanProbe segment monitor. Using the coaxial cabling schemes, the
HP 499k25A NodeLocator automatically locates the position of nodes on the Ethernet
networks.

HP LanProbe can initiate a call to HP ProbeView when a significant network event
occurs. When an alert occurs, the HP LanProbe calls the HP ProbeView to notifg
the network manager of the alert. The alert is listed in the result box. Figure
shows a sample display of the fault description:

Troubleshooting LANs
2010-6

Prrob- View Intornation s Peanca b [M b cting: Mg cONNLCTED
Wiadows _ProbeLink Tools Dptons [Help

Calile Lot

=]

[Bile Edi\
=]
Manuak Aute:

| g-«msl | | @ Dissbic O 39 Min ¢1ou- O;w-|
[
Resuit [Open heor LaaProbe. (Not connecied? Missing herminstorT) |

seqment Map

dml' NEW |utw |N M
=T

LaalPrdbe (0} ComINIQNE(1)? 3Com-EB 107 (1? 3Cem-P0G32(12 (p EPO2INF(|32] HMCCSKIM)

=le

ae-3020AF (2007 Rocter 20(364] Recter 20{i28] ICamOESMA(%] EP-RMEF[] HP-RSDA [56)

hod Dol bl bl S

Figure 5

NEW |NEW

P4 visor

The Series 386 HP network advisor defines a new class of network troubleshooting
tools. It supplies e: r]t_ns)ystem technology to dramatically reduce troubleshootinﬁ
time. In addition, the network advisor offers a comprehensive set of networ
statistics and protocol decodes to speed problem resolution.

The Fault Finder expert system within the HP network advisor combines the
practical experience of troubleshooting experts and computer automation to identify
and solve common networking problems.

The Fault Finder’s rule-based expert system takes user- furnished symptoms, then
iteratively devel(éps hypotheses and performs measurements until a conclusion is
reached. The details of the problems, the Fault Finder’s reasoninf, and the
potential solutions are displayed on the screen. In case the problem is not
conclusively found, the HP network advisor will list the possible problems and leave
a detailed record containing what the HP network advisor has learned about the
network. This saves troubleshooting time because the HP network advisor, through
deductive reasoning has eliminated possible problems.

The HP network advisor will check the network vital ms utilization, FCS errors,
number of nodes, Ethernet collisions, all Token-Ring C error frames and many
other factors. The HP network advisor then will compare these vital signs against
acceptable limits, and automatically investigate any potential problems.

Troubleshooting LANs
2010-7

HP Media Scanners

The HP J2187A Quick Scanner has a built-in Time Domain Reflectometer (TDR)
that tells the network managers in few seconds exactly where and what the cable
problems is and displays it on the screen. It works on virtually all twisted pair and

coaxial LAN cablinissystems. Also, it has the capability to indicate network activity
on Ethernet networks.

The HP J2177A Pair Scanner quickly isolates the most common problems found in
coaxial and twisted pair LAN cabling systems. It has a built-in TDR that tells the
network manager in a few seconds the exact location of the fault or break and
displays the results on the screen. The HP Pair Scanner adds problem isolation
features designed specifically with twisted pair networks in mind:

* Quickly locates breaks, shorts, and bad crimps.

* Measures lengths of cable segments.

* Links test pulse generation for 10BASE-T hub activation.

* Builds a relay for transmit and receive pair testing.

* Detects inverted pairs using optional Multiline Injector.

* Identifies pairs from individual workstations using Smart-T kit.
* Automatically alerts the central PC.

The HP J2181A Cable Scanner is an easy-to-use, handheld tool that quickly helps
the network manager to determine the cause of faults in LAN cabling systems.
Powerful built-in TDR pinEoints the exact location of the fault or break, and the 32-
character display reports the results on the screen. The HP Cable Scanner’s color-
coded keyboard allows the network manager to select various measurement. The
built-in TDR is used to locate shorts or opens, or to measure the length of a cable
segment.

The HP 28687A Wire Test Instrument makes twisted-pair cabling verification and
troubleshooting easy by measuring the key parameters specified for the type
10BASE-T networks. Key measurements include

* Crosstalk attenuation.

* Signal attenuation over frequency.

* Burst noise.

* Continuity for both 25-pair and 4-pair bundles.

Conclusion

A clear understanding of the systematic procedures and the usage of the network
tools will help the network managers isolate the problems qulck%; There are
various network tools available to solve various network problems. These tools are
easy to use and the users need not require a great deal of theoretical knowledge of
the technology. Information that is provided by the tools can help isolate the most
common problems and keep the always running.

Troubleshooting LANs
2010-8

References
1. The Cost of LAN Downtime, Infonetics, Inc., Sept. 1989.

2. Pozzi, M., "Problem Isolation Techniques for TCP/IP Network", Proceedings
INTEREX HP Users Conference, Boston, MA, August 20-23, 1990.

3. Tait, P, "LanProbe Makes Diagnosing Ethernets Easy”, Info World Vol. 11, Issue
35, August 28, 1989.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Troubleshooting LANs
2010-;"13

Paper #2011
Overview of Capacity Planning UX/VE/XL Systems

DAN STERNADEL
HEWLETT PACKARD PERFORMANCE TECHNOLOGY CENTER
8050 FOOTHILLS BOULEVARD
ROSEVILLE, CA 95678
916-785-8000

As MIS departments’ responsibilities expand to managing multiple hardware /operating systems platforms,
an understanding of modeling techniques can prove to be cnitical to the success of their operations. Basic
techniques used in deriving input parameters for various platforms will be presented, followed by a brief
overview of Mean Value Analysis modeling algorithms. Model results will then be reviewed in the context
of computer systems planning.

As mini computers approach mainframe class performance, the importance of capacity planning has
become very apparent. In the MPE/VE environment, projection recommendations have resulted in
single department buying decisions in the $100,000 range while in the MPE/XL and UNIX
environment millions of dollars may be at stake. The relatively small cost of implementing modeling
techniques (through consultants or in house expertise) is money well spent considering what'’s at stake.
No business can afford to make guesses about the heart of their operations; capacity planning
techniques like those discussed below can assures a company’s capital assets are being managed
profitably.

Commercial systems MIS departments are generally familiar with the concepts of capacity planning,
yet rarely actually implement a comprehensive capacity planning strategy. Often capacity planning is
considered too complex, and therefore too costly to integrate into the tight budgets of typical computer
installations. There are generally two misconceptions with regard to capacity planning:

1) It is the vendor's responsibility as a part of the sales process to size the system correctly for the given
computing environment.

A decade ago it may have been true that vendors would assume responsibility in system sizing issues.
But as a result of industry pressures, computers are becoming more of a commodity than a high priced
specialty item. As a result, vendors cannot afford to bundle expensive engineering support services into
the price of the system. This is the fundamental philosophy driving the UNIX' computing environment.
Responsibility for system sizing has been shifting from the vendors to the MIS departments managing
the systems. In large mainframe shops there is often a capacity planning staff that does nothing but
evaluate system performance levels with regard to service level agreements. Smaller installations often
cannot afford to maintain dedicated staffs and therefore rely on consultants to assist in their capacity
planning needs.

2) Since computer price/performance ratios are improving, it is acceptable to acquire systems that are
larger than necessary, allowing for reserve capacity.

Although there have been significant improvements in price/performance ratios, it is inappropriate to
purchase too much excess capacity. In any business it is unwise to invest capitol in an unused resource,
particularly one in which the technology is changing so rapidly; this affects the bottom line profitability
of the operation. It is far more profitable to invest a relatively small amount in a capacity planning

° UNIX is a trademark of AT&T Bell Laboratories
Overview of Capacity Planning UX/VE/XL Systems

2011-1

exercise that assures the right size machine at the right time. An oversized machine ties up company
capitol unnecessarily while an undersized machine adversely affects the productivity and profitability of
your business. This also results in a self defeating cycle. How do you know how long the reserve will
fast ?

Before engaging in a capacity planning exercise it is extremely important to understand the relationship
of the business objectives to the computer resources required to achieve those objectives. It is not
enough to ask: "What will happen if I upgrade my CPU ?" This does not relate computer resource to
the business. Perhaps a more appropriate question would be : “What will happen if I move payroll from
SystemA to SystemB while adding 200 employees and 4 payroll clerks ?*

To answer capacity planning “what if* questions several techniques can be used, ranging from "gut feel”
to elaborate benchmarks. Of course the accuracy of the prediction is commensurate with the effort and
cost applied to arriving at an answer. Queueing Network models have been prevalent in the industry
for several decades, and have proven to be a very cost effective method to answering capacity planning
what if questions.

Mean Value Analysis

Mean Value Analysis (MVA) is a technique for solving a Queucing Network Model. The basic concept
of MVA is that an average demand on a given resource will result in an average queueing delay. Once
a model is correctly parameterized, MVA algorithms can be invoked to provide estimations of
response time, utilizations, and throughputs. Figure-1 shows the basic components of an MVA model.

Modeling Fundamentals
Payroll

Users = 50
Trak = 30 Terminals

Response = 3.1 seconds
Model Results Throughput = 5435 trans per hour
CPU Utii = 755 %
Figure-1

Figure-1 defines a payroll system consisting of 50 users with an average payroll transaction having a
think time of 30 seconds, CPU utilization of .5 seconds, and 10 "visits® to DiskA , 5 “visits" to DiskB and
8 "visits” to DiskC. Disk A, B and C have service times of .03, .04 and .03 seconds respectively. Invoking
MVA algorithms produces the modeled response time of 3.1 seconds, throughput of 5435 transactions
per hour, and a CPU utilization of 75.5 percent. This is a very powerful technique for predicting how a
system will react to a given workload.

Overview of Capacity Planning UX/VE/XL Systems

2011-2

It is extremely important to realize in Figure-1 that there are no operating system or hardware specific
parameters for the model. For example, the model does not care if the CPU is a HP9000 series 850 or
a HP3000 series 70 (or any other system). MVA models do not have direct knowledge of system
spcaﬁcs such as device dnvers or operating system dispatcher algorithms; rather, they approximate the
envirc t with q g disciplines such as First Come First Serve (FCFS) or Preemptive Resume
(PR). It is up to the modeler or modeling tools to determine which is the appropriate queueing
discipline for a given system.

Representative Workload Characteristics

It is extremely important that the capacity planning question you need answered be clearly defined
before beginning the exercise. It is almost impossible to answer the "What if 1 upgrade?” question
without knowing what workload characteristics prompted the question. You must have some
representative period in mind that is truly indicative of the workload characteristics of interest.

For example, it is not enough to say, "My average payroll CPU utilization for the past year was 30%."
That would be like saying that the average temperature in Sacramento, California is 78 degrees. That
may be true for the entire year but if that is what you based a moving decision on you would be
surprised by the 110 degree summers and the sub-freezing winters. It would be more appropriate to
look at the average temperature in January and July to get a true feel for the weather in Sacramento.
Similarly the CPU demands for Payroll may be 80 percent when processing checks and only 10 percent
during regular employee maintenance. Usually the peak period is used to build models, since this is the
period that will experience performance problems first.

Global Bottienecks | ISWS

CPU Util Phys Disc Mem Mgr 08:00-17:00
1007 R Ao 7 ~°°°"°°"

80.0

60.0

40.0

20.0

Time 08 00 09:00 10:00 11:00 12:00 13:00 14:00 1500 16:00
Date Tuesday, December 12, 1989

Figure-2

Figure-2 is a graph of an HP3000 running an electronic mail system. From this graph we can see
different resource demands depending on the time of day. In the morning the users are logging on to
the system and reviewing mail messages from the previous day. In the afternoon, system activity is
more sporadic with users creating mail messages using various types of editors. If we were to model
this system we would need to decide if we wanted to base our model on the morning workload activity
(reading messages) or the afternoon workload activity (creating messages). A model based on the
afternoon activity would provide results indicating that there is adequate system resource for additional
users. But if those additional users were also going to be part of the users that are in the morning
workload, the system does not have excess capacity.

Overview of Capacity Planning UX/VE /XL Systems

2011-3

Normalized Application CPU seconds per hour

Electronic Mail System

Figure-3

Once the appropriate window has been sclected it is important to characterize the system in terms of
its workloads. Figure-3 shows the electronic mail system’s overall CPU demand characteristics for the
morning workload activities.

If the requirement is for more electronic mail users, a model could be based on the morning workloads
and then projected onto a larger system. Since there is an imbalance of workload demands throughout
the day, perhaps load balancing modeling techniques could be used to take advantage of the excess
afternoon system resource. Additional workloads from other systems might be scheduled into the
afternoon.

A long term data collection tool is preferable for selecting a representative window. Great care should
be taken in selecting a tool that can provide enough information from which models can be built, yet
which does not incur significant overhead in the collection process. It is a risky business to base models
on very short collection intervals, since you can never be sure you have a truly representative window.

Workload Classes

There are two basic workload types, or "classes", used in MVA models: Terminal and Batch!. Each can
be used to represent a different aspect of workload characteristics. The modeler (or modeling tool) will
determine the best type depending on the attributes of the measured workload on a system.

1 A third type, Transaction Classes, are extremely complex and are omitted from this discussion.
Overview of Capacity Planning UX/VE/XL Systems

2011-4

Terminal Class

This is the easiest class to understand in a typical computer environment. A terminal class can be
thought of as a user sitting at a terminal thinking for a period of time, entering some data, and waiting
for a response. The input parameters are intuitively obvious:

* Number of Users

* Think Time

* CPU per Transaction
* Disk per Transaction

From these input parameters the model can calculate throughput (number of transactions per hour),
utilizations, and response time. In the validation phase these results (outputs) can be compared to
measurements for validation tests. In the projection phase any of the input parameters can be altered
to reflect anticipated changes in the workload’s characteristics. For example, the CPU per Transaction
can be adjusted to reflect a different processor. The model can then be re-calculated to predict new
response times and throughputs.

The modeler should use terminal classes when interested in modeling terminal type activities. This is
not strictly limited to workloads that have terminals. For example, you may have workloads that wait on
message files or have long pauses. From a modeling perspective think time can be thought of as the
time that a transaction is waiting for some system event to occur. This could be a timer expiring, a read
completion from a message file, or a carriage return from a terminal.

Some examples of terminal classes are provided below. Notice that the environments are architecture
dependent, while the capacity planning scenarios are not.

In a HP9000/832 "heads down™ data entry application the workload would have think times and users
to parameterize as inputs. Terminal classes can be used to address "What if ?" scenarios such as:

* What will the throughput be if 1 increase the number of users?
* How will the response time change if 1 upgrade the CPU?
* How will throughput be affected if I alter the think time?

Consider an HP3000/949 application that makes inquiries to a parts database. The user at a terminal
would check whether or not a part was in stock. This workload would bave think times and number of
users to parameterize as inputs. Terminal classes can be used to address "What if ?" scenarios such as:

* How will the average response time change if I upgrade my CPU’s?
* What affect will reducing the disk 1/O’s per transaction have on response time?
* What impact will increasing the number of users have on CPU utilization?

An HP3000/70 insurance application program wakes up via a message file to add a new customer to
the data base. The user fills out some external screen that processes all field edits. The completed
“form* is submitted to the add program via a message file. In this case the think time would be the time
between message file activations. This type of workload exhibits all of the characteristics of a terminal
type class. Terminal classes can be used to address "What if ?* scenarios such as:

* What affect will increasing the number of submitting programs (users) have on throughput?
* How will CPU utilization be affected by a CPU upgrade?

Overview of Capacity Planning UX/VE /XL Systems

2011-5

Batch Class

From a modeling perspective, a batch workload is a terminal type workload with no think time. We
assume that when a batch "job” is completed it is immediately replaced by another exhibiting exactly
the same workload characteristics.

When we think of a batch job in a MPE environment we usually think of a JOB being submitted by the
STREAM command. The problem is that jobs may run for a period of time that extends before and
after the window selected for modeling. Unix systems can have several nice (background) processes
running concurrently. As in the MPE environment it is difficult to align active nice processes with the
selected modeling window. The modeler must be able to extract from any window without knowledge
of when jobs/processes started or stopped. With this requirement we cannot accurately “measure” the
actual number of JOBS that were executed in the modeling window.

Effective jobs is a term used to describe the productive time a job spent during the interval selected. A
job that is consuming a resource (such as CPU or disk) is considered to be "responding” to the jobs
demands, while a job waiting on a system external action (tape mount, console request, etc.), is
considered to be non-productive, and therefore “not responding” to the jobs demands.

What we need is an independent indication of effective jobs that existed during the modeling window.
Advanced collection techniques can measure the total time an application spent “responding™ during an
interval. For example, consider JOB A that was launched at 8 AM and finished at 11 AM. If our
modeling window was from 9 AM to 10 AM we would see that 1 hour of time was spent responding in
that window. In this case we would have 1 effective job in the 9 AM to 10 AM window:

1 Hour Response / 1 Hour Interval = 1 Effective Job

Now suppose that JOB B was submitted at 9:30 AM and did not complete till 11:30 AM. Since our
measurement window is from 9 AM to 10 AM we would see we had 1.5 hour response in the window
(JOB A + JOB B). We would now have 1.5 effective jobs:

1.5 Hour Response / 1 Hour Interval = 1.5 Effective Jobs

Consider one more scenario where there was a constant stream of JOB C’s that were submitted. Each
Job lasted 10 minutes and was immediately replaced by another Job C that lasted 10 minutes. This Job
environment exists from 7 AM to 5 PM. We would now see that we had 2.5 hours of response in the 9
AM to 10 AM window (JOB A + JOB B + (6 * JOB C)). This of course results in:

2.5 Hour Response / 1 Hour Interval = 2.5 Effective Jobs

The most important point to note is that we are not concerned at all with how many "actual” jobs
existed in the system but more with how many “cffective” jobs existed in the system. In addition
effective jobs only have meaning in the context of the measurement. For Example, 2.5 effective jobs
only has meaning when talking about the system we measured. This effective job value is a result of
some amount of demands placed on the system and its devices during the interval, resulting in some
*responsc” that was collected for vs.

It is possible that a stream of jobs will not consume the CPU if they have significant disk 1/O activity.
For example, if a job spends 20 percent of its time waiting on disk then it will not consume the total
available CPU. If there is more than 1 job being streamed, then the available CPU may be consumed
by the other population of jobs. This is basically how MPE/VE systems operated. On an MPE/VE
system there was usually a disk bottleneck that provided an advantage to raising or lowering the JOB

Overview of Capacity Planning UX/VE/XL Systems

2011-6

limits to allow multiple jobs to have a better chance at getting the CPU while other jobs were waiting
on the disk. That was one of the ideas behind the HPPA architecture - remove the disk bottleneck to
allow performance to scale with CPU speed.

So now let’s look at a job that runs on an XL system that does not have a disk bottleneck. Theoretically
it will consume the CPU and therefore not provide an advantage to streaming more than one job at a
time (multiple jobs will be waiting on the CPU and not have a chance to take advantage of disk wait
times from competing jobs.) Of course, this scenario changes with the introduction of multi-processors,
where additional jobs may be scheduled on different processors. Modeling techniques can be used to
determine the effects of varying job limits in a multi-processor environment.

How about jobs on an XL system that have disk wait time? It should work the same way as it did on
MPE/VE,; the competing jobs will have a shot at the CPU while their peers are waiting on disk. If the
competing jobs don’t consume the CPU, then you need to determine if the cause is some type of locks
and latches interaction. For example, if multiple jobs are trying to get at the same data base (or any
data management facility that implements some type of multi-access control scheme), then the peers
may end up waiting on the “latched” resources until they are available. This situation may result in it
appearing as though there is "paused for disk* CPU resource available due to disk waits when the real
cause is some sort of impede state.

Batch class examples are provided below. Remember that the modeling scenarios are independent of
the system architectures.

Consider a typical HP3000 nightly batch processing environment where the job limit is set at 3 and
there is a constant backlog of jobs waiting to be launched. In this casec we would measure 3 effective
jobs. Notice we do not know how many actual jobs existed, it could be 300 short jobs or 3 long jobs. It
is enough to know that there were always 3 jobs running in the system. Batch classes can be used to
address “What if 7" scenarios such as:

* What will my relative throughput increase be if the CPU is upgraded?
* What relative affect will increasing the job limit have on throughput?

Consider a UNIX system that has high session activity. The sessions will launch nice processes to
generate reports. The session users pick up the reports some time later. A user job control facility
limits nice processes at 5 and there are always report processes waiting to be executed on behalf of the
session users. This would result in 5 effective jobs. Batch classes can be used to address "What if ?”
scenarios such as:

* Will raising the limit on the number of nice processes increase the report throughput?
* What relative affect will upgrading the CPU have on the response time of report processes?

Logical Constraints

Depending on the workload it is not enough to know what it’s demands are; we must also know about
constraints from shared resources such as data bases. A typical system may have several different
applications sharing a common data base. A bottleneck may occur at a logical access level rather than a
physical device. Consider the situation in which a bank teller is waiting to update an account while the
account data base is locked by another teller’s update. The response time that the teller sees is a sum of
the time waiting on the other teller’s transaction to complete along with the time spent at the physical
devices (queueing and service).

Overview of Capacity Planning UX/VE /XL Systems

2011-7

The problem is that the user processes within the application are forcing one another to impede (or
block waiting for the resource) in order to ensure data base integrity (this happens directly through
user level data locks and indirectly through global buffer locks, file system locks, and control block
locks). A basic resource model (CPU and disk demands) does not account for the additional delays
caused by data base contention. It should be noted that a user who is waiting for a data base is not
present at any system device or in the queue of any system device, he/she must wait in an additional
queue before beginning to compete for service at these resources.

Several techniques are available to deal with logical contention ranging from a less accurate delay
technique to more advanced techniques such as Mean Population Limits (MPL’s) and Domains.

DOMAINS

Terminale

e
—’

the 7th Trans must wait m the
Queve

If Doman Capacity = 6 then i l

e~

Domain Capacity = 6
The Central Subsystem can concurrently handie
a population of six transactions.

Figure-4

Figure-4 shows the basic concepts of domains. The central subsystem (heavy outlined circle) will have a
logical capacity that will limit the amount of concurrent transactions that can exist within. When the
number of transactions exceed the capacity of the central subsystem they will have to queue outside
until the number of transactions within the central subsystem drops below the Domain’s capacity.
MVA algorithms can approximate average delay times as a result of Domain constraints.

Since applications often share a common data base, a technique for modeling the interaction of
multiple applications sharing a data base would be advantageous. An advanced modeling discipline
known as Shared Domains allows multiple applications to share a logical resource, providing the best
intuitive model of a system.

Consider an electronic mail system that implements periodic "mail trucks” to send mail to remote
systems. Since the truck application shares the same data base as the online users, it is desirable to
have a model account for the interaction of the workloads with the data base. Shared Domains could
be used to evaluate what effect increasing the mumber of electronic mail users has on the
throughput/response of the electronic mail trucks, along with the data bases ability to support both
applications. Modeling application interaction with shared logical resources is as important as modeling
physical device interactions.

Overview of Capacity Planning UX/VE/XL Systems

2011-8

Validation

Validation is the most important step in a capacity planning exercise. It is the point where the model
and the measurements meect. All of the assumptions about the operating characteristics of the system
are put to the test. If the model validates, we can feel fairly confident that the mathematical
representation of the system is sound.

Your local weather service uses modeling techniques similar to those used in computer modeling.
Meteorological model inputs may be temperature, relative humidity, and barometric pressure. Model
results could indicate if it was clear, foggy, raining or snowing. If the model predicts rain and a quick
look outside reveals a sunny day, then something is wrong with the model. Problems could range from
the model theory not being correct (maybe we arc on Venus where meteorological theory would be
different), to instrument inaccuracy (e.g., the thermometer was not calibrated correctly). It would be
fruitless to use modeling technigues to make future predictions about the weather if you can’t build a
model that represents the current weather.

The same could be said for computer modeling. If your model cannot accurately reflect your current
system environment, then making projections from that model would be of no value. For example, if we
built an MVA model from system measurements we would expect the model to calculate a response
time close to that of the measurements. If the response time modeled is very different from the
response time measured then either the model assumptions have been violated or the measurements
are not correct. If the model does not validate, the modeler will need to evaluate the significance of the
deviations and, based on experience, either proceed cautiously with the model, or explore other
capacity planning techniques. It is important that the modeler understand all of the assumptions that
are made with regard to the model being able to accurately reflect system characteristics.

Projections

Once the modeler feels comfortable with the validation of a model, the “what if* questions can now be
asked, Often single point scenarios such as CPU upgrades, or increasing the number of users for a
particular application can be input to models.

Projection Results

HP9000/850 to KP9000/855
100

CPU Utilization Batch Response Time ThroughPut
. Series 850 . Series 855
Figure-5

Overview of Capacity Planning UX/VE/XL Systems

2011-9

Figure 5 shows the result of a typical single point projection showing the relative changes that could be
expected given a processor upgrade from a HP9000/850 to a HP9000/855.

Projection Results HP3000,/70

X-Axis Payroll Users
400

350 -
300 .
250 =
200
150
100

50 =

) ——
-50
-100

30.0 34.0 38.0 42.0 46.0 50.0

~ — Delta Response Payroll — Delta ThroughPut Batch Jobs --- Delta Response Other Sessions

Figure-6

Figure 6 shows a more complex scenario where the number of users were increased in the Payroll
Application. It is important to note not only the relative increase in response lime of the Payroll
application, but the effects on other applications such as the decrease in throughput of the lower
priority jobs and the increase in response time of other applications that run at the same priority.

Figure-6 highlights one of the primary advantages of using queueing network models. These models
not only make projections on workloads of interest, but also can predict relative effects on other
workloads on a system. Other capacity planning techniques such as Bounds Analysis, and Straight
Utilization projections cannot predict the interaction of workloads on a system.

Projection Results

X-Axis Payroll Users Y-Axis Response Time

12

2

0 L
30.0 34.0 38.0 42.0 46.0 50.0

. Payroll Cpu Time per Tran . Payroll Data Base Delay per Tran
Figure-7
Overview of Capacity Planning UX/VE/XL Systems

2011-10

Often it is desirable to show changes in application characteristics over a range of variables. Figure-7
shows the results of a models projection of response times over a range of users. The components of
response time are demonstrated here showing the effects of a data base Domain constraint. The lower
portion of the graph shows the time spent at the processor, while the upper section shows time waiting
in the data base queue. As the number of users increase, greater contention for the data base occurs
which results in longer queuing times waiting to gain access to the data base. It is interesting to note
that as the data base contention delay increases, CPU utilization begins to stabilize. Since the users are
waiting for access to the data base, response may be poor while none of the physical devices are very
busy. This demonstrates a significant advantage of analytic models over less accurate techniques.

Summary

It is important to keep in mind that the modeling algorithms are not system specific and can be utilized
to model most computing environments. The key to success is getting the right measurement data in
the correct form for model parameterization. As more data processing environments shift to a
heterogencous computing strategy, the need for a common system management strategy becomes
apparent. Since most computer systems can be modeled generically, a common basis for measuring
system performance data will be critical to multi-architecture capacity planning exercises.

Capacity planning can be a very complex subject. Although on the surface it appears to be a
science,some consider it an art. In the old days, it was sometimes said that a capacity planner was
always safe, since, when it came time to implement recommendations, the customer never really did
what they were expected to do. Therefore, one ever had to go through the measurement exercise after
changes were implemented to “validate" previous projections. Unfortunately, this meant the loss of an
opportunity to learn how to do a better job.

Times are changing in the HP arena of capacity planning and system management. With the new
generation of tools available, offering continuous collection and easy to use graphical user interfaces,
system managers and MIS directors have a much better understanding of how their systems are
performing, and are gaining access to some of the basic data required for capacity planning. Vendors
are encouraging their customer’s involvement with system performance, and are encouraging customer
education in performance areas.

Any business’s success depends on careful resource management. Network Queueing Models can be a
powerful tool for managing the capacity of one of the most critical resources of any company - its
computer systems. Developing and maintaining a capacity planning strategy for your operations (with

either an in house staff, or by consulting services), assures profitable management of your company’s
asselts.

For additional information:

Arnold O. Allen, Probability, Statistics and Queueing Theory with Computer Science Applications,
Second Edition, Academic Press, San Diego, 1990.

Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, Quantitative System
Performance: anpurcr System Analysis Using Queueing Network Models, Prentice-Hall, 1984,

Michael K. Malloy, Fundamentals of Performance Modeling Macmillan, New York, 1989.

Overview of Capacity Planning UX/VE /XL Systems

2011-11

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMS)

Paper # 2014

The Impact of Emerging Fast Networking Standards
on Document Image Management

Author(s):

Barney Hall
Andy Butier
Hewlett Packard
Pinewood Information Systems Division
United Kingdom
Phone: +44-344-773100

Colin Baker
Hewlett Packard
HP Labs Bristol
United Kingdom
Phone: +44-272-799910

Abstract

Document Image Management Systems, such as HP AIMS (Advanced Image Management
System), are fast revolutionizing the ways that computers can manipulate information
circulating around an organization. For the first time unstructured information such as
correspondence, diagrams and photographs can be managed alongside existing structured
information.

The use of image systems will be further enhanced by new technologies that enable easy
exchange of image information across large distances. This paper will examine how image
management and wide area networking could be combined to improve the efficiency and
productivity of companies that are also distributed.

The paper will close by outlining some of the ways that improved image distribution
techniques will benefit many industry applications, including healthcare and realty offices.

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMS]

Introduction

An information explosion is affecting the business world. High volumes of paper-based
information are a characteristic of even the most automated of today’s offices. This avalanche
of paper may contain the information you need, but it is sometimes impossible to access and,
at the very best, slow and tedious to retrieve.

An Image Management system, such as the HP Advanced Image Management System (HP
AIMS) puts an end to the paper problem by bringing information such as technical manuals,
photographs, forms and handwritten correspondence onmline. Such information can be
duplicated electronically and stored with other electronic data such as text and graphics.

A properly implemented image management solution will add the electronic capture,
manipulation, storage and retrieval of hardcopy information to existing business information
systems; it does not replace them.

The productivity payoff for the customer is the ability to get the right information quickly and
casily. With one point of access to all the information they need, the time to respond to
customer requests is reduced and better decisions made, giving organizations the leading edge
in today’s competitive world.

Any department, company or industry storing and processing paper can benefit from an image
management system. Today’s typical users are to be found in the insurance, pharmaceutical,
financial, healthcare, transportation and telecommunications industries, and in government
organizations.

For companies that are distributed it is still difficult to make this information available to
everyone who requires it. By its nature images and unstructured data tend to be very large.
Wide area networks can to be slow and costly. Therefore information that is required by
people may not be available when required due to cost or time involved.

New networking technologies that are being developed are intended to be faster and more cost
effective. These new technologies will allow companies to make the information available to
more people who need it, thus enabling these companies to succeed in a worldwide market.

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMSI

Current Networking and Image Management

Most image solutions today are based on local area networks, similar to the system shown
below. This obviously limits the number of people who can access the information, but more
seriously it limits the physical area from within which the data can be accessed.

r

Curfént Computer
; Image Management
EXTERNAL LINK DATA SERVER IMAGE STORAGE :
»
APPLICATIONS MAGNETIC <
FAX GATEWAY WORM OPTICAL
NETWORKS @ ERASABLE OPTICAL]
CCITT GROUP iy »
SOL DATABASE
w
L \NDUSTRY STANDARD JEEE 802.3) LAN 3
(o]
SCANNER FAX COMPRESSION PRINTER =
OPTIONS . - — OPTIONS
r VECTRA PC [ONITOR roamml| [
IL_EJ] Ms-DOS” @j oPTONS L@.J L@ ™
= MS-WINDOWS® 7
HP NEWWAVE z
-
ENTRY STATION REVIEW STATION PRINT SERVER w
uw:::wvnmmm] :—-m‘u‘ n:- " OF MCAORCF T HEWLET'E
:-a 3:-» © Ui A TROEWNA OF Uik LABORATORE'S lﬁp PACKARD

Most companies today have offices distributed throughout the country if not throughout the
world. Therefore they need to share the data between sites, separated by large distances. At
present this can be done via external gateways, such as fax, or e-mail. These do not however
allow immediate access to the data, thus decreasing the benefits of having the information on-
line.

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMS]

Local Area Network Technical Details

Three popular local area networks (LAN’s) are listed below. The performance of these LAN’s
are variable. They do not nced to set up a LAN level connection between the source and
destination prior to sending packets. Also each packet of data is routed individually between
the source and destination.

These are the networking platforms over which HP AIMS normally runs today.

Local Area Networks

Availability ~ Transmission Transmisston Connection Network
Media (current) Rate (future) Type Technology
Ethernet Today 10 MBits/Sec - Connectionless |Packet Switched
Token Ring Today 4- 16 MBits/Sec —_— Connectionless |Packet Switched
FDDI Today 100 MBits/Sec Research Connectionless |Packet Switched

The Impact of Emerging Fast Network Standards

on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMSI

Existing Wide Area Networks

Currently, a customer wanting to connect a remote office to a head office can use various
networking technologies, such as leased lines or X.25 connections.

Leased lines only allow you to connect the two sites that the line is lcased between. If you
want to add more sites, then you would have to lease extra lines to connect these into the
network.

The line is leased from telecommunications companies for fixed periods of time and the user
has to pay for the line at all times. Therefore, this network is normally only used between
offices which require to exchange a great deal of information.

Public X.25 on the other hand can allow a user to connect to different sites, via the use of a
Packet Assembler/Disassembler (Pad). The number of the remote machine is used to make
the connection. Once the connection is made, it remains until the connection is broken by the
user.

Public X.25 connections can transfer data at up to 64 KBits/Sec, in the UK and 56 KBits/Sec
in the US. This is slower than leased lines, but the benefit is that the user only pays for the
connection when he is using it. X.25 is useful if connection to the head office is only required
on an infrequent basis, e.g. for batch updates overnight.

At the lower end of the spectrum there is the ordinary public telephone network (PSTN). By
using modems computers can connect at speeds of up to 19.2 KBits/Sec.

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMS]

Existing Wide Area Network Technical Details

As can be scen from the diagram below current wide area networks are slower than current
local area networks. They are also connection orientated which means that the two machines
that are communicating make a connection and then communicate over this connection.
These types of connection are most uscful for sustained data transfers as opposed to
interactive queries and transfers.

These types of wide area networks are commonly used for e-mail transport and terminal

connections. Although these networks can be used for other general LAN uses e.g. file access
their throughput can be prohibitively low.

Existing Wide Area Networks

Availabiity Transmission Transmission Conneclion Network
Media (currenl) Rate (future) Type Technology
Modem (PSTN) Today 19.2 KBis/Sec | Researcn | Gomechon | Cucut Switched |
X.25 Today 56/64 KBitsiSec Research %?g;‘e‘g"fg Packet Swdched}

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMSI

An Existing Wide Area Networks and Image Management Solution

The diagram below shows a possible way that organizations could enhance their existing image
management configuration to include remote users, using today’s technology.

Existing Wide Area Networks and Image Management

IMAGE SERVER

Leased Modem C: 2/
or X-,
TEX‘I & SIMPLE IMAGE DISTRIBUTION COMPLEX IMAGE DISTRIBUTION

LO0H A4 14 oM. xn-u-

—lﬂ_g ?7'

REMOTE OFFICE HEAD OFFICE

TEXT DISTRIBUTION

FIELD ENGINEER ATMSE
oo HEWLETT
enreom (’5/’ PACKARD

The users at the head office would be connected on a local area network and the remote users
would be integrated via a leased line or an X.25 connection, depending on the type of access
required. If the remote users required continuous access to the information at head office
then they would require a leased line. If on the other hand they only required to access the
information on an irregular basis, then an X.25 connection would be more appropriate.
However the disadvantage with this is that the X.25 connection is slower than a leased line.

The users in the remote office would probably retrieve less detailed information than their
counterparts in head office, due to the time delay and cost involved.

People in the head office could browse through a set of detailed images to find the information
they need. Whereas people in the remote office would probably browse through the
structured information to decide which subset of the images they required. They would then
browse through a group of low resolution copies of this subset, before choosing the image they
require. Therefore the people in the remote offices do not get the same benefits from image
management as the people in the head office.

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMS]

Field engineers with portable PCs would be able to hold information on the PC and then use a
modem to connect to the server to retrieve textual information. If the portable PC was
capable of displaying images then the field engineer might also retrieve images but the speed
of the modem connection might make this unusable.

Advantages
People in remote offices and the field can share company information
Disadvantages
Remote users bave less functionality than those at the bead office
Remote image retrieval is slow except over leased lines

Company needs to administer network
Difficult to add sites to the nctwork

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMS]

New Wide Area Networks Technology

New networking technology being introduced, will radically change the way people access
information remotely. Three of the major new technologies will be ISDN, SMDS and Frame
Relay.

ISDN, (Integrated Service Digital Network), allows users to connect two machines using
telephone lines. Narrowband ISDN has limited availability today, and is capable of band rates
of up to 64 KBits/Sec in the UK and 56 KBits/Sec in the US. Broad band ISDN which will
become available later will be capable of higher band widths, probably in the range of 30
MBits/Sec up to 150 MBits/Scc. Once these bandwidths are achieved wide area networks will
be as fast, if not faster than local area networks.

ISDN is similar to a leased line in that the user pays a rental charge for the line even when he
is not using it. He also pays every time he sends information across the network.

SMDS, (Switched Multi-megabit Data Service), is a public network, which means that
connectivity is not restricted within one company. It also means the ends of the connection do
not need to be determined at the time of subscription. As new parts of the company wish to
communicate it is only necessary for them to subscribe to the service, to have instant access to
other entities.

Data sent over SMDS is routed on a per packet basis and as such the subscriber is only
charged for the packets he sends. Therefore a high level connection can be maintained, but
the subscriber is only charged when data is transferred. This makes SMDS very competitive
against a leased line for companies who only transfer data sporadically.

SMDS is managed as a service and as such requires minimal network management by the
subscriber. SMDS also has the capability to broadcast information to multiple sites, which will
be useful for companies with many remote offices.

Most of the US Regional Bell Operating Companies, (RBOC's), have committed to providing
an SMDS service, in the US, during 1992. This will probably run at 1.5 MBits/Sec at
introduction.

SMDS will be scalable at a later date, to run at 45 MBits/Sec or perhaps 150 MBits/Sec. The
subscriber will be able to choose the data transfer rate that they require by paying more for

the higher speed links.

Frame relay is another networking technology that is being introduced within the next couple
of years. Like SMDS it will operate at 1.5 MBits/Sec. The main difference between Frame
Relay and SMDS is that with Frame Relay a connection needs to be set up before the packets
can be sent, whereas with SMDS each packet is sent individually.

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMSI

New Wide Area Network Technical Details

New Wide Area Networks are emerging that allow LAN interconnect and direct connect
capabilities between multiple sites. Of interest to HP AIMS are SMDS, Frame Relay and
ISDN.

From the diagram below we can see that SMDS has many of the advantages of local area
networks. It is connectionless, packet switched and potentially it will be able to achieve data
transmission rates comparable to local area networks.

Frame relay on the other hand sets up a connection and then transfers the information. The
future bandwidths are not fully defined at present.

ISDN breaks down to Narrowband ISDN and broad band ISDN. Narrowband ISDN will be
able to run at speeds of up to 2 MBits/Sec and broad band ISDN will be able to run at up to
150 MBits/Sec. ISDN also requires a connection between the two machines. The connection
overhead for Narrowband and Broadband ISDN could be qmte different. It is likely to be
much lower with broadband ISDN.

New Wide Area Networks

Availability Transmission Transmission Connection Network
Media (current) Rate (future) Type Technology
SMDS Q2 1992 1.5/2 MBuits/Sec | 45/34 MBits/Sec | Connectionless | Packet Switched
Frame Relay Limited 1.5 MBits/Sec Research %?2’;9(2}2’; Virtual Circun
N-ISDN Limited 56/64 KBils/Sec| 15/2 MBits/Sec | Gommechon Circuit Switched
B-ISDN | Very Limited N/A 150 MBits/Sec S Fast Packel
i Switched

As with LAN’s, WAN’s have different cost performance trade-offs. They also have different
operational characteristics.

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMS]

New Wide Area Networks and Image Management

The diagram below shows a possible way that organizations could use the new
communications networks to enhance their existing image management system to include

remote users and field people.

New Wide Area Networks and Image Management

SMD&SDN

COMPLEX IMAGE SMDS/ISDN

DISTRIBUTION
.sﬁs‘
COMPLEX IMAGE DISTRIBUTION COMPLEX IMAGE DISTRIBUTION
& o N

o] o]
EEE Ef=E

REMOTE OFFICE HEAD OFFICE

IMAGE SERVER

O AL T

FIELD ENGINEER AIMS‘;]

P MOOD 88 OFMATION SYSTEAS DvEON le] :Egvl‘%AE gg

SM0S? GALITSE B0

SMDS could be used instead of leased lines between sites. Being scalable, up to 34
MBits/Sec, in 1993 and even up to 150 MBits/Sec in the future, SMDS will give the
performance required for people who need to access large amounts of information, especially
images, from around the world. This will enable remote offices to access complex image data
in the same ways as at the head office. Similarly, mobile engineers could use SMDS or ISDN
from fixed locations to access complex image data.

This will not mean the demise of current wide area networking technology. For companies
who communicate a great deal with remote offices, a leased line may still be a cheaper
alternative. Companies will have to balance the cost of 'renting’ the line, when they use it and

paying for it all the time.

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMSI

Advantages

improved communications for remote offices

access to centrally stored multimedia data for professionals in the field

easy synchronization of data within distributed organizations

other remote offices can be added easily

possibility of public access to the information if required

network managed by supplier, thus lower maintenance costs for user

user only pays for data transferred, so can be used for sparodic or continuous access

Disadvantages

Not available today
Due to the public nature of the network extra security measures may be required

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMS]

Potential Customers

Imagine how these capabilities could benefit these kinds of industries:

+ # & & & & @

+ & & »

Property information and photographs for remote realtor offices
Branch insurance offices and mobile representatives

Safety regulations in pharmaccutical and chemical companies
Drug dependency/interaction data for doctors on call

Clinics who need access to centrally stored patient records
Hospitals who need the assistance of remote consultants
Technical data for mobile repair professionals, such as:

> Telecommunications engineers

> Auto repair engineers

> Domestic appliance enginecrs

> Utilities (gas, water, electricity etc)

Salesmen who need to access information on company products

Fast reconciliation of information from remote retail outlets

Access to criminal records data for police and immigration authorities
Access to technical data in factories and workshops, such as:

> Auto industry

> Acrospace industry

> Defense

> Utilities (power stations etc)
> Petrochemical industry

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMS!

Distributed Realty Service

Imagine the Realty company, who have invested in an image management system, to store
photographs of the properties that they have available.

Realtor Example
COMPLEX IMAGE DISTRIBUTION

B Ao) —
! CENTRAL
IMAGE SERVER
£
HEAD OFFICE
S S
REMOTE
wnce senven WaGE seveR
COMPLEX IMAGE|DISTRIBUTION " COMPLEX IMAGE|DISTRIBUTION
TOCA WA W TR [y TOCA WA W TWOR
3 = &=
REMOTE OFFICE 1 REMOTE OFFICE ZAIMSQ
U000 et CPAATION SYSTEMS DVESOM HEWLETT
— | (D) Preshyat!

This realty has a head office, with an image server which is used for storing other information
as well as images of the properties in the area. Each remote office has a smaller image server
which is used to store images of the properties in the area.

When a client wants to view the houses available in a specific price range with a certain
number of bedrooms a search can be made on the database and the images viewed on the
screen. The dctails and image of the properties that interest the client can then be printed out
for the client.

If a client is planning to move out of state then his local office will be able to connect to the
remote office via SMDS and search their database for properties that would interest the client.
Again these properties could be viewed by the client and printed as required. It is not
necessary for a request to be sent to the other office and then copies of the property details to
be sent through the mail. The customer can pick up copies of the property details he is
interested in right there in his local office.

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMS]

The benefit to the realty company is that they can satisfy the customer request, they can
connect to any remote office and they only pay for the transfer of the information from one

remote office to another. There is no need for all the offices to be connected on a single
network.

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMS

Remote Consulting

A hospital that stores its patient records in an image database, could allow consultants to dial
in to assist with patient diagnosis.

REMOTE CONSULTING

SIMPLE
m IMAGE DISTRIBUTION IMAGE SERVER
Fe, - ISDN
REMOTE CONSULTANT 1
SMD
COMPLEX

Ky S VERY COMPLEX IMAGE DISTRIBUTION
& —

TOGAL SNEA WL WO

IMAGE DISTRIBUTION

VERY COMPLEX
IMAGE DISTRIBUTION Ej

HOSPITAL
REMOTE CONSULTANT 2

ao—
-

i

REMOTE CONSULTANT 3
AIMS]
PRISOCD B OPMATION 3751EMS DrvmOse [ﬁp] HEWLETT

s Gassoum PACKARD

Today it is possible for consultants to view very low quality representations of medical
information such as x-rays. This allows the consultant to diagnose the patients illness
effectively enough to keep the patient alive until he can get to the hospital. This could be done
using current wide area networks or Narrowband ISDN. This is represented by the first
consultant on the diagram.

The new networking technologies will allow much better representations of this medical
information to be viewed by remote consultants. These consultants could have a specialized
knowledge, which is unavailable locally and would be too costly for the consultant to visit the
hospital.

The second consultant in the diagram has the capability to view structured information, images
and reasonably high quality representation of medical images to enable him to make his
diagnosis. This would probably be based on the first generation of SMDS or an improved
version of ISDN. The third consultant has the capability to view structured information,
images and very good representation of complex images, such as X-rays and mammograms to
enable him to make his diagnosis. This will be made possible by the high speed SMDS

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMSI

networks that will become available.

The benefits to the patients are a more accurate diagnosis of illnesses, plus a reduction in
wasted time while qualified personnel are not available. The benefits to the hospital are that
they can supply a better service at a cost effective price, calling on the expertise of consultants
around the world. Many consultants have multiple patients in their care. Thus remote
consulting also helps the consultant by limiting the amount of travel required. Thus remote
consulting improves patient care at all stages from diagnosis trough treatment to recovery.

The Impact of Emerging Fast Network Standards
on Document Image Management

The Impact of Emerging Fast Network Standards
on Document Image Management

AIMS]

Conclusion

The new wide area networking technologies that are discussed in this paper will allow
companies to use the capabilities of image management more effectively. As most companies
are distributed the new high speed wide area networks will allow them to communicate
cheaply and efficiently with remote offices.

Due to the public nature of the networks remote collaborators will be able to view information
held on image servers. This will allow companies to call on specialized help or work closely
with other companies on joint ventures. New company or intercompany structures that were
not previously possible before will now become possible.

Companies benefit from the easy network set up and the capability to easily extend the
network to include extra sites. The cost of the network is also controlled because the network
is administrated by the supplier and the customer only pays for the network when he is using
it.

There are multiple wide area network technologies being developed which will allow the
customer to choose the network that best suits his needs. Whether a network is connectionless
or connection orientated has a large impact on the design of a distributed system.

These new network technologies will allow companies to use image management systems to
provide worldwide solutions to their paper problems.

The Impact of Emerging Fast Network Standards
on Document Image Management

TITLE: Enterprise~Wide Messaging in Open Systems

AUTHOR: Andy Watts

Hewlett-Packard

Nine Mile Ride

Wokingham, Berkshire ENGLAND

011-44-344-763-410

FINAL PAPER NOT AVAILABLE, HANDOUTS WILL BE PROVIDED AT
TIME OF SESSION.

PAPERNO. 2015

Hewiett-Packard Company HEWLETT
Intesface Technology Operarion l: PACKARD
1000 NE Circle Boulevard

Corvallis, OR 97330

503-750-2799 fax 503-750-4980

Intelligence in Graphical User Interfaces
by
Charlie Fenandez
Graphical user interfaces for computers have been around since Xerox PARC. In spite of the Xerox Star and
Apple Computer’s early efforts, GUIs remained mostly a home computer phenomenon until Microsoft Windows
and IBM's Presentation Manager gave them official credibility in the PC world. Now, GUIs are de rigueur on PCs
and even UNIX computers, long notorious for their user hostility, are adopting graphical interfaces and espousing
the virtues of user friendliness.

What it Is

You may have heard the term graphical user interface or GUI before, but may not be exactly sure what it means. A
good working definition would be something like the following: a method of communicating with your computer
through the manipulation of graphically represented controls. More specific to our purposes here, a GUI provides
access through direct manipulation of graphical controls 1o system level functionality. This definition draws a
distinction between graphical user interfaces and what might be called graphical front-ends to application programs.

The alternative to the graphical user interface, what GUIs are currently replacing on desktops around the world, is
the character-based user interface typified by the dreaded command-line prompt. To understand this budding
popularity all we need do is think about what using each interface requires.

Why It Seems to Work

A character-based interface requires us to carry a lot of information in our head. Typically, leaming to use a
character-based interface is a long and painful process because we must memorize what a command does, what
parameters it takes, and how to invoke it, including the correct spelling. Make no mistake, character-based
interfaces are dependent on both our spelling and typing abilities.

In contrast, graphical user interfaces don’t require a lot of typing skills to operate them successfully. Neither do
they typically require a long and painful training process. The reason is that, by using graphics to represent
real-life controls, GUTIs rely on our previously leamned skill set. And it’s surprising to think of how minimal this
skill set and the concepts behind it are: selecting a desired item from a menu, pushing a button to start a desired
action or process in motion, sliding a scale to a desired degree, dragging an object to a desired location, pulling or
pushing an object to a desired size and shape.

Because most of us already have these skills, GUIs have gotten a reputation of being easy to leam and easy 1o use.
To the average non-technical, slightly computer-phobic user, the GUI offers an invitingly simple way to enjoy the
gains of computing without the pains.

A Handful of Graphical Controls

All graphical user interfaces, whether to applications, some other specific computer operation, or the computing
environment in general, are built using just a handful of graphical elements: 4 types of menus, 3 types of buttons, 2
types of scrolibars are really the hearnt of the graphical controls for every graphical user interface.

More important, though, than the number of controls, is the fact that each control behaves in a consistent manner.
Namely, each time we press a push button, for example, the button visually appears to push in, then come out, and
shortly lhereaflcr an action starts. Also important is that, when operated, each control provides noticeable visual
feedback, like the pushbutton pushing in then out. Without the benefit of visual feedback, the fragile metaphor of
"direct mampulauon of gmphlcal com.rols breaks and we are left, with a rising sense of inadequacy, wondering

2016~ 1

whether it is the computer or ourselves who are in charge.

The Average GUI

Since a lot of what we do with computers outside of working in an application is manage information, and
information is contained in files, most GUISs are built around file management. As a matter of fact, some GUIs are
little more than file managers, graphical front ends to the computer’s file and directory structure, with a few smarts
added in.

If we try to form a composite picture of “the average” GUI, it would look like this: a file manager with a menu bar
containing several pulldown menus, files and directories represented as icons, and several dialog boxes with which
to control various settings. Functionally, our average GUI provides us with a way to move, copy, print, and delete a
file through direct manipulation, by dragging the file icon to a specific location and dropping it. We can also
choose to view our files in any one of several ways, search for and display files that match certain criteria that we
have set with graphical controls, and changé file attributes or properties also with graphical controls.

The good news is that using even an average GUI we can exercise a fair amount of control over the computer -- or
at least the file system -- without learning a whole lot of computer mechanics. The bad news is that if we try to do
anything beyond the basics of file management, for example, change the colors in our workspace or add our
buddy’s remote computer to our access list, we quickly fall through the graphical veneer of our average GUI to
stand face to face with that ogre of interface hostility that is UNIX.

Signs of Intelligence

Fortunately for us, there exist GUIs with intelligence above and beyond that of the average GUL. What do these
smart GUIs look like? Well, it’s not so much their look as their behavior that determines their intelligence. A smart
GUI is more robust in the graphical environment it provides and won’t drop you into the underlying character-based
interface the minute you go beyond file management. HP VUE in the UNIX world and Windows 3.0 in the DOS
world are good examples of this. Both provide graphical services beyond simple file management including
window management functions, graphical-based utilities like clocks and bitmap editors, help systems, session
management, and environment customization.

Session management is a subtle but sure sign of intelligence. Session management means that the GUI is smart
enough to remember the current state of your computing environment and to bring it back on command. Session
management is smart because it is one of those things that adapts the computer to us instead of us to the computer.
With session management, we don’t always have to start each computer session back at some ground zero default
state. GUISs like HP VUE and Windows 3.0 can bring back our previous computing session so we can begin where
we left off.

If we’re looking for GUIs with smarts, we should be looking for GUIs that help us focus on our work not on the
mechanics of operating the computer. One bit of smarts in this direction is the association of data with applications.
Several GUIs, among them Windows 3.0, Looking Glass, HP VUE, and X.desktop provide this capability. What it
means 1o us is that when we want (0 do some work we simply point to the icon we want to work with and
double-click the mouse button. Our data appears in a window on the workspace and we can get to work. We don't
have to think about starting an application. We don’t have to wonder whether our PATH variable is correct. We
don’t have to worry about what parameters we need. That’s a whole lot of computer stuff we don’t have to know
about anymore, so we can go back to our real jobs munging data.

HP's NewWave carries the association of data and applications even further with hot links. A hot link enables us 1o
take a spreadsheet, for example, and put it in the report we are doing in our desktop publishing system. Should we
update the bers in our spreadsheet, the report in our desktop publishing system changes to reflect the update.
NewWave enables to further remove ourselves from the mechanics of computers; we don’t have to think in terms of
the format compatibility of data from this application with data from that application. Instead, we can think and
deal with a single compound document.

Along these same lines but in a more general context is the whole idea of how we integrate our favorite

2016- 2

applications into our new GUI. We can expect our GUI to provide us with an icon to double-click, but smarter
GUIs provide a number of altematives from which we are free (o choose the one that best fits our work style. Take
HP VUE for example. HP VUE gives us the alternative of integrating frequently used applications into its front
panel where they are easy (o get to. HP VUE's multiple workspaces give us the altemnative of creating task-oriented
areas in which we run perhaps one application, perhaps a group of related applications.

The very concept of multiple workspaces is a good sign of intelligence because it allows us another degree of
freedom to organize our work according to our work habits. We are no longer confronted with the computer’s
one-screen one-workspace dictum passed along however unwittingly by GUISs of lesser intelligence. HP VUE and
Looking Glass are good examples. HP VUE gives us a workspace switch on its front panel; Looking Glass lets us
create and save multiple session layouts for later recall.

Another sign of intelligence that we have ioned but not di d is context-sensitive help. We expect
anything that claims to be user friendly to provide us with some level of help;but while all GUIs claim to be user
fricndly, there is a big difference between the online documentation that some GUIS call help and genuine
context-sensitive help. The difference between the two can best be illustrated by the difference between our work
partner telling us the phone number we have forgotien instead of throwing the phone book on our desk. Clearly if
we are working away on our computer and come to a situation for which we require help, the most efficient answer
10 our question, the answer that will be the least disruptive and allow us to get back to work is the onc that's
immediate and context-sensitive. Online documentation, or simple online help without context-sensitivity, is not
efficient enough -- regardless of any whizz-bang access method -- to answer our immediate question and allow us to
get back to productive work quickly enough to avoid shifting our focus into the depths of the electro-reams of
information contained in our online documentation system.

A Look at the Not-to-distant Future

Right now much of the focus of knowledge workers is directed toward our tools, computers, as well as our work
efforts. This is true whenever a new technology appears on the scene. But basic desktop computing has been
around for almost two decades now, so the emphasis is starting to change, and rightly so, away from the technology
of computing, the toolness, and back to the work we use the tools to accomplish. What is happening to the
technology? It’s still there and improving every day, it’s just that enough of the shine has wom off so we can get
back to work.

Some of the technology we can expect to set in the future includes a more pervasive use of both object management
and agents. Both of these technologies come to us from NewWave in the DOS world, but the future holds the
promise of their migration to UNIX. Object management, with its association of data and applications into data
objects, its hot links and compound documents, we have discussed before. The future may very well bring
network-transparent location of objects and cooperatively shared objects. In a typical scenario, two or more of us,
at widely separate locations can create a compound document together in real time from scratch, each modifying the
other’s data into a final satisfying form.

Agents can be likened to a type of direct manipulation, automated batch file. We can create an agent who
scrupulously records our every move until we’re finished with the series of tasks we want the agent to remember.
Later, when we want to repeat the task, we simply tell the agent to do it. HP’s 1995 video makes extensive use of
agents in a dramatic scenario. If you haven’t yet seen the video, it’s worth finding a copy to view. 1995 isn’t that
far away.

As computers continue to make more information available to us knowledge workers, computers will also continue
to be our main method of accessing that information. While online documentation is not a good substitute for
context-sensitive help, online information will play an increasingly more important role in our future. From the
GUI standpoint, the future will hold some interesting advances in our ability to access online information, We can
readily imagine the use of common metaphors like the library to ease the access leaming curve and provide us with
a conceptual framework with which to envision the electro-reams of data available to us out there in cyberspace.

Another, related area of technology that is already beginning to receive attention is the area of multimedia. You can

2016- 3

tell it’s receiving increased attention because everyone is wondering what exactly it means. For our computing
pusposes, lets just call it the ability to use multiple types of presentation media (text, graphics, animation, audio,
video, video conferencing, and the like) at the same time on the same computer display. While multimedia may
seem rather far fetched, most of the required technologies are already in exi What’s missing are things like
industry standard protocols for the different types of media, the interoperability between media, indexing tools to
access multimedia data, and the ability to compress data, particularly the video data, highly enough for efficient
storage.

As a general summation of what the future holds for us knowledge workers, | think we can safely say that we will
be able to feel as comfortable with our computers as we currently do with our cars. There'’s a lot of technology
hidden under hood of each, but we don’t have to know what it is, that may be an interesting hobby we're so
inclined, but it"s not our job. Just as the car is a transportation tool with a standard user interface -- we can get into
any car in the parking lot and identify all the major controls (steering wheel, brake, accelerator, and perhaps clutch)
sufficient enough to drive -- 50 too the computer is an information tool whose user interface is becoming
standardized on particular graphical controls. In a very short time, we will be able to sit down at any computer in
the office (PC, workstation, X terminal) and identify the major controls sufficient enough 1o use it productively.
That's the goal out there in the future; that’s what intelligent GUIs are leading us toward.

2016- 4

Paper Number 2017

Core Dump Analysis

Paper Written and Presented by:
Mark DiPasquale

ﬂa HEWLETT
PACKARD
19447 Pruneridge Avenue

Cupertino, California 95014
(408) 447-0911

Introduction and Objectives

There you are, crunching numbers, doing database transactions, or writing a paper, when all
of a sudden, your system panics or has a High Priority Machine Check (HPMC). In other
words, the system crashes! Although this is a very rare occurrence with HP systems, system
crashes can happen to even the best of systems from time to time due to hardware or
software problems.

In the event of a system crash, the software is set up to generate and save something called a
“core dump”. Somewhere buried in this core dump is the answer as to why the system
crashed. Some questions you may ask yourself at a time like this are: How good is my
support network? How long will I have to wait to get this problem solved? Just what is a
core dump anyway?

By now you may have called your response center to report the system crash. The response
center will want to obtain a copy of the core dump files from your system. When these files
are received, analysis tools are executed on the them to determine the cause of the problem.
Sometimes a hardware fault is detected and a new part must be installed on your system to
remedy the problem. Other times, a software bug is found that will nced to be fixed by an
engineering team. However, in some cases, your system may not be the first to experience a
particular software problem, and there may already be a patch available to fix your system.

In this chain of events, there is an opportunity for us to shorten problem resolution time by
supplying the vital statistics of a core dump to the response center as soon as possible. This
paper has been written to teach customers to do just that. Herein, I will teach some of the
basic skills required for core dump analysis. Armed with this information, you may be able to
decrease problem resolution time.

Core Dump Analysis 20171 Mark DiPasquale

More specifically, you will learn:
1. How to Obtain Core Dump Files
i. Setting Up Your System to Save a Core Dump
ii. Manually Picking Up a Core File from the Swap Partition
iii. Problems with Saving/Obtaining a Core Dump
iv. Accomplishing a Transfer of Control (TOC) In Case of a System Hang
2. Cursory Checks of Core Dump Files
i. Core File Size Requircments
ii. Symbol Information
iii. Matching Core and Object Files
3. Core Dump Analysis Tools and Methodologies
i. Knowing the Tools of the Trade
if. Core Dump Analysis
4. Summary / Recommended Action Plan

Core Dump Analysis Tools Discussed Here

The primary tools used for core dump analysis are adb and analyze. Adb is a supported
utility that is available on every HP-UX system. Analyze is a contributed tool which also
provides useful core dump analysis information.

QuickLook (ql) is another contributed tool. Ql is a script program that acts as a front-end to
run adb and analyze automatically. To understand what gl does, you may want to read parts
of the adb and analyze manual pages. However, to be successful in using ql, this is not

necessary.
The contributed tools are available from the Interex contributed software library.

References
i. adb on-line manual page
ii. analyze on-line manual page
iii. savecore on-line manual page
iv. System Administration Tasks Manual, part number B2437-90006

Note

The manual references listed in this paper are current as of HP-UX
Release 8.0. Titles of manuals, part numbers, and chapter locations may
change from release to release.

Core Dump Analysis 2017-2 Mark DiPasquale

Guide to this Paper
Unless otherwise stated, this paper presents information that applics to all HP-UX systems.

Use of fonts:
e Normal print: The text for this paper will be in normal print unless other emphasis is
required.
e Boid print: This denotes important emphasis on a subject, or word, or the name of a
command.

o Jtalics print: This denotes minor emphasis.
e Constant width print: This denotes output from the system.

Credits
Some of the material contained berein has been derived from, "Debugging an HP-UX
Kernel”, by James O. Hays.

How to Obtain Core Dump Files

What is going on behind the scenes when a system “crashes™ It could be that a software
problem within the kernel has caused a system panic. Or, perhaps a hardware problem has
caused a HPMC to occur. In either case, the system will attempt to leave a snapshot of all
physical memory and register information on the primary swap device before it stops running.
This snapshot can assist engineers in determining the cause of the malfunction because it
holds a record of what the system was doing before it crashed. The correct name for this
snapshot is, core dump.

A core dump is composed of two files, a core file and an object file. The core file is an
"image” of the system’s physical memory and register information at the time of a crash. The
object file is the kernel file, better known as, /hp-ux.

To retrieve a core dump, the program /etc/savecore must be exccuted. Savecore will retrieve
the core file from the swap device, along with a copy of the system’s kernel file, and save both
in a specified directory. The core file and the kernel file make up the core dump pair (ie.,
hp-core.N and hp-uxN -where N is a number that associates a core dump pair).

The analysis tools, adb, analyze, and gl, require that both members of a core dump pair be
present. In addition, for the analysis tools to be effective, it is very important that these
members match. This is because the kernel (hp-ux.N) file contains symbol table and SOM
(System Object Module (object file)) information; both of which are used by the analysis tools
as road maps into a specific core (hp-core.N) file.

Let us begin by looking at the two methods used for saving a core dump.

Setting Up Your System To Save a Core Dump

The best way to handle a problem is to be prepared for it in advance. By default, most of the
preparation for a system crash has already been done for you. When Hewlett-Packard ships
an operating system, the /etc/re script is sct up to save core dumps automatically, should they
occur. However, we should check the following:

Core Dump Analysis 2017-3 Mark DiPasquale

1. The save_core() function in /etc/rc should be enabled (i.c., not commented out or
removed). Make sure that the call to /etc/savecore is in this function. Also, make sure
that the directory specificd for saving the core dump meets the following criteria: It
must exist, have proper permission settings (to allow writing), and the associated file
systemn partition must have enough room to dump a corc image the size of physical
memory. This directory (usually called, /tmp/syscorc) must be created by the system
administrator. (Sec chapter 5 of the System Administration Tasks Manual for help with
managing the file system. See the savecore(1m) manual page)

2. Make sure that the primary swap device has enough room to receive a corc image the
size of physical memory. (See chapter 6 and appendix B of the System Administration
Tasks Manual for help with managjng swap space)

Manually Picking Up a Core File from the Swap Partition

If you have clected to shut off the save_core() function in /etc/rc, you can still run
savecore(1lm) manually. Let us assume that a system paniced or had an HPMC, and is now in
the halted state. Thus far, we have stopped the autoboot process. Herse is an example of
manually obtaining a corc dump from a Serics 800 machinc:

Interact with ISL? Y
ISL> hpux -is (address) /* to boot single user mode after a crash */

/etc/fsck -p /% to fix the file system */

/etc/mount -a /% to mount all disks (maybe "-a -t hfs") ¢/
/bin/bdf /% tind enough space for the dump */

mkdir /tmp/syscore /* assuming /tmp has enough space */

cd /tmp/syscore /% go to the dump directory */

/etc/savecore . /% savecore in the current directory ¢/

(Sce chapter 3 of the System Administration Tasks Manual for more information about ISL
and boot-up.)

Savecore begins by reporting the date and time of the crash. Next, it looks in the specified
directory for a file named, bounds. The bounds file contains the next sequence number (N)
which savecore will use to create a unique core file and kernel file. Savecore will copy the
core image from the primary swap device to a file named, hp-core.N. Last, it copies /hp-ux
to a file named hp-ux.N to complete the core dump pair.

Problems encountered in Saving/Obtaining a Core Dump

If a corc dump pair is incomplete (or not saved at all) after a panic, we can look to the
savecorc(lm) manval page for help. In general, there arc threc problems that can occur
when attempting to save a core dump. Below I will state these three problems and offer
reasons for why they might occur:

1. Savecore did not run:
e There is 00 core file on the swap device.

e The savecore command may have been commented out of (or removed from) the
/Jetc/rc script. Hence, savecore did not automatically execute during boot-up to
multiuser mode.

o Savecorc has already saved a core image. When a crash occurs, a kernel-specific
pattern is written to the swap device along with the core image. Savecore checks for
the presence of this pattern when it is executed. Once the core image is recovered,
savecorc deletes the kernel-specific pattern. This prevents savecore from running

Core Dump Analysis 20174 Mark DiPasquaie

again when the system is rebooted and no new crash has occurred.

o The kernel which has been rebooted does not match the kernel that was running at
the time of the crash. Savecore can be fooled into thinking that no core file exists.
This goes back to that kerncl-specific pattern mentioned above. Savecore looks at
the running kernel and the amount of physical memory installed to determine the
location of the core file on the primary swap device. With that information, savecore
looks for a kernel-specific pattern at a particular address. If a different kernel is
running, savecore may look at the wrong address and think that no panic occurred.
However, if savecore could find the image on the swap device, but the running
kernel's version string does not match that of the core image, savecore warns the
user.

To prevent this problem, you can specify an object file argument other than /hp-ux,
which is the default. See the System option in the manual page for savecore.

2. Savecore ran, but did not save a complete core image:

o Savecore directory trouble: The directory (e.g, /tmp/savecore) may be on a file
system partition that does not have enough room for a core dump pair. In this case,
a partial, perhaps unusable, core image would be saved.

o There is not enough room on the swap device that savecore is told to use. In this
case, it is only possible to save a partial, perhaps unusable, core image.

3. Savecore ran, but did not save a core image at all:

e Savecore directory trouble: The directory (e.g., /tmp/syscore) may not exist or may
not have write permission.

e Savecore is executed after the system has been running in multi-user mode for a
while. Once the system starts back up, it is frec to start swapping over the swap
device. This could corrupt any core image written there.

Remember, it is very important to get a complete core dump in order to get the maximum
value out of the analysis tools. This is because many of the dynamically allocated system
structures (u-areas, kernel stacks, mbufs, etc.) are allocated from the global memory pool,
which could be located in high physical memory address space.

(See the savecore(1m) manual page for more information)

Accomplishing a Transfer of Controi (TOC) In Case of a System Hang

A system hang is a situation where the system seems to be up, but does not respond to
external user control. Should this happen to your system, the response center will want to
obtain a core dump so that the cause for the hang can be analyzed. The easiest and best
method for obtaining a core dump of a kernel in this state is to use the Transfer of Control
(TOC) mechanism. The TOC mechanism causes the machine to vector through an special
address which will cause the machine to dump core. Most machines have the capability to do
some sort of TOC; however, the methods for performing this task are machine-dependent:

o Series 800, Models 840, 850, 855, 86x, and 870: If you have an Access Port connected to
your machine, then you must enable it through your front panel. Following that, you may
type a "Control b” on the console. This will put your console under the supervision of the
Access Port. You will get a "CM>" prompt. At this prompt you may type "TC".

If you have an Series 800, Models 840 that does not have an Access Port, you may
generate a TOC through the diagnostic DIP switch on the system monitor board. This is
the left-most board when looking into the front of the machine. Setting the third switch
from the top to the right will cause a TOC to occur when the reset button is pressed.

Core Dump Analysis 2017-5 Mark DiPasquale

Once the TOC cycle has completed (might take a minute or so) and the system has
rebooted, be sure to reset this switch back to its normal position. Leaving this switch in
the wrong position will cause the machine to fail its self-test on the next power up.

e The following systems have a key-operated TOC mechanism: Series 800 Models 6xx,
834/5, 845, 8x2, and 8x7. To execute a TOC, turn the key all the way to the right
(clockwise).

e Finally, the Series 800, Model 808 and 815 have a button-operated TOC mechanism.
From the rear of the machine, look for this button on the lower right-hand side (it will be
marked TOC). You will need an object, like a pen, to actuate the TOC button.

HPMC Related Hang: When a system has an HPMC it will dump core, if possible, and then
reboot. If a second HPMC is encountered while it is handling the first, the machine will lock
up. Machines that have a hex front panel display may indicate the type of HPMC that
occurred. However, the normal case is that only one HPMC occurs, and a core image is left
on the swap device.

Cursory Checks of Core Dump Files

Let us start this section with the assumption that we have a core dump to analyze. Now,
before we use our analysis tools or send this dump to the response center, we should make
sure that we have a good core dump pair to work with. It is good to know this information
up front as it will save everyone’s time.

Core File Size Requirements

Make sure that the size of the hp-coreN file is equal to that of the machine’s physical
memory. Since the core file is an image memory at the time of a crash, its size must be equal
to the machine’s physical memory size. Consequently, the hp-core.N file should be an even
multiple of a megabyte.

Use the command "Is -} /hp-core.N" to check the core file size:

Is -1 hp-core.0
-ry-ru-rv- 1 root other33554432 Nov 23 07:25 hp-core.0

be /* get our trusty calculator %/
33554432/1048576 /* divide the core size by 1 megabyte */
32 /% to get the physical memory size in megabytes */

Symbol Information

Make sure that the hp-uxN file has not been stripped. It may scem silly, but we have had
object (kernel) files given to us, without symbols, because someone thought they would save
time shipping it across the network, or save room on a tape! However, the analysis tools will
not work without symbol information.

Use the command "file /hp-ux” to confirm that the symbols have not been stripped:

file hp-ux.0
hp-ux.0 8800 executable -not stripped

Core Dump Analysis 20176 Mark DiPasquale

Matching Core and Object Files

Finally, you need to be quite certain that the hp-uxN file is from the same system that
generated the hp-core.N file at the time of the crash. They must match exactly; close does
not count. An hp-core.N/hp-uxN pair should have matching "N"umbers (as created by
savecore -not a user). If you have mismatched core and object files, problems will occur when
running the analysis tools. Errors of various types may be printed to the screen or onc may
see a message that explicitly says that there is a mismatch.

Core Dump Analysis Tools and Methodologies

In this section we will take a closer look at the analysis tools. Then we will move into
troubleshooting methodologies by describing what to look for in a core dump, and how to use
the analysis tools to find this information.

Knowing the Tools of the Trade

The primary kernel debugging tools are adb and analyze. QI can be used as a front-end to
the primary tools to provide certain case-of-use advantages. In this section 1 will provide a
brief description of each of these tools.

e Adb is powerful in that it can be used to do detailed work, such as reading individual
words and disassembling. However, adb is a bit unfricndly in it’s operation; the first thing
you notice when you use adb is that there is no prompt! This tool also has many
commands (sce the adb(lm) manual page for more information), however, we will only
discuss onc of them in this paper. We will use the "s” command to print the characters
contained in the message buffer. (The message buffer-can be used to store a panic
message, among other things.) Here is an example of starting up adb:

adb -k hp-ux.0 hp-core.0

The "-k" option to adb is undocumented and is used for Serics 800 machines only. It
simply means “treat the corc and object files as kernel files”. In the next section I will

“_n

show an example of using the "s" command. One last thing, to exit adb, type "control d".

¢ Analyze provides the big picture of what was going on in the system at the time of a crash.
This tool reports the state of major kernel data structures, register information, HPMC
information, and more. Here are a couple of important things to know about analyze:

i. Do a cursory check. You must obtain the version of analyze that corresponds to the
kernel you are anmalyzing. The kernel version that an analyze has been built to
support (c.g., sys.A.B...) is written out when analyze is invoked. Running the wrong
version of analyze on a kernel can produce a lot of meaningless error messages.
This is because each version of analyze is compiled with a set of templates that
match, cxactly, the major data structures in a particular kernel version. If the
analyze templates do not match the data structuses of a kernel, you could be wasting
your time by using this tool.

ii. Analyze has two modes of operation, batch and interactive. When executed in batch
mode, analyze will format system register and data structure information and dump
it to stdout (or into a user-named file). Options can be used to determine the types
of information to be dumped. Here is an example of running analyze in batch mode
to create a batch file samed “out™

Core Dump Analysis 2017-7 Mark DiPasquale

analyze - hp-core.0 hp-ux0 > out
or
analyze - *.0 > out

It is necessary to use the dash ("-") for analyze to run in batch mode. Options to
analyze may follow the dash as we will see in the next section.

In interactive mode, analyze provides commands that will allow a user to review the
state of the kernel’s subsystems individually. As with batch mode, any requested
information is formatted and dumped to stdout. Here is an example of starting up
analyze in interactive mode:

analyze hp-core.0 hp-ux.0
or

analyze *.0

To quit analyze, just type “q" (or "quit”) and press the Return key.

Note

Notice that the hp-core and hp-ux arguments for analyze are entered
in reverse order from adb. (This will be true of gl (below) also.)
Entering the core and object files in the wrong order is a common mistake.

o QuickLook (q)) is an easy-to-usc utility that runs adb and analyze automatically in order to
print out the vital statistics of a core dump. (The "vital statistics” of a core dump are
defined in the next section.) Here are some important things to know about ql:

i. Do a cursory check. Since gl uses analyze to do some of its work, we must make
sure we have the proper version of analyze before we can proceed. If more than
one version of analyze exists on a system, gl will allow a user to select the proper
version.

ii. Ql has two modes of operation, default and menu. In default mode, gl will indicate
its use of adb, then analyze, and then print out a summary of information from the
core dump. To invoke gl in default mode, you would type:

ql hp-core.0 hp-ux.0
-Qr-
#4ql*0

To enter menu mode, just type "gl" from the command line. The menu options are
described below:

[r]un gl using the displayed core and object files

[1] set core and object file names (i.c., hp-core.N & hp-ux.N)

[2] toggle verbose output (entire message buffer, kernel params and register info)
[3] toggle the "-k" option for adb

{4] toggle whether or not to save the ql batch file

[5] toggle whether or not to save the analyze batch file

[6] set the path name (location) of the adb executable

[7] set the path name (location) of the analyze executable

[8] set the path name (location) of the gl and analyze batch files

[q)uit gl

Q! has no manual page, however, its options are pretty straight-forward. For more
insight into gl’s operation, read the adb/analyze manual pages and the gl script.

Core Dump Analysis 20178 Mark DiPasquale

Core Dump Analysis

At the foundational level of core dump analysis, one needs to know what to look for -what are
the vital statistics of a core dump? The vital statistics of a core dump are the basic picces of
information required to solve the problem. They arc the operating system (kerncl) version,
the panic string, the trap, fault or violation type and address, the register information, HPMC
information (if applicable), and name of the process (or routine) that was running at the time
of the crash.

One of the primary objectives of this paper is to save you time in case your system panics or
has an HPMC. To accomplish this goal, we first looked at sefting up your system to obtain a
good core dump. Then, we learned how to check a core dump pair for completeness and
correctness. Now we will look at how you can obtain the vital statistics of a core dump using
the analysis tools. Armed with this information, you may give your response center a head-
start, and troubleshooting may go more smoothly.

As we begin this section, we will assume that we have a good core dump pair to work with
(hp-core.0 and hp-ux0).

Using ADB

We may find most of the vital statistics that we require by checking the message buffer. The
message buffer is a circular queue that is used by the kernel to store its printf output. We will
have to use adb to look at the message buffer. Remembering the example from above, you
would enter adb by typing the following from the command line:

adb -k hp-ux.0 hp-core.0.

Depending on the version you are using, adb may, or may not, print out a few lines as it starts
up. But then adb does not issue a prompt at all. To dump the contents of the message
buffer, type:

msgbuf+0x8/s

The meaning of this command is, "beginning at address msgbuf+@8 in the core file (/), print
out the characters (s) until a zero character is reached”. Be ready to use s and “q as the
message buffer usually holds multiple screens of information. You will be looking for a panic
message, which should be toward the end of thé msgbuf, and will look something like this:

PANIC: please wait for core dump to complete.
@(#)9245XA EP-UX (sys.A.B7.00.3L/S800) #1: Mon Oct 30 17:59:05 PST 1989
panic: (display==0xb000, flags==0x0) pagein

Now, what can we glean from this information? First (line 1), we know that a panic occurred,
as opposed to an HPMC or some other system fault. Second (line 2), we can determine the
release and cycle (or the version) of the kernel. Third (line 3), we know the the name of the
routinc (and in this case, the process) that paniced. All translated, this panic string indicates
that a Release 7.0 system paniced while the pagein process was running,

Good information so far, but don’t stop there! Look for other key phrases like Privilege
Violation, Data Segmentation Fault, or Instruction Segmentation Fault. Finally,
should you see any frap information such as:

trap type 6 pcsq.pcoq = 0.0 isr.ior = 4.78

write this down. The response center may have seen the same type of panic before.

Core Dump Analysis 20179 Mark DiPasquale

When you are ready to leave adb, type “control d”.

Note

The message bufler may not yield a panic message if your core dump was
created by a Transfer of Control or by a High Priority Machine Check.

Using ANALYZE

As stated in the last section, analyze has two modes of operation, batch and interactive. For
the purposes of our discussion, we will only look at the batch mode. Most first-level
troubleshooting can be accomplished by reviewing an analyze batch file (and the message
buffer, using adb).

In every batch file produced by amalyze, certain information about the kernel is always
dumped. Other information that analyze can produce is dumped only by request. You should
consult the analyze manual page to determine which analyze options to sclect. Normally, you
will only need to use the A and U options for analyze. The A option dumps register
information and HPMC information (if any). The U option dumps user area information. To
create an analyze batch file, you would type the following from the command line:

analyze -AU hp-core.0 hp-ux0 > out
It will take a minute or so to create the analyze batch file.
Your next step will be to open this file so that you can look for clues. (Usually, an analyze

batch file is quite large; thus, it may take a few seconds for your editor to open the file.) The
following diagram shows a high-level layout of a typical analyze batch file:

Data Structure Addresses and Kernel Parameter Values
Register Information
HPMC Information
Process Information
Other Information

In the top portion of the batch file, you will see some data structure addresses and kernel
parameter values. Following this is the system register information. This data may be helpful
if the response center has some specific questions; however, understanding their values is
beyond the scope of this paper.

The HPMC information is next in the batch file. Any indication of an HPMC will be logged
in this section. After that, the process structures are displayed (with u-area information if you
used the -U option to analyze). The CURRENT PROCESS (i.c., the process that was running at
the time of the crash) is listed in this section. And finally, depending on the analyze options
selected, other information may be included.

There are two major pieces of information that you should look for in an analyze batch file,
an HPMC indication and the CURRENT PROCESS:

e To look for an HPMC indication, do a search for the acronym, "HPMC". Hopefully, the
first or second occurrence of this string will be in an easy to understand sentence that says

Core Dump Analysis 2017-10 Mark DiPasquale

something like this:

HPNC occurred
or
No HPNC occurred

If an HPMC did occur, then you will want to look for another string that says, Check
type word. If you sce the key words Cache, TLB, or Processor, after the Check
type word string, your system probably has a malfunctioning CPU board. If you see the
words Bus or Assist in the string, a non-CPU hardware error may have occurred. In
cither case, 1 recommend that you call your Hewlett-Packard response center or your
Customer Engineer for belp in tracking down the problem.

HPMCs arc usually hardware problems. Sometimes these problems do not re-occur.
Other times, the system can be shut down and, by rescating the cards in the card cage
(processor, memory, 1/0), the problem will go away. Most times, however, an HPMC
indicates that a failing board (card) must be replaced.

o If this was a panic, not an HPMC, then it is important for us to know what process was
running at the time of the crash. To find that process, search for the string, CURRERT, in
your batch file. Your cursor will end up on the line that has the name of the process that
was running at the time of the crash (last word on the right labeled U-comm).

If you are really bold, you can look at the process’ stack trace, which will be a few lines
below the CURRENT PROCESS line. The stack trace will tell you which routine was running
at the time of the crash. Know that the order of the calling of the routines in the stack
trace is from bottom to top. Therefore, the routine that was running at the time of the
panic will be the one at the top of the stack trace.

Similar to the panic situation, if you had to do a Transfer of Control, you will want to find
and write down the name of the running process. The stack trace information will be
useful too.

Note

In some cases, a core dump may not contain the string:
CURRENT PROCESS
This can occur if the system crashes during (not necessarily because of)
a context switch.

Using QUICKLOOK

As stated carlier, ql is designed to be a user-friendly front-end to adb and analyze. Q!
executes adb and analyze on a core dump pair, dumping their output into files. Then gl uses
the fgrep(1m) command to find the vital statistics of the crash.

If you have not run ql before, the first thing you should do is start it up in menu mode. To
enter menu mode, type this from the command line:

ql
This will give you an opportunity to look at ql’s default settings. You may change any of the

default settings while you are in the ql menu and then run ql with those settings. Note
however that these are only temporary changes. When you leave the menu, all settings return

Core Dump Analysis 2017-11 Mark DiPasquale

to their default values. To make permanent changes to gl’s default settings, it is necessary to

edit

the ql seript.

If the default settings for gl arc satisfactory, you may elect to run gl from the command line.
One can override qI's default core and object file options from the command line. To run gl
in default mode, simply type:

gl hp-core.0 hp-ux.0

Here is an example of a panic analysis using gl:

As

QuickLook [Version 2.0] Analysis created on Mon May 6 17:32:09 PDT 1991

Core file: hp-core.0
Kernel file: hp-ux.0

[ADB Output: /usr/bin/adb -k hp-ux.0 hp-core.0]

panic: (display==0xb000, flags==0x0) Interrupt

interrupt type 15, pcsq.pcoq = 0.¢9584, isr.ior = 0.4000000
Data page fault on interrupt stack

[Analyze Output: /usr/contrib/bin/analyze -AU hp-core.0 hp-ux.0]
s HPNC Registers .

Bo HPMC occurred !!

Name of Running Process:
uvaddr :0x0laafif0 CURRENT PROCESS u_pidptr Oxlaafc10 U_COMM dbsp

Important Register Information:

cr8 =0x00000270 cr9 =0x0000008c ¢r10 =0x00000080

cril =0x00000000 cri2 =0x000002ac cri13 =0x00000000

sxr3 =0x00000000 sr4 =0x00000000 sr5 =0x0000c329

[34] =0x0000ce29 8x7 =0x00000000 IIA space =0x00000000

you can see, gl executes the analysis tools to provide all of the vital statistics of a core

dump:

iv.

Core Dump

The kernel version string (only in "verbose™ mode)

Panic string information (if any)

Data/Instruction fault or privilege violation information

Trap information (type and address)

Important register information

HPMC information (if any)

The name of process that was running at the time of the crash

Analysis 201712 Mark DiPasquale

Summary / Recommended Action Plan

Summary

First of all, congratulations and thank you for taking the time to become better equipped to
maintain your system. You have learned how to obtain a core dump, both manually and
automatically. You have also learned how to check a core dump for completeness and
correctness. Finally, you have learned how to use the analysis tools to glean the vital statistics
of a core dump. With these foundational skills, you will be a successful troubleshooter and/or
information provider. Subsequently you may have a shorter turn-around time in case your
system panics, hangs, or has an HPMC.

Recommended Action Plan

1. Although a system crash is very rare, it is a good idea to be prepared. Therefore, 1
recommend that you sct up your system to properly save core dumps:
i Check the savecore entry in /etc/rc.

ii. Make surc the savecore directory is on a file system partition that has enough
space for a core image the size of physical memory. Also, this directory must
allow write permission.

iii. Finally, make sure that the primary swap partition has enough space for a core
image the size of physical memory.

2. If ever a panic (or HPMC) does occur:

i Make surc that the core dump pair is complete and correct. The core image
should be an even multiple of a megabyte and it should be the size of physical
memory.

ii. Do not strip the symbol information from your object (kernel) file.

iii. Lastly, make sure that your core an object files match (c.g., hp-core.0 with hp-
ux.0).

3. If you like, before you call your response center, run the analysis tools to determine the
“vital statistics” of your core dump. You may use adb and analyze directly, or use gl to
run the analysis tools automatically.

Core Dump Analysis 201713 Mark DiPasquale

Interex North American Conference
August S5th-8th - San Diego, CA

Paper #2018

Network and System Management Effectiveness:
The Graphical Edge

Reid Shay
Colorado Networks Division
Hewlett-Packard Company
3404 East Harmony Road
Fort Collins, CO 80525
303 229-2805

Data systems, and the networking that connects them, are critical to the
operation of today's businesses. These systems and networks must be
managed.

Basic System/Network Management Needs

Management Needs
* Need to Manage Critical Resources
* Need to Manage All from One Platform
* Need Flexible Management Solution
* Need to be Managing Quickly & Easily

Today's businesses need to manage their critical resources, and systems and
networks are no exception. In fact, systems and networks are not only critical,
they are very complex. The average person using a system or network is not
casily able to handle problems when they occur. Administrators that are
experienced in solving system and network problems are an expensive and
valuable resource. All of this leads to the fact that system and network
management solutions are one of the fastest growing markets today.

Network and System Management Effectiveness:
The Graphical Edge
2018-1

Management Steps

Management Steps
* Know Problem Exists
* Isolate Cause of Problem
* Identify Solution
* Implement Solution

What is meant by "managing" systems and networks? There are four
fundamental steps to managing. First, the problem must be recognized to have
happened. Second, the problem needs to be isolated to the faulty part or parts.
Third, a solution has to be determined. Fourth, the solution needs to be
implemented. It is important that each of these four steps takes place as quickly
as possible, because of the critical nature of the systems and networks. It is also
important that the steps be as easy to implement as possible, due to the
expensive and valuable nature of the administrators.

A management solution is one that helps to find a problem, isolates the
problem, suggests a solution to the problem, and helps to implement the
solution to the problem. Another type of solution is one that involves the
anticipation of a problem before it occurs, or one that takes prior corrective
action. An example of this is a maintenance programs that tracks usage and
schedules regular preventive maintenance. Another type of solution is one that
expects that a problem may occur at some point, and prepares to fix the problem
quickly and easily when the inevitable day comes. Backup programs are an
example of this type of solution.

Network and System Management Effectiveness:
The Graphical Edge
2018-2

Manage All from One Platforin

Manage All from One Platform
* One Management Solution
* Quality Custom Management
* Best Solutions come from Device Vendors
* Generic Solutions are Improving

System and network managers are tom between two conflicting desires. On the
one hand they want all of their system and network devices to be managed from
the same platform. On the other hand, they want to have quality, useful
management solutions. Traditionally the only quality solutions have come from
the device vendor. This is because only the vendor completely understands the
device. These vendors do not generally coordinate their management solutions
in order to provide their customers with one common platform. This is
particularly true when the other devices are competitive products.

A few, newer management solutions manage generic devices. These solutions
are much superior to general purpose solutions in the past. However, they still
have a difficult task in tracking the devices from different vendors as the devices
change over time.

Flexible nt

Flexible Management
* Management Solution should Fit the Environment
* Multiple Management Locations
* Diverse System and Network Types

Businesses want their management solutions to fit with their existing system and
networking environment. If they generally use UNIX machines, they want a
UNIX based solution. If the environment is DOS, they want DOS. If their
network is TCP/IP and ethernet, they need a solution that will manage TCP/IP
and ethernet.

Network and System Management Effectiveness:
The Graphical Edge
2018 -3

While managers want all of their devices to be managed from one type of
platform, they also may need to have multiple locations from which to manage.
These multiple locations may be on three desks in the same department. When
a call comes in with a problem, an administrator may not want to have to go to
a central console to diagnose and solve the problem. In other instances, the
multiple management locations may be at remote sites. If a small site has only
one system/network manager and that manager is not in, the nearest backup
person in another office may be called on to help. Some problems, such as
those found in wide area networking (WAN), may only be managed from a
central site.

and nagi i n il

Up and Managing Quickly and Easily
* Comfort with Solution is important
* Reduce Learning Curve
* Automatic Device Entry

Businesses want system and network management solutions with which they can
be comfortable. As mentioned before, the solution should fit into the business'
environment. This is particularly true of the user interface. Learning time
needs to be brief because of the critical nature of the systems and networks and
the expense and value of the management people. If managers are use to using
a Motif interface, a management solution based on Motif will be the easiest one
to get up and running. If Microsoft Windows 3.0 is the familiar standard, that
will be preferred.

The method in which each device is managed will likely be somewhat different,
due to the inherent differences between the devices. It is important to keep as
many things similar to save learning time and make regular operation efficient.
The menu structure, the meaning of certain alarms, the uses of specific colors
are all important. The more these things are the same across management
applications, the more efficient the solution and the administrator.

Finally, one of the best ways in which a management solution can improve
efficiency is through automatically entering all appropriate devices into the

Network and System Management Effectiveness:
The Graphical Edge
2018 -4

management solution. This will save a great deal of an administrator's time. It
will also provide an added benefit; it will help insure that the devices being
managed are up-to-date. Imagine how difficult it is to track down a problem
caused by a new device that the network administrator did not know had been
attached to the network.

The Graphical Edge

System and network management solutions have a number of characteristics that
are important. None, however, are more important than having a graphical user
interface (GUI) and a system/network map. Many of the basic system and
network management needs are met by having these two features. In particular,
a GUI and a map are critical to efficiently executing the four management steps.

A Standard Graphical User Interface (GUD

Standard Graphical User Interface
* A GUI, based on a standard such as Microsoft
Windows 3.0 or OSF Motif, reduces the initial
learning time and facilitates similarity between
management applications.

* The "point-and-click” interaction found in GUIs
allows for very rapid and intuitive isolation of
problems.

* A GUI allows for multiple views of the status of a
system or network. (Map, Table, Graph, etc.)

* In the limited world of DOS, a GUI based on
Windows 3.0 allows for memory beyond 640K and
multiple management applications.

nefits of 10 |

Graphical user interfaces, such as Microsoft Windows, OSF Motif and HP's
NewWave, are taking the computing world by storm. Many application

Network and System Management Effectiveness:
The G;aphical Edge
018 - §

vendors have found that their products are a difficult sale if the application is
not compatible with the appropriate GUI. Is all of this interest due to the
superior nature of GUIs? Yes, but that is not the whole story. In addition to
being a better interface than a character user interface (CUI), GUIs are
addicting. Once a person has learned to use a GUI, it is very difficult to go
back to using a CUI. This is particularly true if some of the person's
applications use the GUI and some use the CUI.

How great are the benefits of a GUI? The only well known study available was
conducted by Temple, Barker & Sloane, Inc. and was commissioned by
Microsoft Corporation’. While Microsoft is not exactly a neutral observer in
the GUI world, the study is comprehensive and appears to have been well
conducted. The results consistently, and substantially, show that a GUI is
superior to a CUI in a wide variety of computer tasks.

GUI Benefits,
from Microsoft Study

* FASTER - GUI users completed 35% more tasks
than CUI users.

* BETTER - 91 % of GUI users completed their tasks
correctly, versus 74% for CUI users.

* HAPPIER - New users reported a much lower level
of frustration (2.7 out of 10) using a GUI than CUI
users (5.3 out of 10).

* SELF-TAUGHT - GUI users were able to teach
themselves 23 % more tasks than CUI users.

In system and network management, the benefits of a GUI parallel those
measured by the study. Specifically, a system or network administrator can
learn the management application quicker. This is due to the faster learning
nature of GUIs. It is also because the administrator has probably already
learned the GUI for other reasons. The administrator can isolate problems more
quickly. This is due to the "point-and-click” capability of GUIs. This

Network and System Management Effectiveness:
The Graphical Edge
2018-6

capability, when combined with a consolidated network/system map, is
extremely beneficial in tracking down the specific source of a problem in a
complex system or network. A GUI also allows a system or network
administrator to view evidence of a problem in different ways. The changing of
a map symbol's color from green to red may be the first indication of network
trouble. A graph of network conflicts could indicate the type of problem. A
table of recent network "sends”, listed by node, would further zero in on the
source of the problem. A map, a graph and a table could each be the most
helpful tool in different circumstance.

A Consolidated System/Network Map

Consolidated System/Network Map
* A map quickly and easily displays the complex
relationships between devices.

* A map permits a high-level view of the health of the
whole system/network at once.

* A map, along with "point-and-click,” facilitates easy
switching between different parts of the management
solution.

* A map can display different levels of map scale,
depending on the management requirements.

The Benefits of a Consolidated System/Network Map

A map is typically a tool to help a person find their way. A system or network
map is useful in many other ways as well. Today, systems and networks are
very complex, and becoming more so all the time. Knowing that five devices
are not responding to a network probe is not usually enough to identify the
cause of a problem. Even knowing which five devices are not responding may
not be sufficient. Once the administrator can see that four of the devices
connect through the fifth flagged device, they can guess that the fifth device is
at fault. Chances are all five devices did not fail at the same instant.

Network and System Management Effectiveness:
The Grapgieal Edge
2018 -7

In addition to increasing in complexity, today's systems and networks are
getting larger and larger. More significantly, today's administrator is expected
to manage larger and larger systems and networks. An administrator must
"watch" the whole system/network for problems. They must quickly isolate the
cause of the problem. They will then need to study details about the suspect
device in order to determine the solution. Only the super-human need apply for
such jobs. A consolidated map can permit views of the system/network from
different "elevations.” The "high-level” view allows the whole to be viewed at
once. A symbol turning to yellow or red will clearly show a problem in that
"area." By using "point-and-click,” the map's view can quickly be zoomed-in
to find the problem device or devices. The smallest scale view is in many cases
a "picture” of the front panel of the device, complete with lights and switches.
This ability to display the whole, down to the smallest part, gives the
consolidated map great power to the administrator of large and/or complex
systems and networks.

Conclusion

As systems and networks become larger and more complex, administrators need
all the management help they can get. By using management applications to
manage their devices, the administrator can become more effective. If these
applications are combined and share one GUI and one map, the administrator is
vastly more effective. A single GUI/Map based platform will create a
management solution that is greater than the sum of its application parts. A
GUI and a map should be the minimum requirements for all system and
network management applications today. A single consolidated GUI and
map should be the goal for tomorrow. Tomorrow shouldn't be very far
away.

1 - The Benefiis of the Graphical User Interface, A Report on New Primary Research, Prepared
by Temple, Barker & Sloane, Inc., Copyright, Microsoft Corporation, 1990.

Network and System Management Effectiveness:
The Graphical Edge
2018 - 8

Paper # 2019
Fortran 90: The New Fortran Standard

Maureen B. Smith Hoffert
Alan C. Meyer

Colorado Language Laboratory
3404 Harmony Road, MS: 96
Fort Collins, CO 80525
303-229-2774

1. Introduction

FORTRAN was onc of the carlicst high level programming languages. It was developed in the
1950’s and was first standardized by the American National Standard Association now called the
American National Standard Institute (ANSI]) in 1966. The second revision of this standard, infor-
mally callcd FORTRAN 77 [1], appcared in 1978, and it has been a key strategic languagc for
numerical, technical, engincering und scientific applications. Today there is a new International For-
tran Standard, commonly called Fortran 90 and previously called Fortran 8X, which has a number of
new features and conccpts. Most of these have been present in Fortran compilers as proprietary
extensions from given vendors. Other new featurcs are found in languages such as C, Modula-2,
Pascal or Ada.

In this paper we discuss the current status of the standardization process for Fortran 90. We then
describe in general terms the key new language constructs. Our intent is not to describe all features
in detail but to give highlights and cxamples of key featurcs. A complete description of the language
is formally availablc in the standard document [2). A more informal but thorough description of the
language can be found in Fortran 90 Explained by Mctcalf and Reid [3).

Finally, we will comparc the de-facto industry standard extensions found in current Hewlett-Packard
(HP) compilers with Fortran %) fcatures, and raise some issues that are related to HP's Fortran %)
strategy.

Fortran%) 2019-1

2. Current Status of the Fortran 90 Standard

Fortran 90 is the informal name for the new International Fortran Standard: 1SO/IEC 1539:1991.
The final document was submitted to ISO (International Standard Organization) before May 1, 1991,
and the document should be publishcd by the end of the summer of 1991. The ANSI (American
National Standards Institute) technical committee on Fortran, X3J3, voted this April to recommend
to ANSI that it adopt this identical standard document as the new Fortran standard for the United
States as X3.198-199X. There have been three public reviews of the document and no further revi-
sions should be required.

In the international arena, Fortran 90 is a revision and hence a replacement of the current FOR-
TRAN 77 International Standard, ISO 1539:1980(E). In the United States, ANSI has taken another
course for Fortran. FORTRAN 77 is considered an "archival standard”, and is still a current stan-
dard. Fortran 90, also called Fortran Extended, is a new Fortran standard and hence will not
replace FORTRAN 77 but will coexist with it for at least the next three years. Currently the Inter-
national and the United States standard documents are identical.

One of the design concepts for Fortran 90 was for it to be a superset of FORTRAN 77. Another
goal was to modernize Fortran by introducing more modern programming concepts in the form of
modules and interface blocks, as well as structurcd data types and control constructs. Onc fairly
controversial issuc was an attempt to provide for future evolution of Fortran by identifying fcatures
that were considcred as no longer necessary because there are better ways to attain the intent of the
old semantics; an examplc is the assigned GO TO statement.

There has becn a great deal of debate about the upwards compatibility of FORTRAN 77 with For-
tran 90. There arc four issues that have caused concern where FORTRAN 77 codes may not work
as expected with Fortran 90 compilers. ARl of these issues are cases in FORTRAN 77 that were
declared as processor dependent and hence wcre not portable nor reliable in implementations.
Because of this lack of portability, Fortran 90 chosc to specify the behavior in such cases to facilitatc
futurc code portability.

Thesc arcas that were processor dependent in FORTRAN 77 that are now specified in Fortran 90
arc:

o In a DATA statement, specificd precision of a real constant must be preserved when used to
initializc DOUBLE PRECISION variablcs. in FORTRAN 77 the processor could supply morc
precision. .

® A namcd variable initialized in a DATA statement only had the SAVE attribute if it was speci-
ficd. otherwisc it was processor dependent in FORTRAN 77.

L4 If there are not enough values in the record required by the input list during formatted input,
then the input record will be logically padded with blanks unless the PAD="NO" is spccified.
This padding was not required in FORTRAN 77.

® There are a number of new intrinsic functions defined in Fortran 90 whose names could con-
flict with user defincd procedure names in FORTRAN 77 programs unless those proccdures
were specified with an EXTERNAL statement which was recommended practice.

Because the Fortran community has become quite diverse and because FORTRAN has a long his-
torv of usc, there has been a good deal of debate about the requirements for the new standard.
Somc did not want to change Fortran at all, wanting it to die out. Others wanted to only standardizc
existing practice in current Fortran compilers. Siill others wanted to provide a basis for future For-
tran language cvolution while preserving investments in old codes and programmer expertisc.

Trying to comce to consensus on these issues has taken a good deal of work and time. The ¢nd result
is not entirely satisfactory 10 any onc group. The suceess of the cffort will be measured by the wvser.
vendor and computer communities in their aceeptance and in the speed of their adoption of the new
Fortran standard.

Fortran9o 2019.2

3. New Concepts and Features in Fortran 90

The new Fortran 90 concepts and features can be divided into seven categories:

language evolution;

compiler detection requirements,

data types, data objects, and type declarations including dynamic storage allocation;
modules and procedures including many new intrinsics;

control constructs;

source form changes; and

input/output features.
Each of these areas will be described in more dctail below.

3.1. Language Evolution

A number of featurcs have been labeled as obsolescent. These features are still a part of the
language but their usc is no longer recommended practicc. They are considcred redundant because
other features provide a similar capability. Further, in order for the language to be able to evolve in
the futurc, these features possibly could be removed from the standard definition of the language if
the Fortran community as a whole considcred that they were no longer required.

The obsolescent features are:

arithmetic-IF;

ASSIGN and assigned GO TO statcment;

alternate returns for procedurcs;

real and double precision DO loop variables, bounds and/or steps;
jumps into 1F constructs;

nested DO loops which sharc termination statcment; DO loops whose termination statement is
not a CONTINUE statcment or an END DO statement;

® format statement with assigned specificrs; and
o PAUSE statement.

In the past, many uscrs have rejected giving up these featurcs. Whether or not this opinion will be
maintained in the next decade remains to be seen.

3.2. Compiler Detection Requirements

Compilers are now required to detect a variety of conditions in order that a programmer knows
about potential problems. The concept of constraints has been introduced for which a compiler is
requircd to have the capacity of issuing a compile-time warning. Examplcs of features that the com-
piler must be ablc to warn for arc: obsolescent features as defined in the previous section; syntactic
or semantic extensions (that is, svntax and scmantics that arc not currently defined by the standard)
and Icnicney in interpreting constraints defined in the standard; the use of intrinsic procedures that
are not defined by Sccetion 13 of the standard; the usc of source form or characters not supported by
the standard; inconsistent application of the Section 14 scoping rules for namcs; and the usc of preci-
sion specification (kind type specification) in a type statement whose specificd valuce is not supported
by the proecssor.

3.3. Data Types, Data Objects, and Type Declarations

Fortran 2019-3

Fortran 90 extends the data concepts available by providing extensions for arrays, adding pointers
and structurcs, and specifying forms of type declarations.

3.3.1. Arrays

One of the most important and perhaps the most requested new feature of Fortran 90 is what has
been called the array language. Arrays have been given a first-class status in the language by
expanding array usage and also array specifications. Whole arrays and parts of arrays, or array sec-
tions, are treated like traditional Fortran scalar variable objects. Arrays can appear as primaries in
expressions and they now can be constants as well as variables.

The array language is considered a more precise and succinct means of expressing mathematical
expressions for vectors. This could simplify programming to avoid writing DO loops around arrays.
This can also reduce the number of errors caused by incorrectly modifying DO loop indices during
execution of a DO loop. The use of arrays as primaries in an expression is seen in the following
example using the declaration:

REAL, DIMENSION (300,200) :: X, Y, Z

FORTRAN 77 would have the following nested DO loops:

DOJ = 1,300
DOK = 1, 200
XK =X0K+Y(§K*Z(§K
END DO
END DO

In Fortran 90 this could bc expressed with the new array notation:

X=X+Y*2Z

Functions can now return arrays in that programmers can define array-valued functions as shown in
the following example:

FUNCTION MV_Mult{matrix, vector) ! matrix-vector mulitiply
REAL, DIMENSIONC:, @) :: matrix ! assumed-shape array
REAL, DIMENSION(SIZE(matrix, 2)) :: vector
REAL, DIMENSION(SIZE(matrix, 1)) :: MV_Mult
nrows = SIZE(matrix, 1);

DO = 1, nrows
MV_Mult(i) = matrix(i, :) * vector
END DO
END FUNCTION MV_Mult

In the above examplc, a function MV_Mudt is defincd with two arguments. The argument matriv is
an assumcd-shapc array that will takc its size and shape {rom the actual argument passcd into
MV _Mult at run-time. During the exccution of the DO loop, element i of the result array MI7_muldt
is defined by the vector product of vector and row i of matrix.

To enhance the use of arrays there are some new classes of arrays similar to FORTRAN 77 adju-
stable arrays. There are dynamic or automatic arrays that are dina objects local to a procedure but
whosc dimension and size are determined at run-time. The following is an example of such an
automatic array:

Fortrant) 2019-4

SUBROUTINE What (arr_arg, in_dim)
REAL arr_arg (in_dim) ! adjustable array
REAL arr_local (in_dim) ! automatic array

There are allocatable arrays in Fortran 90 which are specified as ALLOCATABLE in a specification
statement providing a means of establishing dynamically allocated arrays whose size will depend on
run-time characteristics of the code. Their bounds and hence shape, are allocated by the execution
of an ALLOCATE statement. Its initial status is not currently allocated before the execution of the
ALLOCATE statement. In the following example, storage for allocatable array @ is allocated at run-
time, where the amount of storage depends on the input values of variables m, n, and p. The
DEALLOCATE statement is used to frec the storage previously allocated for the array. Note that
the user must explicitly deallocate the storage.

PROGRAM Main
REAL, ALLOCATABLE :: a(;, :, 1)
INTEGER m, n, p
READ(, *) m, n, p
ALLOCATE(a(m, n, p)) ! Allocate "global” working array

DEALLOCATE(a) ! No longer necded - deallocate

END PROGRAM Main

Whole arrays can be passed as arguments to procedures. The use of these arguments will depend on
the specification of the procedurc. Assumed-shape arrays, for example, will have thc number of
dimensions specified, but the sizc of each dimension will vary at run-time by the shape of the argu-
ment in the procedurc invocation. In an carlicr example in the function MV_muli, the argument
matrix is an assumed-shape array. A routinc might call MI/_mult with declarations such as:

REAL, DIMENSION (0:100, 1:50) :: matrx
REAL, DIMENSION (1:50) :: vect

REAL, DIMENSION (0:100) :: resuit
result = MV_mult (matrx, vect)

Another example of an assumed shape declaration would be the following:

actual argument declaration:
REAL, DIMENSION (0:5, 3:7) :: act_arg

dummy argument declaration:
REAL, DIMENSION (:,:) :: dum_arg

Array constructors is another new concept in Fortran 90. An array constructor is an array data
object that can be either a variable or a constant. For programming convenicnce, an array can be
denoted as a list of its clements inside the symbols: (/ and /).

The following examples arc of an array constructor used as a constant initializer of another array and
an array constructor uscd as a primary in an expression:

REAL u (3), x (3)

u=1(/132)

x=(/111/)+u

Arrays can be referenced as a whole array or as part of an array called an array section. Array sce-

tions arc also considered arrays. There arc two syntax notations for array scctions: triplet notation
and vector-valued subscript notation. The following is an example of triplet notation:

Fortranf) 20149-3

REAL, DIMENSION (300, 200) :: x, z

x (2:298:2, 2:198:3) = x (2:298:2, 2:198:3) + &
& z(2:298:2, 2:198:3)

Each triplet in the above example specifies an initial (or lower bound), a final index (or upper
bound) and a stride for the intervals used to step through the array. Note that in this example the
array section does not have to be contiguous.

An example of the syntax for vector-valued subscripts would be:

REAL z (5,7); INTEGER u (3), v (4)
u=1(/132))
v=1(/2113)

The data object z (3, v) will have the values of: z (32), z (3,1), z (3,1), z (3,3). Note that the v is the
vector-valued subscript. The value (/ 1,3,2/) is an array constructor that is initializing the variablc
1. The variable v has a similar form of initialization.

Array sections can be arguments and they can be passed to assumed-shape dummy arguments.
However, there must be an explicit interface provided for routines defined with array sections as
arguments in order for a compiler 10 determine the appropriate passing convention.

Array changes to procedures includc array-valued functions, mentioned earlier, and array arguments
to intrinsics. The Fortran 90 standard refers to threc new classes of array intrinsics: elemental,
transformational and inquiry. Many of thc FORTRAN 77 intrinsics are called elemental and can
now be given array valued arguments which in turn will gencrate an array valued result for that
intrinsic. Intrinsics such as sin, cos, tan, and sqnt are considcred to be elemental. For example:

REAL :: z (20), y (20), x (20)
x = COS (2} + SQRT (SIN (y))

Other ncw array valued intrinsics are dcfined such as DOTPRODUCT, MATMUL, and PACK.
These are called transformational functions since they take an array and change its characteristics.
New intrinsics called inquiry functions will return charactcristics or specifications of an array, such as
LBOUND, UBOUND, SIZE, and SHAPE.

3.3.2. Derived Types

Derived Types are uscr defined data structures similar to C structs or Pascal records. These struc-
tures arc composed of fields of intrinsic types that can be either scalars or arrays. Derived types can
utilize the implicit typing statemecnt. Intrinsic operations can be extended to be used for derived
types by the means of interface blocks which will be discussed in detail later. New specifications of
SEQUENCE and accessibility attributes of PRIVATE and PUBLIC apply to derived types.
Sequence association sets expectations for the storage association of the fields or structure com-
ponents. Accessibility attributcs of PRIVATE and PUBLIC providcs a data hiding mcchanism which
allows the type structurc and/or its components to be available to procedurcs outside the host. The
accessibility specification for type declarations can only appecar within a modulc. The component
sclector is a " % " for field access specification.

The syntax for definition of a user delined derived type will be:

TYPE, PRIVATE :: reference
integer :: volume, year
character*10 i title

END TYPE reference

The syntax for declaration of a variable of that type will be:

Fortran90 2019-6

TYPE (reference) :: biblio

The syntax for component selection of a field of that type is:
biblio%title = "New Title"

An example of Implicit Typing declaration for derived types is:
IMPLICIT TYPE (reference) (a-c)

3.3.3. Pointers and Targets

POINTER and TARGET are new specifications that can qualify data objects. A pointer can be
thought of as a data object and a descriptor which holds information about a specific data object. A
pointer is not a type mor an address. This means that arithmctic operations on addresses are not
allowed. The initial status of a pointer is undefined. A pointer becomes associated (o a data object in
two ways: the exccution of the ALLOCATE statement or the exccution of the pointer assignment
sltatcment.

In this example, a pointer to a one dimensional array is declared by the following statement:

REAL, POINTER, DIMENSION () :: ptr_node
REAL, TARGET :: target_nod (100)

The following ALLOCATE statement allocatcs storage and associates the pointer with that spacc.
ALLOCATE (ptr_node (-3:3))

A pointer can be associated with a target through the execution of a pointer assignment statement.

ptr_node => target_nod
ptr_node (5) = 99 ! sets target_nod (5) to 99

A pointer is treated as an object and will be automatically derefercnced when it appears in an
expression contest:

REAL, TARGET :: targ

REAL, POINTER :: ptr_targ, ptr2
targ = 6

ptr2 => larg

ptr_targ => targ

plr_targ = ptr_targ + ptr2

The two pointer assignment statements associate both pr2 and pir_targ with the object targ. In the
last assignment statement where pointers are appearing on thc right hand side of the equal sign,
ptr_targ and ptr2 are automatically derclerenced with each having the value 6. Thus targ will be
assigned the value 12 through ptr_targ.

A pointer is like a descriptor when the pointer appears in the following circumstances:
L] in an ALLOCATE, DEALLOCATE, or NULLIFY statement:

[on the left-hiand side of a pointer assignment;

L] is passcd to a pointer dummy argument; or

L is an argumunt to the ASSOCIATED intrinsic.

Pointers may appear in modules, may appear in common, and may be componenis of derived types.
Pointers can be actual or dummy arguments, function resulls, appear in input /output lists and can be
internal files.

Fortran9} 2019-7

3.3.4. Type Declarations

Type declaration statcments can have a new syntax. To specify differcnt KIND’s of data types, such
as REAL*4 and REAL*8, there is now a KIND selector, also called a kind type parameter. This
mechanism is vicwed as aiding the portability and parameterization capabilities for type declarations.

Further, other specifications can appear in a type declaration statement. Attribute specifications
such as PARAMETER, DIMENSION, PUBLIC, PRIVATE, ALLOCATABLE, EXTERNAL,
INTRINSIC, OPTIONAL, INTENT, POINTER, TARGET and SAVE can all appear in a lype
declaration statement as in the following example:

REAL (4) a, b, ¢

REAL(KIND = 4) x, y, z

CHARACTER (LEN = 20, KIND = kanji) kanji_ch
REAL (KIND = 16), SAVE - e (+2:+49), 1, g

Data can be initialized within a type declaration statement as well:

! Note that w is an array constant
REAL, PARAMETER = w (5) = (/ 1,23,45 /)

3.4. Source Form and Syntactical Issues

Fortran 90 introduccs a new optional source form called free source form which is an allernative 10
the old column oriented fived source form. Probably the most important aspect of frce form is that
blanks arc significant. Other aspects of free form source are: the length of line has been extended
from 72 characlers Lo 132 characlers; labels can appear after columns 1 Lo 6; the symbol & indicates
that the current statement will be continued on the next line. There are a few specific rules for con-
tinuation for comments and tokens.

Other changes apply 1o both source forms: multiple statements can appear on a linc scparated by a
scmi-colon; an ¢xclamation mark can indicate a comment anywhcere on a line; symbolic names can be
31 characters rather than 6; and both a single and a double quotation mark can delimit a string.
Intrinsic relational operators often termed dot operators such as .LE. have a new alicrnate syntax.
For example, .LE. can be < and .GE. can be > =.

Numeric and character constants can be given a kind type parameter, for example a SHORT or
integer*2 constant of 3 might be designated as:

3_shortor 3_2

A French or Chinese characler siring on a processor supporting a French or Cbinese characler sct
might be designated as: french_" merci.”

3.5. Modules and Procedures

3.5.1. Modules

Modulcs are considered one of the most significant programming constructs added to Fortran 90.
The module concept is onc of the key constructs that is currently not implemented in existing For-
tran compilers. However, they are a common programming construct found in Modula-2 and HP
Pascal, for example. Modules provide a means of encapsulating data and/or procedures into logical
functional units or objects. They might be considered as providing the beginnings of an object orien-
tation to Fortrun. Modules can be uscd to hide certain data from other program units by means ol
the accessibility attribute. They can be used to modularize and siructure a larger sottware system.

Fortran90 20149-8

The syntax of a module begins with a MODULE statcment and ends with a matching END
MODULE statement. A module can have a specification part with data object definition and it can
have a procedural part for module procedure spccification. Module procedures are separated from
the module specification part by a CONTAINS statement.

Data entities of a module can be accessed by a USE statement from outside a module and also by
host association from within the module.

Entities local to a program unit which have the same name as a module data entity can be renamed
on the USE statement. Further data objects can be excluded from being used in a local scope by
means of the ONLY clausc on the USE statement. Examples of such declarations are:

USE math_lib ! use the entire module math_lib

USE stats_lib, SPROD => PROD ! use the stats_lib module but rename
! the module entity SPROD (o the local
! name of PROD

USE my_common, ONLY: yprod ! use the module my_common, but only
! the entity yprod from it

In the next exanple, the module work_arrays scts up global dcfinitions of three allocatable arrays g,
b, and c. In the subroutine configure_arrays the module work_arrays is accessed with the USE statc-
ment. At run-time the arrays are dvnamically allocated with the execution of the ALLOCATE statc-
ment.

MODULE work_arrays

INTEGER n

REAL, ALLOCATABLE, SAVE :: a(:), b (;,2), c(;,2,0)
END MODULE work_arrays

SUBROUTINE configure_arrays

USE work_arrays

READ (*,*) n

ALLOCATE (a (n), b (n,n}, ¢ (n,2 * n,n)
END SUBROUTINE configure_arrays

3.5.2. Procedures

Procedures, both functions and subroutincs, have a number of new fcaturcs. A key aspect of pro-
cedures is that they can be nested one level. These nested procedures are called internal pro-
cedures, providing somewhat of a macro facility. Argumcnts to procedures can be declared as
optional and can be given keywords for refcrencing. An example from the siandard is:

SUBROUTINE Solve (solution, method, print)
REAL solution
INTEGER, OPTIONAL :: method, print
CALL Solve (print = 6, solution = 2.5)

Another new modern programming concept added to Fortran 90 is that of interface blocks. Inter-
facc blocks specify a procedurc’s characieristics explicitly so consistency between references and
definitions can be checked and information accessed during compilation for such uscs as more effi-
cient code generation or resolution of genceric references. Interlace blocks can be used to extend
intrinsic upcrators, intrinsic assignment, or to define new operations on user defined derived types.
Interface blocks can also be used 1o extend the generie intrinsic procedure concept in FORTRAN 77
to user defined type procedures. In this way a single name can be used to reference different pro-
cedures depending on the different characicristics of those procedures. An example of extending the
intrinsic operator ” * " is:

Foriran) 2AH9-9

INTERFACE OPERATOR (*)
FUNCTION RationalMult(r1, r2)
TYPE (Rational) r1, r2, RationalMult
END FUNCTION RationalMult

FUNCTION MatrixMult(m1, m2)
TYPE (Matrix) m1, m2, MatrixMult
END FUNCTION MatrixMult

MODULE PROCEDURE AbstractTypeMult ! Note the module procedure reference
END INTERFACE

TYPE (Rational) rat1, rat2, rat3

ratl = rat2 * rat3
rat1 = RationalMult(rat2, rat3)

In the first assiznment statement the use of the extended operator will invoke the function Rational-
Mult becausc the two operands match the type Rational of the function arguments. RationalMull,
MatrixMudt, and AbstractTypeMult also can be invoked directly as a function reference.

Othcer misccllancous features for procedures have been added o Fortran 90. For cxample, recursion
is now standardized, and functions can have result variables that are different than the function name
for rcturning the result value of the function.

Another key arca where FORTRAN has been extendcd is in the number of new intrinsic procedures
available. New categories of intrinsics were mentioned carlier, such as clemental and inquiry func-
tions. Furthcr, many new intrinsic functions have been defined such as MVBITS, MAXVAL, MIN-
VAL, MATMUL, and RANDOM_NUMBER.

3.6. Control Constructs

Fortran %0 has adopted a number of control constructs common in other languages such as C. In
particular, thc CASE statement, similar to C’s switch statement, and the CYCLE and EXIT statc-
ments as shown in the following example of a bubble sort:

OUTER: DO i = 1, n-1
swap = .FALSE.
INNER: DO j = n, i+1, -1
IF (a(j) > = a(j-1)) CYCLE INNER
swap = .TRUE.
almp = a(j) ; a(j) = a(j-1); a(j-1) = aimp
END DO INNER

IF ((NOT. swap) EXIT OUTER
END DO OUTER

Note the use of the named construct concept where control constructs have named labels at the
beginning and ¢nd of a control block. The CYCLE statcment will begin the next iteration of any
enclosing loop. Similarly, the EXIT statcmcent will exit from any cnclosing loop.

There arc some new forms ol the DO statement such as the DO WHILE and the DO forever state-
ment in addition to the obsolescent forms mentioned carlier.

The WHERE statement and construct is another feature associated with arrays that is a combination
of a masked il statement and an assignment statement. Arrays in o WHERE statement must be

Fortran90 2019-11)

conformable and WHERE statcments cannot be nested.

REAL pressure(n,n), temp {n,n), raining (n,n)

WHERE (pressure <= 0.0)
pressure = pressure + inc_pressure
temp = lemp - 5.0

ELSEWHERE
raining = .lrue.

END WHERE

In this example, the WHERE clause is executed for each positive element of pressure, and the
ELSEWHERE clause is cxccuted for each negative element.

3.7. Input/Output Features

FORTRAN has traditionally had a rich sct of input/output (1/O) features. This area of the
language has not been changed to the same exient as others. Features such as: non-advancing,
namelist, ncw input/output statement specifiers, and somc new edit descriptors are the key addi-
tions.

Namelist 1/0 has been present in Fortran compilers for a number of ycars with a variety of imple-
mentations. In Fortran 90 it is cxtcnded 10 uscr dcfined derived types and has a slightly differcnt syn-
tax than somc cxisting implementations.

Non-advancing 1/0) provides the capability for READs and WRITEs 1o access a given record and 10
not advance to the end of it or the beginning of the next rccord with a given access. This could be
uscful with intcractive terminals potentially. Non-advancing 1/0 is not for unformatted, direct access
files, nor for intcrnal, namclist, or list-dirccted file access.

The ES (Scicntific notation) and the EN (Engincering notation) edit descriptors extend the current E
edit descriptor.

The input value of -.5 with an EN12.3 edit descriptor would output -5000.000E-03.

The input value -.5 with an £S12.3 edit descriptor would output -5.000E-01.

Fortran90 201911

As a consequence of the evolution of end-user devices

(i.e., the migration from asynchronous devices to LAN-
attached devices such as PCs, X-terminals, and networked
printers), companies are also reviewing their wiring

strategy to accommodate emerging technology.

III. Market Requirements in Terminal Connect

As a consequence of this new terminal connect challenge,
the main new business requirements can be described as
follows:

a) Multivendor @ end-user connectivijty based on
standards: As customers have a variety of computer
vendor’s systems which speak different protocols, the
communication server solutions must speak those
protocols. HP’s way to ensure multivendor connectivity
is based on standards.

b)_Terminal connectivity over ILANs, jinterconnected LANs
and WANs: More and more individual LAN segments are
connected together using bridges (level-2 filtering)
and Routers (level-3 filtering). Using such equipment
improves efficiency and brings new benefits to local
area networks. Also, there is a complementary market
requirement for wide-area-network connectivity (PADs)
as a simple, low-cost solution for remote end-users.
The final choice will be based on parameters such as
cost and availability of connection, bandwidth, etc. A
complete offering must be able to address these
different requirements.

c)_Terminal connectivity (migrating from asynchronous to
LAN-attached devices) inteqrated into customer wiring

solutions: 1local area networks have been designed to
offer connectivity to a wide range of products including
systens, PCs, X-terminals, special devices, etc...
Terminal servers must accommodate the particular
structure and constraints of each network environment.
Some environments tend to centralize equipment in a few
places and connect them via backbones, others tend to
distribute the equipment across the various company
sites.

From these high-level requirements, and after surveying

many customers, we determined the specific requirements
faced by HP systems users for end-user connectivity :

Page 2020-2

c) A scalable device management solution:

For standalone systems with or without remote access,
HP’s strategy is to offer host-based networkmanagement.
System and network management is then integrated under
the control of the system manager.

For multi-system sites, whether HP-only or multivendor,
with diverse equipment such as communication servers,
PADs, hubs, bridges, routers, and switches, HP’s
OpenView Network Management strategy allows for the
integration of all management elements under a
consistent windows-based user interface, controlled by
a single operator.

V. Major steps to achieve the vision, from strategy to
products

The multiple key elements, based on the DataCommunication
and Terminal Controller (DTC), which demonstrates the
today achievement are the following:

V.I The DTC family

The DTC solution consists of a scalable family of multi-
vendor communication servers:

-DTC16 : provides up to 16 asynchronous connections and
one wide area network link. This DTC can be used in
distributed environments where small groups of end-
users needs access to network applications, or
integrated into low-end system cabinets.

-DTC48 : provides up to 48 asynchronous connections and
up to 3 wide area network links. This DTC can be used
in 1large centralized environments (EDP rooms for
instance) where many connections are required, or
decentralized at departmental level.

Both platforms are 100% functionality compatible, provid-
ing the same end-user service.

Page 2020-5

V.II Multivendor Connectivity:

The DTC, originally developed as a communications server
for HP systems (DTC/3000 and DTC/9000), has evolved into
a true multivendor terminal server implementing both the
HP3000 optimized protocol and industry-standard TCP/IP.

The DTC runs multiple protocols in the same server to
access HP3000, HP9000, and non~-HP systems (using
Telnet/TCP/IP), as well to non-standard computers (using
back-to~back configurations).*

V.III Location-independent end-user connectivity:

The DTC offers access to these two protocols from local
devices (connected directly to the DTC) or from remote
devices (connected to X.25 PADs or modems) offering
location-independent end-user connectivity. DTC remote
end-users now have access to ARPA systems, as well as to
non TCP/IP computers connected in back-to-back
configurations.

Also using Telnet/TCP/IP, end-users can connect through
networks interconnected with bridges or routers. Network
managers can minimize the number of protocols on their
backbone, making it easier to manage.

V.IV Combination of standards and HP3000 optimized proto-
cols:

The DTC offers a protocol conversion capability between
Telnet/TCP/IP and the HP3000 Series 900 optimized proto-
cols, to provide the most powerful Telnet solution on the
market. Implementing Telnet in the DTC relieves the
HP3000 Series 900 of CPU-intensive telnet protocol
processing.

This is possible with the addition of a protocol transla-
tor card which requires one slot in the DTC48 or with a
dedicated server for customers who do not require
terminal connection in the same server.

Page 2020-6

* DTC48s with date code prior to 3110 need the DTC48
Upgrade Kit, HP2348A to support multivendor
functionality. The DTCl16, and DT48s dated 3110 or later,
need no upgrade kit.

V.V Scalable network management integrated under HP
OpenView

Not all customer environments require all the features
discussed above; a scalable network management solution
allows you to chose the appropriate solution for your
environment.

In standalone system environments (HP3000 or HP9000), DTC
management functions are performed directly on the host.
In such environments, a single operator manages both the
system and the associated network. The communication
server is therefore dedicated to this system.

In multi-system environments including HP and non-HP
equipment, an HP OpenView PC-based workstation is the
central point of management for all network elements
(such as HP OpenView DTC Manager, Switch/Pad manager)
under the control of one operator. It offers a broader
set of features for DTC management including dynamic
configuration and an easy-to-use friendly graphical
interface integrated under HP OpenView.

During 1991, all the HP OpenView Management applications
based on DOS will run and coexist on the same PC
workstation, helping you to optimize the cost of managing
equipment and the associated cost of operations, and
improving your control of your network. Networkable
management protocols allow one workstation to manage
other OpenvView workstations via the network.

V.VI Service and quality of service

Support services are based on a comprehensive test
strategy centered on HP Field expertise and the execution
of a specially designed set of test procedures. These
procedures are built on our own stringent internal
Quality Assurance tests. They benefit from extensive
"real life" studies based on customer configurations.

These services combined with existing HP NETASSURE
support services will give you the best possible
insurance that your specific configuration will provide
you with lasting and uninterrupted service.

Page 2020-7

VI. Conclusion: How the DTC meets new market requirements

HP has a very clear strategy in terms of end-user connec-
tivity. The building blocks are in place for a very com-
petitive offering which will help ensure the business
success of you and your end-users. The DTC has evolved
from an HP3000 Series 900 terminal server to a
multivendor communication server optimized for the HP
environment.

It provides :
- Consistent access to all HP systems

- The benefits of both multivendor standards and OLTP
optimized protocols.

- Location-independent access

- Scalable network management integrated wunder HP
OpenView

- Configuration testing based on a comprehensive test
strateqgy

With the HP "Service and Quality of Service" concept, you
have the assurance that HP’s competitive communication
server products and features can be used and managed in a
cost effective manner. The DTC is a multivendor
communication solution which is your best choice for end-
user connectivity.

Page 2020-8

Interex North American Conference
August 5-8, 1991
San Diego, CA

Paper Number 2022

SNMP, OPEN SYSTEMS, AND OPEN NETWORKS:
THE STATE OF THE UNION

Joseph E. Grim
Jjoeg@hpendm.cnd hp.com
Hewlett-Packard
3404 East Harmony Road
Fort Collins, Colorado 80525
303-229-3910

ABSTRACT

The Simple Network Management Protocol (SNMP) is proving to be the protocol of
choice in the management of open networks and open systems. But MIS directors and
network managers are receiving confusing signals regarding network management
standards. Both the Common Management Information Protocol (CMIP) and CMIP over
TCP/IP (CMOT) are looming on the horizon. This paper attempts to cut through the
confusion by discussing some SNMP implementations for managing real networks, and
why SNMP will be a critical component in the Intemnetworking Decade. It also covers
SNMP topics of interest to customers using HP 9000°s, HP 3000’s and HP Personal

Computers.

INTRODUCTION

The changes in networking over the course of the 1980°s were so vast that if some data
communications Rip Van Winkle had gone to sleep in 1981 and awakened in 1990 he
would hardly have recognized the world where he awoke. At the beginning of the decade,
local area networks (LLAN’s) were a brand-new, cutting-edge concept. Networks at that
time generally consisted of proprietary systems from a single vendor. If those systems
communicated at all, it was usually via protocols that had been invented by that vendor.
Operating systems were geared toward running specific types of applications, and the

SNMP, Open Sysiem, and Open Networks:
The State of the Unfon
2022-1

networking tended to be specific to the operating system.

By the beginning of the 1990's, the directions for networking and computer systems were
clear. Proprietary was out and Open was in for good. A number of factors went into the
sweeping change toward open systems and networks:

* Customers were tired of having to entrust their business success to a single
computer vendor;

» Unix, because of its power, scalability from PC to supercomputers and superb
development environment, became the open system standard;

* The cost of hardware that could run Unix effectively became so low that
almost any enterprise could afford it;

« By virtue of the Berkeley Software Distribution, Unix became a pervasive
networked operating system with TCP/IP as the preferred communication
method;

» Because of the efficiency of the Request for Comment (RFC) process, TCP/IP
very quickly became a well-defined de facto standard.

During the second half of the 1980’s, and particularly during the last three years of the
decade, Unix and TCP/IP took off. Corporate Internetworking became a clear direction
for the future, as many companies discovered the virtues of using TCP/IP as a key
business tool. The movement toward standardized systems and networks was first seen in
universities, government and in engineering companies. These were the first users of
engineering workstations and minicomputers, which generally had TCP/IP built in. Then
many commercial industries followed, particularly financial services, which needed the
distributed compute power that workstations provided.

Also during the late 1980’s, many users of personal computers climbed on the open
networks bandwagon and implemented TCP/IP networking for file sharing and print
sharing. IPX (Novell) is still the dominant protocol in the PC networking world, and users
of IPX have recognized the need for connectivity to, and management by, the TCP/IP
world.

Amidst the excitement of open systems and open networks, an unpleasant fact has
emerged. These networks somehow have to be managed and kept under control. In most
real-life cases, thoughts of managing networks come after they are installed, not during
the design process. Most network managers have devised ad hoc tools based around

SNMP, Opea System, and Opan Networks:
The State of the Union

2222

standard TCP/IP utilities, but these tools tend to be useful in relatively small networks and
less effective in larger ones.

Thus we have the world of network: management standards, with its two core contenders,
the Simple Network Management Protocol (SNMP), and Common Management
Information Protocol (CMIP). SNMP arose from the pragmatic Internet community,
whose users have problems very much in need of solutions and who are more interested in
imperfect solutions that work than world-beating ones that are slow in coming. CMIP
arose from the international Open System Interconnect (OSIT) community, and is
architected on OSI protocols.

Becanse of CMIP’s close ties with OSI protocols, its fate is closely linked to the
pervasiveness of those protocols. For the duration of 1991, TCP/IP will continue to be the
world’s most commonly instalied open networking standard. Since SNMP is built on
TCP/IP, it is enjoying a great deal of success. It hag become the network management
standard of choice for Internets, and has inspired a number of useful applications. We will
explore some different areas where SNMP is being used successfully today.

SNMP Today

According to the DataPro Research Group [2], as of mid-1990, somewhere between 500
and 800 commercially available, tumkey SNMP management packages had been sold, not
including any packages that were given away or came from the public domain. This
number is up considerably from 1989, when a small fraction of that number were sold. In
1991, the 1990 nurnbers could double or triple. Why have SNMP management
applications experienced such success in such a short time?

The reasons are marny. The primary one is that network device vendors, such as
manufacturers of routers, bridges, hubs, terminal servers and multiplexers, including HP,
have happily adopted the SNMP standard and put agents on their devices. SNMP is
relatively simple to implement, and because of its simplicity, it doesn’t use much precious
ROM space in these devices. In fact, in a short time span, manageability via SNMP has
gone from a novelty to a critical competitive issue for almost all network device
manufacturers. In addition to network devices, SNMP agents have also been created for
most major computer systems, laying the groundwork for both network and system
management via SNMP.

Another reason for SNMP’s success is that a number of vendors have produced SNMP
management applications. These vendors include HP, Sun, cisco, Wellfleet, NCR,
Advanced Computer Communications, DEC, and a number of others. At Interop *89
there was a small handful of vendors demonstrating SNMP management applications. The
focus at that time in the SNMP Interoperability Showcase was on agents. At Interop *90,

SNMP, Opea System, sad Open Networks:
The State of the Usion
2.3

there were approximately 40 SNMP manager applications being shown. Customers
looking for network management solutions have a number of choices today.

The SNMP Environment

If you are a network manger, telecommmmications manager, or MIS director, what are you
to make of all the confusing talk about the different network management protocols?
What are your best choices to make today?

If you have to manage a TCP/IP network, particularly one that consists of interconnected
LAN’s of PC’s, Unix workstations, multiuger systems, and/or mainframes, SNMP is the
obvious choice today. At the very least, SNMP will help you to monitor and control your
petwork infrastructure, such as your routers, bridges and hubs. If there arce SNMP agents
available for your computer systems, then your management environment will be much
more complete because you will be able to extract information about each system, such as
system type, operating system release number, interface addresses, contact names and
system locations. SNMP agents are available for most Unix implementations and DOS
and OS/2 PC’s either from the systern manufacturer or from third parties. There are also
agent sources available in the public domain.

In the case of HP systems, there are SNMP agents available now for the HP 9000 Series
HP-UX sgystems. With the HP-UX 8.0 relcase, HP, like a number of other Unix system
vendors, started bundling the agents with the operating system. HP has put a number of
special features into the HP 9000 agent, such as the ability to query disk space and the
ability to monitor CPU load. In the near future, there will be an SNMP agent available for
the MPE XL HP 3000 systems, making 3000°s integrate nicely into the SNMP
management environment.

Your SNMP management environment will consist of two basic elements: one or more
managers, and agents on as many devices as practical. The SNMP manager could be an
application such as HP OpenView Network Node Manager that will typically runon a
Unix workstation and have a graphical user interface with a map of the network.

Many of the SNMP management applications provide some sort of dynamic discovery
feature that automatically finds the nodes on your TCP/IP network. This is an extremely
useful capability that can save the network manager hours of effort in drawing the
network map. Maps typically use color to indicate the status of systems or network
devices (e.g. green for up, red for down). The manager application receives SNMP events,
called fraps, from the different devices on the network that inform the user of alarm

SNMP, Open System, and Opea Networks:
The State of the Unica

In order to present the status of each of the network devices and systems, the manager
application polls the devices at some user-designated interval. This approach does have
the disadvantage of causing some additional network traffic, but even in networks of
hundreds of nodes, with polling intervals of five to ten minntes, the amount of traffic
generated is not objectionable. SNMP manager applications take advantage of both
TCP/IP and SNMP to provide fanlt management. For example, many SNMP managers
use the simple TCP/IP utility ping to do ongoing status checks, but use SNMP in more
complex situations, such as finding out where routing has broken down between two
nodes on the network. SNMP can be used for diagnosis in numerous different fault
conditions, such as routing problems or duplicate IP addresses.

SNMP agent capabilities vary with the type of device on which the agent is ranning. The
basic set of Management Information Base (MIB) objects is defined in Intemet RFC
1066, and allows the network manager to identify the type of device and gather
information on the device configuration and network traffic statistics. In addition to this
base set of objects, most devices also have MIB objects that are specific to both the
manufacturer and the type of device. For example, cisco, Wellfleet, Proteon, and HP
routers all have MIB objects specifically geared toward routers, and each has a different
set of objects that were defined and developed by its vendor. As mentioned previously,
HP developed a number of special objects for the HP 9000 and HP 3000 agents.

Virtually all vendors who have developed their own collections of MIB objects make
descriptions of the. objects available to customers in the form of ASCII text files in ASN.1
format. Many of them are downloadable from the Internet. It is the job of the manager
application to accgss and use these vendor-specific MIB objects, and most of the
commercial applications have this capability today. The application has to have some way
to load the vendor-specific MIB objects, which involves interpreting or compiling the text
file containing ASN.1 descriptions of the objects.

The use of vendor- and device-specific MIB objects opens up many new possibilities for
managing all levels of the 7-layer OSI network model. For example, there are a number of
LAN monitoring instruments such as Novell’s LANtern and shortly HP’s LANProbe that
support SNMP agents. These agents collect statistics on parameters such as Ethemet
performance and utilization, and suve them in SNMP MIB variables. All a management
application has to do is query the appropriate MIB objects in the Ethernet instrument and
the network management station tumns into an instrument with many of the capabilities of
a dedicated LAN analyzer. In fact, there is a working group within the Internet
EngnwenngTukForoethatnspmsenﬂydeﬁnmgamdmdsetofMIBobjeasfot
distributed link-level monitoring.

What are the downsides to SNMP? Since SNMP is a simple protocol,, it is geared toward
moving data in small chunks rather than in large masses. This makes it ideal for gathering

SNMP, Opan System, aad Opan Networks:
The State of the Union

things like statistics and routing tables. But when there are larger quantities of data
involved, such as in some sophisticated system management applications, SNMP can
become slow because of its one-item-at-a-time type of query. In addition to that, an
SNMP manager is only as effective as the agents from which it is gathering data, and in
some instances agents may not provide all the information a network administrator needs.
Also, since SNMP is designed such that the management application does most of the
work and agents are strictly lightweight processes, polling is the method used to gather
information rather than reporting. The polling creates additional network traffic, which
can be a problem on large networks or those that involve wide-area components with per-
packet charges.

Nevertheless, when applied properly, the benefits of SNMP greatly outweigh the
problems mentioned above. SNMP’s success in the market is a strong testament to that.

The Future

Future directions for open netwotk management protocols are not totally clear, but there
are several different scenarios. One, which is highly unlikely, is that SNMP will be
quickly replaced by CMIP Over TCP/IP (CMOT), and then ultimately by CMIP as OSI
becomes more common. This is unlikely because of the installed base of SNMP and the
considerable benefits that network managers are deriving from it. CMOT has not gained
anywhere near the wide acceptance that SNMP has among device and system vendors.
For many device vendors, it is not presently practical to implement either a CMOT or a
CMIP agent because of memory and cost limitations. And, while there are many SNMP
managers implemented now, CMIP managers are still mostly experimental as of this
writing.

A more likely scenario is that both SNMP and CMIP will each find their respective niches
because they are good at different things. SNMP is strong at managing campus-level
networks of interconnected LAN's, which have routers, bridges, multiport repeaters,
terminal servers, and computer systems. SNMP is good at fault, configuration, and
performance management in these types of environments because the load on systems
doing real (i.e., non-network management) work is minimal, and the polling method that
SNMP uses to get information and perform control is quite adequate.

CMIP will likely find its home in enterprise-level network management. Since it is geared
toward getting information in bulk [1], according to Jeff Case, one of the inventors of
SNMP, it lends itself to managing larger devices and systems. In fact, one of the primary
groups of CMIP advocates is the Post Telephone and Telegraph companies in Europe,
who are inspired by the European Economic Community’s 1992 deregulation to unite
their wide varieties of network devices under the CMIP/ OSI banner. In addition, CMIP
will make a good platform for an enterprise-level manager that counts on lower-level site

SNMP, Open System, and Open Networks:
The State of the Union

2022-6

managers to report conditions across the network.

Since CMIP is an international standard, and even today, most networks have devices
with proprietary protocols, CMIP is a logical choice both for management systems to pass
information between themselves, end as an umbrella protocol with proxies to proprictary
protocols.

In the meantime, there is a flurry of activity on the SNMP front. Vendors of different
kinds of devices are working at standardizing the MIB objects for those devices, such as
bridge vendors, router vendors and link-level monitor vendors. These standardization
activities will be beneficial to end-user network managers, as the combined knowledge of
the different device vendors will result in a more complete set of objects in all the devices.
With better standardization across devices, network management applications will be able
to make more optimal use of the data they collect from the devices.

The reality of network management today is that there are protocols other than TCP/IP
and OSI on networks. IPX (Novell) dominates at the PC workgroup level and SNA
dominates at the enterprise level. As a result, in the near futare, there will be solutions
available that allow PC workgroups running IPX to be managed by SNMP applications.
The solutions will likely take the form of proxy agents that instrument key aspects of IPX
with SNMP, and report on them to the SNMP manager application. Looking up toward
the enterprise level, SNMP managers often need to pass alarms to IBM Netview so they
will be registered at a central network operations center. It is unclear whether this will
more often involve Netview accepting SNMP events or SNMP managers packaging
events for Netview, but solutions will be available.

Summary

Standards-based distributed computing is now a fact of life all over the world. Network
management is critical to getting the most out of these computing environments, both for
keeping them running and optimizing performance. SNMP has emerged as the most
widely used protocol today for managing TCP/IP networks, and promises to continue to
be the most popular for at least the next several years. By virtue of having broad support
among vendors, it will continue to be enhanced and to provide solutions in many different
computing environments. CMIP, while not very common now, will become more popular
both as OSI networks are more widely implemented, and as it becomes the protocol of
choice for communicating between management stations and for uniting different devices
that formerly used proprietary protocols.

SNMP, Opea System, and Opea Networks:
‘The State of the Union

2022.7

Bibliography
1. Sharon Fisher, Dueling Protocols, BYTE Magazine, March 1991, pp. 183-190.
2. DataPro Inc., DataPro SNMP Product Guide
Unix is a registered trademark of Unix System Laboestocies, Inc.
LANtem and IPX aro trademarks of Novell, Inc.

SNA snd Netview are trademarks of Intemational Business Machines, Inc.

OpeaView is a trademark of Hewlott-Packard Compeny.

SNMP, Opea System, and Opea Networks:
The State of the Union

2024
- Business intelligence; A Key Component of
Third-Generation Office information Systems

By Garry Orsolini

Hewlett Packard
Software Technology Center
Roseville, California
916-785-4624
National INTEREX Conference: August, 1991

Strategic Information Systems; No Longer an Option!

Global competition is everywhere!. Companies are dispersed
geographically and increased customer expectations are making
time to action and time to market more important than ever.

Winners in competitive markets have successfully harnessed
technology to meet business objectives. And today, aggressive
organizations are looking for strategic information systems that
will allow them to gather, understand, communicate, and act on
critical information faster and better than ever before.

According to Jan P. Herring, Vice President - Business Planning
and Strateqgy for The Futures Group, "Today's business environment
is the most complex and competitive in history... to achieve

a competitive advantage and to counter aggressive domestic and
foreign compdtition, U.S. companies must begin to develop
corporate inﬂelligence systems". (Reference 1).

Evolution of Office Information Systems - Business Intelligence

During the 1970s, many successful companies implemented first-
generation Office Information Systems (0IS), which provided
host-based wdrd processing for clerical working. In the 1980s,
practically every large organization installed second-generation
OIS that offered personal and departmental productivity tools
from PCs and host-based systems. Today there are an estimated

10 million second-generation OIS users.

But the 19905 will find the emergence of third-generation 0IS-
an enterprise-wide information system. According to the Gartner
Group, "Third generation OIS expand the role of OIS across the
enterprise, delivering -~ to potentially all knowledge workers -
a window into the information resocurces