interex

Shared Power.

The intemational
Association of
Hewlett-Packard
Computing
Professionals

Interex ‘95

Conference & Expo

14-18 August 1995
Toronto, Ontario, Canada

Workbook

1300

Tutorial: IMAGE/SQL.: Issues and
Answers Concerning SQL Tables

Leslie-Anne Bain
Hewlett-Packard Co.

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

IMAGE/SQL.:

Issues and Answers
Concerning SQL Tables @

Leslie-Anne Bain
Software Design Engineer
Hewlett Packard, CSY Division
Presentation #T300

© COPYRIGHT HEWLETT-PACKARD CO. 1995

Overview

Overview 1-1

Purpose of Slide

To explain the subjects to be covered during this talk.

What am | going to learn?

= Key concepts needed to develop an
SQL application that accesses both
TurbolMAGE datasets and SQL tables.

WARNING! This class will
provide an SQL "jump-start"
(be aware that much
information will follow)!

1-2 Overview

Key Points

If you are a TurboIMAGE programmer, you are already familiar with the key concepts needed
to develop an application that calls TurboIMAGE intrinsics. The goal of this tutorial is

to make you familiar with similar concepts for the SQL part of IMAGE/SQL, so that you
have the ability to develop an SQL application that accesses information stored in either
TurboIMAGE data sets or SQL tables.

I'll go out on a limb here, but I'm willing to bet you did not learn everything that you needed
to know about TurboIMAGE from a two-hour tutorial. When I was involved with IMAGE
programming, I took several multi-day customer courses to come up to speed.

SQL is complex. Where does one start? This tutorial will try to give you a jump-start into
the world of SQL. My objective is to expose you to key SQL concepts, and to show you where
to go for additional information. The illustration on the diagram is supposed to be similar to
an iceberg. We'll cover the ’tip’ of the iceberg in this class, but not the entire iceberg.

When you jump-start your car, an intense burst of energy passes into the battery. In this
tutorial you will be exposed to much information. I recommend that you try to focus on the
“big picture” instead of all of the details. Save this workbook for later reference.

Major topics to be covered:
m Chapter 1 - Overview
o How are TurboIMAGE/XL, ALLBASE/SQL, and IMAGE/SQL related?
o Why should I care about SQL tables?
o What SQL terminology should I know?
0 Where can I get additional information?
m Chapter 2 - SQL Storage and Security
o Review physical storage for TurboIMAGE
o Explain how SQL tables are physically stored.
o Explain how SQL security is implemented.
a Chapter 3 - Trouble-Shooting with SQLMON
o What is it?
o Where is it?
o How do I use it?
m Chapter 4 - SQL Transactions and Locking
o SQL Transactions (starting, ending, timeouts, etc.)
O How are deadlocks resolved by ALLBASE/SQL?
o SQL DBECon file parameters associated with locking.
o0 How does the SQL optimizer affect locking?
o What is an SQL cursor?

O And everything else you ever wanted to know about SQL locking!

Overview 1-3

Purpose of Slide
To explain how TurboIMAGE/XL, ALLBASE/SQL, and IMAGE/SQL are related.

Overview of IMAGE/SQL

C/S Tools ISQL Allbase/SQL
Preprocessors
Y
SQLCORE

L

TurboIMAGE ™/——, DBCORE
Datasets SQL Tables

O O0d

System Catalog User Tables

1-4 Overview

Key Points
IMAGE/SQL consists of three components:

1. TurboIMAGE/XL is a set of programs and procedures for defining, creating, maintaining
and accessing TurboIMAGE/XL databases.

m A database is a collection of data sets.
m Each data set contains data entries, also known as records.
m The physical storage manager is known as TurboIMAGE.

m When writing a program to access data from the database, the developer includes calls to
TurboIMAGE intrinsics.

m The developer controls the data access path. For example, the developer controls
whether a chained read or a serial read is used.

2. ALLBASE/SQL is a set of programs and procedures for creating, maintaining, and
accessing ALLBASE/SQL DBEnvironments.

m A DBEnvironment is a collection of SQL tables.
m Each SQL table contains rows, also known as tuples.
m The physical storage manager is known as DBCORE.

® When writing a program to access data from the DBEnvironment, the developer includes
industry-standard SQL statements.

m The developer does not control the data access path. A second manager known as
SQLCORE creates an access plan for each SQL query, and performs the appropriate
sequence of calls to DBCORE.

m SQLCORE uses information in a special set of SQL tables known as the system catalog
when it generates the access plan. If the system catalog shows that an index exists on a
table, then SQLCORE will probably ask DBCORE to perform an indez scan instead of a
serial scan.

3. Additional software (including the IMAGESQL utility) that registers information
about a TurboIMAGE/XL database into the system catalog of an ALLBASE/SQL
DBEnvironment. To SQLCORE, the TurboIMAGE data sets look like SQL tables, with
one exception. SQL statements that update, insert, or delete data ultimately get routed to
the TurboIMAGE storage manager when TurboIMAGE data sets are referenced.

As a result, the large suite of client/server tools that support ALLBASE/SQL now support
TurboIMAGE/XL too!

The SQL part of IMAGE/SQL is ALLBASE/SQL. From an SQL point of view, the major
difference between IMAGE/SQL and ALLBASE/SQL is the amount of data you can
store in user SQL tables. In IMAGE/SQL the limit is 12 MegaBytes (3000 4K pages). In
ALLBASE/SQL there is no limit.

Overview 1-5

Purpose of Slide
Why should I care about SQL tables?

Why should | care about
SQL tables?

= | may not need to!

= | may want to evolve to SQL because it is
an industry standard interface.

= | may benefit from using the SQL tools or
approach for program development.

= | may use SQL tables without realizing it!

= | may decide to create an SQL table
instead of a new data set.

= IMAGE/SQL gives me more options. The
final choice is up to me!

1-6 Overview

Key Points

® You may not need to care. Don’t waste your time reading this document if you have already
decided you will only use IMAGE/SQL and some off-the-shelf SQL decision support tool
(such as Information Access by Hewlett-Packard) to access your existing TurboIMAGE data
sets in “read-only” mode.

If you don’t insert data into the SQL side (either the system catalog or user tables), then

you don’t need to worry about SQL storage management or concurrency issues (except at
IMAGESQL ATTACH and DETACH time).

You might want to read Chapter 2 to learn more about SQL security, however, as future
enhancements to IMAGE/SQL security may take advantage of the SQL approach.

® You may be considering evolving your existing TurboIMAGE applications to SQL because it
is “open”:

"[IMAGE/SQL] is a superb migration tool, which will allow users to develop
nev applications on a true fully-featured relational database (ALLBASE/SQL),
while still accessing the data held in IMAGE legacy applications. This
means a migration that once looked unavoidable and daunting suddenly can be
carried out little by little, over several years, to suit your company’s
convenience ... HP has pulled off its biggest coup since Compatibility Mode
gave us painless migration to PA-RISC."

Martin Knapp, PROACTIVE SYSTEMS SENIOR SOFTWARE ENGINEER

Reprinted from the December, 1994 edition of InterexPress.

ALLBASE/SQL is available on both the HP3000 and the HP9000. In addition,
ALLBASE/SQL adheres to industry SQL standards, which means you can eventually
“migrate” to another SQL vendor (and hardware platform) if you ever want to.

m You may be considering evolving to SQL because of the benefits of using a relational model
instead of a network model:

o Client/Server development tools.

o The DBA has more flexibility to make database changes. Programs don’t “break”
when changes are made because they don’t have intimate knowledge about how data is
physically stored.

m If you decide to develop an SQL application that will access the data in your TurboIMAGE
database, you will probably insert compiled SQL statements (known as stored sections)
into the system catalog (a special set of SQL tables). The system catalog serves essentially
the same function as the root file (it contains metadata about each of the objects in
the DBEnvironment). SQLCORE accesses information in the system catalog when it
executes most SQL statements. Locks are acquired during this process, which can result in
concurrency problems if you are not aware of the issues.

s And finally, you may want to create an SQL table instead of creating a new data set in a
TurboIMAGE schema.

Overview 1-7

Purpose of Slide
What SQL terminology should I know?

What are the buzzwords?

TurboIMAGE/XL IMAGE/SQL.ALLBASE/SQL

= Database (1) = DBEnvironment

= Database (2) = Set of tables having
the same owner.

= Data Set = Table

= Data Entry,Record = Row,Tuple

= Field,ltem = Column

= Chain,Key = [ndex

= Passwords = Grant/Revoke to a
User/Group.

= DBXBEGIN,DBXEND = Transaction

1-8 Overview

Key Points

a The concept of a database in TurboIMAGE maps to two different concepts in IMAGE/SQL
and ALLBASE/SQL:

1. A DBFEnvironment (or DBE) is primarily a set of SQL tables that share the same system
catalog and the same logging and recovery. Typically you store and restore all files in the
DBE at the same time.

2. In SQL terminology, a database is a set of SQL tables within a particular
DBEnvironment that share the same owner. When a table is created, both an owner and
a tablename are assigned to completely identify it. Since it is possible to create tables
having different owners within a single DBE, multiple databases can exist within a DBE.

IMAGE/SQL allows you to attach several TurboIMAGE databases to a single
DBEnvironment. The data sets are registered as tables in the system catalog; all data
sets from the same TurboIMAGE database have the same owner. So, each TurboIMAGE
database is also a unique “database” in SQL terminology.

m An SQL table is similar to a TurboIMAGE data set.
m An SQL row has one or more columns.

® You can create hash indexes, B-tree indexes or parent-child relationships (referential
constraints) on SQL tables.

m In SQL, security is primarily based on the end-user’s logon id, not on a password. The DBA
grants and revokes database priviledges to a particular logon id. The DBA can also define
a group, and grant/revoke to the group in the same way as to a particular logon id. Each
logon id added to the group has the same priviledges as the group. Finally, the DBA can
add groups to other groups.

m In TurboIMAGE, several types of transactions are defined. A dynamic transaction is a
logical transaction which has the following attributes:

1. It begins with a DBXBEGIN call and normally ends with a DBXEND call; it can be
rolled back dynamically with a DBXUNDO call.

2. It spans only one database. A program can open more than one database if it needs to
access data sets from different databases, and can have dynamic transactions in effect on
different databases at the same time.

In DBCORE, only one type of transaction is defined. A DBCORE transaction is essentially
equivalant to a TurboIMAGE dynamic transaction, and has the following attributes:

1. It begins with a BEGIN WORK statement and normally ends with a COMMIT WORK
statement; it can be rolled back dynamically with a ROLLBACK WORK statement.

2. It spans only one database. A program that needs to access tables in more than one
DBEnvironment can do so by connecting to multiple DBEnvironments; however, only
one connection can have an active transaction at any time (it is not possible to reference
tables from multiple DBEnvironments within a single transaction). A program must
end a transaction on one DBEnvironment before starting a transaction on a second
DBEnvironment.

Most interactive Client/Server tools only allow you to connect to a single
DBEnvironment at a time.

Overview 1-9

Purpose of Slide

Where can I get additional information?

For more information ...

= ALLBASE/SQL DBA Guide
(Physical Storage, Security, Backup

and Recovery, System Catalog)

= ALLBASE/SQL Reference Manual
(SQL Statements, Locking)

= ALLBASE/SQL Performance and

Monitoring Guidelines
(Theory, Issues, SQLMON)

IMAGE/SQL and TurbolIMAGE Documentation Product Numbers

Table 1-1. IMAGE/SQL and TurbolIMAGE Documentation Product Numbers

CATEGORY PRODUCT TITLE
NUMBER
IMAGE/SQL 30391-90001 |TurboIMAGE/XL Database Management System Reference Manual
and 36385-90008 | Getting Started with HP IMAGE/SQL
TurboIMAGE 36385-90001 |HP IMAGE/SQL Administration Guide

PC API

B2463-90013

Read Me Before Installing HP ALLBASE/SQL PC API

1-10 Overview

ALLBASE/SQL Documentation Product Numbers

Table 1-2. ALLBASE/SQL MPE/iX Documentation Product Numbers

CATEGORY PRODUCT TITLE
NUMBER
General 36389-90011 [Up and Running with ALLBASE/SQL
Reference 36216-90001 | ALLBASE/SQL Reference Manual

36216-90009
36216-90096
92534-90011

ALLBASE/SQL Message Manual
ISQL Reference Manual for ALLBASE/SQL and IMAGE/SQL
HP ALLBASE/QUERY User’s Guide

Database and
Network
Administration

36216-90031
36216-90005
36216-90102

ALLBASE/NET User’s Guide
ALLBASE/SQL Database Administration Guide
ALLBASE/SQL Performance and Monitoring Guidelines

Embedded SQL

36216-90100

ALLBASE/SQL Advanced Application Programming Guide

Programming 36216-90023 [ALLBASE/SQL C Application Programming Guide

Guides 36216-90006 |(ALLBASE/SQL COBOL Application Programming Guide
36216-90030 |[ALLBASE/SQL FORTRAN Application Programming Guide
36216-90007 | ALLBASE/SQL Pascal Application Programming Guide

REPLICATE B2494-90002 |(HP ALLBASE Replicate User’s Guide

PC API 36216-90104 [(HP PC API User’s Guide for ALLBASE/SQL and IMAGE/SQL

Table 1-3. ALLBASE/SQL HP-UX Documentation Product Numbers

CATEGORY PRODUCT TITLE
NUMBER
General 36389-90011 |Up and Running with ALLBASE/SQL
Reference 36217-90001 [ALLBASE/SQL Reference Manual

36217-90009
36217-90188
92534-64001

ALLBASE/SQL Message Manual
ALLBASE/ISQL Reference Manual
HP ALLBASE/QUERY User’s Guide

Database and
Network
Administration

36217-90093
36217-90005
36217-90185

ALLBASE/NET User’s Guide
ALLBASE/SQL Database Administration Guide
ALLBASE/SQL Performance and Monitoring Guidelines

Embedded SQL

36217-90186

ALLBASE/SQL Advanced Application Programming Guide

Programming 36217-90014 |ALLBASE/SQL C Application Programming Guide

Guides 36217-90058 | ALLBASE/SQL COBOL Application Programming Guide
36217-90013 |ALLBASE/SQL FORTRAN Application Programming Guide
36217-90007 |ALLBASE/SQL Pascal Application Programming Guide

REPLICATE B3480-90002 |HP ALLBASE Replicate User’s Guide

PC API 36217-90187 |HP PC API User’s Guide for ALLBASE/SQL

Overview 1-11

SQL Storage and Security

SQL Storage and Security 2-1

Purpose of Slide
To review physical storage for TurboIMAGE/XL.

Physical Storage of
TurbolMAGE Data Sets

Traditional Model

1 Data Set 1 Physical O/S File

Max: 4 GigaBytes

2-2 SQL Storage and Security

Key Points

m Traditional limit is 4 GigaBytes per data set.

® Limit exists because there is a one-to-one mapping between data sets and MPE files. Each
data set is stored in its own MPE file.

SQL Storage and Security 2-3

Purpose of Slide
To review Jumbo Data Sets in TurboIMAGE/XL.

Physical Storage of
TurboIMAGE Data Sets

New: Jumbo Data Sets

1 Data Set Several Physical O/S Files

Chunk Control File

2-4 SQL Storage and Security

Key Points

m With jumbo data sets, there is a one-to-many mapping between data sets and MPE files.
Each data set can be stored in several MPE files.

m There is one chunk control file for each jumbo data set (filecode -408). This file has no user
data, and is typically small. It has information about the chunk data files, and is used for
mapping record numbers to particular files.

® There can be up to 10 chunk data files for each jumbo data set (filecode -409). Each file is
typically 4 GigaBytes, except the last one, which may be smaller. The data format within
the chunk data files is identical to the format used in traditional data sets.

SQL Storage and Security 2-5

Purpose of Slide
To explain how SQL tables are physically stored.

Physical Storage of SQL tables

Physical O/S Files =
SQL Tables DBEFileSet DBEFiles

Type: Table,Index,Mixed

2-6 SQL Storage and Security

Key Points

a ALLBASE/SQL allows a one-to-one, a one-to-many, or a many-to-many mapping between
SQL tables and MPE files. Typically, customers use a many-to-many mapping.

m Physical files are known as DBEFiles. You use the CREATE DBEFILE and ADD
DBEFILE statements to add physical files to a DBEFileSet:

isql => CREATE DBEFILESET partsfileset;

isql => CREATE DBEFILE parts2 WITH PAGES=253, NAME=’parts2’,
> TYPE=mixed;

isql => ADD DBEFILE parts2 TO DBEFILESET partsfileset;
isql => commit work;

There is virtually no limit to the number of DBEFiles that can be added to a DBEFileSet.

m When you use the CREATE TABLE statement, you specify the DBEFileSet that you want
the table to belong to:

isql => CREATE PUBLIC TABLE Parts.Vendors
> (PartNumber char(16),

> VendorNumber INTEGER)

> IN partsfileset;

isql => commit work;

Rows for the table can be stored on any of the DBEFiles that have been added to the
DBEFileset.

m B-tree indexes are always created in the same DBEFileset as the table.

m DBEFiles come in three flavors: TABLE, INDEX, and MIXED. Data rows for SQL tables
can only be inserted onto TABLE or MIXED DBEFiles. Index data can only be inserted
onto INDEX or MIXED DBEFiles. An error is returned if you try to insert data and there
is no space available on any of the appropriate DBEFiles.

m To improve performance, you can put INDEX and DATA DBEFiles on different disc drives.

a DBEFiles can be created so that they dynamically expand. When you use the CREATE
DBEFILE statement, you can specify an initial size, a maximum size, and an increment
value (that is, the number of pages to add each time the file needs to expand).

SQL Storage and Security 2-7

Purpose of Slide
To explain how DBEFileSets are used in ALLBASE/SQL.

What is a DBEFileSet?

= A set of DBEFiles.

= A layer of indirection that allows SQL tables
to become virtually unlimited in size.

= Rows for an SQL table can be stored on
any DBEFile(s) that belong to the same
DBEFileSet as the table.

= |f a table grows large, space can easily be
added by simply adding another DBEFile to
the DBEFileSet.

2-8 SQL Storage and Security

Key Points

® When the DBEnvironment is created, a special DBEFileset known as the SYSTEM
DBETFileset is created.

o Initially, the SYSTEM DBEFileset has a single DBEFile known as DBEFile0 in it.
0 The system catalog tables reside in the SYSTEM DBEFileset.
o0 You can add additional DBEFiles to the SYSTEM DBEFileset.

o You can also add additional tables to the SYSTEM DBEFileset, but it is better to put
user tables into other DBEFileSets instead.

m To remove a DBEFile from a DBEFileset, use the REMOVE DBEFILE and DROP
DBEFILE statements:

isql => REMOVE DBEFILE parts2 FROM DBEFILESET partsfileset;
isql => DROP DBEFILE;
isql => commit work;
The DBEFile must be empty.
m To delete the definition of a DBEFileSet, use the DROP DBEFILSET statement;

isql => DROP DBEFILESET partsfileset;
isql => commit work;

SQL Storage and Security 2-9

Purpose of Slide
To explain the internals of a DBEFile.

What is a DBEFile?

DBEFile 0, Page 2 DBEFile 1, Page 254

DBEFiles
Y /jj
PTP PTP
PTP PTP
01234 253254255 f
PTP PTP
Data Pages

2-10 SAQL Storage and Security

Key Points
m DBEFiles are also called chunks.
m Each DBEFile has a number, which is visible under the DBEFNUMBER column of
SYSTEM.DBEFILE.
isql => select DBEFNUMBER,* from SYSTEM.DBEFILE order by DBEFNUMBER;

® In TurboIMAGE, each data set file can be thought of as a set of records. Each record in the
file corresponds to a record in the data set.

s In ALLBASE/SQL, each DBEFile can be thought of as a set of 4K pages. Each page has
a number. There are basically two types of pages, page table pages and data pages. Each
type of page has its own layout.

o A page table page (PTP) is basically a table of contents for the next 252 pages. For every
253 pages in the DBEFile, the first page is a page table page, and the other 252 pages are
data pages.

O A data page is used to store table data or index data, depending on the type of the
DBEFile. Rows for an SQL table are always stored on data pages, in a special format
understood by DBCORE. Up to 256 rows can be stored on a single page, depending on
the size of the rows.

w Each row inserted onto a page has a physical address (also known as the TID, or tuple id).
The form of a TID is

(DBEFile Number):(Page Number):SLOT.
Each row on the page has a different SLOT number (from 0 to 255).
The TID for a row on the page highlighted in DBEFile 0 might be: 0:2:128.
The TID for a row on the page highlighted in DBEFile 1 might be: 1:254:7.

® You can find out which pages your data is stored on by issuing the following query in isql:

isql=> select tid(),* from myowner.mytable order by 1;

EXAMPLE

isql=> select tid(),* from recdb.clubs order by 1;

----------------------- Dt Ty N

(TID) | CLUBNAME | CLUBPHONE | ACTIVITY

----------------------- D Ty F U
8:5:0|Energetics I 1111 aerobics
8:5:1|Windjammers I 2222] sailing
8:5:2|Downhillers I 3333| skiing
8:5:3|Poker Faces [4444| cards
8:5:4|Spikers | 5555 volleyball
8:5:5|Stingers | 6666 | soccer

m In Chapter 4, “SQL Transactions and Locking”, you will see how DBCORE obtains
information out of DBEFiles depending upon the type of scan selected by SQLCORE.

SQL Storage and Security 2-11

Purpose of Slide

To explain how SQL tables are stored on DBEFiles.

SQL tables ARE stored in
DBEFiles

SQL tables

Table A

Table B

DBEFiles

PTP

PTP

PTP

PTP

PTP

PTP

2-12 SAQL Storage and Security

Key Points
m A DBEFile can contain data for many SQL tables.

m Each data page of a DBEFile only contains rows for a single table.

SQL Storage and Security 2-13

Purpose of Slide

To describe the key elements of security in SQL.

SQL Security Concepts

= WHO
- A "USER" is a specific logon name (for example,
joe@brown).
- A "GROUP" is a logical entity that ultimately maps
to a set of logon names.

= WHAT

- An "authority" is permission to perform some
database task (for example, SELECT authority
allows you to read from a table, and INSERT
authority allows you to insert new rows).

2-14 SQL Storage and Security

Key Points

In TurboIMAGE, security is implemented based on how users need to use the database. User
classes are set up for each unique set of users. Associated with each user class is a number (1

to 63) and a password. The class number is used in the database schema to indicate whether

or not the class has read, write or update access to a particular data set or to a subset of data
items.

When you initiate access to the database, you supply the password to establish the user class.
More than one user can use the same password.

In SQL, security is also implemented based on how users need to use the database, but using
a different scheme:

s WHO

O Normally, each user has a unique DBEUserID. On MPE/iX, the format of a DBEUserID
is user@account (for example, wolfgang@mrkting). Two or more.users would share the
same DBEUserID only if the the System Manager allowed the users to use the same user
and account information when logging on to the machine.

On HP-UX, the format of a DBEUserID is the same as the logon name.

O A group is similar to a TurboIMAGE class. Use the CREATE GROUP and ADD USER
statements to add users to groups:

isql=> CREATE GROUP mygroup;

isql=> ADD USER wolfgang@mrkting TO GROUP mygroup;
isql=> ADD USER joe@brown TO GROUP mygroup;

isql=> COMMIT WORK;

m WHAT
o Authorities are similar to read and write class lists in TurboIMAGE:
m Read access is similar to SELECT authority in SQL.

m Update access (which also provides read access) is similar to the sum of SELECT and
UPDATE authorities in SQL.

w Write access (which also provides read and update access) is similar to the sum of
SELECT, UPDATE, INSERT, and DELETE authorities in SQL.

SQL Storage and Security 2-15

Purpose of Slide

To describe the key elements of security in SQL (continued).

SQL Security Concepts

= HOW
- Use GRANT statement to give a specific
authority to a USER or a GROUP.
- Use REVOKE statement to take away an
authority from a USER or a GROUP.

- Create views to restrict access to a subset of
columns or rows in the table. A view can be
thought of as a filter that sits on top of a table.

2-16 SQL Storage and Security

Key Points
= HOW

o The GRANT statement gives specified authority to one or more users or authorization
groups. You can grant authorities on either tables or views (which are described below).

o The REVOKE statement takes away authority that was previously granted.

o In TurboIMAGE, a class can be given access to either an entire data set or a subset of
data items from a data set.

In SQL, a USER or GROUP can be given access to either an entire table or a subset of
columns or rows from the table. To give access to a subset, the DBA can create a view.
Think of a view as a filter that sits on top of the table. The CREATE VIEW statement is
used to create a view on a table (or even on a another view).

isql => CREATE PUBLIC TABLE Parts.Vendors
> (PartNumber char(16),

> VendorNumber INTEGER,

> VendorCode INTEGER)

> IN partsfileset;

isql => CREATE VIEW Parts.SpecialVendors

> as SELECT PartNumber,VendorNumber FROM Parts.Vendors
> where VendorCode = §

> IN partsfileset;

isql => select * from Parts.Vendors; /* THIS IS THE TABLE */
________________ B LT T Ty p—
PARTNUMBER | VENDORNUMBER | VENDORCODE
................ e mcccccccmcc e c e e —--
1123-P-01 ! 9001 | 5
1133-P-01 I 9002| 4
1143-P-01 I 9003 | 1
1153-P-01 | 9004 | 5
1223-MU-01 | 9025| 5
1233-MU-01 [9006 | 4
1243-MU-01 [9018| 1

isql => select * from Parts.SpecialVendors; /* THIS IS THE VIEW */

................ e ———
PARTNUMBER | VENDORNUMBER
---------------- [R
1123-P-01 I 9001
1163-P-01 I 9004
1223-MU-01 I 9025

SQL Storage and Security 2-17

Purpose of Slide

To provide more information about the GRANT statement.

I
|

More about the GRANT command

Syntax: GRANT Authority [on Table/View]
TO {User/Group/PUBLIC} ;

= The complete syntax is more complicated.

= The following authorities can be granted on a

table or view: SELECT, UPDATE, INSERT,
and DELETE.

= The following authorities are not granted on a
table/view (they are simply granted to a
USER or GROUP): CONNECT, DBA, and
RESOURCE.

2-18 SAQL Storage and Security

Key Points

® When you grant SELECT, UPDATE, INSERT, or DELETE authority, you must specify a
Table or View name.

m CONNECT authority is the ability to issue the CONNECT statement (in other words, to
simply attach to the DBEnvironment).

When a normal user initiates access to the DBEnvironment, he or she must issue the
CONNECT statement. If the user has not been granted CONNECT authority (or

has not been added to a group to which CONNECT authority has been granted), the
CONNECT statement will fail and no database access will be possible. SQL CONNECT
authority is more restrictive than TurboIMAGE passwords, because it is not possible for an
unauthorized user to use a password. However, it is still possible for an unauthorized user
to gain entry to a DBEnvironment if the System Manager allows multiple users to share the
same user and account logon information at the MPE level.

Any user or group that has been granted CONNECT authority is part of a special “group”
known as PUBLIC. Granting an authority to PUBLIC is an easy way to provide access on
same table or view to many users.

a DBA authority is the ability to issue any valid SQL statement. A user with DBA authority
is exempt from all authorization restrictions. In the SQL world, DBA authority is similar to
SM capability on MPE/iX, or being the superuser on HP-UX. The number of users having
DBA authority should be small for a production DBEnvironment.

s RESOURCE authority is the ability to create tables and authorization groups.

m You cannot grant CONNECT authority to PUBLIC, because PUBLIC is defined as the set
of users and groups that have been granted CONNECT authority.

You also cannot grant DBA or RESOURCE authority to PUBLIC.

SQL Storage and Security 2-19

Purpose of Slide

To provide an example of how security is implemented in SQL.

SQL Security Example

The DBA issues the following commands:

isql => create group Purchasing;

isql => grant connect to Purchasing;

isql => grant select, update, insert, delete
> on PurchDB.Orderltems to Purchasing;
isql => commit work;

isql => add joe@brown to group Purchasing;
isql => add suzy@smith to group Purchasing;
isgl => commit work;

Now, suzy@smith can do the following:

isql => connect to 'PartsDBE’,
isql => select * from PurchDB.Orderltems;

2-20 SQL Storage and Security

Key Points

Summary of SQL Security:

® The DBA normally does the following:
DO Creates views on tables.
o Creates groups to represent each unique set of users.
o Grants appropriate authorities to each user/group.
o Adds users (or groups) to groups.

® The users then access the database according to the authorities that have been granted
either to them or groups to which they belong.

SQL Storage and Security 2-21

Purpose of Slide
To explain how SQL security is implemented by IMAGE/SQL.

IMAGESQL and SQL Security

IMAGESQL command
SQL commands issued behind the scene

>> SET TURBODB music
>> SET SQLDBE musicdbe

>> ATTACH
create public table music.albums ...;

create public table music.composers ...;
commit work;

create index albumcode_m1
on music.albums ...;
create index composername_m/1
on music.composers ...,
commit work;

m When you issue an IMAGESQL ATTACH command, certain SQL statements are executed
behind the scene for you.

0 IMAGESQL essentially issues a CREATE TABLE statement for each data set. By
default, the OWNER of the table is the database name. For example:

Data set names are albums, composers in the TurboIMAGE database
named ’music’. IMAGESQL issues the following SQL statements:

CREATE PUBLIC TABLE music.albums ...;
CREATE PUBLIC TABLE music.composers ...;

o In the latest release of IMAGE/SQL (B.G1.04 and later), TurboIMAGE keys and
third party indexes (TPI) are registered as indexes in the system catalog during the
ATTACH command. IMAGESQL essentially issues a CREATE INDEX command for
each key/TPI. For example:

CREATE INDEX albumcode_mi ON music.albums ...;
CREATE INDEX composername_mi ON music.composers ...;

2-22 SQL Storage and Security

Key Points

m Only the TurboIMAGE/XL database creator (DBC) is defined as a user in the
DBEnvironment immediately after the IMAGESQL ATTACH. The DBC must add any
additional IMAGE/SQL users by using the IMAGESQL ADD USER command (which is
explained on the next slide).

m The DBA can view the TurboIMAGE data sets (tables) associated with a database by
issuing:

isql => select * from system.table where owner=’MUSIC’;

-------------------- L T LT T T R SOy
NAME | OWNER IDBEFILESET ITYPE |
-------------------- e et e T T Y
ALBUMS IMUSIC |SYSTEM | of
COMPOSERS IMUSIC |SYSTEM | ol
LOG IMUSIC |SYSTEM I ol
SELECTIONS IMUSIC |SYSTEM | ol
SELECTIONS_A IMUSIC |SYSTEM | o]
SELECTIONS_A_VO IMUSIC | SYSTEM I 1l

m The DBA can view the TurboIMAGE keys associated with a database by issuing:

isql => select * from system.imagekey where owner=’MUSIC’;

-------------------- D et P S
INDEXNAME ITABLENAME | OWNER |[UNIQUE|
-------------------- et e P UL
ALBUMCODE_M1 | ALBUMS IMUSIC I 1)
COMPOSERNAME _M1 | COMPOSERS IMUSIC | 1}
SELECTIONNAME_A1 ISELECTIONS_A IMUSIC | 1
ALBUMCODE_D1 | SELECTIONS IMUSIC I o]
SELECTIONNAME_D2 | SELECTIONS IMUSIC | ol
COMPOSERNAME_D3 |SELECTIONS |MUSIC | ol
ALBUMCODE_D1 |LOG IMUSIC I ol
SELECTIONNAME_D2 ILOG IMUSIC | (o]

a The suffix _M1 is used by IMAGESQL when registering manual masters.
0 The suffix _A1 is used by IMAGESQL when registering automatic masters.

o The suffix _D<n> is used by IMAGESQL when registering search keys on detail data sets
(where n can be 1 to 16 depending on the number of keys).

® The DBA can view the third party indexes associated with a database by issuing:
isql => select * from system.tpindex where owner=’MUSIC’;

-------------------- e e L T Ty Sy
INDEXNAME ITABLENAME | OWNER |UNIQUE|

s This example was generated by using the “Practicing with IMAGE/SQL using MusicDBE”
chapter of Getting Started with HP IMAGE/SQL (Customer Order Number 36385-90008).

SQL Storage and Security 2-23

Purpose of Slide
To explain how SQL security is implemented by IMAGE/SQL (continued).

IMAGESQL and SQL Security

IMAGESQL command
SQL commands issued behind the scene
>> ADD USER DIR@ACCOUNT WITH PASS=pass20, MODE=1

create group music_20;
grant connect to music_20;
add DIR@ACCOUNT to group music_20;

create view music.albums_v20 ...;
create view music.composers_v20 ...;

grant select,update,insert,delete

on music.albums_v20 to music_20;
grant select,update,insert,delete

on music.composers_v20 to music_20:
commit work;

2-24 SQL Storage and Security

Key Points

m When you issue an IMAGESQL ADD USER command, certain SQL statements are
executed behind the scene for you.

o If this is the first user to be added for the class/password, then IMAGESQL does the
following (in the examples that follow, suppose that an ADD USER is being executed for
DIR@ACCOUNT, with a password that maps to class 20):

m IMAGESQL issues a CREATE GROUP statement for the class /password.
CREATE GROUP music_20;

m IMAGESQL issues a GRANT statement so that anyone in the group can connect to the
DBEnvironment, and also an ADD TO GROUP statement to put DIRQACCOUNT
into the new group.

GRANT CONNECT TO music_20;
ADD DIRQACCOUNT TO GROUP music_20;

m IMAGESQL issues a CREATE VIEW statement for each data set that the user class is
allowed to access, according to the TurboIMAGE schema. Only the data items that the
class is authorized to access are visible in the view. The name of the view has a *_V’
and the class number appended at the end.

CREATE VIEW music.albums_v20 ...;
CREATE VIEW music.composers_v20 ...;

m Finally, IMAGESQL performs a GRANT on the new view, so that anyone in the group
has the appropriate authorities on the view. In our example, class 20 has write access
(also known as full data access) according to the TurboIMAGE schema. Write access

maps to SELECT, UPDATE, INSERT, and DELETE authorities in SQL:

GRANT SELECT,UPDATE,INSERT,DELETE on music.albums_v20
TO music_20;

GRANT SELECT,UPDATE, INSERT,DELETE on music.composers_v20
TO music_20;

O If this is the second (or other) user for the class/password, then IMAGESQL simply issues
an ADD TO GROUP statement to add the new user to the appropriate group for the
class/password.

IMAGESQL >> ADD USER PINKY@ACCOUNT WITH PASS=pass20, MODE=1

SQL => ADD PINKY@ACCOUNT TO GROUP music_20;

O When users in the group want to access information in the TurboIMAGE data set, they
must use the view that has been set up for them:

isql => select * from music.albums_v20;

SQL Storage and Security 2-25

Trouble-Shooting with SQLMON

Trouble-Shooting with SQALMON 3-1

Purpose of Slide
To explain how to start SQLMON.

Starting SQLMON

:sgimon
Welcome to SQLMONITOR! Type HELP MAIN for more information.

SQLMONITOR SUBSYSTEMS (and abbreviations):
OVERVIEW 10 LOAD LOCK SAMPLEIO STATIC
/o /i lloa /loc /sa /st

CURRENT SUBSYSTEM SCREENS:
OVERVIEW SESSION PROGRAM
o) s p

SQLMONITOR OVERVIEW => help main
SQLMONITOR HELP OVERVIEW =>//
SQLMONITOR OVERVIEW => set dbenv 'musicdbe’

3-2 Trouble-Shooting with SQLMON

Key Points

SQLMON is an online diagnostic tool that monitors the activity of a DBEnvironment.
SQLMON screens provide information on file capacity, locking, 1/0, logging, tables, and
indexes. They summarize activity for the entire DBEnvironment, or focus on individual
sessions, programs, or database components. SQLMON is a read-only utility, and cannot
modify any aspect of the DBEnvironment.

® To run SQLMON, simply type sqlmon at the system prompt.
o On MPE/iX, SQLMON consists of two files:
s SQLMONP.PUB.SYS is the executable program.

m SQLMON.PUB.SYS is a command file which issues file equations and a command to
“run sqlmonp.pub.sys”.

When you type sglmon to invoke the program, you are actually executing the command
file.

o On HP-UX, the executable is stored under /usr/bin/sqlmon. When you type sqlmon to
invoke the program, you are actually executing the program file.

® If you are a new user, type help main to learn more about SQLMON basics (such as the
SET DBENVIRONMENT command, and how to navigate the SQLMON screens).

» Issue the SET DBENVIRONMENT command to ’connect’ to the DBEnvironment.
To successfully issue this command, one of the following must be true: 1) you are the
DBECreator, 2) you have system manager capability, or 3) you know the DBEnvironment
maintenance word.

SQLMONITOR OVERVIEW => set dbenv musicdbe [MAINT=maint]
DBEnvironment is not active (no other session in progress). (DBWARN 34505)

At least one TurboIMAGE database is attached to this DBEnvironment (DBWARN
34526). TurboIMAGE locks are not visible in SQLMON. Use DBUTIL to
determine locks granted on TurboIMAGE objects.

The MAINT word is not required if you are the DBECreator or you have system manager
capability.

If nobody is connected to the DBE, then a warning is issued. Many SQLMON screens
cannot be accessed if the DBE is not active.

A warning is issued when an IMAGE/SQL DBE is accessed, to remind you that SQLMON
only shows locks on ALLBASE/SQL tables (including the system catalog). You must use
DBUTIL to see locks on TurboIMAGE objects.

m For more information about SQLMON, see Chapters 6 - 9 of the ALLBASE/SQL
Performance and Monitoring Guidelines document (HP Part No. 36216-90102 on MPE/iX
and 36217-90185 on HP-UX).

Trouble-Shooting with SQLMON 3-3

Purpose of Slide

To explain how the SQLMON screens and subsystems are organized.

SQLMON
[[[]
OVERVIEW LOAD LOCK STATIC
Session Session Object DBEFile
Program Program Session Size
Impede Indirect
Memory Cluster
TabSummary | Hash
10 SAMPLEIO
Data Session Tables
Data Program Indexes
Log Session TabIndex
Log Program Objects

m SQLMON screens are organized into subsystems. Each subsystem is a set of screens that
are logically related to each other.

o OVERVIEW shows general performance information.

o 10 provides information on data and log buffer activity.

o LOAD displays transaction throughput data.

o LOCK shows locking activity.

o SAMPLEIO provides information on DBEFile, table and index I/0.

o STATIC provides relatively non-dynamic information about DBEFiles, tables, and indexes
(such as current size, length of hash overflow chains, etc.)

Each subsystem consists of a main screen, which has the same name as the subsystem, and
additional “detail” screens. For example the screens in the OVERVIEW subsystem are:

o OVERVIEW (main screen),
o OVERVIEW SESSION (detail screen)
o OVERVIEW PROGRAM (detail screen)

3-4 Trouble-Shooting with SQLMON

Key Points

® The main screen of a subsystem contains a high-level or summary information for the
subsystem, and the other screens give more detailed information. Most of the time, the user
will first visit the main screen of a subsystem to obtain the “big picture”, and afterwards
will visit detail screens to obtain more specific information of interest.

s When you access a screen, you automatically move to the subsystem that the screen belongs
to. The name of the current subsystem is displayed in the prompt. For example:

SQLMONITOR OVERVIEW => /* you are in the OVERVIEW subsystem. */

SQLMONITOR LOCK => /* you are in the LOCK subsystem. */

m You access a screen by typing the name of the screen (or an abbreviation) at the prompt.
A menu is printed to help you remember the names of screens (and abbreviations) that you
should type.

SQLMONITOR SUBSYSTEMS (and abbreviations):

OVERVIEW I0 LOAD LOCK SAMPLEIO STATIC
/o /i /loa /loc /sa /st

CURRENT SUBSYSTEM SCREENS:

OVERVIEW SESSION PROGRAM
o 8 P

/**/

/* To obtain a screen in the current subsystem ... */
R e T L L T Ty

SQLMONITOR OVERVIEW => o /* To obtain the OVERVIEW screen */
SQLMONITOR OVERVIEW => s /* To obtain the OVERVIEW SESSION screen */
SQLMONITOR OVERVIEW => p /* To obtain the OVERVIEW PROGRAM screen */

/**[

/* To obtain a screen in another subsystem ... *x/
AR A AR AR AR Ko AR KKK KA Ak ko Kok [

SQLMONITOR LOCK => /o /* To obtain the OVERVIEW screen */
SQLMONITOR LOCK => /o s /* To obtain the OVERVIEW SESSION screen */
SQLMONITOR LOCK => /o p /* To obtain the OVERVIEW PROGRAM screen */

s The OVERVIEW, LOCK, and STATIC subsystems are perhaps the most useful to the
typical IMAGE/SQL DBA, so I'll briefly cover these on the next few pages.

Trouble-Shooting with SQLMON 3-5

Purpose of Slide
To briefly describe the screens in the OVERVIEW subsystem.

REFRESH = 30 OVERVIEW SESSIONS = Ki
1.3 2.5 3.8 5.0
MAX XACT I I l
ACTIVE XACT (2)
IMPEDE XACT] (1)
10 20 30 40 50 60 70 80 90 100%
DATA BUFFER (0%)
MISS RATE
LOCK WAIT % (0%))
RUNTIME cB % [(8%)
Used Pages: 3.6 Max Pages: 46.3
Loc FuLL ¥ [T (30%)
Used LgPgs: 76 Max LgPgs: 250
Archive Mode: OFF
LOG ERRORS
iEGEND: M CURRENT J

—_ OVERVIEW PROGRAM SESSIONS
BACCT STATUS XID__1SO_PRI__LABEL
PROGRAM NAME = ISQL.PUB.SYS
1 56 DALEQGREEN Idle 7796 RR 127
3 96 DALEQGREEN Idle
PROGRAM NAME = PASEX7LP.PUB.GREEN
2 84 DALEQGREEN [IIT 7968 RR 127
U

3-6 Trouble-Shooting with SQLMON

Key Points

» The DBEnvironment must be active to obtain any screen in the subsystem (in other words,
at least one user must be connected to the DBE). A warning is returned if you try to access
one of these screens if nobody is connected.

OVERVIEW Screen

This screen provides an overall view of some of the most interesting aspects of the
performance of the DBEnvironment, including the data buffer pool miss rate, the current size
of the runtime control block, and the current size of the log file. Some information on this
screen is examined in greater detail on the LOAD and IO screens.

OVERVIEW SESSION Screen

This screen identifies all sessions connected to the DBEnvironment.

OVERVIEW PROGRAM Screen

This screen groups together all sessions running the same program. This information can help
you determine if a performance problem is related to a particular program, as opposed to
simply related to a particular session.

Trouble-Shooting with SQLMON 3-7

Purpose of Slide

To briefly describe the screens in the LOCK subsystem.

LOCK QUEUE

[
DBCORE MARSCH
DBCORE.MARSCS
DBCORE.MARSINDX
DBCORE.MARSREL
HPRDBSS.COLUMN
HPRDBSS.DBEFILESET
HPRDBSS. INDEX
HPRDBSS.SECTION
HPRDBSS.SPECAUTH
HPRDBSS.TABAUTH
HPRDBSS. TABLE
PURCHDB . VENDORS
STOREDSECT.SYSTEM

DBCORE.MARSCH
DBCORE .MARSCS
DBCORE.MARSINDX
DBCORE .MARSREL
HPRDBSS.COLUMN
HPRDBSS.DBEFILESET
HPRDBSS. INDEX

(IYES],NnO)

TVUVUVOVOVOUT He-H g SO

[cXoNoNoNoNoNo)

WWW E USER@ACCT
S PROGRAM ‘NAM

T __PURCHDB.VENDORS

PAGE/ROW 1D
XD

ISO PRI LABEL

G| x 2 DALEQGREEN
PASEX7LP.PUB.GREEN

el s i

14402

RR 127

L3127 . GentVen-

3-8 Trouble-Shooting with SQLMON

Key Points

m The DBEnvironment must be active to obtain any screen in the subsystem (in other words,
at least one user must be connected to the DBE). A warning is returned if you try to access
one of these screens if nobody is connected.

LOCK Screen
This screen provides information about lock activity for the entire DBEnvironment.

The most important use of this screen is to identify the lock objects that have waiters or
converters. These lock objects are the bottlenecks in your DBEnvironment which cause one or
more sessions to wait before they may complete their processing. Every effort should be made
to tune your DBEnvironment to minimize the amount of waiting that sessions must perform.
You can issue the SET LOCKFILTER command to restrict the display of locks on this screen,
so that only lock objects that are causing contention are shown. Afterward, you can use the
LOCK OBJECT screen to identify the sessions in the queue for each particular lock.

LOCK OBJECT Screen

This screen provides information about all of the sessions that have been granted access to a
single lock object, are waiting for access to the lock object, or are converting an existing lock
on the lock object to a stronger one.

LOCK SESSION Screen

This screen provides lock activity information for a single session.

The LOCK SESSION screen answers the question “What locks have been granted to this
session, and what locks is it waiting to acquire?”.

LOCK IMPEDE Screen

This screen identifies sessions that are waiting for locks granted to a particular session.

The LOCK IMPEDE screen answers the question “What locks have been granted to this
session that are causing other sessions to wait?”

LOCK MEMORY Screen

This screen allows you to identify how many locks are allocated to each session.

LOCK TABSUMMARY Screen

This screen allows you to identify how many locks are allocated at each granularity for each
table. The screen can either be used to summarize the locks that have been allocated for use
by a particular session, or to summarize all locks that exist in the DBEnvironment.

Trouble-Shooting with SQLMON 3-9

Purpose of Slide
To briefly describe the screens in the STATIC subsystem.

PartsDBE ‘ STATIC ,
DBEEILESET oo il R ' IR
- “HASH? = “IMAGE? ““NUMIDX ° i
FILEFS
0 PUBLIC STOREDSECT.FILEFS
0 PUBLIC PURCHDB . REPORTS(3)
INVOICE3FS
0 PUBLIC STOREDSECT. INVOICE3FS
INVOICEFS
0 PUBLIC STOREDSECT. INVOICEFS
1 PUBLIC PURCHDB . CUSTOMER
O PUBLICROW PURCHDB. INVOICE
he 0 PUBLIC PURCHDB . SALESDATA
ORDERFS
0 PUBLIC STOREDSECT.ORDERFS
1 PUBLIC PURCHDB .ORDERITEMS
2 PUBLIC PURCHDB.ORDERS
0 PUBLIC PURCHDB . REPORTS
(IXFTNTY, ([YES],NO) I

 DBEFILESET ' FULLNESS ~ % FSUSED PACES ' FSMAX PACEY

([YES],NO) N

BDDBEFILE “* ‘FULLNESS ' % =
FILEFS I 2 2 50
FILEDATA TBL I 2 50
INVOICE3FS I 1 22
INVOICE3DATAFT MIX I 5 1 22
INVOICEFS 84% 47 S6
INVOICEDATAF1 MIX 3 92% K] 12
INVOICEDATAF2 TBL 64% 14 22
INVOICEDATAF4 MIX = 100% 22 22
ORDERFS DETACHED 100
ORDERDATAF1 TBL DETACHED 50
ORDERINDXF1 IDX DETACHED 50
PURCHFS I 8 100
PURCHDATAF1 TBL N o 3 50
PURCHINDXF1 IDX . 10X 5 50

3-10 Trouble-Shooting with SQLMON

Key Points

m The DBEnvironment does not need to be active to obtain any screen in the subsystem.

STATIC Screen

This screen provides miscellaneous information about each DBEFileSet within the
DBEnvironment, including the names of all tables in the DBEFileSet, the number of B-tree
indexes and referential constraints (PCRs) that are defined on each table, and whether or not
a table is actually a TurboIMAGE data set.

STATIC DBEFILE Screen

This screen provides information about the capacity and fullness of each DBEFileSet existing
in the DBEnvironment. The capacity and fullness of each DBEFile contained within the
DBEFileSet(s) is also provided. This information can be used to determine whether or not
space should be added to or removed from the DBEnvironment.

STATIC SIZE Screen

This screen provides information about the size of tables, B-tree indexes, and referential
constraints (PCRs) contained within a DBEFileSet.

STATIC INDIRECT Screen

This screen provides information about the percentage of indirect rows that exist in each table
of a DBEFileSet. An indirect row is one that can only be accessed by first fetching one page
to obtain the address of the row, and then fetching a second page to actually obtain the row
data. Indirect rows increase the amount of I/O that must be performed to obtain data.

STATIC CLUSTER Screen

This screen provides information about the clustering of B-tree indexes and referential
constraints (PCRs) contained within a DBEFileSet. Applications which frequently access data
in index order (which includes using an ORDER BY, GROUP BY, DISTINCT, or UNION
clause) will have better performance if the table data is “clustered” (physically stored on disk
in index order). Performance is improved because I/0 is minimized.

STATIC HASH Screen

The STATIC HASH screen provides information about the overflow chains associated with
hashed tables.

Trouble-Shooting with SQLMON 3-11

SQL Transactions and Locking

SQL Transactions and Locking 4-1

Purpose of Slide

To describe how transactions are used.

Transactions in ALLBASE/SQL

"Transfer $100.00 from savings to checking”

BEGIN WORK

SELECT my saving account
LOCKING DELETE $100.00 from savings
l INSERT $100.00 to checking

COMMIT WORK

AUTO TELLER

1L
I 1]
_JL_1§_1

LOGGING

Figure 4-1.

4-2 SQL Transactions and Locking

Key Points

® A transaction consists of one or more SQL statements. A transaction begins with a BEGIN
WORK statement and ends with either a COMMIT WORK or a ROLLBACK WORK statement.

m A transaction is a unit of work. Either all of the statements contained within a transaction
will be executed, or none of them will.

m Locks are normally obtained by transactions when SQL statements are executed. By
default, locks are held until the transaction ends.

m Locking can degrade performance in two ways:

DO Locking reduces concurrency—Concurrency is the degree to which data can be

simultaneously accessed by multiple users. For example, a table that can be accessed

by one hundred users at a time has better concurrency than a table that can only be
accessed by one user at a time. Locking affects the number of users that can access a
specific portion of data at the same time. For example, if one user is updating a row,

no other user is allowed to access that row until the first user is done. A transaction
must wait if the data that it needs is already locked in an incompatible mode by another
transaction; when transactions wait, concurrency is reduced.

0 Deadlocks sometimes occur—A deadlock occurs when two or more transactions are
waiting for each other to complete. A deadlock degrades performance because CPU must
be used by:

m ALLBASE/SQL to resolve the deadlock situation (one of the transactions is
automatically rolled back).

m The application program to redrive the cancelled transaction.
D Deadlocks will be explained in greater detail later in this module.
m The major objectives of transaction management are:

O Ensure logical data integrity. Transactions should be written so logical data corruption
does not occur. For example, a transaction should not update a row without locking
it first; when the row is locked, its value cannot change before the update completes. If
the row is not locked and its value changes before the update completes, the updating
transaction will overwrite (that is, lose) the changes made by another transaction.

O Minimize lock contention (maximize concurrency and minimize deadlocks).

SQL Transactions and Locking 4-3

Purpose of Slide

To explain how to build transactions.

Rules For Building Transactions

1. A transaction is a unit of work
2. Keep it short
3. Keep “extra” processing out of it

4. Retrieve user input before it starts

Figure 4-2,

4-4 SQL Transactions and Locking

Key Points
m When building transactions, keep the following in mind:

O A transaction is a unit of work.

w Keep operations that are required to maintain logical data integrity within a single
transaction. If a row should be added to Table2 only if a specific row exists in Tablel,
then SELECT on Tablel and INSERT into Table2 in the same transaction. This may
reduce concurrency, but is needed to prevent data corruption.

o Keep transactions short.

w Make a transaction only as long as it needs to be to perform its specific function. Each
additional SQL statement generally acquires more locks. Locks are normally held until
the transaction commits. The longer the transaction, the greater the potential that the
transaction will hold a lock that might be needed by another transaction.

O Keep non-database processing outside of transactions.
w Extra processing takes time, so locks might be held longer than they need to be.
O Retrieve all user input before the start of a transaction.

w Keep terminal reads and writes (especially user prompts) outside of transactions to
ensure that locks are not held when someone walks away from the terminal.

SQL Transactions and Locking 4-5

Purpose of Slide

To describe how to start a transaction.

Starting Transactions

DBA Sets : Users Issue :
MAX User 1: BEGIN WORK => active XACT
Transactions = 3 User 2: BEGIN WORK => active XACT

User 3: BEGIN WORK => active XACT
User 4: BEGIN WORK =

Figure 4-3.

4-6 SQL Transactions and Locking

Key Points

m Transactions are started with a BEGIN WORK statement, but the command does not need
to be explicitly issued by the user. ALLBASE/SQL will automatically issue a BEGIN WORK
statement if another SQL statement is executed and a transaction has not already been
started.

® Issuing explicit BEGIN WORK statements is good programming practice, and is required if you
wish to specify a value other than the default for the isolation level or the priority of the
transaction (these attributes will be explained later in this module).

m A transaction that has been started but has not been terminated is known as an active
transaction.

m ALLBASE/SQL assigns a unique id for each active transaction.

m SYSTEM.TRANSACTION is a pseudo-table that displays all active transactions in
the DBEnvironment. It includes the name of the user who started the transaction, the
transaction id, and the priority of the transaction.

Max Transactions is a parameter in the DBECON file that limits the number of concurrent,
active transactions in the DBEnvironment. This parameter can be specified in the START
DBE statement, or by using the SQLUTIL ALTDBE command. The default value is 2. Two
times the number of concurrent users is a good setting for Max Transactions.

® A transaction that is started after the transaction limit has been reached is placed onto a
wait queue called the throttle wait list, and is known as a throttled transaction. A throttled
transaction must wait until one of the active transactions terminates or its own timeout
limit is reached. All throttled transactions in the DBEnvironment can be identifed by
issuing the following query from ISQL:

SELECT * FROM SYSTEM.CALL WHERE STATUS = ’Waiting - SERVER’;

Note The case is very important in the above command. Enter it exactly as shown.

SQL Transactions and Locking 4-7

Purpose of Slide

To describe how to use transaction timeout limits.

Transaction Timeout Limits

DBA Sets : User issues :
Maximum Set user timeout to MAXIMUM;
Timeout ~ 10 hours

or
Set user timeout to DEFAULT:;

D_efault = 1 hour or

Timeout

Set user timeout to 5 minutes;

Figure 4-4.

4-8 SQL Transactions and Locking

Key Points

® The timeout limit for a transaction is controlled by the SET USER TIMEOUT statement, and
the MaximumTimeout and DefaultTimeout parameters in the DBECON file. The SET
USER TIMEOUT statement specifies the amount of time a transaction will wait if a required
database resource (such as a transaction slot, or a lock) is not available. You can set
the timeout limit to MAXIMUM (in which case the MaximumTimeout value is used),
DEFAULT (the DefaultTimeout is used), or to an explicit number of seconds or minutes. If
an explicit number is specified, the value must be less than or equal to MaximumTimeout,
or the statement will fail.

s If you do not issue a SET USER TIMEOUT statement before you start a transaction, the
timeout limit for the transaction is automatically set to the DefaultTimeout value.

® The default value for MaximumTimeout is NONE, which means that a transaction
will never timeout (that is, it will wait as long as is necessary to obtain a database
resource). The default value for Default Timeout is MAXIMUM, which means that the
MaximumTimeout is used as the default. These DBECON parameters can be modified in
the START DBE statement, or by using the SQLUTIL ALTDBE command.

Qomputef
Museum

SQL Transactions and Locking 4-9

Purpose of Slide

To describe how to terminate a transaction.

COMMIT WORK and ROLLBACK WORK

"Transfer $100.00 from savings to checking”

DELETE $100.00 from savings
If error, ROLLBACK WORK
If OK, INSERT $100.00 to checking

COMMIT WORK

AUTO TELLER
I | B [

BEGIN WORK
SELECT my savings account T

Figure 4-5,

4-10 SQL Transactions and Locking

Key Points

s Transactions are ended with either a COMMIT WORK or a ROLLBACK WORK statement. All locks
are released when a transaction is ended.

O COMMIT WORK makes all data modifications made by the transaction permanent.

o ROLLBACK WORK undoes all operations since the BEGIN WORK statement was issued. The
ROLLBACK WORK statement can be useful under the following situations:

m The SQLCA.SQLCODE indicates an error has occurred. (SQLCA is a special record
variable that is updated by ALLBASE/SQL during every SQL call. It can be used to
programmatically detect whether or not a call executes successfully.)

w UPDATE, INSERT, or DELETE statements are issued on multiple rows. It is possible that
one of the commands might fail after only some of the target rows had been operated
on, and you want to undo the changes that were made (restore your data back to a
consistent state).

® You provide input indicating that you do not wish to commit the transaction.

@ Only the transaction of the user that issues the COMMIT WORK or the ROLLBACK WORK is
affected by the statement.

s Transactions can also be rolled back by ALLBASE/SQL without the user explicitly issuing
the ROLLBACK WORK statement:

s If you RELEASE from a DBEnvironment without issuing a COMMIT WORK, ALLBASE/SQL
automatically rolls back the transaction.

@ If you have an active transaction in ISQL when you issue an EXIT command, you will be
prompted about whether or not you want to commit the transaction. ISQL is being friendly
by remembering that a transaction is in progress and asking you how to terminate it before
it implicity issues a RELEASE statement. But if you issue a RELEASE statement explicity in
ISQL while you have an active transaction, you will receive a message indicating that your
transaction was aborted.

® When a soft-crash or a hard-crash occurs, ALLBASE/SQL automatically rolls back all
transactions that were active at the time of the crash.

@ When a deadlock occurs, ALLBASE/SQL automatically rolls back one of the transactions
involved in the deadlock.

SQL Transactions and Locking 4-11

Purpose of Slide

To describe a deadlock and how it is resolved by ALLBASE/SQL.

Example of a DEADLOCK

JOE

1. LOCK TABLE A

SUE

2. LOCK TABLE B

in EXCLUSIVE MODE —» Table A in EXCLUSIVE MODE
=> LOCK GRANTED => LOCK GRANTED
3. LOCK TABLE B 4. LOCK TABLE A
in EXCLUSIVE MODE Table B
E : for Sue to release
LOCK on Table B LOCK on Table A
Figure 4-6.

4-12 SQL Transactions and Locking

Key Points

® A deadlock occurs when at least two transactions are waiting for each other to complete.
Each has already obtained a lock on data that the other needs to complete its work. Each
would wait forever to obtain the other’s lock if ALLBASE/SQL did not detect the deadlock
situation and issue a ROLLBACK WORK for one of the transactions. Deadlocks are not always
this simple. Sometimes a ring of transactions enter into a deadlock.

® The priority of a transaction is an integer value from 0 to 255 that can be specified during
the BEGIN WORK statement. A priority of 127 is assigned by default if no value is explicitly
specified.

s If only two transactions are involved in the deadlock, the transaction having the largest
priority number is rolled back to resolve the deadlock. If both transactions have the same
priority, then the most recent transaction is rolled back.

m If more than two transactions are involved in the deadlock, ALLBASE/SQL resolves the
deadlock by choosing a victim from only two of the transactions: the last transaction to
enter the ring (the one that caused the deadlock loop to be closed), and the transaction
that is waiting for it. The victim is selected using the rules described above on these two
transactions. Notice that the transaction that is aborted may not be the transaction with
the largest priority number or the most recent transaction among all transactions that are
involved in the deadlock.

SQL Transactions and Locking 4-13

Purpose of Slide

To describe savepoints.

Savepoints in ALLBASE/SQL
XIransfer $100.00 from savings to checking and withdraw $20.00”

BEGIN WORK
SELECT my savings account

DELETE $100.00 from savings
INSERT $100.00 to checking

SAVEPOINT (number assigned by ALLBASE/SQL)
SELECT my checking account
DELETE $20.00

ROLLBACKWORK TO 1

AUTO TELLER
C 1IC_1C 1 —
I
1

Figure 4-7,

4-14 SAQL Transactions and Locking

Key Points

m A SAVEPOINT is a transaction marker that allows you to roll back part of a transaction.
ROLLBACK TO SAVEPOINT will not end the transaction or release locks that were obtained
prior to the setting of the SAVEPOINT, but it will release locks that were obtained after
the SAVEPOINT was issued.

m A SAVEPOINT can be placed anywhere between the BEGIN WORK and COMMIT WORK
statements.

m Multiple SAVEPOINT statements can be issued within a transaction. ALLBASE/SQL assigns
a number to each one. The number is returned programmatically if a host variable is
provided when the SAVEPOINT statement is issued.

m The first SAVEPOINT number returned in a transaction is 1. The largest possible
SAVEPOINT number is (2**31)-1.

m In order to ROLLBACK TO SAVEPOINT, the number of the appropriate SAVEPOINT must be
specified in the ROLLBACK WORK statement. Please refer to the example for ROLLBACK WORK
on the previous page.

m The slide shows that the SAVEPOINT is useful when the user decides not to withdraw the
$20.00, but still wishes the $100.00 transferred.

SQL Transactions and Locking 4-15

Purpose of Slide
To describe how ALLBASE/SQL uses locking.

Understanding Locking

SUE

wants to read
rows A and B and

JOE update row D

wants to read
rows B and D

MARY

wants to update
rows D and E

Figure 4-8.

4-16 SQL Transactions and Locking

Key Points
m ALLBASE/SQL uses locks to regulate concurrent access to the same data.

m Locking is needed to ensure data integrity in a multi-user environment. Without
appropriate locking, you might incorrectly overwrite changes made by other users, or read
uncommitted data.

m Locking can degrade performance in two ways:
o Locking reduces concurrency.
o Deadlocks sometimes occur.

m A well tuned application has a high rate of concurrency and a low rate of deadlock. In
reality, however, a tradeoff is usually necessary. A low rate of deadlock is often achieved
by locking more of the data than you actually need (for example, locking the entire table
instead of most of the pages in the table). This strategy tends to increase the lock wait time
for other transactions. Conversely, a short wait time for locks is usually achieved by locking
small portions of the data. This strategy can increase the number of deadlocks.

s ALLBASE/SQL supports a variety of lock granularities, lock types, table types, and
isolation levels to enable a transaction to lock only what is necessary to keep other
transactions from interfering with its work (these concepts will be explained in this module).
ALLBASE/SQL application developers can use these features to develop programs that
maximize concurrency and minimize deadlocks.

® Remember that locks are released when a transaction terminates. It is important that all
transactions are terminated properly. All of the following SQL statements can be used to
terminate transactions: COMMIT WORK, ROLLBACK WORK, RELEASE, STOP DBE, and TERMINATE
USER.

SQL Transactions and Locking 4-17

Purpose of Slide
To identify DBECon file parameters associated with locking.

Shared Memory

Data Buffer Pool

Log Buffer Pool

JOE RowB \

JOE RowD
SUE RowA o | block
SUE Row B ne contro ocC

SUE RowD for each lock

MARY RowD
MARY RoweE

Run-Time
Control Block

Figure 4-9.

4-18 SQL Transactions and Locking

Key Points
The following DBECon file parameters affect locking:
m Number of run-time control block pages

O The run-time control block is an area of shared memory containing global, run-time
information for the DBE. Internally, ALLBASE/SQL uses different types of control blocks
to accomplish its processing. These control blocks are all allocated from the run-time
control block space that has been configured for the DBE.

O The run-time control block is allocated in memory when the database is started for the
first time, using either the START DBE or the first CONNECT statement.

O The size of the run-time control block can be specified in the START DBE statement, or
by using the SQLUTIL ALTDBE command. The more concurrent activity (such as locks,
transactions, page allocations, etc.) that exists in the DBE, the greater the number of
run-time control block pages that are needed.

O The default number of pages is 37. Each page is 4096 (4K) bytes.

o Control blocks are allocated for different types of internal processing, but the majority
of control blocks are used for lock management. One control block is needed for each
table, page, or row lock. The greater the number of concurrent locks held, the greater
the number of run-time control block pages that are needed to manage these locks. A
program that manages locks well is less likely to deplete the amount of shared memory
available.

o If the run-time control block is too small, ALLBASE/SQL is not able to allocate
necessary control blocks when a transaction executes an SQL statement. The transaction
is rolled back, and an error is returned. In order to increase the amount of run-time
control block space, the DBEnvironment must be stopped and re-started using a larger
value.

m User mode

O Default is SINGLE user mode, which means that only the user who starts the
DBEnvironment can access it. MULTI user mode allows multiple users to access the
DBEnvironment.

O In SINGLE user mode, ALLBASE/SQL allocates the run-time control block from
the heap of the process that started the database, rather than shared memory as was
described above. Lock control blocks are acquired out of this heap by the transaction
when SQL statements are executed, but only table level locks are aquired.

o Fewer run-time control block pages are needed in SINGLE user mode than in MULTI
user mode.

O SINGLE user mode is good for testing a new DBEnvironment, and also for performing
maintenance functions.

o The user mode can be specified in the START DBE statement, or by using the SQLUTIL
ALTDBE command.

SQL Transactions and Locking 4-19

Purpose of Slide

To identify DBECon file parameters associated with locking (continued).

DDL Statements in ALLBASE/SQL

ADD DBEFILE DROP DBEFILE
ADD TO GROUP DROP DBEFILESET
ALTER DBEFILE DROP GROUP
ALTER TABLE DROP INDEX
CREATE DBEFILE DROP MODULE
CREATE DBEFILESET DROP PROCEDURE
CREATE GROUP DROP RULE
CREATE INDEX DROP TABLE
CREATE PROCEDURE DROP TEMPSPACE
CREATE RULE DROP VIEW
CREATE SCHEMA GRANT
CREATE TABLE REMOVE DBEFILE
CREATE TEMPSPACE REMOVE FROM GROUP
CREATE VIEW REVOKE
TRANSFER OWNERSHIP
UPDATE STATISTICS
Figure 4-10.

4-20 SQL Transactions and Locking

Key Points

s DDL Enabled

0 Default is YES, which allows data definition language (DDL) statements (such as
CREATE, DROP, and so on) to be issued within the DBEnvironment. DDL statements
obtain exclusive locks on data in the system catalog. These locks can cause severe
concurrency problems with other transactions. When the DDL enabled parameter is set
to NO, DDL is disabled, which means that these statements cannot be issued successfully
(an error is returned if an attempt is made to issue them). Therefore, only share locks
will be obtained on the majority of tables in the system catalog.

o When DDL has been disabled, invalid sections can still be revalidated. When revalidation
occurs, exclusive locks are obtained on several tables in the system catalog; these locks
can cause concurrency problems with other transactions.

m If invalid sections exist in your DBEnvironment, you can either issue the VALIDATE
statement to manually perform revalidation, or you can rely on ALLBASE/SQL to
automatically revalidate the sections when they are encountered.

m It is usually better to use the VALIDATE statement rather then to rely on automatic
revalidation, because concurrency problems during production hours can be avoided.
For best performance, no invalid sections should exist during high-access periods for the
DBEnvironment.

m Use the VALIDATE statement immediately after sections have become invalid (that is,
when something that a section depends on is modified). For example, if an UPDATE
STATISTICS statement is issued or if an index is dropped and recreated, a VALIDATE
statement should also be issued because some sections might have become invalid. For
best performance, issue all the DDL statements (such as UPDATE STATISTICS), then
issue all the VALIDATE statements. This ensures that you only invalidate and revalidate
a section once, even if it is dependent on several tables.

0 When DDL has been disabled, ALLBASE/SQL retains sections in user memory between
transactions. This means that an application program that re-executes the same sections
again and again does not require ALLBASE/SQL to read the sections in from disk each
time. This can have a significant positive effect on performance.

o When DDL has been disabled, certain system catalog information is retained in shared
memory, which also improves performance.

SAL Transactions and Locking 4-21

Purpose of Slide

To describe lock granularity.

Lock Granularity
Row Lock Page Lock Table Lock

finest = » MOSst coarse

lowest = , —» highest
smallest = » |argest
Figure 4-11,

4-22 SQL Transactions and Locking

Key Points

m Granularity is the size of the object that is locked. ALLBASE/SQL locks data at three
levels of granularity: row (or tuple), page, and table.

m The smallest (lowest, finest) granularity is at the row level. The largest (highest, most
coarse) granularity is at the table level.

m Generally, the smaller the lock granularity, the greater the number of users that can
simultaneously access data in the table, because a smaller portion of the data is locked by
each user.

m When any SQL statement is executed, page level locks are acquired on one or more system
catalog tables (that is, tables owned by the special user HPRDBSS). In addition, row level
locks are acquired on certain ALLBASE/SQL internal tables (that is, tables owned by
DBCore). You cannot directly change the locking behavior of these tables.

s When SQL statements that reference a user table are executed, row, page, or table locks
of different kinds may be obtained on the table. You can help control the granularity of
locking by doing the following:

o You can modify the implicit locking structure of a table by changing the table’s type with
the ALTER TABLE statement. Four table types exist (these will be explained in greater
detail later in this module). The following locks are acquired by default when data is
accessed in each type of table:

m PRIVATE (default) - table locks
s PUBLICREAD - table locks

m PUBLIC - page locks

m PUBLICROW - row locks

o You can use the LOCK TABLE statement to override the implicit locking structure of a
table for a given transaction. For example, if a transaction will read every row in a
PUBLICROW table, you can use the LOCK TABLE statement to obtain a single table lock
instead of many row locks. LOCK TABLE will also be explained in greater detail later in
this module.

SQL Transactions and Locking 4-23

Purpose of Slide

To describe lock granularity (continued).

Lock Granularity

Row
Level Locking

mostlocks «—

Page
Level Locking

Table
Level Locking

» fewest locks

4-24 SQL Transactions and Locking

Figure 4-12.

Key Points

s Page level locking uses more run-time control block space than table level locking, since
each page must be locked. Row level locking uses even more space than page level locking,
since each row must be locked. This can require a considerable number of lock control
blocks (and pages of shared memory). The following chart indicates the maximum number
of locks that could be obtained on a table by using table, page, and row level locking (the
maximum number is possible when all of the rows in the table are locked):

Locking Level | Maximum number of locks

Table level | 1
Page level | n + (1)
Row 1level Ilm+ (n+1)

n equals the number of pages in the table.
m equals the number of rows in the table.

m Table level locking requires 1 lock. Page level locking requires up to n page level locks, plus
1 intention lock at the table level (intention locks will be explained later in this module).
Row level locking requires up to m row level locks, and up to (n + 1) intention locks at the
page and table level.

® Because row level locking on a large table may consume a tremendous number of run-time
control block pages, the use of the PUBLICROW table type on large tables is discouraged.
Large tables for which maximum concurrency is desired should generally be defined as
PUBLIC. The PUBLICROW table type should generally be reserved for use on small
tables.

SQL Transactions and Locking 4-25

Purpose of Slide
To describe the SHARE and EXCLUSIVE lock mode types.

Fundamental Locking Requirements

SELECT { _ ——

PETCH } => READ —>> SHARE (S) LOCK
INSERT

upDATE { _,

DELETE

Figure 4-13.

4-26 SQL Transactions and Locking

Key Points

There are two basic requirements of locking:

o READ operations (such as SELECT and FETCH), must acquire SHARE locks before rows
can be retrieved.

o WRITE operations (such as UPDATE, INSERT, and DELETE), must acquire EXCLUSIVE
locks before rows can be modified.

m A SHARE (S) lock permits reading by other users. No other transaction may modify the
data that is locked with an S lock.

o When an S lock is obtained at the table level, the transaction can read all rows in the
table. No row or page level locks are acquired when the transaction reads a row (the
S lock at the table level covers all of the rows in the table, so additional locks are not
neccessary).

o When an S lock is obtained at the page level, the transaction can read all rows on the
page. No row level locks are acquired when the transaction reads a row (the S lock at the
page level covers all of the rows on the page).

o When an S lock is obtained at the row level, the transaction can read the row.

m An EXCLUSIVE (X) lock prevents access by any other user. An X lock is the strongest
type of lock. No other transaction may read or modify the data that is locked with an X
lock. An X lock must be obtained (either at the table, page, or row level) when user data is
updated, inserted, or deleted.

O When an X lock is obtained at the table level, the transaction can read and modify all
rows in the table. No row or page level locks are acquired when the transaction reads or
modifies a row.

o When an X lock is obtained at the page level, the transaction can read and modify all
rows on the page. No row level locks are acquired when the transaction reads or modifies
a row.

o When an X lock is obtained at the row level, the transaction can read and modify the
row.

SQL Transactions and Locking 4-27

Purpose of Slide

To describe intention locking.

Understanding Intention Locking
PUBLICROW PUBLIC

step 3
step 2 ¢ step 2

Total = 7 Total = 3

Figure 4-14,

4-28 SQL Transactions and Locking

Key Points

m Intention locks reduce the number of locks that must be examined when a new lock is
allocated. Intention locks allow transactions to quickly determine if rows (or pages) in a
given table have been locked by other transactions. Without the use of intention locks,
ALLBASE/SQL would have to search all row (or page) locks on a table to determine
whether or not a new lock request could be granted. Such searching would be very
inefficient, especially on large tables.

Fe_

m When a lock is acquired at a smaller granularity, an intention lock is first acquired at a
larger granularity.

N TTD

<

o When a row lock is acquired on a PUBLICROW table, the following occurs:

THEP €x

m An intention lock is acquired on the table.

m After the table lock has been granted, an intention lock is acquired on the page.

Be

Chontes' _haes 2

m After the page lock has been granted, the row lock is acquired.

o When a page lock is acquired on a PUBLIC table, the following occurs:
m An intention lock is acquired on the table.
m After the table lock has been granted, the page lock is acquired.

m When two locks are compatible, both access requests are allowed to the data object (that
is, the table, page or row) at the same time. When compatible locks exist on a data object
ALLBASE/SQL computes which lock is strongest and stores this information. When locks

are not compatible, the second access request must wait until the lock acquired by the first
access request is released.

’

SHourp TS

= Any request for a lock at the table level is compared to the strongest lock on the table.
If the table has already been locked in an incompatible mode by another transaction,
the transaction that is requesting the lock will wait until the lock can be granted (or a
timeout occurs). Next, a request for a page lock is made. If this page has been locked in an
incompatible mode by another transaction, the requesting transaction will wait until the

lock can be granted (or a timeout occurs). Finally, if row level locking is used, the request
for a row lock is made.

m A transaction timeout will only occur if the wait for a single database resource consumes
an amount of time equal to the timeout limit. If a transaction’s timeout limit is set to 10
seconds, and it takes a 5 second wait to obtain an intention lock on the table and a 6 second

wait to obtain a lock on a page, the transaction will not timeout. If either wait consumed
10 seconds, then a timeout would occur.

m Intention locks are only acquired on PUBLICROW and PUBLIC tables. Remember that
PUBLICROW tables use row level locking, and PUBLIC tables use page level locking.

s PRIVATE and PUBLICREAD tables use table level locking, so intention locks are not
needed by ALLBASE/SQL.

m The three types of intention locks are INTENT SHARE (IS), INTENT EXCLUSIVE (IX),
and SHARE and INTENT EXCLUSIVE (SIX).

SQL Transactions and Locking 4-29

TU#Bo MY

Purpose of Slide
To describe the INTENT SHARE (IS) lock mode type.

READ
PUBLICROW PUBLIC
step 3
step 2)
| s
IS S
step 1
'
IS IS

IS — Intent Share

Figure 4-15.

4-30 SQL Transactions and Locking

Key Points

m An intent share (IS) lock indicates an intention to read data (that is, acquire an S lock) at a
lower level of granularity.

O An IS lock on a PUBLICROW table together with an IS lock on a page indicates an
intention to read one or more rows on that page.

0 An IS lock on a PUBLIC table indicates an intention to read one or more pages.

O An IS lock on a table indicates that the transaction wants to read some of the rows in the
table (an S lock on a table indicates that the transaction wants to read all of the rows).

o An IS lock is also called a subshare lock.

SQL Transactions and Locking 4-31

Purpose of Slide
To describe the INTENT EXCLUSIVE (IX) Lock Mode Type.

WRITE
PUBLICROW PUBLIC
X
IX X X
X
IX IX { X
IX X

IX - Intent Exclusive

Figure 4-16.

4-32 SQL Transactions and Locking

Key Points

m An intent exclusive (IX) lock indicates an intention to write data (that is, acquire an X
lock) at a lower level of granularity.

o An IX lock on a PUBLICROW table together with an IX lock on a page indicates an
intention to write to one or more rows on that page.

o An IX lock on a PUBLIC table indicates an intention to write to one or more pages.

o An IX lock on a table indicates that the transaction wants to write to some of the rows in
the table (an X lock on a table indicates that the transaction wants to write to all of the
Tows).

o An IX lock is also called a subexclusive lock.

SQL Transactions and Locking 4-33

Purpose of Slide
To describe the SHARE and INTENT EXCLUSIVE (SIX) lock mode type.

SIX Locks
PUBLICROW PUBLIC
X

IX X X
S S
+ X +
_IX § 1Ix X € X
SIX X SIX

S on the table PLUS IX on the table

Figure 4-17.

4-34 SQL Transactions and Locking

Key Points

® A share and intent exclusive lock (or SIX lock, pronounced as the separate letters S I X
rather than like the number six) indicates an S lock at the current level plus an intention to
write data at a lower level of granularity. Think of an SIX lock as an S lock plus an IX lock.
Only one transaction can be granted an SIX lock on a table at a time.

o An SIX lock on a PUBLICROW table indicates an intention to read all of the rows in
the table and to write to a few. Rows that are read but not updated will not obtain S
locks (the S lock in the SIX lock at the table level covers all of the rows). Rows that are
updated will obtain X locks, but only after IX intention locks have been obtained on the
pages that contain them.

o An SIX lock on a PUBLIC table indicates an intention to read all of the pages in the
table and to write to a few. Pages that are read but not updated will not obtain S locks.
Pages that are updated will obtain X locks.

o Occasionally, an SIX lock is acquired on a row of a PUBLICROW table, or on a page of
a PUBLIC table. This occurs when the transaction has read the row or page with the
intention of writing to it later. An SIX lock on a row or page must be converted to an X
lock before the actual update may occur. No other transaction can read or modify a row
or page that has been locked with an SIX lock.

o An SIX lock is stronger than an S lock or an IX lock. When a transaction obtains an
SIX lock on a table, only that transaction will be able to modify data in the table. In
this respect, an SIX lock slightly resembles an X lock. With an SIX lock, however, other
transactions that want to read some of the data (read data at the row or page level and
obtain an IS lock on the table) are allowed to proceed, so concurrency is better than
with an X lock. Lock mode compatibility will be described in greater detail later in this
module.

o If other transactions obtain S row locks in a PUBLICROW table or S page locks in a
PUBLIC table on rows that the SIX transaction wants to modify, the SIX transaction
must wait until the S locks are released before it can modify the data.

o Other transactions that want to read all of the data (obtain an S lock on the table) or
that want to write to any portion of the data are not allowed to proceed until the SIX
lock is released.

o An SIX lock is also called a share subexclusive lock.

SQL Transactions and Locking 4-35

Purpose of Slide
To review intention locking on a PUBLICROW table.

Intention Locking on a PUBLICROW Table

READ READ for UPDATE WRITE

IX SIX

IS S

IX$ Ix SIX

IXg IX X

Figure 4-18,

4-36 SAQL Transactions and Locking

Key Points

m The following locks are obtained by default when a read or a write is made to a single row
of a PUBLICROW table:

o READ:
m An IS lock is obtained on the table.
m An IS lock is obtained on the page.
® An S lock is obtained on the row.

o READ with an intention to write (such as a REFETCH statement, or a DECLARE CURSOR FOR
UPDATE followed by an OPEN and a FETCH):

@ An IX lock is obtained on the table.
m An IX lock is obtained on the page.

® An SIX lock is obtained on the row (remember that no other transaction can read or
modify a row or page that has been locked with an SIX lock).

o WRITE:
@ An IX lock is obtained on the table.
® An IX lock is obtained on the page.

@ An X lock is obtained on the row.

SQL Transactions and Locking 4-37

Purpose of Slide
To review intention locking on a PUBLIC table.

Intention Locking on a PUBLIC Table

READ READ for UPDATE

SIX

IX ¢ six

WRITE

Figure 4-19.

4-38 SQL Transactions and Locking

Key Points

m The following locks are obtained by default when a read or a write is made to a single row
of a PUBLIC table:

o READ:
m An IS lock is obtained on the table.
m An S lock is obtained on the page.
o READ with an intention to write:
® An IX lock is obtained on the table.
a An SIX lock is obtained on the page.
o WRITE:
m An IX lock is obtained on the table.
m An X lock is obtained on the page.

SQL Transactions and Locking 4-39

Purpose of Slide

To describe how to choose table types to control locking.

Locking Behavior of ALLBASE/SQL Tables

Locks Obtained Locks Obtained
Table Type for READ for WRITE
PRIVATE Table X Jable X

(default)

PUBLICREAD Table S Table X

Table IS Table IX
PUBLIC Page S Page X

Table IS Table IX
PUBLICROW Page IS Page IX

Row S Row X

Figure 4-20.

4-40 SOQL Transactions and Locking

Key Points

m The first parameter in the CREATE TABLE statement specifies the implicit locking structure.
You may use the ALTER TABLE statement to permanently change the structure associated
with a table.

m The four implicit locking structures and their normal locking behaviors are:
o PRIVATE (default)
m Locks at the table level (X) for reads.
® Locks at the table level (X) for writes.

= Allows one transaction at a time to read from or write to the table. PRIVATE tables
reduce overhead and shared memory needs for ALLBASE/SQL (since row or page locks
are never acquired), and are less likely to cause a deadlock condition because each table
is always accessed exclusively by one user. However, they severely reduce concurrency.

o PUBLICREAD
m Locks at the table level (S) for reads.
m Locks at the table level (X) for writes.

= Allows only one transaction at a time to write to the table. When a transaction is
writing to the table, no other transaction can access it. When no transaction is writing
to the table, multiple transactions may read from it at the same time. PUBLICREAD
tables also reduce overhead and shared memory needs for ALLBASE/SQL (since row
or page locks are never acquired), but they provide better concurrency than PRIVATE
tables. Tables that are rarely updated should generally be PUBLICREAD.

o PUBLIC
m Locks at the page level (S) for reads. Intention locks are generated at the table level.
m Locks at the page level (X) for writes. Intention locks are generated at the table level.

= Allows multiple read transactions and write transactions to execute at the same time on
the table. Page level locking is used, which uses more shared memory than PRIVATE
or PUBLICREAD, but less shared memory than PUBLICROW. Large tables for which
maximum read and write concurrency is desired should generally be PUBLIC.

o PUBLICROW

m Locks at the row level (S) for reads. Intention locks are generated at the table level and
at the page level.

m Locks at the row level (X) for writes. Intention locks are generated at the table level
and at the page level.

m Allows multiple read transactions and write transactions to execute at the same time on
the table. Row level locking is used. Small PUBLICROW tables are less likely to have
deadlocks then small PUBLIC tables. Small tables for which maximum read and write
concurrency is desired should generally be PUBLICROW.

SQL Transactions and Locking 4-41

Purpose of Slide
To demonstrate the LOCK TABLE statement.

Use Lock Table on PUBLIC/PUBLICROW Tables

SIX

Figure 4-21.

4-42 SQL Transactions and Locking

Key Points

m When data is accessed in a table, ALLBASE/SQL generates appropriate locks by using
the implicit locking structure that has been established for the table. The implicit locking
structure is originally established using the CREATE TABLE statement, but it can be changed
by using the ALTER TABLE statement.

w You can use the LOCK TABLE statement to override implicit locking in some situations.

m To use the LOCK TABLE statement, you must have OWNER or SELECT authority for the
table, or DBA authority.

® All locks acquired by the LOCK TABLE statement are released when the transaction
terminates.

m The LOCK TABLE statement explicitly locks tables in three modes:
o SHARE (S)
o SHARE UPDATE (SIX)
o EXCLUSIVE (X)

m The following are good uses of the LOCK TABLE statement on a PUBLICROW or PUBLIC
table:

o If a query will read most or many rows in the table, it may be useful to obtain an S lock
at the table level to minimize deadlocks and shared memory needs. When the table is
locked in SHARE mode, other users can not modify it for the duration of the transaction.
Also, row and page locks are not acquired, which reduces the overhead and shared
memory needs of ALLBASE/SQL.

o If a query will write to most or many rows in the table, it may be useful to obtain an X
or an SIX lock at the table level to minimize deadlocks and shared memory needs.

® When the table is locked in EXCLUSIVE mode, other users can not access it for the
duration of the transaction. Row and page locks are not acquired.

s When the table is locked in SHARE UPDATE mode, other users can not modify it for
the duration of the transaction. Row and page locks are not acquired for reads, but
they are acquired for the rows or pages to which the transaction writes. An SIX lock
provides greater concurrency than an X lock, but more shared memory will be used by
the transaction. Compared to a query in which an X lock has been obtained, an SIX
query can take longer to execute because it may need to wait to modify data that has
been read (and locked with S locks) by other transactions.

SQL Transactions and Locking 4-43

Purpose of Slide

To demonstrate the LOCK TABLE statement (continued).

Example of DEADLOCK with a PUBLICREAD Table
PurchDB.SupplyPrice
JOE VendPartINumber UlnitPrice SUE
1. SELECT * FROM + + 2. SELECT * FROM
PurchDB.SupplyPrice PurchDB.SupplyPrice
WHERE 1010 | 335.00 WHERE
VendPartNumber =’1010’; VendPartNumber="1533’;
=> S lock on table => S lock on table
granted granted
3. UPDATE PurchDB.SupplyPrice 4. UPDATE PurchDB.SupplyPrice
Set UnitPrice=350.00 Set UnitPrice=450.00
WHERE 1533 | 435.00 WHERE ,
VendPartNumber="1010’; VendPartNumber="1533’;
=> | for SUE to => for JOE to
release S LOCK release S LOCK
Figure 4-22.

4-44 SQL Transactions and Locking

Key Points (continued)
m The following are good uses of the LOCK TABLE statement on a PUBLICREAD table:

o If a transaction initially reads from the table and later updates it, you should use the
LOCK TABLE IN EXCLUSIVE MODE statement to obtain an X lock on the table prior to
the first read. This action will help minimize deadlocks with other similar transactions.
When data is read, an S lock is obtained on the PUBLICREAD table by default. Before
the data can be updated, the S lock needs to be upgraded to an X lock. A deadlock
situation will arise if two transactions have both obtained an S lock on a table, and
both are trying to upgrade their lock to an X lock. When the table is locked with an X
lock before the first read, other users can not access the table for the duration of the
transaction. Other transactions that read and update the table will wait until the first
transaction has completed, instead of entering into a deadlock with it.

m The example above illustrates one of the most common mechanisms for encountering
deadlocks: lock promotion. To minimize deadlocks, a transaction should avoid relying
on ALLBASE/SQL to promote a weaker lock into a stronger lock.

O A transaction should request the strongest lock that it needs before a weaker lock is
obtained. In other words, if a transaction will read data and perform an update, it
should acquire an X lock before it acquires an S lock (as was recommended in the
example above). If a transaction will only read data, it should only acquire an S
lock. You can increase the strength of the locks obtained by a transaction by using
the LOCK TABLE command and by using the FOR UPDATE clause when a cursor is
declared (this will be explained later in this module).

O Sometimes it is useful to split an original transaction into two transactions: one that
only reads data (so it only obtains S locks), and a second one that refetches data
(which obtains an SIX lock) to confirm the current value of the row prior to making a
modification (which obtains an X lock). A promotion from SIX to X will usually not
cause a deadlock. The REFETCH statement will be explained later in this module.

m You can also encounter deadlocks by obtaining locks in different orders. All
transactions should use similar algorithms to obtain locks in the same order. This will
minimize deadlocks.

O For example, if one transaction obtains an exclusive lock on table A and then on
table B, and another transaction obtains an exclusive lock on table B and then on
table A, there is a good chance that they will enter into a deadlock.

o If both transaction obtain locks in the same order (first on table A and then on table
B), the transactions will always wait on each other, instead of deadlocking.

SQL Transactions and Locking 4-45

Purpose of Slide

To demonstrate the LOCK TABLE statement (continued).

Lock Table

LOC BLE

Figure 4-23.

4-46 SQL Transactions and Locking

Key Points (continued)

® You cannot weaken an implicit locking structure using the LOCK TABLE statement:

0 There is no benefit when a PRIVATE table is locked in SHARE or SHARE UPDATE
mode. Your transaction will still acquire an X lock at the table level when any access to
the table is made. In fact, your LOCK TABLE request will actually obtain an X lock.

O There is no benefit when a PUBLICREAD table is locked in SHARE UPDATE mode.
Your transaction will still acquire an X lock at the table level when any write to the table
is made.

SQL Transactions and Locking 4-47

Purpose of Slide
To describe lock compatibility.

Two Transactions Accessing the Same Row of a

PUBLICROW Table

T1 - has read the row

IS (IS

IX

T2 — wants to write to
the row

IX

T2 must:{
acquire an
on the row

4-48 SQL Transactions and Locking

Figure 4-24.

Key Points

® The chart below shows the compatibility of different lock mode types:
LOCK THAT IS REQUESTED

| Is | 1X | S I|six | X |
——=|r————- foeee—- f=eeem- ~=ee=- === I
Is|] = | x| x | x | |
LOCK S R |====- |-emme- |-==--~ |====-- I
THAT IXI = | = | | | I
ALREADY et ELIS I |==e=m- |=====- |====--- |-====- |
EXISTS sl = | I = | I I
- —————- jomeee- [-==--- [-===-- [===-=- I
SIX| *» | I I [I

| I | [

| | I |

COMPATIBLE The second lock request is granted. Both transactions are

(*x) allowed to concurrently access the data object at the same
time.
NOT The second lock request must wait until the lock acquired
COMPATIBLE by the first transaction is released.
«)

m Granularity is used when determining compatibility. For example, suppose that two
transactions want to access the same row in a PUBLICROW table. The first transaction
is reading it, the second transaction wants to update it. The following occurs within
ALLBASE/SQL:

o First the table level intention locks are compared. The first transaction has an IS lock at
the table level, the second transaction needs an IX lock at the table level. These two locks
are compatible, so the IX table lock is granted.

o Next, the page level intention locks are compared. The first transaction has an IS lock,
the second transaction needs an IX lock. Again, these two locks are compatible, so the IX
page lock is granted.

o Finally, the row level locks are compared. The first transaction has an S row lock. The
second transaction needs an X row lock. These two lock modes are not compatible, so the
second transaction must wait. However, if the second transaction had wanted to write to
a different row on the same page as the first row, a different X row lock could have been
granted to the second transaction.

SQL Transactions and Locking 4-49

Purpose of Slide
To describe lock compatibility (continued).

Understanding Lock Compatibility

Lock that is requested
IS IX S | SIX| X
S| * * %* *

Lock X1 % | *
that
already S | * *
exists

SIX| %

X

COMPATIBLE The second lock request is granted. Both transactions are allowed to
* concurrently access the data object at the same time.

NOT COMPATIBLE The second lock request must wait until the lock acquired by the first
() transaction is released.

Figure 4-25.

4-50 SQL Transactions and Locking

Key Points (continued)

® When referencing the chart, you may find it helpful to use the following:
o S—indicates a transaction that wants to read all of the rows.
o X—indicates a transaction that wants to write to all of the rows.
o IS—indicates a transaction that wants to read some of the rows.
D IX—indicates a transaction that wants to write to some of the rows.

D SIX—indicates a transaction that wants to read all of the rows, and also write to some of
them.

m Locks are compatible if a good chance exists that two transactions will not interfere with
each other. The chart on the opposite page shows the compatibility of the lock mode types.

D An IS lock indicates an intention to read some of the rows. When an IS lock has been
granted, other users that want to read or write to some of the rows (that is, obtain an
IS or IX lock) are allowed to access the data (ALLBASE/SQL assumes that the users
may want to access different rows). Other users that want to read all of the rows (that is,
obtain an § or SIX lock) are allowed. Users that want to write to all of the rows (that is,
obtain an X lock) would interfere with the IS transaction, so they are not allowed.

o An IX lock indicates an intention to write to some of the rows. When an IX lock has
been granted, other users that want to read or write to some of the rows (IS or IX lock)
are allowed. Users that want to read or write to all of the rows (S, SIX, or X lock) would
interfere with the IX transaction, so they are not allowed.

D An S lock indicates an intention to read all of the rows. When an S lock has been
granted, only other users that want to read data (either some (IS lock) or all (S lock) of
the rows) are allowed. Users that want to write to any portion of the data (IX, SIX, or X
lock) would interfere with the S transaction, so they are not allowed.

o An X lock indicates an intention to write to all of the rows. When an X lock has been
granted, no other user is allowed. Users that want to access any portion of the data would
interfere with the X transaction.

o0 An SIX lock is equivalent to an S lock plus an IX lock. The only type of lock that is
compatible with both of these locks is an IS lock. When an SIX lock has been granted,
only those other users that want to read some of the rows (IS lock) are allowed. Users
that want to read all of the rows (S or SIX lock) would interfere with the IX lock, and
users that want to write to any portion of the data (IX, SIX, or X lock) would interfere
with the S lock.

SQL Transactions and Locking 4-51

Purpose of Slide
To describe lock strengths.

Strength of Locks

N
N

-
WEAK

-
STRONG

Figure 4-26.

m The strength of a lock refers to the number of other lock mode types with which it is
compatible. Stronger locks are less compatible with other locks, and weaker locks are more
compatible with other locks.

s Figure 1-26 shows the relative strength of all lock mode types. The following chart
summarizes the compatiblity of each type of lock:

Lock Mode | Compatible Locks | Total
___________ S P

Is | Is, IX, S, SIX Il 4
IX | 1Is, IX | 2
S|11Is,s I 2
SIX | Is I 1
X | | o

4-52 SQL Transactions and Locking

Computer

Mucanm

Key Points

m IS locks are the weakest locks, and X locks are the strongest.
m A lock can be converted from a weaker lock into a stronger lock, but never the reverse.

s S locks cannot be converted into IX locks, and IX locks cannot be converted into S locks.
Instead, the S or IX lock is converted into an SIX lock.

m Stronger locks do not take precedence over weaker locks that already exist on a data object.
A request for a new lock will not be granted until every existing, incompatible lock held by
other transactions is released. It makes no difference whether the existing locks are stronger
or weaker than the requested lock.

m Lock mode strength is used in the following ways by ALLBASE/SQL:

D When several transactions are concurrently accessing the same data object, each has been
granted a lock on the object. ALLBASE/SQL has computed which lock is the strongest,
and has stored this information. When a new transaction requests a lock on the data
object, or when one of the existing transactions tries to convert its existing lock to one
that is stronger, the requested lock mode type is compared to the strongest existing
lock on the data object. If the requested lock is compatible with the strongest lock, the
request is granted; otherwise, the requesting transaction must wait.

O A transaction does not need to acquire a new lock on a data object in either of the
following situations:

a The transaction already owns a lock on the data object, and the existing lock is the
same or stronger than the lock that is needed.

For example, if a transaction needs to read a row from a PUBLIC table, and it has
already been granted an X lock on the page when it previously updated a different
row on the page, the transaction does not need to obtain an S lock on the page. The
existing X lock is stronger than the S lock that is needed.

m The transaction already owns a lock at a higher granularity, and the existing lock is the
same or stronger than the lock that is needed.

For example, if a transaction has already been granted an SIX lock on a PUBLICROW
or PUBLIC table, it does not need to acquire an S row or page lock when it reads a
row. The SIX lock at the table level is stronger than the S lock that is needed at the
lower level. But if the transaction writes a row, it does need to acquire an X row or
page lock because the SIX lock at the table level is not strong enough. :

SQL Transactions and Locking 4-53

Purpose of Slide

To demonstrate how the optimizer affects locking.

Understanding How the Optimizer Affects Locking

isql => GENPLAN FOR SELECT * FROM PurchDB.SupplyPrice
WHERE VendPartNumber = '1010’;

isql => SELECT * FROM SYSTEM.PLAN;

Query Block | Step | Level | Operation | Tablename | Owner Indexname
1 1 1 Index Scan | SupplyPrice | PurchDB | VendPartindex
Figure 4-27,

4-54 SQL Transactions and Locking

Key Points

m Locks on tables are acquired according to a combination of SQL statement, table type, and
type of scan used to access the data. Remember that by default locks must be acquired
before data can be read or written.

m When you issue an SQL statement, the optimizer chooses the type of scan that will be used
to locate the rows that qualify for the query (it usually chooses a scan that will result in the
fewest I/O operations needed to read the requested data). Four types of scans are possible.

m serial scan

m index scan

m hash scan

m TID scan

Each of these will be described in detail on the next few pages.

® The optimizer also makes decisions about join order, join method, and sort operations. The
access plan for a query is the method chosen by the optimizer as the most efficient method
to access the rows that qualify for the query.

m In ISQL, you can use the GENPLAN statement to generate the optimizer’s access plan for a
particular SELECT, UPDATE, or DELETE statement. The resulting access plan is inserted into
the pseudo-table SYSTEM.PLAN. Please refer to the ALLBASE/SQL Reference Manual for
more information about GENPLAN and SYSTEM.PLAN.

SQL Transactions and Locking 4-55

Purpose of Slide

To explain a serial scan.

Serial Scan

DBEFiles in the DBEFileSet that contains table

PTP - Page Table Page

Figure 4-28.

4-56 SAQL Transactions and Locking

Key Points

m Every DBEFile contains one or more page table pages, each of which is basically a table of
contents for up to 252 of the pages. For every 253 pages in the DBEFILE, the first page
is a page table page, and the other 252 pages are used to store table data or index data,
depending on the type of the DBEFile. Each page table page consists of 252 entries: each
entry consists of an object id that indicates which specific table or index has data stored on
the page, and the physical address (also known as the TID) of the page.

m When a serial scan is performed over a table, every page table page is examined in each
DBEFile in the DBEFileSet containing the table. If one or more entries exist for the table,
the appropriate data page(s) are accessed directly by using the physical address stored on
the page table page. Finally, all rows on each retrieved data page are examined to see if any
qualify for the query.

m When a serial scan is performed over a table, all rows in the table are read in the order that
they are physically stored.

m The I/O cost for a serial scan is equal to the number of page table pages that exist in the
DBEFileSet, plus the number of pages that exist in the table.

m A serial scan usually requires more I/O than any other type of scan, unless all or most rows
in the table will qualify for the query; in this case, a serial scan is actually the most efficient
method for accessing the rows.

m When a serial scan is used, all of the rows in the table must be read to see if they qualify
for the query. An S lock at the table level is the most efficient way of locking all rows for a
read. An S lock at the table level on a PUBLICROW or PUBLIC table usually indicates a
serial scan. Remember that an SIX lock is equivalent to an S lock plus an IX lock. An SIX
lock at the table level can also indicate that a serial scan is being used.

o When an index, hash, or TID scan is used, only some of the rows in the table must be
locked. If the default isolation level is used (isolation levels will be discussed later in this
module), then IS or IX locks at the table level indicate that something other than a serial
scan is being used to locate rows in a PUBLICROW or PUBLIC table. If an isolation
level other than the default is used, a serial scan will also generate IS or IX locks at the
table level.

m If a serial scan is used to locate data in a PUBLICROW or PUBLIC table and the
transaction uses the default isolation level, an S lock will be acquired at the table level
during internal processing. If there is also a need to write to a row (or page), an IX lock at
the table level is also required. Therefore, an SIX lock will also be internally obtained on
the table:

o If the need to write is known at the same time that the S lock is acquired (such as a
DECLARE CURSOR FOR UPDATE), an SIX lock is specifically requested instead of an S lock.

o If the need to write occurs after the S lock has been granted on the table (such as a
SELECT without a WHERE clause, followed by an UPDATE statement), an internal request
is made to upgrade the S lock to an SIX lock. In the case of a single transaction, S + IX
= SIX, the upgrade can only occur if no other transaction holds an S lock on the table.
If another S lock exists, the request for an SIX lock cannot be granted because it is not
compatible with the S lock. In this case, the converting transaction will have to wait until
the other transaction releases its lock.

SQL Transactions and Locking 4-57

Purpose of Slide

To describe an index scan.

Index Scan
B-Tree

DBEFiles

4-58 SQL Transactions and Locking

Figure 4-29.

Key Points

m At least one B-tree structure (index) must already exist on the table because the B-tree

contains the pointers needed for the scan. A B-tree consists of a single root page and a
number of leaf and non-leaf pages. Leaf pages are used to store index entries. Each leaf
page consists of an index key value and the physical address of the row in the table which
has that value in its key columns. A non-leaf page is used to store pointers to other index
pages (either leaf pages or other non-leaf pages). Typically, the root page contains pointers
to non-leaf pages (which may contain pointers to other non-leaf pages) that eventually
contain pointers to leaf pages.

When an index scan is performed over a table, a B-tree is traversed from the root page
down to the appropriate leaf pages for index entries that have matching keys. Every
matching index entry also contains the physical address of the row in the table, so the row
can be accessed directly using the physical address if necessary. There are times when the
row does not need to be accessed because the key values that are stored in the index itself
are sufficient to satisfy the needs of the query.

The I/O cost for an index scan is equal to the I/O that is needed to search the index, plus
the I/O that is needed to access the rows that qualify for the query.

When an index scan is used on a PUBLICROW or PUBLIC table, row (or page) level
locking is used on the table.

The optimizer might choose an index scan instead of a serial scan, even though all or most
rows in the table will qualify for the query. This action is taken so that sorting can be
avoided. The optimizer might choose an index scan when processing an ORDER BY,
GROUP BY, DISTINCT, or UNION clause in a SELECT statement or when performing

a sort/merge join. If all rows in a PUBLICROW or PUBLIC table qualify, many row or
page locks will be acquired. Remember that if a query will read most or many rows in a
table, it may be useful to use the LOCK TABLE command to acquire an S lock on the table to
minimize deadlocks and shared memory needs.

SQL Transactions and Locking 4-59

Purpose of Slide

To describe a hash scan.

DBEFiie containing DBEFile containin

Hash Scan

Hash function (Hash Key) = address of the primary page which should
contain the row having the key.

primary pages

overflow pages

Figure 4-30.

4-60 SAQL Transactions and Locking

Key Points

® A hash structure consists of primary pages and overflow pages. When a table is defined
as hashed, a specific number of primary pages are allocated by ALLBASE/SQL for the
storage of tuples in the table. When a row is inserted, an algorithm is used to calculate the
physical address for the primary page on which the row should be stored. The algorithm
uses the number of primary pages in the table and also the value of the hash key (that is,
the value(s) in the key column(s) of the row) for the row that is being inserted. If space
cannot be found on the primary page, an overflow page is allocated by ALLBASE/SQL and
linked to the primary page; the row is then inserted onto the overflow page. An overflow
page is only allocated if either

0 an overflow page does not already exist for the primary page, or
o overflow pages exist, but they do not have space for the row.

m A hash scan can only be used to access a row in a table that has been created using a hash
structure. Either the UNIQUE HASH ON clause or the HASH ON CONSTRAINT clause
must have been used when the table was created (PUBLICROW tables cannot be created
using a hash structure).

® A hash scan can only be used to locate a single row. However, you can issue a query in
which multiple hash scans are executed to locate several rows (each scan returns a single
row, and a union is performed over all of the scans).

® When a hash scan is performed, the algorithm that was described above is used to calculate
the physical address for the primary page on which the row should be stored. A binary
search is performed on this page for a row that matches the hash key. If the row is not
found, a binary search is performed on each overflow page associated with the primary page
until the row is found or all appropriate overflow pages have been examined.

@ The maximum I/O cost for a hash scan is equal to one 1/O for the primary page, plus one
additional I/O for each overflow page associated with the primary page.

® A hash scan usually requires less I/O than an index scan, unless a serious overflow situation
exists.

® When a hash scan is used to access a row in a PUBLIC table, page level locking is used.

SQL Transactions and Locking 4-61

Purpose of Slide
To describe a TID scan.

TID Scan

SELECT * FROM RecDB.CLUBS WHERE TID () =8:5:1;
TID = 8:5:1

Figure 4-31.

4-62 SQL Transactions and Locking

Key Points

m A TID scan can only be used to locate a single row. You can, however, issue a query in
which multiple TID scans are executed to locate several rows (each scan returns a single
row, and a union is performed over all of the scans).

m A row is accessed directly using the physical address (TID).
m The I/O cost for a TID scan is equal to one I/0.

@ When a TID scan is used to access a row in a PUBLICROW or PUBLIC table, row (or
page) level locking is used.

m When you use a TID function, you can assume that the optimizer will choose a TID scan.
Please refer to the ALLBASE/SQL Reference Manual for more information about TID

functions.

SQL Transactions and Locking 4-63

Purpose of Slide

To explain the locking of indexes.

Understanding the Locking of an Index
(Assume PUBLIC Table)

index page =
is full

Index Scan Insert row
is used to
READ row space exists
on index page
Insert row, insert row,

index page
is full

Figure 4-32.

4-64 SQL Transactions and Locking

Key Points

m Locks are never acquired on a B-tree index that has been defined on a PRIVATE or
PUBLICREAD table. Concurrency control on the index is already achieved via the table
level lock that is always acquired on the table. In other words, the S or X lock that is
obtained on the table also covers the pages in the index.

m Locks are acquired in the following way on a B-tree index that has been defined on a
PUBLICROW or PUBLIC table:

o When an index scan is performed over the table, pages in the B-tree are not locked when
they are traversed for index entries that contain matching keys. Only rows or pages in the
table itself are locked when an index is used to read table data.

o The index leaf page that covers the row in the table is locked with an IX lock when the
index itself is modified, regardless of the type of scan used to modify the table.

o If a row is inserted into the table, and space does not exist on the index page that should
contain an index entry for the key, then the following occurs:

s START—An X page lock is obtained on the index page, and it is examined to
determine whether or not compression should be performed to create free space. If
enough free space will be created, compression is performed and the index entry is
inserted onto the page.

s If compression would not result in enough free space for the index entry, it is not
attempted (the page is full and must be split into two new pages). The data from the
original page is moved to the new pages. At the end of the split operation, each of the
new pages contains half of the index data from the original page, and the original page
is freed.

m The following locks exist on the index at the end of the split operation:

o Three X page locks: one on the original leaf page, and one each on the two newly
allocated leaf pages.

o Usually three IX page locks: one on the parent (non-leaf) page of the original page,
and one each on the two neighbor (leaf) pages of the original page (it is possible that
there is only one neighbor, instead of two). The parent and neighbor page(s) must
be modified to point to the newly allocated pages instead of to the original page.

The neighbor page(s) must simply be updated. Both an update and an insert must
occur for the parent page. There might not be enough space for the insert on the
parent page, so the process beginning with the label START: can be repeated on each
successive parent page until the root page of the index has been updated sucessfully.

o If a row is deleted from the table, and an index page becomes empty because the last
index entry on the page was deleted, ALLBASE/SQL frees the page. This requires an X
page lock, regardless of the type of scan used to perform the delete.

SQL Transactions and Locking 4-65

Purpose of Slide

To demonstrate how cursors are used.

DECLARE CURSOR Defines Cursor for Rows that
Qualify for a SELECT Statement

DECLARE NewQtyCursor
CURSOR FOR

SELECT PartNumber, QtyOnHand
FROM PurchDB.Inventory Active Set
WHERE BinNumber = 5

FOR UPDATE OF QtyOnHand;

Figure 4-33.

® A cursor is a pointer that you advance through a set of rows retrieved with a SELECT
statement. It can only be used within an application program. The primary SQL
statements used to support cursors are:

o DECLARE CURSOR

o OPEN

o FETCH

o REFETCH

o UPDATE WHERE CURRENT
O DELETE WHERE CURRENT
o CLOSE

4-66 SQL Transactions and Locking

Key Points

m The DECLARE CURSOR statement is used to associate a cursor with a specified SELECT
statement:

o The WHERE clause(s) of the SELECT statement determines the rows in the query result,
which are also referred to as the active set.

o When the DECLARE CURSOR statement is preprocessed, the optimizer normally
computes the access plan for the rows in the active set, and ALLBASE/SQL stores this
information as a section in the system catalog (a description of the section appears in the

SYSTEM.SECTION view).

u One of the ALLBASE/SQL preprocessors is normally used to preprocess SQL
statements (including DECLARE CURSOR) prior to the compilation of an application
program. During preprocessing, SQL statements are translated into compilable
constructs that call ALLBASE/SQL external procedures at run time.

w The DECLARE CURSOR statement cannot be issued interactively within ISQL. As a result,
all other SQL statements that are used to support cursors are also not allowed within

ISQL.

o The DECLARE CURSOR statement supports an optional FOR UPDATE clause, which is used
to specify the columns that might be updated when the cursor is used:

u If you use the FOR UPDATE clause, the cursor must be an updatable cursor:

o The cursor must be based on an updatable query. Generally, a query is updatable if
it only involves one table (either directly or through a view), if it does not involve
a sort operation, and if it is possible for ALLBASE/SQL to determine which
particular rows and columns in the table should be modified. Please refer to the
ALLBASE/SQL Reference Manual for more information about updatable queries.

o The columns that are specified must actually correspond to columns in a base table.
If a cursor is declared on a view, it is possible that some columns of the view are
actually expressions or constants; these columns cannot be specified in the FOR
UPDATE clause of a DECLARE CURSOR statement.

u If you use the FOR UPDATE clause and the cursor is not updatable, an error will be
returned when the DECLARE CURSOR statement is preprocessed. A cursor defined in a
DECLARE statement that is not preprocessed successfully cannot be used in other SQL
statements (OPEN, FETCH, REFETCH, UPDATE WHERE CURRENT, DELETE WHERE CURRENT,
and CLOSE).

SQL Transactions and Locking 4-67

Purpose of Slide
To describe how cursors are used in ALLBASE/SQL statements.

Understanding How Cursors Are Used

Cursor positioned

Cursor advances to
before first row first row
1. OPEN 2. FETCH

Cursor advances Cursor does not move

to next row

3. FETCH 4. REFETCH

Figure 4-34.

4-68 SQL Transactions and Locking

Key Points

s The OPEN statement is used to begin execution of the stored section that was created by the
DECLARE CURSOR statement. This execution results in opening appropriate scans to access
rows in the active set. At the end of the OPEN statement, the cursor is positioned before the
first row in the active set. A user may have more than one cursor open at the same time.

m The FETCH statement is used to move the cursor to the next row (or rows) in the active set
and retrieve it (or them).

o Generally, rows are locked when they are fetched.
o An OPEN statement must be issued prior to the first FETCH statement.

o The FETCH statement is normally used in a loop until all rows in the active set have
been retrieved. The loop ends when a FETCH is made after the last row in the active set
has been returned, and an error has been detected in the SQLCA.SQLCODE. At this

moment, the cursor’s position is undefined.

s The REFETCH statement is used to reacquire a lock on the row that is currently pointed to
by the cursor. The cursor does not move. The REFETCH statement is only needed when a
lock is not obtained or retained on a row when it is fetched (this situation will be described
later in this module).

o The REFETCH statement can only be used for a cursor that is updatable. An UPDATE
WHERE CURRENT or DELETE WHERE CURRENT statement normally follows a REFETCH
statement.

o A FETCH statement must be issued prior to a REFETCH statement. If the FETCH fails (for
example, if no more rows exist in the active set), the REFETCH statement cannot be used.

o You only use the REFETCH statement to reaquire a lock on the last row that was fetched.
REFETCH only operates on a single row.

m The UPDATE WHERE CURRENT and DELETE WHERE CURRENT statements can be issued to modify
a single row immediately after it has been fetched or refetched (the cursor must still point
to it):

o If the FETCH (or REFETCH) fails, neither statement can be used. Do not use UPDATE WHERE
CURRENT or DELETE WHERE CURRENT when you use FETCH to retrieve multiple rows (the
BULK option).

o If either statement is used, the cursor must be updatable.

o If you use the UPDATE WHERE CURRENT statement, you may only update columns that were
specified in the FOR UPDATE clause of the DECLARE CURSOR statement that was used to
define the cursor.

m The CLOSE statement is used to close an open cursor. When a cursor is closed, its active
set becomes undefined, and it can no longer be used in FETCH, UPDATE WHERE CURRENT, or
DELETE WHERE CURRENT statements. To use a cursor again after it has been closed, you must
issue another OPEN statement to reopen it.

m When a FETCH, REFETCH, UPDATE WHERE CURRENT, or DELETE WHERE CURRENT statement is
preprocessed, ALLBASE/SQL stores a section for it in the system catalog.

SQL Transactions and Locking 4-69

Purpose of Slide

To describe how isolation levels are used.

Isolation Levels in ALLBASE/SQL

Repeatable READ STRONGEST

Cursor Stability

READ Committed

READ Uncommitted WEAKEST

Figure 4-35.

4-70 SQL Transactions and Locking

Key Points

s When SQL statements that reference a user table are executed, locks of different kinds are
obtained on the table by default. You can help control how long locks are held or if locks
are obtained by altering the isolation level of the transaction.

m An isolation level is the degree to which a transaction is separated from all other concurrent
transactions. In general, you should choose the least restrictive isolation level that meets
each transaction’s needs, to achieve the most concurrency.

m ALLBASE/SQL supports four isolation levels. They are briefly described below, in order
from most restrictive to least restrictive. All of the isolation levels will be described in
greater detail on the next few pages.

O Repeatable Read (RR)—default.
m All locks obtained by the transaction are held until the transaction ends.
o Cursor Stability (CS)

m S locks are released before the transaction ends (the application program has some
control over when they are released).

0 Read Committed (RC)

m S locks are automatically released by ALLBASE/SQL immediately after they are
obtained.

O Read Uncommitted (RU)
m S locks are not acquired when the transaction reads data.

m The isolation level of a transaction is an attribute that can be specified using an optional
clause in the BEGIN WORK statement. For example:

BEGIN WORK CS;

SQL Transactions and Locking 4-71

Purpose of Slide

To describe the Repeatable Read isolation level.

RR - All Data That Is Accessed Remains Locked
Until the End of the Transcation

PUBLICROW
BEGIN WORK
OPEN CURSOR (for update)

FETCH - SIX Lock IX Lock on table
FETCH — SIX Lock

UPDATE WHERE CURRENT X Lock

FETCH » SIX Lock

CLOSE

COMMIT WORK (release all locks)

Figure 4-36.

4-72 SQL Transactions and Locking

Key Points

= Repeatable Read (RR)—All locks obtained by the transaction are held until the transaction
ends.

m RR is the default isolation level in ALLBASE/SQL.

m Because S (or SIX) locks are obtained and retained on data that is read, the information
cannot be modified by another transaction. If the transaction reads a row for a second time,
the data in the row can only be different from the data that was read the first time if the
transaction itself had modified the row. If the transaction had modified the row, the S or
SIX lock would have been converted to an X lock.

m An RR transaction can read a row (that it has already read once) for a second (or third,
etc.) time, and the information returned for the second read will be identical to the
information that was returned for the first read. Hence, reads are repeatable.

SQL Transactions and Locking 4-73

Purpose of Slide

To describe the Repeatable Read isolation level (continued).

Summary of Locking in an RR Transaction

For UPDATE? Type of Scan Lock Type/Level
NO Index/Hash/TID S lock on row/page
NO Serial S lock on table
YES Index/Hash/TID SIX lock on row/page” % ®
YES Serial SIX lock on table ®

! Reduces concurrency with other transactions that want to READ i of the data in
the table.

2 Reduces concurrency with other transactions that want to READ &l
data in the table.

3 Reduces concurrency with other READ-FOR-UPDATE transactions.

Figure 4-37.

4-74 SAQL Transactions and Locking

Key Points (continued)

m A cursor is a pointer that you advance through a set of rows associated with a SELECT
statement. The FETCH statement is used to move the cursor and retrieve one or multiple
rows in the active set.

® Assume that a cursor is used in an RR transaction. For each table involved in the query
associated with the cursor, the following locks are obtained by default on rows in a
PUBLICROW table or on pages in a PUBLIC table when rows are retrieved using the
FETCH statement:

o If the FOR UPDATE clause is not used in the DECLARE CURSOR statement, the rows are
simply read:

m If the optimizer chooses an index, hash, or TID scan to obtain the rows in the active
set, S locks are obtained on the rows (or pages). Appropriate intention locks are also
obtained.

a If the optimizer chooses a serial scan to obtain the rows in the active set, a single S lock
is obtained on the table.

m If an S lock is obtained at the row, page, or table level, other transactions can read all
rows (or pages) in the table that the DECLARE CURSOR transaction has read, but has not
modified. In this case, concurrency with other read transactions is not reduced.

D If the FOR UPDATE clause is used in the DECLARE CURSOR statement, some rows in a
table are read with the intention of writing to them:

B The access plan of any query can consist of a complex sequence of subqueries. If the
access plan for the query on which the cursor is defined includes a subquery that simply
reads data, locks for the data in that subquery will be obtained as described above. (In
other words, S locks can be acquired by a cursor defined with a DECLARE CURSOR FOR
UPDATE statement).

m If the table is being updated, the following is true:

o If the optimizer chooses an index, hash, or TID scan to access data in the table,
SIX locks are obtained on the rows (or pages) that qualify. Appropriate intention
locks are also obtained. When an SIX lock is obtained at the row or page level, other
transactions cannot read any of the data that the SIX transaction has read but not
modified.

o If the optimizer chooses a serial scan to access data in the table, a single SIX lock is
obtained on the table. Another transaction can read rows (or pages) in the table that
the SIX transaction has read but not modified; however, the other transaction cannot
read the rows with the intention of writing to them, and it cannot read all of the
rows in the table.

o If a transaction has obtained an SIX lock at the row, page, or table level, another
transaction that wishes to read all of the rows in the table must wait until the SIX
lock (and intention locks) are released.

® In an RR transaction, SIX locks are held until the transaction terminates. Concurrency
with other read or read with an intention to write transactions can be reduced when
RR is used in transactions that contain updatable cursors.

SQL Transactions and Locking 4-75

Purpose of Slide

To describe the Repeatable Read isolation level (continued).

Locks Obtained By A Cursor in RR *

BEGIN WORK

OPEN [}

FEETCH

EETCH

FETCH

EETCH

nlunjonjn |-

[}
S
S
FETCH s
S
S

ARV IN) b
(7]
-
(7]

CLOSE

COMMIT WORK
* Assuming Index Scan and NON-UPDATABLE cursor

A —cursor S -Srowlock

Figure 4-38.

4-76 SQL Transactions and Locking

Key Points (continued)

s The example on the previous page shows the locks that are obtained by a non-updatable
cursor in an RR transaction, if an index scan is chosen to access the rows in the active set.

o If a serial scan is chosen instead of an index scan, a single S lock is obtained at the table
level when the first fetch is made. Individual S locks at the row level are not obtained.

o If the cursor is updatable and an index scan is chosen to access the rows in the active set,
SIX row locks are obtained instead of S row locks.

o If the cursor is updatable, and a serial scan is chosen, a single SIX lock is obtained at the
table level when the first fetch is made.

m Use the RR isolation level for a transaction when you want to retain all locks until the
transaction terminates. This is especially necessary when you need to repeatably read rows
and be guaranteed that the rows have not changed from the first time that they were read.

® Use the RR isolation level for a transaction that contains a non-updatable cursor if you need
to view a consistent snapshot of the data at a single point in time, and especially if you
need to make data modifications based on the values returned by the cursor.

o If you make data modifications, you must use SQL statements other than the UPDATE
WHERE CURRENT or the DELETE WHERE CURRENT statements to accomplish your changes,
because the data is not updatable through the cursor.

w Use the RR isolation level for a transaction in which you perform a BULK FETCH and then
use the UPDATE statement (not UPDATE WHERE CURRENT) to modify the rows that were
fetched.

o Remember, do not use either the UPDATE WHERE CURRENT or the DELETE WHERE CURRENT
statements when you perform a BULK FETCH. The cursor can only point to a single row
at a time. When FETCH is used to retrieve multiple rows, the cursor sequentially moves
to each row that is fetched during internal processing. At the end of the BULK FETCH,
the cursor points to the last row that was returned. If an isolation level other than
RR is used, the S or SIX locks that may have been obtained on the other rows in the
BULK FETCH are released. To ensure data integrity (that is, to ensure that you do not
accidentally overwrite changes made by another user), you must use the RR isolation
level to retain locks on these rows to guarantee that they are not modified by another
transaction before your UPDATE statement is executed.

SQL Transactions and Locking 4-77

Purpose of Slide

To explain the Cursor Stability isolation level.

Locks Obtained By A Cursorin CS *

BEGIN WORK

OPEN [)

FETCH s SIX

FETCH 4 SIX

FETCH 4 SIX

EETCH

4 SIX

FETCH

4 SIX

— CLOSE

COMMIT WORK

* Assuming Index Scan and UPDATABLE cursor

A —cursor SIX -SsiXrow lock

Figure 4-39.

4-78 SQL Transactions and Locking

Key Points

m Cursor Stability (CS)—S locks are released before the transaction ends (the application
program has some control over when they are released).

m The primary use of Cursor Stability is to improve the concurrency of transactions that
contain updatable cursors. When you use CS in a transaction with an updatable cursor on a
PUBLICROW or PUBLIC TABLE, the following is true for that cursor:

o During any FETCH statement, S or SIX locks might be obtained and released on rows (or
pages) when locating the next row of the active set. Appropriate intention locks would
also be obtained and released. In the example on the previous page, if a serial scan was
used instead of an index scan, the following would occur to locate the first row in the
active set:

s The first row in the table would be locked with an SIX lock, and the row would be
examined to see if it qualifies for the query associated with the cursor.

m If it does not qualify, the SIX lock would be released, and the next row in the table
would be locked with an SIX lock and examined.

m This process repeats until a row is found that qualifies for the query. At the end of the
the FETCH, only this last row remains locked with an SIX lock.

O At the end of the FETCH statement, only a subset of rows in the query result remain
locked:

m The row (or page) that was just fetched has an SIX lock. This row is stable (that is, it
cannot be changed by another transaction) as long as the cursor points to it (that is,
until another FETCH statement is issued). An IX intention lock for this row also exists
at the page level if the table is PUBLICROW.

m If the CS transaction itself modifies this row, the existing SIX lock is converted to an X
lock.

m An IX intention lock exists at the table level, regardless of whether the optimizer has
chosen a serial scan or an index, hash, or TID scan (using RR, an SIX lock is obtained
on the table if a serial scan is chosen). An IX lock at the table level provides more
concurrency than an SIX lock, especially to other similar transactions: IX is compatible
with IX, but SIX is not compatible with SIX.

m By default under any isolation level, X locks and IX intention locks on pages containing
modified rows are retained until the transaction ends.

O When the next FETCH is performed and the cursor moves, the following locks are released:
m SIX locks held on rows (or pages) that were not updated.

m IX page locks for pages on which rows were not modified. If the cursor moves to
another row on the same page as the last row that was fetched, the IX page lock is
retained (instead of being released and reacquired).

SQL Transactions and Locking 4-79

Purpose of Slide

To explain the Cursor Stability isolation level (continued).

CS Does Not Always Provide Cursor Level Stability

Original Temp Original Temp
Table Table Table Table
p- o "~
°I = (2] (A] ~}—reres
B B | <}—FETCH
— D C C
D D
o B
E E
— LE F F
— A
b
OPEN —
Figure 4-40,

4-80 SQL Transactions and Locking

Key Points (continued)

m If CS is used in a transaction having a non-updatable cursor, cursor level stability is not
guaranteed. For example, if a temporary table is used to access the rows in the active set,
the following is true:

o A query that involves a sort operation (such as an ORDER BY, GROUP BY,
DISTINCT, or UNION, or a query that uses a sort/merge join to join tables) may use a
temporary table for the query result. When CS is used in such cases, your cursor actually
points to rows in this temporary table, not to rows in a user table.

o The temporary table is created when the OPEN statement is issued.

o When CS is used, S locks are obtained and released on the user tables from which data is
retrieved when the temporary table is created. Pages that might appear to be accessed by
the current transaction’s cursor are actually not locked at all, and other transactions are
able to modify these pages.

0 When you issue each FETCH statement, ALLBASE/SQL does not re-sort to create a new
temporary table, it simply retrieves another row from the existing temporary table. If
your transaction does not retain locks on the original user table, other transactions can
modify it (or even drop it). Therefore, your transaction may fetch a row that logically
does not exist any more, or it may see an older version of a row that has since been
modified. In such cases, it is the application developer’s responsibility to maintain data
integrity by verifying the current value of a row before updating it or using it as the basis
for updating another table.

o To retain S or SIX locks on a user table in a transaction that includes a non-updatable
cursor, use one of the following:

m Use the RR isolation level.

m Use the LOCK TABLE command on the table at the start of the transaction. A table level
lock will be obtained and retained until the transaction ends.

m CS provides greater read and write concurrency than RR to other transactions on data read
by updatable cursors:

o Greater read concurrency is achieved because other users can read rows as soon as a CS
transaction moves the cursor. In an RR transaction, users must wait until the transaction
terminates if they need to read rows (or pages) that have obtained SIX locks by the RR
transaction.

o Greater write concurrency is achieved because other users can modify rows as soon as a
CS transaction moves the cursor. Users must wait until the transaction terminates if they
need to modify rows (or pages) that have obtained S or SIX locks by the RR transaction.

m Use the CS isolation level for transactions that contain updatable cursors that need to scan
through rows of committed data in a table, but may only update a few. If the cursor is
updatable, then CS guarantees that a row will not change between the time you issue the
FETCH statement and the time you issue an UPDATE WHERE CURRENT statement in the same
transaction.

SQL Transactions and Locking 4-81

Purpose of Slide

To describe the Read Committed isolation level.

Locks Obtained By A Cursorin RC *

—BEGIN WORK

OPEN

FETCH

FETCH

'8

EETCH

-1

FETCH

e

FETCH

\&

CLOSE

COMMIT WORK

* Assuming Index Scan

4 — Cursor ,8/ — S row lock obtained, and immediately released

4-82 SAQL Transactions and Locking

Figure 4-41.

Key Points

s Read Committed (RC)—S locks are automatically released by ALLBASE/SQL immediately
after they are obtained.

m RC has the same characteristics as CS, except that locks are released immediately after
each read, instead of waiting until the cursor moves (that is, until the next FETCH is
issued). ALLBASE/SQL acquires (and releases) appropriate S locks (and intention locks)
when each FETCH statement is issued. S locks are always obtained for both updatable and
non-updatable cursors (SIX locks are not obtained and released for updatable cursors).

s During any FETCH statement, S locks might be obtained and released on rows (or pages)
when locating the next row of the active set. Appropriate intention locks would also be
obtained and released (the internal processing is similar to CS processing). At the end
of the FETCH, the retrieved row is not locked and none of the other examined rows are
locked.

s With RC, as with RR and CS, you can only retrieve rows that have been committed by
some other transaction. In other words, you cannot read rows (or pages) that have been
modified (locked with an X lock) or are in the process of being modified (locked with an
SIX lock) by some other transaction that has not yet terminated.

a If you need to update or delete a row using a cursor in an RC transaction, you must use the
REFETCH statement to verify that the row has not changed between the FETCH statement and
the UPDATE WHERE CURRENT or the DELETE WHERE CURRENT statement. The S lock is released
immediately after the FETCH, so another transaction may have modified the row after the
FETCH was issued. To ensure that your transaction does not accidentally overwrite changes
made by some other transaction, use the REFETCH statement to retrieve the row for a second
time and examine its current value before updating or deleting it. A row cannot be changed
by another transaction between the time you issue the REFETCH statement and the time you
issue an UPDATE WHERE CURRENT statement in the same transaction, because the REFETCH
statement obtains an SIX lock (at the row level on a PUBLICROW table and at the page
level on a PUBLIC table).

o If another transaction has modified (or is modifying) the row (or page) but has not yet
committed the change (that is, has acquired an X or SIX lock on the data), the REFETCH
transaction will wait (if another transaction is reading the data, the REFETCH transaction
will also wait). After the SIX lock has been granted, the REFETCH transaction can
determine whether or not other changes were made to the row between the time of the
FETCH and the time of the REFETCH, and then modify the row appropriately.

s The UPDATE WHERE CURRENT and DELETE WHERE CURRENT statements will obtain an X

lock at the row level on a PUBLICROW table and at the page level on a PUBLIC table.
Appropriate intention locks are also acquired.

a By default under any isolation level, X locks and IX intention locks on pages containing
modified rows are retained until the transaction ends. SIX locks obtained by the REFETCH
command are also retained until the transaction ends, if they are not converted to X locks.

SQL Transactions and Locking 4-83

Purpose of Slide

To compare RC to the RR and CS Isolation Levels.

Comparing RR, CS, RC *

—BEGIN WORK
OPEN 4 4
EFETCH 4 SIX 4 SIX
FETCH SIX 4 sIX 4 SIX \ &
EETCH SIX SIX 4SIX 4 SIX (-1
CLOSE SIX SIX SIX

— COMMIT WORK

* Assuming Index Scan and UPDATABLE cursor

SIX - siX row lock

4 — Cursor

,8/ — S row lock obtained, and immediately released

Figure 4-42,

4-84 SQL Transactions and Locking

Key Points (continued)

m Compared to RR, RC provides greater read and write concurrency to other transactions:

o Greater read concurrency is achieved because other users can read rows immediately
after an RC transaction has read them. In an RR transaction, users must wait until the
transaction terminates before they can read rows (or pages) that have obtained SIX locks
by the RR transaction.

o Greater write concurrency is achieved because other users can modify rows immediately
after an RC transaction has read them. In an RR transaction, users must wait until the
transaction terminates before they can modify rows (or pages) that have obtained S or
SIX locks by the RR transaction.

m Compared to CS, RC also provides greater read and write concurrency to other
transactions:

o Greater read concurrency is achieved because users can read rows immediately after an
RC transaction has read them. In a CS transaction, users must wait until the transaction
moves the cursor, before they can read rows (or pages) that have obtained SIX locks by
the CS transaction.

o Greater write concurrency is achieved because other users can modify rows immediately
after an RC transaction has read them. In a CS transaction, users must wait until the
transaction moves the cursor, before they can modify rows (or pages) that have obtained
S or SIX locks by the CS transaction.

o RC automatically acquires and releases intention locks during every FETCH. CS only
releases appropriate intention locks when the cursor moves. In a CS transaction, the
table level intention lock is always retained. If the cursor stays on the same page when
the next FETCH is issued, the page level intention lock is also retained (instead of being
released and reacquired). As a result, CS may incur less lock management overhead (and
therefore be more efficient) than RC. Of course, some concurrency might be lost by using
CS instead of RC in this situation.

m Use the RC isolation level for transactions that contain non-updatable cursors if you
simply need to view a snapshot of committed data and if you don’t need to make data
modifications based on the values returned by the cursor.

m Use the RC isolation level for transactions that contain updatable cursors that need to scan
through rows of committed data in a table, especially when a relatively large amount of
time elapses between fetches. Since RC does not guarantee that a row will not change
between the time you issue the FETCH statement and the time you issue an UPDATE WHERE
CURRENT or a DELETE WHERE CURRENT statement, you must issue a REFETCH statement and
examine the row’s current values before you make any changes to it.

SQL Transactions and Locking 4-85

Purpose of Slide

To describe the Read Uncommitted isolation level.

Locks Obtained By A Cursorin RU*

BEGIN WORK

OPEN ‘

FETCH ‘

FETCH [

EETCH '

FETCH ‘

EETCH '

CLOSE

MMIT WORK

* Assuming Index Scan

4 — Cursor

Figure 4-43.

4-86 SQL Transactions and Locking

Key Points

m Read Uncommitted (RU)—S locks are not acquired by the transaction when it reads data.

m An RU transaction does not have to wait for an incompatible lock to be released by another
transaction before it can read data. You can read rows (or pages) that have been modified
(locked with an X lock), or are being modified (locked with an SIX lock) by some other
transaction that has not yet committed its changes. The other transaction may eventually
decide to issue a ROLLBACK WORK and cancel its changes.

8 Reads made in an RU transaction are also known as dirty reads.

m If you need to update or delete a row using a cursor in an RU transaction, you must
use the REFETCH statement to verify that the row has not changed between the FETCH
statement and the UPDATE WHERE CURRENT or the DELETE WHERE CURRENT statement. After
the REFETCH, examine the row’s current value before updating or deleting it. This action
ensures that your transaction does not accidentally overwrite changes made by some other
transaction. A row cannot be changed by another transaction between the time you issue
the REFETCH statement and the time you issue an UPDATE WHERE CURRENT statement in the
same transaction, because the REFETCH statement obtains an SIX lock.

a The UPDATE WHERE CURRENT and DELETE WHERE CURRENT statements will obtain an X
lock at the row level on a PUBLICROW table and at the page level on a PUBLIC table.
Appropriate intention locks are also acquired.

m By default under any isolation level, X locks and IX intention locks on pages containing
modified rows are retained until the transaction ends. SIX locks obtained by the REFETCH
command are also retained until the transaction ends, if they are not converted to X locks.

SQL Transactions and Locking 4-87

Purpose of Slide

To compare RU to the RR, CS and RC Isolation Levels.

Comparing RR, CS, RC RU *

—BEGIN WORK

—OPEN :
EETCH 4 SIX 4 SIX
FETCH SIX &SIX $ SIX V.2
FETCH SIX SIX $SIX 4 SIX| (V-4
ClLOSE SIX SIX SIX

— COMMIT WORK

* Assuming Index Scan and UPDATABLE cursor

4 — Cursor

SIX - sIX row lock

,8/ — S row lock obtained, and immediately released

Figure 4-44,

4-88 SQL Transactions and Locking

Key Points

s Compared to RR, RU provides greater read and write concurrency to other transactions:

O Greater read concurrency is achieved because other users can immediately read rows that
the RU transaction has read. In an RR transaction, users must wait until the transaction
terminates before they can read rows (or pages) that have obtained SIX locks by the RR
transaction.

o Greater write concurrency is achieved because other users can immediately modify rows
that the RU transaction has read. In an RR transaction, users must wait until the
transaction terminates before they can modify rows (or pages) that have obtained S or
SIX locks by the RR transaction.

s Compared to CS, RU also provides greater read and write concurrency to other
transactions:

O Greater read concurrency is achieved because other users can immediately read rows that
the RU transaction has read. In a CS transactions, users must wait until the transaction
moves the cursor before they can read rows (or pages) that have obtained SIX locks by
the CS transaction.

o Greater write concurrency is achieved because other users can immediately modify
rows that the RU transaction has read. In a CS transaction, users must wait until the
transaction moves the cursor before they can modify rows (or pages) that have obtained S
or SIX locks by the CS transaction.

s RU and RC both provide the same amount of read concurrency to other transactions. The
write concurrency of other transactions might be slightly better using RU instead of RC.

D The same read concurrency is achieved because other users can immediately read rows
that either an RC or an RU transaction has read. An RU transaction does provide higher
read concurrency to itself, though, because it does not have to wait to acquire an S lock
before it can read data.

D Slightly greater write concurrency might be achieved using RU because other users can
immediately modify rows that the RU transaction has read. In an RC transaction, users
must wait until the transaction has released its S locks (ALLBASE/SQL releases these
locks immediately, but some overhead is still involved that could technically slow other
write transactions).

s RU is ideal for fuzzy reports and similar applications where the reading of uncommitted
data is not a major concern. Since RU does not guarantee that a row will not change
between the time you issue the FETCH statement and the time you issue an UPDATE WHERE
CURRENT or a DELETE WHERE CURRENT statement, you must issue a REFETCH statement and
examine the row’s current values before you make any changes to it.

s RU is the most efficient isolation level in ALLBASE/SQL. If you have data that only
has readers (that is, you know in advance that no user will ever modify it), then for
optimal performance you can use RU in a transaction that only accesses this data, because
concurrency control by ALLBASE/SQL is not really necessary. Keep in mind, though, that
if writers are ever acquired on the data, the isolation level of these RU transactions may
need to be changed to RC.

SQL Transactions and Locking 4-89

Purpose of Slide

To describe when to use each isolation level (updatable cursor).

Comparing RR, CS, RC RU *

BEGIN WORK
OPEN ‘ ' 4)
FETCH 4 SIX 4 SIX [V)
EETCH SIX 4 SIX 4 SIX \ & 4
FETCH SIX SIX 4SIX 4 SIX 48 [}
CLOSE SIX _SIX_SIX
—COMMIT WORK

* Assuming Index Scan and UPDATABLE cursor

SIX - sIX row lock
‘ — Cursor 8 - s rowlock obtained, and immediateiy released

Figure 4-45.

4-80 SQL Transactions and Locking

Key Points

m If the transaction you are using has an updatable cursor, the following can help you select
the appropriate isolation level.

o If the transaction needs to retain all locks until the end of the transaction (it needs to
repeatably read rows and be guaranteed that the rows have not changed from the first
time that they were read), use the RR isolation level.

o If the transaction uses a BULK FETCH statement to manipulate the cursor and uses the
UPDATE statement to modify the rows that were fetched, use the RR isolation level.

o If the transaction needs to scan through rows of committed data in a table and it will
update all or most of the rows in the active set, use the CS isolation level:

m If all of the rows in the table are in the active set and all rows are updated, CS will
behave like RR because all row (or page) locks will be X locks, and X locks are held
until the end of the transaction.

m If the active set does not include all rows in the table, or if some rows (or pages) are
not updated, CS is better than RR because some S or SIX locks will be released prior
to the end of the CS transaction.

m If all or most of the rows in the table are in the active set, you may also want to issue
the LOCK TABLE IN EXCLUSIVE MODE statement to minimize shared memory needs.

o If the transaction needs to scan through rows of committed data in a table, but it will
only update a few of the rows in the active set, use either of the following isolation levels.

m Use the RC isolation level for maximum concurrency, especially when
O A relatively large amount of time elapses between fetches and updates, or

o The number of users that will access the table concurrently is large (the cost of
holding an SIX lock is high).

m Use the CS isolation level for maximum lock efficiency in ALLBASE/SQL, especially
when either of the following situations is true.

o A small amount of time elapses between fetches and updates.

o The number of users that will access the table concurrently is small (the cost of
holding an SIX lock is low). If you use CS, there is no need to use the REFETCH
statement. This improves performance and also reduces the number of sections in the
DBEnvironment.

o If the transaction can scan through rows of uncommitted data in addition to rows of
committed data, use the RU isolation level to update a few of the rows. Use CS if
the transaction will update all or most of the rows.

SQL Transactions and Locking 4-91

Purpose of Slide

To describe when to use each isolation level (non-updatable cursor).

Comparing RR, CS, RC RU *

—BEGIN WORK

QOPEN [} [} [} ‘

EETCH S s (V-2 ¢

FETCH S 4S8 S & ¢

FETCH S S s s 4.8 é

CLOSE

—COMMIT WORK

* Assuming Index Scan and NON-UPDATABLE cursor

S -Srowlock
4 — Cursor 8~ - row lock obtained, and immediately released

Figure 4-46.

4-92 SQL Transactions and Locking

Key Points (continued)

m If the transaction you are using has a non-updatable cursor, consider the following cases and
use the appropriate isolation level.

o Use the RR isolation level if the transaction needs to retain all locks until the end of the
transaction. Use RR if the transaction needs to view a consistent snapshot of the data
at a single point in time, especially if you need to make data modifications based on the
values returned by the cursor.

o Use the RC isolation level if the transaction simply needs to view a simple snapshot
of committed data and does not need to make data modifications based on the values
returned by the cursor.

o Use the RU isolation level if it is acceptable for the transaction to scan through rows of
uncommitted data in addition to committed data, and the transaction does not need to
make data modifications based on the values returned by the cursor.

m If the transaction will only access data that cannot be modified by any user (you know
in advance that no user will ever change the data), you can use the RU isolation level for
optimal performance.

SQL Transactions and Locking 4-93

Purpose of Slide

To describe locking on the system catalog tables.

Example of Locking of System Catalog Tables

isql => BEGIN WORK RU;
isgl => SELECT * FROM SYSTEM.TABLE;

NOTE:

SYSTEM.TABLE is actually a view that is built on an internal base
table named HPRDBSS.TABLE, which contains a record of each
table and view in the DBEnvironment.

Figure 4-47.

4-94 SQL Transactions and Locking

Key Points

m The system catalog is a set of base tables owned by the special user HPRDBSS. Views
owned by the special users SYSTEM and CATALOG are defined on these tables to enable
the DBA and other users to access information in the system catalog tables.

® The descriptions of isolation levels on the previous pages refer to rows in user tables, not
system catalog tables.. When ALLBASE/SQL reads rows in a system catalog table as part
of normal internal processing, the RR isolation level is always used; otherwise, the isolation
level specified in the transaction is used. When rows in a system catalog table are explicitly
read by a user transaction, the isolation level specified in the transaction is used.

m For example, when queries are translated, ALLBASE/SQL needs to read rows in system
catalog tables as part of normal processing;:

o In a preprocessed application program, queries are normally translated during
the preprocessing phase. The locks obtained during translation are released when
preprocessing completes.

o In a dynamic application program (such as ISQL), queries are dynamically translated
when the program is run. Both the locks that are required to translate a query and the
the locks that are required to execute the query are obtained in the same transaction.

m Consider the example on the previous page:

o When the SELECT statement is translated in ISQL, normal internal processing includes
determining whether or not a table or view named SYSTEM.TABLE actually exists.
ALLBASE/SQL determines this by performing an index scan (using an internally
defined index) over HPRDBSS.TABLE, to try to retrieve a row for an object named
SYSTEM.TABLE. If a row exists, the object exists; otherwise an error is returned.

O During the index scan, an IS lock is obtained at the table level and an S lock is obtained
on the page that contains the row (all of the system catalog tables are of type PUBLIC).
These locks are retained until the end of the transaction, because the RR isolation level is
used.

o After the query has been translated, it is immediately executed. A serial scan is
performed over HPRDBSS.TABLE to satisfy the needs of the query. This serial scan is
not normal internal processing, it is simply a step in the access plan for this particular
SELECT, which happens to involve a system catalog table. Therefore, the isolation level
specified in the BEGIN WORK is used (in this case, RU), so no additional locks are acquired
on HPRDBSS.TABLE.

o If the same query exists in a preprocessed application program, the IS and S locks would
be obtained and released during the preprocessing phase, and the translated version of the
query would be stored as a section in the DBEnvironment. When the program is run, no
locks would be obtained on HPRDBSS.TABLE when the stored section is executed.

SQL Transactions and Locking 4-95

Purpose of Slide
To describe cursors with the KEEP CURSOR option.

Understanding a Cursor Without KEEP CURSOR

Xact Cursor
Command Sequence Status Status
OPEN;
COMMIT WORK; ENDS | CLOSED
o ENDS CLOSED
ROLLBACK WORK;

Figure 4-48.

4-96 SQL Transactions and Locking

Key Points

m As was described previously, isolation levels can be used to release S locks prior to the end
of the transaction. But by default, X locks are retained until the end of the transaction.
If you want to release X locks before the transaction terminates use the KEEP CURSOR
clause.

m The OPEN statement is used to open appropriate scans to access rows in the active set, and
to position the cursor before the first row that should be fetched. The OPEN statement has
an optional KEEP CURSOR clause that affects the cursor’s behavior when a COMMIT WORK
or a ROLLBACK WORK statement is issued.

m If you open a cursor without using the KEEP CURSOR clause, and you issue a COMMIT
WORK or a ROLLBACK WORK statement without explicitly closing the cursor (you have not
issued a CLOSE statement), ALLBASE/SQL will automatically close the cursor when the
transaction ends. ALLBASE/SQL will also automatically close the cursor when a ROLLBACK
WORK TO SAVEPOINT statement is issued.

D Issuing explicit CLOSE statements is good programming practice, even though
ALLBASE/SQL does not explicitly require them under these circumstances.

SQL Transactions and Locking 4-97

Purpose of Slide

To describe cursors opened using the KEEP CURSOR option.

Understanding a Cursor Using KEEP CURSOR

Xact Cursor

Command Sequence Status Status

OPEN KEEP CURSOR,; ENDS; POSITION

COMMIT WORK; (NEW XACT)| MAINTAINED

OPEN KEEP CURSOR:;

ROLLBACK WORK: ENDS CLOSED

OPEN KEEP CURSOR; ENDS; POSITION

COMMIT WORK; RESET

ROLLBACK WORK; (NEW XACT)

OPEN KEEP CURSOR:;

COMMIT WORK: ENDS CLOSED

CLOSE;

COMMIT WORK:

4-98 SQL Transactions and Locking

Figure 4-49,

Key Points

m If you open a cursor using the KEEP CURSOR clause and you issue a COMMIT WORK or a
ROLLBACK WORK statement without explicitly closing the cursor, ALLBASE/SQL does not
normally close the cursor:

o If you issue a COMMIT WORK statement while the cursor is open, ALLBASE/SQL does
not close the cursor. Instead, a new transaction is automatically started (a BEGIN
WORK statement is implicitly issued). From the user’s standpoint, it appears that the
old transaction has not terminated: the new transaction has the same isolation level
and priority as the transaction that was just terminated, and the cursor’s position in
the active set is maintained in the new transaction. For example, if a cursor’s active
set covers four rows, and a COMMIT WORK is issued after the first and second row had
been fetched and modified, the cursor would still be pointing to the second row at
the beginning of the new transaction. When the next FETCH is issued (in the new
transaction), the cursor will move to the third row.

o If you issue a ROLLBACK WORK statement while the cursor is open, one of the following
occurs:

m If you have not issued a COMMIT WORK since you issued the OPEN statement, the
ROLLBACK WORK statement closes the cursor and undoes any changes made through it.
The KEEP CURSOR option only takes effect if the the OPEN statement is committed.

® If you have issued a COMMIT WORK since you issued the OPEN statement, the ROLLBACK
WORK statement only rolls back the last transaction that was implicitly started, and
then starts another transaction. The new transaction has the same isolation level and
priority as the terminated transaction, and the cursor’s position is reset to the same
position that it had at the beginning of the terminated transaction (this position also is
the position held at the end of the last committed transaction).

o If you attempt to issue a ROLLBACK WORK TO SAVEPOINT statement while the cursor is
open, an error will be returned. ROLLBACK WORK TO SAVEPOINT is not allowed with cursors
opened with KEEP CURSOR.

s When KEEP CURSOR is used, the logical end of the transaction occurs during the COMMIT
WORK statement that immediately follows the CLOSE cursor statement.

o An explicit CLOSE statement is required if you have committed an OPEN statement that
includes the KEEP CURSOR clause. If KEEP CURSOR is in effect, the cursor remains
open when you issue a COMMIT WORK or a ROLLBACK WORK statement. The cursor will only
be closed when a CLOSE statement is explicitly issued and a COMMIT WORK is issued.

In ALLBASE/SQL, X locks are still retained until the end of any transaction (until

a COMMIT WORK or ROLLBACK WORK is issued). The KEEP CURSOR feature actually
generates many small ALLBASE/SQL transactions to create the illusion of a single,
logically continuous user transaction in which X locks can be released before the end of the

transaction.

SQL Transactions and Locking 4-99

Purpose of Slide
To describe cursors opened with the KEEP CURSOR option (continued).

Understanding KEEP CURSOR with NOLOCKS *
__cs RC

RR
BEGIN WORK
)) ¥)
XACT ETCH & SIX & SiX ‘x [)
1 | [UPDATE WHERE CURRENT 4 X § X I®)
COMMIT WORK)) 3 1
XACT ETCH 4 six 4§ SIx s £
o | HIPDATE WHERE CURRENT X $ X 10 ®
ROLLBACK WORK)) [} [}
XACT] LEETICH § six § six \z [}
3 v| COMMIT WORK) 4) [)
EETCH SIX) SIX & 4
XACT| 1 1\PDATE WHFRF ClIRRENT X [9 10
4 |lcLosF cuRsoR X X X X
COMMIT WORK

* Assuming Index Scan and UPDATABLE cursor

SIX - SIX row lock
- X row lock

‘ - Cursor — S row lock obtained and released
- Dangerous UPDATE - need REFETCH first

Figure 4-51.

4-102 SQL Transactions and Locking

Key Points

s Understanding KEEP CURSOR WITH NOLOCKS

o When the WITH NOLOCKS clause is used, all locks (including those associated with the
position of the kept cursor) are released when you issue a COMMIT WORK or a ROLLBACK
WORK statement. ’

o Because locks associated with the position of the kept cursor are not retained, it is
possible that tables or indexes on which the cursor depends might be modified in a way
that is catastrophic to the cursor. For example, a table might be dropped. In general, it
is wise to disable data definition using the SQLUTIL ALTDBE command before using the
KEEP CURSOR WITH NOLOCKS option.

o If you open a cursor using the KEEP CURSOR WITH NOLOCKS option in an RR, CS,
RC or RU transaction, and the cursor is updatable, data integrity is guaranteed (rows
retrieved via a FETCH or a REFETCH statement are guaranteed to be current). It is not
possible for one user to accidentally overwrite changes made by another user, as long as
each transaction reviews rows that are fetched (or refetched) prior to making updates.

® When you issue a COMMIT WORK statement, all locks are released. This permits other
transactions to delete or modify rows in the user table. When the first FETCH statement
following a COMMIT WORK statement is issued, ALLBASE/SQL will reacquire appropriate
S or SIX locks (and intention locks). If RC or RU is used, these locks are immediately
released, so the REFETCH statement is needed to acquire SIX locks prior to making an
update. It is possible that another transaction could have modified the data between
the time of the COMMIT WORK and the time of the FETCH (or REFETCH). As long as your
transaction reviews rows that are fetched (or refetched) prior to making updates, data
integrity will not be affected.

o If you open a cursor using the KEEP CURSOR WITH NOLOCKS option in an RR
transaction and the cursor is not updatable, data integrity is no longer guaranteed.

m Remember that if a transaction includes a cursor that is not based on an updatable
query, a temporary table might be used for the query result. When you issue each
FETCH statement on such a cursor, ALLBASE/SQL simply retrieves the next row from
the existing temporary table.

s If your transaction does not retain locks on the original user table, other transactions
can modify it (or even drop it). Therefore, your transaction may fetch a row from the
temporary table that logically no longer exists in the original table, or it may see an
older version of a row that has since been modified.

m Normally, if the RR isolation level is used for such a cursor, data integrity is guaranteed
because locks are retained on the user tables from which the temporary table was
created. However, if the cursor is opened using the KEEP CURSOR WITH NOLOCKS
option, all locks are released when you issue each COMMIT WORK statement, and other
transactions can modify rows in the original table. In such cases, it is the application
developer’s responsibility to maintain data integrity by verifying the current value of a
row before updating it or using it as the basis for updating another table.

SQL Transactions and Locking 4-103

Summary of Topics Covered

TERMS
B concurrency
m deadlock
m throttled transaction
® priority
m granularity
m table types:
o PRIVATE
o PUBLICREAD
o PUBLIC
o PUBLICROW
= lock mode types:
o (S) Share
o (X) Exclusive
o (IS) Intent Share
o (IX) Intent Exclusive
o (SIX) Share and Intent Exclusive
® intention lock
m lock strength and compatibility
m access plan
m serial scan
m index scan
m hash scan
s TID scan
m page table page
® hash key
® cursor (updatable and non-updatable)
m isolation levels:
o (RR) Repeatable Read
o (CS) Cursor Stability
o (RC) Read Committed
o (RU) Read Uncommitted

4-104 SQL Transactions and Locking

COMMANDS

m CREATE DBEFILESET

m CREATE DBEFILE

= ADD DBEFILE TO DBEFILESET

m REMOVE DBEFILE FROM DBEFILESET

= DROP DBEFILE

= DROP DBEFILESET

m CREATE TABLE

s CREATE VIEW

s CREATE GROUP

= ADD TO GROUP

= GRANT

s REVOKE

= BEGIN WORK

m COMMIT WORK

= ROLLBACK WORK

= SET USER TIMEOUT

m SAVEPOINT

s ROLLBACK WORK TO SAVEPOINT

m ALTER TABLE

m LOCK TABLE

m GENPLAN

= DECLARE CURSOR

s OPEN
o OPEN KEEP CURSOR WITH LOCKS
o OPEN KEEP CURSOR WITH NOLOCKS

a FETCH

s REFETCH

= UPDATE WHERE CURRENT

s DELETE WHERE CURRENT

m CLOSE

SQL Transactions and Locking 4-105

